From 7733706413e72066b1b50dcc7ceed719aeee90c4 Mon Sep 17 00:00:00 2001 From: elisno Date: Tue, 25 Jun 2024 23:23:37 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 250944 -> 250944 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 114895 -> 114895 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16325679 -> 16325675 bytes master/.doctrees/index.doctree | Bin 42636 -> 42636 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1718 ++++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1150 ++--- .../tutorials/datalab/datalab_advanced.ipynb | 282 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3878 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 664 +-- .../nbsphinx/tutorials/dataset_health.ipynb | 50 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 608 +-- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 616 +-- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 942 ++-- .../tutorials/token_classification.ipynb | 175 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 60765 bytes .../tutorials/clean_learning/text.doctree | Bin 232719 -> 232719 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 337873 -> 337869 bytes .../datalab/datalab_advanced.doctree | Bin 208321 -> 208321 bytes .../datalab/datalab_quickstart.doctree | Bin 150529 -> 150529 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 521428 -> 521428 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 123673 -> 123673 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 155495 -> 155495 bytes .../tutorials/datalab/workflows.doctree | Bin 323779 -> 323779 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 325916 bytes master/.doctrees/tutorials/faq.doctree | Bin 203245 -> 203245 bytes .../tutorials/indepth_overview.doctree | Bin 223341 -> 223341 bytes master/.doctrees/tutorials/index.doctree | Bin 3139 -> 3139 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104189 -> 104195 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 106940 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176685 -> 176679 bytes .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1718 ++++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1150 ++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 282 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 70 +- master/tutorials/datalab/image.ipynb | 3878 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 406 +- master/tutorials/datalab/workflows.ipynb | 664 +-- master/tutorials/dataset_health.ipynb | 50 +- master/tutorials/faq.html | 8 +- master/tutorials/faq.ipynb | 608 +-- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 616 +-- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 942 ++-- master/tutorials/token_classification.html | 18 +- master/tutorials/token_classification.ipynb | 175 +- versioning.js | 2 +- 177 files changed, 11605 insertions(+), 11983 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index ece896686..1528dbe1c 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: f88f7c566ae1cd182e4d434608355dfc +config: 7819fe37108463a4b3bf57a557ea29c3 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 93bdf194443aefcd90d39e7ba33d4cb6e377b556..f2f9be38a7e3e90c38ac686d9679986a0e935f2b 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO@nROjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OU1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw=QFtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OyJe^9MZ7?|t6;p7)$P70;Q9 z=S;UUt*^6JtGHYdDyyt=heN?CO$)li+u?ER9pzOXk2%6V z05W6ur(>Lob~A8i!InH#%-L1V7#NP2>R=6k{;M~f!%h%y4h;94PhKnMWHxz~@E0=O zjLi3@W7Ke*<+Yomd!rG4srJvkAVgx4capS@z#MX z5OJ51OK(+WR87@INEa7vWGYweDOiy#=qR!o|4&p(a|KF0@>Qfuop`oSaSA_RK{DuW?Bw)6gL#*Cg#vYvIPf$^dtk!q!e7p;7%$o ZQZG2L+BK5tPajHNZ2hE@{LvqE{RT0j00sa6 delta 4197 zcmbuC%}Z2K7{)p0-tnuMMia*rAqu50$rW)WUAJ+v9C_yL_6z+~f6!HE&zHCtPvxQk%=;)4b(QuQ9?t z05W~&rz2v#QMK!S`xawa84D(l{^!9$Hz9egu@Xusm{ea02yz(A zKF`Eh6gdc{mI@ViA1#`y(wGG%e@k{4CSY2UBZZ-*%`}eUHa1GQ`laqZd z!1jDS&7NR`m4JBjHtwYCd+huWU?2zV4E@aFEoGRvPVY{n)B8g_2t0nwN!u`ZR?S~+ z#VfFh=|*m$)c`LAuW7Rk8%dYr$g9N6L48;G_Y5!tEnMe4+c9xaOy_gE=v?A?wEloo zZb~*?37$cx9`n&-m`$A+u&^A8Eb$xYL~J-*OYosAw1&AgZWDKY@fc`8(x5dH5N{sH z0ugs8x%5_5M%7eZgmiJxdZu#4nt~O{f(|2_@&81nG+Ut5B40(i)QG2h6uZze)oh9u zD`Utb(X=6Ha~fF|W)d;KSFNV;3T3<*Y^Lc@LvdYEdNGFvk}cQ|q$e5Rc}l^B3~s05 ZBK4dNtKCI1{mBE#i_M>Ol0W*Rj^8zJs^|a! diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index faeab0cb7570de461d9eb6eef1065e5537e1e202..cd3e3af0133d7de0551ce0e459f7dada1c4e0021 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_h9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMKJ!74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL0m7(^Wa delta 3571 zcmX@QLh$Gc!3~~_hNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw><74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL1{Bm1!c diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index e58ae052cfc99758cb3234c10ba91797f5086057..3ba409355a11946abc69646dbb215ffedf48fe68 100644 GIT binary patch delta 477 zcmca~p7GLo#tqSoh9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMJ`67;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aMU1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2BwpH7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aMV++xnx2x(GCInmWd2Fdom+q-O{jGW0z`hg@N z8M2r0LNHv0NoWx}#0kP~ifUx$+Lg4fy3rfyzKG77e}P~BfY0-JzR&xdvopPD)r;1b z?Zlag4LIFFceuV$azw(4INQ282QPr?|+|j5+!c9&!+!S>=)M$g`aPFpr^G*E5PWY^NxI6xPY-AuDtw?L@E9CpbJpmL~#t?WKl0iowvy6ywgupH`U zt4CTJA?q|iiQ#IUBb97Q?m_x3Bo&s4b|L#@p!a)J3N@{;JG~E4>*Ky&)H)fLP;2a3 zJ8C^Q=tZqZhlT(vD)O*yrFpc~uYsN~jnYXCb zHv1Jt6E7|UhmMilFlwxR6+ltT>oY*JV!A%|<&6(p2OrDMAGAUDQX6Z|2Qh1#)|{_k zhdwVLj~9|_WBmmgHTM@P*`?y|GBEQ}>7x}xwWX4s)vc5`hU*>AiH(nDN&7ae02c)U zbs$??AQ!=j>w+!kf4-3%__d7!X5Ic>#6Pi20-I>V%te*?DsTp8*T@A>&iDQz`5l;7 z-+!2v^C+d0$Rk#qmh}Q-Tj|{zyn{VFbAVdFFUUoNPrGorS+DibG9Euk>o+k2GZ$3` zc0z48yR@Qr(jh@Y4r02J9Ob@F22l>wo08b7_VK=|5n$A_o8f delta 4228 zcmbuC-Aj{E9LG6lZMiLN*^7A*S%cng-1|#}G%2Lq(3K;D#65e<6vs%Ht)v$u3CR#2 z#sh(9hKZ~qc8C*%-4xZx%(W}YuDa11>Ar~0lYha!{sEug=lA_RzjJn`lnhGA@G?NG zX}7mC>atv~x4B%Fc+_sUJDdr-)fM;J98PaE?u;cIQMX5mSskvp(`Iq9TjU3T$x^tH zEox5b$~UU0yr?nBSwjk-iPoQLx2V;a z`--CdFD?Oxj*V<9hg_y zf0*idg3?Lk5i3s1MuCy7^lmNQ!5%(wfa<_6$VG%tyKuQysq@hao;pG6H!%Y(7ghRp zLT&iDDMSm{&F)tOyN~y^(`xMK`p4&Lcx{|!vGD)##%{WX3Vo>|&S{{i6>$r=Cv diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index a3e5fc77c57cfa9cc19cdff25526ada252defd16..8606b7265e9b0dec26d3fd2429b4d8c0a96b499e 100644 GIT binary patch delta 62 zcmZotYEs(Z#$s5KRcvS$ZBGTWM*cNnrv)rY+{;bY-pBhX=Gw*nVf2xl4g=@ZjqQ` RXkwOXYGh!#xtyh&2LL6g5mf*H diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index c7333af930558a854409b920709dc7323c5492dd..cd451c3de4e195446c208974831c8256bf441c20 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|Ch9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx TmT4viscEJbCMKI38KWx!U1brfJ58W~r7&CZ?9jsirAuCduX& Ti7AFAW~rt|2Bw=E8KWx!yC4(% diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index cf94a16fa59d8771a74bced71b49aa81d2cd5e26..54000009c9b0566243e9a46516b8ffedfdd99975 100644 GIT binary patch delta 62 zcmZ2yxXy4xHltxlR@q{G^1fjR@q{G^1guxn+E^nL&lVk(rr6YO=Ahv59G#v7uS2rICrLWpb)%N}5TsxkX}% Rp@~_lsgZ%{<{rk?x&U9h5}W`4 diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 0c69dfb33695fd797e3086dace3690ed631c90bc..564fe19f9b78d97d2b38b8389a0f4c2d1f6f8d5d 100644 GIT binary patch delta 81 zcmX@Gg8#q@{tc;&MkQIrhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx jmT4viscEJbCMNomV+E9(cQLl_VgzBP?YkJ6+b#hBNF*A3 delta 81 zcmX@Gg8#q@{tc;&My2MK@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& ji7AFAW~rt|2B!LxV+E9(cQLl_VgzBP?YkJ6+b#hB3Gf*= diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index e056aa3f9321ad73eb28944d02c80c76349e48b5..8128d3837c75eac04307520981e0219d1c2c3010 100644 GIT binary patch delta 64 zcmaFxf%(A)<_)J=4NJ0$4b9@slJ(6k3{sMlEDQ~k3{p%@Oj1%)lT(ch%#%`*Ee%tX UEz?X4QqxQ=OiVWaVNLl200R>i!vFvP delta 64 zcmaFxf%(A)<_)J=4NJ`}Ow)`F%~CCmOiV44Q%zISOp?tl U5>pIK%u-E_3`{rwVNLl20NQ00egFUf diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 2c66cec544958107849d7697672e3e9b8e3d0b85..928635efb5bfd38832b81d8f20ade7a09c175a7b 100644 GIT binary patch delta 117 zcmX@AbyRDEFQZ{eRt+&3+f*y9Yl{`D4J`(-n%1TXovU?PTdFqJ zvFX@ww)5NghTB*ld=cE%ahTtO%7pD{Fvwssw!tPSC}OQ_6vqC@zMCtf&%X=z_4ntT z^E>w*?%bEIIsI&-$gzW?k@~*+RHz{q9!w3yB9VdcU|lpim`Ykdbnb#|AFWsvbB+~Q{pI?flLJ%rUe&YuN3uv*9YF zRP|C#6VN6ut^EkgbCR3Ft6b1blj3}=h!^U;Seq>PBTzWr=)Q1looL$h1x_F?Cbn~K z^IouTqNTZzZ?;TegHDQgyH9+VtQJpNzs73dc>DJT1nm*t-5zl@GsOPRn?Tw`X>Fc@ zUyl2*+1qe;_iI@9EcgOkdL@6D$YN8sgiR6JYw+j2leqU{ar%HMzD+)aYp@ym+IR45 z|5-Ezw|ySInn^i40cf)$TNJ9*umGw>d-`JnhPgg z{N{-)8VJisV9I(OyeR&h@{84NZ6bWC4=;-YQ}bY7dFISdg`o1x8H0a+XBip@4Hvmz zO+Gh$1)K$6f3GuyndfugT=Qd4VH;0?Xzv4$ywOT)_{ZP=LKF0qqfC5KWAO1i#qdkr z_G0sFxYrNPL3kgST=npE?5^k$=Ay}Uf9wW>#OC4@7U3?@UuDQQ8fl16{9CyK8mP@t zQApTrlZUIfi)hSrAg}RdQdUrh1CFjW6p*=Ay02dGQ!kcGyBV4(s1C291UAqmBqOV7 zp93dKJ9!4%4SOyNLCQEOLgP#1WH)V5>uTthgOIAzAsTYxMB}|G8=)*}B3Hdq=}l>N zfR{VB(ju5pEpNe#(!MwHJ|}|YR99Fchhr44yIGpNv1p>q8fFemts!r zZ4U5K<5x=GA$kn=#jrWv9U<)I=n}bVLw%nSrSZJjB-ZtkzZlfasFM{~!ltIj z=v90fmM~ctk@|GP$yVgqeDa^5j^Xg6ldZ6s)TUFk9^Z;QiA&9&rD1#_Y!azSN~Hb@ UG^>qoQP2Y=a+lKoV}DuxA5Y}KcmMzZ delta 5702 zcmbtYUuaWj6z5cLT1|SJrj$0!nJTGu>t>R+NgJ)St}RyVY-llv)wCrhbX%=c*HX2y zj!nmgvz_0@9d2SDd>Oc{<1oL6IVNmRgFyz0Okoo?*br-FqcHYI_T5|=eg1uLUw?nj zIlpu7;m&{Vnpe+uii|hM2h*|eWT+t)3un@ejg3vwY-1#ri8nMwAJiUhF5W~dk<({saNsV z(mh46dNn`e9mLhEdA;vNP@UbCVg+RUFt_^|gHG^;Cl6xvPVgszZmiY`zPNrLsyY|k zkE&j-YX#cG<@Fz8c}{U_c#R91X-b@HDdEMK7i*IZe*g+6;_maWY!I!RKf?*ch2##- zZ`lj>O|-Wa^Y!*gY|tr@=<t`O?cJUbW}eS}^MxOS3deX7M0@XftS>ug9pC!tFEl}qIV!}ZI)jh>TnfL` z9WM^greBA^ISB7PlWXq3hTRqY!dx;r`p0fCNNg@mV-fBZLp6r=dYnf1_`lVwpn*CZ zRmFteHU+qRtAxf)4S9vHu&gTT*5K$}M*%C}LBGkD{4{_i(`klc3d%!kD2WYp8OhjM z+Na?}Dko21yWz}bF-TdRA{4&Nn(Cviazh>6)Cj3O6`~OxCkpSCxd`P@6ZzWJQf*3` z2Htvp8!dqeRq{5x#Jceu^=oj<@1THGDepsLVH;5-L7Cr<2i$I^BAG$6{lAHY9wN<3 zJl5Yq+9=#stdE{5(U?w651H1v5Y@@y0cz2)Q(!s~p>6WWe(J_UYsj_? zb!y-(g1>6=BsZU=jrdj+NL+H^42|Lo;gDF0q|8!Z Vfi~IjCIvlEB6mskKlaYb{{Zx+QUw42 diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index f73717754a3c815d8168d7465a44d4cd0434d64d..d822d4d7fc958987f1a2a356cfdd791d822cc2ad 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdh9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMKKP7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqU1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw?a7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqU1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw?q7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{B4X;V`G diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index f11566337111882d2c76eb0c10ba371fc8e18ea7..6607e7215c2d3ef9c7330402c3706d791a3e2072 100644 GIT binary patch delta 122 zcmcbsd{=pcKcituR6K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba zWtxdWYMQBqiOJ>;MoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}~ZI9x*j delta 1125 zcmeBu&(!;#X+t=pVX3)ge6pEAg}#xQnL%o@v9Ym` zVv3=OS*od#f$8QBMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}}oC`D-i diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 5bcc6541d3a2be850e008a07e86e2a4338c1ceaf..3ee414b8060258ea19206d710f32510a501aa77a 100644 GIT binary patch delta 62 zcmew$^+9TbE0bYKRk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0MfBOHUIzs delta 2628 zcmccdp5?}SmJQL2hNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2BwpH81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0J1X&p8x;= diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 32f4935bf0c7bb812cdcc581abe91bce40e7a2e5..358423bd0fa4a7757b77a5dca5ec7e357880152f 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wk27`hGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMNnR`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OQ3+K7arK delta 2632 zcmaERn&s_jmJNZ7wx#Bl@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2B!Kc`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1ORxT3UdGe diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 2fd1ef72e8f6a1d44eda24ffc8a309762251e9bf..ac00aae28e641633d23519457da07f876026ea87 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wk27`hGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMNnR`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qU1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2B!Kc`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0q)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NRgz8c^F delta 2506 zcmbRCjb++5mJN}NhNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw?47+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NQawCD){ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 27ca03d50192096978835da0e1962887fa9488e5..133ffbdc00f85cf6a4b94207792fe2fde4239cae 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFh9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMKJ!7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>iOCc{zy delta 3034 zcmZ3sg>~5$)(xJFhNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw><7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>j)#DyII diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index a901c0b3d84b8ef907a45fc34e888ba27deb2b7e..b9b7fbc635fc42760e8b82cbdcf117763e360f10 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#5fRJOF*U6TScd delta 62 zcmaDV^HgR-Fr#6qxn+E^nL&lVk(rr6YO=Ahv59G#v7uS2rICrLWpb)%N}5TsxkX}% Rp@~_lsgZ%{<`%|>JOEW15_tds diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 35682658860060522a325aca0c96d43c42c86574..b6461efd21441d13485a700e13a569fff5ab1a42 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObah9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMKJ!7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw><7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+3aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~xu)!>RxP delta 3021 zcmdmUn03!#)(zf_hNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw>97_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~!RshPnU% diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index bf0137099bf0636d1a3a74beecce53b2f4ca5d8f..d5110b6133263c7d3a56bc077a2cbef87412481e 100644 GIT binary patch delta 2688 zcmbuA-77<39LF0w+p)|q9VHjl2r-VoRVZ=jhPbLHgj~O>EXnG^X$2Hn5|{y z(W$;!1LHFg8KGN4wiZGe?V5_Qx?$EJa1<=?@Q_)>c^WM#$4)Cu4Z;r|Jf8{e^{mdE z1!a#AS9ysZ_;S?@R+-VQWjzB5%*a-=h+5}u=ctu;?E_YNu5HT%d%n6C0Ap%<8Pzq8 zqdg~@o6x}1tsWFzYcdUoH&r@+M1l%~fh+h^##z__n>R9C3 xKrL5EWZu!oW%{@q0p2u(Aa1$-(`$4h+=Ar4U#a-rLa+EGBt8Z%0i=Y$bwup zC<`-QiItSiY^;nTk~JG)CATksfoJ}JU%%%$?|IKjEo)QD+IWk`7P33~y^1Alwke9m z?-fN+k^`bu@jGmi?C|{?^a$4^?#ei(cue wLH;rQVIs+J5c;U$Plt5?fdFAQgtw;yj<6k^QK5lb=042vPO#lD@ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 2b0de15e972c2bcb6043384aee4d7868106defd0..49952bcfe57b69efa16f1b87fd99f9bccdd2dbab 100644 GIT binary patch delta 2967 zcmaF)oaNpF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6j>4zx delta 2967 zcmaF)oaNU1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw?q7_X6`ZF-|2WBp_nmO|2PoGi#SeX}j=ViwZ1ZWiQv!%Dig$&5;! zo3{%{3X-mMGo#WZGJ*$aW6$IOm0hG;2-V3w`9g@j)mipF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6iil~q diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 0a487b459a4d7bce3a6e4e13445dd16a86a34b9b..1386e11835dcc27d3fda740a42dc087116f36100 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#5fRJOF*U6TScd delta 62 zcmaDV^HgR-Fr#6qxn+E^nL&lVk(rr6YO=Ahv59G#v7uS2rICrLWpb)%N}5TsxkX}% Rp@~_lsgZ%{<`%|>JOEW15_tds diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index dde318df1f73b2082114b02734d7f7bb2650a4a5..a37a3a0793163a115ac1b69b421700afba29970c 100644 GIT binary patch delta 3483 zcmbuC!Ap~I7{~e5-f7KEY^4)RkRT!|-^rZwP+Er&oA1$Q@EJ#XnHgQiB zu`AKPLq&9~Z%5`)Rp)5~b^$r+IJ=ChX2&b2*SI!^su}{X0aYpokE2)Ke0dQ~_fEI~ zG^=lZlJ}i#;Da%%{zO?wi=>d||Ch1Ruj_6k@vS8~r+?RG#zw6(V>NU^gE0#-iLE9) zb4P3FK%a<>CT{3R@9m$uU9rxg@e-DVP*@D5O2 z;>zlR3B>o^H1pEBLX+%*u4J$>Hy(M$(E2`s`eMT_sS{SWhK@i1Ax zWzA505^swan2F|pE;ZmKRtl_i5WzFcvF8l?unXf8U#3{QSh>U^UN^&>R&7u)>(M@awby1AY@g{Hg-5>CIzR&mjJkNVLwRK}{ z-IyO>_Gq7HQdQ(Dy$(f@1FF;Mbh(30yAtp?TyBpVaQlNUweQGTzulz-+z#1IS6LOn zIFo01w;^7?piVBCtmK!z8!-B%X<;isRzoj%X3$L6TPG0VYN$YOc1|N%>FC~$KU<)t z3nX>jl>n50On#2|Wb#uU9x%}zhtyubsv^ZpYpd?;bno+t~cu?*7u|1viEbo@F!RcqM3>(`L_Q08d|C;rtc{=swDfuZM>FmFB(Ml06feKS_CLbo<%4AX zmN!H3>3CPN#7s2*bEyR{u~K4{{SclO_YSZ_=;VswCXtqLe)Uqbc%-o7MyU5$o@?7J zR*$l;*x_#QDUFvz%*&p&;Z3BfV{8P+#jbJoVF$*izC>BKSh>JrUq}E{7{~dkyEJvpjnphFT3AAtb7Hy~Il5pZGl{N5g|)LYG7`$IR;jSPunUdY zJkaUlFbYD6Wa}Z$yEVvB^kzZ?C8Hq7pdtx^-i^+tZ+hwX`~jcm^E}_*^ZT8Xix_ed zL$a6g!LtFrwWn3s;&gF7!Rz9AFXwA_hf0^!Bgm*R}Zg5two+&l8|wN(mP#z%8op{R}mmpOj)l ztE5rhOl5s1^@zPx!cM1y*P)~r@b8y)0Fg=Y1$^VcFleXPkf_D{Hxj^;x6`@dU0UqP zn`gke)pNH~LzL5E?~3(nv1dl=wAer1;kDSS?k&|~Z%n*_E^BFFD=GJA4*Ddk_;hNCwCPHWx{VtuFS*1PurO7VP$37oZh)=ICxZAXu} zi2wPy$pYDv(sa0nYy}te50x+BN_z!+WnH{p;pq}E{7{~dkXRfJhZlq>e(ZUkC?CieC(FG%!NpvMDOwKkE63R=nRM=kFg+^>1 z=yY)u1))T;^$_RX8ssQ?Ga-VKQ4nNMkpw~SMrYGEz4UwjfY0-Jp6~DZ{m#inDsz#_ zWDny9U7jw%X&KsKbvi8p!Dh4B9YGuK40x<|herrF{6V|ma(DZAyEEXhS{&j%_5+~e zzNk3B8R=-bfJhhdFeJ{xVEVL{Qxx?7VS^BlJPzE)er7zwnYW45gSPoi8+9pwJ#5zASAzau%KQ%CWVmHG1+oYSo>dLt~ojdIB^|DdA!TxJ3;;pP^>+(_(CN zojAeksjT;m2C_-tzx zO+H=FVwZJ%pMkEvNUXqUv8la|8Zs>)P8;5iV11|Q=DYU*O7VP~4xF`S-bk;%?Lv>a zi2wPy%>dbx;%vBu$_{^&B%Awvs>8A)6&cBOfQ>w zma1NU*TrwaVu6&G4T1}*TrQ1dILLJJs&>YpBEFEEKFmHqZ;QfuPcTl8Oz#Uxig%6F yAuz4153+|)hW}N$+|O3GAiXFjQMk`Eawx$%u>~$ZbDTW&m>mas`O_5pUH1>v>wX6S diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index c6927a9c25bdb35fba0f07b3c15c7923ec14f73c..271aef037628926df8ac995d4d3ce1d2e811fde6 100644 GIT binary patch delta 4920 zcmb_gTS!v@80O^6xz$$9YM~V&f@Qh0Ser^ELZB$6B0V&fWOIv5!`Qlz(V7*di7S6; zcB9^UDOdjFK)fYIh`r1}OuJwSWr;)?gmgReh|r_odf4N4`Tz6%-#Kh%Tro4Qc(6|} zx+`2p^M144U`Z3p?Y1d3-{)munXIDTA~kLICGqD% z3pR5V_ZAI;>MU9vpel)074IlfDS=>yTyD}Hj-~?>N7?D{Am(KXB{v-!Mh1}KeXw^O zy*-(k(PeN~Rfm5IepOP)b%C@N4XMA^@QNdiKxR4Q>O%4way4+?iC2K4WZF&D4YBmc zBQ@I2A?`j!5zz1-Pd@tWWEXmltGyV318ERF+s^A1U=FGqRJ^g?hQdYPM^ISwE#dyl zCFtR3{7Qd*ypY=DZv_oV3|!n&iM-FG5OL-0r7?iAH&8R%8Q1TgMMn1qPV@8o=YY(y zH;@Lv$Q!7m(ay|_9=s^Lfn#Lo(9M^{@3v+n@iL8`3)?M7X-IH3bW9`4j|V)IdtNS# z&hBeCg`U^;LGMV}fu0kdAU#VGoUPByz?Jjkfk^-+DITYrAtjZD#(*oCL-W+&LF7up z@Uo{dWU(ew>dSV}fW+V*P7w0=&Bzv{B_tQjV=AO2LM|s2%xIdvMDu}(X=DX+3~gWD zAV)v1ucS*~JAnQDL!hQ#-*Rvg{xrP_Irupb^l4g01=-OY`eFPZG(A7T4-cpRL9CGc z$SSx&8)3X5*sKts3X#?!6I@v=fL|QWpyVJMse?K3)s$SnJNQ*2tO7}-tI+yeb;1WY zPP1?|^OZ7AIvL2ZW>= zQ~E)RQD3V|HX8L-OG-*gs==0$WVEIyry9~NRzs;R)nZCJRGO4(v>KB225uDO0E{|! zm2hnEk>Gz<^h0Sw*jWf!K@OFM_sQErFgQC@7Hr%KcC5M^gsFH|@KAMFZ6J#J$G`oJRNOrhA;c`9KBompnokZ!AjU5R6$I?0TMnD3>Ct4*&0 zS@`XYHyHdp>oW6!tLDyKgV?egIAM1cX10O%XUza+#R@vkA96CVOjgohfs(en;`npE z37ff+2MeBo>Z~_gK~>V56}+QJAqRr#vsaV)SO}F()v(R#K+H=Na&A33h72IVhhgs; zdUtAPMxU;_vdaJa=T{~9>=#LGQjzj&9j`gw3}lvl_C6%9K6?}A)V>B3Mbp(()f7&@ z9AcwozTp1T6aWqXa^#}VPI95;i26$bI1mTX^5F|w8JL5rCIxS9JdDEiu1}z_-nD{9 zT8hxaQMu*r+-M=O)!hyn5E;1eS_Sex6GOxmcUFc0%1%$+QfJ(_cMcid={dtsADjm= z$4*Zg03)ZTfyR4xW(?p(;q;s!U61BZS^Vs3LlQ61XgR;zgp`H|XI;+%qC7O}pgk9) z!szY4j#FqkW*B-$N)EKV{t?o%B*NMJ#0XqD4~@s$zzO)VfRSZ3&& zdy5?XAALDpp6>zn_ZNYZetgNsNqBl;3v%$w9%y<&LwQ*t?E9AVKWGNNgC8C?cSpDo z|IjQ{gEstlowrRUKougcLn62mDu7=cHm~R)3#o%;@hFOK-0PiJ32Q+T@ha5rc8%~6 zj?)rcNh2-U-sVUl0>3Tw)o?-X&WjetaW8%fD!R7E8yh2RLOMpuxW+phD~u}vAJU&s LYHzt-SRM2mLdn|9 diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 2d828a71c2bf0ec753d1f891a9538fddd96d0681..a410c0fe785c6c8748e4c690739c3092f00efa06 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-Sdvw2XcljltZ!~%kdmBaVQ83SkYZ|Ll9HO5oN8oXo|KYoX_%U9 znPy^;nr3QYVzRl0@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeJenW{{d}Y;0^|nr3WhmTGBaVrrS3YMPQ}l5B2~ zm||#RmTGEbV7j@6@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index be59b70b3517d6c2bd81a16a66dbd941b94d00ec..9522ad98d9ac9ecd0c57dca34c2b2be7f9fddc04 100644 GIT binary patch delta 3077 zcmbuA-%C?r7{{5@p%a%*b`vxRj13BU&pK{rMx`+P6&gpzs1#*8=S<2FMutO31nEK} zh@MLchD0I>OCF-#*v$~SF}xB&$ju7{L3Y($LFbkH1J2h!;PZZ-AK&+V_sj16viozN zOPP84T!~IZjhit|m_|lZl#DPtRn@dC!-|Ml#x&xJWyG_pu(F++s&d|S;C7CY9v-H> zh5|EHK12^J^F=Ax0;&c<*`k` zND@67A49FD>2?5R#caoxGRL*aTWFsw){n$M$z?pw(_?6SJQ_Fylm&=e{UR;UKZucPxl(^V!m0RHa5AdB!ve^C9_7B5|#J2zd delta 3077 zcmbuA-%C?r7{^)Dp_7(Qb`vxRj13Arzqc8d!pKxKPK;qG%IWMZ!Vm_DLr?_iB14Ft z%Lqn9A_`L;qTSfd2)a?c5=5xY3xgnb)ty1-mHY$Fw?E+Xex4uS_kEA5{-dgYYrrSZ zCQ?(jAr-q7!;l>@#Jed`f_v#31K}uOC=@5FYd>hyeEq5*#^)n`yPBlrd!X>^UB0FU?hQ_ zOirNIUsfl8vYhM0mNL(c$12+A?vp;C*s~E;p58@bAQv75yr;)CW~i155)~qxC=&9~ zxJU54#Z91SVdtgg8EncKT3T-7#phQeVBfdWVK&}OqIQ8_e_O!*JBey*SNQS=2eF%R ziEC>I$i7|FHMeuD3{CwU4{X~=RQ};quC!9u&NYfI1UU3b0%vg6NV#%~-0$;B8lPLZ vYvE~3zK0E~3zK1~xn+E^nL&lVk(rr6YO=Ahv59G#v7uS2rICrLWpb)%N}5TsxkX}% Rp@~_lsgZ%{=B-S}xBzNa66gQ` diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 68b865db752b5f927334d0d379e694bcd85c4765..a8b3f2ff120000992f8ab28e91f4afd751cfd380 100644 GIT binary patch delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$-#>Qg delta 1253 zcmdlng>AU1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bwqi7!Q-KYkGhzqtWIiOb^+})I0eFX9Ia!jVFH)FxdQuYXU2o`Zs?N z2xcNv@8k_)rkn2w7m%xe^9HfqWJD4uxQ)Sfvq;vHYd2WGjLa^I?9Z2TrO19?#pf*K zhW!Tt+09$k1cfQl?{0O_icI~}*K0FMZf-5L7oo@i$1cZu@(c*t&dS9oMTYmc1Cvji rBzcw^Z?`gMJWhtC;50iOs9AV>g*W3#8}h6-0u~hf+c$SGwlV?$qo!Sj diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index b5b5429ba5537ac04944cdcc0f58aeb2b178f449..663fd9e824cb17837e3b30672b800cb286884f8c 100644 GIT binary patch delta 13101 zcmbuG`%{!<6vyYh7j%(jxq818iVogb5D+W{#KT z(NZ%VHAix*BifFlD>o!!T10yAz({jOdRk;iNSZk#JS;53VoA4zng^z3q(_BV(xWoN%$CgX z$gr^BjO_H>;N0xIdFd8wLH}2+hv;lbi(RC0jIBX&(=n;I*~`sjUDJ9lCbum%98fW- zb+N(Mnv<&8P8zQ%kVT?3xMM48y`QhRH-S8Dao#QD_XVgnO1Xj(^HN6vM5{g6X=y`I>JZC5RJvmNSX7!j^97o#Y0gBHs?Lo^ zsejCabFIuvLaE;^oQCFlHa`cIUR+v;O8;4&h~`@R!7!A1cI70LT2>g3Qn#&ric&+@ z4MM4g4Fgc>)#9lr_2-gUlzMn`3`#BffKWtQE7*>=TK>WIegO1 zI=>dBS}$Bh*VRw~_i*P+*HCK7eQ>-P^!3o52bdio`F&WYe%9~&)@c= z)TG<+NjIQwD@x6}AC2Z3|L_D#-SO90lv>nq0i`~93_m0O{%;jZO@0n{Q*6@{kjj-r zt_v{l`QPQ0+2bia_g}=uZ_W_jr3sMQ)GeOFNf! zq17n&<}0)w&DYSK3Q%sZp0owkP6?uQ$VHvKR;&8ac$B-)Oh-`d4+CfqT4z%P#R6O| zh@^8Uvvv^81eo?qB)&VCK1aE|V`w0%De8pY0(uQNjzqx*b&N<}LjK};K3xOob_13MC2pWtWEYZ27;kEs zT>Bw;Amww!AZ-@3L1W0Y(vP5)zb>Jj?Le_;JWNIre?s#T?;Di}4mwCmjmv?)clo@4hk-6D7K zMGgG|RKU@>(jdVIiiP;S&9I>&#-K*iLog${%(yWl{i z*Il>-QPIkJWCa|%X!sjSJSr9!rz@K1GFrA!*SC~>xQ*>LENwnUrlDh)NC!Vr(^LQd zJXn#TTtK5?>2(7>5giptSfqGzOrEj^jloe^mNtw0(E;bE>Bu5QxDII9ZpHuds#o&$S6|*N;0*s2$L`D5Thn8w1sYox#}c4sN1un( z!;K`>%at;?3F+X@%Ou1LZRzJyG%+b! zJJEHo>Lu#eX(_xaSu>-r4UST=G<+89YDk_UrdW1laDe8=GOnF2g(PH1PD2j0YO{jC z;8=F|9rU=h*QOUAI-`Bx3B-#(Yh^Ly^~gJDF<3f0Mjtkui<@1iEpw#=1|c0hdF2DG z34Tkl4;eO+-UmK>9Aip4_;Hn@pE7_8!flOuH+U_+_0~7RF9%J1WbE?gU^|SL4khqN z+!LvLH+uli3fGUJCl5=nI4oqVkYab9Td8kG2LP|WqX)r_ANoLl2<&)He4;-^a+bPe zzWhvYf-kiCdAWIVs=M1rbj4XZbOiot;P{{*5-jpYuBx+Jp?k}_)&36^mVYz3;r$;% CH^2)3 delta 13101 zcmbuG`*VzE6vyYhm#~rD&DEW>Axs2WNj5}F64BHsAqY`I$fd+3LgNybN{gT+*zl;K zMU^2nQrq^3yNOA4v?-&B8n;LU8_g zluV?>9MWCmx&u@@rCvmdd1*rdqRkQP#K{9tYX8i=sC3zs5vX*|w3leE=9yzqs+yaC zQvaL{=USDQj8ea!HxbRXJbxA{J-4_Jl|EXUgyvfN;XssHzI-f7Eh|hwsasb+L#g3w z`l3|Bx(JkdY5fG0`b%*fNCtT{_0EY6sI*P_X;hkD0iSf! z&#XqNwzHSebv0DNJ>35MWt3WcVI!JrMfG!(I^oh*lq#;=MX7<;r=ry0+94>_^!q-P zntT&J=^}1#L8;mIV$fU@9vnld+y5ScQj6-&qSU8P;Ag}?{;fu-DKFq|ifecZQn`v~ z6j)-eQ0X6(o7{|iQLW}lt59t>BlSSFkIZx*)h_X)D74N=0aS@{kG7^XxSbO_b{7(u(yI-8>?4&ZV@ zA3BXPYx~kPfa$nI;yeB53zXX}mIk3*b39p5?u~&Ik8)4FO(Rk5*Mn(2s=Ypx&{qPk z8b;{z6ki@evw;04;@+hkmY2A}fS9Ei`B311zR&9?Kv0)>++;EW5xd03EP4|ZkLT*C z6a$NQ&LFjU({IWhVJCCwTzUgIjzqyab+|}bL;>POK3xXr4g;13#U7woBAuA?0(%AZ_NhKx4?V(NCb3zbU32tw6D;KS)NAa7^ZAy`?=iEIFH^@_b zSwp`96>xU0G)OdpVqtkq%^NjPyN6Va_5e$-P`LZ9)YE=+^9m_8u-{8M2iGCrPiet9 zMrAdefOHs)h#g%l%xUDsquVH6Xe;w?fy#NffvrKxcHk?kYy4OCR?LlBsKl!5gaeUY zci<94$0%!&6>#pNL2oGus92nvqG+PSFxf&K-%;}6Hg?#swD|;?hR$Ik9sEU27ybY9 zU|EK87LA6b*H!pLbXFvBfnws=JY^LcgR`(KZ59Ne1I}5~Aw`OCD+VDQOgz`7oa&4Q za`L!hXtYh5l_`DDeq-s?6&6o9t?WgM!5hvf786(kj=!kHpywp3H40lmvMBOZJ;lvr zHCSZ(sJlQHmM*ct&tO~+3Bx<9ZP2+Wq}ZG5gVp`*!Pp%R9-?QwdfOcX{%oLn$lEQ4 ztI4XjJ7w??(!rCLj8SV^x)X@_c$R7uPnd#5s~q*dJ60^M#&*OUQe7d4BDJjP1}tYj z!Bq%6rWx34k9q~Tk8qv*4hJC}e0kYE^%^=Bgwtm65!E0bm#Ga+FT<-~Sh{3)amPW_ zglNsh(mSfgi)+=J=(KX>^vbLLuDZqQZd?JPW{u{}@j;p&@aw@wRg!US?%`H6v8h@s z(Q%LJEgr7XQh7y+W6K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba zWtxdWYMQBqiHUwnesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90N*nlvH$=8 delta 1676 zcmeDE&D8swX+tohZK=6se6pEAg}#xQnL%o@v9Ym` zVv3=OS*od#fvJ8{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90Bf}RTmS$7 diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index e0f560144c7995a0ecaff9b99fcd293e7e8c7e01..04f5dacfe6bf933c3e1c40e57cf5ab8620c88c63 100644 GIT binary patch delta 117 zcmeyW`Big6IHO@nR9YcP3cG6q=sVZXGB8VgLF6DrdgrTq6ngg78MJEh3swuMQNd$LqM7a zA_x+#i;h}QBxu1F)Q<2Xn6`cd1ySjxchu+6kCF zTuShvhP`d>6SvT^oNJ(=_EIQdcZX#j35+z76+x~Bf!-jf*<21T;mSc6 z@loLygYcU$bk*e1BOnhElbI(6XWg?XKDn>iJ?9jDXs?DmIG=|U;fAUSzTbonssO*- zhG{CiRljo{4%8(GJb){838o6Lqb|X@1$bSTpt1-$;d!fVVbgOc5{A4cxX0nIRL?1# zKu8kjE{`{g@QLu~IQ8>Pz#iORf@Z?ckz+_Rx{Q4!*JdL0yEn=}g7N5a!v zEi&~30{HS9c!?{SMq!v~rR`&yW&VH{A6MWgHNI*n{DU(cv<@kDVW$*gw~FA$_3cub zxD6>3nv>hycfg-r(s|1I2`-Pj`=mn9eW-XalWc8NlF>RLy(QcOjsS(=3E|)gHer`# LANt3oUv2*Zw{i_4 delta 3290 zcmbuB&1(}u7>9YcP3cG6L_;z4Ga|wEAl>X{x2{lVQ3TOLi;4xoqRA#8N(<5;0cjeD zAV{<>I%+|Ypaok{JHm@#+WHX`M5UMFwFg1)q>!lK!P(}J^S=8BJkRg9GxN@Dezh&X z+V(6Bv57u&G+`*0dR4_ zSV{4LrX3yb6W7tITxg=9_IxB{cSmKehK8ESiZG9bf!-j@*S5xq>3lx2Kub>BV?8SG zjy@&ge5~i1kF;b?@=m_c%UWnSUo)b9B6|P8XIg5GZ$Dymky3NK**ZQ#LZ|HZ#mhv} zTzW+#`Rww3+7wT5`;AFM^Y-MsY4?5kVC671u>bvC_krTV$@8lpt|#52Y`OpwxVRUF z0#x`#Kl~;PT|IgDAjkv6WacZtDfcXjPu5!9b57xh_EN-$GeyV{Zm5Rf`%UPi3h>Kq zxJZT9>vzq-Zcl>H1GwTzFkXVqo&=|7;k740Z4OMr^VZnHmgi6=40%IvkHcTd%PBmE zkS5Mu5pR^?6XDTu>KB=SeYmRvt%RQ=$B<>pR|v4V8U)#+GMvQ|E1(eDWKp<25}w|A zk?|i8!k6E`Ph80?3d3YOZ6C8N_Xqs=xCV!)@pVJ#ADrx@b;z&_TcilPRfZt0Y?7+P zZOEX|9NXZ&1OD72ou{my;EK3SlS*Otq2j?zv*lq)M(e2bmT(U^0u+KLgo7v8lwFkr K7#x*;b^Hf?w8_c< diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index cb1adf705145944e920c03faf123f2c89d596360..d834197f0f3d72b287ab40ebe732cd49b8c53352 100644 GIT binary patch delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39a#N^9a^86ItvAjSZi6h$J4h{AvYMFeAPF^VoD zCTdy6S$a~mWf3bVt$hfvr-}TYRBNL`({X5=GdE^iZph7L7Ag!$r_}oozhdbNhsBxzYd@};tS5B zM8`5{^E&f9zTzMdtlcS9OKqq$X!RhPYr~oXl-gQ06Q!Pe9nQ72JPoC`ZY)7_z550n z@Z&ANM5)ua%|UaW_KTNMYTOQJFmm>A!p?M*I&;?}G}nLf*(mi|)sIkW!`_uB^^59w zl=_#NxhVDQZ@xmQwz}6)>gIZXR2p}v5|#e!XaSn*_Tz7&)P@s5sI>fjn0ovqOf5YP z@0@}&56}v0=TguzN$26SNo_oWQWrN@pwhQnE}>F$D}2+LKi`W|Gup18>-yyva1Wb0 z+EME6&N?*LTi5@CQY&v9MyWTudjKjATg=uv*558evHR}M2C({QTGe|BrLsQws=M>m z?@;QD{x~$(X9ikO>Vd&bkV=Oc`x3-bl)}(4k)~+u7Rvpzk)a(`cWMYjUT4INNlQ&^ z9$MynGc%yvpkQW3OZ908+kt;^Yp1K5#?H+V;`g1`UF-B)R{Iu&n}?MM~N&Q zU^*{98c1fy1C*{E_Y&KOa!XU#0yN(>smzLU=clnWlsiA2y?|~ny~leuutI*Qm<7<)r7YSLhY)I9#*$D65;6P~6+06Mp(Cr#0njzB1rRoy z;pPA40yFYoHM4dw2@(dc1p;Dcgi^~fz#5}`$FtXyKl2b1crdC@RM>OvcVgv0Z23nrVSv*D|BW=o*UPc_|lu7B7vqaj1G^#GH$djsoqmG1l6S6Ob z?iDI3mo6jsn;!9nZPFn$T`t6aG<1jb^C0&(C+|Hd<#Xc9#Mdp6(x{?V`Y{j)2^;Hp z0Pk!U`fZE!Hqt42uL-d?ef+r;gF4WbcBui#*|o=;u1eGV(8MeMB_+XEnh*!l%7;>} z1;q38iSiXtOYeotbB6-rk`?j-vj0RLjvQ;cIC`plY!pc5cQR!kzJ7t+1saerIBvqk zHi|5ghX8q#$a@7cz3TNUtdPe8P_BzdyeX%K0_o~o^OXa#FCVOhime|E!k`g3)O7mM zSc5k;oR;syW2f#A_o3X0Zg8$U9Qs7|MHb-yS#aUt&6h2a%#_SF zZ;u=<%7#oU=s+Td`5Gv8mNS&<;|*y~d*EQC%3?z!a?d|m5F-~3!8Guyp=`1zfjDh^ zx#^U_i$?4>G@x(>N?pZB_iw_MLlwSC=fPRdu4N)d~c8myzU_N@k!OV+3GrUN( zBa}+?B%lw*DOPxSggAgI!j<*Flhwn}8gTfRo_FF?9#f@dBAaO^W&u-svxxRQ%)7 zwm{Vfot|jqSk(rsv+Mmti2cYMuKEFQbu`DSZa|(+KIu~z(xPY8m|*vtoa^GTsVa2J z>*BU~YVUH8%!N3B7ksEDVg_aQ!C8J(cvfvfmP~|SPXB0Bqmdg<7dJPl%aKW67vK7; zngEmAFRI8dm!0cfPS;!22ADkelDZJidC?U$878NpSXoxL^_YROGi0F7n|A>V1GrqPHi)=^lKf?gy?q zK1bG;Q_o`+8B9rtR|8jtvrJjLdsSuk1y!L%Cha3I?Qcy^2WpqlNNCI$O$HWBPlFs| zwQ7VMpQ+jSO^bF7xH_C#%9^768<@z&-v_Pys7(vwcc0V3i9M@<|5J6jkZ{=v9^riMpFS@LosA|fKK`4M4Jd9mS<*4UgpYi@pI zPIOFmZdhbgo;BQJwQXU8fT}hy&F(8(449NRs0+*af3XYck{2GWImguU1M z$4IptdDr-!k>J3C?6O~x?7G}u8`uNLY_)-FZKg8CK5cX?makJDI(7k;vr}&QK|8is zh4#G@x1iFGel+0WdZk6lGVRHcoftLKmK-_Sekt}(2sy6cC7UHdu}_IFLFi8TEg)s5 z(!)lHe{e&s&PjpPW%i*t_so#A+`cC(1!?TKf^vIx_G+Z59nzDzQ&6fce=R_@#}%AI ziT35t=5^$GY~=wUSerwtmgb_;fU+Sp*T&TaD7CG8HcCDFI-F};MJh^d+fah$dgl!| z;76N(g;Hm3ormT+{g*GI)EV2M!N}3W@jKE`>g=5l(Omz<=c3fB)e$JQanCB0`bA9~ zO8sl?e3W|Tw_l;u-1=8h>ZS%?R665e6)Ju0NCBGbwqtLi)W+ihsI=mJn0o94Of5YH z@0^0u_t6S#XOqz~N$23RNo_ieQkS+=qSCipFQQU&8+_B5Ki`8=)7vkj>-yyva1Wb0 zJ5cJbu6i`ro7et}Qmd{XLa8@;dI2gAS<2Sf*WD^dv3u{#1+e;PTHSXNrLunbs=NKw z?@{Wkff;D7PYt%B)cr#lAe9a=_9cj=D21V8B86-0Cd&Pbk)a(`e{vW@UT4INNy|)Z z0b1sKGc%yvfIwzOOZ90G+l^|2#;_1n+a1h?P;J#X7KPTicmnG}xdW5fQtUOSoRlY7 zHOfu0uqrg)jp59Oa!*^?HdOm{468x=dFC{hfO4(Ru#Zt~Lp-Yk>P#D+W#>`m!vvNF zFddg44JI+<0ZP|Sc!BLjxuwZ$5t{Gn6lO)a3sYGt%3YYoo z)sHey=de}4-s64iSs_1I%>3xeG8XNQLl8ABXNjl-i5Px{iX90A(cxFv6Ye=|Sj{$p z4#iZrhK*8Oe+DP90&9S;8yqW_^WGMg1>8=&cAT_;XKiNz{9zTl>Uz++0SSY%Dk|R3 z8AocZhc3jv)V7-ydx3cV!~y2PTkBafXh6ciJ^~c;x6Uzdo}VhsriRmO5zsZx1rRoy z;N}13JTvlNx3CT{2@(dc`U7G|g{18fz#62`$FtZyKb=>WasHE z_{V;B6G;BC*2s@@X6Dm3E2;F(19op1>b2e|dC&+&>P8!Zgu}CN3nrPQGw3#^9sW|M zx9f?MDB^uE;w+jFDy1W0y=^;7Mc)KZm8@{vwp*nez%b<8@Uvp1H-N8Nojrf$dC8X+ z&ygO%c;WChocQ8Y=^do*`i>D|BW=u(UPK(`l}l;#Qns`kX;fWYnI}~PM;!_AMr2Tcv|&x?G5TX!v&N7XhwsPTqGw%ICzHiLcF;QmL{|`UwyS2^;G~ z0PkoQ`dzE^Hqt42uL-dyef+r;gF4XW4yh5y*}2D?uSnB<(8R0$EhWNNnh^Wbss~bz z1;q2T$?|1TOYeos^M?cCl9lozvi(#Zi5zRXIC`3VbPP!5w=-lfzHX7+4H}RzIA+4c zxfEF>4+HWhk@reude!SySSe2gpj;P^dQ(mb2GZ5H=F9tKZ$4B96sOj`0 zu?A0SJSE?Q$4=d0#)onjy1}{baPSk^8(Dz=XTgPoCtsc|nJK4Dj{YIK9wM6IWEqf+ zo^Cl@kPR7D(1An@3pG&eC}%J=#2Hebbi=_&RmFxT7MDx8Pyz(wOcG2Cr${4sGgm^f;o2+!f zeVINed69Xcg5M~*!{IcgdW!2?bLUYtmA7tE+At|i-mKIoVOn0;t_Y!sRkBzv+qh-c~%F5&WY^*$6a&9)WP#37iDSkE+{&ju*&uYF5+-@J@fuq~afs zw)(4H==4OR$E&%(Iy>J_gxH77p{ft?R!8%!>U!kqb@9!= zsqrwmN(>pf~IaAP>hzqzemg9{dRS4DpN;3OZquigX5Bzk)?obG{#>OSDA z^2dKzRO zuhk&rxC||q->_&`fvdxzrOa^cKfpvT{yu2sM{>0ge&-o2l-Sc6_&-&r3kjDUK>ptg z!;iNlYa^Xs7ni@Fy$>wL_x(ut%`&=PSrV1?1g1U*okUUBPI8_3IPygL`!+3VCT@_< uQ-VBpQvL-k0eArXE{x3UT6CBjVUP&p1GgeL@svk?6cj-kiN9`tWBwoG=`DHy diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index f948c4e2a069d192cd1050366be9215825ba6394..5070d5dafbc0461888dac8b1c2106f678b9d6176 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#h9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMKJwG4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7+#)e8 delta 976 zcmX>#f$7u)rVXi#hNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw>*G4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7)A$_S diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 18654fab88e8e52ceca963d568d77bdf1a9c6085..c3d2f52c241001ce7b9a73f4d9a40cf3a860bcb6 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%QsfVM$i8p;^3Hvc9>6K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba zWtxdWYMQBqiOJ*|#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3` zVv3=OS*od#f$8KL#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@37!68G diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 50f9ee2009c3f9854141ac279f1d26fba2720323..ae3450488e70b5d8fbeeccf89dae343bbf3c7210 100644 GIT binary patch delta 117 zcmdm@yhV9~KcituRk diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 433d63a138c9f1e1ad10b3536ece85931e872711..7491affd71bf1a8c4151443155f813af169f4591 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^Ah9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMKJwF*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw>*F*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi6fw-Lzz delta 1690 zcmaDdi}lGY)(z2&hNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2BwpH7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi6)^zJSI diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 95be350da0dd7e0b975c3cb2d0428ba0b94777d0..3a22599f2b2e14289996fcdb9ef098499e6d6b0d 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(gh9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMKI_FtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw>5FtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$-50jvfbqav-F4pc-$M2RRBL|I)_7g5%HYbbTM&-MrWp67YrdFQ~q2%BDn zO_$wd!4`kOk?+d)=FTs$`@Eh4hr?s{NmGyZAPG_#K z&Kt-L)HQDQDlFv6W_QQ~N7O2ktmJ8NUkHY3ZTG2#oi#LII6swe$$+7(*P6!PB{hP< zBlwWHf@1Ex*E)zh+j#ASf#WdL>q~ z%0JCmin;hfSu9^*!e5}11MbqbIP{LIp%Ob9?zgY!|BBU)6$Dt@8G@w}IK>A(sij@nh%le{&?z^^DGXHqa;+q01*YTbTf5XVZ1nh>LkQCz4b z(AdacjATg>-Bo0RCB`gkV&FwbEt!ivMn=kz0^`|dt88l>d4=32f0QzWIY5rb5G6yC z0>e?NwvrxThsbwbWNk7;cQY}V@wS>YS0gcMt^H)8*m{H{ASctGEW=V_Qi$vT0%=#~ z&>Au4G_e3zX9U*T?-HZvyF^X^2gZm(ipcCBZ*0+bbVLCda-H>SxBBEt^gfr9A>Yp8 z<~?#1n2f)rY$E3|i3eu=UzvAL$oc;uv+Nl`{#{1X2-%-3VC#)4=pD9+YcEMHDkJ1V zO$TQzvdSiLsGmH|!Dh^_S*&zyXEJRC_UdpObb*t})F5)l)6$ISV+c8}PrwEo5k(GK zHVrWCSxG&K(Q}&Qn#6q-D;~ts{R2yNFTWHqA=zaCj>)68lY|*dLLcn}f R;9;1SU@xIcA%BO9=x_N0HM9T# delta 5860 zcmb`L-AmI^9L70EXUplLtl7)Y%HD}_ zq8~$&BD&}WtPXgLinMMjsgQ_>5>YCMvbv})qO9|qq14@;^#^>O=lOom_q=dkgbgpk zhO1t(xM88&<8xV?a`Rj+tKVn0+a1o$cALxZ&T}~3KEJbav%|M=k+;(3aQU5iR%dQy zjjukpzNTTj&(A`h9CnZN+M-sGWEoG7`$8~OZF@*f?7XfH!}*znD>@8i{pNK3E~xGV9r4)1L{pMlZ*}|(Qp9Gy{a0_ospBE1WZ)VmK6K|Pz2Q?xhS!Gzw z3jZ{F1?oCHrwepFzji)I@`=_>D4JnEjh5fVWJMaKfp%kK{U6ikhqA3)Eo^o%(GVunQu!KL5TAt@Y-QUx2IH6Gs}=*DB2s zt&}7J=0YkQwE}A!@~mU+ITOSy2YIWHfnS|Z&ZS_yx^F8G$H0q@YLbUMM#jpJ0;%k?S+=!?yh3i1KT4UxSWiyI5G7NU z0;5sNcaR=nhsbwbWNk7RuEHMFBX9QN;?-RWkxI#_=2gaB}ipc69Z!FPwbW8yla*YkBcLwB2^goxAA>Yp8 z_5*Sqn2f)rEMo2x5)aJ!zcTOo$i@F4v+@~1{$0k?2-%-(VC#)5XdSkQ8!t&UDkJ1V z%>rjEvdRW=WRN_ai_KU-HJRze&ScsO?A6gWXac8`sZQjk(xS}hV+c8}eP9EQiF_L^ zo(Y)ttf3W&(Q~Tg8pT5o&6plNtevxB>pq$WR2yNFTWI!_=zX=&8`%<9ju=#_8!#Ui Rcoe3E*h{EP$lu|7`WxmizE1!E diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index fd08f4f415dfaa3363b03bdddbcd6bf12b01d132..c86f4bf25235c483d6cfb66ee4bbda6beec05a57 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tVM$i8p;^3Hvc9>6K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba zWtxdWYMQBqiOJ*%j6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGoBmTp)8 delta 1199 zcmey>$@Hs}X+u1tVX3)ge6pEAg}#xQnL%o@v9Ym` zVv3=OS*od#f$8K4j6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmqXjJq7 diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 2a7b435d39897cdf4b7f1060dc0fbff02ffe2c74..8ae072e7165cb8898ae9eb522854fa0219f524e9 100644 GIT binary patch delta 122 zcmX?Va@1slKcituRWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~s{+Sr`BS delta 1928 zcmbRJif#5Qwhe)dwx#Bl@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2B!Kc`N_rl#rdU0$*Ge+x~gs7!dS~_NU||Ntx=QrFgK8=bMtYQBo^|t zPCm{ey!kk%D|yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~xp^GXekr diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index cafbb1c22a8a79f64ebd0c4abfba820814bbe092..932138a14007d34453eec6860f94b40005af416f 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTVM$i8p;^3Hvc9>6K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba zWtxdWYMQBqiOJ>~#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0H`ZJNB{r; delta 1023 zcmZo!!_=~dX@fVTVX3)ge6pEAg}#xQnL%o@v9Ym` zVv3=OS*od#f$8QN#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0AI-|vj6}9 diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 06dcdb4e2eb36dc51678dc01ec7b8ac0058ceaea..e58907802a2dbbb018e1fcf8929d3bb57b798b0b 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#h9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMKI}7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d07Ju|)c^nh delta 527 zcmX@{m+{13#tq(#hNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw>97&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d07YJvXaE2J diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index a35db5f9774a9ce43b3b03a519b9cb89d4b872e0..2a67afdcce70c6cee27effe86d9de087d835c968 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVh9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMJ{X81IpxD_+!P^F^jPg=ATrGJ?J delta 731 zcmccgg7MM|#tpuVhNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bwqi81IpxD_+!P^F^jPg=ATrGwk27`hGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMNnR`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5db~p4qgBN delta 1705 zcmdlyhh_5|mJP*>wx#Bl@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2B!Kc`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dh0$>cap4 diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 46a43d3bd21ea223adfef2867e96d27dbe77ff4d..b67a94de2edba87aba5828bfdff817250e8430a6 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E$^?}g0m(BT?-vA%cOOgL(+^5$;iY3LR&T}6dA-Yl+1~e zEm_FmE8gq{XST7By|B54M# zp7XtF$Cr%bOU7%3%--T}w&zskcsAzd*}R^bJiEQd=H29Qczr&PFUyu&;HA)??=|-u`-n}Sw zabG7&UF**RsPb_AJ(Tz$-~x!@gZZwh1f||;-iT7W-)upt=UeMg>gBfvQR-rQ7fQ7r z{uH1}OUDpO^mgt8i0XCl%i1GFTIekpki}gup;Y_v`)fez<=$S58j#bX6Ya3})FMjl z>#IPiCqBN3QWwtpQR-siBjK#-7a;NgzbhOmY)?wRXMZWOcq#2~!)*GZNsCxpJ zE3TlHZZlR9k9mkQZf2x2iR@SG?3`f(p&DpOlg_?ax0)Evt*mcVF;s(OI^bq;IxxoZ z+kB0(Hrq^wmsu9JFP!3k6S04a$I@geGn=3|F7bIai=)>)EDigHJ~D`^V{cR04DWPGzjnOqZ^(CanJ}`qPpP zpwl`3H`9svA6T@AnrCLZf0y+cu~J0Hic~9o+$s!|UrLPBI>$`tY=lyTOvK)xdbQWi zGXu8xouPVCMcW*+iXR`cfAE@8sWQmQR*^z?BZF^PO+R`w_>?I^`4ntJk7o6GDzy@eo!lp zNNy6Hk=#ttgIos=6R9p2L9J47GJ%GN`2%n>hxLvx`E`&Vdc|2p-4u_ZwmZB5JpZr@ z?Z3y{ff%BCmX}fe6#ok70jc5%0IL3Kv+{x!e=hJCq0%k%_3!)>Ai`rSQmyL2EK1*? z`f)7c@ih04UqwGHstF}6^Y!Q>G{d4v7Pm|q@SQ=b{v$BESW43*t&C!Iq9zk;BdIRO P5}_qlKMM)U8;( z0jbaU38MyN`|8aowJxgyrM|p&2SAn6)*(QqOj`r8Fnbu4e(-cRDjl)4qSBx3=TYes z1%6ce)P{ESOiMNjfGRDnC_olD(;LruQ0bY?`_MWEw`@nLXG_`usx0%&pu}%W?Eo>- z-E-UbqSWi<(6=HyrzdwHwZP{^Q0hWkCrY&* z`V^o_OZy;7^mXh8i0XA{kadSkw9s2HAWJ)6K&iRM?yUl;mwI|IYCukj4z$DClM5)d zx3>zV9{>0TN}WH`fKnIwE}+y+{V>&Yu^**&UoJ#zZMgauD*acspi(2jci25tjZn)f zn`P1Pi7063DrC*byLwEj)Qo6l(`aHmBzGyVOvOs=Og*+OmgV!mO_)KtZH+;?L%PRs zx#A9K=@w&EiI|5t?O{eboy>m4&dwDv5UPQeG+FG6)hmhN+QfQS6hk#grM(`OpaWwZ zyTw;2nRYW7USxULzHo{EO~jr_9#0eH%xr?AG-Kd@L4Gsnzy?+)uVVx@?%6{%MGgcTSlzmyp%ILl1vY=l#UO~kH{dbKm> zm;qb-u5dl+qIH&8#g7lzKX^^)R2^a!D@dWcp3T>;q#r%m{Bd#n4vQCRKlJnm<8j~? zq~>V;BzRYas!gIaGd~L&C|CR@dNz@lg3C9ekIvvhbXZ^CuNTdBuB9ahUyl~?$mH4v zemn-dR!Z39vr=xL(Gq?D+*@H2QccpL;SdHYe~BN(`39=2=G~}%{6H)PygUjV4JE7( z`S_7ku>PEb>Ef9_oxKN0jc6~0IL3Kv;2Y;f6ntbq0%k%_3!)>Ai^UnQmq=nEK2Wy z`f)7bi8T9wUqL@DstKhm@ipipG~1#{6*o;9@SQ=b{v$BESj^C*ERSMsvL**?BdIP& Plc6P6MC$*+-|PPa$GI2_ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 1583d867d465a03a7946f8b862a3a7ba4a94a00e..81223f72852c6029aab699974b8bcf587e5a9d2e 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2wk27`hGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMNnR`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VU1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2B!Kc`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index db77b1cf8f8a481703e33ad85b68b42a1e499f9f..54fe765bc8e323ed971a210396bae1b3e42730f8 100644 GIT binary patch delta 62 zcmZ1|yij<9AERMOR$_58IS7KH|V1X5p7b0}C&@LKuVUa?|xw`i`f57*9KF@Q`^L#nmb2-~{ zISC!qXjh+FAE*yiH)u*Y6x38TsD$g>?yzBmj2fjO7!G+y zXFY{DV4^JK)9OyR$+})QA@+BAtq2e1d3V8rL~yPipz%0dX0b1o$i>Kuw7mPs*x z-w2zy91$%jgCf#G%jxZAc#DKcd#q1i<({*!f&~$kSZTE%OnkBpY`8>CFEuL{F4uA4 zsMCBE3g|#DSjpzAK0eb49oQYc~>6J2$x}8Sf*cyjUKxX cW>S@O(Unn{$3GJr7eNWDQcx3$a2t z!Lbk>fpnD(4tTDltc1V9_4 zl-sYfl!km@CcX3xZp2t-{FDkOCE0W-@l!Kd`dmStPi1f}ESqjX0iwWTurNT#N+CLDmcxkOW-xAcicT zkJZB`23&Ncl5Rs7fwC6kSw4~4MH&&QAx4eF^?f!hH+t;e<6B$6K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba zWtxdWYMQBqiOJ+1#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y%Oh3y}Z- delta 1709 zcmX@x#dWreYeO`nVX3)ge6pEAg}#xQnL%o@v9Ym` zVv3=OS*od#f$8KP#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y*~w=k@>q diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index cf80c6e7668e57cf3581e39695d5e1464b131fee..a0e8c007eabce73f79e05662b4442e86b332aefd 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVM$i8p;^3Hvc9>6K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba zWtxdWYMQBqiOJ?VMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgYxpa5Mk_ delta 1200 zcmX@z%W}GxWrHuHVX3)ge6pEAg}#xQnL%o@v9Ym` zVv3=OS*od#f$8QtMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgTnuR?q+d diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index d41aea4817c7f307fcc2bd6c1691c1eeea520cfa..1a7ca9e302ee9b302dd6b2870830b173e7a7fb05 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVM$i8p;^3Hvc9>6K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba zWtxdWYMQBqiOJ>~Mm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuF` zVv3=OS*od#f$8QNMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vViV{l delta 760 zcmaF+p6Ts-rVZ|lhNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw=U7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v{@~c^ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 98871ac4d84eeacc371a15213726e7e2becd4119..11baa8f14c3bbabbe96fb2823e700fe8fd249d72 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVh9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMJ_>7&nrk%Yi3o@&=|wU1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bwp17&nrk%Yi3o@&=|wyg_K&uCbZRcvS$Z-fEIokY~_i+ONCtxEe delta 117 zcmeB?>yg_K&uCa`ZW*6!W>BGTWM*cNnrv)rY+{;bY-pBhX=Gw*nVf2xl4g=@ZjqQ` XXkwOXYGh!#c>-fEIokY~_i+ONkU$`w diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 12e5e8093a99b1e284ac9717ecd90cdb38e532b6..2c5ecb97c3a603bf527832d6c903db3e6cd48e7e 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2h9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMJ_B7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^052a3Jpcdz delta 1704 zcmdlyiF5NL&JFI2hNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2BwoM7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^00DmHq5uE@ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index dd2c6af7dab387df4a896f8f51d3eeba5c7926b1..dd2cc837fb9396765ddda39b2cdf291c1d00aecc 100644 GIT binary patch delta 2429 zcmeB}!PPN?YlAPNVM$i8p;^3Hvc9>6K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba zWtxdWYMQBqiOJ+T#?55tdT1Ro`97P_XeltJEcTTdj zHgDb~)K52f%SbOH)7Hi1a%Aeep9+B%+ zJ@r%M+PYS&mRwu!>ntJD*2NYEWa`}f)+m)+t?Xv(THbq|>xM3&aj%^AxV^OC1^a>jDy&0Dqx>yxK_ zbMMn9+~jGU-1}5^v&g4DZSu5F_mg3i+3q687*AeQg+dH)Rbh;jAkzi&-5HgpyUQ^O zY!9<#JWO7-5V{>`3X2q(F0jvLl$qSUTwr@>5@QMnd4_BU8j>hNy58*<>lv2|ldf+% zP+#(Po+*r_Nu+BAX3x;cI#z1a?=v#7PIt2fhP~5w#*bu%J;M? S$qe@CK)njvxB4;#+W`Oob^b*F delta 2429 zcmbW&%_~Gv7zXgp^*xA~g}5ePQB2ItoqK1-gfL7J3tVL-?p!Ih8Vg@FvzXG5uDZ&? zVq{iIy*MR1DcRXtm_{s>kA;s?eZv! zOV=bx^2!U6ThRj^uN=^HIkMo@eEzwJ+pFlZ$0ZvZi~yAlP8pfPD&tPr!!$kRtqB;l zink!SNfpK4B@m6#Rn;!C-fS>NKlWSfsBwzcyko6#66;RD)>PC1N^&+{qSS18MvvOr zc8|86wy&eD8Rs$Bn)16qNpBt<0T5RBol@*MbxDEiuv9PFHeuo<)kW5N?Ic*>ku2 zVUwk+b9biYG+wsPR_1fZ*7H;iXLqZaVM2j9++*#2;G2DbyZ=k#Rub>WCgEa8_yX5% MTDE~-j0uyyzq>EXeE+u+M+Sdvw2XcljltZ!~%kdmBaVQ83SkYZ|Ll9HO5oN8oXo|KYoX_%U9 znPy^;nr3QYVlugo@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WRO$JHzV delta 1486 zcmZo@W@~6>+u+M+SZZz=pKNAOp>JenW{{d}Y;0^|nr3WhmTGBaVrrS3YMPQ}l5B2~ zm||#RmTGEbU^=;u@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WRBLbkL3 diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 9e5500b96bfabffa9163aa1c0991d48e70b137aa..11b2bb3cbd383c0f04a04ac8d781988d7e32ef8a 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#h9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMJ_B7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D$;xP~ delta 2066 zcmZ4ggKhl}whiu#hNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2BwoM7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY Dn^-^$ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index f86cf34ce9e88a5fdf6c2ae2a6608576fb4a167e..71283bb30da2241aedb77d50b10680921b122993 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#5fRi_@% delta 121 zcmbOwJ4<#$Fr#6qxn+E^nL&lVk(rr6YO=Ahv59G#v7uS2rICrLWpb)%N}5TsxkX}% cp@~_lsgZ%{<`%|wGPF&ez$m&oklB+P02f6eVE_OC diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 7bc42e086e60b14ce3e362990e1e765244e4b7cc..80abbf89cc2ebac5c3ec8049feebb2c964642d74 100644 GIT binary patch delta 4106 zcmbuC+e=hY6vjDwMyDoqoT-RIK2#P4R-O~1qm)l+pas@=>q5@xTr9=0MvbBeMeM;0 zw2rikiK(CxvgoqY1%XAONJ0|x(#>FcE5hi#g7yq_c|D(h!0-FkT6^ua_FkOLUYyN- z;8XPOwl2NIR}v`llxo31OR286Xu)E)I~WQDLfbV@OE6HThXQ3`w-yQ)m%80zMEM3_ zhBIElYnm($W5q_h$g&BHwEpG?02R$+u%rFXYrrv` z=jnTg&@PJJZ$n+rJUR=w3jJ{wHcca9f!+a*=@QjFxsB#|WoifN+Vw1ox(>W3M_v8X zqo}Jfn?PNybKR)xnpc&m>yLSOY*!|7vEAGt7T!#{pk>h@)UT}_=23chKuI7AS#myF z=~tpT=1sZM!0LEkhmuLToytjIv;L>xJf$Qzn2$kT-g;h>ujKN$jjf_sOz}FFqH@H+ zY;(zJ>?FM7*W0f zm~Kl}@jcC|RbRH=BJxZJN{n0o)A&-_4dH%~-t08r6#8+NqZc?~#b z^E`F$AlgN-`^Qk%(~r&ouEO~^51Xb@F;DLR$83q}pWH(8yga!Lb?tf-QpDck zL1=WPnE5p@h~r}#ckEy}G*Zb_>`v9`QiP<)HQ-{AY}D<*1j)2#kmj0L4Crl=Z{6=E z;}y%ik>g~Juy)|gGjM=U#+gQ|yOiGccF1mEI4q z=6t~Z&-Y>@eZ0W>9g9#XCG!*;tTnDcGK+pN`v!VxS6h)u{5Nqf6SvZ*wQ3NpAIa}o R(H7&0%W+jj@;9E$`3++@o$CMq diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 504424416f45692529ecb67a07441b5c42110194..53867e3eddaf48c3cf01e3eb1862a6225ea99f51 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIh9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMJ{n7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bwqy7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J77*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qU1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bwp17*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qjdq#FcIHO@nRhS| delta 122 zcmX>jdq#FcIHO^yxn+E^nL&lVk(rr6YO=Ahv59G#v7uS2rICrLWpb)%N}5TsxkX}% fp@~_lsgZ%{<_^YMMkA87=}(@(BDUF=xt<#UXh$L` diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index be999a02bc8cfc898a500ca2cca922de5d414f82..ba46ae6f8962525ef8640629bbf35c1ac3e91b7d 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$Qh9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMJ_B7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AWx3kE delta 707 zcmX>!f%(t`<_+$QhNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2BwoM7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-A`lZW) diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 8e6e1ab39f8e42a475b6dc6b2684dbb76ed5b5ea..eb015f3b42476634d8997ea907e0e76e18f8339f 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)h9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMJ{X7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20e;{+j{pDw delta 1026 zcmbO`n`Q27mJPm)hNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bwqi7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20Z*PMKL7v# diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index fbafed6d150faa8877c1489e25eb0d740942c3a6..9d8d729bb2fcaeebed0e5e3996ac54372723640d 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#h9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMJ_>82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dgM+mvI09 delta 483 zcmX?gh4IuC#tq(#hNb3~@yTWe75YYIW(KLr#>U1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bwp182^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dhj8jY$9i diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index a4003b3675ff1cdbb0484a3b401fef9c63dafe9f..35a83f837f3b587522017bf0d3af3c3d4451d849 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_ApRZ}X diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 4b5f191e0119a3fe0c9bfdc9702cd847d9f40671..8bf1f8be0c702181c24955e921871a0a7ef08863 100644 GIT binary patch delta 699 zcmZp_#@v35d4oHnVM$i8p;^3Hvc9>6K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba zWtxdWYMQBqiOJ*&#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OS-C*Np%G delta 699 zcmZp_#@v35d4oHnVX3)ge6pEAg}#xQnL%o@v9Ym` zVv3=OS*od#f$8K5#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OSOA$WZ_Q diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index e6738df0fa3fa7b813191165688c8573bf769465..657b757c7ddc43322c02b9b467318af2f92dbeb5 100644 GIT binary patch delta 1014 zcmX@}mgUS_mJPm)h9z0WhGy|*$@=CN1}Vu&7KVmN1}UZ{CMl_@$*D#L=1D2ZmWHXx zmT4viscEJbCMKKf7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVcU1brfJ58W~r7&CZ?9jsirAuCduX& zi7AFAW~rt|2Bw?q7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc66Udsl3$YsG@@+Q2SW>|L-oRP?B^i(PkBP}JB# zU3*=7LB-yCSyx?slbp=x^ZfpKH}iO1lHBJcpWHR&Brs@SzmT$iq8E0ifS>q=+2 zuTpMp!5N#p`>+ljx(`Shl526K3R{#aU8!X0N^x<{;&JHToD5mV4g_JF`_vcHqi9oa2v{$1x?$z%W^qxx4;YpDZ|a&t&|w9uw4{5``8;iJ6gsajWmK= zo9;^x=Y?geMf&ckxf(@E2`ro@HyosfJd_};XwWpaSTuL5T~%~_|A26iH|svWUJmrr zIx27nlQkged72cfdGodVUam>E;#|MB#km#TETCCso0B_`Y~s$l4P31vS}ysb6cpWf zKOEJ!fRe%G!a+K!%V|5678pT?=R=KLVsQhP*IveL@k9tv(`#GDa2< z)(MJ(+a7}f^j&v93=}>{vvAVrFo6^Mh!aU!j!R0Bah*!Ib5F*`78mG2zk3h#;PkX~ zmoS4CdeOZocRM9o_`MNcN2oO?SUx5tf_qXTh>Pi}=gxF3!_{CkIHY~Mixd!=;g zKL9u~(mmkzgET#G)_EwN-NB0kgVTAU!JJ2F;oKRo4SO_pO5J}tZx_^C@IK-5IZdZB zKe&?51T~B3h$X42!K=Oz)rA>$;JW|Nj?_bK-p!-svc~GMzW7kYPJlyWKyluSu${SO z?cB&S;%FHB=ut-^ov1?)RDI|PpOc~XM;R59_y-Dn-4FdiZ2t~@dd}fvNsX?5*G<P|)CVE+uFUl-UL40ih<%)9 z=Y%NAu>T7)esF7qO@ncNviZN`&Is~XrWtW>1~jV{*uF>p(h^=0r?=ZxCV?x=AblH` z<8kLIdz2HUZ4v+9|4o(IwzUn)vq*a^C6uLJdqU+Bs`B*ignCM-YMMTT0))Exkf)vz zN+}pb?wux7MT=dlLMbXa|m^fP?EoS>LY(I6p(vY#Q&Fu zn(wlC0U_s;n-x1QCe#5!)w#QrP=^Us{~b?#CRD*cYskGLgc=+58=)Q%>UPr&gxX1{ zF=aLq>JFjWKg%Z6V??D*mF@q`lOM=U-GI&H<_$uLpYA2pDMIzr<`L=~q29#t)LlZ& zjXgl_-6Yi8E|&IfOEIxlW31CREby z0z$na)Vw~0g!+e2lUv;;)Zc^(9m-R;3B|3sOYSWp)Rn>a2(_0`X;6hEpAu>;gW)o^h7Eiq;RPLSkq~uFNEg$?hq2>`v zowoWDA$Jk-QsfsxJtWlV20Zl}q578mhum90sAXSy>MNnX8orWye-P@JSP+bZ`8uH@ zDvJqqkx&(0O9*wDP%EWrazd^m#8#bd?PRYHZdxIn0T zg!(dRge@-(-CRt_DN7KEsQZMP9($Eg>j>3m;XFIO_kvKRk}5bbwVhDwD(AQ`b%s!1 zJMz>XLOJ5DMc{i`gmTV0Q5;i833co6jp#fJSAIY}!4@ukKqCg*#duA@Rhw<+9%T36E)F(x zi7Og$Glp8YD%nN3lDQQGPyb&a1l9<=w9iB{$iY@_+QOJ0Dn$tZ*JqM}OPDAI*^iY< z?vDl9*_#v~>rZd=bAhTo$c zyTTDuxFXo6CT>ky3~>As6^zX0(^xpyb&CaY_L;a`cDA0h(J`|t5~UWpe#Fmlt=R*) zI`iw`P~%?A3j5A4_sgt$NXvMz_i4E-R~JcN3f14qB`qf20OH#|ka3yAyd)-YT;D-H zU6N}wr-tAIH*-$93=i`dpvK$|!i=JvW}6ixY%3drb%4iw{#HXSbACAL4Dj8&W>u9K z=p5=Z44iYDl1rMW65Pd6PNb+g+e{2qD!04>&jqlal1Pwb0x9=;elPBRc26Wz18(|U zJy&~vM=pGR4B~k=^5Bz#JRgoM!^rnGt~U*JT#eZl0{WkQMN#fOiZWzukfj-^z)W4@ zIxKN=Ulyrkcs4;4GsnV>-WZ1(nDZYU5$+T=lg75?6cxCM)mm*-axGVvLf+o1uw3^WpDJN&Z#?hXaV7h*bWV8 zKlsI#4Q)|(Rg}j2WuJnJEj4j-d4uQVJP6~?Zt8_VSK-@Sc6Km0)ny>z>`x;2vTX17 zA@kzqR@~SjX71<~Jsxw(0MwAHGDO7>#SL<1Ay>guHmpz=mz8biQj^5o{snsfFgj+4 zg;YoGLm69$T8`z^+sX?L5?wUfs^n(mss#H{JQ+Adfy~y!Wn6BKmJp|#4I|;Uf>^Wa z)^x!GZr|1^3OuXB&Bk)Kw|bBrRe}N()n&iOioVaF-d*~qbQ%zoIt(cuPxMfEuIb8( zNF60n|4~b@f!nw}Q*eQ+24@R)aDT$#pzs!_;Ogxf#Fg1I66E~+2onQAc72+uK5mYJ zJG5&Ew{!O>?!=DaT+W`++)q3I<{Io!pdJ#>%5WPs_6-I58lXD0@^BJ%c&>&KMuE*MwvFcc932AMJ=&(=`X2cJVwxaE`Wzb~E>k9{bncUbqXZ!5 z^ENrx_uvq&>)|n?a!Dn*9*4hh4-Tb+Dha6U%Y#EgN|j0~8I#(l8&ceM?)9<3T;9o{ z+^yq7KtfYg;>gKV?#zi-T({#x!b+A+ilZg*JP>m+1hdR-Iu$O%b3v?-*gs!_LR|CU z>A@hh`6DS;_w)d++?l_*B7cqsj_4~=bY}p!>+~ot^uh>k_W6+@FZPOpl(L^22~wM* zx<$?n7NDrT5P{}pn=h0Uye5Cw;J;kfMLGYV%YdGEN|9ogk(=|mPz`E0`$aP$4C_sR{u1=Tzdq8ggI|Dc{Wn=_6 zTU`*6+xK=K0r>O578`hV89klx-rf4|AqkJU&U@hu@*#HG=N`KMP5keh#Z^I%u|fye z|7jLe^{Kh1p52t9HNl3r_x?RV?*4bbh)`wo$NvAmGGcyqZj-+o2n9=X7k$2iaYldJ z#)h-)gWx5?0S`oi!E6Z7Arbs45G;kmq=Kh7?IIT(!D)#gK7Ai7c!zidPeKKdv5C$a z!7&Mfh%pETF+y}T3RYn*f~|rBj1ZYNL4T|(kyFr*5u&_H&l&#D=w-2#~`qg~gi-o}d_l;jIPl@b%y%!A>?AlIDdAgJAnE zf`M4ASPo!J5uiP+e1RE;^$^UFGO32Z0tBlAuPU^c!Z!T`ahTzZA%aMp=8h6{LW+Zi ziGl}MfUi>pJwpO$DRY;=4(eAi>tLDrg5NAYQ9QXmQJh-^mjclcYG4=Ee1m<0cx;i3 zgM#*$@ux=wNjPnAl23m>%csE?1)uSC*)_p@Y{{$w!9OyTF1;sMqCjbt7lIF%F8x7J z6PFwONpK9)@j~Hc?3G5bP=FO>4icWi^rK**gk3?=aJ^Az3G#XB)d*phh*{gwuxt@w zbIk0N7@-|Azpj+9HBLq4g`t>fT~%Q&PLI?QzQEVF*Arf5R6bA_5fp`Wng~1jx!?P% z@EjxeJX+oM!USx~`5lDEaoVYiun1;zT8gkbw(W^N!sj^MIZ#-LuP+=XtRZJo7a1!r z3Ua|_=&cJTjT7eldl)j(!_nh~dLct)^h_-te5>713KE_PO(0by4~3;B37-lDxzIjU z_*R8d?E>L30ZI!N3bpw9%f-Sim|n3|C=;Rdx8?lxy(@(;iy(UA3E>)Cuf;W?Nruus zw}qE*`8s!n1vrhkFSO%&H697)GZ+d#2mH?S95$gFgS52+!-0B>BMeS|F5Hax0o7j% z=LUdghyC6Na~P(7SfG|*K@XJTU33;-Z!%sq3*+3LC|ZE=M`ZA{a;E4uzW;Kz=rqN^LFc1r=@aB5aMjT5S8<_YY7^^ml^q7xbIUvM~(eMAB zFJ36~a4D+BG%i$a(+ z5PXRrGS*ySH^G~$qIJv+RK6ivhBa{gmS_{J2BL0@4ltWw`d!f=%z)?ty9w$&6#c=> zz{ba-wU~j#XQK728d&yRl*?>_x35G)Fatf`vTGpco#-U925f)v8aVVfixWcB=kH;e zSZN}~t-;=L^>y&GP@HN<8X&W%beH%M?v+x!Vule2B2*F5Ce#-dU%;K*lVW1D8qbA4 zMT=c{lF+@h_$t0$v#fYG9?ZX15~nEf^?Ksha+J1iDkhVW$VBmFOn+@Bu8Hf_=pw#@ z>v_6~TVuSm6meCY?(Hc?YrI@It+#k8!*Uy-iPK^bldm+wO+SVFDum64h}U4ePea9b z@nq=cBykqzGi|yUo#4oYKhGA=#r)h_AQs^Cb`~$s?iJ#4nBOgzz??(QCN#jg?pVw!(qGwc_M4ya3r&G3FZ$zetr{LQFf zd`C$a%=DTr65{CT-6YeohE%;I;n;BAev*WMgo)oQl7Zx!9n8EilZHrSeqnwY>=Wkf z2+1RcXVl+y=4(a<8;y~Wb->Q?yhPkYULw~ti499sJyTMGCG@a)K>RL|6nv^Scrw~k zl0+dmz8BiLI6zF;Yo&y&$h2#DuAi-wG{JVLvQaVsbDgtAvI;w0;x5T6eEp|9iI7o> zrr>OxBot&#N|A%qmKGg+cSzFH=yNb|!)KG_Hzh?FhpF#Ps9?9-l1`Z86Za(xaLjgj zB+0|H_qpT-?y^K*B&~u`+D0bL#NqTzC;f`)rw-|G3)>Le1Z18XteLkfz9*<>i=X;nBH(W$ zq<66aXN;0A!LAuSRvLy4TVuSmK1=6^M(L7Z*#Vhu`&8*u7Eka4z~q_IxwwD+Fk3nk zvovw8v=8>N_Y0*hS*B44x%b?&L*?Mr-XS_DUMamZioqc$iV6&BmT!40SZytIN`{3}b4`_TkI%KgrhN^l@F; zew_aPv+O9I1Pn~z@0V`I-!Ev+-(Q+2yNBN~zv4iXizCW=$f4@!- z{{D-e{QaEXvK)NB!$AJNb1;AZ*bx5yv|+M6_#6Vor3!40n`oJ+qWMo2D`?%~kY}1!#WF>Lx zx+q)3$eZ6kwV-|4(5dk2b=gc!08R=kzL1d_!Rpt%8!me*lOs2T>w@LAFt5+la^i=- zYvsfbTZGB?V?PWJmv_T@9&MA?V%QY;&xhM4*fdhEH42{c8w9^slP_hE2_IL0nbqYV zS(b0F2gzf=KW*g>FjJw3f^jwFhXvsJsRRv_)t0Npe70ykc`=&p*ie3yW-B+9cM4|U z*Vp7iwz`S@Q_7O<J7zOf9xoqE zc{ngpKKkGD0Q*gnmzDB{gwy4H|2+b)jIA@|efi)3WjHy*0T~{q;~cqA#B(zU$UCxf z(`CMVDj&<+7s_u^z?Vzp3s?cem&s$Pcr91TyE4Ln=r!^X*m9M;Iqhh6t(HHc+~uy9 zFJgp+1;5EhQSN$Vvumw&j{H64CV8uTHY+#j+vFpd9eT{kI@aH{p zKw)0*llNj3egYrqNFp5L+QY?!s)Xh`}O$y|4kk`AR4$OSnRsv6)kY5e~ zZHqS5LwH4Al(F}!4iW4>ylAjpp&U|&^xl#G$?FZu?#mPCaM%5@Tq6Q)sx;NYY0u=< zB_u%M_1E$vv|8?4c>)Cs`%AuC$rmUTD>{br+2$5S8(J;TsSs)TtLIB8S}6Ezg(`}_ zC_;R^qBX;qfIE;_keq$b0`_Twq+rx%g$~C2q}U0WV4h!~)dv)M>JujpD~?i6S#?bDgkD{CTCt9r z@t1RoZxpQibwwv?=Yo5R1~O{$XNtorR^c<#<>+Pa<_Z}^b{-MRYd{$sRDm(hVu24) z36E=n4pJeO>Vry9zb!Ba`AodZ8sszaL`RTMBOBa7K8;L>4BAMm)rt;!r{V>!S2<_| zRoR8AK^>?U{ZudL6ZMRyErPC5l~rjM^al+tO;S)k&E824+DNlm9fOwBY_rZmO9Bzw z0K4`KN~8^+91yg=6suL#yW|RRc2$rJ-d_{cm-=PO=Aa}+;D{A=2aTgTJ((Z$n)WfL zPX|?@F=)9Jw41n=7Cw3qbdV}%&!eD2G&}oA&?cH~`YgyyU3TQFpmr>e4oG+7JXBB$ zd<_Yf&FyK^!3iIOhVrfm2L2tS1F6RqW>{SwT!Lj~>Bol%|19;#Tk7BoA-p&JVGCB% z&gH&4*ynlsB7?UxE{0-Zlb=F%2w_I?;5AfDwMqovrp{ZoO0YMSZ@FiKV4olV)hPHn zb)35`gMA*muNQ*{(jI!;jo=D2 zd-7iJTpBR_9|y0XS?>$K%|E^L+x+b7;Ib4q{IB56%)zDJd@lyHpB5|y$gn!t=UZ@1 z6K~x^#*kmxtxI7;;0}98TiW${qe5y?QHPZbxyd|^q7bSJviF8efs@LGY^Qc@Tp{EX zHD+{;kb{93vpv=PzWO1)$jtdQL_s6-c=r%9mEwKh5TEU;4GHnt?%s%yNNO6(m=IsQ zz8V|ii`T>BLwxZ%VWK}c>4+&>g7~enm8d1Vy8$-U(j`Y%IzrCY&254`H>|LG4__sX2sc#$&QBh-jIpeoW zk;{I&q~7$~CH!tkLu%Op4?`AF1v{RHoC##)G{7!@g>0uiVw_4jf_avJx-tWd&?_P3 z?1@>4zEDISmYsDe2mBAhWk96T7cP~GDt+N%EU64AT+nd#wt~_(oc&fw=?j|0KPz`r z0lFtBeQT2oiArD4*xD(5L36N!(%0b)?yB?!O@r=AU(mRED8s2@>h)Esm}3HU9>#gY z;^pA@wP8m1Vz6?tl<)7BjZy|NE~#SyMODGrbY%>cxz9wUZ!%kMveGx1HBM9dCbQLM zDt%K5!)&GRx#z2S$_dobCoWK~qr0PAc?<%iqjnk1;RK0a<`XOd^fME%$ z8G>h^sk(PP^jfHDIRhASMmvmerV10r{o7~FphoNi9f(_`X#%3GYBl`OLX{^A1f^~} z)dqpB8X)edn#YdU5|-|yx+`S|r~qg6P@PeN^?gR`!QUz9 zMT0Cws2Q#ps;VmF8GJQd)hiJE%Og}JB>@0{BP~=aP;sP6170MljUevD&&5H)E=4J5 z7^^}ZE7l@>HBog^z-LcQR;{Ahu~SuxX*M>)pDmcKvV`+x<*QWJgZb>cY*i;IpY6U~ zbwKmK;TU;Kdyw>26;_dBJzvjzF!mjY&e(6@1qRbktERED*b;6&qq-#s1fbYCReS0o z^Dn4o1_G6TQKe^%Y^0Z#u+J4$C(6s6YpTpZcnL00H{C^ zAoeq}zaYGJFzJh`2diEPK*~4O5UQ8gf>73&MoruO1*%ZiA(HT-RfkRuh?gq5(C(C%ZTisZY`zN!FL%O2PqW4}0Z1@~ zZlb(|T0@tz@d6Q4$$(U{-x0c=vN0kebO{?9yh?VsLsfJ#bU89KH4vzWMMBY&UNWyb zT0E4oli|5~9UWT0s3EA13*AhWbFNfiYgBVZI_iURMhP>M)OEo|V<{aR-&lQ6#mm{Yo%%JSFG2*E zO1af^R>#t*dea{2Jyb}0FLiqf&-nCy>Up$4nW5@iH0w!IucO%;6V#h2*s`hW?jlAZ ziAOjd=p=CR4E0$?$%q93LAjc#o)?IFV-zKb`J|S@uk!=ht0MmjW5`ug&OoIlq|h_$~Bv4+(oH0yIG$__+*iQTifnQ zU{Ad!iwfj4X`Tk+FW4|VDp+@}SO{EV(fmpombv^AU5L;a=+!SpG&`xy4j0p)r|Lw` z>BTh_XrFN@Rx>bwRY)b!_Emui7M9hN6Y#!Qyu8K{fX#e>6*Xh{X$S0IMN>=&a!RCW z;l^s39aMzD@tPsjFTd8(6c0#*#dS4CxbJ68SzZKCtiFamJ1W~iGm}ojE;iN#FrTXg za3i3P)TV?Fn`o9%*+4VDc{;T43-q{^=1Kq)rHZg>J583Dm;)5);FHDCQPVA;(E*`` zKvh@GHmdgvDVjahinVS1SY`rf;&tY!~1gG(tbsH?PL{mb9h&Jd`sf-VW@h@>e^a~9| z5e`gTrMV{&yar9PcG*FR-aFKw`)?Y?59HZF;kx^FIOTVZS}b@C7iMb)3sI`sqWL2T zrI+?-G!~RTx~wUKuiLI^O5(Ihfd;*t_8R6EY6_Gn&3vIjuiLzak#962#2SqHOC!hS zO8>2?g45K`8lXX`T&dlL%k5KZ(fg>cVUAYY3YV7~wJ$7!cl;UuYGt(f0q6<;9*PzA zEvwxo1kUm*4J=zhJ6*zO&sWu=9*oPr(Opshr&hGlE}&@8vvU#&&1b^%5Bx>b9c7PtYmCn>_N z-P+FdYV1C3Tbf;*uboV@We;joXg2$hA2;=gpPdTFwP?&FOg=v4XQ#|rKRdbS{M80t z@UvsTq&-7%zh2Rz^)o@ZRiN!bueQFWMQ>*x;$OMTysbrtmw5f$)4rpnU5~Ug=+*ou z+6OcXpKH-!2vTl)Akzbkd9izK{#(dzcmrcZ?Fn&76% z3x%=ax+=8vNTco|Ez;4f3-c8Ls7Mg7TXZtG*rE%Q^LYE+I-k3Vi|BmrwmwSdbGJv) zI-k3FVs$=u8(323Gqtjet|n>&qL&=o(PsCR(`D1_=n6WtBTrZ_TS-@qs>%gUaE7WN zf4w#c7F5=Kr6rzL)%kpMNe!LPM<3PFwWgvq|4HX_?XY?}pJTqQuk$(P*~WhT)oH5p zMFec_uQoJM=ZlE=UvxefeBH+1T9x+x*48Hbt99?F+eCRN(naU9?BVV@pJl)G@av{Y zZynm5AtE0fphF+OO?mx;cAE6Uc6Kx&mH_=}c{U%yG z)o-Hf8GaKPX8PIaHp?&nRn9NS!nuC=JI?oOJ8ZFE{-mXT`HyG$t4&+s*LIK9er?xX z@7MO8-~Fw{Z1PuoneA^4Zt-io`*we8xjX!=*?0S^-P+^V_R>7RwyPfWYkTk^znF)Q z=w#RD&`d*cV4%J>h|qLT_c)pdPO&w7PwNNdr!UY=1o7Y;kLi*pu4)EG9K*f z6P>R!8~R-LcL;xV>?d7wiu>S;?y8QzdR86g^Uzt^usqsChp@2YG+QM+3>^U^-k~yv z^;YuP3~$(HdUbx0u!l68SuAWf&9*HbhEAZ6YNbkqZKm0GF<~ysLuARYKlOY8dEKz9 zL45X2(=cCOaHV-zL@0kXxKmhX+To;k4J(F@@#2wZSKlyS)DG_#wv9FsKOiiT>UYgB zziiz`g!Q2a4@QR-P=xc7!`w70n;mAS{#$NgSXWwh?DSQ@p(kTYTETsSEpy5+BSs4(n4t+xA4*lgNF z`-fq@DLVyE!e&r*Mtt^HtNKq^N4~(e9R2fP9(GfR{wCG*l2H8?3Y)CakEB-2Z% z)k3{~I&EyUSudakGOhZ%w7__~-im&711o)VS$zSu)zWx9+Fc=6BWvkj(XvJA=nH5z ztgikzE&H;mz7@4ft6%g!^`35{N5?q{Li0}gI0`nWi~e_tkkCzkoyuONr+ySwGabT-INpWuIKt-=+l$uItg!deYd&8+!D*3(2bP=x0;eH$T^B&}xle=@Y1? zvp?wvQk9kYsz*omNi~No{FDGBO+ps@M;^YODjllBds5|;Hiz$^Wxqs(ccKWXk>RUo z0dHJ5dO$(I-joclKpU=HCOn<0;be{QILd>vVR$#1ozODe=e?rV;cF?_?oQ!8H#^lO z{JwAW=@tH1#W%5cL^yh7kF-`bJ$wL-mHjir>r!0P!f^E9fiJKu{5j>J^2YFZ+C;|o z@L1Z%ojewfmWZV6>{H?IXaR6J{0fygy)b-JZNYi6bOPy%#+pHBqqHcP=`~zqIe3JR z)cAgCMhh<$H>?#4&co4hhMFRj?k{aXpKd-6yOuXp6QXo=MMGtr-mYwDg42@K4E=Dr zGTx9cKxyZih9j7cu46zStUC{H)-%+{bg>48(Kub#h%cAY#IPQh*EKcV#Mj?6Hx%IV zXIdEsV!C!~Lob|eZfii_zC91?CmDv}^p6gF{Ry4;b{cgxHdaWxV~{=YLYeV~rI3a zlZK~wUEe=rXog$BAJzb=mkmnz>z{@y7;)Y?Lmp0BUNCIOsq&Jcv9BaVC7WS34qoL= zKj;Q;lKfkS9{76kJG@Dr-Q`Vw;sI~+bx(MKZO?gEn)#A1m++c5vGE;m;$wgDcwwJ- zytFTTx%jV!eF%TsHzU#SQn8Wf_p;PTJhX_y*j!$@M_j|d})fs{yNHC%XIQ6q_gdr^D~Wl9)H46KPYk{IY#(nw+; zwv3U)!0qxz5(Ckdj6@Nj3SaJ*YDVJw4Zj$%B4E!pye5K@cumym!1KvuM)> zdFsB5U&*V5)|Oy;vs8Q_R0hxYGQO0n@XsOks3ZHo|7$m=amEk7CkmepGL8`nmcc$l zjZGLII&L3rv`qe zgjEFT?H=tIq0DOjVZ?8*ie9Tma!@HOf!C9d#-Nf0pN7wC?U^FolGO! zaSzE8KI`*dZY0H#%jMfyh@z6Fhm^_?5L=A$Gjc??xynd}}NN7N0YIWB1cqz=tG- z)h`&Qv+eUBlfO6ChHVRs=&=cQDR}Ls5v`NSNYL#zyCWe~(CeO2gLFSJr@V(x|B8%Y~rfy|_YnyK@*6Z0Z_-`YVI8W>XMo5^4&9$f=xxu=X7aAg}5H<20sj0k{^=8Z2rs z1>#?oAri1*pkmnp>Xf>|A~sVkW>;HctN>qlOv7Y+&onaHluCQ1e_~8*FOQHRt^z=) za`-;h)QMS4#2Y~Yhvu0KAUV#YhQXywPG;+2S+mQV(0jzV>xK3zrmF%zE3amHLbIZH z6MD!@3Y@87T0yg8YnhhOY^gdX^u(GJ5Z5(rpxOQP{ACB$_m}lFG@&PYr0nxXru}X{ zo7c~T-lQZ~=L|3{VeWXbJlh7FYEpURBTPo5CM;UX*(N#LiHaYLhtr?R@tpf0Y(zo|kE;cQr$j!6m9 zm}b!IuK!oM#lV@VTiC|3;zxu4y=R;q?zpj87K;!s`T|Jv7~ART%*o{lwq@ ze|u({%O)E{P)Au+it5$@H#(ckz}|07O9K$54qW`+bcF4=lNGD85{R93LkafwHFE?kBsi{TN{5+Ol{8^6fiZ(e3>;Mx|tKc#{#Io=!Ormv%9SGa71pH?x=RZ6P#_3^X^z!2nS(tYT~*B9KT{27H?qCb%lyoGAwHCQqQ7 zNh2qiS$;eV?LHR)uRfbYz|@K64{Y5Yu3rPRpKF$ap>c^}u*hUH`T@N+Fk-5Cq8O#? zXPAq!PQ885jA6yIma@o9e?~HUo;gD#cmt{|G-m}MEJTP0Sr@KIq>g;3zgTWYKf3b< zbY5*<&(2K`cyNt5F#rWOggG0{=;Q8h_+O$ay2Xs%9}rp0(4A{W8>eqTpKa!m?EEzZ z2wo0i&Y_o~GPj#oGR6%y}A z`vwaBFsp)4sy=Nlu0Uy(%Y53s(0qaQnb!Zy$+(I+fqYfMiiPXQe-l0Kf%ze}h4Gnr zBfHXjz!A^QUjk5dC$Qjln=n}EmANQZW2ZM}^uy+FVDWe6!#I8O-YmpizW-#-X5$hf zkry+LPFP(%V9jslZP-0O3M|{%c;In5i!6+9r4zgLfUBgIotTmK3QK+q(d(#Nee#2Ki55B-wr_2z7(h(?&;WWfH6QEr zbFu}US9$~YbhMntL)5h1mg!QIng&`#tj`yHejuGU-Vz4l-m2%ruA?j#pFD70y5(fR zQfwb@DT*g{#U@)$VgWu(v6RJ(M`v0*cDG^ue7F zapZl=EU#sVx16<>XvP&N@3=3v-Ec#&#WL0p9kb1n6Oc{`afFRR*hEvXnzE0QPTeuZNQ_ zTj~U)2p_Hzj=yHf!mN64S^}Bc)&#d!o5P^>z6JeiCG~{*k1RI>a4rgY{D}qqeB&GF zd1YCS&2{*lp7k6#>ic-VcTn zp>-{reTspcQnqfem&7_99T_@TQUinJR`mRiWHW-S=~6yx(^%1|2yzwZtTkx%vEG^^ z;;;T@vMvmS1u(p*wSUE(flRiEEcKw%Zq4SI0);N?e5UyT4+Rhu-DN88w(et#EDBZF zQlo&&idhGUiN1h4CNS189zb}Mzj3kFQ*6Hf1Ahb$s!Lg~@b(3Nm$9;~U;i5vq%SL{ zfIZ7uFaK|tZ@FTwE;W))$;fFt2N(m&0#yj zKy?v+@J0}L^`}(^{{FLB7(8~&nl1t5Wu^46{Tb`SfP4c(Lj;XJ4@`6re#wen&?H&! z6>CXq&2HDNV`zcDZ&~&9s^hM;ii9uQ>yf|Oh$q(4v~1oBtDY9P|JHht?I|DC!P(MQ zGq_b&6TGdD%`4)iUnjB!1<-re13YL&jS7yC+6MALv0Y(9ufq}zR1dbHH{(cFqO=X5 zVoy=q1_jiqp;pnC@9*B%gS?+Lin)DkYS5&frZIFGY=?xrWS>p8T6}Y$iOt4#Qsuki zXls3?wh%bZZZlHzY>4oS*WY6sB_on+uPd0%!amAd=sEf z6Wc7Nu9`qKfCCb2D1-^)l0;i89u@X(Wt&K^ird;4AN!CNF0(Q>()Kgh-o-}O{v(rZ z=u7^XO)#aijqQLA;s=331iFf?+a&-^;Xl1?oJ?>W&KhJx?+Oy0VumsXBY|uMYYnqC zV0+9O0g+JMLU;@QGR5YkW}7nIR+(lm&ay2IK;Z76N|LQTn6l7j3&fU9wxC|7(IQ(0 z&lPyG%(fy>Jb>`%l&$Gtounig1ml4xNLj=e9wR^@s+pIuUfZn7-pXCE}L+mP8xZj4p5W#m1$89SWe0Jw~ z8~RKixjOfvO%}{&Hx}A@$oOp0M>h0IFewoJ#MV^8XNSJD9h36eW*=$FYu&>j;mEqg@_~#AEa?_?; zL7b$R5^jmGe-MCgUw_rWogVvWF-XiAMt(jahi&{S3o;+x4+HC?>}-x61+tbn67jDj zs9<=so$)l*4=7-JjGgTm4FTy3a=O~-$Wb=V?i361LCZ4scT7?I9nlU;mb15H>q>bP zm{85$Sc$m758FVicsu$GW>32r7B;Y>w`=pkp2qeafiRib2E}cI1p7ud@1~+66bCG9 zW`7unr~sj`ZAX7sIQksYF;y6}wX;hkNIUM1_OpR#2RVfuUh8C6vh|YGgb1Yo+iH4> z{Y=2z)aq$B1;Pz>bUUoo$9@^JWa($W5HL%Z`r8@5ZvWkIc6e?Ouchpv_KN|t)N{DK zY~Wg&G|GM(Ybhn&ekov?+%~? z{ZUSDmi;Vd?!yZEiT{n}wyv_bVOxlQ*PIf>g}bFdrE*V#12)*h5QlK`Ci`&#N}K1{ z8ISE#{5)t60m_{*CYZU?J{d!s_VCd6_S(y{Z7Nadw7&LGkW<7x6OKE^b3OkA58dgM zy-7gONte)sVcCl)JxDI&&VyaA^7tdJ+b>|PB;2s0gB|(Mc#CiEZXr+qe#fp0s9n{^ zC=Fcj+}<{Tu{IUvy|+)pBP7|wOZseo#Wqp)S@1ocm*CHHml8NyiICV+#g0VOJHbM^ zV*%TOg+dq3u`6LhsDneOJhvaUj@h`0Y2l8rfPxM~gM){%1>?_3rvhg=c*N`YB>)B2g$QpUmbp!g;}lkFvC@ubm<})Rm>588 z*9FOEBa4B2QAAa^vYKPPn!U#%P_fXO;7G*`PH*ApCr9bGwvNAKDE+Im1D$iohx@xa z&^ZUxd31M_#@F}sb)@0)RR%it;`Gx{M-1{ySZuW85f)H8*1`C`H1(es0+$r1-^7|= z+sO`qjr?w^gGA<@44##7GaT6gxhU#nBp_4jngXZJb+~a8n}B0JBP2u%qX;bd!7Rt| zV8J3VrcT*<;L-*MkC48~bp<*4|3(qN`qEkn>N<)r*k-0au*L$-I#H&Q*Dh^DyN~73O3+LmcJzh+=S~-r1D3hbLU+ zUvmV5%uO*CfL0g-;V(947|$OZ<#6soFPWpk2-b5sy==z=39r4tt2abf=Cw|o*b5OClzb!$c^IAZiK|*II znm)Hg=R|vKD>fPa+}3$TOonApF&W*-S?)B$P92;j0*P&i8u=#Wc~9=?92*eBNgbZ4 zU`{{hUJ=jcp;RB6*@K+;n;%$1&SB``av;42ZUvxLq+rvzV(4dZhC5GEJ6s>-JVWiU zJI!ffT);r&YDUWJuT%YAiiKD9JJAn35ij`lu(N}l&z?B#d?@3y z2QT^iis@IJXmg8{ZE?-%rUfS7cA^imlB@Cu&W$vC_=yuOK*-hiFP&GY_&47=>jvP? z-M~wMOF~vo0Ii&+!0DfyD(Yw(zWAej;8!1?+bX*<18A=&L@THbw1GwnS3sc%XNJ1a zm%NEenrU6L8AAatS{gvK^6?4;&-sPeUltehLM-$%T8M?(T+9oxCM{hJz??1-4p6b7 zt39ahbg^x)M*)O162Bv1f(=}*$08(MS+DCUW4DCB#>20Xt~;#Jh5)+4tQgk-Ibwu7 zkt$l=CBj@qS8}m#Z(&e?K;^*cMg8QK%C0u7{qBE3U9al;2Qde))^JHBC@uWSHJr6S z`%h?qpf%XItgCDUHSD^C5@#rP~6X18`V zW*y*B^W)+5cCHIT#6wQ9i*+Z0;3Rc)F|W7?K>seTGnkQ@-CeAEk_6{fii>%Xg#b`Y zq`M+`A2Fr6e#bs?XkZ{dLJ*_ih`}z#kFApKh@!L^=DLctRCc866ua9}uxF!O?*fT= zh*b3sb2E3`|A3o@6I{$|E1%(_;Oj}QqnM>#Q(Z>_R#49jSBpS8ZR|@ScwyBWe&k$v ztg9y?U1qBYDM;OEcY@HnQO)4XC9bWk^G$*`qoOk!&Rp+$91u#{ZWlV?gcl+B+zv$N zcF?D-`9TVFfi4|LZsRh;%pI=S0D7seYf&>YG?Jtra7|^MLlL3Rx^Jog+AT4|H%DE= zaNkRY)AWBnf!o{w@kkM=|Wp3&*8}nF0^Ix9B#Peie;Tg)dFYp+%a&dJ_7B&Jco}>5oq`2IcyUVfp%Y> z!{$*DX!qqgv_(gt-IwR^UWo{_`|=zb%SNExm*;SP#R#XBGB&3 zbJ(YDMC*Y3@wvby!)u6M@N=UGcK~YY3Q+%`0ROZq(E~P3jED*d%F!A@rQ3^`=Osoo zh1qQ*;sfZp8bCB7M_+E=QmIWnkTWcz0*LJv!FX1^EDY`*F+?gj3&-_|Fi23kXh6g% zi6EOl36Ib>v7Xn9lRePDi^C(BPk6)^aW@C^M@6t6(L(i;LDIPhdde<5En*E?srG52 z0jI`Bu%7twf!g8l@eyZOor0iLO+Y_AgtvmAJtN|>1Q@qB(ZitG5tGq65_7q7P6XR` z`l5gjUj?tsjTpl^Bk`kv=y?$?SaW{F#~8*Lz<)q#z_rH_{lSe$H|wK80!K`XPu~Hw z^wwzHoHnLjxdF!V%3d1~oarz5rm!ZK>Z4sV}{U|o?AOF)E@PmLOPF=BJT4DGxW z!MsJ}Q=J{Qxf-#Xa#f@tg7u;Kcf4&kB8~>+YDC$Ig??Q{-i?3(>uTG*h%D9-1@hSjQ{>a{z&k@_Hmks+Gk;`t+A3(RM-OLLcY*XG4M0?pnH{QL))*UEu zvwf%M|1pU~=B^yT&_MY6ar=5R-71+Kso5aCU;$eUo(pjI_}0hwUS1@i$Ol z^Ea^8;jYfu07MPwL?C`;f);j(a^npt%yMkBy8$C2?n#ki?nJ0T>OqeMqBC&ksZMH_ zcjFBy+<>W~8*fPA?CnZ^K{izJUmaM@Jvx9Y}6TL@7Y^8c`ErN_#)*l4Q3vAa4y#b?ZQ0 z?}j?i_;E}bc)FXr1f9*Od%J71E>p3+A%e!cWmubzA@0NgwAlg1j&h@4^dqyZk7L~E zSKA3}`UE%g_84KY`Xo2{abAK|ZmJvahhc8RGu(9o^7PbZ#oNIFb1*hxxestNKgK7a zle5@q2Cde)RWNCx8@=8|*gUetjW@C|$8%S>@kSQTj$Pw!6p%-p-51#aUfk#o4kgS3 z=^o@E@tJ55loKM*z=*wW<`*1@EC^o(svAq7-N-yQ-r~Ysr~To^TUT9pWMCVp!4|d^+3`AZ&Bb9d03ZkAWQo|0frp(c7WZ)p4F^lc6x75EwEndVO?sW z`aStCU|Hp!mFPzo%ch{;*$nm^XB_Sk-T>H5={d#fg$N)K6c+W+1=iOvPpT3;v8RNC zW8oex$gJ-%!<+~YIwD0_<-8uovv$DOk_vu|^i&MM0ErOsi+*?UgB(8c@KImkz`v|^q|)gNmfzWgGL;ZJzK@|mKO83NAsL0|bPH_h`WYrjWO z$U>}ey5|Bl*`Z7i>(dB=mplk@l{nkO_$#=E)SnDatI`kuy z4*U+`!A+iCtk2mIN=pz2qKCkiJ3Osfcl0m{Og`u_vTiI9Hg2Bun8ApR6@!3st^<8> zXPLJ-%s%638Gwdbg7^o|(649zS`_^VcjKaAu;7yCB>Jr>dx{?Jz3B;K?R^QqKIjm* z@U|y}&RyUG5BewrnWb=#JipOw<0l?;l9OC@KJ(z;tH<-4yU#tp^X>$fz4CYwi}>or z4}OHrAN>fuKKT)i;jL0;l9=Jq7^gAo~rLfD`t}2)!5sRQDlgkiPkWVEU0cbej(hv zn-?vF2{RXZdeK6dWPcjyMGIk)tv1q&9>bBWe6-iMVmOoLMGIkaRW!+q7Q!SuZkiV@ zgh{qWrWY-QNj7z^7cGQI_SXg8B7rz5j9cby%cw9sJhuc{ckapg-PuiRysrb{1;lrZ zmVe)!J+RRm!8&T7$tPJyJ7Cs!uUY_FR86i2K0@!hf4_+e(f3rAiqYrQl7r#!z1}5a zPYu89OfVKJ{1W* zf(<9U?-^a+2WE#;PI>=i^(BNd6rxR7nG|tDK6z5?GI}}B85BvMRSmlCy&**Rn&0%Y z9t=fojD~k_d6QV@SO{Py$T}No1aU8ZF3$fz3)B1xL}6}Hz)v}cv}MB zIz3o|)O78Ym-Uk)h#P`vhqK;znV09^QL4W8?!lJ(^q2Q^z&@7qx0iX9{+*?cU%b~a zOI5#lS-*nf2ix{{B=cI`4+6u*kry#X&!mxTznB*VzJslmM>6jK`%pBnesJVg%+fby z-)BAqk?`xdv?CS(S5CY9SzhLZS zq=i`^P4y3kT}mH_qE;|+d+}Gwx)%_P9m12s;NZDpy&F|8_>==sN^ca5talW^im)vL zyt|l|OM@YU$Op1R9*o^+%y0%Pg3-&m44|PZ_$PtL>j<>58O{z(Ffu!X7#uee4<9bf z7ooQ{5ut}Q3$BkHF*9fwF^7stPI5bn(49I5Lz0sZG`edrq*C~>r@Q#2vpv{9>AYUS zb~b&{GGv7f!NS(t?G4QCboP*7PoZkDUcu18!C&_Z?tUALUX5cST0ZDOFO3L>yz?LE zz_G!X1QAomi+^iO42JykALuWWf)5CWE1nwsoABIsvx47YySwbu!sv?3a+J-WzZ8qw zeZEjs=l;dP1F&j@D4AJ#|K{Xnm83x<8LAL!a$!LSeZ z1D!*I$Jo&A%ls-8N$n%StFfD51)>yA?yUfBd#(k;HrNkz!0lkz2K#~bd>9PdU_a2v zN5QZS_5=Ov_h8rt`+L@Jah22%+^4s@M5sA5(o-T*@sg~w=@XU#SS>okUouVRaH;`0dUZFiISoM@3j-la%Z;0AvhGWweeH|m%s@xV6q1$mNG zQj#IT4*uYMezCG&mc-EkWU7@bd4}uYQ2@J!b&kVIaviL z{oYc7-JWTMr2u;x8<;F84e9S4B@pgzicWi`nGr^f%B2 zumz<&85Rp0zL$&4LNTlH1`B{?P3^bemU*bFyTWtEN(IVWJ59YPM-LacBb zNO{*WWEr;WI=X8}OL8)2v3FDZd=1HG)oaO4Be&(c;%W9min|8eHsDB747LTYc>NuBa`bw`I%Grj(1o-pFGTAM7GQn$Q_Vs$ZE<}Iwu_iE^j6D|3ZbR` zp&+CavKL7~1y=6GY_ zL4xe1OR?izWeD88B&{NKb0Fo1U3_SYv$P>LbQBJd>d8zGX%N{Hr*1}ED_Z&%PYUoM z%KB12y3I|Rif#KWz}T@gyq{0JQ>A?L`q@*ur3w?59Pp8zLN@CbP{_;fCq)ln8H)92 zE7?}HwHxvBXc$BaCe?AIZndSwj-=NFcYpGsmK4qec*+9k{d!W!DJWQr9REhT!4~@P zVJ{loNQyr5YN78%zHKD+A$`lFa3p`ftC~KNNK-@|)A&&71MFb@U-(-+r0vMZFwjJx zrxY8REr#QH`q`FgIweB7h$}ThE5#mcvp@&ZO;J+xfUgoII##-nv$_{A-C~QW!Tkei z^F%3nS+m)4_+afZvn=KWwi2C%9ez2j*DWZ3KN#V3B)6m+!QtYt>@Q5NBQYifs$%O&{ zBz$Bv77ez=@I|!7Q0Ye`4Z`H87%qh*fQ-wUBHL6V87aMu?T7)Fc3-X5W>1j9iC=*g zEu18U6Thq&H${3LI}j)jl{G2O4_-)f=USl$&bLA*7E2ExCl&=gHYTIX?)Z?EG4+0? zvsYO^P`U;h4UzlQ@1<}umx+F#NLm4xk_v{obX;n*!Q73>>=(bW#HzJO!dd9bEuE(KW+fVSR$9-V z^^$1E^U@)_+wu6K6uobkNn!b(6NN;saP*ByG3S~T_U*D_{~Mq?eAH}A3vWx`+E5uA z69DiaO!qvWj=w&k+o zvX4^O^~{Qrf25misXL^gS3|ItaI;GtCz+*k>Rn`(%IV=Ili1LMOZfNL+TbsXz>clK z+zd}c(nDlkG%r8~2Y#6vXk8g>UuMM#4P+KQ4G5N1Lt36fU~%Q(pA<4n9WPVLV2d&P z&J?w*2@;$LQHz+Gg*gjbeQS}r3xfL4nlUms5YM2Eak2y~G^-LNNs#RV4#aQdfFF}( z#jfO7mTv|**rKJJRLPa0kLH$ySGW^-eqjfiohRFfs~2igGEA047MNwYp(1;~F}XNf z#)pbtjb%5g*p-orX0mcrRj))0q>Ea}JaBc2p|ln+!dU*fP6#ngg$0Ur1+rZ}K#t9+ z^&KFy6POkbmf;ow**7}SCqrbNkjkf^{O^$O3Wgg%zI-dgWmc_JvpA|F1^%%Pv~7_L zW|7Ls^f9s@Y_?v5aWdqHu993J-8VtD)*dLen=HevCwvX|dWsA=ockJO_HEP55=-GHn0)ua3C#MC_8O~L$XK^NdI0eJ0wurzf6Xk zEc#l$CM#sfvE|n&&sWJN3Y3PdmEjg#z6Nt#Cp#;Ij!PS5hiz7Q$IY^f0$9X$8ScW8 zubG`Fks*haYBKtyY%m*ALJH7H4m5v{><0(nRs8@u769T1y7!jnmi#OmkDHihC{0LVTBs9+YepX6dbS*;;HB*AmBJd&Ww&g@BQigF@RMw;2hQK< zO6SnyxWx`GQ9aL42O3y4bgOMBkNA=&g(c66&fqqz=QATP)QFoyw6Np2e7SQ&{ZLr$ zETgkRLdW2G%NB2l42Am(g=D|a6rqcSj>w$Bb^YnG$k35c`DmT!P~__8|KLNi-#xLR zLYqm?$A`iSXc^s_80v}bXhL;rLcx!-ac8hu^p5`b;Ou;UXcBI4R*9#fzcvqrh0ijo zZygE?pJlXaK`1PImeIdEg(BDDIC|y6XUATlvvCWbl~CdIKv5{9`7NXJF`=;fSw@#n z35C_qGFm(*6jndWXu-TtSp6)ck_Dl#`dLO>FAas&&ocV!%1~JSETfCQ4;A{Y^v6x1 zu=-g>cWevQ+vJJ5*Ot}KfYQ)UHbH@FK%%D?A$@54!B9J!>hs0zvab%3cKsn#jt#z+ zQC|?vKNlKcN9+y84DwUQL26QQJ`_75EjER@&uiZUmW^Xz4r}G4B3BaB9rEdE_CXF> zhYO(+2fLG`@K7TSJm^jPUkUB#VE31p2$&MD~9NQZ0MZ9l?BJURzFlgTG(1s4Aom-#}8GkSI4^&ekvH_&(;qk^mKtixJ2{HQJ$2=f?n`h`IwMF9>AqM| zS6>b@Ypm$}jl2ebEj(C$S9BK|6e@3s3uFJw5?{BtA6pIv=i1ZP8u=-1h_lgh+%VxQ zM=Xk!Bd0FD0triy!=-_&{yXU8xcQW?;CAcf$hnKJKzgOf;nGLOsUTf`+SXcMJyVX| zglq{%fi&7Ezsos=JD<`&h|=nd7b3QNdtk?km51&`r=abtM2kr-lpvBV?!+zAf_*?*OdsPm%ezIOi>GFvtVNn4PQ>26>=ZF}hJ0I(Oy8Y{h7IBddHh}2LteZ)I&2R&-nz+Q9@xF9Ai^**etK9wE;dnk zU&VP2m>ssj9|t2y-;4Cy0aFmS)`fj?664vEtzk!OP-ia+fOj~#cBNq>xaOYj3)6DV zMI5t9bBwYJ@i-CI#74PYXxPcHpLnqKI2|^wIt~y*qBv1PP32)t+{xT8qcX_TCt-)N zTkE}_gLCJo#=``!_eCo1pop7LF8gXMLRO|d6-}9^mpNd`VKvU8U%ow}%%Q5`#Xicxjx6w@_Q*`=!{I+EzaD`Wzx@x-gC zf^Us@_bLqLgOqhf`;gH0VIT35GSEO;?_*d#Hkt_3sL4(-+Sl$Bz2v9(riw_+v4#RU ziy=x2ko=OR}fFdU#zOpNufoL48c;G0i zFI}#{rUJ7#OCa@8D6o?cR%$RIr&Pc=gL&J*2*r7uy={UdXb<35TmPNEsx4^mvhv)V?ZhbYkboPp3b z+GM!GhdcU^BE?NxxHKE7@WpoH7?;8^3bws9FWQDH!Kl__v3<1`-3P~5OZ zC1tY|=uOj1B}e8eoH>^p3v8+J+vpBrQ()Xi_byia$tycuW*e6|D-?%qh(6nB^VN!{ zmbUDB#W`DS6tZ415;@G=vrW+eIX5MQg9)U3kHVYih`bvewog$FIXxmm9ljp;^*)@B zClue>gm*ObZVlSwvSOc2C`pRDfi&o@;<-&~n*Cnkx95o>#MSPUxQiy?jbe}up=JUF zM7VoQ2sL!&XT?6`vaYE4dJ%X1$O!jvXY#Sw(XY5$$PoIgW4N8Yh3re`@Wr-}CBg?N ze4w@%3FtG3%wVYtErOFJS zY?CDz+D2nIOqVkCPs|I4`8HNGnZtMUqJQJ?;ZhC^F%B07gvZ$sRwwWe3pcV?8Eh4@d}uh#39}Cz9Uk7=hG8!Ycusr9 zhM%(`sO0{8zt+>4;e%}GlrcOFO_(1JbHPl?T_half?09Q(r}myX2rfM!xtgj3BeU} zze-8zzajjD4PMQl!s(8E;V>J_xTz0^!)!1su00tJv%##m^e3y6biHVGlCaC+FdNJs z=&;kS&=>oA7oRQy!a;EiNfve=ydKvi%E}u z48LQ86($hNHJP>8b?tByZrAE|zl$58me*7wZ$y`n!p0Roq_mduJ*wWFcdCfJ-%T8-sOl?!cOc$-f_#W9ScyBS!|?jiWfJ8dxX{D_ z3^L_vdy&gqxpE0!&HZS$LfH}53~(;pRZ2Kl%=FSIQn}0)E+aHbWU^t-B`w;jmyfYn zy-;w!F1WzXXqf5!WMyp!QhF}PpM)eU{fhf3187o)GKZ^aS(dU7UQK2a(?aP*OS6@F z8|=nVg2?lwN^e@0tMqnc7NidvEBDz@)flQxRn2>6P&K-^r4mkBGMC!jM!6KPtA5nI zof5gFM6@L_wN^UP>`uycoREDtaCRzaHDbgZcCX3Nzecx$H z-10*mGJ21)B`I2}bfLB9E58xL6m7gv36u29Z4#F#7a`q7fTjSQj15c{ZgA)EDy0vL zPDHn$mXsV^p}c4VDM4O_iCbwAl|~C!D?9Tj@bG&jZh4C9AE5X~YSVh<4i4(OS-I90 zAuB@HXSh(#@MQ?;hw{H_e=!Li#@YjDhejt-6jDhYWFUAL7ll=rYo zW!wNI#1;U7Mi4QrQnn*eRaCIQ;D{~z3+fO?D*Bxgb`Y{AWXDJ4CS+A*S^_8@9qaw2 zEajjTpOx$WPe4n}Ds-0+=zYtB;~6K_EFK(tx~h=!QUJ`uwwCbjSUSQ}HIvh*6k zyI5b9X%n^OUMgq$qeK;KL+xur7|JrK${^Art}>Mvv+IYd2H6m_+Ry~GYL4g(^lqf; zBo<4TuIfObcQ}S#iC3+zA}VjHPG#vL4o+5KyNCeYjUG!;MIfD?0su1SWgP~x*y+aFVAf1q>vUCj78>_G#LjjKh$%D8_ zVWzW|#H+n3NCQ*%@ZDe)@<=iV zyg1-4Tp4;r8AAe#(4m=$Ye90P&^e6d{M<&Vhz)_OCAl~rf^^PA6(73L$CFisHcaQS zndl(uI!B1t{(S~zkff4&GID6H3VA$PLUe85ilPPcR4}KcdpF338i@)LeX-)`MXIXE z&?vwjZRvoiu^wzi=8sG zkcuIF)>-24%vGu-qFzbt_xRAjbs0kexjwhkijAsA==#k8^~8O81GsqaLV_Flwx+r! z%_~t|@g|#thxn5o+f{z#;#`OUB_4J@wDU1ls^}JE{|~C(HX1IS9zCvtyVnIbBl1(K zLYwilKdO=)MYo-LUbUQiaLh$j4PNYUS@pn9e4y!7)pJYnx+=>-{I%p4l?T`D`P-`2 z{MVTKsoX-~LdhtrNi96TkcdGfesL+BONMF2H zAv4T!AuFL~eNv6(CT{SLYN4(CC`gV>I#Ee2gKVv-UOmvO&o?W_J1JD1Fy1z=;z=n;3_$U4INDWKttOb}PRo{0fsxw_PNI$!}UgU^IJrj43K|)>>z#Rcwwd%I^ zq@Y_jA6h#`{SS8NqRdrCkZ`@4H7pdV7Ym3Jd7qR}jXEW$H(@Pifx@;OD`%*4#S9cf z4eFj%n1aZwR5fCh;;Q1Waou~K#Tpz+0)(p>D> z45=3i0H-;PZ)d9)*y1WX=BW1}X%Hrd$9(lb&SiG7ZCp+fbwg|qRC!AsLkpLwH}EPX zU9Fyt)QbQ`j&4-TY0oukdu&r)iBfl+dN|k6`VDGqw~7e}ta{o`=+`ak0h~~~?do|p zt7&zKdN9We*`@AoGoF68`XR@QqW=eG9JUuaXEw8XykFglvubikJ8TpB!?0f`yioVWZBvH^Ux*Igeh>ZVw7=BXY;r3Bh0M${ zI?>Pns3SS!tHWIz{5WJPQH zM<9=)v5pp(4N$6*Zi;~FIS z=}-5mA{@E*U(iONC!tu)T$vQ%M{^S*&fCI`0!kQXbSEW3;%@htm{;x(BrD_Xyh&73 zuj}M*a|Eo=k9PGTGY>RUlOE=Xx43a^ASuuDm5}DmA|MA$(+D3DX!31On>3Dacd~m& z%-(%6h{@~)G3>WY57Its4qU1+&&QD*ZF|d&94YAHOs=$yK+e?$kj8aKc7h&0Cr;iWa&^|&7s}@4>d4~w4Jra^^PSFIBE+-qcBVRg4)WxB66?ZkC z>Jrf#_I?5-lF};zGtmG-_ND!MM^L0Ved(!w5paVW-4O?Q-B`Uh;u}x#*Xt)D zRyV+XF@hAXxLb=1@82|lR(%|?uewEw+g~DF9Bjh8;o07k_H&4=sS;T()I`D^Fsw2c zL`AOU-2GD{S9yrPo-#*vbQ6oQZ6b-2SiIjcatnWLMd!%B`2$<}MY{0UPJ9>H*_FRG zA#y!`?bWnMiHrEFY<}cSU#utv8%G6@FWtJ$M3>yZUwu%YjNjSRwg>ZN}oGwJO6k&S9uEPLj!$m@3h zT^$sVQtF5r4Gz$p7WKTRzGi^4_~W<`&57Fo9hV3}Ux?7x>~51WshVd9h)a7LRVPp9 zS9n5hB>2AzX_`kEl$IJ3jmprhMd=w{CT;RGi;*8Dx0-19#)wrWjbjzkY9%x=w6SI_ z5|9GmafFM~OD#1o_~$RT)r`Y^zOR_|`0sX_Mo4Y8pqsjA-c_-?O;`2M+(rmO%m*}0 z$m~%X7wX_c;K z-m8IC3C3aOe$Cwf&VhnXjfn1%V2c4%cUY6pKfmUvW(MN(9gbA>bBX z560UX$k@Xix>mVnz<>8B(J>YGG;juU_)vvNp$p}~wLnI8JR)cl05A?0s0*<26t@9}!*^+9tKt%sjJX?k!D8UJA7 zr07;7K5Kr$awz>%YvL60s%R0hQlv1-L3H$ zei&9YPxxpFwpx7g)xN`;f-dyej^rF9HMI+{9NO2?{(;uR(>hiT-vwbfP<=gZ8)UBx zn(l^LORZcQtVKtsvl8u(XccHftyO}AY0**oghGptkhv)3hTvhf$f@Vyrs% zW@)=4I8bwrwkjW>_BY{Gu+glYjQG5$zpG8OtGEg#HrFo1s^C})?JzWlTdlQ&IEN1H z@a;u$d+pEYSnb4L-SH ztQM}yVR~3LLAxHy;n76xJ+v))P0_-B6UL##bnPZAhix;okI?ZUdX5$jTrv(f=i%#x z?*eTRhgm`JjpvSqTF6z+*gRaK#Y~g3!A^r^+8@wXnY_YULkd=F*J7=*evP&%W>%94 zuws+dDoI=Mjpwj!+S+K((C*N}or{-(gGyL=NoA?2Fo1e91XcZj$)oO;|JNQvp)4STWTokwa z+CEro20YMS=P-5^`0-fyBOAtJdmn3ITP6z}iBGk2u%ZljrpAoTwy&7gu#Z~6 znH_SBLe|Q!@IE+2{eqm~7g1%HM*j9 z)Le{*)z`(ENUv|AYLcMDWCi(9Kk602PX!bTC=Xn)FJF*Ht;Yz@_`}P-WW~fdCt6h< zHC=QUx->gi%HZUUsLS4N(`JM8n?AjDmx_LJ*nO_)% z*^eMVQGi)d z5USHLi=xhptqEqhx4Dg_k`^-xJBBsM7|pzNqSiZBZY& zx2Erm`hoMUT^dy%TR-WceNjQ&QJ)>M!BGLnoz6ZQ6^2$<;*U`ev0@N-*@KpxkJ`!A zGw@Q>NH3(}$UmQx2hiWjqu{U&iww&i+MpN!^P6ifF;!-YKT$75BZYjGPqaf-gd zHF(86`XZWr^T?DTbg_T5JGzDgf-jA(8ExQnrqzi??c!kpRhF6JNo4hh_z~}TCo^r; zAbK^2^^`>8BR#v4UnPzC>Y889`mt(E;eH1TZz}0d4eS-WZm~M|bzf zRweHi(KX2I0V$nnt;W$WMaLkun@3{?=q#uLU;uA};@U^IMLQMXK$h^yDKqKj?$J`T zvMew@WcGaM;}rIZuF7Ne?19l8tJ|P92U4>n#fP|mN%kYlRna}E<1|}&0$>e#W>)mV z+G1TDxH&o=Ygwv17VW`3BRA@x7|HSTjX+#An|zIHLL9%51M8S{lB#8-`}Sy%kEi#+Bh{%eXN z<|2rX1_`0N_cM&4}?AL+b`j%o843*T%+J`ebwBWBjXPzfjmO)sI4N zI2YX#0>TmcV{Xh*uF^%VV@`49^=})qnim_kk2%DPuL@!!eQn_DM7Iu%QQ5-Ri2#BZ z=~W!nmHs?9<|41Q`@gd?pF6_JJatqIT#~^Yr_q=gM>kuTli4$3Jn7+SG1)fJrvTFn zb5w>ki(oLgGJ9)`Hz~Llqo7AO$4G5s16Z3pMGb`>u&S`iA*%}a9FDojRY;D;L{~$q zkeaT=M4+j{%id)4R;WvbA5(|Z)i+{-T}0A9-;KG=>7BY4vjH=91I4x^BdVuOrQ_bj z$S_+=EC~KYSD5BR*1N`f(Si>#kmHEC-nmaPkcFQWKYWh4&OP?7L+owjK)5Bjt4#AC zF5zimbd*PI5K^xUW*I%<75l5ZNN-0#Y)u|>f2kWgoRjX{Aoe;B5ZU3emU)lg)v+V_ z14E-?ha);K6!cc)fpe%nqN*h=W9yS{g=q`Pt-M$`PL(~=vpOOO+Ql`zht_0m7adXc*7C^(;Om;Tz0x|YY*=Cwof zFxJu%c|MBW%*8qVIM!0z>62JB|MkkBpA{QH)Sz;eW$yH*OF2uU)^zVP^pdVAY^U9>z`ObX)x%_YheH zO!Vl>xLnctB+l4-%#cyAKjFhfDTzr@u+ z`jn}3Yy4@MNM=%K{GaH-?2Pz$7y3Ci-U~~F0)kVh$YgD|_}_UXUe+VNIyd0)Uh%K^ zuc!LNzv0Dm{o)()AZIr`{w;S%=aKOjcvtq(#CQ+v34Zbo@MTTyM)nl;!arB%rC2AGz>Lyf0n$OZcDFQ`5qM`wL(KSIy{*)xbY+_PE07kI?f#I1tG6yC2#ZBLgKaXkw zZ6+Q{eUh1w=SbQ=%k?4Ic?sKW5VjrNWJ)-XiOUvB?Py5jgnjlRn^#Q}F#E?VvErI1 zIAfM+DiL0{On@s1nQltjBw$Y5RARkrn{dH4-3%#6DCKP8J0)O_7gVwt*Et~os~ZZA z4d)b@TF&=Km}ryBIP^+D?Qs7}ls*YVIUD!F1WeYKO03lW39~Wb%YvXI%f=?S(88e! z`&~%>uets-X>`I_TggPl&ROn1|$Hb-HAC!cdzy5eBnmPr?KzkyzTH1g%ZP_LL>ev58V~Swd~9Jf1L( zGrD*t;jAsLt0JcE368YkrG#`(QO41C5{}tKQA9jbp0I&C?YQ3(X7FPD-xI!AT={82 z0(aU`FA}Qp;@UUXUtfJlsKS4B`X^y7FK)C;v^e;M$~ptI^E<~lMR5^4QJKQg<2LI4eFkZ82U zKCCNom%I)gkU{*ViCYj+x3X_jZ&ZaV4U{GB!1PL>yH#Ue`(k%;eo9ddaqz!!L#KbH1 z6Fgmzh}oWNB`5;=c1-M#@qU2mMve|h45G2!6JfuZ zU_p}7J8=&O9GQTUBuV+1t+yeJ0(aJ zKu*e&MqoXW0lW=MI%o?3?G&CAiwup-G66JCl@wzO0;VOhcwcQYDl+Mm4GO4DK5CNC z!2nE9o2Eu3RdE&_qGe)I4eowpGL!0Z=h<#d`qfT+U`cKgY^7j6*Ta+q7tx5t{G?$1 z?8>G|u&IUpTGBk}H(va{WfF8%*sr5nC&7@C7313_?GlT7IwZjo8T;{Ir=-KYIIU|^ z7;|M`dZuSm0slf=-=xp{fvo;X|8UqA1Czq}uL}n!4dl<(8J+~=1%}&bMACNtz{62V zFjvif9X&S5pFgl}f|dE6Nmk~YrzFAb7khTnw4^`yYh!07K~jA7YnwSqzw=_#`AOG! zF^(kd;YIt!Nw5i%Ju6?9)SDMKu1tE*AK0jO=LVDOh#Q!av`w?YWk5`Q@Xm*@Iy&UeZ)vu{!Am*^rGMVlGLD~sMltnlTPsHCU?+5vRbC?T2*z! z`LAoL=@#;+X{@d5#x;06P#4QXWz}zV8T{Ao!MZD$k&TrZc^;~pj?>T(Qjn!nP*a$0 zomeA@vqrba1}rUItkrE3B_l0kZQ`Y+WpTO~j^&Z0L&iNOqn0kvS$Q={(T%rB#?n+> zGUw%*sVhNZQPBNc4%0PPhe>P#KETEMDbK2^nvHdsS;b1MHBEFdRAiNJR|_4o)(oNL zEp@P*%wYDl)9piQN$^lD%`4EQV5ZM1g(~c%gM;vlP1mlv9X7Ff(@p1v?1v5^g|deM zZ)>ul@7&M9m@xtsLODjk7!6LE7Dcx!O1*ECquIb zYdDaL(;?xoZm!Om6gI2vM{f1g4W(sMba1Smbz?tG*Zsx)$7zmDRZaX9g-^kz3>IYD zEzm9EMVCc7Ses_QIxN>sKz1yLP~}=(Ydewo%I|e`xCPE{#Mekb3?O$?dOOje%{q5Z zH*TBG%q_5Nmu@qbu23Hw$cn}~&prEfX`FZK1G*NR_wgg>8e0inykD@b&rmqHcTA`D z6qTI+lWu<%Qn-4!FAcn`gZH_JClInwsG0R0M6Gwbr|ZGl-+PGl`$aVBkuHM! z!*@?~2Y3f1{h1E71Tm`LztXKh_Em-~_^hu+zkJlyb!ME2CoxPg8IQn+qpg`wPy z&X?*#M2nDXA$l&|=P>o$x7P&@$2uZgqg%R|5PrEzftk;4p zJ*K&{%*_Ro4cYqVh~}U}7kvv_FGrt(@O~n^OyFfFvNF_Ii+D8FW0r*(1@9*MCvf*m zAEgiRXrae+-WVBxsV+_(^=PR-i81-VV6L~;AAviC1YYaf=`k6Z{ss7?y*?G8Yq&^H zuZKG(1R}e7=n*LuY5$)3Tuko+-kVH^_0bDgWC@?QFVs&$cp8H-^w+n*R2Y!HC)Eto z*Qr7d)K~e_uHWfVN#6t<()Dy#FZyzX9_~vQ1fua{^o@9Nz<7Okgmr|P(3Y$Wdsvf> zo~oCNB+1+95PwRR8UpB_GxUovs<*-tfOR5$Pj_{qF>|cM$IrJC-%s@G5X9-6W%^(2 zMV*dbsb9}c9KA-58Cw8YPx9w_m^g2{RzDrb z%1!~M6~^J&=RMBryYkPEyP(HpO=U1=FX~TX&ULVt4cGL-rHMkkJ9z_R20G`az6tvC z#kZ{Cw%%R5C-yAYqcUwX75sVMs)7LzF)APo=1>JLRI`^&kM(1?8SX#9>p}iZ51F=^ zH9tPr5BTp6Es9d-rM{fQc)rnNHuf-~8o$+}QUbD<@4weWc4sC^n@@Vob{+<^<}W=e zk1TsR_OpesE+e8 zAi|{RRg(6REkzX6qLn{m+9GK}LKuGYrrfv&1!=!}k) zd+HgA`RChyV_1c)+}j%(P)W9#3Ytj_kVjYyFjB(`EQicc11iZj9%?UK0>}pHc;*l2h;FA>6KxCOxuE6 z6=xeTN12#H>KP5Nmd2bjE6;%L*3LH>P-8B}LDJZ;jw|F&Q@nF3nj27wwi$=iR)#s8 z!=pBamDoxe-OhkYw0)_-pyFom>x@@Hr!EFmqHU&vrQHp%8JM|3$6kijSQV7^HlPx1 zGY)t9fdC?hp#w0@h1hH!A80@&+GZSbhZrEiG}A+!;Rei(e+D!7TN|40H${fsoWs6R z_!!|n#(+w+%>{{#2JRoSPqM48t}bp=^O(j zxn}+lINz`p%b{q24L<3#&;Ti@7>BA$42ZQo`f`b(1A5e5Wrg7*|GejF!)~k!2COll za%?kqbX#wL3o4ij4sXO)3GdCI2N7oMR(!j;dYd7N2kbv~7%=-SnNUf)45%F2?B!jh z*2=MBuK}|}z+gV_GoW&8vzHx?S*^172YkEfdcuIpvCTMKJ7rkHO*-Zb-ZQS8H9(GS z!NKg`eITodHiFFl1Z!4RFBn3x9{=QmLAd={7=pQ7HDHzqn1n5_8TxSvf4*VBoZ)3K zu0LC&i0>_Y>)QUd0hMr@aY!zQ9+IFDUvlWaVcvgNEFJT}&;=dINQGfK*JR{l19}Q| z)E@>+u5Gb*Qt-^sn{&AR96v5^^wNMzxXsM4@HIDs5Ak`2AB?qlZ-9i`%)dQ9889be z8Jp0*U|cD}1b@a4%X)vYVOUnhK6wh~u*@NO$$xiD(YTKtlTit`R|O=GhTDCEs!_^K0)?|9#JNX=k*;FkVGxfn>9I7Wn$~ea6a;;=U1fu|>;xX_+U^1r4 zF(TS}$=@JWu?W1}lf;K5yU@QIC69I>@@YzcvPTMe2ifx5VOjD6O!riPr2q>#v<2nR zP<65wl3pizJ}S8s^YV_NDNR@oZ3;QGgE3-Q5D4v{OD@7}`)3G{2YWVsm6;rd+2?6N z;F+`!<|a=UJ&v}_Pfl@1)I^2|$*^Nc>vqZaZ2)j5kWITEjW0+Z>Ll9vc-Le|sm)CO zUC(4lsm+Sx3X@NHBELf+rFJ662^^n{%CRb{P{^izW@2(IW)+O?a(C&!^3R>-SO zAg^|3TC_Vk9Mhc;6h;B&f!Ju!hWnEtha(fv=U{Sm%>F~sir+`Yk+bhp-N~yTlK;S} zUr4Y`A;IhK_Nx9l2`9U zhZKDEW~sJ+cS`Av(GIISqtp+*2&CHXNLy4*sgJEY6tZRa$JQ7kq}tw7JLL`cK*zuo zNZP`j@p@1SpW~o+8>H}AY3drB0%^9{121JM_t2yvNj5=~W*N38M5P!wlbdlVsN_ei zg8wVS_6dE;UJg4m4euTlVEbS^131AhKXb|fWR-zke&!S}I-ps~bMEB>+N6y2$JLfz z6tZde64gOGhNd7=Xi*TTFK={|qf&+S)LFb@i;vJD6? zrgkq=vN1hqc&|OZ^)3Z6ATblI_>}Sy8|jH9EjER;*fKW;NXAx6#VpRTNC9|t={*0` zUOYlpt&s|8u^G?9wNgEJ@z>g^kQST$Y7R<0DgL@Xq(Q2O_+yMB6%G)x|DLH#g{;`D zI3On#vSN#G<)!|PbfqQ~l3LeC4?O-iBQ_~(3hAr=XqNgXcc;g#Q!QPp>upn|nB06! zk3w2(c1a99(I*u>Orij@z*AIN^%1F%jFf5b&ylH+7Mm4UjZTHLoUGVyY-$E3Ew+U( zOKKfYMlMMG3l}h&5SAIbGBx%vl3Kw7biZX*_US9E>_4qch1A%L{V%IiYhe-^RI(RR zV-rY?t)Tn1rhbEV5GDg)?WDCzQXkZ@NfnhzvQL~(4Y!RFU>&4!7gHU$KbUS?H5zi) zs?lG|Qz26})9Atbsm5wp`jG58Q5X`SUBQ|yn?kniQWueu);1`<_%07eHpd-92WZ4#TWYZS`X?*hvd_6A)Ap^rKUlKY*wt9pJtiQ zC~cYs8M4{0DXr4xVY((v8hK$_H8N8dyNyaZrwzr-kT8(|22Oi3IWPBRr#Ad}2^U@$EHY>I#Y0tUD?H8v(PHgt;ku7N>(E>eP8e5Ybog2G^j@*-0 z7n2>E=>=c{Y5LJLNQ})msmjtIF*Yj(UrK|-*sQqcPTJ30l$H0>ATc)kwd7$MB*tdN z-Y?SzphdY@FV2e`{WaE!j{cMuk9Jrq3;`G?mK~e+v`Y`?M%v_(ZfStVx~1>7x4T25 zJky_XxiwYOAr&^0WtdMoq{3#!7{7E#4b6(}Yo$XfY*w5kNrzO}tk^3w9a3Sl;&4U! zLrZHBnLgDPZ3GI2^&^QlVh2!JVmjt59bwi5l{6$xOzHJ#wfb?@?dXlvbRS-uK4zx# zEuXZ9F&%PYGa!DYYNBOP*Kvj=|aXM@0y z&bpWu4No71=}|E;D-&Xuj7*1w*o;$?x#^G)n-#|`NpFO-M=zEOn>JsYo+-*oc5F;X zbWbS|ZN(LLaBI2&)AMGsT9aQ>NPb<6RvEz5pilOuPvx8@9!!Vi*Mhd}-=&JNdjG+6 ze>(GYI%G9sTKw%?`d`@ZK{o4jy8CiE>ZT1r?*C1PO&}e16Z+TH^y40g9s=MsBTEj& z?WLdZr|&|F#1N`cZa#aE?}EZcs54GG;TQ?wFGS8M9e&_q+_q zn9Yj&7GyxiY*zepc?M+6X2myaG9Y6%D_-4_5saD55SY=?Wf`3ia}R`x1us{n!_H(t zvTVjA`+No@%Vx!~S2I>)YBnRa>0Sov$|^<*UiP4nC)+aH>i5t3H|I zF!4^{BqF#KX8y)Q#h2lkMcmb=kI0_MhyDTqE<8Rd%0gcrV z&gr)!J(g$skzbs$FjGK)H$qGUzRo$T2KW7+JhL#zumEcU4XB!R9O()Z=zO27QKGd- z!)kaAh5lI=5gaH806EEodP;@|WX-}=i3#*@?JOf^?TYE|XkgX=&LO#e7GlF4VKCDh zWZgihKzzAYqbxpgO@5SQEyL=ewlr%4S`WkJS(g37Vc}Vr6CO+t+zFq`C<3Z`Udt--XO@NzfeHq~h|H8#$I{71s3GTOUY)}P2K(v9?- z<>a-eW!4DZ%*kU>2AL)OJ{iJfULz_gto)7>ht2P5m^T@6UTxy^ye{I zsB1Ub%R9$qopluz;5^QvfFm=q8X$e4EjjuDdM!ieXN90u$PhHeS#NnGpR^Q;h`Kdr zUsexNUNp2fja`$q%oc=Nbn3>e7j}?_$fWVBMrUo#YUu|57(;7RqyLm`J*ebY&y*%`dXl`FF$Jv|#YtWak!>a%5 zrp+$lQ^aTEt^KlSe)x`R2K{M;K zt}U$3o^6?ZgZG4Yb;v%Bv8Pq>#B@4)Gp*>J9gDbNmjcWy9*>($wW>CEdUkkCQHe9x zW~Xu0KHO*(Ywc#MSUFp*VpZLqy@jjmT&eZhY1H~`T^a8>pdiqgzFRp^rCsq|CJ1MQeS9=fRD(+G~UPg;|U8!nZ z%vCV5y7k$FnnsH!R@AaSyP>x63Rl7OZ;TT#^D>YjNlZaTAq82->UIajbZS`!<9B-^)C)F89R+jk%rlZ~kT>`jcF>6aAa2h4zN6}(K~WhY{KYVSgnzZreV<}4#- zZULaCi(|F-*~YUDr0|Tvhg>lk%Mj`TtogK6zOg!@O9wH*2zk}n=ifCqVzP#?&o^#q zoWfzAwJ|QhN|D~q2tLo){LsO;8Ve)qWQ4q@0t~&=)mRH-YkePM5m5#fDd^>1M$CN` z6c7$OkS#Ox{7A{Kw>oI~xz;F#3jLI0cvo?@~3sGN)Z+4qxjCi#iK&RUWK$Cema+KQa- zg2m$H6FHYfucxJFb3SnnM=$40sU|+q>QPP`Z?SmleGXh`E+CY8=5}@!e;n(Yo6o=S zuukqH{@vS+a`l)6CD4kQuGHr4ffU4oc6%k}rXn1e0*G=_bmvaX_vE zGFFMO6kv-X zW9~Z48W2R^JmRw}caPn5v2$H@ckWt5ykc!g(#aOC^NvD3=$XGgbfR9RxkC}knzy6a zZ{FWa_*G)%9r9f0>wUSQc6Qfk(1F}W&UWP@(HZ^rIg@TR^Qw}MVNE^AcHy5<_V=oh zx{9XGh%T^h>T^ z@%3C#uZNuvo&RetDmh*yzVn^jsh&(&y81~j?A;dRriIUPZ#s&_malV1*o(zSZ*yUv zH+x|5``q^YH8;n+2K?Csx4aYl0Y8tttC&X0V!>KuUd_CPcJoD79at+5a|4I9PLYc{ zDyor50eO!Q*1V_9%cn1E=dHx__JxBC}{rMBW*DkwZ0Y9-{kC0cH-SrnAqhWAl#k z&sRyv!z?B-m^O)derOKi`n*T>WTnR6mxQF`t-_jNN^0I!G>5vGc@wxEc4g;H!*cj+ z%-e<;9x^5NZkz|nBbYlnHOrfh<&fVzuK{8ZB)DUL@_a9}bUO4wbQj4o!&Js z3hCVp&WjH0nfI&;lZ*E6oA=aNEcP9e_d73k8<__qR6%eWKU#=?tmr#74`u>c@zS`w z#Td1A2sE`Nhjv!@kqal=)}oE3<|(am^_-c9$`JT^~dBaU~Hl@~w@ALpIMibaG^Q24}gE?en~yop>2V4e3o?%M4TJ5eP^Oa~FRtn5S`{b2GZ-#={G znN%3-`jUFbp&M#CW*UwF9rM`Kj$uV_9c$w7rqoo(={e#JebUE3m9hrT?gjwMM zC?a;Jrkph8!;L%Fhxw4F=S}BvGOeIfE|{)k7QlhX3L1XdbONr?5jZ$rGa)h!5e75x zx+w^$*A=wm&n7s`1sr@y@-5S9tR6~lo4gTYS5bfk_f3#@lj&jTLlb5+&Ghi3!h}ha zM&acSaG{rAhSyI`m@XareCIz+sc16{e`$iPBaDObjS11S7B#u|t?4+LgYlzjFX!O@ zH=e_oe@uHYgJ4kN7&7x<$J*4v(Ol$7zI{8)pPckD!`<&%a{w*#HD5#4GzRNJwoUEg zM4S7YJBdQlvo*|BkUra+cpD#jkjF2YsOiQ!=B`L$9H#E;CbdYztEO7y+0WfQ>H9!) z7gtgIS9LAoFAp()k75jgNj6Z$D2>`VsfGxR^iyMA5zRc;l?xJfq|LkLx>4S+QDq@>Lf~WtGRg| z#@PX4Jh|i9-igXuTb*HfTk|-KegUiiZvBFe+xbprxR9QC?fT9Zv#soIMg;{cEOEJ$ z>p_?GGWX$1uHDy++94u10_``*9PcJ-@90SLHH`L{Ljg`*Y8Y#VTVa?rPmVWt#b}R# zjht+*PU^gF5~}FAoI$eeZ5+V8MC+v z07Gcz4s%DO8i&yQ-R4aq1y5?m%uq858GFrDFs|GGo_Unm)2({MeA1DrqT;w2)5!#= zNi_bX*%6}(_VULc&BH}ij5}+_%vUj#ljqE+9QW+y<`>LAiWHQW&6xfbLm7X?JOizT z)7LFpX#BHz4x&ad3QK=6e}kql^tRc(3iE||<>sybodN|4voOuJ>aqEiA92pf@h3f= zK;u|%d42%x@{c)Jw8`-==6?U34beN~4=w#Qe;}s&1@BHKI=g&tqFYc)N_187FaCE1 z6i}*Qz7Bfi)zif(f3p}TkGth>`0o@5^NNNZ`Bjl#@h!dMm48FD!%3g~P5+$&UFDm< z9QpN0^u2%nYw_!U)y&`h-@h&@pj$wGF{TFs+Ur5QAH47(C5n81VhYpw)64bpbH#|M z3eI1JV^j%RmoAp%_e84aYnXGg{7IssI)~Xti-N4l{|Af?sPdPHjJieUe{Z{@u4?iV z{|{*W5}iL^q%|roA2XfsKTc7XK8epq^``y>6Qj!?Bhor+u+4sguhylJDfy`D+WtlB zU|N2WNGmflA9YIX>nc>2?#RlwL-tsDkfYLjK4erYn3|iiK57KLXU@-a6WS}PZ22$gI{4{rRadfUPT{|MbFJ|3|u{*ji z-+`8l$xlT#B%n1wAb{XbmygSD=qR?cH^+j|teth3lJDlkv=}riAC=jL@tm!`=SqzW z^M6P4WC%AF=hv^oC{oYm`Bzw=r7zdy+li$r8}r>+dq{(}=HJ5XDS&>nhTOdYE&J^Q z@PGSUBNTM|zWluy+Ey$ISifV|6DkqnPUOF`i39n6ti1(zR7co0{BGPmNPr}`C!1tr z#jV9{vyt7+`o=xkxDl+lXP~%iaWar1L5e%2Kyi03ZvQjq%r0&J_iA4zUwgGPJDGFO z{m9rkBMm%*oKd`=R~>xtz|cVq<1qA<&4d$dhBP4{KybisP7SSK>30bX1|u=uGHB$` zfG7i2&HXVnnX$!*!K&*+r?XfEszeNehkfz9n?uv=_&Rs)hOy2Kd@|J9PVfw+mc?|y zQ{E2M+i(@oS|Hxc`}t8T@pb{1Hp@mllmBaXS8-GRueo)^XSsnomV1f6WAQt}5BoM1 zC-T(ry!PVrta4Tf#Y=cLTY|)k_}ZBeCZ1`*w|;J%hGy}FAJvbg0!u{arh_e(u@ zorg zZPDOr+dym`C8q6FeYtoWZ^xUl;u=1-St;(!(sCJ#8;*`$8_KZ!2oFgS|HjYnLNdgQ zzgyay7!;{%kC}!BRjRDG*#hc){9PB?_{EYJ% zEF2}qyj|XoHd^S=81WuHZO%CH8a@^?K|F<}ra^H!TvjQzw%~iU**}TLvW#L04gwsw z(qOK5JYV197mC;L^{v@5u?-*Vv`QSsq88F3RNfWWL-ymF{I#O3+bEVh@a>^%~!c)yIHCnnU#^!ym9p&@pIOO2LSy4S@kabD*nVP=k6hKFTUaIbXxp~H{y4{ zi68Q@kl)4gthomE_GNJ|UUeOAh?$Q6r@}DIjg5M6L0_JWefT$WdH2K*I6f%rv3Mav zEv0lg%$E4KCt{{Gbw(5n%;^08?w{gCwdT|JwYZSQ|BZZzrdr~W@5CQ?2b}UzjB8EG z_Oti`OLJx-_4KjW4v#XA(AL72T@Z&d!7}2BHQ!cDc8nOwJ828gh|9c_dU!=_$Z=u=JWXnL_A~ZWlSQ??+{^+_jQVp(1y#edj#ui98%R?5C@pq zD`F5&@Km3O*L+PqKOmwZFOsDs!kqtW{g{ZQOeeGP4T}ppG3dH)<&p$TT#^_uu2xo| zNOmY~T{{^@c^Z$1NaEAxjEU&Y%lB$R zggeVZ9%3G};K~pSq}Y3>4!;G@eRjl8wtN%)dT|78qMt5_$YHH#e=mUU!*gE|ag=XQ zpRJEb;N?lIim2vYP_#7y^EUjrE8-1rSBrfSi}@$E9*tPcG7sRS9kl0;9e#Q`B7)V5 zh#(+9u*KJYi}+y1TkqMq2uI#}PFEsc@mBG;8Ii!pCfto!&eGi*?b90HeHJl{nK4+n zHE!@SB9^uU6W&Ms=EBwREPKggdoGqyR}#US;cP?6ZieI7$b2sv`?Qmk2?U=|rh8Iv zbho`^6GLnIby--(udufMv!CSgx1&s(@>2^W6iI}rOOON>Qr?Y$CA&fi%c`)yK{0%; zB+p}@G7EME_vzw_{s?DL3&*0Sn?#9wbdcCHRK~9W7M&%(z`k9=7qcM}UxqO=#|6Bk8?KI) zs2J+H2>{(%W(R9Tq>?7)XnXr^o+vz40`DYyNa)s{0EJ{V?~3@bR`LsMMF&s7+Y%%! zw-y;o4M1zVNa~w@lYlaKR1B!+dF$Y_#S*e>n=oEgDygE; z%yNl>p-cEm{=^Rwd$dU^@xsNUB!BXH!z0H^)U`&%1(PMP5}srH!*t0e%GkbAvY1A9 zA&Db3!sXeLqcmE*K=NH}3dhCEBtg^x-mUnX13X_TY0WS|{i-d1cEg+3O8j}QW^0CZJ_#(e z=Q70YH<`P`K}j{kt2ZNSt|Rb4vrkCYpyAW18lh+B+O|cLPD+-1d&7f_U6dOhe@gOF zAb5w%&q(qtAbfjHGR_>r5f>$wNT|Ll*}zf(hRtt?l{X~ufQ^LXitFMlHzi(Hg6n8l zui)OOk7G+}`q?(G-bYS87W04ouYkE$b%RK>hfOVff{y*WO$Q= zI4Gw-C3UKvO7@t8h)1?Cf#0}Bwqho5+9Pr? zA&^@)av3Xu6ZIm0U?y;=K_pb*>qz1gd7hQPHQ&erW&#e)A|DYAylW9z#Y#ZaD)Itj zEzseU{*e-v$v!xc3|;FK>51aSR(|-;4v{Rw7~+RA3^4EQKnVe4tKHMykz=4n;(|eu z=L8TA84|hB62g~}kq61|?a`4}$?rLe$Y05CjVkge3H>#ZYe{%T8#&(w!qSw;mKG2$ z%ZOxptH}wdioWfOSLR2SG7Ql;*${_trZDmVaOQWYtuK$PZwUv7Y^7L z8AWU~<}goPeU!J6`DxxpN6+v!T62N7QPxG?MqMuRHhOX;axJmp+*^@*03NGeMBX8` z`{B<>7pM(5`gPyWyE&UK8U7P#6i%8X$S#QWsmOW4>e>Mrrap9V%XBtqecsG%gZlSTbTjB-^TWvhko z{;sH|3zcDsr-%ur{t$41x33#LRn z^FpGisnPD}SwgfIem*_goK@Vv6!1VB4I7D2^eJBYvf0tWmYh((E-*?zZjn*?=q1q` zc=5beM!(}-q1h(T2=_z@j{cF4)!81sis8K)23PYD2zHRO`0g?|JZWz+96RL1pqCj_ zVj|Guh!{Fa9&{+0VJ9(wXsZrK!_0UG+IuW|=eNs15GoHxdm`WEezrL1M06VlCjt-+ zes(tcvnBB0h92P;iQAkZ2QrZpgM^o&i`aCefuky;ZSeP3qc?$&`2CIO7ElOod@mY? z^E>d}`_V9*-+?zjjCLe{-}5ATjV*-fZ=?4xj6R4q@UNeuXETu9G9_lL1r*)TGUinq z2;GD+4$YVh5`n=lPMHgiqUVD%veCWhnA*I{f!*>a@7SYuLo?LqSXvI<;59ib#u{~$ z#zcQRLvqp=nyiQkz_zj&5rd{o04V#W(f|DwF%14skT6iOv_vOYwsA$vv@vVh1%ms2 zNPlXnj~QAEsq|F|G4Kh6<8w4AhGC3h)Q=wdE^cOvT~cD2GW2~$ltCyjF+zmjXU2pv z3``HnD#V!?o14v7t1}i;B3rED($d~F(nKg zlu_CMQd6+t5ZZv7|A4Y?#T@*0FE_oIhBo=s9bdHScFdP=N8uRN+>eRH@Y$4Q*l7fK z&RF)f4>8=!SPwk>VN8}Kx+ZXjGmD?c>}AKRfN5MzT~?0)LKQgWRm{(3JeM|aV;DB} zacbe9#=nbkVdR1Vz{i}Y;qoPh<$E+~+X;;=8PZFP%>|xpCWX^$Im67elrro&{i=+& zR?=sTG&nKvT3hLO%B7!!l;MQ)uUu9-O5fFjivhs~w>mh}MG99kamw*^moltJ{Yq$< zhqMD@$57=ZJ6`~jx6$Z@K~gwKij#TP5a|_~_s1wHe9YuhqhqA-F_Vj0 z%cO8JE*Cu^moA{ua)s26J~mq`t)Z$)iI-Y4EZ#Dys`7J;BW{=@Ev}8G2nc#{-?0If z=b9Atu1GqU@?Abm>P@4+k1|QT>_?NtlCe_w)XPciHeMQT#Yg2+r2^_4X_eB!tYZPr zmM&IO8iznu1Mj65iY}%tHwqR&%Gf%PjxWrzDWoDA4-qd@p)Ul zHi5lW4@Poql z-^mz;9e)`VJ{uvkL=QX2SiWouy2^Uuuuig>3hWGo2<$c7~K4k}6xls{P?SG&b12(xglrM3_J@p=wPa~I zIP*99QDz{*Pa7*^xp|0SEI&3*#$0~ZL|Hy5|KViz%HMLT%#NAB@6%Ujh(WW%qA$@ElVZ@?(CH@yz=0M@cC7Cg_*#j12Q=w@Z}KuARy$3 zOu*~|myXFM5dtYE*`09JDOm?*0%L!Zts(@1&&d|EwgV;SWlReMIS)>}C`%&*&R=Hl z3p}pM?lSs7DxP&+wo)KCf_vPQZMP5{sl3NDDd1%3cAuRG0v!yA(Qb~HU`L` z_s`j@rtqbVWwQWZt=_zntsrJu@K!dL)h}+mlO1PpOnm*L>^&*_(iirIv93VQvSgSS zUSJ`gObAT1k~851r(@Ncc+^`9>0^ zb(2?-uz3%;oh5|A-ttx?j2R$r%kb_TU5}PWVF$6i5t;LFE08-!%Ci{i1_q=#gh{D_ zXFgEHGk4PP%y(;f=J|TLKgqWuNgl|;ctf##D2~mL+uIo#mlVobR`Os#ItXIp!g6^d zqVt&}@m|JWu(I+ZB)Jo$TgNNg~J z^O6#~pl9K+&iHYMSZ_e)8#mvsu~tkK&j^PA&Kj@j9=n!EA^Se|0$~~4J9Zplzq>#G zd-lNC?N0DJIySa33wvlwyP}Wh@3?-w{}G*(46(rVw6T90t${Rgv9!w>7$3WuMXbM- zQ*#fos!({=VQZJT$1zr znm_Ki;GHbl3 zj>6q!^TQ1kOea2a3gzH}ycJ7HQ*oiOf|Gk`Qw1!$J%Y2E^MW*O$qRC!6)(u*HoU;4 z?G)Nt34+pu3TvzkRCt(N?ohCTw&Ght6jjXjByw@+2+*xDTq0siBz)gNaezp+rxP#X zq%OQfG2Ilbqk}F8%Cbkh1}JRE0LKIO`ayA>bV}R}bRGLCY*@M?qjBsp0F!TTxZ7aG zGv>BNuDk7lw?rrgGAoor7#*nyA$~_hLw6+#H-3uuMW%qY(MRxDmEux8#*Pb}`1N`t zv}2XR3p*An-jL}mH~*?%qHtjr+lUFSa460S?=4pxC0;Ojgu;=iblxZh>@+-rNB*d= zCj2LiSIBEqRzqx<%p2>?RKBWToURzcvc-xs|Fr|xUGdNJ6z@#R_+_C&LIiMKs%XJn z@yhSO;;!wh6cz+&_s@zn5(+mcY*-Mv_Ptzx+a7POQalDEzEys+%~*?XRx8*xM3at# z13te)QAVs4U8DG(g(A^qu1J1X?uh4KP|Pz;%ck8j>bC5*!h_jg|5~6U z_Pwvr6D5y&s0d<~;jFT5d!2M!E{>B8oJVDEkt{4v;FjabkP9@;1Y+0kWbh7BA2# z+t{Ep=i2s0ZmCL^l`+Qc#J1CfOYD(nn(`Jy9UT&?8jK6mmGxK#Iq+~IYL}%fVk@{W z%9y2W!!Ht3Wh-}EqV>Y|t|+iTxvCa`fp|=zQo_<+fjAtcKs>HYxxtKQGoV7r^2Pis z*5u*J&Mf};6`^RfavEjhGgis6g6u1nVw`dvOD+D2P(4AplCsH}TuU~arYMKkPB%Aa zDB<)s&TkTDD#tVW4F*SyVXOhvWpd{zms28s^K0ocnG2LmH_>rM8hqutCmz3C8RCR~ z|GB*FKW@*2Tj^u>Wb}Jpw#1l#z^r^qI zJ67yfwzuIZ;{`{QF|~0E9vcHToKi@91G}77wqs^nK2}*5A3vwGHRtI)`a^k)xegI9 z1Yp*9=w)RhrFZnIvR7^B*`RB$m38o{+e*0OnphoAdaOLo^2VPt4{)@>fLKQ9WxP{* zG1HqgUulnBz9`M9_F9>#x-eHY0)_z05x=)k%{J$ayUa!fn?5)@m)WW2z$GWdhz96~{mmV#d{v#O3o_Px=ZPAZn$fVirU9l9r zzD^Zy z#*6xPgDQnpZ2;?ppKnybbw`}qnpUaCF=AoBdS=DJV85NJySx+Q7W-6}ZTM7=W2&As zns`?A9n0*+s0$|~yv%Bubl&kYuBbLq#}nODu?(|;Odig5ZpNEe|hdl5iY+UaDqO4o6<8SXQBNFb;22O<6j2 z?%{LqR4}sSDnRr{6~iVKQb+Ufv`;FgeM02nEiKe3l)_>&H8X`P=ITWZqinpvMm>SW zgz%gaxs0`{z=Q48_U3%sl;Naq!9ap2aS+P5r?SJo?&=^GIwk}J2v%r8Tz)ZDda5;M zJh9*Fs+rz=bFe4hT(`jGjnqL_JlMgeYSxNB2ytM(E!0FbUrdTH|Ui|*=6 zynM)}j~b5Yd7$#bE`8MpS!P6kE5!k44^*d6ai0w_iMvm15_hyj-JPXVfN~V5V`X1= zoE!^GdGqvEt65$vVE{WxS!TtXSbm>qVriSK_F?SC2O@vy3!MfEWNTI`IRGi*wa*%nWJ2amyv@QM7XGT&9M%dR*${HEO2e zhN(1;K9X-%vy27-B?4t^Q`@0WJJkHJ7nMKQW`UP(QSYNekiu#;%j(;|L3`spzo^%+ zc$NtU1H;AC6tTg@~$Fi|2(^TvbssnwL%p8aZ;rP}`hG(V_j+ST?Cn2f{f zrIc5TV``RJ-#-8|kE@vmGXH?-c1m4Hc^y5YW;ojf{R7bTteRQcZV;ls{wbU2~K?m(M#zD{`M~!h1)ZIlhpJfmPvdECX%?&H0 z?5>`Mtr}>qQ>i{S)_h?Z@ca$Y2G3}r$)cjwYhx1aQCpK}>)LCEF!b0M%IRUj4|B$Z zYnZlv0E8BI>1ZOjr;CYTWj7PSm>!zeEMpx&k3i)IUcdo$eKqZw9fTktK(N3t*11N9 zIr|1`S~I+bl4^>lr4#+&e_okvL2A<-r|i)Hhah_S;eL zUoUa!>$3PUwIZFqoQ8y+VT>f?gLL?Zlbgyyt0 z#|xbquVLv(YL;oraD$1OIF|W2_i(@z%~La;L%?*+LI%}vFcmX2iOd{k&(y4-93p0G zSiXaD94hB%SnhQ}+{16?YtB**mltVR#)}+Gt0kIv20dVSxFzqc=a9@KZmkm_y1c2@*^!SP5Nb#An#Hj}+8?a=)GguK z;WV{RM=jiT%~4p`&6FD4Q@f6)zUpH_7}sB0V8iG2l$i3ajMDa|xMm7%3^hQCTDuj# zKFRC4;gC4(W=iryycR|PTxmNKwR4>KXmY-G_yC6b&l#(HzqYfd(O73LYNs7qvr-3_!f`seyvhW& zX^n0@tyDQ!S4Gv+VYe=yWt7S3#5Ye<2dzJ%vqNL|YrU}ch;E-rCmqk~nC{~KJ1~}? z*ZI>LH|Ls3maH4PN-9A8N4j|G7E_+2{d`BpcKYQykFC#2CTOTAGsXMGTLLZO@9p5peet8YV7N7vU&sls10($8V_rpm{6Jdw&zZ-srD>O*aeew5r+ z&vYOb(HVin00|cug5}+C`yi97X2JSpR4>~)>c>%aN_y#+(p38a`aU$OkI-vaZaV@B z-6|9G&2X$r4~wU1*Ktj&U&}J%AZS$ydM$PSoE&{!%5P4QzKEKo)iAvyi|hVlJo)Qb zeT|?J4RJ~BjRp^KvOua^eH@Uo?-WbqKMlTF*Ti13L%URZYxHiMp7~UA7*l)UljHR^ zEVG8|i}Z0geWJc2i@%YF5j<>#QVzw{NBaHE6=>HqJ;TxC2%u*0Um2^W>nB?xRcW9r ziuy@^grVyKthxBvY<)0G!^u7Ta-RN+8PCCdk^bjz=YRp`7IX2_mg%3-;-|0Fv#hS< zq;OcRFJa~owN`(ca`^RO9$nrX*93ij*VP`ipWf63Rn&`XhQ_?@ z>WJzt)Cb^A_2R6Yd3_vj8OL;4I4JjPDK@C9bvG+)*Ea5n9Z%jiB<{WgA2sh0*Q*($ z9Qay%T(up~bX`_lU6!|J98O=SagAB}4Gy87e}NOS$w_eK`wi9UIF^0` zpmI@0y<)mHYT%i;Yzsj(+H)@MG=s8@Xx=#HLR>gYQ}Y!e>QdZOGobRr)wt?fQQ3bj zZY;|?PoUD@8whX*#01@ogKI|Y;=Qo5b^J+|ffK-$^6lqz`}jOdK{a-8jrX&MutUT6 z90v&3w~9Yy4Pk{a-rpR;jY08k!5H{TXnYm&GN<1dr^G0eohsvRd9axz2~Enn-3SfvNUV=vtd76X zi0T(#I~4yDOFsu%rI-gpsra7>)kkOJXAo6YT#ff8A}+ii|CFRpc@p1_ggalv zV-bZUZ%gk4PNUl_5;%?aw@%*JxL6Y8_H?i|9$aS1F-UE$eD{4^kGLc#_MP*uaJ z2@Kx}5C9>(ZCV1;+I8;Xn#zP%W}ML=hhY5`QDVPX#CTCjxu-NaPf;xmO~mh<&{i5y>YXkZ4T=(}@!ovD}ag zf~gSH6CYHiPMj&2Mefb(jh@*Qw?;LZMCO*PM4O1ez1~k#uWW`?qZ9p*GBMEy{jN*g zR!a~o)UaKF2W}UaxSnAk^*25YEs61YIJSxm4qZ0-c;Kx`iLltc>pe49G$t*P;Tz`P zK)vy!^hB0E--yy1?Mm%0#<_WkT04~7*uoP(8J5_HVU|PyG1$(y;0ZK|Cs zatTkeMC*K#?lFj&*)M4z3Wq)y`!`P7!BAxohmhPXiJ`iXXG{2w_dxR`xNC0x@s_Tr zZTqB6Y?6$`)BTcOG72#gcM42e1e@6ihi9TBrW2_9C5^?CNdx#*d>Nn|lJN$s^PX%Bs@-U?G`2UaGnr>Q@# zPI_sN23xdp!xL~)1x4_!PMS_R{JJZtfN~hLFR6xQvqzbb*qbc`+%Hs^rV{q?t5z#oeSIc8={m_PsC~xOOE&t*cV5XxANkZE z`3n`&u}Ly~XXK3Cx}^!>W2@w!DMEFdp7g<>=(4EGyDDrPo|baYefp zC)@C!%N3K8$5QownxEX7sY(*{6IcweYO3^rO(xMSwwRQ@qspZ8l&vPE`&XNk-lfK* zblI;a1iu3&r9V1oQu?bCCZ&J;&7|H#zbB_srT=i*l=wo*ovHV)XP6(iEeo+pANIp58Lfgz!E-#pvl< z6H|SVnAkEzR!AbQ||J%@a_?$~wOB>D`ms6VZPJ`;) zN?|&e--wL?`#P=3o$sb((T0Eb{gf-zE!RIY2{rOXii#gC;@9s?dfWRUWhd3!R6%MT zD)lzY)NqzJ0MNJ(L@=)PL6e zO_H(rRnye=EFB*Z8H+EsNWB0~MmQX3oyu}P0SD8hZ7S2}Zth{JUn*QP&T(iFz@k$O zFm)O2I2P{>PCZ16pBt9SGTGpy_%l2;o!JcDol^gx9BjL$&S!N6ZMRgW+qXCYTJ=n= zrW{^=pUSegnS=SEcPi7wk9&Ahztl05L+gR5EL-k4nDjxZOhZ}j;hjTM|D+uDN>W#_ z+M-2N>Hub+^pm9?ryLv=sVrRzCyHK~x`SnE01v0&U2&;n?NHFg=AKxQnfg7WZ>J!@ zvB7Np;`AhoeCAH_APx1e8x)(5XSkV+J=|wI53t4q{2rGw}@{G_Z4;HEwh%HOrY35WTyU>W&8goa%*7JxtAD6!j~%Bg%c2 z>WWl3sV>;#X=)0UamuUIwp5y9?^6fT)OLcjgM2rDE$!2MXlk%)8ab(lNbcmGwuDCa zdZdw26G@$1C(WoZRXtM%Pp`D4G{cbwY5QquiyEiFvPkZ+{HAGSlt&QyHBU2Yv{B16 ze?~`87YAGi@ld%AV%IjR=wXX%QB@qIMOhjbv672X?0{4b}p3B;}(_ zikdktZ7fXfWj}TA{A4PJ6@h z5{|2^9Bkp*v>8+g-z_H5Wwd7hELo(Prt! zR%U*SbYt}z*eab&AV~(-Ht8#1kvWMT?wW3_X^Xn2cdW;!K9!~$Te|J?^k}NL=Gyd^ zv`uTBXe#1kQo6B$+>nyKl@?K$mR=vGN2G`)22*NkUb+KK9b0Nbh%Gmfbf`#&JKnj+ z4h>I-_2^tQV?z28hR;L1mHZZ_`yp@5Aa{ImT6(xGU*%iRO=r4Shu9qh;%6tGS*P{s z#(uzYqe+VGn@p-M+mh}_)wlDPbXYsd3AD8)oxG`tyPg?U4uZ4j`QQxZ>HBwIVCLR#XvQIiR#(tA zGZ4*-$*@AsvKSAXCC)g+Qk{%2EE8{dwkQ5snz7y-T^rTV6{RUMCbLP>69G&e)b*~p z4W6RR_=RN{K-i!M?bGb>(YTBtOVsB?Lr?6Hk^!gxaO_5>Ww0D!!U>s>p79Gym&-jo zGc)781;+s|&doT%DjU9Ak}-mr#I>@FdGMVW9O1?L~HLo&yHyZ2&%QLu~%xZ>A* zmzhe7Z__E0MENt(_LI24?*!;G;@W7Q8a$Qrm`R9kAx3=3TOy(7Yi%vWCzMGkax; zSSkl89<}bB#nRWpvoiiAx3*8#KG=o<{88B8tWn=?6%1GrjQq9uoH%PcuLrawGK=LD z04QFI4@718FmouBX5~;0U*uUO->w40ad1&&!I3?jCIi%2T2`1=nk)(RqKVq9+Z1s` zd{#Lt;>?6Bro)yvsp=+Y?WW4PpPI$et#UAq=~?#723nJub;Jz0jEHbUV{)=smOODB z)*7;yb}n%bOY*betutp`X;Bu-R|pPfY;jf}mX`bJq^tqtL$exh9G+!kha8>^^~5J8 zWIbgV!eIbw44d&to7H$$mXb!NEXu0m$fs^ym({;DAN9PDb&O_sc_XVEY%3#=^}3hU zhqh$%A7xqdioy6vmKBX2f0o5`0TCz(Zh|ek?TQLyN%isW*IDa5d0|I6WD6NRh$3F- znc|47U9)}Rjcrbt0MBvB-Uoa6h&-8%vSAxP7v0q~JKl+ph6ZL|tjkB6_RStfMcdLp zdl^+j%1~44=ZNfcH1&=&`!}kbBg$+zl9$7c(qzK{f?Tw9LN>2RH(Z>W4d;(@sll1q zomskIP+5DlJtxB%Uo&JESn=9QE6$E$8N->t5P;D=p6At+;w4go;@$g(KXo@8JwK7$?Xw`=r=jn2{&Jt z?MvxKZqA1F44lp{RcCLbsmp4zchGh>XOGFkZ4YLTpuKm^iR>3Ny7yf60Qy+t%h}mX z6?$-10P32S<%6!d!; zo%@(1xjoP%Nh66#l5}a#0Y=B-hJ`+8qdMm|w0GlHx+(U!CT9i15Q4i$V23v6FiRy| z*g4k|AJgZ=2n0(|T7JE{xO05YIZMGQlHxLcGMAipUJr* z;C&+WY)*zdAKiK{r$1bbNIb>!Sx#HHu%1MRyw0glqeUNcKG5iBbHh%G5NTyGmRCD~B1SF?&Fk~?zO4=hi48{_d3zdICSFFs#&~EQ1Jm7CUl9tu3M9h)OU100pg=_WbIz%mc|%4UtoaE7trrj}|J1_(SGn+}GhY^@~48rspo zbXM|LdAzz94pKHRyVa6Sryhpuwe#Y=y$oU%w`0BcORzyGq#P(!2RR~TRx z&813L8DJF?7Y$!ykn)2KykxWCJWZWYWjIHphOLH$G}^M-0A~ntk8P_l{J`rSyY4mg zu;)|t#|=kl-fkxiu=0q@d-r$KIIHTs!HbUHu3t3tr}A{ZX3F4r!yu*OxBUC2)E^!i z+#PtZtTD|2J0d-RLTH9Aepgj_hrlq;<;J@*bRI5Q{rCZhmiv|z#wI9|kWfL&!r zD;I20lyRNNEu zO=?`R(4@wxi*p6E_AdF^q{fVOCN*~3U{a&=CX*VUY|foT6*h6Z2{(Rcu5n@$Qj-fy zS~zCccIUz;MK1d3V6F>QuJ^IroizIRR4%M};WC^$pZlKXy>u;iFO_2btz7sH%4N9p zI9E#_8~h?Sgk?1$*B?zjmg`zs-8C5{TIac=SvGl9ymh#rT+2DdHg7u53Wd1ju`Fl! zYeCi+&eDsb@|^d`yGWI@uTCBun#zgRv0)z5dn&G&YvG3axUfkcyiX=Q03O^buO4e- zfjBVBc6nA*(+!1rZz#!TA$h^nR!JT6jP>XH&UtXw0Vlrc*0W$`P3RU#S6Ylsp>J#{E?TAn*zIX#c*Y6*gc0n3uMcbT*DCQwgx zo|k7qQ=2WwW4aa>(1XzYJ=X4(W38s*7H=@2Ak`$RdRVeLuY@|_&9!-Dlw$UV zJO%Z-8&!F64CaEjRC)N>j=ZkjzkQy&MV)_-a*|r)-=_^ygjN2%x_ng`;GGXg%W}2m zNz?qbG{eu$^Jmg%WXt>wG+M89{z+Pw-uavIZVfQyRR@{!HVr0u7o?=SVatyBu;-L3 zVs9r?-jpt;ynfyCVJ!le!MwK#cTXQv-sFC!yzK|%Z|C!xP3(voe=&%#Fd{#n;%}3f zp3y{^o@o}7e}Q&5PU?JnmgdT6>iM`~eEwF(%E7r@b2Mmmo)ub>k?%U=X}(KUMqjM} z-%ZKyOhpJu%m0ZQ>=Q|d$u*X6@fNzQ<`H=7K&q{?KB0b5PRaIVgeqQ=PEo!^L|*&~BT{slg6bvQrF zQm`1QPvpP*cH#KlujGTmvo_ba=3}@UbHJd^?QCi z+)zcLeJXQ>gMELE){7|ND^RFdB@Cw@Ah0I`e;07Azd3X3db3S3cK=khkl zQCZXp&k`5-Idbyh^Qr<{7e4wTqhPQ-9~BoDz$O`@0Nk*&AQoN`km%Tvrd09h0+AJ; zI&(sS#+i@W&n?hf^3h?73Vw4G?B&--&Rt)yhQTV_hhK0=mWvJXuuTOy0_3-7mID@S zDX3#5*lk*?$@0yB`{K)0j>*zOOSFG#u?}tBUQo;+7Wimg1StM^^^SrnMla_P(D|AI zmQTG#3PMzKqM#n?Iw7GAZnvi(#R9Z6Yk$EnwUCNJPBvtDW3z(=_gUK5f6(KwW*si5 zGy{6VV+AZbQ%mur#_2~jQn0Gh+>9>NJEIrFVu)iMh+4f>VtP61Fj`*DW zuz=}q!T$}NJDke@NkJP2pe=o0pajF=>dyreNZ8xF(1V1r)`dyr?+4urcUnR?x_;q7 z0fd7a6lPdMxVs7edu+49Jg6SntZiXcZ#L&p@JBl5HvS9lXBV5jMYN6FtW{#5uq(MOX-g#*cRnac|wF)hwF z)@xELebCE|g);?<$Z;sy=*y$K$Rgn!Kq*iBiWFyP<(?p{G{K-dZEs zmO?p0jqSFra43QUPCW3ys=_@i?GPZ`VJNt9-=YC%@ZrK{{6c`s)rFHSKvQYE3K`Bu zMMkuC_(VIa23Sk%0z8%f_GEP^I*5grv-G=n_fFpSUlG@Q>juS3yZ zQoN>T(L{!x0E6n2T&RBV0%;M;mF-0P3H(|9QL#lg3GEJvMVwY5GK)B^tj{iTBJ_9V z7eULv2>X;21(V;BilXP__Yb3s((E9tn!<}WW*RSE*o-1LkbV)io6o0TUcjf1UsRMr zo`1KTSI?f6MIQ*x&b38w2-w&7k8be4;7m&ZlW zSuVm6&x@9m@Z+nZRV3f?4@Ggo>1owcj9GS$8Hp@pBd!hxd za9TV}#dPTBhY~kbHn!LUxg3qNMI-Hs)eQWGxfZMVv!BP=7yruO;|LJ`WGh%&b3^hPD4inlYU zpPP<>Q@&tSmk+sx0mCf}8i8O27LF?(VkNj_nv}IbPp1?!50bdLV!UnPF@tadx4X?y zMz4}U4A(1MXQ>w^1afS=6SA6BOfS!wHLcj=yRFRoijfgG2u(iIpH9|n=M+D(0PVeA zP|UJ%@E?%e1gmUO@y{#`@&AVPU}-U2FK`LXT2Z{T7RI0wbM!v0EZ$%)xP;gKT)YvW zv3h;62TS$;8{PVqOW>ZWlEer<+-FPi5*Ek)|KTOz*SJ{g4AOILLE3?0xY^+nwm((; zn1t{CD3-WDIOt*VVF83*kBi?mhtR{lq@yK-L+X_{*+HmkQUbHEOE|b$2@F{-;m^%W zoWG>SdR_f^ec(D)mC=s)YjiJ62f=p=PD79zRpptaLKO>^#Fp;x^ zqGU6%*E4mA4dMGPzNEw+!o2JfPVVl85?As&qP%3jHH3eTE;&Ht+&-q{C<(`mE9pqm z_fIXUwt;Zi?2=NJ@9#$Y1pcL3F5OTvQ}8oCHQTVUq;{>&;P<80$lK$t6`7koXYlrb z_oXe+)o#r+`W}qD!@LS0vMp_tLc7iLa znpN<%y)=`AbZxNy|!)QnUQ9 z$)r@TEhex-Ri)3VQjhE|&4!JC1YyttQ^7umOnHwVHc=mUv^1D z4V@$Y%(BeroHf>EMo&+-Ei*c2JNq)SpOENA=UQfuj8*se4ec3>k@q@7`3HfJV^Gm0)MS|66$bxEb zT->?Lj6u10U6(SyCTM-{`mXqiy6hgD_eG+2wPi=)1V<9xmsSQHEf?KxD1+1ZxoBuf z*)t0$d&-EiZaA@`tfiS?HHIH)5ORrVTy@!ZxM*~lC4G3xgt8~_ot;2Vo?7NgQ#Z~m zi?rh(@xYB1m%%c9F3YK*56u z%N7F+?)kLrp#VbR^D>Q-;5|QK`r}L4+fF%2*#RNS5Uqb`m{6zHgarg>gt}mnNT=6p z^?|}rjZPaLpx1`SiG=#N;4qQMUze`U_Rmf?WNG!NTcf-6aVtT&D}dtfoXcN3Kp4=l z{H+CqZ5o$fw1&{Cb-9Z@gmp#bE|w6s3NPPJ(w}xM-)9ct=APv?B>#@y<^4!#JD_|E z$+v50`9t#e)sf|9Bz>*4{3G{UQT`|Sy+B+3mi(R-U*5n9!Y!%g4+JDVy*$KA@PHT6 zdu;h0hU)D)u6&N*0bV<<+}l!sd53&Bxx5?8>E?jd0{KiYcN{(Wr*b^`r(qwQ1=9$m zAFf_CtSK|(<(7BtaOcg#4va)|JI(P$k2+MeL5IJqXo@~`n$r~h(s7PA+R+LAr|dkZ z0h-vc!WR{Go)d(E=Wecp;ycZW{J%bdf9+Ty5FmLsfa%(O4%{r&75=yT*_`^Qv`a-p z^s>vGddQ(`g+FrZKBq0xbcde{-c4{s=H2Gx{2!lahH|=AY(n8Z;Mss)b9~T^?iJps z+qAiL(S{y#ypUP<3U~Cp=bSp|LAQ!}=t_?{Em6y!bHxAG%(!!picz87A)?SwwO$k$ zpbyfEg4F7;08v1&P$UZ03j;)Iw6O2gvA+MFM=L~v^eOf5lA?;acE0+MKw*$b9j*`2 z3PnL$ZFqQSSV%x{c%TS^kT5k;kE;05``>dR)!Zpwxbf(Uady4|`ao?+fKV77rVkdy z>DA$)u%K{_MiizK1_#Fl26A}+or_~Qekwr>)`aMVf#KTFxR3x*m`E2ECJYS<)x`T#-6@ebZ0>c6|fdQJJFky%=C_sk-oX?H%`L9eI!TmKA)mMCU`T(sqNC?V{3l-@C z1H;3E1H$9N!bBlq0r2mZ>nPpACqy3*5)u~>s#gbviJ;XCiwg&#L_$%BC_E@gh}09# zd*GViXN(s#3JeqlX#xNW)D{;gREGw|g=h)2;NZ|;?Az=7V}b8~lo^EHEFV7bKMTG7 z#|&Z1pzr`cVM$3l-zFi!n(&}NZD3ejT#zU{82n5t)M>&r!67foA}W8@az zAFi;~32@eYo z2@TQ(1c*W*AsD;_FB~y;hrst=3l7ui(e)l90{*Mi4V||N(Wni>eSP9UqiT^TATB5* zNF)r@g~w?F^`YS*;Ub|nPNd@v5)>Gw4iTw?Le%O2kya~G2L$QEw1Gi^x&YuAimxkX z>=HE6X!N4E(D0y;aA2+1g+qnY>A(y@!C}E6c!6$Wjllcgi$jh3UkLR5kJ3U>K+h2& zXh!w$X6?iL!jilDXU8_-Yy$2sQfoy)!EvF)8^XfCfApg8z_@_mK)p5)Z}6E#yz5_E zE-ivw9=QDD*s+2#;eVK<2{=NZ!7<7KgL?MruN3{OGwL;e&;7633JDKw659^l>N~NH z?|(=oM7tfvw)PRJLv>;LP)(>t9R&3xPAv)u2nmLPhE5|4)(7BWKdN z4if2tLcv9ap=#*3g26!o)M$!Fr6*p0YWPZMF8;k}A*oXCQ>tI#TjMV~fU1(USUat$(LVpWgqb4L!8%nz2FiluskQSY41^&DK+?Z8@ z|0)?Zw!RSH^Z&8;CU8eArp6^Xp|xv6_PiLOCp-Qk>C36!YI+p{Cr(I+;E* zYln+ZOAEV*^Z&eXpOlu*nbecZX02jI$+D*N1-$?l>DVx(ru+`(WUi2BUD=wG*Rl+s zhG@nvSTu@R-L`DLL>^!%)+VxB9^OOpw2ULmQ7Pu_e1^~AWcB%uU}eQr8+=Mkt)j=# z!W479S-9UQtHmj%YX&>7$x&)#GmMCpH%t>INp2wpP3(M?ooelew@huDis5m^y65Yf zS6cKSxvf@O%&>OZ}fU7RTd3cvjs=X(X(u$U%<_*Ot(1VuAiRCC+ zSQR&yFPcR*xJ?V2*IG>7syMQH?PmP1VL{OOpQo!}6QsoCE&6j2^fJB(e@VS~_|BI_rUv0Xc>ShmX! zM#sZu1)Ug7OSVQtId+a5Y?#F^=ejT<7RN<~-A0kqa)7sE-@5x58YRQgYhQkAeZKTF9ud zL^@Lq$wRZVS+n3BF|3yTJw~>ZGqZWUxsfBKTf48Im>F7ZRXV!Ubh+McoLtv08U0aW z=mE6{rc9S}D$5d5RHjr;&*vP@D#vDI^Tn)PS#9UE9irq+1HlCCRYp;Zrl#g{$Uh3w zYtGUFwgaJz!;PD!tuaRp_ym+;CSqI>(KcH|WYkShy;6LfNXOKyil3^rlT+DTbhVEi zw8}pYI*;ZQQnFfjyjgm_m`6lI9#Jzo8VQG0ljnHVU|$?Zvcnv2a+c2couaL3 zvL^~QN3o)cb&sy->-Ct?us)HLD_EYCs*_^}fzehGh7gN6I*UrK5s5jf z=Au}4IN{i)|VJ78rEO=H}CWE$=>7->8mv7KD)$w}%P@dW`nva&}n;tzvdaD%_JwdhI zOULw>f4*hjZRnqj{wUG&rwyZ0Z2hWM)C#(5Xc?D-%|$|kuTnHM>*TVP^)|I_5*1Kh zXL2%LR>o1`R~#2P2T5FGZi~t8`o2;N!h+-E$ZHwqq^0CD$msbT^H_HjR0l?0Gg@$y zvGpH(TJ6c{=$bPbG4u?fjtG~Uff5Wc(qd-HgUx{Lf;C24WW$=7ETcZPoY$o~bRkYo zL2snGg`C`EP1BMG31^+EnYwL;TgZ@F7Mz_^bo791AvrWa777HEW4g`>nY9fgD7keo z(oib8b|YACtklSwn|F~e;`wuGM)hi?V-Ul*jZ|K)ndWhkXprQfW8C{ zBEyM{t__wk&pO}?b1bK5^7BBmlb$LNJ}u5{D`yx*%g!izF|V+{qB@0@*0RN-hYsl3 zL`P|+gS%OnE zTghp~0;*rQFb*j_2eT%7m7izT@Q{nC))J3j$sre4tyI^I)=+9HX0!Uyv=x*@=m#RvvfO~O}>^!w!ofLcWOk;<=os$bGohb?#iB+RsJwwM z$?*+NrT`D5)DJ`$k_#-Lqi_RN!~x$3YI>zjZGs5(`M*S z(QwcODV+G3jB7y1Q5tySt<_l)R@oA->~;*?uz_p4E}HEN3!E?+QhGzN}q zptq9h5>-wR6IDQ#1{$H#CtANQ)Wyios7hFAkz?d$cVB5SbF{wbmy{hc5D*GdB3sq%*Xd0<1`=d4PRb_uw+27g(RaN#!7#ga|{;IP7 zpIcR#o=5G&59{{Z(auvuUlW?5`^OTNxUv%6{KGQdRa>mHky^|DJ3zRb_v= zs_buNV5lnl|9`IRZ#b>V64Uqken)Tpf*X%(pLisQ#+lu1S>HBdY2&JPV(sYn+k2~* z-Z(lTmR_^Ct9RY)H~!+=1kDor(_d_uySQWJwH+6&U4A2fH}SW~Tf6+`+M^O5c*9@2 zxy`TldVjq*V#@mCQaLkk5&wXzgkfM3(kw-~cHokNdprJLfwf&ZZpE~=L(D8zB3*Te z8NsBMF^Y7kfmZ34K zo|iEexW?u4xJ6^5C5*?&;UXw)(aoQNr%|?mCDbL<0uKoSe;g-UV07q3YGio z@Su*Y+40??(=j#M(yt{emRwS||7fLU5CZaG?{dLeLd_5E6sc~dVMik&400S_2FJWVx^e}!XXsVSVJ{5gl%*>xPe~l6MR|+zHdk6!LjC3=N;rjLx=@&x==1$2ZLXnxu*sfQ5&M zCBrTh!^+|CX5kc)cW{e#J%$q3;(Wo#vTN{->?^KiSXi|+whc2+oQjccvCdM_H5bGV z;(JndbgeDCq`$tYZg?_-rvu*Ggm1C6SxiPFlgBBJIgUeW#(OM>p*=-l2rl6amyXko zju$Eo!;d|ewTv9DH=+CbkXk$enBgYAMtOr7oXHwG&B3%y)QN>llY&>;YUvpsRcAIY z5)vzVugbw8E`xi6$u!I0N$j%A5m+d_5% z^HCY!K|1NGsJHO}wQ??Q6FGbuv5pY&Vp)YO?#yfD-r=8V$qe2`c$e{7mw2eG?-Hrt zk(*<(YDVB5En{Z#rK)E@(Dy(I);{a^w2BGcPmbEy1LQ}OCdIrquIjY zOuEm@H$KnoV-hY$be+xd z$6n*$F>7S;HdBdAvwZIxZ^O^G-HI|K1VhQKnJj$skDikrJr$g2(~ zAUq4j9lIs}s1l%7q?HbipzsOIPRPWb@tJ4Kw=yc;E(GFn8ko485$UkI`+juQK|n$>x@z%QpOu>U z=Eb^nlGbwIz%OWcGZOh>8#%VwBBzyPy?mdwFh)cMq~m97<*I zLWLQ|O|u9GO0XfWkvLN8hK!HooY07wo>JhffcB^twGpL+$E+M6awumhY2o((c zGo#0+l~;7k#B6m2s?oi*Yo(=QKFan_wIK>C%pm$vm9D{hkyF6d3F;;=)pE&?u@|0j zVR#8r3dsU;1oaaxlOvikOTe1qW{6G1=RI(C4){k^C1AlVn1!rKAQ6m#^rFu4W5(As z#1V^#E(umzWbNcL*q*C9CGAAl?6Z%DrW7I%@u*{}DMYUm4(RIa9WEDHBHdk&&_2RF zRU%PgF-cHBk`Q=bPTHc4Z?Kw!iL!!lPvu>KutE?6Zo(X6E+I0+Wn^{OWrGa{*Hg(~ z`bR)ar8&`a(>663S*IWAsfug` z4M_{VPgO%w)sR#*B)h5Zsv452hNP+?@iXWBchZpL#M%WncJW4hQ@5~vVtwGjvaQ{% zW4>iRS>H{ihnT3p-)+%F-EZaZHt(YDw|_Ah^E29A46ZtsEtv(_B99L`HBHByMUDqQ zgDBZFV+#4%G{=v=ecG3)0=XV=S0M;o=KHg9Xw=BXX_=(&!-%A{NG5?NjEe6B30v}c zX-JnD9!Xbe5H^m_f#HOylBAYVLoY_kKN6Q=&M-0H*m)waEl0tW;O9mRd|P7bRz+WR z@yT)32Dy@UoVK_ViM(VmeO|Zyw6gfOklw__P=wJ+CQ9?LIuOzB6fqT&g^bh%E(y9w zFrgD0P6#z?flDch`=_Owd+gfhhf>dQL{Ri~Sy5(VrAtQ6E;67K#xvu>H2`lB+Jc>XK`D zCj6gVa=4cs>^(4Z@$?Rf-v;M$?#jjLw>_5^;XcaW5^uxYrOOs4HdTC8`+wUviVf>l z?Jd$rzu!r`R=cK~_i6uSb0?%NoS?{FNOlvPqwr(l{3N>-hD{RjYWOb(Nweb$`N#Z3 zXW56HlK8vvKbaZOAzzIJ^FYcy4ipuCGSd{Br;=+ux=bPC@xE6(r89Weki&@6l^5cv z!||!vB>2X?1Iwa9`Y+O~$CvUO_rq(Jk;I%sNl|flzz0?4wI=6s0bf$x&K7Obzj2WH zZ;UPFzj4w{%bt{}+sQ7DC!OZP8A-1KGUb{I?rT}x(a7roOnt6#56MhO~eSy64Hi^ec zT^M#_Tq*yB-5*@`mrf~*>~5G_amK)9ms~~o(c$fiXOE#PrpzWK$0Z+E%75W|Pb}Lo zEKOcIa`KXiRwd6H$tOwhn$dOao@8~_Ve|YqreaDp%vv_kyK>vIH5asj1r+L%<$c7b zM=T%OhI}^SF?abSanBLU58lJGowqGFyyM3&@15A~VSlmYsO6oTf1MOVW-L#N*$*^! z6^|@lK2Gd&PfTVJ%C>ro0U!NhUI#F$}vqwv^x9&I!v8?~!IAF(XM&%}Rh-R&6pEk$pRhe*z}% zT=>S=QvMqkOk4gRd$-AEb+P4wEIXH=F_d z>bgDN4X5LM%j9&#wHP;Gmwd!{+>-JfFEVn)!QkWQ%;FE%YD_7Attt&n##Awn?+Izq za}FtVag@dTL<)TcyeD(gy?p+Gx8IVEDU=J)IVRq}Jat;yAdMDTUh%KTC5*J5cupud zbmd65i&%xjl|Ra{rTj5D`OD=`ULxi%tRLx(nsLX>E~3qhJ4SlXU3rIdp;-SpcaPt3 z$FgI@>vJI!BkSKdNi6&>WScAM=d}?lucYil->tu;jd*4AY_=Uw%^gL{9L_e$?B87TDC z;S0p^tGRda&+i-BFll~Q@2=JL(-QyJ+cL)Mw6^}nHmM8eoL8_fyXd?N=ghgHm`?lj z9B0;L#ZF|`$0K_FTetS^rqtkZhC@;(gOvG-f3J(YhtrhVNw-KRdeNPIJ9CFq)G|Be zbg}d6+xp2OWH&Rjoj6y;x=&a4?Z6#;dsT7iRg3!8-1h3Bvo9--?UWAw`n+yEdxthP zm)r5jdA-C1O>7tg%fY?z-qt3$PyA~ue*T{NBfKf)`kUK`{9An8n>*?UiS9e0#_p`| zD2BaVKd61D48diF`1M=${l%Z$+xv>?{cdk3)_p*stshY6ln?r{)t+%rJ2C#<`aUdq zfHiU%F@GoJ{o6f$&v%afJw>%g*M>z8y0^ZA_|ecix{BOe^*#Ufl`|r5*T2yJ;#pU* z`e(YcF1y6O{K8o?!__Z3yjMTuU(yf1zOR0mc=g@--2W$<(pPNw@l9RCW$)K7|JM!4 z?7!dIR-E}@eb-J?j>k{Y-w4EXIotjfv(c}e<=@qN&ByJ4xCG^1Y*G2`J3~z(c%Y9vmCZ!GkpCk`{f- ziZEkrGLP3kiA@2?AowWjlJyyNbY7+a1@cSv9&is)O%I$5ibH!REw; z7l;vKkPutsXf6ONgHxu7jf1A>F3I&Z^6L|kkk{a|LokyV{ZcUH0!QVTQF3=zu18N$ zyH$ebm|m;E5Ts+iD)9dYz^aI=zNKb~;?1B^vJ{)pT_sDv6K?WakT92N2Ns-+t1=0` zMvY;kT~kaQxtf^@oSJW-!ukI;oXOE^5yMe%P#aMWKl>t)asZnVnxP?De?cnez?2nJ zwJQ$$u9z5GwITtZ-uSNQoJ8azUZV(Xjtt)b$_=>-ag6vj{QH68x@Vh=Y?g3`xXL#bq8*dl-z(I2gfsb~ZW zS-MnZv1=B*S8lD_3^p98>!tRI6^nF$$rD(Df{PqU2iQRjLtKSo=lMd7tuOG=S~G6N zr~|VtLI8-G%d2c?*hmWm>*L+86FCU}qK%ZCF9sizicz8lHo0JBksBatOj@lha`Q(` zM!VHI%tm&X46O;E;bOijh!;&^rvs;pkUWQ79m633X=I)!M83epbd2!ZiHrsWN+Dx5 zp+`XQNqi3=hlqGaWnjS2&8zLRao&0smc=MbbOB<=h;$>R0C74-9!LdZ65TNId0eI9 z={v<~4os>9Gdf`IU?nGN*})1+&@-nta4+O;&jz;P6u6X8wfZ1WDE=ZV z4b$pzdW}fYkpwZLzgJPd1KNgh+QCAc0i%J{6JkFE_EYd<7zb3!3+I2>F3WI#t!)EQaxuB_)5 z|3Hi!t+tHGCZ-thFw(gD0AX^U(t)l7;sNYHOz~m#TC@p5eD+H+ZG@*+^eDA54Wo&Q znwPDDa+K(P%g8m>_dizjOUHavaC#AvCo>DcJCJ`Livp|$6N}JfRAO1f_IeKAbZOh9 zjHv{WhO`_^Vu!Q`GQy8oJ`(UV`}`Hw4CujRw_F()P3m|6C2ZzBI4}}A&>~4mOFxY0 zngI+O_l%g7B33N2Zhxh1e@1jkq24PLGG;!fDFx}lkaxkeAT7USZ1HK3d{YR&l{6jD za}<^k_^|wfJR_*mrApl(vQ-ybw^Z8U$6~`k2P$GGdas*so zVtN^vEEYRd+0v-PSi&rZtBrtHg7JWul_+vxYs!o&q#Z!oB~X?O7WnUI-m?DUIS?cx zD=mhYByqLwT4^7?EcQQ8Zy6^FEFGOM6CFsCn6%zmS;K(SWm7?m_sZW`Lt(UJw0SO= zNx^cHTvWs;wTg^^35lAbt<1vF{ifQLBQ5&Ntnf&~?L>aC0|O;_6JqD#*UBFwdr&C;BF1XaRg!?5ZzKNa(GyUtRXU@Rr)k>n36Vt>R|@87Ap=XDXe%B z>Qshi6T^(L6*xv+&EtqeI+02`oCgv^2tg-081OkzdB}*9=UBtEC|4+k#bB2WeTJf| z$KG<*N;MT-v7Ze`kuutdq$7J8fZ!}@BV5xYq&Hw9;Hdy|1Saca!-Bav4QDQxS`KQ9 zCrD^GIN3Vqhi#}u2A0GVK?($Lwy-*YyTj*Lz%jBd5hpD1w-f|`06d4N(5On4V9BL1 zen-|Qna7;C+Z90mX^@DhWe2+)sj#!hCMz$mzfo0y)M325PyFSG z;>M?;01Bc~bb6dvmn&_+Ba!066tR>9k{ZQ-*ZZ!z&O)D`e=Afo~y z+?Xm!`ru;0BMlTlRZ{&Eth1PU15d-)dgT-i7Fr6`4dKgRMarZ^fYzBDu0Wm^NW+Ae zV=>Ijp)&#mZ-a*{O|vutXAP2cu_PVTC7czqg#pSP`Ho!V1hq(LG14mxBnV`fazX7w zSgWW(Bt~*{)j<-3R9w}~`(Q8e`#vj2jv*CU3tb54;dH8v-vZ2qbUDN_4_A@{R}lE| ziqsPA*&(Iq=0sXCL)8kBF=leM(uE)kMs?jTT}aGVg~ywO7$(<%0#Fc+mKON~U^!qo z$k>4(1JJVX3yTP0z(V37quCq^l5H{AY&pg;+u@|v0&W-_!~&VLaB{?h#6+3oz{JQG zlVt*RSWA8~rfyR_yWh$a;ff>c_7UQg;UQR+%8b%UJ_Xw)5nYQ!`~z89WFDdhHNs49 z04WzG*cy2{q<~7}n6JJkE!gdLHq`9+Oc>s#62Od=i8C)6BXpC7jpMM?rxtSpFy_9& znoC939AtV+#np^rM->xlRvtjY1Dr$HH^}iL!5Hxx!I1{&Re87}P=x;0A=DjEV|WMw zZwQVYosDQlaskv^Y`Q?TN{-iODN_KevLof`P;e^2m^8ujX8&YlaZkaLx@!xGtzSxT zNwDrBsuqbi8!R#S4=d6&x>jSD7hZnQoO6aa;Vf+5i>Eq9e;Mb(L90e3Ss_SoIK>wk&w>S{a5gXhPc|4cPu3fm@h#w~$;07Fj8v=u zSw@rtfPavBiX4X|rSgXUbp^1)NKuGuC`dRuQF@sunu=^_FzIAvX%>2d>?6@t7ewOv zRg+UOwTeqSG%4cg@eN&4y2hc5?-*HBNPK|Pt7KQD~G;(T<; zA(1tUbcZGlKbpvTnO$eCJh#26;zy7Fzx1Qep_kUN6u~Ue?V1XdUyiJSj?A!vj4Z+X z$XyrhJQ%pphgp7b#{Z|IQ)qRt#Z1dqQXU+3R9Edgj!g_)^{Zm1&(4E?hY&wrZbinLcA>f7pHL^M(PCEJKVV zXBL7bIeH|Fw1ZMPSZ62^QTWL{gbY8upuG}e7{pYvY;n+& zrdG*;_KmuS%za{69~hYc2|K1*CxGRRt~Jce%ol`Vuh4^gbA0$mW74`^&!(L z?`KKmtooBg1_d}%roSXAghpbkLMXuB)j*l$X0cgd^c&y-dHP^t2x`hAK$|k}7Ulqg zkH}!eH=(cv{5D`sl#gXD)|kqDrDQRtUT_D8i>+fe^$|PftZyq0(;9}gClhRqiSR5J z95V|DPY}dqJ|?`DIJi;J;hxPWl1k6RYQzQ-<6RplT|-q#^l0UGm&dSCMorOHOHM}F zMD*P*&1B41kqE3y-2o{i9P|np6*13}-Vv^fG>Un`x(w1V>e(}-~y4YuY!=zL( zrfz?5H;ixSPjW@t0%|li41`cKm&eYAIuRC_T)?govR@zGGPP|AuvCfj3a~9ZM$Tf| zVc5;1BPY%d;V)2>eEPu(vc938HEptFO88<<7vxb6I=Mb&+BZKH?*OmI_r(2)WK8vP zs-|Nq4izOEPG}f``jj+YWGg0nmdx^o0lR>Xw+KTHxGATqRN@8J0JIL6`)t&E@aqIM zVUWRAiZ`Z8PXi# z>_qcG!ZVbPB%TX|a^z>sxvr^`SC9=+=3E7SK1VWBVDv8afWalM}50n}qaxLAt>zO?(4T z!)np6#g03-HK*f)ZPZL@CZL$aOlDI>b%`T1sfN*o1iNOB>8mhRS?D2U;x!BbL_A{O z&tcL+h5`m0i8aUpmyWC$7B(|lqDpQMv(*Vy-d@I z-6GVKWU$3pj0t8N#8h0_4Tt>&Hy4~>iJ=IN;K2I@uYTZ)IiaOJl60s9LrRkyCWQ=% z**P+$$4C!LS_~p<4izPFHN)EHg!N{_exvnV3xUlfpEbsGncG;p5D@f>O%(8PbP+{z zUIu(Irqifc2eEbkRcs7?Ue@UGX{GXrnVYRl+A$p_6(nhK)8x9ocq&DHl*AYwm4ZnE zuNn>oK9aP#Dsq^KDFiVZ*}%z54*Jrz`yj>P??HZXrY0T-5{MZV%r=B7g%xZYAC~_}?*>lnmU~*b-c9Rw!#Sjzl~FF==F8N6e^Yr z+_6xq=gDs=&5w>`mpM2x$Y>lENPW%0m*X}_<}tczKUI1J*xaRVR0;Rj)`aYB)I= zU9C(_q>8V5h)zQY#*^wbr66^01X02W!(L$|v}l9(*uhQG{EIk1ye2tI(bkbo-ojW$ zl5~06;`)R&`4ps@z!M9vE4u*Bgp5zbQfJ%#8Y6Fc)`go6#Zq70pCW^BMAbx9yuE_# z_c2xb-dIbPHgry5J0r_4=^|Lss7Et6I^xKQDv~`42{901l4z|gB?m|dDm$J#2wqZ( zvrvnm`weVw8-BNPeS(ew7X@7=zFe3SaZf_Aj_W3yCkMUEA>XXgiK$o#&g1Bcm4IKI zlv~+bygp&oz6UBT^^T;1#i9l$i`b0YCEk5lU`;k-0?2YC)pgf5E8b$l$O5fEAfd&K zR4b*35j{IwDIOWxh|bFy&Gxl)^p|BqZ9n36M$NGkB6{J0AT7|y)fg%{j!@$T5*o@6 z{A$4y!9fAJ237`dIz#2OaC~>xX2-`{6L_&nugDx=2e9B|_LteA@o&&wa%B_7CFgS= zFTHi!8;O0Q>J^_ovhw6~Oufo3mNA9Kg~Z>8PY%X&P9Y2Rv4px{^B|)=t4$_8mbzG2 zT?Laa2LTC;O}uVVA8;t3N;K3!?daz+xZ zV`@bijrlqmSE*DuE?wHtDV1e+kX~`HP&thMCbA`g)-Zz{yiCV{RZJqrAj+T{$JmxZ zvx-}mgAZ1YMk2fg>Bl!e(ja+Wv}qZu^l7j8>Y8q&I)|7a9Ef2 zYul3BJOhJAkTm4uYlST}Oox-?xL~5$z(?S$i-rNcw}#uZCGms`nHKrO)6sQe#d)aE za8inh)~H%{afeBnrv|(jAq=VlO{zIU7@C+bQv<~!%6cR)90UME%ix|UQOM`O-i$&9P$a$$YaoyUrY0R%S#G+H3PZV5L}n&8Uq>3UuIaB zF*bwTgTYd|=wRG(=slECu(UXVq9XKl_#iuLG#6%qGbe+GDX}v|NT5OBEJi8SQpo`t z89NG#uaMO;3Rx*MwpE4?KE!Z{vw@Ew#3!a^-}6dM0;3UCtFPd=WmUtl8l%S2TS#CU z20k!GXaI^92?WQM&c=X#Tzbb9D&K`|B0A>X`>d&sQ!Hk5S~&^F%*a-!SWJKIa=VKA zsGc)xk-s>Sq&bu9W`;Dg`{@B#JuYyDt_$bj8$D45f;fZeMkZcBa+1%a3l7AEs2++uq{sI*_JeLI`AV^w)OF|HT7G1L|)%KHZZ zePP9=uK@Z|>?}@!?aSco7L$+Xm;zYroVNQ!WrGl)$u+C(W5%nMk`SlDs2SSIPNqlq zW4^*PMt>Ha7$Rk4#p@>uyBhadjr(-*Sgyu>vO~zg<<39b6(`wx3?jf_)xX)_bXEpBgA47Djai4)1yBhb| zD&({p_gRhmtj2v-<33GMjr(jBGh2=Otj2v-<33wO=T_rBW8zJ#ai7(=&pl#XRpUNE zh^@wbwum^b#(h>YVZ{VUR^vWX(E*r#2C!<}=N>{%t8t&Z^36p@M^@uLcM8HKW8yCZ zkB}gKCMM>t8uz(}VAE>c=RXD7tj2v-<37W9(`wvj%aF8c+-EiJvl{nVjr%<7yptv# zb@YknRpUNe1e{jmKC5w`iMjv1;y%4$V%2ebC!P?GdBcwtZLcZy7P-24T}7wU-ySHs zE!faOe7<(omFnd)=BU~8vd%#{@=1XUA>)uGD2YrGP$Z!R`08v0GM9}au`o&R)AQDO z{l$iLt8Pd<;T`n7Rh!x;)``h$pQ`ctJ-BM{-rxF#a~F3Mn@@Yc>!QVvuj21cZ}H=I zZ61)=?(yzJ+6d*g8#{_|XTRUcTm9?1{@m_=sT%(^AOH5Q1J4(?9} z7jzJB9JV?w_CI*RSaHqR)d!2@SROoc*y^M>Z|v$m!npg1e&YPYR%icfKl|CC3;K$W z$FBZZOgMbO5Ycb!g5e@PZoy#j_F)Tj(QEwb8u5!GR;R?D4qrW>hhxuliWg5i@AAv+ znRDFYWx^i6dZ1YQ*W0^_Hb<;J>)XC!o0v478r7qzr^k^{*N3HHHMjo~LkpJ1jizXetn!mffNk^}F-AH^9%!9M8U6cB@^I*~D+BN*$<87{8 zd&J3NK)hgtMRHbSO*{YN#pGFyC$;Juvt_%(X6N>BuT?p}iLJ`{_gamDoFTujRXP7&t8&>rl=JV+ZB;P0hl2jSR^`k+l=JVk zDrfDXoPRGYH@A6es{Y(;^(n#4Rrc? zUaE@pTwXfw8XDa1sK()8p>anwj&E6Lr`!C}`;TfI((=hGtDB$v{;0-5EuRd%GkCIZ z_|6lLZah6C?>oBE)t?<*`SO>qZ5+FIrGG_Fhu^1;rC|-nG^TdFSqqx%KY9I_N|V=K z*Rsi)pveq`{P{)4R{G)gV=JBe(y@()ht276T%~0*j%z%2S5hX=Ku!_0IHy+*cy+cozy*{^bWOEZHRJ!4hb1Q9JHlfnS zOXpSEc+d%r$F`_1u}0Q+B2B#Ogvy6Lb3)_T;MEN$R^G8=e&f+$eTz?Q93PUGE@(Wd z#p|}*)BL()Pii@!r0_hJHv1LbbW+O!$q0X9`cGassWLIwE^ItDtYXs1m9ML*Z9Ke1 zZS&Vr+uVsX{?8}3e5Vl%vj61ZiOqxDaAV{67C+u{ar2K~oY*)ftm~_ZmF_!qQsvX< zO{#R?>ys*zZ_7=MM}|MUWOAkKW4p*@iz+>K_$e*t7x5f&evO+<%kMj-am=o?Mu+haaCfyJf4apjA9?C)~3u72bY!%T`%ItNcP=>?)L; zT4~knsg+heIYZso{3=iJ6a!=J4=xABOOoL65t(Z-!uITLR`ujTiVG4RO70b=Qj=7lAa z)0V+)mr%q>(JV&7S5$k1Zr@nJ8` zD(==0e>?9l9(8%+8^y+SP^!UgJYv^;Rz+$qjs5zr#skBb)U2*F_6@gjVtDtU^DE7m zeSYH+E!wTi#nfNSy1O!W9=W^HqUjgxK0;egpy)jpHntZpUC`Vh@!18ty)YB(lAo-p zG%0mYrAaScSZPvvMx{yij8<>(n>2lGrAha!tu$%!MU`#iu8S%R#Ey%0dqcQWPi&;6 z$6Z{RP~E;)`R$J{t~8{_C6$IuzNFP_{Dw?wY&690FKHazO5kWAnp6a|sxTG^s;$}S zJ%|!};`;Z*^zX*=hb;d;a{N_ctXUeW3S(7aOjL!jK+dWPV^@i)FxE~~g|R@3oC`#a zsxVd+#`2n|3S)FaRTx8i`QJqt^AN_q*QS$8@@x&b2ul%5UcY&u=zD*ox_9N~{S)tR zOmwbXDr3cCH!R#&terc5jCkmQ#*w={S~utBVdCot8Xw*Dd$IAsMswGt_r-&aOC~1% zGcW?4d&`EdzSXv^mri{D(1cie&El?J_pckDYx}=oyKO6YS&v1d+I*kCd-=PMzx(-n zz#G-(!OX}+Q&9WuqaJMYEliN!7X878ew+rf2OuvqXX|+_1I|VsPzebq1ZWre=cIS$Yr8fcrOGzYy7++5Q&ZB-_vcEUHtmXdE=bl+DG zdiQjEF=xOwubXA9sz=zvR^!i7`4}D>2%=7UcljNcYEuoO*Q$c@oKqb+@5jF}W zfzRfOV%?)Fd~nr=60ueLa706*E1un<$rPWASw9@yYu!|9vQ`WCQwev=_vCktFBmte(tmcr0zj>8O9H}hRjAZ>1$ioCoSGQCj;GVGykobaV zi9A@xYBmdMB1n%wrkOxG1NP)7K#hYb6%+*}t0|F+uDW@t#Z=vlNZMJ*^_B$n*8p{! zmNHi@&By~Q0+tF817L|-;+4~xQGQ;vlmdPT(25$FxcOW*2M6>apuch|09AP>K>67` zgyl9Q3&5gcf+I#J0jUJ;ijoHf3@|H8%XmXKu6zz~gvg2uR)GE(U1tdJGi%Pa)At*8 zz08vb4xJ5@s{>*Mh#}xiJB|Zrhsi+T6Xn?-_@M55B{19|n*nLb9%yS|6N6O(J{f>| zVV4IRho*u}M85zy0$#NWU=V04z~q7)=_rhLTM0c9U8x>?N;0NWe_VX*@TCpw_m$|M zrdFfw2D3`X13aZUHbVstWFBA+&9d{Bmd^r5=_5NZRMR9vOytq!t((6M43fxE%C*9p ziw#e z*XkLU0+F?P#{Ks>;~GwDvc&YgzTeRsvu6D@dyB{R+HZ(h`nwx@c~d(*(Y1|t_@nE` zhXT3RExhqW;#-R4-XV{zAJJbt-)(qjaaZl!PTrNjT(2D>oKGGdx#;CKKj7~X@8vd+ z)_){kIex=PukMpak3CyF(B=mty}um4;oh8h?D7ka6YtL7aNoDAU;JjlhAR`Ry$K69 zyxT7EZbkbr@LS0LzHj@Y=az5a?=kPW<&XC|E%AW=#*Obke$cmlq2Pt>#L{QpAG}C> z`nV@P{o#s%i9ZGnWk7~}+xL2#dp~jAdE(_OH;!E7%z46d<~(^sH?eBtlOw$s=RbM( zQ1RK{A(u2h*{QcUbj}kaz0Dh+RC{(K6|&PcNDeD0nwc4Mt6j?X~;`O1ymI*EHe zpumCiB{_2xcc)Kjlp+5e#geH-}XDjw5{)V6R*{->E`Ww_r|8P5*K-2{dr@b z9*GOY%^kd>2B^D0zyK$faJ9%rH5pCJ?)};zu|4%#2eG(=H};>Gn|%55f#S;!-g5Cl z*R^BB(;dCT`>KZquwuKv(Vnz?u$cWoV^{IfUJu2U94X3sdp9Mf__hC&7cRSUdGE*) z-aehZ)nmlqN4=5WcGLTGpERg>2y_lIG+@5A2FxKch3kUUhGayvMxdRFE#+&c9zDam zUKMj!@bXh{_C|LVqi=@1Z-sZoK(Wb$9RH|yodftXcy%h!-$31=_$b;E(G!S19hmdH zl?%X}H5(}=i@Jd}Wo!`miYQZx`D{@~5GB}l{yd4+_&bRR0a&mOhOdG)1`KaNy-~)X zMnbMNK*@FmdLtjq88J1wW?hUOyXmx4T-AR3*0#Z$dZY}{mJv|(V$R8Bat0`#ISUz2 z&GJns=EBtHTCrfd8i1W9dOy@(R-ph~tp(t#0#;!@fO8JO(^0Sj{Aozs!JNc#wk?1G zQO^J>uVu2fhl)uGbV3mm6*E7_|$Ey zdWb%Vu8y8H3;8@>0m`@~Lwf+pENF~LHUy>K@DuT1VjrMFiyFgayYx;D^$%LQEJI#I zAQuT2=sO>Hc1UE!4XYY-#w(`MBNv+*l+O54R5-#BH{EqxL%OYS5o#$2-Lk#Ea>ezb3&zMeUA zQ-_+w%ig%vn-=y<{5arwK7V{u&u`1~EIQ%Go4gZ#{G)d7B-VPg@yKueqSAv;Eh;_u zG=D$l?-~A{3V*Ni_Z$9x%iq6yr3Zg!6w@mF0S5_cYfKRNjFtyl)=&&^(~CLmNNT{O#Fp}z zl+U`qc3tNbCm8^iKJ?;=b2FFbLd*X~S;TgJXN z((8K2YuB|A-`BT|^frur?fK5)y@R>Cc7nW{P`G>K$&x%a2l?LQ*X9gPYo-m0Q*Q$en+IT(LJ5 z)_(cgjcvqplV2P8q_XV~z0yTE5DYp%j^{DzV&O6L0@i>cLAr`lEVzEvnA@UCiEm~u z8?@J9Q^e5snx=}`eO~M275Z%ZTYqu&1nRzV^fsFD;lWhCzaq(}{=(fCbxH1XGUUvh zB+ng9fu4tKySGgWMk#MPKxs?69tH{%xL*VA3XUWTl(6?$Y845eGN5eRc1}~AY!RN- zu`Pgt4I_(M-v&e3KeRW_TYp<3najaA8rg#G7#RuCo0Y)W3@hxdZecMyrJ;`(7z<-+ zR>aN=x1E%Xu31dKp<#shw6w6ZxaZMrd#4Q8pe%fdhM_luJ;GKqSQ@}9b^z%vDB{w& z!bgSynHvkKQFJh~V3sHpRNLZX3PlA=r-Lmk06bRS6%Qv;IcbXl0vc|OPjYPl(6K`n zT?OkrCQxr(ZQV18*sA^9(bO ztZnL6PT%!SQ`@E#O;cRDUN?$n23T&u-HV1}+IfDKRamsAGz{}*rVd~_gO$k? zvGQb9tAJi#0qhD%pHd%s+fpUvKlDFySP12YIcixrPgW z&rDE2{+9bPHvU|}^@jd+1!nq;>tdcN@;c4RV8hGHZk2GBQ!_=S8A{#Fuo2|hdyBM7X9_da zh%u_AyWqWNf~ooG2P+;(BoQuEEr-ES0?cQ4y@qfJYI%ltrB2IPfXp~eL==_Tef1MkNGBHU%qNoid-0q z$}Xbj=>RwlQ$cZHIz?8Hfi}SF`NIZ|H@3VyCr2*Fg39EJR$g)lnS8;vZCzvN)lCbV zRUd4|*jHVXo>MZmi@2^?m|b0o5|24Nu+RqwTuj|raYO&6Q)25*pCO189?;Y^<-(od zuA=2E-OAuiV(K7#DS3-y7Jm^laI#1tcN>|UGTiILm7}YfJ zD1Ddia@rNJw!o7sY9?1>wDgW~@^X>!#YMai;Gyx_AvX(3D*Ub3U%V|}FbR{R^ zyRfgfcS|~6 zI0b`**_@4PUU!_z>O=7uT{8idaF;3OTvV-rE1G}GnFcNxHr%e`z^15*RiGi9wYfa| zg{gV3_#mIK&hThD`c>UziDvVTshJ2GIP{=)b%MmGfip?Lw(#pJW(rJJeC{kWYdHl| z&*2?cRE@xa22}$5XLQY`e?p{VYF323Y1_stA z{YI zp85Q?2~|n1D#=wPxqq&Ds7i8s79XpUTvd|$r^0qCUa~65?NN%XN^(_6t}4l)S+7cR zRY|T;mE@Ym-~W;%hiUuZ#BlGB)0!4^Nc=LeKz}^7Y52D_9E$_reSc8kbvM7*^z)-q zX1niv=g`@g6~}fOGlmeB%ors*Ml;fyez2w;tO2z3Xw%t4O{2!rYt$OeAngx&H|1bM zD=G(LNm33zn1C2l)NE+VbZ${h%-+!SUbp7Ar1#I(=xW1Ho4)QC-m*mM2Tk`4&+^I| z)yj@e8<`qSS8Ff_)?_R$wHi&$)?~~YqTAFTHl5S4xu|^e3F7*nHC-k;KHAj1#xQEK z(&Z@4e;3Y7D>eF@PM!YoORV(%vZPr0MAJC&qoH?n683-Q z2f!cM)5SwiH+A|p!@J=}O{a_54>z4D+HY1=|_pj#b>ii`--h6l+F@o%!T^n zt)--xabjtl_};}_{_4ciH1TB~>co>ur;0bvgi5yU-A{b-@8$O5&66ni;+)cc;=I{I zx`|0AmyQuDZlK7xb4mlmD<|{x^y|1h>#wC6k)O!rJtuLwqiuOV@q2k$KA+36J9>8% zH7E4yCi0Vb!7*oXuUn7uP&`B_vStC7{`=0K%;n)%b2)uRshyZ)mwSlq^4=M;1LEy^yG zU&W73qsXVSM|ORrc{=y@y@Y$IKbQN9$K~ae3%KmI&(NM?#2M6hf&7dmXOyOj>t$C# z4Ho;KNx6*|arx|3#jfJbvrFy88hP&(`P<)L{pJ8MaEiRVY_}py79BqGY%UY>vzn_sM*Qw_F3+9Y ze~9=bwY|NVF_j|UJ)L{Mnp!G|@6Li+JT}!$tU2QC_TqwRJbiM8d_iJJmxg)#pe%1a zdm*>zpedr~L@2tyuh@DH4;oJ9@|t_M_ZJh+&ayQR}+W$N{_iEXjpN`xy zO#I?Jiaa#6G+Zn`YR5ov^mHye$i`nh{zM$=FQS8i9&xO`#C z&ZIc1z~#DmTt55i={@j7DSDpEjU~PN^bl&1KCVB7%aeaf$2=e}Z~QKom;7u> zH<5C=eEO`CDeiW8Pm&I3IKOm(xLCHb>mgISG~Bhby}0{)o;`9l&n}=dCeG*CwHGkw z_L~ZI(Z@Uch>jOh;;l>N<%KM)(UYO3P0RNaUtCB94=`tCH=izsoCD=|#>X@G#o2PU zOuVRczIfzHsHK;ddWnxN;=w~F2IWo@hsp7Kt@n%pqI@y0dU;B7xha=W?ksuv$2oEU zXZGsQRZvWJ}O{NQl0?rJWJ z*K_$vW4WE^e)`*k#J<;X@2_%E9ysOgv&9a1Su4L~%!O|sCgxqs1y$w+|Ew?$=f}}@auVSf!u;`zP@ya7%exKu{V^?6f5N<*>po` zjrg8ipI6T<-6ZapGwPf}-Z@;@^Y~d0Ilr$s;hhsi_xW62eFc}(&wS@p@iTdOoLt~* zCa!HSY8I4ci_hey{j>AmIYR8Ukf)c(Y5L3+?;I=EFDy--`*_>$d}oGn@!sE=u|`tk zCG|r|O_bC}lA0zdA*l-`^|7R`l+>>!wNO%@NouL2{zFoCOX@yJJtV20Ny?MdZzT0^ zlDbDyuUtGA@=Hm+DQ|u*sgES}tfc-TsRt$1?h>dMB-Kk&8zhyI)MiPImegI6vLy8f zNgX4pt&%!bQjbb%x}=_z)FqO79cu23Yb5y>d2^AZwn?g9QY$63PEtRS)FYDmxul+! z)ZZobOG*7gQvWWg4M%*YEvX5TdQ(zoO6qAz6(seXq%M`z?<94Dq;^Q^R!P-MYNezelhnPE`czVnOX@30 zJvVdjx!;-bS4qAkZ|;;-lcesJ)O(V8MpA#0)Ju~3&Mc_sCDm0@FG^~Vr0$p0NJ-r* zsf?tSOX>(o{Yg?MOX?FzO_fxGq~=~A$)_ZFg{0n>)B;I8B&j8mS|zE~lKNUw4@&Ca zB(+geZ%FE=lKOW^ZI#q(k}6B;`;z)lQm;tr3rRIfs_ks3JKN5M>?z5g%9}|^ZIRT0 zlKP&cOi8^bsiP&eLQ+&B(+mgPe|&Il3FLJze{Snq&i*-^@XJRO6or)HB3@X zk~&CI??~!UNv)RD@sfI1QfHhY$p<9qNa~N0nk}h~lDb|}FH5RUQa_fIkknd9eP2?) zl+$ND`s?fWpYb@#igHdYxViMG*f4BIPcd&5$I0oplr|(D_uAK$u1<*8 zN4+yk@~5u&T74%d;C=VD()9^>-3v6L9i7G0<)x&jEH1s%^5#W%yqgh!eWTRVyK-si zm%$Tn((+QxUj8q=rS&BvAjPLPA^kjHCBjP59&eedl~-sHPVOT)*hKbE?9U#~8G5?p&2;+q!lKH{JN!2##k>{m+KO9meXEyuL1XC`;V;MCTj~}5a)~H+@n+p$`X+od z_rX$^@DZgB5KHD=)r*YWZ}s#(c)0XJ`1&0k-|FJM{DV@Pup~b^K&-vDZCkI$hEh2! zwEYE6Nxmj2Hm_;l-OD{*dL?{9@lg$*x7k~KwU&0B`$TiQgkPibmo`1U*&9oLPlzpj zcFvNLLT~YhP4w5A!8^loI_pQJ?MZ_#_q(c?xrSFg_dKtv z|3&GyVNH`hrY0VD7d;;8c%aAQe-EGZ_&E4s521)IgGA~pdhX*FOV5Rmsko=;@l;20 zc|YB;qxXkj$v&0eA-dnQv$Ht8gYzdy3i5Z|@@Re64G@jlV73ln}SQ^w#W(5Y=9E`W-(R@*Aeur=RTX z<6ZT;(!~jR-OKyW*JRTq88qOc&r1Wvl6KwOd7m`Nruk2LyiU^we~d_={Dw%}m+H#B zyiO&=z2I?r`F1?dPVc^t7_+3@)9d?Y>FE|v8rJlIkN)7zPTsH`awvAy<-c)Wz1m(Z z{px^@V$u@I41cTi#6Oftz1O>)n7gz0-r}IrL!G=4?=)A?u#JXozj1plV_f9+S&Oev_mJp{8cqb{8@%yR` zPrZGmlwYqD2W@`4r?=y;rBMk<_VV`mdudik-u-3i_>la|SEbn@dCfO+qmX5v{HDz8 z^?$Wjn=;SOf2EX#dwo+Eno=U=-l!c@6>MP6BA;_kC>N8 z))$JJpD+dG4(r|3qdX=duX}l~_bi_ilE?QhUlEd9`;-eIc}&0Z_d@b-{mUMa!>Ki^LMrL4jW!x z6PEwOh%&pA|8AZ)h2$?rm3M~ZQ=`jlp|XIOrt!jG)s)$`{U2PbG}qgU*dv2!8 zoc75P+4A=Ax7_XJ9blF>hmZblmER4?&krfHbNMx#bVPZ8nEv#;?Y%n>D}O(HKI!oC zM z%^&G8UpQLMI6s{KV)`qk4&q_s?O7GA%M>wg0@8>-eO|K50~7MPm-j_pP9I4Mw@`i| zagV1K<+S(jWX>fj}GV~F0LEU(R=jb^1ARb2TvF8l9^?es$X25r=s%>Wj65N4(Q@NG`n01pQKe@ z)cjX;!8pPwl-W6Auw*^nUbFVEg4c_MQwy<9RMV}5F*w0JND|6PgdWZkSTp-8Xf5JNs z5L*Wg1m#aQ@ao#K8aD6`^S2LaSTTUy3+Ha{<^AcV^6lYIsB47y^<4w|crV^u=1lP4 zv#Z;7{BU4j?^ku@Bg3W*y}b-K;TMuDgE;wG`6(X_>?~^jG_Z@{uBMOJdf=b|;>kfANWZzGd`I{jpMmJHx;$7+su|SF~_$Awz-$Kfd6l>2I)Lv}3Y*1Hm=rS62{+jad6XN%s zn29L&Y_Yxb+xvM(tt(%ekYrC$`KpHHgZg=Y{a$%(_(0AT!CdJpHrMp*EoS|4PzSMp z>7kz9pTA#zHY`K`53M|I=Y4&j+&lc&Hh)y`Yp>UXOyuCnjvq5-)4P1s+fyDc|0=w> z^!=dU!pa^wc5r9!q#wwR@ZYxE;{gqS8`Mr5_+hD+cip4qe+!Fz(`{!L@0`cVJ@)z^ zY+ZLiRLArG9u|-eDi%;su{Z2pk=RkO_W~L$X8~J`En4cXPg`dQaUrUp-H2hp9=5Ur{8fdId(Ve_XN#SY2nsQ`P ziWW&pK9wra$EqHVQu2k&DLQ)A8Vi9H7c)muetT^pKyH^ZQ*^teQl?VwxtGray0*yrdV`GUElU_q@#d zl=MrbKw4b|^I}d0dKc04w;P+pr&KC^O|0s+#`&2DRz40TGX&vWhYuy9`4SdyJ9+Jaz=HKQ}$GDMoI6W>T~bGeyS9g z<;J>F%ma}lbA~&a>Pi{L%!(>5y*Foe)q?$PnVmE)A#Yute=~}$0(Gd6CG?MzcYl&O zfXs1~%ShpmgaH$g5+Yk`2^SVK){|0mGK*{YNMBRkBe|Jaws3MmCeI&HjfGK_OGr`A zGw*4FdsajZVrEyaO`co)oe)C47hZ}HJ0Tb?gRS$?l+y_7V?}42|M^FS9PC zmI|mwF;D!1Q8fj86AdsB0UFX;Y;-jh^G@C_&}+AzEr%(b&xa zYN!;iTE?!RNJHxw+X)W8y(&iywW4nIjTeMSki#iICjhKQ%LE>N2Enn;WqR;FygqjW)!5 z)5-{s=2Ho~2*TIyB} zvyvE~gMy7GHOhyoRu>5dw!DK7`Z)o(GM6-+J-^*B9qjPB>z6PZRVR-x;W`reWNy+_< zovGo1YHnour>di>$`AV5$r8wwRT&cU=;Atw9p4?%^?HUgTaR{ZZuIH*YPqC54vpRg>g!2KE+MmJ? z2jUFK4<@16XfZs5TnU2!yDl6YG}hQy3qn#|HTYRe<_!!iPrVc(nHHsGU{80QuTo~)uDS}a?yk=H`T*bS$aIx2;ZMY?yZM4D%UrB zbD%dx{~U;uO|jH1JI(l;#uFWciO+Kwro^NXLiiet;x;pk@FxC05lL3rk@CI{bX1qa zk+Y0&*O*asJfY+L;b|IS((|*Sq&OQ4rwcijK$Q}K<Zx3y)WycO4yp_> z$p{&>DEwTYW)6au8exN(6Ef_a$;DL87HR`u`QC_SA(w-vw7fbsnzC7}@Pjc;OP#yQ zSWnBR!zVFmxPzyY$yr*rMhp;644(eyfO>5dA)RJ>7 zDl&ej5i_6|;^lu4{lpUUc8L+fK@_^aCLFPyrR4oalO`ymIW`zkba#!uryjgW;H@N& zLq@DeI5)w>kz{UGtAy0yu<@owF%CovbFKEj%&Z_Sl0@rGI{F|=J%?6~VYV@!#nu>4 z=Yx+M;dKG`mP{v%Pt+j6!qlOpNwwivi%GoYDPe{L6D6fUdeWNO0jg0LpDHTH$zj>B zqsL5~Jh*#p9~%8t4Oi8ZxpiKs5tD^YRIN+Ql-gCP&w5P0&KJbUVshaK&4{cWNC98f z)<$uYi=wfaN0@Hm8^b__)~-*Urc4)U%4MNt|H^?&(IL3Hn-qK1hy|e_$9up`@T_5W zs8d}v0q4`jwD7O|L9VUNbJ^F0g%D)v#7$#}12r$18Ks`&FS?DPT*@&sPYrK~BP`JN~_Clo3of$ZR*;ylinJ#TfL@&wn& zSsGyyHDPv)wz?$9QjEnYYmvcipc}$^OG!2(mhsFPwib&GVXv5-0^I5rm!2v{IFd{* zELOlnyXLljBrHCY*$L)iL^rMb`QZHeiSeSwGZ9mx5MGsnE>w0VI2K;g@tmR}P@qbb z^babI?(mY{JQK4G=TJ~+%KJyIMyYi`uJc^9I+I!7;q-IyE2%!opqIk(|0^{LP(|&t zrGE>pW%340O=`U}lIwV=Tb4)v5d-7mW0)1scQD)SbL>YKaqo;Ny5FVF??rbuy@HM| zoMwYRptm<(Ll^V#+55qW?HSVOAj|wH!Yt6b_w(2BTWW- z!m%IZrfSR9_BLTCv2@JfEWHuAcgH}STE>Jn!=VeaFq5oGhsY&0k*X;4b_CYwKichg=1&7H4WB+ne9!zwIDhf zD>-KP@e6xUbbSP+zHRuqFEOTz35yZt4C!XV+CAlOXd3SJ_)^1AQ#bnNHB3rEsA;;6 zrWQlT`1dmXsRnuRE_sHTK4>_fpRMShg)N52pfb|Pz9#Hxh(yGPCw7V}1sH;yq`Cb~ zeI5Qqj*mk+-$AC`S~|N8ZbGqVgG$lDsaRt-9Abi%VzGiO!HKHiK>bQ18}loZi`eK0 zq@?3PK2ppGp}Wk9a~@dcQKl7Ij+kWp;vWSCNdo><*+qjT1wHx`6NBKsjsLV;6 z`HdMXw3Oxiizhk&JU!vXNpX=T%qxONnlxS%NCXQle6YJxTe?5-zcr?$PL0Y)^C$nO z%7GNyyOBTno_yde#ZE0!W#Ko1+_RAfnWv!uVWS#3(#q*LJvtR_g4@6)6>TA*Eu6I) zixwcXfR^w||35r+Oo-H$AHjhjV(2NslE* zZTOAYpu|`gK?sJEQFpD$7h}D#54kQiIZJNenGS1Yu{kMWPdDc?TVKlWtzC+5LjqB zvty^Ul8E%7`z^5Q8yZ_sq9XZ}ru4(er}x@|eE3ur^{FKFjuR%9rSZ-vSF&EiChpYi z=oBw$X1oa-r~e`+bpZKDMKsak^`eu8cvwH*F?#X_-V|S@>ym)(%5$(!2L}^OSd{|z z=Hs$UBbrpFp4DK(R%|w5suBdzj~?{#M$<}Up5DY!icK_OGG_`Om)+aFunvvd4&~do z)r9j7L6K%{H^u8H?hOuj1N51F#l5}Jx=eLj?86RIlnzLrC00K={g)2|}> zx(O%bQ%{8yx8P}Ph*n1jvS$ny+-!UjUfqQn0Z zLQ&H7<4*RAJF2LYQ;wg{7pcFt-|6ZJDHoEnTFP zbaX7DxdJiETYA%pJ}q5o$#g6&Ze3R^$E^ykKsMbHaw0$C4 zzx3$lj+C;tbty{!0mb@eEsAv~&x9?hOeyh&si8;`J{jGU{mN8PAPM!5{=^Gd-JliC zD^TzTG~Bd*OegFaQtHa)Ji` z-%%z_W`lig%FxwBq`UgTbew6T@sQ4wlJ_)srDt1_&h+WC{8-1MGuwEo8t_tQJ}T0w zdMEVX(|4^U$&M&h2E7*8p-DrUlPUfPcl-g!AcOv~> zWbWc@J|HqE&{NuStZhk3yo-k17zpd`;%XM!t*X&WH#3i|!oid0q2_z4hv;Wfz&$z5 zy=ZPd-}QUyW5zuS z;JE36X^ZObMi=MxYgdtsVeOoxl=5b{mrTY9MR`GSk@iO?kQs}ArsFIJCt%M^ZWP=+xSDjSG1Nw-h&>4@v8g#g<&>~O!up#NVdp~2 zE^l`*mSb-Zc}WvmnXyu5@hB#aD47$71g_GmcIH|d&YKuq(4Z#49_v1KEJMAjp+vQV z%`G$*ahfVE2r=V~ZbuK(G;t$5g8Gayc^&C&UWu(koOP1uCPFv4QIczjJLQe&Se$y- zSKMh?G;U%%>>|2>8As1U|E)+gV>TJlv7+?8o1G%1_YiILFKMx!U%gD7E`*^@A5 zc}Y8lo8cT5NF$V^dc2HE3|WkUdVZw&*neb;nnV#m)HB$_JPFP6()G$Pw_ile>hCfuaz!cL0d5>%r;w0Vsx}g2J zwZfYzev)Z!L4CL^Zk#iUgH8R9U!aP}|=-{j_eZ53jBQCIA&#OzTmYH#crPe~U@P30C>rBS6s?u~g zC?>>NGOjS2REmVMu$AhkcloV(FTZ`l!HIYy<$D8xDNNn`0obZ53@^4E)KAEg!Bat7=kP1s|RK zi8;S+7QC2{pY58w6RM|);PnqC5}e6!LY@@FAfpD4(9@U>?R_JLxrAZr|;Ex*)VpddTCKboT^UbdXW}q;Suuk1e(aof?Ueb*t<{+&|;)bE*f6RR1 zvy5o;EwjJmbHWUNUzC%V2yiFeDBQ7!w^aG0eY8s$zOS@|Q3tSB2`5!!YH-Gkl@!;~ zK7IO9N|hePrJ!?myAb~kY-;dzvp?=+b;o~Uq}i2N^1NVvtECq8A=F1rO;0*1p3=aJ zcI#UxqJ4$CpdR{28CrBT&6u`*o%nYcVbr^st5$Z8F<5yjP;FoHXB3&~5)}rKCT5coHtx zV%Nb|pcx;3L`(W!Fjt{bot5%ZvSP;G2TNz05$oNfoRs>|j03_-ov_zf_{G%FCvY#4 zdTP6lQrZ*YTmbi$kPyfAA}F?cV6O-DtV%JdJ)P98!9&kP1q4~_b4amy=KVUl83~Vz zzsNcB0&+X(?H*VCmqIRZZ+f-}v)uiCS-z6-l~6X0ulv5w$I|{ov0lE?hj(U+#*~*Y`fouS+)v~$z3P5K?qO|>fkdC+G~GVj&4TRj z|A_;|;8xat;`^_O^dZx}!Ew^TvOp(r?H2gcHWpkZDQ-#BQKAR-!|;8WAAMia(v8e* z?5ph8B`r&_8Q%trX+GghIG9z1`sl-aqzoquEUroscglq{G8@8hAmU{4l1jQ*&~Qv< zy>Ric1d!=yn3qbf?q-3Z5ac5s7AKr#h#aseFC#=$kh*$VU=27D*Kl3v!9@rU2vvNg zUZpK?94qgDUx=^R^t5iLy?Uq0TE5o_+*_QfxX=k-Ts<*A?o*Ze{4mBz+E-5G$Yh=& z>}0H>dtycjuC^D-!%VCbeGd1< zW=^&KPSVw2(e8o*^N7`RKcy1=Tn+`cg;>@zp%QVvo{ReXN$H&|m;hJ~o0m;0-eJM<$ClB($M#{KNiU(l^~LyR>vDZwQPfOf8NJDsmA7N^CR0 zMM~^t!S+9k!nFnby_ZIn(!(sXKdY}8Cb(W{>|2~hoy#h#t`~mkXTj#5TFjf!cCJ9! z*(_%%aexIIcT8cYfhkB`n^pwEYP=a_8LOj3HK88(XmcEehuGC)z);KAI)QuRbP6JU zmkg{(nS%##; zE>fomp_U~>alwqg4s9{k(wnaKv)?k?HP(`%dn*n566Q!}p#x&Goj)4wKMs723=aaO zv~d>fq*=s1Pjw2fIjA&ccn!jS)dUPuL~o6=N1NLX@}w;egB+#RdP@dq680YIIDiLx z5q|XkN){|rsX@4B;5DcUotlhp&7Eq&c9uo#FW4C_W%<$Fdmdg=@o5%p+gPN$>6Sr4 z2=*>G|F(p07M!JnvqXdTNkW17v(~kDpy)M2@Db|*C~nmlk!8D@xUgyebhacpeG4nR zCCGk%c;>gFy@7kPw;(DVpFX6FRQEf}ELikg#_uR_DN;yVQb}GH|uHBGXco zG-GHD8rl_}!1U!}fH9d%ANIXvi;kAwdJu)rbZgOfD8GH%fj!)R98RXF5ygR#_yC$8PaTNlCF5I2fEzd}<)=Uu%Io$hdvLm7?$p!+goJ zzw0;yHmi>5nfWOL}B&SG-oUoDR2G= zR~qPxtFN86T7K0i*uUpARk3On&hd6Jn}{^L-vD71Y5$br`0qe5ekSg)z#Cbr5|I*egV)J)@mUomAH%#8vo+b9P9BE6IC4l>Pc=E;Tt*wjZ%5ISej4sX z*CY&{^urb`32yO(*lYF*^f2+St|0%O-EkC$6|F6HyjH(`Gl|`f?e8q z5`#`n`T7=`Bk2#c#MGcs*z-I;+%f(E+VjC_3p`5ZPC6r$rXU}#gY?@uVP82?y~K`^ zOX+FzCUlQHG(_ltKt5cUYTy16H{GYb2| zIIouyZuY}ew_`NkJ2*4imEPRPb&4O&Vtg?V`}?eC;K6mg<)huDc&ji}{~y`>dbEeM zR~9YAYP)zxzy+apnt=YwSJV;;{>=8`mj0zR(4^aOPZ z8)~07nrB;nr?LK~DDmX`);tUnOB) ze<|Z13s(Ca$){-|k}}d>XbURGcfw0za_$EUu04#6aFSf}#h7K8h+L-0(DDfKHR`}8Q2F=@gUC^HXh=Z_8#<8uW5oN45MU1#HF7@=WmUI9T z^AJc>c`J@|a%s_W9F?xFXw4UFIMVQ=I^mJ^)NM+|&k7Y;vJhR*XMI;HTf0&37*n9s z(%%}RBloppr&FAKw|SLSk<2^CRgpZaSnsP83BD0_Rhfw|JWXkVR~3?4JgZ4jbDB7* zM||t5ThUj{!wxbFid`S+M7s|}R#ES%q}CM0n7q-XwF$5Bey(lpraP{-iFX|Jl8MPp7~D^3=UQ{NWW=D4puz7{Px2@MNuAf&%N1@*<- z6g8<*5GomdMq9s-A;_AddnmPTge>TW4*mc?>(I0bxPEiMR~$)AL{lJ$i}GnOQSF*p zan+S^aid2pehYQb9}Wz+_ETi&g$7#s4C6{WYj4V~YA;j!_9)XwDYv~SQ|Lxaw_K*j!H{g)Wp_3Pb`%8zt~nbJ??b7f z`tnl17go#}Dn)pB)ba!Ly%o+-N|lrsjVKLB6hXHnlPEY0Hg_`lrQv{ zExKBrB|~@XX^qT=F7$0y18VymrntMn2bLGw`^ zer98L7^-6?dv$#JSm8qe*W4Y^TJhDU)Rdm|wPL@43B1732u@O7e=D}Nn81F{hk;gX zDlpEA9Mlk36jWT?6BY?6I%#SRS`|FSQ8o9ghCyk_cg^RylIMr40P+|BfQ97hE0GatRtDzHC_&RgEr4@HStDThD1cxE`YM#LmVU zr044>Uy2TO3mUWNSr-_!`(sVV$BVWRuYbWz37R{s?EU z4R%pPYAI=&71OA|+52s6o=}cr=V24=!3@!4%!rSmT}YZ4U508s!u6Dgv#ju91VuVD z+xk&s;?2uzb41^8B6fZA=2@{I1zt(2{EhV&9W5JyWevX+)GG!>${uTR#TBZHWWLic`?W zube1hIPCp`WmZhgf`@C!ET4R5;k~CsOxvpsR(O*v;nNmWlgWLyKPWG4USY+#0#kU= z5w_lni-INFIjY+imDbwH z63CcZRB2)dHz;0AMFm+($P!oa80W#P7S33#Z2W!{{p7~N%8M_^k=mcXs3&|;UtYSk zNhl8|=JmOnIJ=l9H9v^d|7`hB>HzV9y@U_!|N3{mNqk^W_`u#-B!Exf)H zNqxSx1WGl{IcTs@!Fgclyr4YMb+YsJ}ioMY65a( zbJaz%c8i~6UmG5jtY7JXVuM8NlsONdSBAna&Gq0-Oey*pT9~QWZ`Y_(ddw?JQ3}5Q z=dZ+9p0G+Pi_k6!CD@=Nzl&lCEMAwIe;O5dd=X3FN2f(=Am~N>yuyMr)@|4uU4mxD zdqjGgycC!5{mx^Mtdp*u7lWj2Sqvp^h6}$#inEU#C^fktngKyvgu+*VQpO)*d(H?3III_Pof$$VuVUe{o2=hx!7z(;q#C4CRv7L* z(hoMPqYiMLY^@~VA;nrzz-w75p7T%)#jS5KZQ%{4~vYaJc!oh{=Q>s#w$HAoY~jcm~<&$*fkDr_$bs$1SuuRR^o7X zn?XlE&4ErAJ}foU!G;@N^X!^!cCaB2;NFBhno50&+XiX){>io$xUOMC#)2+==V*f= zVb%|0ha7Y*V?(8WUuccO16SYCx)==TUwmwhvB?{Q**UwMZMhcwu7WK=3kLbxHfuqn zpAEB&;637RtEq;hmQ`%nlVt(3s@ZC5!Q|?;RdDkLqiOJZRwAVgw>L;sEn734z`e<} zrLBYXcWv8v6_=*gwH?!ft?G+X3oa?Yfej;+gJ^VU1P5z1wxL7S*e163I-36_tQFd6 z8JQ;Ar?Ir=A}`?H67qr+4yLxUkrtfT#)b~%*fQ;GnBq8?)!v37%)uSOwys+6V@KO) zHAtz`Yyr~hFKkUU(ydN5M|?{w@_E+9)=7)))Xj!-Q4vciO>DKLc|B}(HPX>gQDjb# z*2~sS3;KuI@M;UkHtj2F%4yTb*(ymF``NG_yOD|Zw7)kthCF4hQEA;kTZ-;ismmbI zDEeD4dw79t8=3FeNB#35LJfgyY8Wxh7N+5>?=Oan{$e`xeVp`Wq-~grOJ9z*!INQ< zTNztRsbhrAN5i=t3}b8^H5`?%Dt#O)D#ZL;?M0Ecwkj^6D!Dp3ItI28PogcMC1YV0 zZ%-6OL(q$+ytOuyx=a!yMBviC$uRM%#vJ!PC=hunU~_X%|~HY2XZz zH{;1oY;~l&Gi|*!))rscCTpZ?<7}0s8?!}=E?j|yM&WyGo#$fkwqI-CGdwWY)&VCM zYcU-=%(qR~f=d_J=4rvw3q{*7!_gSq4lNk0Ew(B$B%A8m13u<1IX(<(!} z4Id40u<{1m94&U&M%%Yqu-ztGxE4&_Y+I=XajN-33-;Y=8>I!$Y_mmc!7qNY#cDxi zhs{IFqU0|^r#QFqyM!WgFn6~N6D|km?6pnPg8BPwm_s;rWpY8rbq?6dX~Oy+vh~*( zj{a(!uLZjt5q61_y_9VDP`X+xjC#DC*NT#lqwAivf=Tl|VQYXJx~*UZI+$&(q#u71 zx-4+%<4Id1d=x2y!KtG0)|ADF!i#%D$=}y*p)Q^kCK0%|RLSBaLnZ}!U!)DZi=09x~EqL>`?Vc7q zeb;tP3ntzZb!G`YAJ~@asQM60cz71DKgAhQ=iDL2z#}G6WrVyWR2iDULD?cqGY6~4 zwlB2ctSm82aBSH}wrg7Kt0%U@TI}&0TecQ^Bv)8u=8bu7d#S~K_sSNn1xx%RT9FwJ zy|Eq9V&}fMg=oR6A8c}4l;v=(gRDu2=#LfvIF z1@qSNlt*X`R9ePxThJ-5vRb@D1 z9Qj8zxd(QvM5<~vWQ-mTrq+}(yg1muwv2H-y?Cbf`F8iZ@+#_C0&eL0x^ios2zp6f z>Wi9)Ah~tGwBNp=JVe9Yr^u}&bC6tFWA$h(qqRBJ$tE&37&y40nVhTzhqe&KV=lnckjv4M`t88ap0$g2fD z@erEBI5KQ0b)JU?Vq97_U*4_-+kPXeA-JT63uQRt9CZIy-lpUCK0|f<*k@=-e(5vR zgP-{fb>%lcLml{m&rmOZ-7{2u+B4LV-}OW~@u+8LaemP=v_3!Q2^R5|CnEC&sKAeS zhPv|$o}nf9`A(!0Z+C(vMZ9;36yn)V@Q61%0mOryp>F(IXJ|2gsuP%arxQgJk8~ov zc%T!J;&o0W5KnUg6Yp|{dh(;3U=c5JB7u00Gt`^k;tVar4{;)2@d_srJQnXgBKy|@ zEuqg8pas9Yi5iM$Hz7v6xd~SB;AUtTzqX0=;;BtE*KL(WJhF*)5-)5bop@d|)QR8L z3@yhGYeKYmR1?C)i<+Q`=QI(Cw=@@ugyJPlR8%~piS*(P&CmdTKogjFJrfDV)0qI` z-AvR;JemnwyZ|NmwM--zPi2Bdypst`Jdz2~;)P5^o)^H8-^L7e=7%wnPP~e_5T*G^ zdUm`J!$1>zY@q!({sLa2BE6SWtwUxGzEeF@qFl_nm&1Wmkn8Cr^;yF>$t zw=TgV9=Zf3Ub#fR;)P3K;(5!^g{Am$OO!&qY>9pn&srjdc+(Ok6%Sehh}SGbYw%N+ z$U?khiAInGD90~YB7u0m5}e}cN@OqItpqqCKuLbF5~UZ(j)O`rAs*-p2oyaBrCLt+B_XmSH({{ej@d|sLC=7xD4vIOzz+- zR1;F}w{w6L@iHusKAQw`gZ3_iZM{v`mdVW=-r}aSJkY1C=u;sz_fiQAEBr*F4=MJW z2|go5w+WK-$ddolyNVxo{6unBaguyQJ;zTZKU6BB_Vjba6QbfL89$NSJ0gDKLPSjx zKU44%i4LNZj~8~K$IIo2GNOM3Q{Ue}AAp}o{jW62fI4lW)dqPKn}=9#iq&8fqn&#w zmK(+%70V4HFfsC31!B3G>`}4YUWM5EZScxK- zV-c)W5$u1?4xFKQ0613fPy{Pp1S?qtTj*2-buNOr7Qx($V4g*=;38N^5lpCyXbYh| zv8*ow6Y3L-=YW4L#zbL@V)dpXn5772D}pISF^oSURG6z+{lg;I<04pg5$vf1^IVuP zw+Qih5$t6V?C&C2W{naoMc6=8q6lUwf{BqJ@)IK?Rt$-SpP`;zN-`$wT&&)^2v(*D zCPs}ABSujy51&FzjH5y<7eh#3!UQ72BA6IZ3k6Zwz*rtyg_sy)g_sy)0uvT7mIqrQ zCPrN$w(g*c2{Re1Uta`E_zYvS7OP*l<-c)T{~Ptwf1`H(H){8PqxStbD&_O2g`2pX zhdz%}qmKMH>ezpyZhRIMtN*hIcDo36w+MDm!xpOT^q>gQSOhZ{!K_6vxd@h31bb8j zdr}0;v18DGbkj3C%2-|z>_rjmRS`^BRnhgr%Eq#JEyUcqJ26encd>fUB3S7Htc4)@ z6rcjDPz3WUf>pI+(uURWa&?F3aje`5pxPP$BaKu6so=T**U4oqgU)N^jykinY^|KG zbJr%sraU2Tp)cd)8j!LgPVTSECR3c;sSKgqV&)id7Z$(9U;o3*kwY!k$s=1{V+ub3 zj|uRViiw#6SegoMszA&Zi1fi+8llgpE9n_YRvQLNgjnLcZ&rQg|C{^Ap|EQ}h-f0&N_F_$OJl_siNZ$o* zsQ(_0TBQCorEigIR1pRm>F>aNM)1?^BEeXAM*3#Q1X~>WB+7Ml2Ph;FQ*<89NR;R4 zK2UBVno3w#kv9x#gx*4xlfbc=!jj}F_26f6)+PJH(YT18NOn1eaPu%kxs1S1|Is4; zB5g`S4wvbVB>5NJPMWq=u3J|4pb#yrGJpj}Izs=F4s1nJW_P)W?roE8(LElZ})Pu+kCipo*-&1*YHE6+h*B3nnxKm(sC6qW;29BpYy~%O4@q zoyX_M$m%{l*oKw#Eh@Ji9dL(QZI^@Gh5Z&qg8`4wU#HpI>LHYe_K@k=o z84rh%k6=$&B)<<#|IH%&bo^d0?W1TUXIlo|cWM&V^4SF%C4ZI9A@G8)te=2ORffs=WUIQ9<320zP$-oOh1F!!Ky!d(NA zlY!TM244CZc;#o{g`a`feFpyL1p_bo47}zu@RHBKD?S4+_zYO@VQFaK^`3#3dj@u& z3_L6iyw)@DQqRCEz2&^nGw?dkz{@-XuksB1hY1EAZ_9awXW#{%f!B8iUfvmaWEpsI zXW+G+K`iYSB6~5Q3_N@cJZ=m;N(?+O47{o{@S@JZYdQlj=?v`682Aqk47{8(u;Lro zkuk868+a*a;FX+#mDs@AYvBJbFt7{1(7>u{;OWc2in^TjbUCZ(a@Nx2tfb3%^|qW< z)W90LoE3CAuiTdN!fiRP+m`dPZ8__vfmL%kui2LKl5IJw<#N_agF9>Ga#qUa&`FnH zH`SB2)*duoZD7F`-><|s!EB6D~y;trD@Q)f9x({0}hiKbAj?CRB_XXB* zKVz%*%l!imp^x-e=i+CXP??!=i{kY6Vt|JEJO8hiKAUvOavMyW?ULnA0N*BKy3MBF zlI0M9Psy-l+0;4(yG7YVDe^#orz!GafX)XnPi0fw0p`4OK>h-l??JIQNUaY-7|}w3 z<-ANbUxZqJp=FnAYxB28(``dw_Q3S2RryxgX{PgAOCV z9NKXh4V6RLhf(hw3ORxz<pB#^(W%Ft9 zQF$o9funLLz=xyq0DykSFWU=bZXhZ0ZAH7WIF`Kpd;Yvt3&W1OPLaZZtV zT<(K}dB^2p0HG)34gf1oFw312oNv|Nv^7nFM% z5?)ZpRJ6?tqEvJjB301!3^tZu(9dU}tuLtLS!m=7nsrv52w*xZj|6CUP99kAg=mJk zJCRlOUG|(0Bc$bgN{|-_yn);Q=yWNis(6OC1{@>D^Jtk-bSgm-l3p$xiJM@mYah*{<1s`;IGT_ z41iu&2R~U;=Zm5@BD{|pL>cd7N3hiV6P0{QTmOXUr{r@>o&~V-7RvIJO5A2_-ff6} zO4+yNDF8$7Fm~~d91X1XUF4TcL+_&Rlj-PPS?`)G@~iCafIn{WrUQ?WU*VIX(Z?z~ zQox^bNihHL7Yd$C`F}xPGEKe*LzYY#_t3e?)cn3Y4q)?r*t2AEdLT~%n5hEu17_)x zDOYwnEb*pwL5`(!vL#k@$VhKUkQ*18r@`j#dq4D3)@P~|Ddk9^5Lm`it<-{ZO$X&Yk2)%Wex;@6g zyGuVm#xT4~o=;GZyENwsDt?z9J&`B6-W5el{}M%;IF52(iry+$t0twthIZVgli4h# zZVvk4F2(0y$lay)IjHzu8ugU1b5GG7cd7O>WV@caJ(GvJt`{=@o(7p~zN2eT<;L+L zwab$K;@WQHA*1itlT$9zuBR!vkh`Al=0e1JYM&>MQ`2^xkF;MdppGx_?_AND_*ahb z%bc#{bJSx!ML$QcuBSWCp>^x2`3v;NdZHI{1i;%DD9BkV{}N{CEPeeFs&kg)m&oWW zg}p+%ou$-Q@^n|RXRhzI3K`vBMIG;>;&_0snv>RJXKCZ#P{_0N@oyHOe+>mXOLtyF zSd8iuE2RF(|=%GQC9~ zzo!xJ(7EsF?mKxAz_9lmdFMTB(R&)0kCUhObUUB10Uw|Z@9D}1d6ui#-`5{Hh>YD1 z(dZBIDDkGKJE+G$LId7YlTR>7?`g*;d1?UjmOKjHZ71xC`S))?RmHrpu8A^NcVXRr zWhoYa&2-8VfD<}p1wdB^Wevbz4$69f>BX4kZ87BsV9Sa#C|g2V=_<|{^vkY6=GPgN zT2h%n3*#HOsTy;l{(~inQfDTTKopDmWt;tgE+=G-x_w5A@ z$Sf%6BazAW2M!dm7y~_~l+qZh)I+6|0RT?U$`F7EXJs(JF%@{ZDB-T0DqDe+{#inq z@Sln6}yo=P8pP%qG|r1w%f0POZsdIP-mQhES%@@BBw zTj>VuuD8+`piXHdx6}y5NJPndDJU=>;&d9Lkf44>=({lb)A@^h|0|o+D$*Gv^=Wl`uq>ufUNJ z6*zKN1(x}=g3`%NoH^+`h9SozeTvbVV5PEnW2y{AS5%yka85-uKqmcOQRxKW;>$S= z^5vX1sn|nb&Z31MmuU%rD+`Sp4xu+j(e;W-eR8R!xQcRA;+#iR;v{=3DP2|GlHI9Ei3_!GbH{`B*TiC!)L0Zwd;Q51($-YwEKQZsxtSE?&xM=kuM7fq z!=JOL8lVgW_H_VM3y}fJaDWC?pfH)VstPm=?N)_3J62Wt0gI~&Eka~f=td?5S7Tai zHExB>YMeu@KqUmUNr6f?we*8FqJ$$hQG_o_FWxY+D?lc_3*?6DP@U_&xVq9EDX&)N z-tegb<+w`CYA8M3u8M9j?}VHNdr;FBsHu2Zh}!?$4*xV;Ln#TyJ2jw_SE+VQ6!a?1 zuZdDzrPDRh7gwo7Ev1p}2DPXKkv1AsOBn}nvX(Ny%_b!OaTJnYA1g-bZ6Fzs`P9<< zT^miRjX`9iE49&3HmX`jnF_F`j`AhI>pIE=fYEhX-0yXjX~0_6QzoiXtwu^^WqoBB!0GyE93z!#z>&in zV5A%APy#29IKLv)9c_B7_{DMVaQ$eLpP-!F0=){%2(ut)6bXG7(xfAT2E!Pt2qDHZ-NQd?=n$T zZzX_I`u1(8jrRj2_f$r@F;9jWJf|&MfjqzMTd#mAp_ekGCNs6fDAw1+j-KjG=Od(L zo+t8IC>N*IOW_Ly^;Vi-NBGO$(9=9h>kZSIN43JBi+Qvz4EmNwxhm-12R)ESJNqaj zTv>>lbL{7p$=N-%}>Rop=x)fbJJM^azZE04VUp-J*+SU+@q9_{FdR?j0{f2F@F z;F<&Wk7J6HWw3&O2RhuhDsAqM*(;BJ?k_TqAHYI}4^W~IcX@y^L{0XqHQ8c#9zVp-w=3_ zOe2uXMQSz@opF&?jZ_A?UKHuAlOQi=s@mZ857F`2%_tbpi`0A+hS5b@F-jR+gV}q2 z1@;?X+e@=^PC;od3u$%c(3-(eQ}NMxfz7;3y+&iiU8XgomG%G`qcIFGlV><&U#7@# zn2XD_HynC#nO=pX(3k0p2&E&yk_b+BF@jk<$6$WEOoPV2Oml9_w<7lz+bDV*vJ_uv zf0pGFl{sjv5~4Df_zBE+f2PrqU>4tByAByW$8P2>(}A%{FoeGt%SCMTC1*AJODM@@ zy6`0z!zB_n>@p3Agx$DIYa^jDm+3(y=I+b*yKhbqse(P@SXj3LZ>A4m+v(M5cW`QK=gsPD=FG#I+7AbTu7VcDbO{ zU(&gWDBMeO)I-oq8l-|9dSv;Mp6X#sUs8ujFt;yhg$nLWLMAUMU^4XWCCya9ACpn4 zmsEBN=8=~)c?xv>C7o1(`&1M>m+DVNf92A*Q!(aq$vhSL1LGD zr>3}3q?gL!H~> zl<)xNyHXSBR^SLoRsQgL1!9iVt7*vkIQ5*4G{@=CbftZOI2_XFb_P>nV|^57Lu%H$ z$!iAY(A_k3hB7W-w_q-Z^CJEBe)bF&ivuH-c>}$gfhummAIU4tbRTKXOtivzT0axb zcAj!(Vpcp)t!H64ou?mXp=r+3qgm*;^VH@m#$vxhg8P*G6$ajYDlr>5-={IN(ZKiV z*leV`Pu^d{{N1OiUo*@3uhD7u$#o7Kw)-?~4h-IXx;zI`ZqbuD(92s?doKF!7EPav zR=Y)q=VI!*MepW<{WTnReb!|09|~IGI*nZb{kl#&7oc$0DR%*+U#B+TK>4rJl5bG(>vaDc zRQNgtEre!Vr&TJ*S%|#A8N)1VVvyx^dJ@BttrnpXuhS2U7<;ft85nR~lw(E*9CX#k zA)DIWuf%bi+8f)c@3(02?UeW}D!Y+ReT$*BkxDIwuY8W$EJoxR8nzh2^$hJ^taJ~+ z42}Pl#*v#oE5a`C#Fzqk+o<$+Xv%Fg;yZ}lM!Ua58gVC0?>GZYlW;7jmLVEvb6Od) zsPqzaa2AbQg0@|U@4k@h13J9~dia3KEyY-SKogfDavv>UiV?Jr{#uIK@1usxK-))) zmMJZ8>~L(EQc1Uk?f|so9sjC<|NGyBmJ?d4Ir4^o>6*OZFAB5?2LOfC3~@-VQi&QZ zhol?|6CjbM2!JhZ0bbB90Z!2cfOfltoO?L=E|lZ^8@4Z1IhO=A9haO6sSp1spr%q4 z10*F-2LYbaNCA>*o&bkwg8*+x0%*q@Uq23X_)Jcc*s@Y{;VrBH;DxzNSW-YeOJ3hY z(tBzszy<0hz$2O@z%eoiV5OY^?Rc3T=T_`9IlRhNbK&LccC5b(bNO=z)+s9WD(O~0 z(hc$#z((x^z*oc0B|4x+HDqc7IrJ~nVcD7x>s}I>AwW0k zU<1_^;3IVx;5>~7Xm?-K<>|_jpUGL33Ol08xh1HU)1OnT-YcNqp)*3#Ph=9{I(-me zJNd2#*hsAeI7fp4+VQaV!oMIOqQv!Z&JV?J;J67J6g}c@ zZV++QbR*UghiKzQ#@=samaz#+m7+OsNl+T%5O8avQkpCYiVwnX5@71HsqH41(QI0| z3A0N!UEc%)nN9wi;oxLbX`evd*T*372k?EIfq(r#RQT=hONpFw;Um{^i%Z*wN(}?MA4s9n_rZPPR~WrhnCS%-y2?)>C!Kln4Z)1J&Hfcr<4j5^$Ql6 zk-L-%h+Vh~n>x?w*)C|obNrW+zb ziI*S!y&Fo+MQIN(e2>!dU)dkqqm%;$*|!Ejel@7^UXDVhRcZ2Gr8MG^vtIX#Cht=M z$zz|=%=H!OFrlS>aV_WnEu+3&y(>ECnLJqcGX*E3C(U4W5qG!1wE|ppre+rWzdu(v zl6gOtF0WG*k79B9pD8L?sYGAyhu`uuZQZYobrgy8?aI^hWThH4NLIX5kqrRA+d^fl zPFIpK^QKXDvN9cDREjdlS=!a`A_hDk7gi(DTnJK@@rben=W69^fQD zoJWf{I*64=8l5wX#g<+g zbv(u(@ej1s?PKs$((teJa46I0zKB|X9G*xTRl2Cu7Fvndz>gt^t|ycL#7@4b)T6i) z%yB|+c>IQSOd9q14HhVk{4as^f*RHHl2V=mPQnRGqxqMh7eAcj>Ylu$RF6N!(H}+h zlvA)JX>{_GG6SH|X>RCKmz5fH=`=i~H1bVVzEUf9VE|s?-0I^;7fz#cIjM>t$lqU4 zYEh#z7>{YR>I}{}(#ZWRY;GDwT~+GSuV=Xxb>~<-y1q7TIR{(D{a=M{pHr$MjJ_6G zp_}W{*XNZo2&1p-1E8B50HBBcsAQVrjWD{o0!{Z!5Mi`j1savc0@2}>yxgK@&73?j za(ckT88c>KlZ+L>mrkW&fUp)+rdMg40aU@40)NM#Wqk+%fGPz4OA9Q&V+vv|==3iI zm~;W-j1{2qzxw{_1mG@<;nRH7Z-h74^imWh5+bM(eLO?0nm}{0oq+=41E|#+b%1UkA&A9tisb@X8%-MfmCvC(V-(D@qbkVuQJ zVPTU<=dU6EL|T}Rh7CwZUooW;^+{JsAv`P{kHbAXRWe&hL z75EvI7+{-?I68bm{w5_BAjO0eOQbVn$i1N7%*yP5!doWdstKk!7ctF^=8=F2_67B~ zK01ElO>KU9D)qQ#9X-aes<(t;%A688+oxKe)^P)9*ftii#gGX^x8+J2PrJ zwq#gDXIw!UEGz9QinR-Dcu*ZoEO9HHCQh9hIeluxB z39MJ1@~tj`GV)-J5~#{^Wi7z3&y}qJgI*{}0ROx|f&|*~QrQL2?G@9Wyi&FS`{8e8 zhiigpw%@W*rQfp2{7z{|u`iTilpmPo4wl=mQTPO!@sF|*!2Jzld)_FUfpvciyTG}Z zqXlo#A5SUoElTo~I=)kW1i1AM**vAM-y_qfR54%Ksa|vm{eav;KZxAEr(PAa+(3=| zplk;y^%2E=N+};18}JDkJ*5|)lmy+=b*r)jQcst)1>mwS%MSnN4=}Y@Ry!;+_ZG`)p+?pum*QDf5pGaCYo|)_rRT+& zt6_<(9}so2MAjyNVI{K?0A82ON&+CqtgQg8oU+ydq&sEd5*>{%m9<`%9PiBho1IbA zWNPEW;4c^EnC6-_7wg*`*Q{>N;w}nQ@NOMv3LlacKpCD{gE8U{(^0pqHDK!Do)rsl z-#sfHV7fGUXBk+?cehg9y~yHH91d`ii(4VMyB9mSySukoyIZ_mq{s!{-%NJr5BL4DlRTMB zWRvXfIgu$4DN?gW8P2$rZF2s#7k=~P4b1R{5?&X!9}HbgLlzu zFLI_(Z_}C`q0=y(xf$Z$bY>{Tw)Ex}h}Id*9T15#np+_bWJJw>QJpfGYau){vu{Uc za|3)Wv#?5nthjsk)cCAs9f+%0QQUhf$jAH};;oMvqG!ka?1WtW?4(xaHLH$-07O$BB*N9u-uPbJD}&V=sb zoTxj@oXN$${khCp8Shc4Gxb9hx?l{5-=}Y%9zD8*8240{+-7~uZ`qmKtO4;gx9Nfy zmdBg{;h7hv7O44o&AAZy@-f_>4~7@0+WF1NdRon(Q7}AclOyI>uJ0;K8FLlH@iJ&R-_^jfXfoebj&kN+ zh==7EPA_lngs)Nsa}UJl3hdih5pC?dYF5eI1mRJcecLLd9bq0%6?0t@ZvMY^p_*_} z{ePgv7OrSEP-A{Yq@Z&h6GCx)RkJ64FPa``W>+PunbqMQSq*8PResgYV-WAEn@1tG z*Dy~*1lKe#LR7A0-hfD5n^kVtHqXMhv<{1)y5<@93e+=?L%gkLo`Tp_pMAj%%!Bax z2blXIUInmkeM9pQd|d*~JP^pqSp0I8tPy%Z6#nNj`$1f6WDbR>))>7bN*!-(j({lN zgvI_Q=6LujG-YwJsreUtHJhOwM5%Ml%ux_Enwt|LE^E=Gg*gGf2QAET5N%tsmHRC@ zdb?IEp0{Ev-CDDisMe+rG?68oy4J=_g0b*h}9uj zcli~SP8aGh1A_YX9e_{w{pxjFlV;l#XlIs6NYiD|K++XRsQlMrSbx&aq}QNl>To+4 zd!}-?H-jLiYw@AI*%`j(9n4-3r#hJ3APRIeyF$$E$YC)Z%}(&O>ST6@I0=!S(l8#= zlpMNHKN-|El_U-Iq)`IVQ7qsp9Doqd) z2~*ofm}%AQATu}I`-AYn2~%mhnyvNZkLdhJDLTIjFw6jTsjKOQ&^uktvU>8$_^JrS zMRgcyVwdB-roZad%}fTJk=@KL5Kp_IIAN+*cZ{cDYEyTH$$FTbwe@AS5r0{2b-g#N zU+!V1fYRe0tW?e5%xy4mH^P)>PjtgD)uSisBTQZDX?E8Jjt9cP@j#WLFAU7=WyVM7 z{9c^qk6xT+``+w3)7$K+^PHjuqTupdo_+e5SQ*?0BUG4L(g(LHOvUfZ33ltt$)D|O z_S6Y>>WJ8#I_mnE-jC};_2VcW{Y?Wgd-Z4Eo&IJo9i?<{L@C`{t?Y$7E*)UfOrcE! z%mEOY2coBjsmTM){t({>n!ynL2bn`4UJODb4pTwF=4frF@I=@tJW*HH(O}cdt9Rcn z!SvdTGxr9YeV}}FF#1%ODmBD3?E0C8ILD{yI6sDP1t%Md)`UqzL%Cue4>jAtS78{} z`s!h3M;)`*62$DaMAvNl;asy_hjVS58IEQgrV5PUD6>c4J%(FRH_X(D9&M&mek0NC zFRSJwk-}wlWF$&=Srs0IEM8X2N11&gl8uI`%c}2avr|@{9W-ng(xVHSbi&Sk2L*NP z+`UJiZXpKStc4$_OS{bSS#IbqcC7%9!HI*0_6r)&qjyjr{J0c?h2SABb2NU${yEXi zriza-i@@D|3|=Lks}EyPozGR@v3R0ASMSE+0rXrA8Hd5=x%xN`&(r5>%3tPGh&1Ez z;CQaqjmOjOxhggR@a$C9EIrK} zre~p~j*s8aQ^!~BrLgHsHifl)PFnKR765N&5Nyfl;3 zs630)2%W{gT(iw#P+2jXbCYfki&=9x!ml}Ov-ez9vF36@Ekju4dI%a9Ch5#$--&r# z!t(Rk=Fa)%7@gr}1(4xp1(g46WVrBRw9-z&UAxk!MY!6kQ2D5w1sI9LRp zLc9cotK$ptsu!*rEaH^UEy9fnSJf9|kjK24#pY0LeQ-@!A6!#g-?{|t88fSvaFI(a z<(zC@is3X|rCY}JIdvJA{QEL4ow1xtcW=2l5GwUnu*%UD7>#&>Q0{gxp1Yk&F~e-E zqF0)6lXU7hsB`!B1A7cdCkt0|R-%K4s~;=5ru(cy>ke19SDC%^{Gx|l5giv59c;0Cx;|Z9Y2}r<{q5yHTPJTc&cVZ zWHL-9!e?q4wQswb74Cc65$TDlw8LxwF>?oU`a~rNMfwbVRX`|=ho}{yW;KY&P?SAH zwcg3%`c88|VxC7-2d`&Foiob!7|vL@7HXzct#_OG)T}y@8KHh`7Y3^km2)?St`IeK zx9JN3i<#8<-DaD(G#N^Esj(USdmVTxAPel*)?)${<~T%y&T1IR|SYIzX-C0dyW(O;rfheIqL z970Z`Rg1&s$loR()%&F0A2hpq^}x>r?c0YK(JJ5wx^lEScLcXQT2(!Y8xXBFA4Ow~ zR%wnQThVIHF|?m(75_LId$byIobA6q&JlW@zz7+w{yo7~f=_bxo}WZNj#j--nK>Yk z^{guNl-b1V2epHB8RNxLDbC`L3*XatJ^7&mPNS{=PzO(=)BaF}&!BVsPz$w)eb&tW z-)NQ3n#J%>;gz#y8a3^#nI{7+$i=%>X+QlNNS~k{-MV+`i(!V9`rz-x^5@K|5M$55 z_EYup9D3DL)#f}Z@u>ZR)NCG^Fms=#FoF-z6L%ZR*GCAk8_P`P5JCwK*;0{wGV9y69ITqTcMdlg15 zsV`T}5)g&10bWw`uc1L+Qs1wcLp^yKQRmL_RKJLpS=7So_`W}{u3yJ}IIrs8z`OH# zb@c{@&hskZCho&|b^a#q^LbVC77BA-ox5cg{Ev-{w=rB?RIP8Dg(0ThHd{ehx6Nh{ z74DdU5VP(eR~OauJGl85Ro%O2aTnFvyQDe)9$uX;s!sRt(s)t1?{T!G_gSO+eSA}2 zRLAd|9e$f}^!G}&JlrhJGmh}adr^&ez-qT1m`$Ob?;(0H;6r>IT~t>eat3@KvC8mA zc&EFl!X9xd#lpBwo1=4pb8wo zzr}Q+cjI9E8bI0U`2^)!uVy^Q+e!EnGe^Spy7^r9!>jskj8BEvBvOT*;s&i(U7zAr zk;09%CtwN}6>#)_DtY)^1Qc?;D)S6=w_dG!hLLQG2X#-2(kAZN2Q}BkyYvSY zW1^})sHPT+T^6e3gGw5O5fO8qw0IDOx4{pp^b5RTf1oNzVWC7REG+85N9Okzc;Ee? z;=MFGW#G^OFA+)?)OEa`K?6GCM^DaHAZ9)-eS^{U-Ajz|?^Lo^NadXheucjBPFb&T z%ipOwuQ3L^Q+r?IRq&lk^9CK_of`25Lo-JngHMz!Z_SzzUEiW-&Q~wr;w5ap8u1Qq zX7iO-G~VIntJ%?bj2}>O-{b4;fU5HzBh&$P`aMR+1FF$KD5IqceK2#YTmP7a6I;4Q zs}{njp;o%OXO3-f@B~ku`ZTr%=3sro5VLtv_pI^pgHnjGNyU6XXWOKLKjJ-d)BI0n zTKrF*?h|h2Le=V%Sq?&d!Vt4?{%1TGf2tjyG1zzej2Fb8YUXD=Zy6bw6Ob{+ECtad z2E{(5j>RC-DV6sNMv+r$=@-1HoKi`?Vk|wSMto)8tFK7qp(^;ztN_vL8;0VCD(o9d z_)xX@j*;`By8In4KMz&4e=#mR#JM0a_D~i1f!cnk7W}}I;-Sj;(;SkCry`u)kLd+; z!R<;gFt~T`j`Z8|R<-RX>h8As_!C3(ZI$g8%5huu{Dn?;TOI#}=ltz?DXc(TJ6mNu z?#^3g<;L}lRT~qgl6zQ9A-Z~4RUtNcST!KtdsxjNYQ?r_PSwiTRwszKajbG4YgFYp zR%wV4ajXE$YPcB3stA!NE+Sl4o#I+FTk2R`t0P3VcvkzwJO}DfI!rh^lum^vu(^20~ocqH+SO3w-MmSUn+9dRl!T#(FX|J*^(_HT1H&XshAnVKuzG zwi>WFlC1hBw6a4WTUk`+gjOYw)oM*bt9-K6y4^gYb`vr!K&^Z{G=oZ*$SMhiDv7LY z5J8EoT9}!!Es<3U!b)UyfT)!iHcqO^iLLTkPTIX$+ekbxs2hK`4B{VSj`_Jw(xDRyT;n$)LGP{Yqwa$2_d= z$&sL`HYT_FL1ai_HN@nO@DvvQjZ9(XhkJhtD~Cpd(TS9;x`LVD1qX3Zc%os%NRJDiAqSTYVwsrM8AZB=N?Lzzy)1yKkyO7ORpNiVl%xx4yp3@EI(BxrLT9#pKGgUE{RX`glqL$@CJ+Y<99&=Tz+-P`n)t=nw<#Sb{Jk~JJxfJ#7odn9a z*Yn(JR~~BwLJH-zcI%J_;R#fV{(luwne(COY@w(cna|4QNqcG-xjK64h}ZL>%X7qb zYGQuN-}4X!H?82MW53Uj;B9I~A*-UARKW6udt(7Y^9!PqwyDa6(L*N|v|7Ubq@cA0 zV!EHT(37_KFdBVMfRlwL3!~$5^u}t0KW@iL zRj7$oMBVncT6=6!{zcHSwx~r#aF4gBA4O2!EoxX%YX*c-%Bro#cehfjU&XDoYGg4q zp)KlqDfFM?#gN-ADqm^b@_^zP*S4sw#jS-9Ny^|R{Z#@LyG4bUKm+15%Be{uQDK}y z2`q@QGQy2ya;f~K&|o;Nt`IQZ0s?mXK)_@Lb+@!t9B$a{2Qj*gwaep{N?yrop{A6z z3c|gwEb8o*@+oI6fjC?aP3D&BUEW#`k)VoIMg>$r25+gY70?B5smoQ6|JD_)YH+Wp zh)&MdCU`_*?*pr}x>^a9%4Vvl+Lf)!aKlzTb+@ur2yPhc2?1N>)b=V?X1HOnlE*%k zw5l~2qGMfsPgAQ|)vZK$k=m!ss;G^9s&X~7;(h9JHERq+gX-2ei0jp@jSwShSo0uK z)Wj{{r+U`3YC`O)iGuA@8Eau^-=`+jvYJDL)xto^sbyE~YoiqVRE7YIGq-A^GWMz1 zb#Pnvsdja&t`Ok?Ru1)|4r+d%@~(?6$@v=qfm~EjDeK{Rz*+HAUFxBlIX{)ugL+mS zxRI%*YIuD#PtI8Zb*?_TJ!dbyimq=Z^LRYJ0a_Plv2@C$e@vCYyV7ITrj>;?RSnQ? zkYWR?9t1L50itC9Mmo-?pE?y_rH31tZR)w3TDV_r94)x;>l@gc(c{fN9N5>$s;be3`ks1ZnbF7^{GS1$Q)3L* zD^+M?j5*vpIzh~7g6ytTkDEB-N#a&GA9v96^r~r7jGHUf#HLmd1adGQqJJ~1K8D<* z&5*6fYHMq&yz1B7@_~DHb69_@o;0@x{AZ9D+X5}-F@B)8+N=86tt4t>b1S79+!907 zWA(5NT3AF&+*GRM45~mYv_G!VMiARu;UW20C2MUphUnZHqdKQL2LkpMLBK#O2&m*$ z?c3sp#;8qgt>#`asA0Tz=Psg-m9=n$Q#&iUD%uXutr!*B*Q%nnw8P*Zqtf=n$m-i3 zkK`EDwjZ9bquZn5#i+3M)@+Er9Z>oh)w@5k_O1gS>M?3zf86X!9j)q~l!WnV7{;VBe{8%Re}6YTM`G01Zn$qT>cSx0Fbs8M@=|xJg;stv$u2@b56a_$sYb7Vo=qJx(4=9}z*84>){`qJ!%#fU%$`d<$DZ;GT8Y5v96o48n^U->w2m4Z?d3 z*Ev-b?pZ$w+%EFre&kTO2eWd$!FU)Tqz4Lqe=uHYsOlSO!&2)bhhXsFTK84%A$Sqs zs?Vo9hFa<1M*Z7WZ`Zor4y3|!4C4}^!l~7xt~0AW!?@9)!h>{TQrDx0<3r(-x;7kx z>?iz1U^RglJHi?X@pFU~0x@@_H539WrB(G&c-}^+-lMEGTA{f5H41N0pH$V+XdU;} z#?e-uWVG=XI%LM8{DN9uT_1~wZ45%7;N!B!dXj>XW)sH5nj1^1CoXjT`>OI}tC5;B z25-Rk)z!(kwRy*)w(hHzQ}AkdZ7d#K_tmW_R!LQRoYh;K__o&*vs1BoecHdQ=?E@A z%^IU}j<@RT;J|~Pn2-9rwAwWu&HTRdpI{w>s5=A3OHIVMc3(x$uzD!(NqFkqSFI+Y zp!e0yNf;vTtE7LU@pFDl;M6;-#D6mV`ELwBoM}oJ`JD`btPY1jE@%EHgQuplZDerY zfAUshI^I_}Z~auV8MwEc!8H)b+X4t=tBg816L;`F=6hQ!Q2#S#;T=9g#h;CLmI&-) zXt^N5W@8+SP%Bqk)zq#zXnPSV{~A2!JI_TmMyPFTtjg-gTs-U}RQa`56LmNQ&kfof z&B$=sQ$>4jYpQ0=vw9===RE5Y#KrkoLlL1ulyx1V>jG;hMEZqj6tK3?y6O?(9=!<9 zPsr(utvHZs_7dwg#OS5gD~QWmt#0c2GV3rjW-iBz9N2~JRx|Z=1!u4AN^1|$w;j0g zL8~x|!0sw*G(^GGxI0{y$q*>UI0{>XmpIP+hX3Td$~ufOobSde5^fzl>zb!}|9o33 zHGe%GDiP}CdQNV|25T;SC`c*QYa^cBT$<`CdL!QLkoQGaPjzk+2H^;WVqve6&G@|K zqIFjbwqPXY^7U5Tx8gfB!i_>Eq=KP<>(uD&cqQRNDhQOXp4zs95ehlbV~Oe$YWYDd z4MiVkUs`n~6d{pn);z1j3hRw z^hfYkPy0?At-pAxN{x2;t5-)5b%UyW6km!PRF+e)aPKIxyFt}DW*vpdaN269S{z5V zHmEJf@y){VXaDe2W4`Umq-vkQP2zNFs4FL|qHrUX3aZjc4A*Z}|C3fH&vTUGww_*U zY_EtsD$XfqLds&W_cI6SA?KF8N}%O!G@td2Ob;dTUdKZ^ zZV)99aTR;B-#8F3vCV~$@$-MfxYb~e%(0`V)T6*usd zVIzU6)J^=(z?SylR0987)-Z_8w@{;3)#W>Ad8Kbd`KlUo+bZfwTP+%i{k&Aav5#u2 zxOdP=I8I}=`VLwb$7rsV3#vwUF*qDjZyw-%>iS*0MIBPnckwpMpUXY;m-0OF-M7~N z=fgD11Jw5+HT;1!00I^!XuVeI@e1ClpM?J4lbspmhutJ@FjHe;r&0H$* z2_7DQCUE8nig->%KjAot-$F+%t8PBU$H@xy=_!V~bMq}U+>6if+&rf~KEq>z+sZT@ z(_dwbz=Q73hQA;J?em=KZ=trcMxyzhQ?5vBvesIM?$OZ|;iC$hNbsCm8ijG?go)Ng zDfQFwdP6+6tj_<5VnpE$hokhuKO_lXSXp>OOrt3F#GQyqErQkd3_?+Mi z1eQ@9$M$6X%MM`utB%hIOw7U81-wYc;HH4@DH+_(?Q%@!%EaWZsAThDa9@C(=pzF5 z(k0e->;TTiQ^#jq&C9{h1^g(@AW}e?2H21iCAEaKY{)7v1T1O9;FW+6O&Poq@U9Jm zcLMsiWAI+UOAS5J^{FNQTldd5+f?{Iy3kxpwuu1-v!X_jL7>B0kn7%AQqOi z@TR7`UK1dW1Gs+TIXn*Ad!Frix?yk5O)oOWC8*Kx&F0an36Wi1c7kSwQ8u45|uf5}!eJ0W&=r z)XYQuk4qow#iX{V+)c=!t^it7hVs@Yu$-#U8+%*>G$g>Qz8+xx7eHeNa1Azfe8%Jy z9Na2@c^Jo88nT*#nuJBcQ1U^8}RF1{OHL<(ORT5XZLYHkaT?r;TMde&+273hTEX81-fM*&U z6p&I!IU?Yg2FC^LDaSTW3HaqI%jB$(ty<-RfWDPjo*0|*WiwT zZra9u0ZXfMlt9t^m8m&lg~~_=N)O7QaM*-Qt%Euv`2p0d|95%Yfg% z>=wU4RO}YNS%BT*w-NaL*&pfv9`ScMK4X}EHP|a)qXzp0Jk-E-NQfQhr~o_82?2JT z(*$^ZV#$Hr5zje*b8*4(8GQzG@Ff97hcLJzV7g0_YeFt-a6>@xp&aLy08@iI0%+fF z4BhtxjM3nMfG75!_At3E|2Bv^84Wb0h zn!p+_1!SGf;I#l(>?us%3fZGUw19QfSmPf7lczKID4^U72A>7cx>4l)ivZe<9N?P( z`_BE~@t+rTR-VHuv9P?7PgLN08Qbw0W9lqA4QT9=iCR> zpE-EC0NNWL7H0}rq`_28#t;h|OTB zfaIPGmJ1lJfor9Z2u)TCunW76fL^AIL-vsFMh9@|H#JqmIw$kcjhiTmT&pfJ~kg5TU_o0V`9n##sU`&R4tCOwNnS z7H?6l#q|461;R5^$FnA(hhX&6CbS%gk5dwZ`U}`}9uZJJ2M2Sk_A`D&%pwkPGt=9s2 z6l3sKK!)NBq6M5T!QdYOiOMnfC?J>s`rl_Ebjkse`9gq~ywZwqfbRqz&~Rko2n2wi z4&eHUg{8TF1jixph4krQ1n9?i0PA}?KCJ(Cad<)@r>ikYEMRJN21x~sslgz*fGaf_ zq!bWUn?Y&;VRaa!5%70C2I=zC^OrMvC6Gx5QCZQ5K_&sY8Z*cuV2cJm1nyB`X~#Jf zHoF73usI!{;nkdja|;M+6`P;Gd4QGow4vp## z;OeO9`1lZsi6Jhdwvh8fI6_?kGlw#$FJSyI1_1(Y3}+B1fR2|yqKyU6!gzqD0=&mC zXs!YEzl39%v=o&+;~2CSFzGJ_Z3WP3d01^Pz%Fbj0w<{S-?T=M1Gx0v9G`I*I}XA? z50{W3)0p%W@KuA}0ya%&jlKfthzl6$FW{910|hjl$r`}|j%qN(0WPD*Y*rcO5F>mJ zgAoGgAPgikNAUpc6^x`FBr#_v;cpLHU1HBT7!=Q)JxX*EFjq{2Cgqc z25a(7K$r&q3h4iudaz>_vq4eCYO_ z<0N(f*LqUNXPo(mgOdwr`-MSD0kmHPYB03`+hSS*yp_Z8#BoR?Ljn5zMQ*p_IRre=AeVse30NbKfcu_t`291VkYF!XDImZ*Ap<`F zQ#B|ofDVd5-irvJ9V!5d39t)WlE7zb*0gCYG|B+Dm~ai3lkok?IJ|-YUvCDL1pJ$o zK@|aX+zd=sBQT%Rz{c7HY7&sWZ~^K#fYYq!a=b=c?0JFk1_Edk41k6L?)fojB!D); zfJPGm^{O#wCg79?Ed&_VS)-K$T*lQJOxifaSY3-jI{~y`29oI@pnY8iodkH)W6(uF zy7~;d3TV-QL3aUkJPwSy3?XM4GU+9Nw%LG69|4^kG3Y0tSQ7>V1bo$CkbsX(S!1vO z+K2;2huQ%BuUbnc!$pM-*@4PP0ngeo7%d>IJ%cd2m?+>y z4+1XZZy{ZJvdR6rY>W!Q^4cp40bc%-~YR;WU^OOzO7=gPXKLX z4XXzU@WvtOv6nT#5eIN@KIZuN)FA|)5Kv(=>z@)3u!Vu^j1b?gOwI}Tpuq(Jv{4DH zUJ_vE;wpg~H0r#^Db>)p;Q-FoEyw2s-zD&z^c%VMaD)dA;Ruf$pHU5G9Kl|=06O#t z;E90v2N*mPFhzq10kJN#hAF^xhd~qp7iYug9+Q`%a`irg*8uA}NDx0=6Y%kVC-6s3IVqKZ9xnT-*?olweXrR6NQs zs3l-yc?NX^L{?%@Pr&r53>pYnP>n&u|A86|8VSI@HvIn8M9A{mtkO)t$vO;L2%z(< zP`p+Gss%7;BOp;z2JHmUnO2C>K|rOJ3_1b0bWaRv#iWa4P_7_VBgWQV!lBVBInT zE@P*VDa%=9w*XK4IFDTH6)<2YgM9={N)$T{k;Xv+cL>;j5gu^>=i(Uoo=`9yRRR5z z4(RTpnZ~CbuTcyifBnJ9U>eo;rZD_1y6p*YN8(3`7c;`iOz$ z5<;h|LFI)2+UN-2l>pk<2;hx?t4|rc6F>*6LF2suJ6j(KL{mO-wi;=~IKagj{pxs) z4EWsx;ok*h!Di?WC zI_r+WLaDW z=>-h;Vvtcl(j*Kr3kXfdAgcg61P(@h1+-4XAiID}=@{hnqu(EXzcG181=-e{H^E4L z2k?z5==h9_nb|@i0hO{c@E5Sbhe1&RVc8fI7l8et`1x0g$X81AO)gd`>i|x)yyJ6% zD-l53!y9C7*01US*01jPj4}B*xTb)D`5Dv};Hq7SNnIgyj2+5dU%;i33<3mnD#IX9 zK&)yE8Vj(q)r`PWZuU6Z21Z*tfb-cJK9>$ZUx&lnI^o8?x(wP2*k6x9M*;T(7<3ju z$LAo8t^^KKqI6;oKo19SqCFiSpQlIfpS_7(q6j!bk0SJQ07n?$_>6>YICzkNM(r64 zCV(*vvjsXc80G*rFv9T}{{(UHC;?&JTufX-=oCI=VXT0E`!M)Rz=i${CJ3OD_z-21 z06P~`2=L}m`EWQNG^RU%vo(`_c>llz?Fk${+X*+~{>@;nfcKLb%o9*`Is+wO@hk=l z1*D(DV6lK@a~UiZuwq_3e*axA(M5Vz633mZc2V3OK)l!FmC779a|{Q9#XA z3^oghznZ~T0xqr~Iua0Zwu?&CItHNv9&TW;OF*4X4E6}9y_tbqz=*93_6s<p@0sj0MP%!gwRG} zi1S!LtaA*W3b1n#L0~OqtKI?HYJsM4AtddFq?Q#YUZvl37q$7YA z5uC~RiZwDifa@o-<1-e#k!WcG2Plo_ zIF1saoC7$G3Xac6T9AV)2}oR;K@|cP8StqQpP&EL9l{oBIz9@g1nLmjL=mu48-e-` zVEq8cXKbm-!GQwkP)q1HCV&@S%o1_&_d+uQ_@cr1*P;!pv~&oYZ0-1rdpHLZ7TOZ{ zNf9!%WzfL^tl!D;Il(~$PLciyt>4`NtZz6z!~75W-yq*L&`;S95{z!408bIVg!6H9lmfDhmUf?jkJn^OTdIB48{uRy^_IS z0`9M7FhRhrbqpp6D7lfrWC0y_xtL59Li^Mqqtgj&rJV1d#dmBLf#3hQpX&fF$~?zs zJjYRcFrWl1zQACifC|?bEM~ytPv_fAmJ-2t6sF|dXRyKnoW?50XH*L3;57oiMKD+= zAm|N)4FW1fGuR~H-A4wlEke4*Fxe)+`x}ED1lCZt>?sJl9KhMyL%!=2+zzLeqUie^ zz`+L`pV1-~*W@7qUWpU%_;*BzO2aD01kfIQFnL12`%DZ@33!^5!5IO;xfz@jFfJd1 z3j*#HU~q|mi*sJFAd@Sivf7WqH35eTF}NY1kw1f50%&7DWc7{!IztuUo&dXk9uinh z6?Ujv0v>#e*dt;(-Qf8l+NG)j*!Xm8KcH>0$Bu9n!><`!0&@bb_cM5oQ}^ZKZo^m1GsdA zcZ-agYkpRJYj8HLSC$w9DosgRVen`fImT=C>0S9p5 z4mmy}%OwszO2EYtu(2d1dqPyYKVooN05+H;jdKF*G%gb0_J%zsN#lxW*fy>c;NoJN zNz%AQU>oJL)n`5a-*pIQ^uFUW>OJK|9|`b|WbjzPr6>l^1Z;oFAW{H!rKCio1RzlY zuQcHQ|8+8NMa53$y#PCzj{@vuVhHeka<$^pe}oso_N@UKZM!>G#1bP=$#7K3gM;QHy|_>ALOIk=aA zrg<6k6;LUkCyze^goNc|m0$t&iZU1~V3SUCgn%ohSYxz+pXC^g74TVu@dBn-WQ|Dx zE?u?>noJQDyRg#*bke1tB_MSTHZoU0Vh!dC$gQ)wP{1k;mI&Bc%f&{P3$g2Hl>pQc zb*Z%i>?+zIz^~Ko@_XS{oQv#0!=m(nd*aj&7umDzhCMxz=8Yy6M6V`|l@J~|)uLNKdR7&QpfFT;Z z7hq@nqX3<(%ZMSucV%-QHu6nCKm7{z!vS2_Uyjc>(uVb87jX>OkHB~WV)Qf7Q$TlZ zF_8e5-4v1vv2T0|0d}@h3;5KR(@iVDe$~q$z|MGP0d_`w1lSqL?h;~K%|#%F+JAWu&*(jrgZ%^q4q)Ifpx!_R#RQztprnAHp}PN-5z=IPT~xl$zXzj?6VpCE#RUCQw3l*Q%Yur zfFZg~%@*K#uT?^XoDAVON&t2_B_oRj*bQ^30J|x!5MVdO)dK9MxK4oG6gU2_yg|C< zZ4ni_DQ*{FH^rR-?26wbz;25B1lUdSpa8om9&v!nu-oEshZuHKJS6~|)lvnV6<{~T z3j*vma#?`g6t4-eo8nCYb~|(35n{Ki`vUA{^hki+j2;WHo6$1?b}Nb$V7H}jUyA{R4Zng%d7GS;1I;vHd5yv4s zzQuEVMyv%~>z)FX28jfeXA4GB0otUIf&k`O;0TwKY$LU3*f!D%aM?yO5V=orHXY+Q znH|8{%If%xX6rdPn*eOUORXcPfHqqg&I+jYLE1-2z8vnW0?FwioDs}~Q6ku0C7Xfw!bQ54#fFZ!HfZhV^3g{=` zfJ;}&Kp}Po3?{&BC^DQYZI}bNJ&bUCP7@m~VAUzsA1h$=Sq9?;Ts+TU5&@bIgx^Lr znIbCLF0;yX0oYua?)EGJ3$8JkD**fSlE!=ir>`?uC}8bP21^7iy{W%HmJ2DM3%g1{ zmU|p$t$;KdY!J}(0c&g)&`yJG0>U1$MyP-sI+fi3*#C(tU{V;XxJ4zCRyiObOoPJ$ z?E7*|fL-w?1=tmTMu1)M=LMWRuiO76A$G-I6<}BV4FPt=-xgq3{5=77#Xl5aSA4ht zR6O0Qr`-Oz0_=*95EZ-PEdh4LzZ76s{2Kvw#YYRUEB=E3yW&3!nB>wG|5b=x@&5|2 zEB+UOC3LT*KjzHGE@lJn5OE!!6P$nmf1V$B&-w`+!1{@8ANs%j`JT)PH|kg%A*Fy~ zQ4G8VB#dT|PQZk>3^EFctu?X;n5==XfbN_vmyturPMy)*0_>dU6JY18pa45(g$39- zD=NUwSqTAl&Pr=Qzkk_TD<>*CYeq!@cFw90*g*GSr)^vPE&rcj&M*wz_ zrUqAEz(Q@Hp-af^@2t{TK&O8hG!t-7gO&nHY9nm~V6$mTro8|=pPdBQISV3ynT_cG z;qm!b$?inXQQ5HnG#TkBaqOJ+5n$)6zW_UDg9O+)8zR8Y*>D1su5mg8r{Wsr5UxV5 z4h|2B#o^8;jBR2bb4QcMGZPC9Bv1n=-%M0bDuA_dqs zq6qNM@r$a#2LAtg*p8!<>z zoZkO9jap5aq!*Po%^748V7KzD0_<#MBfuTwN)SiMDH?V%c?8(0}2Y*EK&*qyJ006Wpr0_@?doPZNOI9nA3tTGr>A>iViV^49apz5OXL4#TX>}=H) zU|Ve%<#lKo$20CdT(PE<(7qr;n((;%VSVuvsZ?w3k#daf%4Ct8GP5vm1EEk^{JP!91`i>F%9#ArZFRW3o2W*|e*JYoo%mI^^r zFCl2EBLvN0g!rJvyZJSuQoCp(85m6ugIK5q&D4VLlom7t3O<@W1aVi3HCoX06F`~{ z0zq>+AZV%v#BnWX8U=hb^#OurG(bGkVyk`YXo>(R{m%_Se+fglwV;1E;oGJK{W%98 z{pSKfzr91yZ{ZO13pd1LE$CM;_~^$12>MEdpqFI`dJ%<)j9ZxH2JNK>87MuzAZTER zps^N$Mj426Dt@h~%JC={vy^|UC_gp4R#c({l$}}A3eH{O_DhV8xG8?DSTjTN;EcA} zb)vF(7cJc0->+YvZXpO-`~QN9Izemx2vScT&-Ef>oBzObcN}7hxnciHBJ12r2Ruo4 z%O5oLZ|QFRZ%7d*SxhSX&6289Cn}NGhCf-Qze3pj`rmOruWi43v&^l#&r7{RY@B!G zS2rq~dQ)o!XLYx&#@Np*^mlJIl|R8M*4ptWK2kR-wPUF7^VMD{QM$dh3f;t6)3T}1 zdQllw{(4cVaLP-?dQk&)GKFA%dD=K-k*gU{ykfNh4O72m03Lr zL}4(?kaMh=w}0vX-L^-+2W3g^|G(@!`EQ8y+{b@}%uRNSZ`Fg}sgDY46y@cG*^mEA z*heL64EFGMme=d~?_Qsja-+h2=b2Te0{6H&p8koC7Sj0cAK1HSk@nK7pZyUuH_HvS zgL#(!%UNb+G>J;?YEl;O5liTDhAvO((ts|ZbXi50&vZFVm$h^`K$md3e4tANUGCB4 zD_xe;r3YOC>2irKljssmmnn4VOP98E=}?xwAV!e$U%CvX%Lcldm$`JgN|()a=|z`qba_Y@i!QV1(ixY0*gzZ3u5@Wmm-%!V zK$l~58B3Ribb0As)ikQ52hMr@w^>xd`1D+wmR((+IwrH)lH2l(PfsW`$+2@LWQ|V` zh-rD$%A!^tPyMu-hO^_!Tlx6p&PUCoa^P@Bj}}q6;?vV=S|;^=<(O2eQVSkE>$Ql= z6PKP_>d0!BZvuXHO-rSoj$0@e3XCa7CNLVyhT*b`1JgmmRF5EY~_zn4>1I< zID<2+_Nulmqv#CVQ7xl%am z@@W-S566)9ZWUD(r)Y+@iYk$e9gK#gYQ za59at%)MxJ)cqSZcai?8a=5T-cLT?D6GzEtR;aP#O4Gt|Wp3-ZR^W6PW7nhugI~B0 z41PH|We~mh8sl&ji$2Ar7tUbOu3I>KMZ2=Baa=uc+=^yzan6c%WyS$3+U0f1aV^1# zDw?IeNiO$>$uGNR^ib|(YhO+aZvC3l{1S}|yT*NYT(x53&>HgG1w#4pb+&WAY&f)>E^F|YX;Iwy%D|y8tlrw+;RPdO`A1qh25I9YdN-Q)~;08 zj#<0Ti7Nyz#|U-X@pZv;6CtIWsM$u&LNsSMTe48$0T+9uS)#-K7q~7%HVU+&~6?RR+2DHW-_sf2-Ul++sUm}K2y4d!Xt`o7#sovc6 zY6izOH8Z)~zgEA#RUqFU($8H8gk6J+IIeL;ZC9|-Bu8wj+7u&lm35c8{(6MBH+|X| zWoki#T?w0z%YDv#ouEe6dla^~6$rbg2RW{zUCHHsTj0%4->eHrtMv#Fc1_2|jM|lG zG`ZY~0^Zaw;!R&m#;92!?25r=gvJSX@3C*L_61#vQu;&BPK#>BGyob{<;niha>>UBWhWnt5M!Tz=QdE^)3j@?xYlC_HO*dPr!?&f z#Exj}3N~V}q1>R5X+E8M1-ZljdDFqyXFug)H8wcYTciDhoz2)4Yy^Ddd$#gux=gCW zwIcD{uGDYaBu_*il}7paaZqz^GsoN7?X%K%rBN0;cl{%ySE z-t^gNx0`=>y+b_XvbtdvVva>n5JA+Vv92YS)XWj;j$WpINZ+>mjnEp0GCK-b0IB|6pX*E)RSUYga~eOzkT8({YuF6VGP1;ySKk2_4sPESc9a zswa0`SFlK4v%zT`SIKl7*{-7eZ!m@U~ApQi_vujrj7P1>Z+-WPm5A9GC zMT=#0DFni&W_$Q5j)t{;z@YxI_Y z)Hw9GnU{KUrbPm`|Bm+!l6o9=k2&%_f9gb+C{8b|yEZPl_uhE_BYRO^c>Sdt2)lk@ z0kw9e?d!NAv1D4aZiC6?Hb1|wGej@_&4Q)QdJSx%DUPe{bjP&^tD1FaF)U}+u6tAmY;?zVmZIhvy={Ul}hV|A}y7aVfZaScD^xN2h^uMW+C1-!<3cRvN`oA5uiyQ#aPG95 zh!nw^O#Znp*tlCOJ`YImgL-6hCx7&@LIaP5?tpxsPM)f8ic~9ODWqOSd7_8oiZjS@ zRl}-B9a?#^?Fu$(bR?51#g;xf+=JeIN;EkTqYUmBmNV*=j?1x*QM)FsbX*^>a#6Fl z_*qK30yjFY5xX4MQ~W+-Jak_h`Z><9thdST9{jYTmnF8i?zmFjA(#7~_n(8i*1Aht zsUtzy<-)o^?P`Suf!gKu$#IRv3P8;YVd)>cf{o(%Zbyj%rvztmUu+R`c5%DwWb^MN z3G8KmdDA+sfb@>5UlzxeESKZ*%;UJ8d7)<@Q+QZd&%s?tE#EQ_5x=#32_(tY#EPg&rO5N8)g9Wz$BTQ2{SF|~*34&L=;NZ~|yXyDBZYqpF>?wIFaQkTlHl}N(HAnZ!M)^-IO NH|A0b!NHyU{tq(~`0D@w delta 377751 zcmb?^cU%<5-~V^7ALY2hagA%-9f~4?ioIa0v0|*TH|zx!djWe13cBjp#b~0&0@ksM zB^tX%MU4#=dyhtq8vV`8&Mo?UpFe&Xp1fX>`OM9}=hJ6qXLfhpjsj&i`ag4Z+|UY@ zI&~`_JEC-%^5tWbx|JcyyrF&et@=5V!V&i9D z?ymA*w52w8#;)oYn^bAg(74`PY|dm!i?~Xa%f?lXt>7vdi~gINuI$=nNK*ISgXgAK zDxK0l8UOFU{QtX8{-)dX?>Xg*Mf760DmNk=#Et6}B}q4dW*xhl0_Ud7dk^TIG-58Q zc)7KSNk2C|BxPvIz`?z{^czx|{KUU#=i{Y4+`P1Ns0_E|^NV}<7QIbiMHPE-{#Ilu z&Ih_!n}+h^JO(ZjoN20$l+I0e^6v3ArGSmfzgR))n|pHfLpyA2#V zAZ0FS)-xqcMY*pC#$PR2mLDJG1p7;x(mN~iLn5OTLMylH0YFUg6A4q7^W&AU539ceo5fE9C z=RBcA=6*5ZTn*4A!cha^xj>id)m;2?j{}^&+D4@d7Lf*b8PIobx`%)1bpY3}UUGDO zNs##Qt{Pnx!Oz|nfw)Jy2g7PaMM>Cz>^i-8d}BjGgn+=CD4NYpAL+wiQ zw#l7k5)Pp-!Xu+Gzpz5Vd;O-p-%z z?B&F`&)wZ5lJC|Xnf1qoUeNeysu`;iN5=n_eZB}52(^$<>)!uKs0D;7HS!&y zUK8qN)4vIIj8KNm&xE>8sGe&C>J6b1?+DZyLZ$vGPzO^9S`6gj(J~La672 z>K7p;)H6bDsV`9L2vt$9A-^pp)RQ4vLR}=(){lBZ-6K>$xPed~2z707D4~waQnB>$ zs|9ie`Eg%*82Rx5q4Ii|3H69jFKkvqogmb-asrh{sKcgk@>>C+K2LNK3J@w`oN2KMl}}Cx2(^1pUqWpl)YO&z2z8TCtquv)enLI{a{&2m5uq}32NG%} zp;Es|NG9YwLQXs*P&tG;WE)I=J4>j|)5a3&XF{z#IF3+H2{q`vK>a}|(-VQ(L#VPP z$CH*13H9;BBtm^6RH@XzClm5EA@_}#N~k4-id!U5+X%H}%rx@bUxfOm?sP(JA=Ez| z1!^&&8rDxIznvr0<&+FU?I6^F60-^QJE39|Qh7qIC*;^J0=1J+(YpcpZ4;qdBrYJ- z9YTdj7ZNI$Py_4&^&6qCNfwdcUJ=T?bTOgs6Ut#+La29yx)rx1m5?6^IoQ3FP)`V@ zJ->`l`GiWZvz$;z33Yb5K%F6!3kcK!LM>Zb=1-hUej${1L*y$={Yj`JXuJ4;82jgbKa-iTw5>p{h2?<8Vu!P_s%s zlwj&5p)~nWim5C@DeawPnA%FH_S>cMJ*kMiM#xF05Q(VMgfboKNT_9ms_wQa@Na7g zH9qe))5RuSrEg`WcOZ|4bRs`tczDM+ZT=|RRlHon4;`rIu( zZAcj<&ixs4i}P29l#!qr!>x5@J~l8ZY=3|G2^Dk0bN;CT`;I%1H|JC;1q8QTtZgy|l-WHhI z2aheN!}K=%%al5NLWYsg8xhO7_}Li-ko_dq>Pf!9pk|>VkLiJ zJuf1U`3cO@w~2@XEuPb@(CUV)0BmfKMJ*lPixn zjsa=?y(<1p+GI(3JfV{Zqxq6yaxK19dL{m^>2>&)8CAF%Ckc zj@NJ>3cJ`pp(@{Ua(lkagd|=uwI(tS9~-N$&;5cUsh%KQ+~WjNO}djE6*w8_TEt90hWJ=p`rzd&ZmTwfQ#- zwS30UR)7`>YF;)K3xS4BzYtt&>LLoh#w>-jZ}%i#JGm~=ELM{s8Xi}15C22`+kQ^u zTgpPz*Fh=*I$i0ZK>KX;aoznEd;TVzz_+JDiBfp0ar9R}t*uL|I5Vr|V&EM?&5 z%+mAYvI9ZviWC)cM1dIhc!ZKaG-VRP$Ah#VKW9#TNqR>F+K6vGCzNkFdm9Esjquow z8^uj1$JgZRA>~#_F1D}G{^y73v0H$&_V<(uVwU-ZKQ^3Oi@VEb%uQ3{!5d3loY!p& z2Z`I_gOD@e4r}w7K*8@=U_`K+`Mtb}cWn#i6S@T`Vi4LFO)Lv>lZ_}b2u(W8*C_Eo zPq_O!58(K(JJff8^jLO(thFLNyo797+6vzos)M2itY?z==2j>Jn}HAYU!_2E}+Y7Cw@ zGPL}Wr6ELe*|G%w;?fv|y@3QS2FOfoY4{%<-{gaq_vH4Ye=G2^6%lv^sNg?m#qoEu z>!BH-)79Ky0Tu7i< zHpIp}l;BEnIsCI9Z*ph(S>wO`T1>2kpJ{az_Xl5kvx$GY%BaTk73?++{>G{>@M3#s z6;{DRlDWTB3}1VwjohnoD;S3>h6erd)J8Ky%~8~I<+ixLf<>EKSvka+ipHTnTh zdhid0i2&)Z9B#!wT^)oP;Cax0HTc4G%S!RG&Bgf(OJgZxe_=P6^9u@>?!DD~i}fw| z=W9#yIPUBIQjVXovKF@mvyNMw3F{Mxg7 zp;*T=Fx-06#x4Aq#l?|H*7H5HW4WDVaPp^;FI-3%akDn1^LH0n`Mo(tK6Gpy5c_J5 z3Jtv)8NPGK-^xCSfHn~q!`Uk@%L9TBw^8#2i)`eQypdXxrf_BoLOkQ?92U;USKk^A zPJcI2&Bt!3#O0E}Z@e{_pS4A!#`C(b8zHtl0uZTNU+nUDRM{zt|jVE~c zlG6OGtzK+D#MZ~JVhN{=dy9~gw;D;-$K2qVAHFIEUj-81k5lrESEg}S_zl}LxxIXK zIEP!#pM#^ojRp_Y{I9!Sf}7u>Le)Jl!FpV1vNHu-yUF99QurFX{^3vT7{zbjJr1mI z@Bq(b@DvT<^ELO4;4AJM4;nQ@7uDK70`$GJk`(yL`^SgI$99T~NgmJ>F@$Gon4z(t zrgq~{V1J&imI%Z+N%|O4$=A+J1wVY7qec=g+j8cBg;U~b8t!J`p%GwzlLspP*^%LV z(y=sfvMK8C*{|=oIKJ1RRQ}#?so+Mn?P`9&(Gh$PMC?mL#PdUM_#TJSKu%-S7(wv& z4yS_fCJ%52fAcSo4deHp9M0c3K0*=~&!0Upj6Z$iB}kYDRs6u?$)Itw2P)*Wc>aeO zAI=}x-JRcfDolyzfS9QoXNK{W&Wr?_?-2aDb1D3mGw=A23!}lcW~k!O=@fq5*>QZ$ z(bC4nxR6y(?ftG`m&nmFW9+b{H6Lyj+6|+A{Fg0FHYL1{wO)=OgcI`S*B) z!7Z+WFb3feFCDl1diS&J-*<~I1$`z+oc!R&SxlGD*mCO04F&g>U;nD$-vewp@Vbo@ zU2J_f_}^cQn4hzy>E8_{+}kaSKitMR<34X=!`b$Rdya6xJt;Sg4FNjk-1o={;7A4c z82?RDaYymrQUSu>zXG|}h)3`!goBJ-bk}jmukd@0> zVQ3$2u7XKZg}p%3OI6Hz`fx51|J^c{>xNVaO;fmgSd>pQxV}L}=p=I&+IMJB)oOs{ z7I44V{8D(g_@!`dBGqAD4h_lYWTnh#7x;l90K`djrG_Xg8t-*DgHcEjFt$1t5BkzB(5X_iSitSD=M zT2mt100KF}89io-fhCEY~s_kJ(=osoM1tzJh-BDUp%E|TN;Z?_~# zG0f%|l1(Fnzeg_50|P<*mTBB2dF zFOmF6Yd0^Gyrs3fR)`Hwt(4p>CS11ngk-)3Xb<<+!=yhXDy2|6?v~^TMQC|Pa*`Iy z+?8mgLW5=xB-0q|3BD3-E}L$efYj9~VL-dt8471Um247N0!?2^CKmzF0SEml$zhl; zVwqZjg?%&zP@{AA0Py6!L<=(4HVU49yn6sdR0AuxGQPJFHZ)2X3AO-lOwu$qUfV;d zMY@+^DhUyrKT+$gc1UNjSZ|P5x@>;=p!%SZNBWw9e{}tNw#$~n$3E!^%Kp(P>F+cE zeyJ!utrc8y`nS?{q=6p3X(Syh6KW?lla{B&6D_4S8Vhe*OWV`h?(L=Psn@%^OUKBC z%Qp6wwxPY5`b$6404O$4dWaT3BulT+;)B7``?Q#!B5g=nGXG?zB$G)X$1a`tkHbUNkXhjg*lo*_L)+kT!SUBqHLWd8o3_Y+A+Fmj&MP$hja z^SL5$AWPZ{oIR!qg`E~ic|mzVnkAk2?`;baRtG^cPwX;#_GEytPkSg+@TBT~NIMXWrGJ0(qL$j^cR>&{5~Qy!vzm$D3yM3j!_r9sSk2+R}5 zsqL59ZSm(7=^ADps$7>Yr+RpNQ@V`R7A0;;4>H?g<{jx!%7ft^yDjS9mmX&3VZ%e| zYRW^>6X`-$JuH7J-NI~(S1+W)DG#GxvFjn{we%#j9_(*LJzV^o#U~*eCibw*?sSo| zwqWnX1_t;+B1?7%Q@J#^>;X+zBYiT4Q41nisi0KoD=s@s)8P9kSwmXeDq5za^O6x| zWyffP@8V_a==4BSMfQELFk2Z>Uv^6+6#F!j?G`wL*(ppVNSs4n}EJ^k|1uNH6 z)`0ew(OXuE7Ekq+?WGMC_m_=gxQzhNJZ}kz$qhEcjdg>*m%!%3Wj|BMfRVEEbnfkv9lJsHgceKX$XvA8 zakH!{Ew0-tdqa8Hyj^yJ*3Q}~OQPzM?Um_hZRCELgLd5VS6OAsS=KR`nihARlBwxs z7tYGgQ7N|P$t<)s|B7rg1zUMdc7fJT%a^^UJn*+=)zpG)w;s#hP=p6BW&ROy)hpR> zdRg>a*@gh2?ITWpiy~Z;%3sjpb-6s7wq2^0AEdR(f%0U^@5>Omhc@sT(B(+9sdCGQmUxPYXD~DW62Fr-$ZZ@~S}s*GXmNZNi1(>8A33sA8^tC*Q?z zhXD_iP3MOXRe}K}hN(c+`3($UU@uP}_~Z9-PDbJrjBFz}0BtFm72fS2Kf)-D*og)v zbd~$vWP6g_AB>qj<^E-cqn}(sZ5TgDo=_yQ5;jSdpz}9ftb$lmhs%{ztTw~^Vx1i= zf55OQP^de9Cra3Oyu2^Yo=+RJ+Asf; z(PGWO*;si9$eP+4rKDCi1AP6fysuesLU7%0tra)q#TbX*!VWaB=Ph|R%JS8_^64~; zhCYyI)7to_@>4Xq8a~SF1qvb8SE)#&f%ws&ct&eKI2CPGC`6NuII#Sn(y)Do;xUUuhybv2hGHH~g$iDgN*S9!PtlS3 zoP4pOF3Thmb=H9qA-T2vKNzBLI6L0dzaOa+=Y@AsvF%?A#kR{9i)}kERc@xZo>gMo+dqkIe^@QHZM;^QOWQhf#J1NriEXEB z5!=?^ro2u^ukw49O4eY3C|Ft+B~W~z={l65#~)Q5q#@GcxN;HosLyAVZd#1HsQiJE zNikaVpkwNY8Sv9pWrnT@ApvsI&XP+420l?lb-^;J3y6sw|1XL&8ASG*%v3 zC9C={#0x|`oTuGi9HC+vS%?(*BUNZ9WpbSkaL!oOLdrwcG}RPVn8fj_4$Nk#GD$Uz z@^Em9YTUo)0S=m~idP7RgfmqG|2+bZqYiNEEY(0EI6ygG#c=vcfay9{C6Nl;3tsfy)pA`vfaxvDf3uhmLb4@SN~^v|jw*lLxkIZZUXeo~>E zYB=YBEo)UQdjN#HYrm+_s+_>|$!6DD+Z@$jl$*|5RdX1HglXGUqnRCg`VJM^F(#sv z+szbI$e}yJZ}+GGg?YJ8)sIz_$NN?9s778NQcY!rQU9tc!?4D|AyES~y{1xu{rwvm zK*sa-a(Lo|>QWFIHp!_jcv)4PF@M#72>2gCIM^Xy1*uE=ZmZ4_&FP`)uBs^=@OnK| z>1f*-PgDtVVj+0-rRpfXY|ATEB5e@*R<%1=Xpk>ccMTJY&28#-^s@afwNx+Eo-d#HKp-B2YI7tT_@GP8MB zX`qda*TDCy)#U@Y1rWJJB%?P_q+hqGeUz;adqrsu?H8r_>7d$3UE;(M^>0Fm!Bxl9 zk7(`k)9N+Uifw*Zf2Lr)uBy9HGhZuEH&jxKKT#jiuu7hprZR*4=4vHGW*!~lw{UP^ zKt;w-D-HaZ!SJ{);1CsKnK7Ugb=+�KbJ-g$MX8JjEH{*U5TMfL|w*BLgt-HpvA1N z0V`@5qa6tyCuNqpg_gEzIFqg{4QXG-zP!J-vI`Yd|YjXHB^D6SeBt* zcLPy3XQ+4H)COJ%62v)d57g33bJr8-_rraWf!i5ZN2OuYxr1U|pIC zS}h9n52GF6x0M+{V)q(G+cG5QlYN>uVYzsWa>P*zKbM}gs{dRv~OKREd zQ-PalcZ1K1mi=@wFoj0e#Or|-Y4K!1AlgMEzA^Y=;E%NEdnTIx{d3XuXI}=!Q{1q( zft!jHZ!q?AV44LDdYjBa{flN*gj5o4b_8{$DcDycs1}uOWL(e<<`ESIPd$*mH)uMX zT0UqyHD!~EL8qwwqH6{nDvJF&Qf2RJ5af@^obQ9wG$xPt3bIlu{u&tMH&^xHL4I=; zj1G#V*07Ba@<-~62|@lyJu)fCAE}e4h{f8|#G-UYPy>q4F(ar~k?aYwHmj`QpP)b$ z$)DXp&=?)E?yWUJtyy&>Bm+OL1|HiG^pR%GyiKBsOYAJ7i6Js^4I0Ux_lwrO{#%fS z>i^>z(G`6Fi!Eih%N# z2}T%$A?59nHTWVOYtFiZhx{MJ$dJfje~eTv9_)`1b6jwdVg!v|uPO%nN3UNh2m2#s z$+y9~sQ|qagZ(R$3oV2Fkz(%7 zfHH=8{>TIsIR3{-Gki8Ic!|P4cr70r9Kg7!E)6KI29{0>j-gTym=f%t%a)%O?4Qe; ze+c%^Wvgcd`{xj*Il;eC|9mk&crtbNDGP&F(o|OY$6!5GK!?@A(-;*X+>M3ZvV(_2 za<2ioF`OFZs0`ZV1v5OyhM!2Vg8j?yYJhn_r!HV^hpzhhQ_+m?=KbIRu;x;5D~9># ziig1oAog0Y0*o5iDHKk>99*8o`TZ~~H-gc%&0wSJ!B?dqy@p-~D&7iS$|gxOfMCKv z!hNX<4!s>LWf?~iH?6ln2u^00V?uQ8Kf%b-x51M&L?ZaDLbF6J6yF4D(A)^i z2~P)W$^{5TgIRNh*8XGBpiM^7U`m7romD5rwq8w|L?}Lv)YPDtRf*HwrMPhwG-&K1 zZPTl2IvCg#NL;}QMkZ=zamPS2ZU6cpv6*HC0~qpE2Tb@*6Uq|g2hM4}0i74?oS;Ow zRtw*>(ClXk!9tjN9Wwv7QW-sn-4EOm$#{y0KYO(HP%Vw8sE#vsAIG+GnK5-s>*aI}R+11gQt z=)kj1T67bmeMR)Lyj|)t&@@4V@+{UGd@)6Xo}%@SHHoh}xy&D7Y! zgtn?xnyZ0A@pZPQn?fk|+O9dMW3$1R+#;{&2s*vegjVK@@FWHD5s03oST6_)W}epk zz{XlHxao}MCQIHyRyabPV8I0q!{Y$}A@qW|7d1=|yOE0rT-J1>Jly_6lgX-rz-yZQ z3@Q)==ypScPQ#KY-Ivd9hTFF^=b3qEQlLS{{|OH#?`c>z9f&&L-q&~-Q)e%@<&h?V z@*sPvna*m9$Y+{XEJ@*(Ii#nsvs?VN=8X`up!5eOr$AT(VW*FpJ}k;07x(_GL1*8I zL0)npEU}4Ty221?h?JR!&GL}Jl!tg#2upwxQM#)`$}sa#J}6`!<>8tpgk=aLJm|F{ zGnjd(Y6$5?dDvzQVR+aK5FT!ag`8#xP>3$J(@{JmJcQ+d2I;=BJ>&vI_X6(+oFQwe z3PwkSuuOCb4?8>|=s{lM)t4eek{Lprz}znua+bpURx*SoQxKS!(IMBEouYqiNDHcw z-^;M`@S$wTFD$oKkO0kKu}UFl7){y?j;Io{jAh>k_1q97ZYcyGids@GR7h8v9v)t*%Fx$I_7=y^<7M4g3VcKuUF!Q^I zpsfjf__*?rkcA;6Kw!aykP~#4nL8;&ViIc4FAk}eBoy78_7$<)qgb!mVQfskgN<Qu6BW+jafI?lWq3e})3+4a88|}`b@UI34Obecu za4KNc_gcLW4%<5E{6Q2g(V^RnB#8Q|bQ@_rmC)#Rvn=LGj361%?HZdd5ZwIDjb4R& zLOU6%!*uAd7+&B*mqquO)kCmJ<+G~i=xH# z)kS%RCFszDccj6mTDp=&5yA}jeXENX_yE(tpja2b49>2)p3FHOAqGKB58XDZ z=L@}cd#K;67@&JXqh;ApT?fV#-U#%ajH07=40^fL{INQ8M2iH*;|V&}WmqGK5YuTc zQf2DyvOMF17U$nUbZau3`9Ou#)S6>gDvgMbH5H zf>0Rj9k1Ul;nqN3Mg3Aa`g^FF{uqb;&a9y?7swqHI@&u6&C_%Z^=lY=1IgxeC7;zn z2J$!Fm63N@f~<2bwXjSh{lWn5AUxShpCUtlYqrzBbD{5h5b-*-3{in~WAwpb{uupF ztX(H;zUzX&jMZ-p1Dyvn)xq9#^<|KXadAD+&!xp?i}f+c9Jn@fslFsFo?Na+o4%wr z{6~EkTAZ~?kH&FQ+w^BWq_w8C`V|!H*m`|sS{s_JA3%%zCh@WsTl5Pl!l$kJ)3m{L zs6R;&cJ0=8r?sW`>D$xdl3e{XT8uxW?@f!@zlylYM@4oj9@l44u!pBacFLU<+1c{D zcv;E?ksU{#{tU(abXkv9!9>iP*Ytg8ZQGlAw**;;Jdu}qOOK8O3Hm9}zoxC-5A?HW zZSEueJz9iM_2{4hX*=w>ek(0jc`0^%_fP#YT08f(ekm<}^G08r^Y^#-t-d~md;Pb5 z7VVG!M_-)Qp8Q;BFo^*@XG!{dCo`b8456YPUR4>;4Ovp#G|t%Hu&AmTiW1vx0E=8-_*h74BwzWAkugT+U>sbhHP3KSJ8krz6mq& zl?~OYs@&iNZ>k1z*Xje{wJL^Bw8i6U2EUIkt!eQ4=!05@wp6s{bq#*k4y|wSJLanf z2ESvTZDQ~{W}RjRe?-9M;$9x3q);)E)nJLv`m!$c$RqC z4?l|9?(>tV?RslPZSPqp_7<~IyzF_l*c;p|YP;8Vv9~Qd#NHgc#mjE)5w*Q+zo_kM zheT};`&AV4$Wg;>s_mVp4L#6EhLdFMc>{V61S!6{XlP7}%`O{;(FT{V8UCVPcjJbL zYq}-29eT$w0=*6ZgME5r@F%koPYr(u3AGd68=6zxdmjx~3_|T$ZK&TvXX``v(=NJ% zh90NIs$rq%L>U(3VucKaUh;>p41f08MZA#)V#^2L>JqPB&i*Ju#dKW-Pr+_xhX9TOq7Q+9~5uJ`C2+g}0 zV=36&BqMsc38_u&X+#G$NU>^P<5;T5<3o%ERLuRU#=q%h$0ityQ}s$RjDBm6pJUud zO`N#Ic%9-_UuGPJrij?%e$5uOGi{UcBL$nc)#x8m+io{*rP^`sHtwJZ5B3pb*1gA3W6bDMLLAd{@ z!q!ryLv2`Js+_XcupPAR$A~cWjy!T%a%9*l+Q1hZhVE35+CSsMD$?5L+o&8Nj3Oa##)`ISO*x{6EDrM=fGbS`a7UTxWmrTL%`*WtMw8x)+H=#k7bl&5F z2~Cwr(Vk~QQ)Q|ubjf!V>iiYaGbdjcUE%Ca6Ph5C3#;4~UE$*$(H*be6WwvgBT;Lm zo{Dj>{JD5p=a-`66@M){-j%mvZ{GJ}Zy6uyWqR1`lW7CxA%rvg?YU8AM)pipC+Xn> zg}FLyP(f{OqY(Jb3NfPzvS1i!)|q?JCbJD@G&d$9Ny5x%ZcLkuGnvt}nAFd9n*Gs# zA;RpB{*jSpfAsGtZuUq2>k?*v^w%zB_DBEr(q@13505kZqrXNuvp@P@RxtacziMT( zU&pJfikJ1OZuW(kA@FiL^}9nkxO`3=i11rdiJz?tT;5`mjKnP!%Q zF@;!zW}Ba|asv@JYbYc0<`Z zO5bQ^Im_}t1U;B-{zEDNZrJjF0eEMtIk#wzar&TH1)lz69thX&Hcyg*Z+E2zf-0NU z0l>V+YyfAMSgdg1esfc*hcgGvEPGR;9w6#(bkR(M5H#@KVY8(uFhMZmh&ifA2mm2y zz;Ugm2i)_Uxl2*Z5Coc>GAlsj3$q2DJZ=8On9+&vy5NA{(GbNLL=a^QreiP~c5 zA~3{K8B}{ICopV-A-UIuxk*k3TWhl34tSX{F4>6M^;N2 zMgb_o-f#ldCLn-c=UdQC z)mV!b29~k77){k2W>>JFhnjINg^sG0E1XbNRkxsTiI7@pf(6}`C&e>0E$E9sq&T6L zWjQUDsbfL6_(`p-o@G5P9;h$2O=%#u^)|AgTcD)v)5ewq9-+8@kOe*ANowZ~u`FfG zqs`&AVU};GEUM8Kvq^xAn`2S2oJtXmg;mY+kOToZz1R{2+PAQlfVu^i1Ugmgy4b?A zW%%a64@jROT)D)8R@7K`pm|o&*`%oa3QJv%MA7oMl1zawz5Y!fr%b!O@w?^>lNm}N?3&atyFV#!~0WR zYt1jCt3_imy7YKMb?;=j=nP?Hb=(-QviD0&8JQF|cfH*aHh= zLxj!rZ7dR+e(s{+=XPQw&FIJ;Nra{BPSyp?@guO*)2ahCURh#5a-L5CO-V%vB0)<% zt@oHi2O(G>8k6#v-H0Hd;phq@4`jo`30I|AGiBUTK+egInQZ-qA?KrQ|6(BV`rQyP zbBguVzXyPurdrYJbim>^I#_0g6&?H{#htUPW|oOOLhA|!=!UC6zj;h!7y@VydM~!p zkt=(?HC;+r0*w|~GylDO00TkkQ*JTG4wO?saZs1jRR_pR=SkEA(u!qPGZO z3xjdntSq-8{JdLW=635!mIxvSK^#k{tDWCtMeh?NUKe!G`kE7py2I8_YN6;lZMD&2 zqf26OM85Sf!`&_74_IL(z}R`#j-W)8EwpkD`%=WO59%RgV=MNa6)mQSmWw~JvOEX< z6)N?R(NC=(S@n$t4ur^u(OFEQ=^=kw(OE%Ktn%85o{%C%$s6mRf>nV0gLOG$w2{tm zz);59ezY<@+W)^P;hWFaZPbBP65G%JM;vyS+L#{v|KB)VrLgU!91c+1a{iAvybxf! zRV3qoVUNDSHuQKTanCfZZTtTLhn_Yn_*7?W!g2@hf9mjQF%|qX)b@z#@TtkRspuSb z4)&^GON;H#BIyv`wAs*YND?Y*>^AiNAELzZ5w@R-&Z28vlnP$=*jT=?ASAWK?CUzP zHpXTV=BD}*wr{DK`<1dW2Qx;62=ylO_(>2V<8A0TBp#07i;A|30%I_*stp}tB?`@| zZu6(1o(Z;imI)_urF@qy7-ZM8g@F1Yju`NHhgl9s)Uh$G+C)Hz0K-_`gFq0F0!*-X zD;s*KmyE}2TH5G%+_9~#5_8ZH*eV@t`>8SmyV%e{EuzemU2W*eWKvw*-!@hu6r)mX zuUPiJ{6ZMvzA-lRu5Dt)`DwP3MPc0t5Ey+j**eLlp|gQX(`@L#FX3D}tTo`2u?$!dh*cWvnVs)W4;4{SG>J&b@Ie`NcfTB+O%+iYs3yw^7LzzN}Z$r~Gb zyn+-vy|b-mWWB4nR@1@FpKS_`yC|H64bs5?RXDn5Ns8$K;b{t?XxD|K!{DSA7{Y7P;zMJ2j#Q}q#S*@VwR?cNcY;yH z!v|O1$-XWig18*v=*zd5Pmu2pU%;SH3+71 zl_dZtmJUC~;NcK4(vxcB?{eX5*)#%RpYq|C8M+6kdjJC}g`Qp5c*#ap17N;R9&#uYuuJY4Mws@Da3lVnp}} zT3kIg9MEFZ3E?PNkjQvBC43~>3BXY_dQLcgY4rfq#g+NtgJ^?xi$&Zu%flzo+A6EU z8_~-aWQW(IwJ)}W52nQ-JH*R!_lTD@KMWP}~h zgx_a0uK)%Rm;$~%7mlVCL<3=Y;h#96=(`*qhu$rYmC@^Jcp7c+_swu4wWjkK`%uPgG6-gc+3QlqKUnOwXizt`+ga`^ z5fKog3yyWz9aPQhBSfYLd+lSDf>6=+)+~b^>LFRk?548z_1rx`Zn}nSZ4v`2m9sM* zn=cM(6x>xoZM=OV!+M2(InD-eRV#F4kOw-!2p{af3o&{|o0JJX$; z|L%-sxA7~K8en^po!+({)7g%`Ux3X3rgyiq90K|p8Y1XbEa~-Y7!b6`u7dycxARJn zx1p2~Z7Kr}n?GoZ#kdyB4+? zYkwXnctxA(b{BPp=`-zBXz}7~`;z|~Z57!o8p6hl?dbwv;L&pXk424)h5!N5>0q-J z_C74r+^;nIC1Bbr`!(tS{a4#rZeIRx(5~jy)bP$4duy7R8m_nZW*K)xY>4ts&miK$ zFnynWc9C_^oV-{O)C+QGVEzF+dhG{Eq4MMQl_)fDHr;vNj$X7#it{eomDK$<rM>l% zJJ7TKq;_C{!@)4P08v>uNhg3B8iy62_m#;Zx-HhC$XUM-&N26OjKXzs~h?PeL!_5(nHyr2~;6R4) zI>yPsoiz*XAhBAtk^p^$g2it!K8SsMR}WT~aBTkfLCSBMSQ&Kw%TXJDaY6&bq8%)! zV!lQJ+hZII=Yaem9YIbH2OW^&V;wFTw*s^(=XlL796@xzxblux4Cz(m3no@~GzmuB z;Ezdw)(H;uUemq~E6i``xGF)_dzv_Q6otvmb|{P+COS4SIGV^LKqyX_|DEH0QAEWk z3}Z+k7sP~QSJB?VA(tcVc)B{y7DYP<(Eg%u+ zg&XYX4p?h|;}T}cHpp?I$SmazcCdUfKva;x((gkBEoF~zTr4t6eMdRsi>{@qV;#4! zmU^c-@`}t-SP>LNQCiM+d-d=3NOLT=>+%@?BP}7>FiLkMP(=zAn}2gX2XJ zlFDG=CFx~2XKN`Ec81K^5@i^euW~MASacNHt@Cm8cuLM7mj(6-agIdL0=Mt<&N;ZB zAHtlWMT#vyz5;CgJxT#5nw=-H-zD0dH?h%T?apyUn2D4Jxh0(Fv&r~X-)KjnJUr@i zwkd*^%R_{>2n*gW#(4@WII67k38up;IHwdLqRWHMXCtFPt~8<=Tv^?@R?D7Z2vlhp zp6E=*49;xf9Hc^jKeuWpC$(aJCTis5Oo8x5p02%_A1^R#Ije?%d&Zp>2UHxNqz`fo12ZJ~S zt8wjUC%gike=;~f7H1ZymWW;k7=6)a0J~${Q6PV5SOC1d-+4U<>~_Z);qjABDdqFV z87IrWmA@AaY<|x9Jwvt<`9v>FyXe%x8RwnqBEv8&aRok*^-92HjooqRtk@N&5(Zy! zqBs8#L!P|q+|6vrQD`yI{kroovt*4if;`{3m2z|ZwsTjJxam^hJYFgJyYMSwu_RRz#NHI&h_$C{xjwNx1x7kP)5v86vUyGm+||Ujg!bOEnG3(k z7k62yx!4ca(#7UR=BLNTNhU; zhG2vUdlq^{Ddx0uU)Kc2oRR@T=UnX>o&5my)V5?JhLCr-QWQ=dDO=fW@a#kDgpyU?Z(DYp2-<)ICx z-E!f#)8YoId#(+%c;t}_P4!9bU(a2asn|DOx#}@Hu(&<}Xnisr&V29EP#0MLQHh``nKi(N-fg2Gv5uiA0UMCO3JCS8z))AJLWF40}BQVFBRsq5CA8tGJm?a~C39 zt>*p*u>!BubSvcOZ+>0(D3+`wA_9b{!$xCSmm(BuFS6@{mNyS%NKaG0bDw0i7q&jy zv}@sJTG06UalrGf+}kCHl^Nf=8SeXHlM%rjuxvXw(`u#=;c5r>1mq)P`xJ|_VvHwa-LDy@Ll7}A5hs*+6WRN2G}+Cxd?CWWoa+7! z3%_fI`zWjMebe17SY|7TfyH?3(jUI#-TPS$S@r}7gTRlifuGO0(N@4Cc=Cc9 zZ3R4n>+{^D83teq+s2J&_QTLFkXyxabQz_-ejw5391hDpcDG_2C<#K0@LkGwFWgC3 zTL)gb(MG}}nDNeyHWD7eF(2KjOu>K|Oy1y0g8xV(a#&{VM8vcEJuz^EF#_!!Jc17` z5oqt=5o{L`f%Xm_!R93*(B8o#XpfFSdk2qTL8%C|ckl?B<0H`C!6Ue!QUuyNcm!Kj zk3f3|kKp855oqt=5gbr2qAjzx`RC>R;D^Q$9wyb`D9>!;Mhk`)#rwl%Eh9=W!?@Z; zs6d*dn00>3h-NUmeMACN-a(UGh$gu<4s5R6u0F^a8Br0G?is;&B0C;bm)=w3Z`0Xe z>0S}d72F9paX^Ggj{Ytl5^+k-IzGZ_*ses+B+fQE`uz7GzT0tDdG%^A0UL;WWxeF(jzWm-IDYd zFed_Sndbq1Zp7Gs&lg0fOz-kW*8vbcKf(>aSrG9q=HK^>^-BA4rn$UdNeP__>E!aC`Oe7w#*l_5_TtoWeQg) z)3$<$ES5AsDA+R(q(u}DBNKX%dtE1k-#(7Wk|F&(dd}o9enQc%i+&0b2EC3r zj7?SkZNwo4QxyVTe;2{@b@)Pr%^xDrVl)r*{!}zpwrM>~Q~p9uvL&9an3L{u&)y;_ zMXvNzVaUP|u~HFb6!?qQgAPCC!J&H3GnVNg!kGc`uM{Z2i`ylf!uABTdCSuB~IXlVZ*NJHfG#>x5~bb2EXc5f)aMmP4L$zUFQ)x^`6 zG5U!C=*f-MEj{SuMjkxT+S7s=Zd{!bYEYwQi7BvmM*(hTXHPVPn*k#Hi>n2};OzIs z6<~k=Mh4L2VN5xAx~Hdkl~&rR@q_cv7W6sbCOBP zyYZgkI7*TydzjW_m_b-$s^=ayN#qOqp z<6(N)4`CD`X+RBgDFytr--A|Hd2rxi4_aLz*pnW#y2^uBE_l%DDi5yA69THwWe-|i z<-uh)J!o~62OR|-w7SZJ*B*G#>M9QgKJ%c}RUUl((leRG9BAMsb8;uF^WM`>1y-(J zPoE~~bkJ8ExTRj^^;TeNdzIkxK}vl1V4p(lY&6lR+6^kZKW325BXtAtNlc;^%CxAw9e%<%&|V957grUgnNLRLHP z63j}qj^2F?Q>#Lt-#U4jRw;!Dow|B=VOFe3-or&=WnB+1(~d(SD;s)yw_#Sg_4BgK z!V7_3_4hI@mSR^afFxUq+B6KmqvPj!$4VMy(|X+ z3xSHKdRZQA0SF;={`hFOuqCr@lJ_M_24LxQ)?mV5Q84}o@9&J6OaREA=|wwc1z=mI z_XwN+3OFt1cpnsr5#v1XQOwA7;AJ_5NYxt!hb{DeC=w$LmUwe8BOjI(jgh%oUZxeK zC`s{^-i?@%OFyytzF?X@tG#iIgK{d!&4>;Lv0)ws?6}c;j^$47re(e~m=C>Y8Fqaj zQU+kzjKE3+8C`E!!RQT@0zmLQrxr9_?nB?FIpb}`tc(}F$RLooEy@b7=6O#kk!@xV zwWGJ+-S8S%);5Gmf_ZjNbTC|W%Nv9z607fdui}Zr#0TD8_;2+`-gEe`_KEi({(JtZ z7u^^ufEh2m@e1_!*Ed4@74L-h?cWRSV?GM)U;abdZ`sKFxN$uN{`8eW-6d14|^Qg5>yOp~8u}tybRwoKy*iGn_v3 zFiruKd3;RkI$|7zZ3Qser-3iLzI~Y0>|#E&!b8fB@_lCUBODE&b6+odWT=?O214$X z_zv!h^X+B`4lI7p!c%j?<2#e9`6{sNz4@`?;q-5OXxps-KCk0LtHc7hw}B6>5)0rj zO?>THBqqp(&+f=t`KGb#z4>8E!{$AGXmyAt)O~$ubyxt)r})t7umHx4@uAgW0em;s zM<(9;Q+;T4SO8y5@uAgW0UYv!53LRhU|gmTtqu!d=XpM~IxK+SF7#Dk@IHu4d6h*W z#03&tl~RI#T9@hrH~#E<$HNJr;fzD1ncip@1oed`_11syphN0O}s`F)WZF zx^@xz!qH#-bzsj4-(3dw5kmI-`%X2Samsg=#Z3^vLV(xA5Iy>%RDg8NKqH8{gq{L& z1w_&p^9;S}yN*7Lg4yhL!?%WwP11`7-nr@P#4>Rrd?q~dp?B4tjWmP&_7zKl#9it# zFzdF@fIh#3n1hG!`ZlwyY5mv?CIsl(gYeX2Ul96!6;{xr7e1DCD}u=e3HPNcIQvf@ z)4G))yil}N!|H$ec2jc&yz{XvT?@I%`P;{|bS*^a`q77uhZEg2{_JB}y^2`d{*Gi? zy#7DZt~;!$4oT=e!M^t16NWvaIhlX#0xINL=PO^EU0A%NyN6P{NP)FOC*~n;_G~fbnvtQ)_nDDUz zYoHN0#LahE7)v_2zbKTY>cj?ZraBNWTIbX?zdr| zybwteSJwvPs7F!&?4x3D2W?6K?4x2utF(Yn%m{|bd+-x{gc6c7h~FsZ=31VxuZiUe zM82!|)0kDsX72UgA9(kjO<<}Lx0$yUK zW!cjU?>4L^u72E7-{eH64+?OxA?pkJdXvEe1O7cMxbss0>U)v-DZcdLuz+P^*QURW z3J}g?6<*^_M_Y=Lu>p{0n*I9sxPT43C09=jxWcPVnif!w8P*CMitfm(6Sq+zd@tM| zMHXFun`_bPsrdmNkqw#uzfn`l>HrfaY67whOGEQE1i*$PrjPQ?0kGkS6?be8fDK2i zxQqt$NA{ike{DGOI}orO6Fvz{DMVpQI5YRF0kGGIF&lL&0QMTO;!pPjV6PD?CO!y& zy+*9)^e6!K8nI&hivZYb#EJ*r1i)S+Rvh**0QMTO;>NE5u-Awc=U7WJu@*qw?Irf? zYr44CsEMPbhBX;cy{`u?aFUq&SfY!>!qH7qgnn4r+D48-FjkXJ@s>=tE|T^0q#-_% z;b_3ZLAM<#tbtt5`$cp;$u2ZlKaIp&oZu*zNH$hsJ)W)!lGNkczaAnnH`)r7MIk*y zCDGX7JcUO-;MBWCNMPq6YtWP^$y}s!W`USL*_t5v$La|2INBnWyi1fUK?E$qO3PVg z!|kbcvcwG&7S8x2=}U@JC775(s7oKENkU+gU2abgBF&cELdd`<01Qvpc{oRskFgGb z=|`StO6rqVtpLk?n}0Q0ubJc+?DZ4KeP}6Jh9f7UQb0Y4aak5#w7jF_ybXD{q!(nV z=q8E4gn$)bM|w%%7&<{Tnvo~j2OA-UV$FO@@xhOhP5jqY10@q+F|%+({LhvfT!vYS zH-=m8omU8cO1$^o7|9J$d-UD}i5BB%f$vC?w^hP3cGT)1DWDw|NTzu(HLS7SB;n0d zy;y-BoAwE=gsE-t0m(sLO#M{?X-V0ypASho z*onnHCnX8I+OOv%H8GCCLWcky4{|^50LlgGhni_9NmchPH zp)*+DmSE0{0>mZsmpc+v;Lj@8xF=c4Ih^=QQjF`6OK57j1QqTx4)-2P_HzzfA4@P9 z6c|kSQwb`{XO&}KNZ|Z4))scJB_&urOnM_h#rBLtgZC0RIfrp5{U}-g{TwL3bmhL^ z;hO}Lj$I&9GCJ@K_W~Vk0ylj>55mN`Z5xORV!9bxr;=>!>jt7G z6)M;)t{*6DVHaFkhem-I!xOM5w0b+tE1eN3R0fLQf(d*J?n2WQfkQA}pJA100{NE0 zC*gtJF>xG&X|E6T6aw;^1ojnnqH_`g2O_cN&N%JF7_X$V`Uz-c68We|oP zm)i$6#tiD1SO>g8JC;--rQHIXSc}AZ^aw2AukCle18vY2Zhn9(J>EC)jA&SNW&c1S zNr=FH^pAn>&~}oy;kG*|Ob+Tz*ZmxL9Mc})-n##9j6QN)U^FI1H)Cn&#L0m|QV@`@ zbb6qW6GV{o-0VOhCx}qoGdB>GA&5Pp;tQwK(!j~ckz;qN+!_cWI-^ro5-6kt5t!xf z4}=h%71NIenuloBP6P_+K!h7^oD3Awfe1yni-AHq5TQ8jYM_t~L?~wc5eOlAab9mv zI_ys1H7;?NKLh1xBdyqWSo$dN6&j}a>0b`wm(a5>0zaZ*`jy`P*O$;I?*kzLv#x~J!qo6v?0Q^5RY(aPcqe6 z>Q73e)y;@wc}vftad3RPvYyn7Zmud#!uSF+C?*z$x--O>^Q(&#rX>XF$Q}>rafGG- zYaY$?lA^**sQmN4awKkcYgLuFIydwu?Z?%!rB(f;MYdK)>9V>~IF^f%JkmgliM-6u zaisx`q$82)W=vhlPmQD=r0*eVg7~TQfkXs{>hfYDPpV_jWbDC zW4rqMTq&GR%V3T-!*<4bG_r*hPPJk%uC1l(uxv)Qk>cX0q0&XHixA_VMWnU>~Cp&`)%#%Jtb9j<3g(QEB!@Pm0 z#$_C843>UGaG+4x#EoJ_0bT`?;nG{E!N^eQxPPUK%ornu&zyoXXx=y}eCA}u=n2xZ zs0~R&r3Iv{itOK8F|%h{p77&r%M;>?q(H$6R=Ki~E4??Shw?&PC=+zwVaeQY;9v z0WhSH@fd7J|JWxjhm@N_(_B0vMSZGb+In&H-+3KL>}gQm!by5}R-(bDrFE^j47B4} z=^*}|e{?~L3*Q7G%#U=XJ1$8fd}Bh)xGIJ4jTQS}1H~cSp&$>#=y-znDj-nV znUvY6ZAnOR-6-0oOxi#geT}>?ZEP=cyZ=P`lI!5X3n?VnWsHm8N+Aqm#YG>bLwQm1 zMY_H+{RBcFTNz9NGhDrc4Emq@Lr+iYQdJg!929l^-?-G^EeplOrSLjuSQ?TND08Jb zzA`umjS;1_We}aR;+Xm}vs&^4WYw^3N^-pJ*b=u_A->}0)Ejacq;6zS_@t0QH!g1A z4xig+(4dk+KH-IhoP2STz0Oc$p)G-OB4Y*vAA} zks}$eThM_IJY2SRA z6{lD@P=*Pg%ujKpj|a&*A(hQ|`V-?|nLE+VsVOC`hGO-_pwR8cQn!@L6wisjH`i466Pi|OI{ zGTB(pVeCp7CQxQDwyR~Qd4IpVPKF627)-|vvI`t0VT)`FRwGA?Ww;1U5j2J;LSDekZcD+K^1I#k5rb; zmt(S>oXxS5Xf_ly{uibbRfzKXtPG}FSR?JefHJ=dtdvVKO#U3g5T+N(oWu;8#n)w{ zF;mJ6CNDY2jzapJKQW_DhS2_{?B8FyYCMI7wC-eZD}DIk7>96sP0=#s#o z{)pi!1)O9%k;=lbpb?_)qwH%|zH4|A-zdPWd@m}AAfSwZk&jupe_1i^*R2YI4|A;e`}!bQJIji{ZVpl*%un=L{XU49sCrZ1lAup$7_byr z-zDS&joBMyg*7;GVG9HnmVBUH4+qIHUKARF1zP?z_e_wl6`A>ML@GJgae$hXpAEtW zfJMe&Cwlf=P+J?TPXzWXYTyTV+W&G;M;og(#JqVikR<$GnMZg~<@F%c4#vA*gV@4Z zSK@v%XfncA3jj3dR!~D5^6g?f4>J00(BDWH0x*2NYW$x;sN`GqjPe~~z`N*C&`3@x zTN6YNX3xyWHVCu^yt?s80!4XCTd^A8$%%27eK1%cF6%RPwuYx%$TbUv;oPp-lk zQiG4YldV`Rtu2Qm>;>L*ioYDzin5}vo*cX&E7~`Z*WlGc0_1nZrlIj+MhHSFG)AbaKoFNCvY*FGqdg zWR-g*%HhN@#-V+R{3KQn)zjptIG%Bc$dupV90GIXC%&Hp1(?xjuQ0Q*d@X-`Ml(4k zaVL}FZF4!C9mzELx|JNWHIl(BX(NBdVU~B0V>UK2n4C^>RQTMXP<~Kc1MsT5yo5XK zoqbR}1h7uff&Ju{F@Yhgtk0K2sLXU4JWzi0`z?bon8$*fY&I&;mS% zfy3pP^`I0uEamp#IT~eFOo~%uq8gWcmG2ycu zVoX+4ev=nsx&wPeMU1)2E_gR4#x%o(&?KK=h%p(bW3_@I#$?5aM!^tcicEupA;x6I zPl{mk=;~KxFvOVb*SF!p5M#39z?fi&F$vma-~qf59{n7ApBL{G2AA>%TRlG58ME9Ep0A$VI{oA%A-C9B%~9jHAH|>6O*N)?9OsHw7QSXpZ3w-WvQHS6bVW;9*=-Pj&@s zxu!yY#c2xA7ZcZ`!MWcrA%(g7neuukC-9XhMRv|Ti6rG^0BVR0tl-K*e+ zHdZsK-}_+HiQ#~Bn%4aooQvr70*y`7Xr(Ch1O^wq6b-6a%_MKDD==R$1uOzs4r2H{ z&qvV>HIn!b3^~wH;X%IoDBP)wpW+x|#KmN+;3WWJB4*ZLEMjgPp!m}k)D$jP+{T&V zY3iX+paNyq*cX+GKdgbk#!v-j?={01qfwxuWL7yNLh(T$kQlA_6RUv+u?kd(%m_5m zDXI&W+ABfv2ur}2q(GetE@~iE5h)NDlc9KlCD1=h@f6uXPSYQZiq}FDWH(ma`+fox zgqVeSQ8D3PG*|2up1tV@#kKE$w$L9>)56vYEAV<`RC~pBEJpK=3OfO#ZCAw~Sd6gl zie;F=b%%k9^Wwz7qdtl*cEBQMfa31=v!DR<7}XL371wB!p$ZSd47(O69)AC`2|W86 zZ8luti6)RYQsE^K7(E(KV8B>~0W$z(?DtPpR1*kXo}zew)xe=?3e<8>M&Q6qg}p%F z_#8|}6q{fxLAoNL{dUe*JQI53nnid5GnOd!qg;_dp!sse6ZSS(rMUV1O+Zbn6{wR! zK>NEWoa{Lhv%(rGZzg4>3Rpu&S;C|4J={(mE zNHsl^_Hq}mv7RCOgug#~h1j`#zjX`!dowMo7qZdJmHbr~WHH7neCfG{Aq$X>4~(~7 zh%fCZ4RI1!_mzumbqew7sT5gXP=z$dOvo^$U%2_yi`GmCsUb9}(|OwIN3_R%k}xXCiIg6#`kWXVUunLm=z*Ogj5m2xPsUNhhBZ8@bs9v5{+E z3W2QGGpXr%2xPs6u=Z96WWAnAr`-#Itk*N?{s$qD^?D{<^EhNQ+9O?f6Jkf5NoQ5)h`uY~g1x!!$}% zI!#tNIl`ick5PC%1RVWPSJalzyzgNQ9q?GjZal(@%CAiuIz(r zpWY<0h0>LlWGMB>Mq&v5P7PPuTayA=f;TNMRMtbbbRSZ8g3^VYlc*H5Y^-uQmJ21`ps505IqNNJXZ-zAD9`$El|!wn4$%n0(Jt@VN|e# zfzdLh2Xh_bUa-AOlou*POAwiXVrIzA!UeML8svPsY6s0;p@h9SOl9|1Dc2&oQD~04 z+#PvtP_9J62(7B5LpLf>OM#ep#xqJdit&&V*7NRDRu}ygeX&hBi3>To1T7@_4|bhW zigQ^1pC+7dy-PWf6Aap`T!U4gg&+mtpJ2NDf5=s(wT>vyR0gIVU3f}a592fhA{69l zZN+>Txd!dZ1_jT~Dp7lkDubuMm;mBmRNKIw=*+RIp>+Cf%iCo~neqe*_Kk8l4SJ}QaBtb|iN#yyKF4{>H_Fj; z=?mpulqTOO=lshv7QV)KMmqA1(jEEqK{Vo>5|&jl=ePBvay_Qoy-^M#0K=D^*Zr(4 z;eh2|m8&ZaSYlG)T%kbA)koz>m)NRyb4EQKRcH|fEYi+JRfpcIsyd5RxJU_LAmm|M zujQ^sBJEu7+Y_JL${}=* zT4f$E-w9J4Lm>)7!Qy~ZAnN=Rkf&n_=PR(?ZSkc-bBSyvcpg?ihBv)Y!!AC$XbE`Y8^Tz zN41p$rZiTe$Ae6H0Js-1UrNk^dJ(sFKnX%tSeVS*&aZ7MC8HMwKSNjyGFl$08>`8#4beJm6ig`v_b%csk z#(jB_wi8u$G;6Gihbi>YcvT+eTLo}rbG-i4aR#)7)qe3H3te$tDcLtuh1`WGA%(5W zooLZ4)v79_Y-}wLnn_fUHHQ@o=c!PKT=Z{KUZ1posZx@-rQq9G%20Wi9%9N+-FSC9 zQoK+Vg?OF*2iT4bb}Fbw$1PHYVO;osurM=rW`Ic2XSLbePF<#2AnK7stwQyE3n~TF zdb~}RtW!O}bP+R{o;Xde??twpkF836@=^QHoMP2wcanC#mN)6K1$xkhnJ@?}cDC}M zoqts&iOo-TA6E6QL?flpgGW@YIF|glDz8#l+7l``@PV1-#Ivf!+(IKSsNiHC_G^br zsz0s7V$&d`GUnB3SR&v~D4^;k`1r25`U&abp?5Ng} ztgmJxdhtrNo*U7IcdFTyMXf_$yjP(TDl);$l{|iF^#*S|AQA3wv0{i)?_jAkryRI7YcC&6UzmXbtmayVDsrsH188fL%D(Poc z+m#&9sHY+tjeVU|W~*)Kdab%WjBHMK@t}T@>Mxk_z+IiXkMKgkq$h&9P00KB*lN@+ zR=pn6Fo1wrt2g6|x-mI8Qq70dgAHm}moKP+yh>6dK1mQWpg#>uQ5R#z7YsqsP3=JQ zveiF$k@@*uz3H6}>Oo@rkglE8{Sa+!hIOUgx~LN{4J;r~Al3o3oI+4ERQ4x%3)Qe0 zORvWGW3zUvi{GPL4N%vB@6keY{W3&dgw+bPe;vAKsCo%jD}n{pq5u4>?#$b$|8Vup zO0iirLQSx2D6j!<&eYO)bR~(58-phzs^#D~^*GL^#Y8nGvNyMS9Xe~0`d6%4L^kiH zsDI>aewwbHQ>jMUIzzpya%`MuTi8r5swA7^MBNZGk_7EGp?QncYk5zSE>};-sig@y zxK1snJy)o$F|TWZh=@>owR$LTq%~{Rm|+qV3fT0l9FZFv)%l!A+b!x@l~T*{V)a0d z6}Vm9y;4~E9qRiWE1XucxrXe7fmWs1Jld`PfwO6{Pd%+tShM%5zhbSJycnW(qX9?N zJ1|i=Gnsa0)oZYoN!ew!J6&*9orZkvHz8$rYdH|>kmNAB>ZW=W=idh@p0r;0dw zaJ;83vK2>n#ShfS#EwqKJyAn02{z^%^FrOXDz4pn(P^L67ZFq`D0~@bl~5)0EvD6B z)TbnOuI0LuTYGZd=`P36KM+jFe_))bn{(&_2ZS~(Fx1aGw7hae0KtuPQ}|XVCywWa z(o;1;QEMVCl*p9xxlyFf6$msk{X-X4jvQb)llK>M6X@D{p>HtLyk=f$G+7e5tTJr; z1TA@!UVr4u=}Kv66^t2yB{ruaA)&W0M1;x&D!Y>pk6gUzE>);4x9aoSP}JOxfLKJ- zPBbkx^b(d51K1oN>d(pCP7IYe5!I=#waJBHeZ5FTQ`f8HA5&;8QdsEdL8k6$q$WK~ zp>Gj(4`E~-QkLT>A#Bg5;gv$%dtjn$+ym-wQ-cXilNQ%E}^|`L3LrhLKowJ`qKWrLn%_0zVvv% z(0QN`(jh+-GiC>U^riED4D~`2$QTs5LLl&bNGN8NFC!rRDKrH^fI{Uzg=dc$5sDek zuxD>C3~h-S2tZ{c`T9}kM1p5GaHng>g(g=6Dr`qim4%_dVrECom<~i|ueT!)wuZWr zVK!l2bimS3BcRixJ3`M0-C*X<&`=k+9y=Pktv=4~LP_!VP#-d+e^Wo|_9%2$bu;-} z-$ETQ?+PH#F@JMu=Sut8g!!m|;&@HiaVxkQ!^3t6lx>s3wmQR=n!@s{!d2EfYz;Uc zdZ}aBUg5rJox_}+;JUD1n2&H@$4rGmUb)J6LttKx)~GFwlwW;N9?bJd5}VzFn2Q9IczsQ@M~D9(1L@03(EtC zK_A=*3&EJ(#V=uL6!yC`s%dVoQ=h{y%ULNPCDsBa)qOSB1;xIos~Kev*B=8lSN(8` zWv=zARVf*nqZjT64Dv9~diiG!ylqO!;Ncp~e1m{W0d*E;xMrs0 zN>b`ZxRNt#Ba+4A`(j3E&I2jxJVrA|ka_ud%}U{#GFdZ2xL%*8*=%c;VBs9iam>5n zf1V!qN;@!W5q_l#!1d(2g%)V4cmX@jW({U09f0!b;4PXPNR{T(w_7#&LYsEqp~38M zU<5XlXi#%}tg`)1%^-om@ZFl_h~COD4)4*RVp>*Nw_lSh5SVpPv*`N?P{4>l_OW~# zb4=4tc=o~*cuD0`#H5HuivkJmu2 z4;s`=F=K!3lctA2AmR(&7Y_TXIfu1@l4n|@@cj5HT7)YU?RbQZ_B6T$p4w~s2?W|y z)h@?&q~%W9r)UCdH|;2aK#7NT4VJ(+PwhKw3(&dV+Tj9$8a~=pSOV>8YX3%S;7Ki! zKrep`0jjU7ZH*jZru+5rLqQ(OFtps1bpI@%9=cGRvD2<+{w#pJYL8gS{VMZb#a@b22B z0s;SCcu&xyxAqKL1Hbpx?h^H7m4DF>{Kn@{;vpON4B~zYm9O*7~7MLAzBuPH4vc+wrF0P@=sj zU_7SU(O7%-+@<{_n1ahb?Mf_0ll|IR0*{9WwU}>btU-JaiO%8M5&SDM@t8Ig-5|av zwM_&e`kmHdX6=~}8_#I(qx(eIc^F{;flU{+=()=mm$XWR2B_((7IMm!l3KsxL*>@j zwTIBc|9V5ze)ZeaKu)2HD72k(xK^+M;WO2m z^{(NF9xaR)Ia;_!_-z~bbX2{1xDD1S=n}v1nV8D;bWujqt3kLA@sCSTkPr33Um>ho zK%s#0CuWTvt9)J_z6R4Mj6YQNBumCd+fg@l_+&5?x=<6Y!|aJ*T-xZvy)llGae>NC z^s6EKf*sH}pB7#!&>5Q*ZZG^jwQ=}9OmbCG%HatEsIFu94#8O7b`6(c%+8GDPB--k z55Nr17{WjO!(B*JW~72F?HXZAX6J=tKH&>c6rfhxgG9@QhW}v&*MgtJn|UB?kaeg& zlfpe{_bK56u!cyKG{K$rDGDEk)-E7arz7Wup9L2|a~6g_5u}P)9PWu(#mrQ6epR>( zZIDpeh4ej|FoN2xg%$@c!JES!1se+A7Jgaa=u{G}!uCD7Z&$d#0CsC%B@7Zkoapp} z;lXGX#hnPhkClNyWoKG^Hhi1VS36w{pNcuwi}i~yUla1_UuEHI1(i&>UkQ}}k}FMk z7@mev3F`|Reeb)`x-Y_8qWi+v8i{$d=g08JXyXF}=OVvEJNoc*I3#Z`rPscOUx5Bl zvNpm&Q1;d;5mMoL!!F{1pt8eG5oKt)&BGE0(fQsHxPxMa7a<^c(g>djgTUqIS`kmt zCM8QtbRn{OgS=P*2Kqz&h~)z2mw*Vo+XhT8x>FjV!e#YFflxKj7DCLqsOFHL3E~2xq}0VvkkA$^{TI^%3}t_a`Fi zqfPyvs}W9+79(*y4ZawWjcrB>F#7}twflO+bM#xG{hNpya}LCKk(8=QMfC4S5d$5; z(%Zj|ztMjL@nW3@+o4VKsV@Xgb*fEYpckbu%M3Ca*1>k z{+7E%2G)jaQ+ecVp?;Vm@-M7z$o?it(d0^KWErx*3IHx-(UeGU(Mhh=L_QXriz0)zwfM0VssL4gxmMP3sW)}c-0HsM;WUF2Eedar$C zB4%ka>(B56JG$w|NL6Jx+7Uo-CB2HmyVC0eBQFRYaQ)9B+fl43s_(%!1TiG#;_oeyiJkrr2W-M1wFVSQd%hmQovg80_ySG zBdYE7UQunU_eYiqY8!VjGPN4g5UKHMWGI>*RCXtYo1ll}eM}lkmtTtvZ~#Il??gTo zh|#-|J29~msIes(Ry}zl{pC%h46}g3jNnaldC7KUjboH6ZT}&%mEdIdeu@kd`tifB zk>!Flp0|m5ii|W{k~_*|XW|f&9855*rOP;D7H9;WS zq<&Pn(8;4iq819j|E`XjD*WCpJZb`B96>=j1(lV+Z>6Vu~m)y*Wszs*P zv+^MF{>f5e%#OMO%o^oH?Gi>hcbY}*sS4Kx9iq;-!nJ!|)LlV>^Z`-dgr-Oz9M#Sf zuInd6VMF2$w0LIJHcV;=P(ud-mEFm+x-bN)x+vqVsD2p;A55OKLwF**+;tw*T+?(zY2JNyGIvRMsydVT&-~+i(*rzP~scCr84qY zU^!4|$1H(gOhB}-aE@*ajQ%XhwN@6*P`RFHhNpjso&{^*X}iAB3K)jbse_~akh*S3Hm^@{6$j(v(h_>n z1BKBiz;TfAW1^8mI|f;et{NNtNKo*!3DFVA#%oDN%#QXTitZ6!u>C8gC%rQ*x;j>W z6tI>FEm?1F^gh8=-dP#FMEHBe+UWOK(9+G(J+ThGXmfN;;_e#_@1NpmSE?+Ieu(n8 zhoigFE&HM|IT2~S!_nD7Bjp{9ekHsvI-QFCEL_{2k1jxuTjOm~r_(2QqDuukTJcx( zXxw|mNC2n?J#asIqCheIVf0(1ksIm3m(khK*2L{?H0JX$_+ujhjA}IWT{N6#3T!?` z+as;oIA>FgJBetRs-W)QqH7_|$5^r{=A;am3=WF~1k11V1{ZM@)dwTswNjSPNI$C&os&?(G*7CitqCLt<|oWVzk1LBx`fbTvS&S%w*l&)G74!o)|UKr!WK; z;{G7jj_x`b!=@b99*z;F9O=-bG3Ny9OFbF0!X4YIlw~o_#J8!P7dih&j3-_6N6c)Y zqpI)3U_NOJU4sJTX@TEAcVpgTzgZEbciJp!|2zgg(;*-@(Yvo>*d+Mu_c41B{eq6P zi(Li-9MZrgb`nCxP`$$%oolSnOnQ%4onTL+d}9B>I16D8yeQzl6Ls~EZH@7LY@a9W z5%s5417oG$R@(?1JC;fcVq@1JL}UA1dli)Xkuh|Rs@=Ov3lVkC* zz8Iy5FfB>83`+tR?s zvAe8+%DtwsYb!-1x_PWU=96FrmDep};c(1tWNGWzRh6Rhu1)ND%qypY%AoeKB?1+B zr`Xk%qVh}USYNDGC>S&BLEA?5^@znJ3ak*vrdKR(>g`N8(xe}aWTtTcsmxA3bLXJ80M+6 z*tLSO{`gnyBH`-sFxHJ3?UUFn;o9#-Y(wEX`;GYby$`Wo!r$-yiG^>h+vq&2IA+8@ zR*9p6(FWPZ%@=+@<|zKY)G6*y;rG!lam=`*-Qt*We{zqTDBL&3J8mpyNL(St3(5Ve zbY88vMBybUbYUW`7YD~_^^f(X{`KQBE2DV!`oBZoj2}}Q4p)v1BHq%tjR+sk#v?ac zYFtR+(-F4RR~A=-8BV|;sm82!MR0n{gn}C6U|WqdO$v<*v9j7s2ZqJXv$Og_*kP@% zXM5U{Hqmh7d5-SxstVp@<( zt>Vf#!ISOdFj+X5wgiGApl8Rp{ut{Am~P}?ew;sz>K^xz%b3_Z4)e0MU=hHoPLxqn zN4mXF+)+%Q7qF=Nz__=V@6?RQol)hsr2WY9s&wP9I1?r=WiVON`(AYI)VP(HPRtPM zhQ`+vI*9}6q44!0&sPWA(K>VE?)#A%gPVF&pB-^VZVE$pVr{D%F+atX?%oym)l=+> zC(p#aaubVZZpO876pK;ian|q&U+Ak@FXMcwip4>n|`P7G%fo_^-vy z^#6A9%6Ru=p+fhWjJp;lxZvp>R~ZH@{)^7z^{# zaTewqCd8lSj~F*8{%>Aw)YSNsyx4k1{6k)BIy?R929MOyMREIbYoJTz zzjhDMUB*N%(50CMUCHwx-DI3-gGl>yoq`&Jb*sf5N$fSc(n?@y>3pqjvnUy98C5A> zT6!p27s;`l<8?^C$7IyfIXVlkCW*Sym6EX}NteKRIi~4~kysRT|CYma&DLS&a=`|; zc;|8~s`6>9+l-_nn1hzCXrlYZd2Mf@L-v|Mw5+A>glO($S6kh#N>R#buS>+tfmJ9d zuagdP#|uuFbnU9c>^`r+decqkiX4ox=JF{Ts&gRe(-NxDTm5t^s)#;s&W}1buCJ28 zmFhV@r9*Y*cYv%wSDkw$(@34HGPG^Tg~^bgRX0;-Px6}id6Ap_bc5-k3AzScf=`om zpSj`K&8So#6CXw4Q7$4NZ97Ldj~5;0=^k@GYO`23205Y}M3pObt*k`dFI}ap#dUvn z9lk39qA$6V*xQc!Z_qh$y3w0;Cf)*zw(B-v=?Z<*hAe5Ub1B`eOXj>=?a{U1ypJ3} zchw5$qTNEGh_nZ#SQ%bUo%R$EM^KOen8I)@JCRBi>0Jy69Wbx>@=}gzXcdGJ(o=WNA=l zP2${G|1*|?dlUWRD&%JCOb_DRLXR1BvoV7Xs5hPt>7$3kd|3Nf=jq3N|KkaR zG4$8Bz;qXoz9-cT(buX%a`$F>)2=`3ahbaShjcyJ)s?;+riXKv1%YVHNPQz-%pa}q zj%XdBC$u4jZS>XY@QHebNRqsr4Bn@Bp~06vo1&kGQN0D00IUP)d$Ow?jhrD6mtW8H zq+@358*<{iiGDSLIGwRb4<~jrofa7g z1~snMSE&rb%cb~otL!DL5I;bDZJKA4|^q90I z3?}4=9+mN!Ri1ZD4>LSW4`C31{TwVz+a!W%4Dk(BkK{JVACg<=`YQQ9~V4&O{ z_9o+P(lym^SA;3bF!aM(cHK+^OrJ6zk)C5f4{K)|4XBulHHxIMVKrCC?WTC+R5UlB z5+*YaNk157a1IYz8!%bH7)(T411e|o#r6gjZw9ZW-tSPs>G}N zO@Uzt=df!8-bXl%G@w!_GXci`Vz|gT^c-tggSCf4;|!=Q%8WzqM8gfvA#RFc1D3=5 zsRsP0S~|n<7w1rCwgHn(nu$^{rxG@4H`nlib8uT=Kz!1pFBcd(prh_8OAH_R<6V{; zFe!YQ3i4MN9-ui?U1M0mIqYAD?-K4CKo6pa8MO)j-dw)f5Y8R;-&+lswU$gH@!Jik ztjetN_7Y3yShCZA`9#2AzV0%h5-YRHHosb0W#?i1d(-i#0hL>sakzTiuz)w|$WwUB zxP01hPlU04_kk=U+E6n6lfD{pJ8uZWI-bYp4R9td8(vktV!(VNU=p^xYUsx$ynfAq z*$d8K9Isovi04iG+qK;-11j$_U+)_^_<^w@QR%Rjd;xa1M)X5-iv8kT0kHcK5nSk(MkRB&N#eLwPbrLXLjuFw; zO=y7libbGuPZATH0H=~RN+`5p-?K=m6cXOC&u{x>34dZf$Oy0$U~h|}(I9n#E0SI( zdNw?v1XFqI;KU{@-7b&?OXLR{JvqNSQpHzDi37#w_nNBk-ild$SWJ zixx*)<|ZUMA)E?Bgw)BAq*dF5dzAoiB9MEzAB}0BFxZZDNqVGf!fMX$=bj1gZN*=I z$xAqn$;2!WrRRqy#BrQDqZ4Xi-ff}^heNL6Q)3gNFkjIbLPZ|t=yi!s9QA2hl;gpqFygN6cJtoZ7ZMJ0&OVnDqR~ATvMl$bDZeKiF3Ll+6TEHrvtDw-fYeqC-ONCdZ&IO zpOvPL0g2c6EB2)<@h+M))`*B%lW82aVLkJnv6FO z3b1`JmI0h#m7ghb53(1HRw? zQGn^oUpmSWiGz_A(}F_M=Cf#>KxLk)dC`HYGJc8wk?`U~Qu{ zihRcPAMSD2=#qzW zs;Z>q-}ntaxyj}!jFP6w!}$$~KP1n>j7FFM^1S3~WU4M|GnI5s9*mh3VNw7L?CWM; zASyq39UmvX8JfI7d|%Px(aC#V#T$mrO1{X&Y)6ux^Vdzg`N=t+;tdBjCJ#po^kiX_ z4>>q9Y5^Tynp_)`5Sr-)VCvA6gUQ#qRH{SCe{uc+7n4Wu{#klE`8pS6>AmD{T$JMb z$s3%+-;0%8nL(N{&I>s0D@qj2%l6O?z6Ugz!dM?~r1C=ZvbF zvcuYH4-I!odCKM1xTUDMSVKHgiutdRUMb#u@Y$|rN)4`D|#&{#e?^zk7+4< zl_%|ynevzm+$Gy0@T4Xw3NG-ejwv^|z@=SNV4o%H09SgXJmLbM>sJYZAsKWLEf|_I z0yBtWVpgP+E*_pTOWbBao6Jn9<0vxyWkE_KWP9{t`J`#{l__bWtYquD6vT*>0?{A1 z;`VMzF<=JUOjb)8X$onii_j_qm>Tr)&XkFq)7ZT!n?&zx{Vs`k)JO^?yZ5Ge)2Sy@ zAc+xc@4wEZe8xTx5=5ua9hXv2M?(m5|2M-lfeh14=;tdbN1PFZ0>EoV7VL}ONx$Ap z*^U&6AylK84^tlUzLWHK%01q>BA%zfzGJ4fus11VF(YqN)zn_XSxjDJ>3fq6?PHUw z;0CzSF%=Wn10ZB4VVv5#q<%y7hpMSfN!@qRUgQVoM*J+T)-_U}h_IxkZz|^7IuK*1 zHR)i#RCjJ{bL*r!q524b&Dk8|MjWwkg8qF!svE)Bwx`hQN##9!l+mm~J3UEU4^8hnz}1#0AJWn;O91)uXPY zF30q2Mr!@t)GL@y%}7CIX9@|c%@eHNf2W!!Sj!)$?&sE7@;r4DCOH^9qJ2faY6AJH z+tVRdY3X9Kkju7dh&2EdQ2n_MmpPVQH96&w$W{K-y|MnxRSi#1+#lB2CGSi^QkdVFsDPH-MtJ`?ge@oK_R# zKKs{5Z%uDzr)m7eU7-Oz)65IEZ}m^1nP9j3pytKc#r}#EB zt$Z&KP|UhFw7Z51!pos~A6H^P=VX@7W# zZgu{ew57Z~GPa~0;l;W%Z89(J+n=_L7YmQ2t>?w)b7^yU@$S{M54`yIEz2W@mZj~k zCaO2}ZQ3ncu^9C^E!2(`=d4NRD;Ks{rMsfsgjr(*G*&~{nctT5Se)iX{;*5OO!`0z z3=*`YbGm$@SB(AyhyZhnkJj`BXJIAxU3^ z<=`hxUyIhmPL(Ht+ zN2OyHr!kn+nDm_pby8J)dNcm`xrX#r*w%cVkbWHTc+sNrQqm!%AyYwEdOBuV98SoqAQ?ZkEYkgNX+`ji?3;}q`jeoFUcuNA52rvr1#`aar|O>AO_YnHe)1tv2U;^ z-F_{-RD)L&A=k`C)OKusvxl$H+WSI3s zyfW_85XYwDf-+Khk1JDVZ07eaQD@BM#niBjt-M%On^DYXh)>5@?wuHCxi?g2x%aI; zV>7>ZN2=xCAJZ-O*2=Wpdpj$Ghe32%6U)8rn_2F4Y+4Q9=CE zjBnh!a%?koTm?(3W}2<5opa_gZc-kunP%&{?3Ov7t6+F_%e}EanPy8YuW7k=tzYJ4 zu7b%8GRI)1WgsV#m~@On(y@-!t&S0PT0puXbNBZf0}&Fa(Ts#l)G@L8KAD~Ax5Ug3 zm=H~H#1AQ{R$cwAP zqG+oPneW}rth(*ZoGNJh-2rT~i4URh5IaHJDMvDAW8NK%ZrwSVKBWD!?slYjev?l0 z)v3%Spej*+t1o2k5tw$ol8MR8{6F}&5_>z)Q&%%P3Y>$lXI`;_tM!e{6T}!^s~5!MXp2VGgfMBAL-O6C?uw*Lq4H|MN9m{+

rHEAWoa=l zK{FN!nLfycUe3w-3sUGq^V1W}vI0c4({C-ZV9tg8+O>67CY&oG+;F&a7KQY(LUB^p ztQ0s=LMZ;(KdU}uFcyl{M`T^#_r4#OHO@=?b=ra~*tNuNNM4flbAVX9bTsRd*d1ue z>8wwj!@)~g6RL?f{O};FwYyk6{yqzi02dHST(UdEnJU7=Mmc8Z@+aJ{mHmJ}_g159 zJ?7&QXvIXAYO_o2MeX*A%T7W>judd5Adj#>@Jmv*SzSj{vPW`Zn`dRO6N_s+8fQbE zVd2*LKV(Dn$BK*EWuHabs+LUOZsSbq4$clBbvovF(dyl^hgTKlS(l$}gY;w~ECtww zT(Yx2XIHT;if!yk?-geM$(!!CaoG#thz8a)GqZo@mgG7oyM*6xWkL2N-b#5ZE%H8I zm%SSEJqTQL4)NHYU263^VFPWq9oZ`p-iy6u;*Yg(ByoS;cO>qb+J010lHC@etXVGy zd(HZ10Y5;jtV50ieZ4C?$ja(>>c1zukv$2GjZG!f`t7nOQCrJh$%o*kE@bneY)q!Q z3ffzaXICTZ4`;voe&OlGBiZvYJ_PD@BwvqbBeu{JsN1^eOm+>bJ(+#83UPlJ>p>cv z%|7t`^edpop382F8Mz2tV8d0m51nu|`=l+|b1K%G%=;tTtLV3EM^fx;0$(d`lMeII5*37}2uu)-$W!uX=$r#@p%z?mnwK=); zrC-ic%!ps8OeX9%`je)z{_V&Q8*@CPC-26e01SBJ#DMiDNlq&}av`dL2PqHE*@v)D zz?ueUS>;qmyh{kH92uH(%39=5O`C&A=12i%2Bwp<$E%}q4)VuWiOs=$Lt-$k<8r*v z976Ot4>$)&V$O1GGfYUzxq{|UJ1u7n=de8^XA+jf*UX&Fm@ttkv3KJf$P&TK(XLs} zWGsi=<~j8d!H{5%{mJv4@K%GtMN1p9?YQc#TVOd~XiCznDOC_UF8U<70$YnR_@VoeT8( zR8E3}_-o4Loc@@!1Wbyh+u?NivL`uqBt6F0iw?P)0|Rrx;7H2799V-Ap5sgN9_5_G z3PpqmP)vm zKtpt3fapSZD2>lK!5!hod%U=?R_BlK=w`gYmGr8w(VeTqYk)BmGlCa73w>H(oM$WQ zWWgxoDWp!?5WsPy|BN^O!>Kw>H>Ot=#p*oYc#|u}w8EI@D*k$Dt1%1}iu2LN9nvYz zA(a##Fz!XPW5uxP;0L2OS#`f?o)J=N zvbGp}--rp7nK~br8!;KsC{%`{KH1}6KQS)Ds-W{TV-mUS6CCNTHTlv* zo~EnFp2lDu$mWS%>}YduQzubKdb)X}7>B9#x`{7o zc*R(gJiXrCg)F>#*MWYkV}c`^nGRmnHtS$7n+`cNGHuS!D>@R zPd>*q3F(~vGX_~`Iz?Uw<)@OkpIq$7utlcI%}^EYE%zq2*0nki$4osRY85Wdh0+pJ z2gD1>W0R=`@n2!GqwY&hV=>w@BVZB}LfyV>lts#Z>}o^vR+?Vekh&f6JxKp`rV^Yu zgXr1yCd@<)1vam&#m84GHetSQ0>U7gw$;=TsmMVzcZX>`=iow3n7L`jA$6yz3dVZ- z-!+X8hrMnGOvh|RWt1N=VTPQ5HIBv{GudL4!76_|VS~Vlc@*EO(!@9*3^Y7Ckh+ZkmDU7mUNgKTHkK90uPq!K!WddHJ4X zc9{vWjDrG)X_$Ao>XGS{7uh`}-<$M!4DZLfi*tQxmoKJl-YiGHnff7AqPNK%Tyi7# zN6d%}>W(Kmt6X=Yn^RLtbX9UMd_MyUC{-{|2SxHu>R^|SJ}*!&TZJDal^5uJ;fMKHIzfs=+^XHE94-g2kBSZ*pn3gkZVUKtO*}R z@0xORsxmE6ee2xam~fN{nb!^$+?4gqwWnJ;9)xC3{p%LpU?$)Lm`MI!`NN7a5 zVpwiJ%-1AF@8GUn8(KUvHwpP(=s^So0tilY@h`azZN>NI@1sC!_TIFakXzMGBEy`!^O6CEP8-e5r^PrKfK`9$aFit z-Cek8YDEogzf z2BLH3d;zJq=o=RABP_9B3sEvp5HIK?y2vVRZGdPgrL#F$w3xQiq;Sz}nsx1FqTa8! z=n#v4E)t1S(Kp)~xg)0qy&zi8iIU>xgGJx+aSfM6iVU>3vJi>V{{6TDLj_Eu3Air{ z%{Pc#(Ug8sjnH*zcn1`@)iwxQ$B2xv%S$Tyg&Oo$f(UjI;lkL@a#44dFlMZAG&+8L zB*PjbJR(i>D{n6pnkiy=fddGIsOLR%8(f_wTENm{jw%*a(Nj9|M6f$JH|*J5Bx3j? z8v~Xti%-FQx!8ZS=o#-hIAELz*0^%Ec{|=@ro$6Nd+619)uJ^t8#hTbjiuc|of_0r zbjJ>TKYFAWUR)!(O}o9h-;1hPhO;I_yl=i}I&FuEi$rT^<7>HGWJ9yvR*Pa-6h(qX z%{@^gWIwU_UmM`MjUuT7AK>ygi0Hs#=q}L!+7y@XW@(D#IgC{2gSYMxJ!cI{0O0@k zCV6SU=o3}Yy~Cn@G_ZC%BYH%w`pvH**#D06fY9@z1=b|%hVT9^>Pt1)<)(;fpMNS6 z!$UEr4OB7ohHK3Wkq&?pcv*;2_tTVAf&mN0x@i_A+HLF*1 z+U8*v;X^jWKG zfyqAYOQRan0o}+-lYN?viGr^uICvM_8b;kvBYRmL?@( z_qkEu+wwvC^^zzWw4W}G%4KeFf5o>(*ZQVeVfU3$$7pzcwmvF}3Y1(M1>f6qvI)0D zVQR~dyQ1Du3tQ}qT0(Ezax7{I%ku*#v10dKJN)!aR1~vC2?7EHTYUZ3D2O6t))_y$ z5CyO9IQ~voqhJd?F6(hCDv4$%-HTemGAb~dsU5!eENT=pX)r`P-1ucw0*wok-belF z!jsIl7eA)+5}6IfQPd#knuvEZY|TcV7Gtq*M{&78@Ds{%PZ@yjbrNr42(Vw5jzu20 z>w!LZ7C-*?DDbIDYZM?92cRCoVpwE(FU|u`3=p%d9QzL_h8LOSehgG#8DQPnGFS9l z1dCcY7InSEa@?nj*q)(Xeg&}TF5YIwb2-&h%&_F0lL)wE)QiTQzTzxOBk^1DBt{!^ zDp@^1e2HON?W;;6hKk`?ku%S(;q~KUHbU&jFrenRfS2^bTVurvhURVpK)09MHO9x| z#m&vps`N5X6pZv%8Skks9Imx#D9q zyLF-Xn|f956LZG_tz9d&!jqSan^7-#w~~4R|Jm2`RbrOi6Ta$=RDz+B5X$<`jl?FL zu-kqX!!t3LEvOX_r5<;Fn-~^tb61z|5HFxv@h))?EiikZ7#81i1#|~Yw(fFByp>_X z&PbH&0DRHhlR)Vj;y$FDa!S1P-$xs6#}Wh|Qo5mpgLiF__b;vN@xs&MYXZSFTya*M zZvpAs3*u^XNXJ|jUm>aTns@_4BS1GSqnlv)O>rWCqk!s?hWP3&v9}evb$iGF)bkJV z@_O+<^-^qy2R;-tJxBw!cy!7s))$5T5hp`E-itj@lP=K=lTJj+c;xh_xIyhx@gDOU z(J)tZ_Jx>b4HQAbfHaK3QwWVB@(>N5oPQ9%vEq2NG>c|gUjtB;IMqCwWqBTkn`OKf zB5k8trr@~Rm)k`v7+tOs|Kb>Z*^E=bGM8wkjR}YX-nd4$Wu|b(BYFu>VO+y#mTgWs zEu3r={Vg+v!;Pb>c|&M@qYp7OHIBk{zvx0{3Jxu!AMskSZ4=GX+BpiUw$YauTZ9Im z@{bm?JpV(@5_G*=v?odwS#`#Lc8O*g&X86q!2t8#4p|Q!>WQBYh@QZ;O*~W=c{IKcK zAb-&RY_*k8g-i zr7`bRoB`kMig9O|Of?GC0&m+FGncvf0reIr@r{EQ_Bj}1Wy80@h?6nn2xB*V`dmyM zul&Wo#q8p9+1Fy$^QH;D6SIex$Le0pPke6Q{g_s~wC|t9?BuT-{7dPa%FV-5{xyC+ZQRnl$u{kK9 zZEQBO_lRW~83I5Qp5qal1`ij)LRZwlE4G$F90G&9TEzO`4DZ-C@El37@|(sc)eEcA zCpH5f>j;)v^VsQ(SQvOsXL!s*oNfZz#pY1m{M;#)VGf6bK>*W{e`#yw9~;CHx;Pbo zg?SzryOipAxiA(n>gF%JUWde%vkYN4Uh4~CVnWr~+Y7hv78_y9*$n6QkJYm39aZ?n zy5fu>v0-)u%nfgej#abL!wVB)`ewZ`L*g-su{U_XzQ`|K@7FLgNS=-E5c!9uWRk^Vb9r&zlRBSc9`hIMzl4jGYV#`>CLm-?D%8=Y~ zL0c1Iz3{?mvCh1#C}w&rY+0BT>y4k!j5TMK`Y#pyp^kOH^HD4usK*IbJ~uW5<`jtJ z`xly&P`%isgxICA8>o!lt76|#$7s39q?%G3`yDONV0-LphA|-q2lN#PmXK`%?=dt3 z5{WU)HaIcpXV$d1D6}Lhjy|FfKOD>Ol{0{-Ymdb40iB*NfCuyAv1|Xm7zCu|NUSIF zThZAT2cL{>&)`o0qQcM4#eTL#MXw5AKJzm1pR=%|6}N#=z?IlyHYKTG_+U5=Z?&;uD|2_#OB z(Fi{uALQ42NPCohJC0>i%lK>nG4DZKV+>n*Sg;xy01_~~lVurka$*6%bHu<{tuiOG+r;DoQM{&Ju0fzMK()3odd2D$@$d-~M}P89Ca;KE7ypvdkNw$n)u%Ro1eLF1 zyXk8Go$>CpY|5Vat~Tr)RxIjaA8(K3$K$Qg<7ZKw@u;KmVfB)i;9%~zQm8EdaSmPIMmB!KF_}4j3AH%V}rA#f4x*l zpfE%ep~+>|c}n2OM@}sl8cW7d&S`!UOM11kwWK+{y1Bh%G{dqzu9d@RDi6JgkkkoI zA#R1l`)?!+Ly)h}e`x*ryEf=a7sfQcazL!7{rj9FEZ4brIV!b>*%X` zN%pva9)^yTupCnYK)HCSNWwI2&fP4GmK2!*fpxJGmg!Rt<6)eH?dx#D{=HO^MF^zH zB`kB>9DyYY$t{M)fVi7Gs3oHafuFPzhVwNsU<_e-eZ|$SN|Br;b%*LDE7|-g7mrSt zBr+42k}dgx5b!rh7>3`x0@L#(dzlHGFOp0k1QewbhQTFIU}2er? zNEWkdf5ccx8h4KvWQg(#WD%Y z!!O@>Zmi%nP_&v|16zKSJYv?sz_pU`L<6VSvlDRMDDh!-!ZSZh#u5UtSi-UZjPrpR zTO=&|eDNk2yiKAY1lH`3Fm0$ry3w0EB`=vxP_$c;N(kKDD`A-a;DzwrFS*K0VDUkT zlo0rGn0*isdQ>7{_JJ$MB~u82v{UR(xcaoD3p0VLUnQ#vfshN5C9H9v^rD1m6(Z-s z$(JSRguun$+4};IYm$46KA^{QZb()M1gCJHTaxV-f>Sm3nH~x_S$aKS=YfES2Dg7C z=|{+9K9)=XGU)wt_NE!|Qo{0S0^h9OyppUWW?A@FGN08iZoZS8U~o))-(fcmmxV*$EUoNtw2F;5=F8D%B7T z>~)tiN9K>e%6 zW@sB2kmeC4Wip=mFa^)tNyRhYt>&2*Xr=z7+{zSb5DViCCDM^NAyaB^XJlMjBxPB` zg8}Ifh>eRXq)my=XOEEvko53((#|A(J5l4fEC2P z{`Lvyh?snjeVOYd}|_J?3ci@D9EG{Zv=2Q zcvXvp8p5(?n}j2TrG2{uE}$K4pO8hQ=;oi$oJgk-CR`-{j|fc&VenQ`Z4dM;BEcCy z?vmgG$b2;O>zQE1)Y6P_2;i*on%)U(i4>Cl36}`VkO2wRg#GRz{O`HL61F?R@7RQd zW-RO>c=kj;Det(Vp83P9xU+@ODe(vk+(@19r_m%xrAwfF%&^3SA6dluk9r*N_>_cb zXyW*4cETPa&Z7K;5mu1CEKTS{jM8j$!g>~Qcw;E&rC?v*Mvmn8pu&!I2(43^VmM3_V^z-V3UL@_gE}=I`M{i2F%CIz!bE%po za5~-ktqE@U!Ip#(th@;d29zH`sk~oi)+O9z3=2H~%^P3YmylQwI^OvBfrOJrI%w5F zqi0<`mav1B7+Q~SxMQEw3DK;~c!W1+5*8S#;nf!tB3OKobM@itB(7L{H6aoFfDicx zem6?$bSr^nEd&`d^+X)-ggXgj9E_XXPw2)%k!vQqw%u^SmmViXL&M`Kj(usQnDuAE zb!Js^z^7j)tS4=t@+mnpDks- zk>8iBW$c8mP~go}*j6L>yqFFYi%#)})s+)Xw=(pbi{ z^(3cI4ldY7wv5DxOU-1Q+{;?XjuE2St$0CNwBZH0)Rq@yNqb)4vW_w}vnffqtFmPq)%i|ingY)>~{!YMs?iQ;<6Scd~W z5Y%Olb`6!;kP(ds?)R%GO_f4+r4egywLo*n2kl%f^TLirvNz;` zm3zYSDwVk~i*3ZTLg|NfR(NlP>=^Nasbgf0M5PPH$?g(w82g>fn(&`AQ6{ZVT}`lI zDsQYe)A^=;d8TXx%lA~A`77>9EbzhwGArUuoHDj8l8K1`uFGVtnHwI!dgAS?WflZ! z_fN8Pk_K#$*{~pT@%{J?nJeB}E4ybTir)NUY{j>>%GkcDhK>URa1}9BY@Mt>3p=95 znm3XL$l)}!&e9LI?(m6*EW{K#CmfZ1Vjk=OE(Tn#aZWx9OUzk4zwGK=SM;P1wmpLF zSlp5O7l|v9o|8J_A1=ujm>$1o+%~GT{Ep0n*-ed=IbgpBGA&W=xQDV}X6|23-*87i zn9CdEnCG$_lVY#EhLFyx4msNi~!gQ!?9B29S|PmB5%yBPk#@o6M8+w*&BcIls^JEzTtmvBrmET=7VsVBR2Py zA14$~HDnQeDWyRYPg)6 zb@&h|w<3Bp6Uzq?y$+3+b0fn}Qu!T*F9XObsRX=GBX4hmb`NqJfZX(Qmenp_zXQ~UMSyM z540dWp-3)f305Er$0rC^m&-Sp0hMl*^5ylSGIg}PJBurRrBXazK7&wku97dV7Zq8x zd>u>U{Yqu)B>5^rMKiUYR5neMkFK9qZq1UzI-%t#Znm6dp(K$BgXhIDx;%B0ym|5! zgoV!!^>mZ0g>t6z?2NYYz|||{VNO7WdmR(E5<=mrBDpuVsFioFPgC%~ySK_=HR5s{ zyhC2h60D6BozN~4qo$seTcJ-woZYc(ue_5DWsDadmB-b`BY1QS=ovt^_KdtMGuMhL zc|&~Sf*hVNd3EAPzsZj?w;Te80L~hZ{9T?*G`annoaxz=(AAE zic=oTPq573n=mn8mJ@c0ck=ekx?6bnhAVFHMg9qp_<>GaGer;PM#jOtv`{PtQ{WmK z1@d8~J8_0Gi)T!LkDxHzoapX6Q+K{h{cJPE{+M@N}_a zzCf@Y2gE4gjJWN1bi87_FQh$-6fIoqfy}br7+4KM6Op0;KZbIjq<{hcb~I|5f@Sf# z5zPm0p020^*-%~$GY|$^kp$!S?-eYa^j9(s<|*K#jO}>vLWMU&`#>C0C#`*E0~rB zb2mS^t0*Q0OL@RT00Rco$}6t!&W{x_r0#J~nW7?xar~KLHOoMPyV>`pVlE-D?UiB` zn;G-5!y5(DA)_3D3-1(}gusB0iY2TBW_(gGeVIcDY;LVgBlXWPQ!>|o)m*ulVLXgC z*eEBlSPt%!BbO?xN*rmgv?nnlaG<{@n&YT+L(l$Dc;op_%6BXSUr@+!lzCrahyC1@ z!7S8F2nZ0Y&_Z2736^^*RYb*Hcs$=w$uucVfN@DvWf+7r9_dgEC2OM}j+?Yr-UP+r zFYT0PNw0ghgK`f^YdR_0lYqH9SP82Vw&S@WO89VRJMIz=$8R(E=QOo48p($#ozTvs zgWS<%Z&d+)(OY@NCN|mK_l=z?~xWREa#j&}5$8yA-8AW8XU*`5ky+i{8(6 z2|~BBl&=|#!#OL5a&)k&0^iJ0%1wS6ou>?8QCwh%N`#%ul+#G}x@eq|>sp#lP_m2# z2o?e?8}xLt(h7H|QqCimI5bJgG9WOaVL-d=1oV#1R}Lo5-f*e1hB*1!<;v4!lu)ro z$uuf3)xhyZ(w~(qLjypGLYcoP?a-$kN;(2vv{`wG3=&edDt}}!^nXD5;62-vYgmGt z2?hhRCB#)0)%`E{yxXm0>cLHXh^BmS$V{s9E~Oo=`=cJD z2m%5GIxew&tV{%jeLgEMkdE@TK*fzq zj+m>samgf06*n%~Vz1)HCDR>M+_)sjMYWD)TmsxB=xTG76_WQ>&cIfURX0phd~Bxr z!ZHx~4@?_8tFHh#L3k$}`*8 zgJ(9b7td^9A5{d)Xaqo^$8xx7jhzOm{FxnqARs`n!Y2o-u9Hx}iMnr?svX0G7nz^n zrj~qhVT`KG0$D}|)A_C*QWeW_4BQ-?;;7CNE&SuIBN~vPy1>xQO#9=m7YdlCY6BbY zsdkwQ9^gooO6CFSx;&L7%O2h)MA%Ib9D2Ct2pe=ru5#s%vRM9$%Dv0P)&9BqO!8+4 zi;$~B0}A|uLPGfqpDVTdj`FjN~6Bn*jAYeO_Tp*k#FsR zVLz(W^`kOqt!gdN%DeR{mT}=%DnmD_bfm%lyjeAXB~BWV2H?rtRi)lQi3@Ok7gVF_ zBjEr9a5iXdmDUQ??p8aY$SW#0to%)7ZVP0!w^XUnUh(NaRIuve0bcP)m1qa4^Ba|| zC8S;-RWCrO%?|4CNU>SgYWS$)0an5F$88>FaCF{zUp1%_nm=!`Qjn!2{!QCQq2EctVo-vfMMUgN&09PDPclR{v`s`)(%=+mX;9RlYHFY@A zR-e0SPN`n^)e<6=;fcB_k$%QYwFQxC_8VRco!_fr6~+Vn>7J2(>42v%3P6V1ySWM^EJ=N@70SnL&@*AD>bkh>j6H#n!j(!8ciMXV-40E zAfk8Jt@(~+Bxn>_gd>k?E|>)EdQQW1NHu}OAZRgh`ia+huBw}w<%FZ{BTYUry8UfTSen46~Q#;iX6!z`++RF?o0igN#*<5W1OIYJ>ez`#V#S93% zT%_Ic?+IYQxXoPmjOE&Ar0y}Rv@FZ}IQ|YlYD<|3#H`hxAq3iQ(Ej}Ig(qg5kJoI} z*07AH;O25PzeizX?6_6yZ38U0@l@A6+E_+;I5-=W>6&kaNAB19SP4GktfN|)Ii#mf zXiF?09eP&lMpDHE?M;&QxuQ*jy7Btk+IQsl>Id3mB+Y-KZEp+d;y2pgeA!f!h^}Vd zX<75Wr!DF$2`NMpZY3URYACyXFc^PrJo<;>h_rH%2F-m=D_fI-*vKbS}u> zU+02*FVwZR2hPbq>JAgP3f`!j*MLo_Ut{Qg!A*Wy(KDNpc4)~F9c!n6VP3%seQPr8tPYM7Qj`U` zqB9qCdl-~$1oXjimvj*<{_qtc=8EpA8P6u>nvP|$)K{zn*L77abBKU2#0MQw26>|3 z`#Ly&!Y6H6(= zj?w8b=4L4<;KkjhXsAcB7k=?$;-#jXmGJe$iQlt? zHn0svJQOB%z}-(L{zU11JeN3@s(1ReL?x@G|FL%B%@KJ)=9ik+;EXyQa%MRb563R0N!p%vGnTb21!PvxOgSqq}nxal9Wda zRQV-srW_;NCp|T0g-LK!HfOa~p-FW#`#LOXCC#pjNcxFp^<9#7(`=7!NlR(=&+bXf zY4*pSrn1Sslde%U#0^byXw7Co4Kl{CRf2hl+i(~<6bJO#|E4qYTkK>#qx&r@G&uE2 zGj#3g5NkBhki;6S5d>>*?3b5h!{8b-7FD&xr6o!E0>M1|sx&FX3T-fJIRMGG6}Coa z#?+4#s;f@2L~F+;y=PG3qVJOwsN2jEFFbO5k{3%?!XbRDPGVW}3HMInA1G2LCBZpb z3*WYMMIEOn?Prq&;a_GXF)h*tA_&*jB)u}@IUJai#L!t_fbnE-4+QrWV#T7QS1h9e zax;RPVS|hBqtrNQX;Qf(I_%WS6Mx*01m{W-rQ%iFl7^Y{S({x+a2O(Yb?n|GE1I2m zFzLDze|6INBsgDyE3p4^(pX+4SaLP#3(cn9NSfow7w~+Vbl!%~eteSzd$V)59eHQU z&i;@DXAy8$V?QOq-t1h~`%4lWJ;7xU3z9$5+Rj@i4`+F-=QOb1BiSDR=9;{NS%)0L z5Rc>qcD(w&_#}_E=Sj|JpA36}zNl82JR4QMTS8y6J+&!;1H4qp%weunos3yp z->bXLk$-aXaCBai{7XFmLQ#{Bg&w%0E_pr6&~Fjtaiks;0#K$t*^M95x@`3Iz*|z1 zVF~#wRG6Mz_dmh)!H+VMnZ_7K`2tWtgG_hSqw~;soR^=hwgY)axrksKV z-?vHm&Q7oiWx1z(U{EtR&j#-6ippQ#g?2k0I<@;ADNLvMW(|g8!%j9x(Fz2ca7d$+ z2rI!{#EmbwF8hj4N_`rbD{_fQu|(^9Q|>d!3EYOE2PZz$g_({Jn3Q4gMxAMc~G{Iv!G%0w+0A=BAA1Rfx~dPk|-CT-kohQ})o?8m%>qBAK>ub98WN|K8l@Y-`Jmni4ims6sthQ8cLnN6>*yqEGVFG=mA z6kjGm`liJozh7U$MmH}~HaPS2E6q}incAHZ3;~!8y4E+%3a_+G?eEN6-JA2p`*~!h=4Cu(f^aTdJGAfvK;l zX^(`a!qL!N0TiBUpaq)tFkStlXKIx#UtsJY6K?E~)V1`shQm_zL41K(6{$vFO{q+U z^JzI;%kinpSeB(_5k1viPjf}PmZZ{G?6Rq;RaE_-en@S{)IyE07+{rD>4BR}qFHP< zDSbz+N$F`@OiK6PYEpWSI+M~R`%MU)51N$z=#WY2uTGkj{_$6ndJmsZ)l;Q^`@89? z$F)?Ldg8RV`o0Ob^beELyFN!B~CMX`h=J?qo;?*r5Qc_ zLwuUi)9saMMo({}Ga}r|-^8GkW?VLz>akXXU3EJ-u<6>FWLRv{$qR zJsF#3jH#91rNK)j&J<^-nQB`;BhBdl+F5Bv|G#z6WQr|^(~_wvf=;9jVKN1Yp6eqa za1OZxU5W37w6!#F-uykS1@APd!R<7rZRm~I7_e{9mfZbbS~l%Tc0WkFO5Jk(Gm}tb zU!*Dc!6SbC&ZM`!AJTSGy-gSB8&Ii#vD8PfObbA8ABJF<>x-s3>+6uGK6e1}UEiW3 z+UKIL-|)TS13X|%-c$;k>$NLvi%z-fQ~v#M2R#qeN1VQ^2mt1l{6m1BmwtpT>iIg?6;(FZZ()<93cqTh@5Isp0+A~Gdu#nAGoHi2cKU^^ z9GZ8~Grf}MIK+3>Z!<%ui34|4^tJ)57)CigK#i^M(8t` z&EV5b{~P6C+f&c70F~pQ?xklsbc(yVZD0LX%Hd^y7Bi4$QH8%9pl5m>&FYRB!}Ux&c7WAsBAV@nn8EYY8!92{kOmac^pMJw0u zU>Rt`&1ra-PG4n*er%oRiDg;({*1nzh5*L~56snf=*YzxJa(bJnIE6Ub^6<|h65rX zUUN_n&t+V;`Qe{0EKjXJG|H)LFa)@SvDS-Nr%ON=_V*ZZPj-P5gc(<}OH zXHG!$?uydg8KE8>AZ*rf6g;;OU*dj21ZB zIQ;;vZE>^o{q$-a93T9;zSPZZ;s79XmO*d+<)1Y*t_9jNAPqO3XX)iHp-RlWpKmW^d^-}&Pd-&%c`={M>4i8 zF?yJPrwNWONRP7M6}77*eJr!0IIz3r>99s?45xA6&CA-P)dSQ1@4-(*||z$MiQWb920F5!j-&>9eR1ew$6ANw=nB zPqyGJMhgq>c%k9l)2(=yJ$j0)9w(s=y*_Cqo^>fbhuJ2^3Sj@EE9qsFz0WNZ`}q6m z3m6UxCS9x;O&zAUL;h|V)_BUB^iK_V;ujnHe@MeLuCdWYtGR*JUXL>#^cOM8B1AS2=N`wqKwYmF&6mp zjEo3dzM;39pTTs93_--57iD~Q;z@Q}pJ9ytjvGx z*4$E;0kagGn3MKoz{%iTcK_jw&*psg*W($psH%(3niMtkoJrMY7feb$dND&y5qexV z(Q&?MqOxp2XUwKo=lzj!f>vDoEJMdKjm&A?`E^DUJo;@$ zH>&V+f=u@QoCCXOk!g&fmG+rNt&eofG&;DzIn(Ii`&=@^Xk&M1nE8Ne-Kt5ZQR|nR zW*W8b-YV0m_2%s|57_eE)%&1KI8^Fav;~Lsk%45SM9%oF#D{I9rr?n58)x zVOSow;oiRZr})hE=AZ|eER*FCmtY{kfY5c%+y+mRXKrKZ`8k+BI;Gp=W4g>>OW?!3 zb@oWhgza{=p#1bqmQ6=E0h2N^x3P4x+|9GIGT&PWw%{3gnb%n5!uLuu$1pRvUY-eC zqHn?F)tS9ncJ|{m3u5@99dVg5WYaGTJ|RZTpAcifgTsHeApd|Y7Ju0gmX(In0<)Mt z7v^rx5N5&N5?j#S&@2Y0$ABSY83Ay0ulXiRPwMvWmc=p|!eNNIXLV#5OM>Eu;m`fE zo`5%Stpln0XTdJEF`3@DvnXp2i%Of=|xGSp`;A@X&HFSlajjr$_tiPJ|h_NmAL+iU_S)$*cLv6lyvmC6c zDR9rnS;eO+#%?3m3wU+vQ=`zQmQr;*tmasSTQ<`#l8cu-Kbg&Cy7h1o|*+Bhuxf;FTs zyJrWH|F`aw4VwU+!Qb`E?#trcq%zcQKsG~|Kya^wpNduw%-&}OdTSe*&9e9afT9@5 ztMLU<_IA(!ni-wVGVuv@tMS2@Y+q&qMe*6Wguqj2_9QlQtFenL8+Oe(gPJL`b67Fj zsD}Hatj$Bb-yW{a%J;u;Go z$jx5Ns)4nJY^I~_3SH1{G(oVI@#il0A?m1V5dUJ(RrrRpO1Kvu*5v1vgAQ zIVt-o!vG5dTr*qnD%UyL86+LGIJ>nYq$}5DOWQ$ec`5sMa{boL>=BlbhTPANBY|nk zqwI#D0=(i$b_0^`e3qTeGI$4l_CS$>d#>E-6TJI%_IgjFOyeAK0vMfyVqWT-=7_9a zbNsNAdv3S@&vVJy=KyS#O>^KY{4;o6i=2EXNZSPEJZuQ5`=Fd@M4Dwoa%zdR(vke{ zCs8?Yg6tW5K0fC*k$#&zr<#=eR+R%=?47}0NjaQ$QuR5%K- zrZc{7$SEWt_xYMOo;af@GW{nT!%p_gt`ja_kHjr+*kdr{lx&EFrnyJA>W(T64>Dj*M zx?8R_f(-@SvH$IyU{DsivC_d47u?Tj!sw=7fgRDEM>)-?n-)LHu_e^U{+R>&Xq>?v z-{-(asb@B8ayc)nwalHtXre%PE1uhy7vipcZWs}QiyuKQxgA)Az<^oq3_N=@&*k{u zZIes*VxP`D;mqLN4a|hsmyGQ27u6q%$Q^8A-L`w~Kvves2<(XMd*wDK`tCfC=YMV( z&)-qZ^OwixUSM<`ZuI4gHY#&}MawL!xo-(NqLZrJ6$~8*nQ_58)VW7kTGOKL@T%^( zHaAWnScB3F8a2e-6LVo3mS4!K@Bv7s&t+L?%uNCTC0M0sbk!J#3@&4T0Rvj61Wkh5d`NF*;QTdA828jDeVfo_Roje<4Se`qc zjm$_4fO3|JOODOL_hyZ8$-3NGZYaz;$P>5TlRM9h(-1nlFSmk`69QNpJfv&bR53C7wXn^fc<#wcwFyL(NRRQl4Vdrw; z3k}Xaw%pH!uMfGb=d;`n@JfI<&4|~zUNl?$G4}(_jyE^JXltmYY}R)$uq?dz ziuIzSL0CUFM*|E~D4Wz^1IujOS2k;ehO>-;n_8-6I3Vzrvgu-2RxiI9+10?bG4NM; zyn7f9Q8q7o)ss!PK873h^Wwez3|W*-zX1k@ITZ9&vWkHQ2UbgAmmvoDnuTjl*N4^9 zftyDfRKFJL= zR5wdi29_P-zv||;+OVj8mTI49D5h*`lbLmcPo)?h*H0}fz2Qen#3!?!4y?#Byk;1o z@NH4i+QJ^~7!5}%ye%-?ap6W~D5AjNjsn6A-q^RwFqd(#CqjVjiib}(Y_s5+DsGGn zu-c0oxcoWWaEZ^Zxca@pj=%VHsR5Q=aR1-7+yGliaM_6~4e-@CmyKU-fF(U#He!t- zo*!)Br9T@k(yNnd4HszEu*I;5X4`BvjG|+wU+N6s@_NUvdkuZ;c`)q>!%L|-)+oJwo(+FaMz>~p>6ZLZyRLO!3)YUB zpkhERq)K?(Deo{<*ct!4(NrHgVcu<;l|n!r4?u8=G|h@0pBkDF0XbYA8*^$bhUE97R7n+5iL;*imT3}ZBsij zkA37t@G*SD4SPOt&OUiYUO(!7w`b)YpjWre$up{d;UUN;7y-=PnvByFu$BtAnZ3hAA%JZNY;+bzso#q0GwtxB03)yF>wM6 zh|l++0_YX_eQ9=&F5il>zLc8p%ra*V){a7cr_F6~US@t9#?b{u=#ZW7FW`mG$jQIK zFz1d(mE@PO3@YHh0=#^5{xbp0$VG;@d*C0(=EvE=k5Rax2lkqpuV?WqfR!T&%5Q>_ zg?%+Bc}BiFUNtkH>9hrcg#pWw#=ERJ`ID%pIxon#pjTTi%V@(|VZ7cJ5WMkK&pSFqPdi&{Q^cu&HdP zp#|IdvSyRJqGn$VLL3lPP(T^}A~xNliZR{OGOpkf?Qoow1@`rEm>+PH#DXo1je~Q! zR%rN-`BrFYW`XOhrv)yxnS;~Apy&#o3(TZ6nCt8FGo>C`Tw5}kS620@Y$$(31O~x3y#bgZUtpzdE z82P&knlgkvGWOyp@NwHC1>u&04M=&i;N8C$4t;&0u;x_34F-Tk*9r!p9^;eTvDcY` z6&C37@km#E`g}p68J`_^sbIA^pSAeCAdRVmyH;?8jahH}?0SJcPYOBQDPWq=yjIW~ zyWA~k%iw$nw9^{_2QRXth7iAfSP;h4W&Rb0ZjaXTNkOzVlC~Y;xnjzz0((xyn->mcZa~K@$Cv(7XAqQ3zN~^_Ju45ZNt5h7eCv_P2yd$^+0!orpH0QA8vLkk}<1QiUF<~X74oqBoVr$Y-7%Xk1FG~BMP$TF_b z73sQHv`3Ee;%<13sIapmCm+73D71CqvoA6WBklRDsHAX%Y&V1H>excTq&yHGL_^YF!4spv3=dUkhSu4c7@&$)vIlK>#+Ekb;5Y*w< zKNmK$5**@*z&2YfuL`)hOj<^b(>)t>czTHvZP{K}!r&L+pAFH}_#%J&tA(=Ro1MdPqefry8<-u-T!)2Q1O`Z}d2< zIY$a>%z$3N@j{mOPX8BV@rlA}bHO2OeWq|aK;!R!Eu78Lr~D23>xP*fE*B=a0OvqB zED+CsSjcpm-v5QpZQJDkq_DjM(2jp!CrfQo1!>p5MX=}IA?(_}2#zf|gztS@w2=J& zyJ1DC1ozL8MNuqMyF?HSey_3tm2kVV+o+4$05cSjRK&8j)u@?4{PskN$wkv`f#3V= zA~>Dr5Z+!;bdm6$RbI56Tpu~1=mL?aeRa_-pn#ob79Au1zx;hsf1;1(i;ISl`?6LP zJz`qVZfw`2Rr;cr8;fQOUXp`9a?qDeMfK{9YZ8iWQ1zx#4boSYxS?Skpo7k=+iHy@ zn~S6jjkVV=MI#Yx@8N-m)fVkx2|<8xm!aZjgNlcu$RkB9`8WT+Z!MZ?fhwjcTv6Gs zq80T3?1)d+6-Ba0Vx-g&AKqKE%8X|-`aluO(DWbUh6j9PL~ufWe-zoEUHTz#u=lyrZ*a}IqS>w}b)CW!&HlB>9o1bb_Qsj_idwRY zOZ>qJLoN3#IpyO<&x&kp_-x?YqQSf-@TB)ei}(VYdlbXRvBYa|L$l&T^sZ;t#m8v& zxTC4SGUwv`R(#pw2F0+g4tJYv^J4fEm&;yhQM`a=t6LQZ(gMc=ied1>6{ra+9!qgM zhMR8t5@EV+ZI|Lrlx}w4;xdLF1cS0uTsWQLh4ICW7&V#1Z{Hu2P<)GuF*v!{s7Xy$ zu~CzCImMs(R)Cj#tEiX(s9C%rHqmU{*2gB+qHe z`v+5j#|upb<}EIkQe4}WCas=XRs4`vabj(8J8B}E&Bcf5)tkQ*f5XztaDMCis>}|R z?<%&!t9KV0ta!}|4;9~M)a+377sR8**qj$Q`(&|%igxu^lcwKXF=<+Kt@sm_M|s<% z>D~8>OX=0&kBcp6R`a|V(X7MkVwi8?bc#O|Z)7<;3*vJsva~5#j5g#Z4M4DYGt2S< zZqQpXzQhwPbS;68nV;XaL_T+i$k9&^#crs)s>B1i9MjpNv34a&hTuKQwM4;h%3N(< zvY(;hAVBz&t>XAv_Y#4H;2tt-SaO;XqQ@7fnCOmvNF5T4 zWj-b4ECc4RFx zh+Ll{E9qEt&7(ZpkIvN%}seqzl0b%_=!(1F1t%$#a%r5^ya< zE5?>g7Q98=lVRz&lI;uz;GPV@H(xL+%ooA23C&TRD>(6&zC&OF_mPr)BeI%PLeKA+Go!@gn=Q;A43k#+*D5kKLz?o>oVN2y9$BFE1H9aj z^`erk_16Rk%{?!cFE06sCEEXATsgo$mX)kEBV1k4s+A?P{+C=ot}5AJ&OzgyKb63? z)1(%hwZ6oHF{b>7wsA=dRGJ*s84uiCvXr^8n7j>V;*tl>D6ylLCr&?D0>?mbY#X00 z`JHBMFPHRl;jhXcmTVR9+4hf19<<`KE!|5yTJl+Cqtegxw#??GunzYlIn$1~~h4 zMz>cEsX$N84zoi;e=U8)=o}bac9JWy_j2__bIzB-qxG+)5F#7|u2_Dr^nx{K5B%-Z z(jzq6{7q>puMNE5UFlKYk#N!HQrL!v_|)b>W$H~>@mITjcpl(6YlCB`?5?p zjFuGW)5vty$-AtTJAburr!tC#J^W2zdjrZ~za8$jilDMR6j$_389Y>TS6g>Al|9$3 zY_}bMb;W=(u@#?n9A0*n;f)CIRSVLfd*(4J})ReMA^tMjOr0Tb` z%WCZTiho#Yx|*`Q>=-r6x0_5#_1vE&JXV{h-J+z~Jc^fLJ#-fJjAu0%2TZQY*=YIoY;OHO&e3*3ny2Ww=ol3$M7Q^Qtl$E-dg?*E*@WQNpGGu zsr-orfAiGo<*xMV#@Xf3cKj_KxapE|_~L=%a(Y?$0Ge&TvOJ1rr>rhtW6l>CvbMa1 zjq%1YwdMQGjXz{t%g5Oof4tjUZfFM7GVYX*6hOM?ZutSi+jrZrhIrw_@+EK^?)$X- zA^B&(^Kz9FTKcfl0QB3J^0)uq)v>vtBGd_G&hvN0gPbewI`G+EO)6j$xl_OUyWuX) zDj+_S0xKG{tALlOB-ch*0WU?#P2mw0;8$GsOV5g*&H3!Uz7=n2_V|E`F7V=+l=T`~ zv5ek!a%9D2T3}mr#S5C<8DH_pcvV&bYpA)~)~hREffbisl~`d9?`R3wetpGn@IIGh z*Jo6;_7T`^B^60fbU@Uax^My~oTKKS9(ie4<+sRLGPxZd4eU;W}+tP()~iP8%!?S4KprBf?eM z@BocktqE0!1QWpT{<#!~*lc`dwVhv(HbfgJREGv>1C>IxE+9e`s#Arl0#vFHwNe-o zhy=g!-ZkOaFtFI9I6UH*Y#DN*so{JMZrJTjNYsmJ?tMV9`SNQVB3hm z&H<&R9sQbzg#|}MfSUz|DFdNWl~Sn-SA+A0LaPW;sc>N8m<$WwU^S>u8v$xmDM4VN zG9n-d?4nTyh6Dyh2=OA1F}nnQaC3lG8y*q@iV*4|bm0Nv8o&w`}#l&2@BSRDb+%)S||(zieb8-z=)uT@Zj)3H4aD| zlWF0j4Gszq(uGEZ1%(C)g`puTO<)K(hB`1j7=EJN^DcVfXDw@13Vc9HFlt~}L`bMG zC{P&@79JiL6a+}&LZLPc^-@$d!U2z}mJ59Ud&Nplj(@7Sm-1q3^z6!LH#BSO=$4&@ zokLQ4`{yJy=WG)it^pU-1!*DzLxiD0Au3>@3{ggeD>V@z!2vGfZMBtDCAwq4aE(oHQ1}qLf90pNaql!?4 zXoXr$fT?v&6f_MB4Ht%lYJ!3Sf}tI%!`1500JSKz9`y7#tWF5+>Auks@@#!a!|+E=UywJq?0V zjqs_)vsMUv{(G&QZ~Fa1r79HIcT50!cXqV5k0v5q8?Fh~garo%3)R8^Rd`Sc7%3=N zqZO(nkn7Tmp1AH#mBhj~Bt#9ZDkL-{L>Vd!3=9a55NcIg2lWcK^$ z5Fd>uP!p;ORjE}FcSE3+M}!Mi5brebkMJNID4U#R;q%`+bTrCswr6dpstNy(z4HK< zqP+LND@}^@s-E4oAQm`G*`3)zrCDP^P^_RZyR)OB0)i!0sv<|Fc{ncwM09N^DjH?5 zLvmA$C6J;J_efEr*F=Lcxh6N3|L2{Vv+OyN*?WDSd++}~cYU(qH#6^jUgWs{^9iYI%}ZD4sBF{fN<=rw5TEtg)?aLVMzl%TrkhJ;(;40HL(L}o!6M%J+uc3F#K%obPGFYoECYq#_c#!^+%9ENGw zCzCx<&9HmAIJSj;`CEmxGTqjC6R09mz$&o)x7_t`I&vSk=KHN`=vnQAtbN-J*0a0HXuSqcVQhpput-BnY%r(V65MrewX&cIG;Fn}q`Fkv)P7KehVsd~=R z#KEGWuQ&R*x`$&4MKP_61$$`ZoD{=jJGQPk9NBPdj$(M5S}lJ$maI^%S8mZ2ghu&&??MJqxnLs&|T?pq4h~bw@D37F(Z?+;eaf^x@J=x-(~LDc!i2LJy+LXvLzkG2VLfNNf>Y-Fs^JdEC(~s zoYUb0bsHhV%D7rMjwv$-1Dl4SVwcD;`_i_{2A|eBqnVl;TP^SBb)D3(CU#KXbaYk8 zXHA2{+Oo4Qr@3xe>AaOe@H%K&FK^x3^B;{RE7Yq7Yb?56j`+!Q{l;_>jeX}HlF&_+ zJ;0&UT_t5|8cc(&sS2!tkxJ`X55}BH$$~;c&=hz-m;F!fFX@by*A+!E($-RyZ=Ct| z*0r&CDsN{HE%GTvNpU7-GU>b=DMinuv!>#)AX#M<>ePdVMAw-rJH(#oaqEDAs&1aK zhgr1LEF3T!LdMclY0I>AT4tnGb~;1Xyb*^;Hdu=k?#h>%YefxGI@5gd*wNEdZBaV9 z&y=P!Egsz_aqy9Ik7jP#ij&W{*}MZ^l4CDq4@LIK%e7{vf`ckxO|pusD;DB7Ty=^9 z2r(}6m~(++A!U1?y(8|8C3H2-25Z=wqvkmQn8wT$*e+(Yk;$4u-7u$VsYO?v6+c$z zj!9IgRdl;?ZLrpkP8o(`XyKt|Yp!l{u4Sk8ZWSQJESE#p`k zn@Wlah)C-ogKARspsR3ENfDj~aU<(mW ztcfL~D|T|>T&+-b(+<)}TyV_XM2(hr%q#ZXDllPo-Vtyo{vHxp zGu&x#z*VT*Kj6mI>a{7YY{{i_Z0KnY=bV{^3wCH1qDb0Skw?<1;=%Z^$yZQ+$UzGE z$mlW3v{*$I=Be3y%~j|zt7*+8Dl|$kuty~%YlNIY>8M)J?t$#OER7rlQ*_x)K{L9Aj@~(X!;ttUN23`eJp@ zxuKL+scJD~?A%cmYnDRVk*Q3$)R47|9Fxt|Y}7ff4TF_O;bdmhCJ!vl+hoIg#aVk6 z+9)k+a9qK5akQZ(u~p8(TwV=DGKIJkUIX6*AxT-~O*`|n%U`hIdO|nw8 z!OUdxM^zgNX|G;1_wXdVqhfQAYAl(Q!kLw|4P+CQlUqx};)m_f3|CL1r9oGhLa~s| z@Ue0gWpfVfrnu^q<$b-0OV*+bk^Cj&io}Ufn$b}UxrYx_l`=jO^_-q}^J$lvgM^&R=m`6;`*v1WvZ~soq>9!Z%7!&9wCF){ znlGK`xv8a^m-dA*lfU=+2o(=DFT z^XZg{ipW)!6wIa#W0^8781GEVRmF~{(IW=dNgw-tu(DQzRg5!3SUgKTm|_hhvcbic^4+i4CJeI zla`KeT_crl1}Ys`L=^NKSSWz9u+;f%N;AaFr05q4Iz}eV%E~D&T8Wf_ET7kMImOg< zjXgxO{Ux`4;4&!^Mb&L){Ye^!pN^_{jJZ@3r_7vtK+-Xd93$hfZOP@s>FXdzst)`Y zbChi(Pz0N39ZgIM2I5!>&KY&Enzqu63~KIFc&tr5b}8%4WRrC49GWls#!Y8w5sD&t z^5kigig{nE#9v7xKYyRBB2I;lwbotSyxroW=wNd$`Y?LC%){>D#8R{BY z53QM05k#ui#mqNE??6FPVT4+&x9I6<+RfKnHoDVF3X)_xvPrC^&wjpjoY=8w?!=0U z_Nt1%s^XWr_^OKEH;PnM{8bfyRmER!K&z_w|Cx26s^YJz_*=TNlYzWzp*Js)`@)g9^&_s*1m=;{PY+g{q3b$!<|q@mE#+RTY1k`KhYnkFYCLRs5|J z74+xXWu2pmaw2c;>)8y>@jcEl3V%R#&4dtYRT=loe=xj>;Lxct=`=CU)PFR=?$kO zR2%cLqY^kE{h9MQ3ujCR#|#`8<^8~MF`mcViF*=0w2F+{(6J<&u8BvT^bE|1-GlIt z3p_C$+;CEwrMhWpqs?Y5bPZUW3{%Z1iem|!`I|g3D^#5lf4H#j%w%-cDOVb72aEaR z>N+NHs8q8~)^Q!|b&jFhs)D^Pm%;ex5VaC|ygB&k>a9s5W%CsZ?!~ z8&OZO@X9*u=czLLIWAG@tVSqa#1YN#T zH%;P~bR8f3tncvbZQj^$M{Gvq*tGCGsW2(iEzEh*UFKpwPaYzEf8es7i3+Xq4d_Wl zI-#g8ZtED(oxCl3AFnuvI4_6W8E?cqoOEhj#l`vCmM#v`^N1J(6`uqA#B5D5r6sdz ziD58TT-(jdNlEmNia|a@1Wksp7+l2Mz#zZ*l4UqzR;XD_+&uqmOpQ@BtF{>PL7h^I zTcK%~M(D4Co3JY#-3&`EcXk5R#XkeL8vH}ET0Y}#vKsJLA^Z%#HGDELi{or%5dvdj za3@}Xa2YFb4qNxuvPWVy1cBiH_;?R$zd#%iMKB{+)^ zq-2FET`}g1I#YCcZ~o!6I-X%=iW*#k_!`v!ZQ&{%-EUdxw2~Ab9Js7k zqEgdF_g{Kc+$Cy>K_YZ9jbj{My?MMb@UKw!@B+Q*s)i zbU4)!4@k(1&DyhZFBLoM*7hT$8853Ed|Ozl>`*pdsaalZJ6YlZ3Hu~mNQ@Y^tzQt+ zlZdW7a9>GA*K7J}4nV_eG z_V6brW{Fc;F`2`bl4qDi?D3_2yory`d6d8jA}R1OBlJghNtT6~(iGmM!-NpVxOmut zexcu6bhVtIe&mD`RdL=ad3ARecRgJd#T$e3o6Ve;x;8owE_2H@v%vf?~$vo}AKxFx4ciQB>u@a!XXI zHwZp>t!`ifpJ(C^33h-3#`Rp~oP#mWb4aNCYkDIZh*C-tD97=a&1TpDIMZ=AwV0Y5 z-+0X8)b&fpf2&l~wYD+8SyDU>R2tRif{Bn>A%Ke`!RLfaMoKnSVgR`#FZ|ja2 zSZkG?bZOVJbJQ+3tQ0=bma7^DYmHz>B8xI1%gpjp^gK?dL?aO)0=tBZo6Uh>;6Y}p z(xpE1%&asv&6it+IoiTAlSvcRX(bovWQ9iMf)F1@k62EEKj?D2Z3$z^WC(?4+aX%r zPKQm`;kgxpL9&E9reIx&IlwVkc9x^-IXyVw0_iQEGYNPnu-C?~T%-Tobk4y=*F-uZ zWVK9sOH`;^Y=6J*tVE@%o8n?fyZb@i{=^dGRR@7A4Lh4MofL5os^aK*Q_WlOq3T6z zdwCOk;hA|*+QR!6zhp%ten*o>NLta;ZZ7X=mUmxVY>FjVifJSxmZaQ?SY0YHXC^VA zj>YDYD|dsAu2&CYW0F=>rJOK9tm?I&)*X^Ga|WTLj%yI+!2ZUuN(8O+1vQL3?xe)R zNR~gI*Yd;+vN<>$e)z8II8DQbDx6{XIC?m06Q_!Zq%kZ+W)ZTR%V#-6XfNL4M9AY? z?GXfu1Xrm>@!7PkYK01g`e%GG=Y3H(;ApMc3X?IDIeHQfow-2d7kBsA^BD+LNmGTs@fA$qExjfRqaVtds5Y&m{sjblgg>8J*jF>s@jw0>dF6E z?MYhT=+enMCk90m+8#P>tRAXk4xU*s@KhNgSfp?AnGO4Rs@{?kl zP_a%CevA@Ol@Y>B z@+_Hh2rDFMCCH;{l46JyXym$dEicw@?H|e2Q=wkbOah7quR&9nbob7VTnzz zZpCKmdzFxJ1nY)L8XGK&YK~;Jm_tcgr#1wO5$Dz-||NY0t4Mb|hD{@iNyg82DY!-g%t8{1$p^XDnL0Aa?JbcYC<7 z_W7=_6|W!vVJ~k-pT&2aioYj0`|x|?3?#J)P7xTC9rDg#S|&ptS*vAM^mue3v3b^# ze%@)h#UFP_U=+>sE{xqdC6yx?pzD$!$H65=$63x1Prbc(ezHO#H%PwSYs%v1J0zup z0A~d5d-)V8rEp7-DWdR=GjZLsQ(1BF;>Gjh(S?NiB_H_Y4U5TOF4NCQ>mMd*6C*C! z;M}y#`i$Eu`A=GWe{czuV2 zqv5IQ=4AFeoPj3JFZ#$H{J(}MlM~PZL}1Wjnf^e zsu=^AG`tdm_u(2GRVtV?yPjFR?vNzIt67XN44(=IWcumt@_Bq7d8?TVKd?fn-~*>^ zUA*ejR?_Ee%jHXYh{?w<=_`hgSkj>toR_c{EQyOnmn`WhYX9NwFGlZta6j<}cS(1# zV#JammHw!YcjCw;Jz~v@9oqET`J(28CBygr>{zkx#oIcGohK~$O|t?mKWysdOAf32 zC6sC{j=o|^C-1i>EqSz6Ql^WRgNy$hc|zgBNM=Mzz&yS^_$K6hScBUum-1)dgwvJ` z>zc&4PrgJlfMwG%-95S7$Qev>(-bZ_r2G$8NX1hA8*drEE9~kF;GX*-ND};Ek3zyNyqR7bz;V4vbXp0=(wP>kDnwvyJfZX-Nk#o+uEZ? z*SAU-IC!h7NzOV_y5WDC#Zw#iI@~lfIJa8?bU=kd;mX@Ib;&7RaYoLOs50ZGU6SV0 zouop95tiPr_}r1zJJ@Y1mGbDzP90jADJ_`Q!xu8EH{VHr7@2=QslQnyCw1iC^zpji z<E^AxSE2t8NGdQL&Ui@dh@?sVvVe5<~0K-4gJIj4e}JDf%l z9$u0dn?wdmuN3vy-aWuOeA3;M zJBb%fwqVAWz(J_u`Yp;F}=7I=ud!GsMkvAiue~er7AN^=in6zF$AT zl{jG&Zj;oMcj{}!t{>F*5*=66 zcNfQOtsf+e74^OLQ))F5$z?J^-CA#ox)qdtx>TZZMSTy^dS%le3|`68^WleVC)$s38KqZ^3|F*D@U%=EAJ-C)7 zNCXoU4{rG-GUUK)dWEi#W>|FDRez|s=z;n!|0_Sek67?teJ3&W!TMkL-#>m&-;eh@ zfBc01uHM%>;AsAz?fv6EtncrG8U690dh>s43slkek@|)I)AMJ>f41|3vGV_4u8sO~ zN3T1751Gm<95r6#hp?>1ht?bDDy_xdfX^-7=fOu&u zo9^l_?&&KoD%N)vcb$HJKhb4dP_DOlvRL0$+_`gMKk>(6)4dzEaqr5D;cS!rR~+uW zzD;h)|D)frx&5O4-q^vopi<6ZC7w-sl;*X-WcJGpn?syllLeOGfX?%-+qXA zWc2()#N-d_m;CpSPoHLc&-vfO@zmdb#AiF|5BP7LrQSUs*LU1c#CO24 z{qoQC$*u`P!oX@lRgPP;OpYx9$KY6X%p3p$>1AO@r0>S`Li$+}GE+2@v1Noy8ee-{ zhJm(|_*G5j5V8py7zoJe4Caso9#dt|fdiUWR)&EFMZuK#T`V41eO5eiju;)UP%%g+ zsyO3Z0U{fE3xvrmx)-D%l25~g6KQJz;)L%xb{!dwS_2*#;imv8NVS5DY9`3Qfq7R= zFx-|Z%SczBoeTbgp=TxF5K<{oJOmA5cv7<#e)OOzS(a=>6JA$^di|ikL}az;5QAa( z1d+yxStm3&O*jmZh_r=#`ld}Hcm-E?H|y>G#ZrQda%sHFu}u+Dl}BzSdog%}1g%L= z@=V^AF|~cYATt1QWWdOge4MyTLO-(nsg7wyhNLpy9x;P>nnzd4_r<;-tg=F-GW)rh zc*5NML`{6@;e(KZ%0j1z+QL#p_yIZhQy_GJ7~$9`v$6_CI711;8Y(CXWw-b8rVd(8 ztZ?M`G6RW0#DQKR@P_bN%v5CC zCP{UQ&b@SLDQ?ptDRTx$Ai~SAciJ*8j)1@%<~l;WjUdq!`cz`yEUaDHF`mz9I$%xAJcZ>=oD-%~qVqK+ zE#Z|sV0B~=9L7a7i!#iJOzFkv(SWredKR=hicmQIs`{;xk%dG;TSs^@8 z#_yw-bBP)ow}AN>U8&6ZfBalEUZGNdeh!-;x{Km0(Izl5g~FP0{Sy+@EXO$U4o5G*1U2|)s4B28Ch(+&Y|8M41;oZxU; z^u{s?jYKHCOPD^8T)tqTn+e z!iGPS0Ds9eSr%|o$l zV}<(+K0)5_fkbk$qVT?vadRvoiQu>U+~q7b4Td0(DjaYu)-J#y?6AaD68K4uD4*SG z$}m%*{;W9mCAdZ~5F)A;pe?B4otH$X1R;?IQKr-;Gb;et45!8^U~m9q+u#)N@$oP* zg6Nf@l^~V5xilL)W+a6z7CeJ=E;t2(uzOs8Y)oLV9H4RJ5OfS z2@r&$YqliMrPV~&+Z1c*ueHMymucs`Lz%m98e<5g$Hkb<;B|vaP<}tcf##urZ zR;snBDLurhTbCYjw4s)V0|R(Rs3H)nKvn}?A+g91J2+Q?JywHY#Y6?0tK8?pXkZXF zBF4yW0Yaum&&?LhBl`ZRE|bio_~0$kI}R#yM4M!=;?YSEM{FCA4tRA8$5|8D3`|Bi zq_F^5bcCFaA-FrP(HfvB!5K}H?F5S`0Ewhc074{7vVw9vB&G%r5Ou)jPN|Mm-yu3DKr*q2j78uA8X2q)a9Rup;5!mi z8SJ6~w-pB$k0e1zFl5A#ID{6c)#Qu;=!E1epo6~7>Iv}ibh23?!Ld)kvB}&Pm|$Qz zQ&~IDmJ{Z2s!(Ylnnl+s?LnLZ9A$^cB{CBM<|Nx-F_1Y+X8b`)lVUVzNFnQM<$(C) zBqEUq`yE}Zk$Zqk8eky=1gi_YLNat?Fc9MnQuEkHWmJZY>91be#d` zt0XE_+O)X3i{v9q2MjXQ+DzH<%4y6q*jf@7u(vZN5*rN{1F~(nX-8buo-p4<{g-h@ zM>`?-shogjfp3f+o))Q`qGzSr0=iauD*W?qGbPMlm{caZU1`aw9FuWohKieLpBt=AkrY4!5ox@+gGew4BdCxnE<^-SIzuXL~-9`9TR9PND_eUkPifa zDV4EQ@}*&tbh0psxxgbd30M{wwy15$poWJfXSWNpgeMIO4&a?aUrKVIkro0a5BQU8 z_A-MUTr*BFa62SR!U1*<7G8yVLx0dp^#-B#a-k(S^6>(7F=xYR%RNJa*D6SpB-Y>) zLKaxTb`D5sj&qK)i5y&b*`Q^TfY*Tc1V?RC!ZewJ1g9Pe0f@JZObeuwSq-bXmBU|X z4|-aqs>SA$)@q5!ijhZr*xGx3!Ab*pwM+@Z=?YRfc!W|fMuH+Ka)NHBqms%as+I9h zmArHA`?onw9-b%Tstes+r*JTcH9uwP_kDh2eY8B>8<;}j#OP?!u&Y94EJ9p;lnI+&Dk zAVB;C+ZPuFk^_=;ADQ8h)OS~%EOVwwBwm6uzj9y)*4C2fQN(l@cwGe1+b5)f=O$PO$5$(xLfH>UO6 zdq`6lIYcc}rd61qEmj?n!mLaVSq>7JL@0xT+`$ou zL}g8~T6E1?c*0evI$Uexr!VU!?rhtTOdtSap5U0}JRlJh5ZpQP36i#s1Y$%$G@aML z3!->JXHI$_&T>lwvpWx4VImh`h>@`m8;N~DPymz`FbA?2(pc6Tf;rioK;R_ZTghI5 z&N{NzrqjAYt-%?$qD#XOZE>8cHHgF^{vi&!vz;dyE4ClFUxaD)IUCJi11@W=Y8Bv_v8% zEh}m}xoM-v!?`vTQDJ6OrV{RxFq|Cv7@x=`l+j&|3)qtKQ%#ZD2g_h5MlWt)21*+w z)T1wXI|paLeg%06QME@@O-{R+iH6b13UyVos)3y%1g%ZO3ZXD1y)en@&>3+oa=^iF0FIsY zumfPHs8DNOY&mJI8m~~PFEr2mqHaHN(@o0;w9Tk`t%VaI%PRrZ0$(R+!65>j~Nqk_KW~Vv{45q8yMtjsq;2?{uWs3_3j$sHO3f*V$AR(q)?BzFBNS zzS^+{7Tm^I!t6xB59T>&wTNmqu+zGth!M5qCJWYBh1#?JS(b>dm~4U1)diUB{&|L* zr$sVYjxnsWFkTqnIRZ4~H?k+9*zy@JOx7ud^pXxcKAL7r1JIfSfb%J(TBLs!GrKSA z7vd^o$^b$+L+6m4+XWvQCXGB@DhbzMcRWr$rf8)~Nuw&%cx0VKAxcy4W2ZF?NDwV( zfKzQSDbX09>BNh`aHI+&ixECsZrdbZDb_KP*qK-@C8D}Yk~gL@uC1g((>)Y)q(;jt zB(%=L$-^=F*|J$~8j4D!&m7FA2d+68x+_(?L)rtQD-_8GgeJOvvb3$>80#hC_b%(+ z4#roj)i|gwT-G;EmS&y?=5)oSf$R@#}6aqk3CtEqr73_p4 z57{yiXPk^d%0h%#lwU|+a5{d1U0=1IBbBl$XCYF0PRiW8o-B=YB^o9&xITy^7c8<0 zRqNvG+ZxWOSap-GtK)!_5+?kVK*>m12vkf!O-G+VR(PCPQ1j$+sqk=S(ZJIZ@PlFx zbqxv2$@;0F7?rs=F;!uS?(6M7Oe*dq9}Pq}?hB-iR*^YbkBC8p;=%%lio57KIhB2v ziVAfqC(KpFpoXm-61J=9xN%q@-%Gok|X>k)DDMHt9^}*ulqDEHP5?MunVrSE4!=+1mdBcla z(Yhk05;RJ7cz7DTen>4{M>9OC>vy&Q??OUN3xa6 zUDa{$uR^Ed!J?o-Kwy>W%gI{~&*jirI%Y=&eTy`UxI$epx3{->;!?6iM^C` zs8jd`_<;>uJ0?u5CY(7Y$CJSxWm|9qoL#JNVlh-*t~IzUvXzp}O2-<5#gbgPut!*Q zNdC-F8jj~@j!)tR0>^8*c`|*b5ba6Aj*$)Q0+f-s&xQ8tN;UdxEJ=(&RE>0qRDsl9 z*KlwxdE?Ep6=owlqH1GWkZl_wNgmNMFdaEWftL*gP3hwo6_QnEK#Lw2wMDj107If? zWecgSQjayAX2}YTf=NLEl90>FgdIUDQBV&P*~#)@mt>oiYcy;+CNcEEmSyIpiU{eA zST~Xn6Hbb3rsta6u4Hg%4yIEk-FF<87v=)kF!afIo&b;#xLsAK(hZhYg(^#K6dlEo zzbxy(%I0vv!-}j5DYPD_vk6$m_83Gs`c-O9$Z@h;qy6490B0#-4)PMLr^Ji-vHu=qJ- zpl2I1z;MA`g|^tR>2Sa#tauvEB8k+A?;A;HO+*~*YpkC&N|?BbCY!06R`6uTuMA8H=^{*^6>9u^2)z&}78TTyDj~~;$|fT< zsYpF&KJXQhnV!X_Z%T^AN>ztx)FW$d0$=d?M45IP4oX@c5oR&lr872ep<0$K&$x#K z@|f>%Rb#WFNSw}N^mE`p$sF$hpkTkiovF+s5$DvyM+C=k3QA9zbUugUClWPUR?RNc zEuwslu3d^{Nhh-6z$D?HV}}k>%K1cTcqD8SA2{q3Xlt{YgxZl99{_^jnCD$(FT+wB z9SrMzcKHJIiqRuvw=hswn4T@uNtT2)6?wt23_9-NjKp^uMTM|AJPcNP@XtU|pdX>8AObMvh9j0VOD;2?Nfq3vKFH#IB)_z31gJ5wCc z8s?e_$CrbN1r7kSvq8Ja@52ru7Js%3<;+deSDzyoJvY(L($wVpz{43!CX1swl`ET{ zG(Ea%f4Nnv+3t-)h-4JwDB@WK*rxFS#Z-g_AFW3!kLAo}T9#|O85ec~3+oFW&LDfi zw<8fVt~gO6nFicqf(-)aNGTb!Z?M-$^_8>~f}MpQkneBB(HB{1)@OEUXk>jMulVi@ z4Tlc2Qe{V)gCP%qBU{7W2BsPvcE+`le&xZnHKF%ehe;0Oi76&S5~xsfA6cj4pJk)s z(RB)R1WLdo`o=B?)C3bigbapRz7C}U!Zn+FN_zj%1cm(l_%$O%!4G3?f+fa7os&1? zpt?c1{|xL^jXZ&gJU|!6hK~K0Ey$E+=?v11H` z4-_1Tzm&pYLJnzG0@HKgSrwf_K%%P2hBctGj~p7+ZoWn$r=sh$P;X!{jOw&9 zojpm{A{rK2pA%WBKb6`sfDc(NNJ@BV;DiIv0Jd0NYIa}~f$+d&2#5=NA^&3OVy0z@ zN5fo`4lT+}Y@&hmjN@b;CuCfcEO<~<3CTj9H23W!@%QNV@jhq4ocDivni~A zLqfu_NJnQ2FJdW-;25d;u|VkQeFzisyF}IM8=FzoM^zenVET&sI~FeQJtBSh6;~gl zC_@xw;P`8>QsTp}YqhFUzV2YWnI;AnKt7EY5g`HRpi1v6hiIWX3_C&8L3E~#5Us1y zh&5kxm~f(IX$zY*B6w6kme5U-PGp-90!YGlp?K?bVOIk?tAU+OzWI^Sq}9OA@>tkv zU}rV3vl`gxhuyZ|3#);hdkZP826k2hJNKF}v>Mo14eb2qA*I#8&XFb8{OBOaYG7w{ zbS17>VGv9_I)tto*!k^X(rRF5HL$Z9*jWwi3}Z^Gft}?MvDLuNYG7wIu(L(%t=_^* zzZ%&2Pl8ITft}GImes({YG7wIurrJ%tp;{h13RmMoz=k3YG5ZZM9m#Zs)3!&VoFP{ z#AOj@)xgebU}q3^TMg_Ce2S}qoh^b%tAU->z|Lx5XEm_%Tal#Iz|Qh$)oNg8HL$Z9 z*x5YpxP?4c4eTrnC@o22)xgebVCT1jZmWTv5y7O@z|Lx5X9x~m4eV^U^p2R!gc}ty zR}Jj^c0g%0u=D>^V5b)s%TH-9&RKW;DdLIM%h#*dnAQYxx_y5zz6MI3&|As6f+Qfp z5J>t2R2^BRNf_)9SWFnQ0^G$NGy90O_btCA_G9np`V6fMH&GG}=f7jQ& zIQqk0^Xi^n&hH0a-P0>J_Kn>yx?Q;;E{2~!tE+eYYb$zv=Xc+E{)gSYkAAb_=u5;M z$IMQO1CLu77k?ZA^|xbYA1ZDcy7EwQ;IXsg;+3H*dx|#4%pM}1J#OVuLcQmi-r}5N zW}o{X{tM%gXL^Z`hOYdhICa?U14Vk|%D&>8adY~JgNM#OSo9vbG9g9|o!wWwI(%g} zameu5wIVxgc7O4!m!IkDBYb}|eB}lI=|4S8%pSS&hhp@|*?qfTd)ah*!jx$fuC%9L zou8Jor#WKs@hcA!502z>b{)U+Kym-^EBlCl88N%N*m(kN9DO|B)NADIv%lM)&O80Y zmHh7UPCs$g@6xfm%ZBWn8&@U1>yXWRaqcR9_j)hRT|HuyxUAj%1Lhs}>($<2zrOFp zl<3*<{sG>icK6S1CBFLA>H+hP>3F|)Ovl2IK{F&EQEtMtDc30za#OBQ1||<3JE8eK zbuag{z1-9Haxb-)d+G9fGp1ap?xkY?UbBKzuG98X&cD~9oW7TG{=F9EQnFmfvKEV5 ztU_%YzwzQJt8hk(zR8q-clg=nUhcIh=YL|0a{j#*<@`@g8VpbJ#tz9O ziI2tg#}>43KE{4`TTd}@T488--R`);DIvLgTH&;i96r5pMo9kKafPuVdFIf^Q7&Qb?XVtZ-IHK0d5)T}U1|yi}m;wT0u_mv#j)Ye}JxSU9}UM!Yq=P}8CG zKoPOi3!v6tTR5bwbho>kN?$mlP*e6`(?v}WR`MXM_2m(T;{vi_WMN2nbJ)mI!{gsC zoD<$Hjx3zCr*c(XmFIoQ6AP`y$;X#}77$`L@>$923;n~teB$`Ru#jAEec{BiZ+dEC zp>Obx@h21x3CkpIX!<5$-%$Ff)i)G|mHp*aqR_YD#)1|8&CnZ5z4yt9r9U5hQmG-G zZz>Gi^Yxn8Ig4)`ezWYlB7$dDX7Nt74ga(+|sk4`Qm z!Vl|oN~r_gQwk@CcSqe)`o=}K6o!_yE9TOxJHE$vo%g*$+3WS-i~T1nzSs1{!k$qW z*;Lc1rFV`xwbX5Qom%SqEvJ?~<>=E2Czn-fUrMD@XHls*t-PVBU?_QVXjsXYrIi;_9>YUP7?LMc}w#|2xI%mPT<@*KD#iMBE zqB{#mgzq}|yu$E3ACw6`i05s@ZReE_Lnatm|H&`TD~;@;yUIs46O621Xx#aQL17(t zonQLM*Uv9~WY-HyA35oQQeTZ(Sn8{`bE-nwCYX)W#; zUl`e}lz$v-UsCGfsTY-&(2ExpP6)sFzPk%&Hv2R661nBbm*04C;eck3W;sodUc9*U zp*t=voodHUX!fDup|E=b?|N)P=|iV1ZT6vRFw}pVP-rWTomhJ9#EGS^T|2S#wTl~? zeJyy;@@xGXF1MR~Ef^;9YyC%S?b2&E+oi7^m@S;LXBdDYJCX7mm+=`ZvZarmu&gk= ztPix{V=2`%Z^z_H-+522a6+@P{^U~mVMIu7a!TJ> zlP`QPynA`RaAHV~Sy9^Rzs#5Z?A;ZmuUX(0PAG3)*HdZU!j%O*e8JI|6pjtaD=sO$ zVAMUOdOKfQs(1XQg%is@KRgI#-b-Ko{L(@)e9b49mR|GARi*Ekaar^4xN0`v!JjsL z$3c@y-*M5T(hG*IE`7&0lSaVtjwNx;rw;` zw-U;ox3(6q-1uQvZ(!_!fiW@h@#Xt_9ltKT()znvo?p1}!=B=jE_ZYmhabMC^SqI* z9^m&NzlZoe%AYq&2%~a7z*|*KUy>h87vzGMrPX27ojUAI2-Ua|)8lV86&_HtqBfuo9 zIf!9d5Rzn?D&APJlzij7`@dS_-T&32iPu_zg5+KNtH*v76Aiz3Y;f7-4_<%lBY7!! z`iVE~&BsQ^_FO)_`LQ+rrTp8!l&D|Fyd&OvZ1S-QJr6{k1TK?U01hzsWYq@ECznmj z#NR*~Ub>WoWRsSHS(gK}NioPi44^77brKy-HSkwZvl-y&{F3Vji@RbqfawCJL;7~Q zH4nTsfX6@)rbwO+yo|)|XhMgqP`M)ZKXC0CNq|72DpsV^|6nm;=-T%2EGY0m%SkYF za-F-X4bB6|p1{LPbSm$&(Ilr&fFS@LCK$XXK+XUrS~g&+8qf%KUIJQ%prv+7;*Tf_ zVZ0=*=e?Grf~F#=G-%Hu+CX%LZU_k(U15NyHTetEkM);M*swo9C$|{lLAYZwF3~AB$zm=3z{xCewkEW1*^>jo?C*F zbWo7`o16fI>9foE*Bn<#R=L|4jW`l8MhD@U(A zOasJBQESyq8AO80oRVM=8i1nU)oE;OuBByxQ;|@cO(5^lhm#NV;{{OSQRBn9ZoatE z(X+Az(w!UKXL4~R#Rms2>lKe~l-ROr+2IXiw}I7i{@U}Zr&;whtDa^7pH)50{>dR) zJM4AukkiMyms(+7Iu$$a&2$#jHlLi?Gt-O zES@`~rx@_FwKZaO=Y89Xe}Bm6DPI1`+Cko1KVSRi5b?(M)(x2VTC2zTJ>k99>dE>) zhzD9dKES)}PfwnFp_uTeCkJ?c`QEw*@t9eB(CcYn zEKW?VAK?9L*0c8~0 zw_Om+i>q#2)bru}zgXWjc8TcR&O4!xz6TsEnbH-6byKU=ETP=GT7PUa3%~*V_X`V|(wmw&$S}=zkN5w!L0rW_z!#c&wcl zAGEg@`Rj(;+=!O)@^fzY2JSCvZ-;zjsdr63@q7mI zgeSe5atWz%1>LB^4pw@yZF9mUAKT!27 zGo417w&`j^f>CA(6$hwT1vXWH@7>p1H)Sod9}1d$+E((}jKy$hQkkKtps@pT2|RSj zj8>==m)GOxD#?6wtw3Q)SkU6h8xBd@N>0fGD~obbL7rn8sBQ|>T?5=|&}T!u-5QA) zY5=X6k(i$;W)JAZdJY_URoC$fJ7MhsVJq^g|wVX^!OBtwR(hgXs8i29clbwM+8GrPbr#E!_uKdxwGhW=_o$=yxZQhUly6lw%VZvlCC_KMk+wb_%^WI(a zJiizCy~yt+elPQTh2KVgoA~{R-;eqI3%{T6`zgPl@%uTySNZ*d-)sC{=l2G`H~IaN z-)4SW`2C9CulfCk-*3Hl*SwX^C#@8btSGi^1ea%VUS??pNoM?RXKoRSoGk9sY<2%7mhmU?H|O&ji3Oh=rB#6*NWq}xZIs)J3vXp+Q~9j;>>O`?Ji3rjzohDK zdTh1(5|B%M^9F9EzW6BWJ4%t{9YZ1C&?UKP4CGW(lC2cV_BdwigRK%d6+5coI;NU~ z2ay&)Y)lxMG8oXZj_Jj&7gJg%m8=2eI9hbwL@k{K%iLw;Iq@xt@ak&bXUS!&Vu_q) zXR{Wl+BwC=dYFNaQ5+);@H#o2a!3jF%bScG73y`wZfn~a73&SuLNg|9ZJ#h4JL>{% zZCb#JD;P4drrB^-c?ZKE#u_lLu~6BVL5z&%DDdBsAGZ`$bzN7tOhZ%koJ<4J*BgCY z-NUhX9z$n7quNY+uz}&<0m23u+Q5p+NO@DoEdYDHLajt(tQBg!LZv>pJNoObCrMM{ z(Fr@Nf%BZzT^nxO#g>GP)4<@HGcmRRZa-`0TyU-(X&6h>GzDu%E~{s-8053I<|0?v z%-n;P_3}1%UAi_FS964;=PY2RrGeYYX5i2aGnbL3Ene5{6@cdB(RGS$*kO{>)iVr2Ue5&vwM2!D#2eju z?!B=Yk)zWRP`$#$%r@sMjp!beP|%^BBf3H2s!tmZ7aN}uZQ|(+@`wurJCa$7m1E1@ zkF}Ii*h;m)FdSFYZraf@%w5(b)7aK9yXI3E2mxTv2n^w%W&3$Lu>RW_8)F^j>TeJZ1; za40|yX&S;5Cj68{gJ(BMv6&zgV2W2<-H|QQy;-Mk-H1svoyllc9>&~8s?0LmS!vkw zkR_x5gTN*QnCJ>aF|0y`SutYz)`bbu7;6sO1M7?34YQq{GAs$GZUK9b6?^9tHoF9H z_6Ucr>85oyJ6Fx*at=~t7GIORODR77l~_VCHL&8@Gc$C60pxrx#s1*hhN(LyR$q1! z`SsB?x?;;oYcU{3R)~BZuB$HM&6~C!cyy}Fe2C8n4hOpG*to8ceFAxpnU-cpH)vnh zQ!in&NK`mV1t9TK0;`M7h#nKW`9i5M4bA4IEA*IAT2_e)jS}QMJ1VZZWZbYb8ZCBG zOn-~*(okKTTTDE68ZKSh%Ujfc87?s7Y>}D(yo1aQ?=}r z$wrt$=Fd0|Ob85-sbwt9@}7D^`c~joq9|HEXKAM7m~wcRu$5ZK-bPlV(yPWT=<7{A zb}8x&B@KIKWZ|idl#Pkrz|nv$-%wFI@V+hYNY9Z9wdMl*e5G2I6XvR7P{Y;^@w}E+ z+1W{Uf~OHa2CVCpX)-IdY+iS~MGwxO+PVe@1GX(YpEXd2*=aJz7!I2jCVHl;Soh?z z-rmNVxocxJI2SOq_)oA!vS*_DcTA4CH0QOUi%s94Fc=~pizOl}HPt}75m~F5^3N?( z47hh|zvHz%YRmE0(5)uyp>C#XRlRJ@DQvsUBKBLAeaa;Bw_;~3TshdxRek;S0)M4S zOd}3eoX;B@SaQ+BH5f zxCsLmC6j^EQc^k|FBugbmfUaRDbzwRe>ptp;5lr3E3*9Zuw^jV=)^8wz~X#k8Jb0v zq{#SkFx+~|%))J@(?(jgGp6)KA^P|Y;U8q%Vu|RA)BZV@h^`oajXv8HA^F9)W?OlK z1J_OEb8x9C)Nm=CEImwNM@f11UzRb7DhE~;?UrWXbOq0p&85tYl`$E3l%b9n8zJDG zT%752R97rVH3dtB`%H=xobxPWGoIb8VI&mIjXE z96OL4FN=(DIT(B7k(`RZP}bCN#q&5H*fJ{A7aqkG>eEW6*f&F#C%OUfp_XRUoShWL1HzDv(u>1*-yCRUnf>a*K1RDv*6! z608bjRe`K3kW~e;szA1P0kA5Nl}VYQKz3~GXz#eO+h(_md1VINPseTR|6Ogu-njg> zPfti#ZT8vc*s0U7;56NvT5=O^n*K?ZQJ1t5!`bwOWdQ4YI2e zprQ;(Yk6geYAfoHAyy_OzWM34ROjXe#o(W8J55~q*tQj&!}saQBQmv$E+#&;?d$!T z?ul=HyzQZb%~}Nh+LSdgnZ_?qHEJ`NT8k^aHeE}#x*^mbZo6o|regBlFNyX~ZtGI3 zrE62t1t`gXmrYJ8wZ`-g9lqU`RPqQ}QY?CA+ie{_1~ryjkX^ zxag#p1JyhltlsD_$sGys>zw`1p=u zT)3wfhl>GMaQW)##qna~1yHA)Q9N6$Iuq*UGq|_Sg}QiZO_zqZifzSNqxgeP7jx^L zvBkdP4S89A5tquD#mVBV8BoR6jfaU3&g6k7UpI6|kNw2x(Z#Xi`Ye}MK321znE9)P zJ;bij#goMImvPU3Rc;J_@elceQf2SRTf?rFFFC7tmYAN0dSP{AKk@omJm@sJc$iSm z=EdhuRiI*f)!ociLU1rdy0qTy_@W^dt-%tGnb3bf47JD!FfDgaR!%P zokvCWS2jJk<9r?@<#P&mlJC4g%6N~-Di+yp|e|KE*OwmcUa`brWuqHw6p0T~V z*fySWPsvNabH`r9<>Fho9D4tZF5*v5zt>j0F7MqllY4_NE}j>AI+!49E~XK~ujB3; zhwV5(44pusZ*p8d{?zbxV&*YJdx@7O@cpwUa_{yNb{t43K1Bx0KEGn*=?98eCi3)V z`48s<*+=Mko?bJRiE-wS z6Z?w=*X?X89+mh0I)x&;XYK4M4tBYGL(Z7NlZ(B?a(Q{fST4VGi?4Qew9AW^2uHpzuJ7tDKD?XyFzM7u)6K)$&{X!eg(Lm$HFxu0Ons=sJy#eO=x==6deY%5y|)LQ~=ACi7sIKfd9V zJ4pHG(G)rj;|E^m>4>woTAdHGk_S6!}Rbq$>Z<$uAdt9WpN zT*^&faFRIU@}@t#YZ_0_kyBvzv|?5qcoxHx(06qc^QQCQfKgoja{b|*gAe~k-utT@ z(2K{P-(Kt(I^$q5^|!m)iX~U`ASu`F6(8>!F4EUr=zR#@z=f8KMDBeJccV&&kZYp{>kEzImIzEcDCMUpGoN}+V3;z3rUTX)N)CkDXC?W8ZW88Na`|4 zy(+0|CDkaYIg3rQs;b)TdLO6ns?S(5r#QYT63HA$TPkros2P)PkmNh^<~&LLi=^r$^%F_mC#lyZ^@ODUT~aSd>S0O!TvAIU^;=23E2&+Q zdRbC`l2n7FzLeDSl4?I0>H|sjmel$gk~~zBPfJRX)Dx0APEub<>QqU+AgS{t^;1bX zlG-h)t0c8mQnyIz4N2W0sV611Oj3W4)Ps_GTT)L;>TyZEGP(VXeI{*}Y0E0WqK zsUJw{_mV0|>T^jgmDD~{pw>xhe@ShY)B%!uNKykN^@*fXlKP#bMo8*KNsW@!ze;MH zq`sEaj7ufCOOn?}YNe!ROX^ukEtJ$>CACsgKa|uONv)97dP!}O)Q=^#K~kF~^(#p= zN@}g7K9m~IwN!=!?UrOq3No|tUYDqmRsmGyaO!~7VpO-hcN$O{kdP!2h zk<`7C+9|0YOX^ce{YFy%kktK>+V3i;yCv02QlClc5J|0;)L=t0b9|)EY@mmDJxQb+e=%lvJIh9*`7qY5Pq2wWJ=9lqadDpsu;I_0>~y)9Y`p zKVs5Op}yW|id$|kJ}Hz-cXkuQpNAP5Grzblw$t0Uu6TV+tiJxeDU!`}#nhYM3krBw z-&wplCa=4TuIKOS=yhID+;`tS*MjSKL+^b%h=q55&`G>n*VxUQwy5~?@K5gj;N6bm z4@*7>icIYqi+lGhDK>^r7o~QTo(>eb9q)DX{#;-DW%zXWuy;Fp?=}>lkBNk}Yl>ue z4-$tiFPI4gc8Q$>RgQ39q+5Sv*qgSo?lQ z@5wdAt>1dl!kO1~7dI{2)y;eVvEna+$KETC7rO+X;PK}j0m0#WNM;kkNqkdNG z9TwmCbKWV7KfLJGVt8-r=ZwSSuND8jyk7s6yZ_Rui&*`_e(l83MaJRtH)MbK?|pI` zpS}5)#k*r-a_dGz%v5)z#OB{N9xOiHLaR?{(|DM7;jfC<#U$BH_^tf(*Twpn_}4pd z?-L~x=y*IWMKMJphuG!g9465J0 zpBVnb_YV~N|F&~GvAM3XgV(l*co)25!b{sbicjWKrt3Lf4qE?i@%5Gu8dmj$iInpz zzN5IltSUiOeZ|arwXIn6)sal$k?(cz4&K%5bAmF7-}h+ab$P$|X86~eZ{6NQB!Atx ztKiB0UgGz~e+i#Ve0*oe^&jn}1ehHsNS@fE@tTl)y=S8n zk|TRJ-XD_x)~E5cko)7#jrZx{jckK{c?xX{$sZrpxHBZz4{ZD*Bwwj* zd?+9V)wJ<$QW}{6eg!=0;AOSO--ksnOf|AZ{MR00G;R+|aksnIKhwyr;6M7pYWyH1 zKRu?AEzf_~_eM1K^%fo1_-Od(^kI#E2uU6>v;4mub$sLMfLwoKpV@ducz5RL(g3wPt5F`uas-#0T_S7F zDUpwy+c+;QFyj2i*&+Gc3mR_>$?UksTSM~i^cflrfkXZC&-=5-%y1x5~E3aWBpS_|{ zgpa2@!?tqZJ0J8Ci#GJ_>MfYu_}lPF=W}*+^kzee_PO^vc;l~=^Evp-oB0I)$-3QriRhmS?=t)PMovrl*c*3a zO(!OM@ysh!x@MW@f@=Fd7Z?5RqQz#4R zwk@|eJ{vyvdv(VT`}OjV8;|4W*zjemU*R;GEzxL}y+a-i2a46_9?-@+^#_d)mc31^ zo_0W2G3=59!jCz1W#dcVdim6g4(Kb)#VqvPsz$h$Zr8CxqI$H&f*YIm#o_lgUKNwq z-9@RT4NDH_Ev|jA*xhSakp194ZJK;FV)x$meVv5nUf@Y%h|(hXLyOupEv5$JTWR=6HSo?;9f_J0e0tf{0D*O{kqBsJ*F`8nH^P z1Z{aKQX1UJEe(a&O8dr zQ=GPy*zPB$rDkK+mSoX+cXp7A#<_GNR66T7r3!V}i8j9cYxbYI4ED9-H)HM@d?2Wi z@Z6tm(UX4^*rcMNFuJp1 zoTGczvFvdMiTeo*Iv4{PBm`@d#ikaaqpp=*MW^F(mSIY$Fjc15*1kn3qj7Md6|q9aaTF^A-ceqci9%%@ zvxQNSGudedhd6Xb8l6M$Fco8uxfC5d2Zot}PDh}^d8rk^{mALdz<3WU9hfv68{gBL zdK49pFJvd_Ea>)NO5RpFjE(sUl=Ty71xmK|r1IF?)YO;spiVwp-J@{jL+;AYk-apTK)lcgy$IGQcsx@*9?|A`?1uvJkI2^N@a>4U#1`>2bhbA*-xcmWO9d6&Z_yW4{=LMLbk`B z$+q0s5k4KC1yp+p$0vTYvn$uXl#K`6kCOW%v1MIAd9v&eaibQ^O-03$*V5NvG78yQ zB)rMSdWP|bOJwzOLaJaZxojaqGx~~W?_^^!SvHF#hf)0fkU)Ce7Sh^$gv+LpcN9QV zGx_4@q5k3rgUO^(1oCO*qA_uGatehuq%M!4-*pO`;4!gu?n5N6qjl0eHxpW&DV&A{ zTiioED0xGeo90(vENX&-#yrk}9io+>`BGD$@b)yJ(V5Iz1Q8X;yIW;^(CiPdyo0w1 zE7kv|uB`RJd|wm#K$6AaVy0*pvOUA#!fDGOI{F+d@1Fup@dg?6C7&2{c6^hv6=={m z!LC{}CkC1}>EwvArf7;^Ue<$_hM9fEzEUQPeNLG0FuN*c-6~u4lLmhuY`Ub8g}IC= z(uFw%WMB@HiNvh(rsi6Z9uYD|`g$~L2Na`OxNJ>kDqYEhc}2^lt*IL23@jT)gBO+c z(pE_4tC%oVF}czXO-A@9O;e=0toy%GC-jC+uzGf=DchaNPfSRiaS2rq?ORS$&qcLN zP|rE5G4T9Yh z;#*6h%$3mA6ryuwv^N#kxk7~O%hsk)t*Wh~OxSth^gdOvkAVmLnd?PgR{cR zB~3tgHtZ=I@{tVYLq2k9PcRcBhp7CYYo+nBoV0rP@h~z~C>7 zwWMV7>4cFxcwbm~5jx0(b%quxEo)AXut2Q%!{C~RAj|PXr1CL&c6pF}E{4?>yM~#r z>5-7xigGH1Nwf-GPMw~rU1RB$%`;cwipLnm^Kj7qKlae zQv8poS%XO?I4#WXI>l5{XUEQ*-Ug9Ft9ffyW${$m?87eI9xsnZ1L^%YP`Ub-aojU{ zx+%>-qSOo%)+Ob-z#Q;dXYpBJc-#dxVa_bmOap!Bg}EO!f^RN^1k2WqGL}};$N#c9 za&R%zSMy9wbS9ptG75!5XL5U^+V>``@t6}boSbZD!P!7-tJ4c*A87pwk7axcMcOMCq1aYX{neXH znaRRf-Ei37&eQUGSDNfD8Lmw#k7F$m6{@Y}SFa?%_6V}kCr!L#2p_3GWnpAhm z&s2(1cbYy`$;@4HptGQJ^1a* z6}{c+9+kyn2~H;x*6qj2q1p^TEJIeG$=Ga$vz1)AqGk=&|1NuauixP)J(VcP8gw+s}^KyhpeJ;OqNe+HV7UGJjl?$!?&iXCQ zx(1D{vCugu-Mc1-HE=(Y3kZ>L!*pH8**v8^gF)vR{Ps=RF3ia-7W&LoI>}n4sMenT z*>coMs=zR->!LAA-)ie%t4T*Si)=Lo)8j%_UBxlG^maH6Oj0?WiL*tTU|L$Xs)wem z_3uiRWKK9WP)RNZJd`Tfb>w0cqKH#vifV1S|6wk7!edkTzcUwJPo-&R5l+q@ z9?8X&a>=r-N+A*Z!US)R+1a(^vSp=K(JklRSJHC6zXy}R7emUtffAp4q_2!9;SJ2^ z8`1KuZ0B9K;2*I0Z2BJE5bJPu!?yP(?BoFVBeqhZJ*rjH=C+?dnts+Pu$H|(F{u{} zW^8B3Gy>MK4Nhic@YSk%nrKyal4C4uHcdUCl!AgmBVD0))$8uZ8;n-mc>v1@ZY$c%x^f^w%@eCTc7V4&9z z(44qx^A#O`XblqsLe1YBWYAYUFKZ5V;UIO1Fb}2Z-8DP})Yzue=Z2emXmoM6l6i<8 z>|515P7nT7-8@_mLO@?FNY&~=)-l(b#YD|I=7+j0L=M(j*EMjm3b)4Qo_g%~rsm#y z@J4fU7d_aprR*~wL@7G5Cc>2(@4@P0XeaYx<|!>ax|p#8!R+#Y zkKB7Xu#_mO78iZHO5I`#??5mmXLy7Mg&HH=#Mj-;U0wb~PD+gMr)gv0>sRV&hGFK! zPP-IFSwBaVpy}hVu&CPG3`3HiEF$`vUl{1}Xp|gws3!S%s3pX#{!)1*rx-ZUoTTTN zJ0T?9jR>R0EfinTYls)|4pKYcwFefS^)J;i-!n`$0skhmZ52HV(g%y9V_&)vGBw7+Ww z(EW!n?ek`s;Ydreh@NGx0UJ(oa-8^Ca7M2)7Zm32%y<7CNr=S13x8YNPxvk{W71>kS=p#dnx7g> z8-A+os_mYXTWCJ4k#Ty7&8?-iJt^%?ZEsQO2Q#J%PKOgt4}qP>r#c>S2~GsIIk8*i zUnhXBH^6Z2kzmHgT3$9j8*3M%i~DN3(GG#1s01^1cbA#5Q^GuaZj0kLj8Mj(*ijv9 zTtej1+9kxmq}(6>#lvAaFyBPDUtd>kDP-}E?o{X;o zu`k%S7gnzGg!xyU!Uv})Qji#T(2OHuW``-ma&1wAGL+B{?5on9g%KzWh7vPzWyT*f z+jSh34;Kr6Gs9(L`q)gAd-45x9%A`%sgyD@={H%}$MyWh;*)Z=Vn!ZhvjQz%BL0;5 zmKG_H8r}iZxrPz%>IKrV_h;Fb>;t~l&N1tn6Elpn`Cvx zU)P=07if-`pJXJmZppcj#dFJD%r-yD%dQ%Qwyf_;Qx3vh7qghL8Ni&_Bt?5gX)D~e>d`^F2n1)(c?uBJoSG5_F*3HP}P+pTx{-TG{LEr-NrghXla}b5js$Ue( z1vmDfCJE4)l*i7Nkn0Jlp^XD6Ar^H^Th_P;U0e)dSsReyl^iqH1yY#6CPNv$Ca~r1 zNeLEDnXUpwY(c+YSlkL5axzJs7tUcLioKFHpNqoX$;FMF-NaSI{v)R{rtq=I(*2Mo z$s+!3uFhhfa2N6K&A5NUoZQ}E@}bm}`X1Em1hTxDf;s%w$9&BqG7J`d5NpR9Qhh0B zPd!gzE?|Mf#?rLrH(0!B*2((5)Oj1q?poNgOD9_{;*{uoDD>XqYQf@-)9`5D5Qfek zxdYAUTGaBXo{JoJi{4tA!aeb{ILDhDe>Bcf-(9@&wqTB6aXv$khwLBm*w=#H^SnGD zsSwpH+`yeWoyCO*Pk+lj1Fkva-qJY2HRnK@6=1eA%(7J(Kq>p1Qfm7?TQmZFqXQ7t0wm$OVZkXjTwRk(gVlp;LkPE`fValP}P1Z}JOYdw= zT}wIYR9W>C3u;(k8<_&vBalLCwWuNXM99A2NFD}Yj}U*=sSEP{=^qd8%bm z`s!EM$TrWMU~cJ3vkt#P*wT%fbjRTSbC3mIla`^~3y`z@?O}P5&K?w5!!2;2wB(ziOCLr`Q<9rf_{T_%U_7^BgwGhu13eNg5h0q5 zvtaR@pNV2)TL)8@;8yx1I4;%#1Fi|~ha$yRX;qLy>f%lzCP81ZY@)MGD7W{(Qe3nC zdnW(C)PnS}W~(A1<7*4%_1rR3e1ld6#f53P>VVlQP-e~Sy^R}9`3{CLEG}Ou_Rq0k{lOx5VFe|vKp_p(!W6o)jW%%# zOq^H-Gml=as+90$D{nFLI}6rcOmOPHmRKarw_xv>DY-4KmHzR>Ryb6Uv+5s4XN?7H z16DcAE-OM2@vTbG!axl8(n~DZhhmDH+V&?{O6ZJyYcpk$r3R&ai`nL1v*WkRq}Aqh z*c)>f;}R|9^@P$A5G(;k{yIxpTDqoH8EtwjNV#f*y&G)XOW|>i)l#C_s$2!q%J)+{ zAHqb5You!|SR!&ha!w@7iJk&-aTSsyu|vaFO3y6hV5=a3x!9@L+~&xqqA+cg)|=CC zUw+)=#07i~r?|Yv%(>aBoM^i(w{_SV^gIsZ6CLsyoaODg^>VlS_88M2zLTYEw;EOBTOAcY zBD;*Ws89SyI9E6JwYDO^m&M^vXTKHk>nIuizlzs#bf z_{`S|ADTHa0^Mn`14U;_yJFU_4K(rq&gk&nT?{3hh5O2TMu&=97aAn)N761!>0Xp| zFS<5GFCOYfRZrk1%daJ@a4ncePAg(*Nm(MsSG*Sqvug_7;mw z>)N#j70E*NYnQRY4P!Fvu9NI5B0{Yg{Y-H-j2A&J_MawqElwAnM`JZq&I*U@Upy$U z519`*0>pwaD?CQO@z}`17lk3TFdW^JJVoD97caxDSO5UW1TAe}=ML5&8a$|*4}H@C z`gN+3b)8P;lBfLcV6rbR19$TgN2*x=(#T?4HET6o#*~7zsVSGU=EQEnqESsN92_kl zc?cC5rRC#Gso}_sw?4+zvch-y|9CF0hSKnoVp$#8l+43zl~LMn;Tv1(9Kn2tkKkp{d{I*X9B&BkN1vu zttd`6&n-DCU-Z7N(4O+$-9%=j>|0KQONCgGje-XH%;+90&bP8|*D2Z&ylgO^Io*Tl zSZsG!y7||#qT+UID=ZzShNW{SQ=FE%y4GON+gh7BYlqGg=saibF+;lxG_u=&3Y_q` zdl^b@@fGJDiBk6cEHeP zimwP6V1=j16s%1uh=@T}EFB~+fa4hF&?qbx`CHgJ!>pYtGFHFaK%0kI(+prM zgwyZ{Pm$Lj(~9(r5QoNC;bJmH>qnj9E;7bh6`jH!PP7G;gIuhniuc6j?N}>L3}iy_ zexeoU7c2wg$X_xwCH@Ly*A(k814aE}i_QJAw=)H7w}tJWW}RV>Az$K8X`mVz0Xm0UvKd+A)#cl0VQcPJWGw`{Jdw$7RZ+DenCs(5QAFS;SY2+JX zD=!}Y00u*v7_!7#+y#*vi&`tt;F5iVXzlAhCB%gU)DO|AJ24l@nSs&<;8U4|k9}Mz z$Yw4o9xbz`N`|L%a0-kOQ-qSQILZq((RxBg`^H-Ibcn`jhkM_mG(QZc(3PzFB}2;| zN-k*x@?l<&m&dmP!bZVnCe9SIA19BhHuN>W~h(o>Ro2*#; zFom6OP)bqF>y7{#gzHjb_-1KCBpF+@?xNXN>k|zXFjcr=!U>aS$SLz({{V`d+pnnj zKE;Zqo}>tTF!EHFE{iEpOe{*B;t1lfJ2pi1ryT0%DmLs!E9xQ-T1zHv>W5|8fdQV& z-@nC$)ZNyiV$ZMAAabT`N>ExauwgUk=YDP)%h`Qa_()p0AVj1ID=q?ZX_61hS)NJQ zV=F0+rCYHiW*n{%z6(2I#TrFpJ?1Q^Kr6y!XD$dRN%y-CEGEt#m&TGKvD9!EFiK9* zT+s`stdDehp6`I3D@5^*es~PvI*R+TJ+=ls&sg{9jIs=bGQeTTcDRcdXXS|EEMT+z zlTHi_7KJb5HZ5x4%uyCge7xkWCvh>Wn;peO(4ST;FSW8CL)mNk_b;w}|5Wvw9LY?{ zRW0Fj!+KwjME91Yfg^DO+4!a$Q?(1@l&th^>tOQnavqRvye+K=aQ!Yf4;Y`#gF@)f ziVD__CONM$nb%XWVDKy%XN?&=N-Zmv+oWaAi$rordpXEkY*S=inIfA|!2Nppskr33 zR%|t;702B({`Lni3=E|BV14XR?FZIB=<9Ffpc;kquo(|wQQAy5h0&dd)-)*t>&^YM=XEc_GIjQ}_gI=PT=54d-tMS!86ZA)(rGslXfAPRz|#(V1gO z%6f+!@mVBxtNu%dkMPIeZlcTw>lb<{aPa4`Z>bH6$=qz&Sy;lcAtfm1&=9z3a>4bR ziw$G`Upzj)4XLb=?-aCQkTF?q>uN0^MTq-_ZC0IvFC#ypP<;4MFM-7$905+)WfngA z^K!RgL7j)!@U-C$$f(u$I4rtwb~iGOz8yqnZ(DoAJ|p?n`u1 zR&%Egj2dpkvJbc)VRFRxGb3#9E*NJ^Z5n0!TgNd=VIMcf1{Yb<#iKDc9C!>2gI~?v zzkEC-*Q|h(gOB57&m-t7aNL7UTN%{c#Kx9UB`Df($4A_lBnJgk@b$BYI5Nd%(ea$? zzzT>SY8)f8!jqH|E(U86?if`#4Nni7N`p;nmzI)gR|(E5EZP=w#XC zl8g&g_!3^=OL%zLoRGKtB;{Wp!7nn};B_$zAFXiW$U_A@#nMI6#xMmvi>qV#KYu^A zSZW!QS>ZWh!uhWQwTqMXr8c+}Ovd`R2IW+p8bHkxVbw}5b5aB-&@E=-5uTN73xy>u zfG>pFPjM3ilAI+FC;@h>nUmMPoLlndf(2=yr9hy-_8Tl^K0zVGnuy%b>YuHb!y;FNKv|%;jC1wznLVse>=bNH${SU+HrcS@b;KY0V|a;YIIRwH zZjJeEk>e6L4!GpUbGx?Mur)EOBJ_}V(k}dhj{jKMxyWn0U0ONd`XcXQify%lMqGu} z!XrMV=UXf5Zl#W1bpFuyVel-#%$neV?FO&X~JCni1-#;mCnHhV8ASRT7f6f zEU!i83E32KDcLr_dG>P`=T6%`=s2J9a85oiW|c^KJ6*Ty z70${m=U%-X`^g(f9_Jx8?Jws}+_dwuL4f=1zbM@h8Pcp_=q1}f8bv$oLvE#uV4=TcZ8?~5)3!wq zw!dxLtq0vrw)J{2-E5n!2cxXE0a}m_*=!dK7Gbp8Tn&IfDz?%RrmD755}t8r_}x2l zoDK?sX~Nr13&;mw_h^$)-~(G_c*sE+jeD>S>?KIa5j!xw4^ru5s(q36B?d~Z4e`xf>@z61o>TH| z7ds>a*Cl^m(B4zWw~w(m5DyC3=V`czceTT+FzY|VlvZL@5&P!``aBuK*ZH0m{F5zC z4gBbCuLXtJg3Z=eo_6#I2QPccl5lXMkNvnFZ0Bc(7ss(h{O#Ww=&#=}gZ%47tcC&h z_7t7zoG*V4u-Aqa%f$S5w}gGZ9-LFs4x7TU)r0J7_28{wJ3cGq*!N}ZaF;n)udE$c z1~@peyuFeh+)=^47#`&u*af`2wShjLi@Ud9RkGJZUFSkevq~wE;%R03NDUXGtJ+~^ zBuUh*Zr`H^U)8X0(t;~m*b9r@5q9VXGnKDx$2`xXI(4*H5m)Qj;a1!jtTkf`>QP@- z^Gn%`6)gVZ_xkp_sKu9PMz@A`tj#!hxRIUo;P57P^fJf#G_y;?E_rRu?K}10#z=cR zJ@}@jeUKKU!xQYGV$o;0!Y{S9?SKZdZ%qXUM>rv3O!KI#=Gz}>yJI` zY2=k^^A^!P?V}9Ts3JNaZ<_r?$(5bG{iwIpQ{cLu4(Myg2w)r|AVNIuC-q9=0>c2U zz`?#@SEn!EUkk-g*#4fpRb}N)e+4 zi3{-OWP4|wRQGE;79X4gH|K?^vN88O_|;sQA;+GbXUBDM4n}=%kJ4ke&9`G>;n>DTIqW!i zWuY8)9E|(HUS3bOcZnUwkz=bS*kPYJcnqBAFKyc*4cm1gE)x%TMu^HXdkEtkNjkh)q^d5w!?d5Vb;xdeAUZA zmu*s$I5_N=+}3%p-40)cW2fw}Ptb#}cS=LXu?tdjGY;QvhsVaTU4FH9*BSQiwa?Uo zgpBbB(0=<;o%BT5u`+PH#(EC#@-?EAL(rv%E>6o?BHdoYAaOrxYJt`+J#6o*;o|KP zdxQ&cPdQr1_Px zbnzNY)Tm7RL7i0RtTe}*;Key<^f`F$g5AqS3qH)UKh|R(UbdU`;O#%{Ry_!bH}zop z4f_Q>xaOvPjUH@&+y1?Q=nH5so*`UAV|&=c#5SiA8D#2Q5}RjJ%890k@ zAEm#}u)LUpk=N=ESQR|KSb~lgSK3qRY2B(&l>jBpa9i98P%vr}UgMQq-hjvZj9UyB zwB4PBC6#&xAR8;&qlHh9GEgGEiRNNrZm@C%i0D}cg^(~*Ss~%WvdSq5_m)@sx`25| zprx277p@p(M6VQV9y3JFJ^eyQ2Ah> zz)ZQD5r4Y{t!#ouQ8V$PRl%l8Q`||+#7IdWt+W#>n<+2^5*I~UD6l|GDmqqaBpyX7 zWpz?WD+Ql2Fjvdg3al3gFSk*W^x!w`WQH8Opo22qKzoN`_Qw;KQFJ&8dCwUJ7ogJT zN)3bIAJMCmvO&UEogvEbkJfyPqLt<@h&fgj4{yeeLYo3<*-YsrTw;`-Kt!Lflw=9tj8Vo);+*c;#l(zp$`3NqEmqki z;f@K)5=r!Kr8E=MCLv!c@(KmVbDv9B)Nsy5W4?xbpni0Cw9?S!I9pkzh3s)kaTks&I#>D0z>kSW8Tcj9sKWe=Xp}dfrbtkdUkHuz;^#r5 z3h~>ZNGBf#1}i3IYk&nQ2B=rhWnU-?A7@`+C*I3ypFME3G^Pn2!H1P%CE zPt;Jp=?O9NK~J#C*F2-T@Kc^hFW>P*bKTHbL$|3CpY6zQu*K}63W*$(R%W! zO(e8yK)$gFntWgrLZ3-cke}8B%WI7$AJqg+zNiVBd`>f}2*0I?29ghHBDs7;6PSEL z6Zy*LGl9vsGo#{)@XMJf#RiG`@tc`QAs@^{N#$#q0Lvu^=XWxZg?uCvjUZphL<7s` zF_A#NjR{WqE+(>JCVZY3KUC z{|#Z49)K4y-Afqo?k0YQvqHn(Q@6DmtL> z|6)Akj~9N1b5C)ScZhn5pW!hXG!DW_%D#}4(Q&T-i}_0ajK$CJ7z?dmplmBH`$3Ys z9tPzL{0v7!Q^e1!Y8r0SBBL^p?LY$8c`5jggP$8Bfm=XE$&sGGEg&&D#JR5%xILUv z3EVJw*xN&f|4B@~2%He}J|Fh+Q!FmVkp3xafqYn@e3)xKtVllWe??t5!?T>BOFpb% zKCEy)EY2+-S~MT#kq`6Ahxz2gBJ*Lb@?lafWLrorNr;hpAu*{Y2{GAmdkZisjZQ+0 zIUi=thuQOCYJLn)yGo(bE+xd=$%oy`hds!LJrc0Pc?qB7BRb%TPj)4TJ{BfV4K5Yv#CJkCbj9)&?KOZK?hZG~nO9Bs+JWP(5JnRVu zi^Qa@Lx%aVly0v7i<3lY>=I&j0?orx^I>v$NtzsP2|Uj7Fgf7zuoZhWOxnYQn3egk zH996ump+K%*8ewd9Z`98JMx}ik6{nT+*H7cLsQv$qI{4qH%X*ZS z=FfcCwS3r(eArDL)APTbk7&w=S@L1Fe3+6CbL7MB=ELsi!yY;@=s&vYu@hx1Cm;5A zKJ0luOqx~M_0r5Huzk(LJUh5CO`6n%7@vGtv0SWyBnIT75-XVx3(kj?b7Eq}Qt7|0 zA~iv21Q7BgKsxo&z;X?om*60|E@RMgnbOj5Ud&sjTr_y;Ghbbv`CifBL?s+j<|iuM z4J+wZqSD&`Im#`kjxTONS;PPOAEu5>s>!D=PgkVI~4ki#KOm`Z)tVCLR0W~@B<2{EN(RSjib__>`onbusZvbg z?rH&>)QO&>QYC3-&7*;)(*+wo!esr(gw+$PBc@*#LB zmvIa-n2;NMn9hg4r;ES3V98pgB_P&;pYV zEr4`r0i;6&OG$5f-|x!XXN#pk^j`e$baZyvABGxAE!$O|vN&XK<2I0E$jF1o$V0`*qr=GmgJ9&Pn2}dvMqY>+ z*)=ipD$K}>Fe7Wfkrm#^D=;H3z>KWXMpj}YYp;-i z3s_4Ru#zrd9bLfAzL7O_0W0VN*3SjJ+*-h^tp&W;TEMz#WYt{2E3E~*&|1K1xq!9O z=*3#OfR%DVj3C!-${>T4MsC9{)+_pc8@4K5ky!%`e^G`3Tlq%U4b>*#n{4K%wpPwj8@Y7T}l&xMyX0`fZ3^-BUjRaRHYTb+f*2?l~g}X z=?}0xP3Zw}FHPwM&~i5>mz9*Tn>nxSRz3q(Vh?0Kr}}#!>^aSlSSGFBgUy>vy1oZ2 znH2OZ3ZF^CepT87?9jlAUzyfuFN0Zom5!jD-is#4q@w#cLAQO#FOxRzLxW_}oqecZ zCjMwZ>EV$HMT^;81gp|hMRA!Iue)aMS3E$ywx0zA3Z+^_IR(cQmrK_gp3uw5iE|QT z_D%xYC8X&8DrtY{(g4>+ew(WXP)@p1ibDPjbT5+Vq*JOutEEtZ14Jg5tdXyt)9p%WZqv)D-^yDa#ucM~NP`7oIa16y*M-PsHa~(Cy zPze>A~D_?kAm4*AT14#?-rLKpR@{|=ET%3}t1s9<%ClojE^**5t2RM2{`4XV~ zN$fs2sLx5rcuUhxLZjZ&sgtPnTPpX5G74bPAE0fd?SH@_+DIi%DboNFPAO9X+)gVq z0lqt}%mOHosmunLo5?J1GnH?EO*zBh$r)u5uwiGF2>@5mGS=aoG8x#>bI9Q?WuH?< z0<<{~+Fd$$UYQ6`?E-||rOg-M1l^^w7n!!=BGTQZqFKsR54l4abNB(OyzwC=UsQS! zKYbeEs=9&YRTeDCT^eyo8RN;EKRpBIm(RIfBjgLHl_}$nQbZ$8eh%V&5Qkh>m>5P& zy~`G%nm3ffp`84UWwK?4^sElr>7n&{^4R^SUCAy2zMjPHMFBbcdR(HP^i5P z?z=)MHq=ZZZ#$ae7S*sr)GbaTlUb(6zhhn-kRfo-)8g?mfp0?~77?8%s~_D^c=A zMo%hZLIF>Z$9+`m1Wmb*N}eF)KKkPXb$)<$JwXQ_u#}1ql^9J*uThZl_h|BdqSU7N zwUzL6__PXMa*z)5QTSm}dR&-%w0 z`6sF16C^!Jqn{w>ll12kj%=KRZaGOCbCkgza_>B5@+=4_6fdh$TfTr8M6p?lFIdJr zRYrI+OVK%C**w=p+BS@q4wZ57Q9dFXX;WM^A^YZnW9mGr<&7TWHwNWcgOKHaD?>tA zi08LpnTH>(+@rn&s+Id3`9FiFaE>NFL+_m<%QF=C97R1xpPZw^&(SC6@W?F6eU6e| zpu5k}n-|PE;-xai{9 z+aUbUUtH+N(`X-lI4`zdMK4Ob3w_v1UEeA38l!It826-n%E*uBu?^cw(eI(5Tj}(B zjFqj_`~zeAKR^q&Qq7OBr(0>`M<~_S6+UVi!?G1M)#>=%u6~czY%PQO9e^;XivT`z zQGW!u>Y}a$7*|03-a{US#Jo9;0_-?LOA4x^_@z2Gy$_bryn^at@cI@~e*jotNSzN5 zURYfSu)8p0ja=0^z|vjSIDjT@j2&@P=K_l?f+Cq{P!Y8YKxz^73xI+})!qODimJT; z_G!S=T^$T;oCYqstAl{m^icZ){NSPX0dRPza%tYdlfe#8bqFvoFLfZmSTD7ghe=ju z!b4QX^Qlz2HngF0ts+#$TXh9XxHso8-@mBj+;{?VWB>0FQO$9ss4OCOXqf*|{ zr@-MN(bFTCi6a;I;J<@>Fu5G1UwqWh0bcs3(E#myQPm_G;j6X)*y5{p26*ACb_9s@ zW3b3iZ4c~EKea1BcrheTqDjTnD1c+dnC9lMwgVRJuXX}huYrgD5UrAXaY#|AXK}R+ zz}n*AR7okWHUS6?0Ly-A5uknsFfTxD;VBQVVsfe$_+QM>O$BIUEBxb<1&?#(dT{&6 zy##XEPklesaD5V4yq3X z%?w15_S1<#^!9%8FNqrMrvW87a&t*8*}al#Yed#4rM3l_QcC??6ZczJi0j^s3>6@* z#j6H|=wm7L+J15kLZ$apw;)t{Kdl6&C3xNg2@JjIVjvQvT{8RR6|zn+S8I+2E(WWu zwIsHINOFD8C-U71j|2e8SZP*6mMs{H_}l!b=vr-fyqr)aXW%-O7*+6`DjIcPK@%W)1(%QNkV z^3a6+^jCS#AuLR71#Dy(H(y#9SNvrdw_B46+=_7()DB?Dtf00J<=%Mn6RP&brUJSS z|G62cro(s+DIC)G(Cl#a3(q}LCz_{#+G0lm@~weh=0}g*DyqTYsZbGx+(XkUq6B*= zy&|&SLxxIftx&nY6>}K7Tc4~JX70<)eDWr-PL+#NU%wWeoB6G_o>=+_p0gyV0EjhqXE`eLzBO!C)J?T>Eu-%<0YL2 zS6BN2q*q7X)2UDmj_g$fMkJk5YpC5keYneI#wJb8QAnh)RTE>ou z!l$Jz)WYCNYQYKB7Eu0liiqUao)ZcCkWQx~Ij7<+VItFMNK1@}blTpMWq;5jJGSC< zD_UUyqd{6RXXVehv1WY6qR(icWNT<)I*o75H9Os!r3AN82Ox5K8?{#`7j%LV1+AP= zP#;N4FhT0Q^#?r#7j|ifgY{$BFOG_DFD^&b3#2hsuirF?F%;8`A>2gxUl&4%3dFWh%AqfTXFE z+yRA7rGGl03aQkkBXUlqT^&*9RC?JF&5}wjq9FDG4U9q;KcEv)P>BZ=@;Q3{0mXd| zm3Tmw&rw-yEO&yi2Sggk>4bFG$-6Te{yGir49@HHTW8p=>lD@n8giX}>;f&gP7gHD zCK^(%)23+X%k`wLOzPWJ?d@@0R%Yl+l>YQfx)_DW(d3%}x%16+^6G{HU#Fhk&}G+Y zV>eXoI=%0Pj<`-;yL0|Ob!U0+x}*5lsn-|kcz{!1pupGRLP58#)3_ec-s^Ou2g<#Z zUiEbC%*51I;l z@qJO8)zqjjYO|Ua_l4%IrrUi{s?}7xA4h)Q4=kH#b3f?lCVDEd739+&&A5Wb_D6yh zbhtkv)96-zq)Ve(15ocYS~visFO94NP{cHf7Tp-mQi4Wsf*~5%I)a7W9l=$pGm^_WVS@YE{EcN*;}Lhw0d86yh)yh*3Lx9F`jJ{Z(|U-!<}zQETy6 zu(|4am^Q{B%foap2FBwsHTeqNbeQIA;L2CXdnM82S$NyzpEwV15dt0+&#WA5QN=97v1wY*TGxeIF~dB%Xk6p0rWXnRyl z4Kh#0{JDniPKG+Hq54yxlWS<{6x3@CDO1qsYpB83jQ#L6vb#hnUqgE@kzp!|a)|~` zReO5Kdqy$etwlBiHd4zeYWbw{_*C%0RJ9y9yr#hrT%wq1oGfD+df^heeFHDy5{>-^ z_TUm;bb#ao;UZ&nN(6*Q9=NW1v z0MiV$DL~Ln^w(t?H51KonZ!)g;+ zY-sI4nll>(JV@7Pqp}C7S{%CcAT89u-8jeuXFRhkj)&-jyXp5 zWgbd(nsUHpct+meqD`Jr?{6XR8EyF%v}cs_EogVh`#bc~9UA%_8sjxy^he}7O8*X8 z^p1*suXYW6Co_q}Ay>?h1Xq0;s{bQUO(`DIx8FlYAJWzDQTB&abv{POLz*>TZO}}f z7su4WY4NCrqZ(=x*lIUK6{{$BkzYxw3-CN@->_WjDtbC!Esb4r?*#zQsk#K26eYo9 z8Z7}fe*v2DUTMo^hEL?|`vu!-S}wfpISY7RE@MNBI;jq_N=a|&qXZkNv=QJgHId*x z^^xEjO$BJi+e|&Md6g$;ZF8*tv|MhX`!rJkTmQqoC!BEdQGTnMn0s!Fho zI!IumkpRtdSCx5k7QM@rlO%I__x96Vj(WnS)ykmKZ&K2JGE1td@1PzrAlC<^AfD32NLX~B1-^XP(^@d zxt1|c4jV?TE>6SvNiH)N!=7o>OEgDHIzSsFxJ*YR*g>}>I7t6Uu$xLOMK1CHJLXvj z*H7eF!gE_*o@K`@#7TBu8CG@2IMi}EO%osj<9ewCcW9>suj#A=@93Tc56Lw_{fI_& z{ZXA$P!7)Jmu~uF2Tu(zE3r`xV~%5F&QJWoW9aa4!$yrAGV!a?<3{4(-O2j)M@&Gk zsNXW!%2%{)nK})i>~eJmz`EtwReD8XiP%SaMf(%6H}r~HuTaYaAVC@WegzElDw?xK z4JPXfH3VTp5{%C(`XUL2d=>3Vg4J9_9)$JCDvBjo{#A62)R6#nS7OpyMQc`KvRg&( zR&wN*tJD}^7gup)#A(?8$V^-cQe{6le%wV&g~j7Y*kCaq6Tk;Q}L1lQ`8!? zcdJ?l;k#QgDZQiy+nBO(n>rSl_b(9jl4ksZ_4-S?{|mb1C3W4dmUo475AF4)GAU|B z*BGN8Oz=zkWxE;%h6~#<=dkqV0KHPwh5(RQi4LTw{s=>C2t71Cjxlwf%+uU_&w;oL_DO)pz5#alSKOd zS1i;Z^dw62nYQ29hk7T6d~q+O>l9zzds zl=T$yi#q^kCXvn_V1dmJGDtlLRZ66mC!v=W4l%=oL+WHimCQs-c&EeHNu*JkYBfqo zhps1*kn!$^(b|dhI8zOzKlY+xD-UzUg3chL;~KHx5p}3mHEUM`b*&N*NZ%iU8<9u{ z&!95zj&Nn(oIzzqAH^s|{86q<^<&(y$;Z^M5&7XPG^j-e)HIQnWT;MVk|9afH#M!Q^rh3X@3aR=k9vh0$a+5rw|34uBr5{jYv}bQ0Rl z{fL+4|4>UJjLrdA^B78CIg81MJ4>n{`YD`7ol{Hy ztFuzhac1bOy5w=5%ZVNq?bY`u3`2`p=#H$4VpqLuEUC? z(97%Ca7m$IH(-ZT=+X^!um{U*x&)TC=@K&BP&?D2zhEkHf8sA@^1KNRNudfik#Ze% zu|h*rZlX=r(O)-F&UMu07RtGf(r>9V0UF-Ma9Bq>ZmUxP!m`zG0M=_D(4@u#TV=u# z&N>P*s|f%*%s4wjItvEaIyzwCbP-l47U%X2ZV_Z!p&M7p&4%W=O4Do@zE|miO`QiY z-mcCKW(R%y0n|bMU=6-qKMAh63}A#Jt<~4mxBbZM>td1!#U(O#!%n zSKSV<;+~oc(B{6H2JrH}x*K5I12x5SqqM;lub_zdq1`PUH7MeN`X%kE>+k}P;gPxn zVAmsc3qX&@>dydg9y7M_iMkb7ha4Pv-KBFmFfDhf^iy>iK-yDvBS5#m)nx6e!Xp(~ zJW|Q$gIbe9U#NX)U^|B&SXMt%e*tLyoD(>nt3LrVzEC#<)O^X<<(H_^T^j#NT@6t5 zHDg;}tLw_-T~3fU6wts$zMK*}X7sQjlZPk9+@+!as79=H9{z)(-KS=6)a3w|-azPm zn*0_S-lu?fsKk9b`i>)qyjM2?EA#;syiYqmFc$q$T?g#(M|F+i{)&YTiBvK;)|cUH z4vM^#Ab(`;qsI;%GG@rQVaWYHDF#Phd=b;a#SsmV;Ns{HU@73JNd5&JJrIs5;An<5 z*tP6iE`IM-sp|Z^s4zFCV5Q`#4qt zYvk)#25`>Tu|m7cFuE?vJGw5FZGb|=dpSB%rDhep!1BV+@q@;4vOZW&)+g^88cP&~ zggXj>#na#M1Hfv3$Kq1FVl_7fr~Hww>6jryhmT2&*-9;oI|kxg;N;?t-of%7H2lwZ zRoL?{I(EvK$)j~f<_M%}0giZFZrB;%=nh~gfy&>a4J8~q06q_NqyW4QbnFJ$UXmkw zm2#v3a|?3p1lS*h&bmbdgB_bac%6KqE6Q}CEBzMaNTg^#N1=j~@EsKGDDBt=z8+;b zRe=!4Ox$9K4{>w^I2(eVIzdB19SZ>NhdL4g;>tRf0~9OgSOu`NoFh@YAaU_a$iMg{ z{-n!MbGc=UQ~3%X_p;dOn|r-6R1`d z$Jf+6(BTPc!OF<LQkC-LpC!w7J(s$-cZpm;n46pyD2DS*}C zB>i2@F&|9Rt21xG8jgj)mez3mUtMPzpGEHVeTufYYk?MbD6qH`cPZ{ryn`2tE?ns1 zS|E#-#a&A;ptwtc;_fh0oFa?E{W~W!XW{>Ro;P!nZ%&evOp>uAlL2B)5uCCpm9MB- zA0nhEsx3sH5%uRc~o zJ(S%+0F)G<%Mx1cVI zzenihOip3Z$)EsFMOQ>%zO|qBB$CIfG&Mk zC24~Gau=Ub%>EE3nwUc&{F|aL-BtUVnj;{}He<1~nK>T5a?M#BXl{;!uUZSVo4e|0 z3v(ny)t2U85T~?g+{&B)-_=$a;O?r{tvQt|tvPy|HZ1P7;Z(Y`L$TSDyaUr*T9^O zE@o9stQgnDEDW)&i`fh!VOO&WMC-2X+uYTx?frzVKgV+-1v(&wL|p@sMmJQ!50$zb zGLBG#yP1^|N9eX+yAb|h31Z8tB`dRWEio%fpwv2Wl%q4eeoe zg}BoL#fVVVdzyg|t9vp`62uYu1)047Zv`>*HyExoQ0EaUelN2VM7LfjcZ53G3+0Yb ze!b03dO}2(Ca}6o6XhCeHc~Hoqc$Vd=iZ!0+dgLZUnW|-Z?4YugOYb&GZmDI^kwV* zhR{m=+9IWXZB>e1W~0zu84cPS_oh z6LwcyCYf2)tN~`3#GOOBckdRAD@KI+-rqEkW6uGc;pzArO5AnL{9+3_=r*P=O)lD2V$ZtXY4s*%!XZ!RR>=s^k#PA#4bTB^k<< zG-xR2aBC=fT!bn&j4L;67}t%*aHj&NE`{Y&m+ImTrLXo8>hN$h#|V{g1V@=Z!t{o3 z{RlM2?druSGovc-raTI;REX5$af$h^mXF8f@4G5C z0pt32b!r0clfJ7qf8oS@R~P>>^FqLi9Ljs5Npmaqt~ax&851!WM5;X#QSL~Ue-iGy zBGt-CIQy6gG8uJ(84;6_LZtdM8D}5U5T=-eAns2=4MnQPQ_WyKhPI$#Dyvp6J_wBTp@h2p*S8|o*}3Qdm?<)k>vR7+uIsY%+1AbTF}_Et zqWIAsXqV1^=&Lie~nZZmUEhwR-i9qrpOAjr(Kmjs49D?dto?JvsUBc9?J=heGkVApQJIN7ShD)iq-b$pehz1x5`4!XWcJ7xdi zZe4@A4C>fFxL@Z$inMaI*;i*jzaO;c_oIf=G8rxn9s36c2lm1E7OBRrLH~(VhqZ{i z7K2x$8oHLNEp{!3`K{wxShda^sgqkb7Rjv}OXt%r&4l%4I>cMF9#>=TNFy;brRXNp zSGC<>`oTSY15WO7<++i?xQ)1!!?(%IqxBlm^ps8Ld2iH)O&CtzsP~&pg4H*hbs%PJ z#?iR zu-<;0>1*ofew>$Us`3F;*fq800GjqSmHHrzgE1Bj`2P)V(9fLS+jT2g;b_p^$>AaJr#Hwr$5=z zR*6)_b7o<6U{fresD;Yw9IQa}bGY4HsOFu+D6v9)JBP$psB-7o_s@CU)6G-w&zq$n z3PuCYQ*)xx-sWNb2r71~>VE-kY^yqZ0Viaus&mmC199de#>B0v-X)xnt?Jk%oZYRe z+GP}Xt2%laHO%qysmxcNmuYPBw9VXf=gbsDtFZkfS7g_CPb@yS8@8I zRjq4gYlwfYvF5jHxao*i9j@b+Gg|Gq&hZl8V3n>n@Ny(t?Yn{7yl9o}Ci{kH5q%Ty zR-#p&Tj*lZYRD}-*hi}~w>ZD7w^?)WZQMshs~fjD&0=?O9|~LUaD+Q|P-GZ*ms6Q_ zmm@sYqUt?PZ2mp7JyhP`V>=t&$J0`@>Tw^w)#~tl6neG#c^^5fR-GT9rL9)y9-w@y zRjG$8mOezmR?mOLLA@X0US_qL^2n^>@lr)SGD~HqCCcc0Pm1tujA!@2frAEh8;aZN zm&*IGS&k<8JjT;Qug7NAjP!*Vx-YeE!an`FcI%Ddl~o#IQqJqgsQkUk=ZV=w&jSiS zk9HG&Ufp|Q)=Admml1idy8HySxmW#RqKfybnINA7r6I(s#3p1!+ffSyu=8|@x0YeLO)dI zS7xmgKXgSDF3OcQP(4`Qt&m#$3WN9$Wxm1<*bg=2HSWrOs045DYT<{P{szPB!}+mz zRC}mu#$r@?s1C*AivCbFe2Y>pRt4YTOugKF^s4da6f{eW8fpuT;;#b$@v_^+8w zb@>;A@D4TgUtGf&86JyNhL3nCT%;O*L>(+rdp{!9B9;3SMv+Bo!6)1@EK**dG3qT+ zLq4<5`iyKYsQh0rN?lMrzhKb3pl*CYxh|+?Uop~MP^Z4)Hspfx|AvlxLGAg5#4e~J z-%<4!)ZFhF(J!bBKX9$Opl1HSYm66a{SVX*zs)ENk?kjJ-lcl{M99GFN{fn#tgi4aPsA$8J*~d*jr3&r(9;Tnuf7-iwt2Bi*2Gp$K;+#4 zlNJJ#SXtG+#Fh`-cM~JGZK_fdD~ArLjmb*ulUQXS9wo6lsiG6i1gdsYl;ohgpVZ2% z!jf7!v(cmm>YTbwCLP$V2S1Dq;@3W`*a7pHDkrl_LJUe~b%D5^%<2SDHo4UX^Bv|U zN5#HV=aVDm(kcY^s+3lLi1ewf#+V*)GnJJ? zO-^MMgnMTyE0;!tJ-(@c)UfoMnvojy^-aZ1gIM3N9s`y5LfuVcRfX_PYxRSeoz@xx z;gt@WnD~^=^7pupZ3V505Z}^Sxgm0-w@N{@PH#1YSdz&qrmm;A>cO2Vv(-=qXRu1c zJu97~BuCA>}XLRzA2>Ww$b^3RzK)Csf7kIQM^LMVmdL&Spg(oKj~9#I6Q` zh(#d~ryvB>DP?GuR{OJCl|0U?0X|l4mBRaV=eTCcX{wVLaY zY*C3+?8ODSRPlT`k?Yl%eAYUMg88j*i2M1iuK$xlNC7K9YC5cdHD2p=P-6=syOrv} z4H)~Tpw-mlt(sEQs;mxHv+(<%B32UIn!Hu33gPs>Ro@DsHNRCAi=nHJEo`-h`*vY# zBgEt))&kGBWNwpxVN{EW`BamlXhob_5Co$Bq4F2A(!h=QtsoG!hPqYEstq^dH&sLY zQ0tdfn4dM>l?NP?cqZXC0dV12X6-L}|iPX7C zQ!A^wC9S#$K3m4hhnK{#_=d_;7ALsg9~g&jsC9o>3n0A8p{TA>=&U!?%~EJ7oK*!i zt~6Q(XA}T|Ji7i*@*B%wWZ~pnK_KP65JVNs18$_;A7XepYlp`^RiwN%0V2FS z>TI9#u3#;O*j)ilWSTYU#%PV4YFjNKZq&y3%-QEuZR=Ro z;a*k;=Oj%1sAIK-Xj9kf4sob1E+t_qRXvPFY-VM(xSmx4ZkQ4X0V|5APW4gSY>L0S zS|6vJ?V*CfltL+z3=Zlx#K(EH8>TKbz+kalC2xZh?J0q3TC_w1ZH!sh?F< zt?hteIaIywfF2u4J+}TpPc?hgql{`uN1WDBb)%y-8=_YylrvOa=!9Z~DxW|rFcGVN z7^ZxCSb5c!Ks2~e{Mih{F&4rGTP4+k&M-4nz3gmFhNw6YgT$sT7$ic~{DHV=_;f|X z3stVJ))a`u-K;SX)4ExIK@(*Fmi;dp98I$YF7_j z=->{)8PC+y%CF5&Fws+08M3T|8rhSJe6lCTGkksuvW7wYGZ=QA4?=GaRo@09kGck0 ze5jgfaOpl6xXgvB*1gzwpcfmMtv7CGV8&3izCFFII!U?Q^+G-4Ov_nHJqWfks4d5q zB~``ypo4^}2E&j=L?3j6Q1zk@dRnNuMQBQ2s~Ox?hT{xp>4(9TPe*YT(hs8spA4#B zoQERV9oEY5KPO{oe_RLoWYol~Y;+nvBPCSp0k}-_Y00d{4M3;ibK|W_JYV4(*Whv& zRvy7tRs`VO04Lu5na#8~9MmO&}T#!AKRVP{F=x#}IT$uH^#i`w$F%p$b)< zQ96*3g}CtT?*{(trDGYmHuT;J4yQPo-1wqa}*>YM5kRXxQcRz(fRFcym! z>8Sr$HFAXYC&ZT#)?A30e_BH!pi)*<8ENJ9q`i`iR7X73g)A%cslP{}C$jP%>g!1K z&{$P@6w+R%R*k|rScX^U=<3Uqw+oGTnOf?ymOxaTY&B6cMq_wbrtXclmO_jgW6gw! zo`Nf0jj>iAxI0a?x~TNyVB#|M&p7KWM8EOYK8V5-tb-7*CRn>6Ud*t9RH}(+rpr`| zi7c2C1_%Vtzle@y3c!j}Fj$qcJJI1H+(rq4j9V5|OyfI;QdftjfFWtcaN z@iSaanT1>2a20p9)#86@bJA>7Nw~T(8v{zXTC&2buC~lU%L!L`SK>0+F%<14T&-Ve zRZ*Wq(dWWd*;Q6EwRAl3B6)(eQ?ORVP*r#4wV)Y+w|`f&HuFx&)z zg)KwfhpP@-Vb`jE(22uUisjZqi1o{Hs~oQKufX8Wg_sNh`^Qq)N^1rLtX>NNgFC7! zt8vX>tCvIgt-;-2xH8vRJCkrrTXhMeNGsL*Z;YU4*J8M1`>D7vy@qZ7`DLe~y=qgaWlC@9iuHGB)M+FYy_ z%6ltrO}K0d0>x^gYH!2U@wPIySw*tk*7qK9O7gvj*Psy0uL=sJw;;FGj%{eJ=TxQb zxTQX)4s1uq;(MQo5SezP58d8@;rpE0z1td~E{Eg3;T$FqS^;X>POGLT?L1~oc!kSL z@b&he&eYEwr?+~+Pl%luc@zAx$jRE_dTDTX(XqjEO zsIUng)U#c_AdsmW0{IR3pR6)OVhrM}rvFbaCH7jG5rSOmK_G*LNtTk8|9r=J zDWe{I-BD5v+=sDzsam%WO>(LFaTxbqP4}bZ_*}OiH^WO+#RItJEmfJ1!qm$LaBsL& zjX7%7Qd1A2w=Pxbk6DdXvqLa@shWArDxq#2!X@pK0;6J zdIA-}36@uHPawH~HVV&Q9ZusK zv`#HKjly##l~tKDs2jKHdj{x|I(-I(-Gth}ntSzHr7tD+aIdh^fW zDe|+*dJcwvR=v+z10e36!%f#`)!`!Qc;R_Gxqnt)&*P@{vl?>As)LD^xX0k=!4Qa3 zTwT6^>jXzErV3od?I_0{4}pjQs^leHb~yG?(#eRx7E#U&Wm!>xSTg?CDM1%ACDsWrO?0HFR)(a4e#F zT*qnSr^f>7>~%Dkm8#z@H1E(G{8WkOxVb=sZ=&IIA``U2e29d%two-f=v-B4ixs6C z_LNrlZzIo3D*hd-Qz8yYQA?l2Rd;YPxTK!l!MJ!y1>VKw&r$QKE)Q^zdr2XFd3F8)hJ#Bg_5p@7w;KHrEyS(f zJj8tgpK5=#;1LSV@%>bW$0!`P&f-cv#x0Or^|8=Vvpm7+cdHRkaQEj{m1C>|s;G(k zQ@2_WW0l2ROT6^p#A~T)7Mp`;eSmIRXuTYxwN~zpckBtDTG@C9LS7^G*IeTmR-f=< zlb&VZJK^}8;L`+T)fhC+I)L@hJ3b>IX`DC+z98Uf3I>-1d`->ZN?wNoz)z<7~FFJTk*j08RzqJ@FM}=%QAQ(pj<=j0Ei?lA*~y;%2NT0 zn=p7T;9YYDF9p1A$KbVq0Ua2`3V5c$I{_^^vBn1gmo7@bKqenWB|#Skp9Pc|#^9@f zv%?vD7hqRMoP4OCzo~u}k7kW{4&eGp;P{NEM$;O zK>U>qQV3|YjzKB`m$x!VBOu-$2I&~M$k5kEm}C%@v8Nei5zItNp=trnTA22fB>CGR{<9_xC^1Jc$b2s=mk(@ z)_R@q0VJh0#_C-9APv`VmiL!bZCeKlfURWNU;(zN!vxr-{wcsV)g{0-bu0mU36+ae zo!}6zv5Ah4mRM1yQwY#r%|?xk45mAP^=CRhBLjYb0R1@vnrkpmKt-Lv-wtp&NiK4T zlgLs5b|U`};N?(pT5&cj1*FtqjRV-Mb&k(?8o>G+1%#Dkuq9t&mz`wBQcSjs%E__} zb_&>DhQTfY4>gDskXlFCFW{gChXm}bz-b&6@Y7YE$q6Bww907#{rp+utblu!7(@%m zTA9Hm0Sz>`Dxil>U26YxN{fP?}H zYT)G(azm4(0z7r2N+Fe~m zf>m+}*r-8X0p2ZHqksUrLlhQZcZgyF>@HA3fZYXLrG(gBpsWD93sewbcY(?R>@HAM zfPKPi2(Y_AZ2@){sAmK8KP+yfDrqPxb{7Z`V0VFL0_-l(Qh?nB+6b__Kzjjp7w9BF zcLA5tMTp%6x(l$oK#%~t3-lIXcY%Ha>@E;2z;5v&0_+AqR0HflZP+b-gs9jpev|;a z#g7qSxA^e_>=r*!fZgJ!2(VlHbOGGpasM?-h~45t1=uZqz5u($FA!k2_{9S379S?S zZt=?n*bROa1HS*VTl`v4v0MBG0d|YuOyJjR|27Bkh`+<}8N-6PO+^S;r@?Lkw={6= z6=KIZAi$1uSb!bp7y({-hdq#~>7H}|TXEX)8GQ$HaFl=&*aaE-=LAf5X%a2utOgea z{4tc{Tozzza8-c+FxI#(V6+A|1;l7@TR^rE9OZ6)y8q&$4AtbmsO-|7g*tv>9Mga>~ zGsrAp_!Ggl|a}D)-UG(*013BjG%oSTuH## zLk#={JaZjqQdNkZWDNqpKB(1p0OwKH@fj6PaRT)PY&*xGp@1Rh88jBqJDNcg0xr%Y z@B))&qO#>8gBAj4^(l(pO2DDZ4B7}tc$Gmr0o$%I=pf+ZZ3dkLoVuf*e>w|kq@PN= z65w^CUG8z59uDBr2RS|?&wUQ=B_Qt;27Lt3npPOzPryTy!2k{D`d2K5$v{zw`;z;2xF8^DCf2wlpigE7 zR|H^dbbkMEjR-H-r46Q#%}obzVQ)J=BV$euzAK<7S>I{+!m|BBDasi`jGDs=lTrCEv1;o^0kXFE*x(w0_m{gxZ#)5SHWkYFAGz`rw zD$ANM@D`A#DT8bRHfrEQfEOi)HfN2T4&cJ(c6^3cOAgK}fVQKj>u-J`KRUBYK>?$? zFeog*4{NItrKkW}Yz^QiU|4qsB?PSQ!Qc-8w1GXMlqTR}%i|hM%8E*DtiOgzc>%N_ z8=#^9T6_&qS%6*osswoZcr~6iYB+$aqn6{ta%>8A8Fhr58p09k379#QK?4EfhcRd* z;Noxw0Rn3M$)KqK+AJS-HWxrkxdB>gK>d$4%Li#KDzrB~KwAM5$1!LxfVRemMn?g5 zVLKDx?d`v4jcyL$()VzD#y)JOj|75TLWWFZ(o4W+4f+UJKbPna*j$s z)71c)X6mKLY3n0nk_>;IIa(1oYX&8fygX*v?=b z0T&k~>kcLxL}j7|n*{vSV2c1+7>|6n5tu{uQ{xtca0hU8L^wX9?miCQCE&y{0xn~Z zkUGa%Wv_rQ8tfPF_X*ZGD4@QNPUSxw19n=8C(<)?3&cj>6?|l@%a9;fRGR`Rw*PPU1A1B1WeVSm;ev#jR4Dv3!u#s07?q53tO51?}#uL zo0dYO9Ds`nm%f68?@qztl?3>vW8g2~TXqIj1cr=;8 zvj4zT2FnE;n#N$IfM+uRaQ#^=B>5~>Su5bH2I~dPoXZ*;1+-YmV6%YUiy3ScK>J|e zOl%i$FN{Gr1AhPC^&ch?qC&qcL7ZIz?9LlW01M0G7@1bF#(oEIZ$9YwjQeXi_^<%_ zuL)8-DxlFu2Cm~md^a&UDd3$3rv(h#!5UElY%9(apq(|0So{SA*<5r0n|0aoIlA%phRM+2inQ<;0>g z-h)9>0kmHT;v^T)G(Llr0@7le5NMLOOq!mE>gaD)$Ks$s`|H~-kUn00G5HKPM z18)I?lQPIAAY(EHJ_4R5XOKg{<`fKa380NdkV_s0-2aZJW|B`-Xm=5)6c9kasR1Y? zfc{JaP(;9-%nXVNpj}6xQCtA+Gy+gkK+zod11?A@Axm?yN*Mu}@-QeT;8k7*6$DHy zz@URJn?5xU%>Qg3>pgf zyE=o$|ACqeng|$N3x6O+1vC>9R)oI5}pn4+)?F1xg&Y*(;-tpfi9=_r$qvm~<7DOzjwS7eGJhfvG(Or1h1}}SV2}W#2ZO-^K5H;kz@(n6FC&3*r$6^mNfo<71AOf42m1LVz9N zGyzzH_ssj)gtHFd49+_~qvRnDz98V{5eAn8)J2UWiz^z?^{3q_Cf7tIK5T``4FTgY zR~+D$0NaYY1fG*wN3XHQ0|&5Kj~t&7eUpQq2$+f`AxP1330ZuH$x{Kl?=g5TAo@Oo zmjcc|VDMT%nMVv_1=wc2Cjbl4-X62YM+dmr(9e$7$c(R!u41IIk>0*|LhF>1g!O8 zP(r|+91Q*tfGqg>SB3~$8#X`2??RAic?WQ&6&;@w>`&kT>Eoweq+iVetY5?N8KVnu za4i9a3o@u9z(xP^LJIYS_!ei-KtNP!28{%CF2^810Buf$G@1&q&1yklAvb&c+5{S{ z9l&JMfxQGjj56avv?R)JxxG2H=d)=c)fD17|{ z4xjCW8}TPG2o(@JnZY~()uuC00v63;us}ejISdvFSQ^S;iGXGE67ct>p|h2uQes!6pJOuAl@fnQRf2nAHrn3AnYE z!43g+*E85Dpw0#cZUG}UG1x8O$QA~X0v2x7{ePd30oz#RfPntn85|O@VF!aF0vhgQ za7=&^!Qg~|zuXK?30S_H!5ILTZXt#CFgYtKc9V%Fu$tOPntiNs$pPGkt~fp;`9Ti8 zCLqIM1~&u@Kf>UafKEpN(EsiTDSDh$?g@x|wK31yo57J~!=R^MijNI;c447>z1dBh-zfL9tM6ENa2Yorj6 z%F_KWm5|sNR!Jj(_T)lo(h0DuBO`&QWa`xCtdYe5Tt8VIpYiu=4$dy%`VR)aHo*PI zS5JOZol{iiBxjIYKuj72c?GyLFvu^!wxSS$UtfP0bpV^?=lG1_-kd;*qICV|2wQxa z{2?m4ax*9`ASy3|vIHJd(H|9LP{9G5M9*%%UNO5htMaMQ)l3oQuX1`p$3t9Go? z+98}|TgPWyZ_2^#3GAQvFrB~)vV1pw zI*5E{5%~4PeW(MtDDxbj@#r8Ypad*B&0v9mO3@4!G2rp1%M~U|h+L#hKiy!k%mJLo za>r-*-{s(y0=_(Euv$R3mkibl@PET#y@1#68MrnI>G6@tW&!EGFxX1q*C_})9KdGn zB;Rhby2E$Y-{k-f-sAX;R&lr{_X_YznuzZ|_6t$zS>>RBy%`xC77**r;HZEHxfvW6 z5R#X{NdaREFgPvXdLaf;1YB%+<-$zPiOPy1459_>Ez01cfF^znE(^F@k-=2~11mGQ zF2JszTLiXIh3&1Lh{vD14&fTR@A!=LH93Wc0uX^3;}ZgS)Wx>J0SsaszzIBae8$(h z9Q=a7LDG-J@B5IzYX|7}53!Ed34c%EBt^jAJt@LR2XF?T9iK6?83%tA5Y>*scLMJy zfl8ej#3^P2P9U!1GhBzeaCm$n`Fb%(C?L^52A%|ded&_K0i0wq$7dWH%K9k?d?FKu z=|MNO16V(;_R;$fJ3IrCUq|W84&Vshj?Wl5hBL?}fc{R3O7bD_>!6X-0h~Z?$7fWW z!}@svTsp$*g-r5`%7>K<3KGC;k2uEk^$dzQfRild_>2}iIJks>zc(-_C7}F924w|A zYzDynUj-rCwy;WN0e81Ds4C!(Z47D%XsGk8Ex@+3o&ejjh5~HM0vPc4XPeecRM<4k zQ4?TW)<%GBS$hGtWt|8trwZ%T-;+*C7Xl{;cU^g; zfXg<+@fn?T@N5EjL5N3+lWh3hVs!sSgd@zC@Kpyme1QOLeMq&rSU~wB48jC-ImTeQ zfTcQ*RRZix*AiGsR(ve(#pB-wA!AB;Q8t?iTqc#94e2a~~R1WZm;7ru#F-GA0Xi32(PX(IV>tYZ!BtGP{5XF44w$U z_KZ~67y-zXz;g}w`@hcSm8jU+#0s#pc`v}u<|6?XB-J3<|y@K+`Y1Yny-GSpK*!S4)`2$=ViL2?0Eu}21?q!Ms0K7+IZN@=q) zIKbr?n%NmiY*uq|^H6=IuKoB&?($1(C}W#j*F z09RpY$7gIv%)#XZd`-rnqJZ)#82AfVm6|~{0lqGsM@=DzGqXw^0hzQ$eF3&vjR>40 zJL5g#C{0AeHl(=#+mKcQY(v`m(fGrK_0`#Q5Ea{yKmuWujZuxW=_+7*Z3aCY!1WX4 z_>4o@Ik>lg=J^@)6X0LKlgFQ6A$JO}N{E2^B^V49uwG|6LcqB)tT9T!j|vRN2>4fn z@dBn-W{rseE?u?>noJQDyRg#*bk?PxB_M50P9#)7QVr${$g53VAYi!$iv?`2?czkj zgxGboTmb5by3{HGb``A^U{}!w0d^H_7GPJ=HUd0Ww(rS_hWpX?4?eke9l1s2s=+FI zBoVuc_6e|STz;61gveq;I;sLK{M{z0OcRnh*chnianM-5iq$KYs3h6+nm930ZFx4 zuLKOyAXb2F_X2%nV=eL2-H0{ZJ)sP7Ko!v1u8#{PD!AGf%ZfPD!}AmF3E zCVC3!sZ&fMz-2duK|B&SP=ooXHe z_#BN}gL#}yeg|;r3pzfd&rl97A|N1`fu8{EdP-fVq=3U3lorr!sP2E|gtXVGRuoWr zBq!o8;KMKm)dY+j&Y-4%!hbTTBcP~GqrQN!F|5(3IQ2g+Y`jrSnuy9U4VnvhtwAdR zVWT-pTLDU^+Cf0liL4PQpx$@}T?HI;Y0^VT^9ihC2*Bp6REvECJekU%zku6XW1xWE zlUZZ1fIB+MFab?NS>w;*bp7E97&x5?w+9B#XD}EmaR$z0FhM}h*$gHLIHSQ-0kokj zY@Z=uh;CD}1-N3h%3L8w=5ib*pr4MjP=MVqmk6+%;xYktQ(PgyZi=e~*iCWWf936_ zTi!-dv76!+0d`Z|F2Jt%odWEpxJ!WD6e9)LO>w^iaQ)M*=8!`SyD1(Oa8S3A69Vj} zcv^tnM$QVbn_{#8yD450V7D{ZRUvk}x*@=BMz;mn&FG#0yBR$cV7H}vYyA^#GV7H<;CD7n8KLP7yR#Q838Sxy# z<68p9XT{jA|HpzHw#)dcK0pvV83LYC{&*AZY>M|}Zy1vC<1S3na1 zb_FySU{^pZ0d@tnEkWZy*ScK+9Yn>hfItCu1#}f)S3nN|b_Ey$>9G}y~MhRGcl=a657mVm#bStC@yEDh!hICg#9CUld?h{1pLq#a|a-SNtsjcE#TnfQqLx@qpVu zw*b51AB&1z@sVbyW-ynuq*zZ0K4M<6)@4IEB><(yW+nIuq*y2f!j1d zPQS;-$HivK47fwYcYIE8A_Dw)z9*LT6FY$QliEJ?fBW%0g%fVnwKzg*0VQJ?q!W<% z4TFpVumdwyXchr+wMI4p*o2uhd-Sup{&WhDgI zmX#7X+~uMwq;cbVA`nO%NeDq;Q+4FT8_`?^??gpS3uiO3>pYn z@SQDodwvIbtAA2C2<*d6Y^Wh zojXP?P7rV=32RIea72Tt0y?B+jTr)-rDQN$Kns^vnJZ+Uwo3`H4P8ip>*rKQPGkvz zOH>rUwhWd@6g%G)0_=QO3uvLUU00HxKe)Vhz8gv9Go_laFsHi30bD=Z9G_ui}<{pKsM9}FA`Wq zMSF;iu>r0CxR`L+u1R=A5e~m8;HHkCH`JySl4^~6qG2cbP=KAr69IM_F$DN^{KD$U z1>e7(JA|!x>Gs;;_8b1s0_IR2_`{q4&UCKv(*Z8SP9*Lh zj$L+~1O&K!VfSuI#M1$6XJW@^q^QNg$pn93b0cR5MU?T zOn^=_#3M=QZ6Y}=>%8sTDu|SKzwRo?^DJ?Kbo>VaPo5Wfz z4r?)23(QZaFw9#gu|bO^T3pe>)B^LxN#!(sgoXS^3(SBg-!m=FXmM2w%$}z(rNu2R zj%smCizqF=Xt73%Ia=J+V!syiwb&D1ov#^_!1Y9XBedAA#bzzOYZ0jhtr>w8n0HU& zx)!v)0zO(K0YQrrAg*aa6UyPcr^Nv+Xks)VO;v`NXIBEvBZilzr9#luO9-0k2thL# zA@*wVR12ED2KZ2m#ahs8F+iH)1+ha5nvVq^O^AY^$wUw|-v?qNR$`H)=_n91Jp_X0 zctFt94G5Z$0r5@?nhF6Q&2WIAc?%FU`v8Jw3_#FlZwUHA3_+iHA?SlA1bu*npl@{$ z_ypr38K%ATZXCYLTF}d3_(HXymk03CQzHc3JVVfpDFoebLeMP|1YOr4=xPQ*BR>QU zy%03$Kv3^%KQ|;KWLiR%w02DCL}bsbX$3=ke&dtZ)iDpeJ zjIbg}fmhiWKj^9xlTF>P9h1~+<8LfoiDDf~6zSi$$6Tmm?iZ(GtKYsC>P4w+`W+9e zgH+c3%6!$9Ix${em`nCw^a5UMe)amMF7D*A;Wr+7U{6BIWc_bcRT?*!@#bG~cD1o? zOcJk^zp`xVZrzx)`0Y?&y_g*7{K|GL=H#=@R?|VMem$7I^;cHJEBse)Zndvo4E@Q8 zQc}Ght?;6n-DRuLS)4U3hpJLPCX32jKPC-+;xeFqjIU}}AL&LoTEq%_VTK&ngsn2Q z&Q`9-y*6H|?$nQ|h#!Y!X%JH?#R;2ITc8{~8X|`g4N%ZiPKfer2$MRF+387Db@Dfy zwq!>?r^si13sG4cB9UXivcg`6fA#vRNeyBB{@>YtVuyZbTa!g_5inDaOSXK;I zLG{S*tP`=Lzq7j)b#%=9v!g#~6q8GxZ-i!Z{8v`k3)3KfRVm*X=j5{r42a2;&acFO zXZO6Vri0Yn#%KiW&K!F0G*{EvUo|p^9*AOk@i(gc=eZeQ`W-h2zzOE$3ga&!GXrAs zdfm1)@Pm$k7$0>n0H$C6mF4%k^Q$+j@^6BQc=$WJ-QXJ6KpBGH`ot>0<#%SJq?RUxd6WOC`TW;w z@BPkY%y{q{S3%8UlDX!W$8AF}9m43ahYnZhFp3T>>ClM|Z|HEI4%g{$kq%LGct(d= zbl6OXa5_AoLwh=mpu++>jHg2o9YW|3N{7Ye>4D)0Irq`wB^?gZVFMjb(V-0;-qB$> z9V|NhONVWA7(<8YbofSxpLFO)hwgNEOou6SXh;V)9q!U0fDX-YC}8v^=UO@(r^9DD ztfE5~It-=5L^|AZFKr&v+9M%dcc$eDebCWI&B$RT^wgK2X*tz}siU)c6$$D;tZ!%f z=V(C7m|O{I{GXOj`IWHpK@pdwIMWJ{FSBYqYzF-{J&g1+sQWefPoqtWmDVcZ1wS2I=^*HG5ll5uXRk`gmej;mQih+ACVDibP1c5Sp{6PGQ&q# zvT5F-589_rJ(CBLdkxJaCM+9s-a%}m{bZQaAMV`ZA>Em z5fuWLsz2MtRE6=-DT|)|xor&n^R-~Rm=gE}PsesK^nay!?PBs|r-JFZNIVaU%A&u= z(|ItKxo@_M39Xr*?n{k$DRE#|x-^cbTOka$H&4JFaE;V~nw2V#MI5?ufz9CZ~4My|6JBzh}{ZcIl1(vS`<3 z{E$VvvaNJnLHGrWX0Pz?746E3pRQ<^*HOo{7=KyOEW;(+6=JlT94F48xzjRq>D?`` zZ|}g)MY;wK3Uu$E{H%T!kN55*tDa2@=}!0J#-}$puxspB$5lHnezC!9Wqilw#=l22 z+vn-H?s++`CP^IE2K-)x_3(i3kZe%@9LVVF&X(nQi3%0zF5W1Kjkon?+4$v@?P~F- z<2sJLu65{h>|m{3!PuDE*x;Vg@_Dmbt?3cKxVspHU3tSC*EnqPtXUiE?W|p4*wk6O z(qQvu?K&y0x!Av%S%`6Fu7^s|=w%^QEPhrmcmJ^G8w;hQrwlwi@JUczU7!`kjuxldruw_?>(d#3n z6* zd5eOuYjAPLHMRt~+^?cv97>n{7HO5M4Z^O(&1_eQF{5%^SP^ikcvdxfefqTSpXQ6G z8rhGM{-QR}V%PL;j_W{oa=D)sdildQJ3VO`ZAXBxYdZFP)UG6>$mLGd=w*ZA>F7bs z7&!}sT_0zY%N;c4WpwTm^jKy*#O8i_E5QQm9apAs$K`_!_Bb@e*c?W-UdWKYpc*~9 zXnOaiH81}vRdEib5q%0;?23EFaYbQ=JI&IacU(m-*sc)c&3;NPRsED{@zd#I>D>$O zzC4u1MURF?W9$y6H&VMKu144&PO~}K_D#D!i|Z>kdef{Dc5BnFRpMHM4cjz(hK<>@ zD*zj?u`9&*i2du(*L~2}-8bL9?Btt{o=lAu*iTLG#P${&sTup-jnclFlrjlDt{N2+ z#>0kb?uWTv)#;d>o>-0Y*c(i5E0*5JaoxvmV8#=7-SMvyr1YT&S|d*(5O&2cYP&*= z=z{U6p9kcql+!(D?yC(sN^B?H*4QgZ?=oaylOXM?fW3gUE7@kp6^iYEjP36J?pJ?L z5BN?oOJS=Wy|K?j?6IR=tx<&mo?v1Y3?Ng?sCw!x$f)=}0;5uR)cW0aRy4;3z^w@9Yz;nLd_hB09%y{GO zQ~u3`3?66Qm7Bh4UakZ}@n0-F#_CNIx*`?r8jR6dyRzYhfp#syWzX2+J~92xCjW}` z;=ovq=UKh4LBt)$bqQ||G<$}}Ywddaz;QLfqq_0jz3to^&rYsultwfz*m`OE+qaI( z1J_T@vS9SnuEIYYSGjlzY<4-m<0_fhaSg|^dmW=jO2>5$3+*)PB`d>C!8G+r;NKa4f;+Vv5O;n@{p&v8A$0&LBC z47Ob%M#Ju02ETS4GPx6ejLkDdFD%Z6h17b5ZIUUDt38%ZYqk?>rnRdi7E5c_F07K) zu02>DtzB2JELyuFupU~w%3vY1c0I-lXzf~orO(>cc{vuAYp2f&$CZ7h-Wy;rIy0wG2y< zHQR?Z$l6sCYmbd+ck6y{59BIAFT4yttR2>?j^`e6T*Hq#t~yvHtV1(nd9bnCU2pE& z;1aIA6!RHY-|BU{L$JzLyBc3}TtBeRRAVu!u8mmTs#)B$j_U%} zvl>s`e-?Xxr*d}mN8E^EIjUZmdJ*eTwad&)F89#>?|rJLr}uqEp0Xh13Nb>9CZtZ( zaZb+y?(5<2zvfA@lQfEB1*oypefQS;-VHrIxa$@8aO7x-MHEs6>n!yW&BH;CE8ZZ- zRUJzzb!e5zL^c#JDpy5uMf9*2sMB hJdZy;D4mPmuo{UML4#c>SJ|!*<66K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba UWtxdWYMQBqiOJ@zjMtX{0JnD)VgLXD delta 64 zcmeA<%hYq0X+sO6VX3)ge6pEAg}#xQnL%o@v9Ym` UVv3=OS*od#f$8S0jMtX{0FKxc9RL6T diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index ac1eecb0de838d2e2a003c8c84e0bda0f6222269..813266fcf2ba1888f1d840a2d185573c5b56e98d 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4NJ0$4b9@slJ(6k3{sMlEDQ~k3{p%@Oj1%)lT(ch%#%`*Ee%tX TEz?X4QqxQ=OiUJEVax#l(M}aB delta 63 zcmca|oAJtR#tn-Z4NJ`}Ow)`F%~CCmOiV44Q%zISOp?tl T5>pIK%u-E_3``eaVax#lsq_=( diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index cc8956d28..f3d888536 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:27.766466Z", - "iopub.status.busy": "2024-06-25T19:31:27.766073Z", - "iopub.status.idle": "2024-06-25T19:31:28.950995Z", - "shell.execute_reply": "2024-06-25T19:31:28.950453Z" + "iopub.execute_input": "2024-06-25T23:13:19.683650Z", + "iopub.status.busy": "2024-06-25T23:13:19.683483Z", + "iopub.status.idle": "2024-06-25T23:13:20.876411Z", + "shell.execute_reply": "2024-06-25T23:13:20.875863Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:28.953618Z", - "iopub.status.busy": "2024-06-25T19:31:28.953345Z", - "iopub.status.idle": "2024-06-25T19:31:28.970797Z", - "shell.execute_reply": "2024-06-25T19:31:28.970252Z" + "iopub.execute_input": "2024-06-25T23:13:20.879016Z", + "iopub.status.busy": "2024-06-25T23:13:20.878582Z", + "iopub.status.idle": "2024-06-25T23:13:20.895831Z", + "shell.execute_reply": "2024-06-25T23:13:20.895402Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:28.973223Z", - "iopub.status.busy": "2024-06-25T19:31:28.972835Z", - "iopub.status.idle": "2024-06-25T19:31:29.167625Z", - "shell.execute_reply": "2024-06-25T19:31:29.167053Z" + "iopub.execute_input": "2024-06-25T23:13:20.897855Z", + "iopub.status.busy": "2024-06-25T23:13:20.897628Z", + "iopub.status.idle": "2024-06-25T23:13:21.010572Z", + "shell.execute_reply": "2024-06-25T23:13:21.009996Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:29.197486Z", - "iopub.status.busy": "2024-06-25T19:31:29.197079Z", - "iopub.status.idle": "2024-06-25T19:31:29.200622Z", - "shell.execute_reply": "2024-06-25T19:31:29.200145Z" + "iopub.execute_input": "2024-06-25T23:13:21.037181Z", + "iopub.status.busy": "2024-06-25T23:13:21.036568Z", + "iopub.status.idle": "2024-06-25T23:13:21.040405Z", + "shell.execute_reply": "2024-06-25T23:13:21.039967Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:29.202620Z", - "iopub.status.busy": "2024-06-25T19:31:29.202441Z", - "iopub.status.idle": "2024-06-25T19:31:29.210646Z", - "shell.execute_reply": "2024-06-25T19:31:29.210233Z" + "iopub.execute_input": "2024-06-25T23:13:21.042333Z", + "iopub.status.busy": "2024-06-25T23:13:21.042161Z", + "iopub.status.idle": "2024-06-25T23:13:21.050408Z", + "shell.execute_reply": "2024-06-25T23:13:21.049993Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:29.212637Z", - "iopub.status.busy": "2024-06-25T19:31:29.212443Z", - "iopub.status.idle": "2024-06-25T19:31:29.214911Z", - "shell.execute_reply": "2024-06-25T19:31:29.214495Z" + "iopub.execute_input": "2024-06-25T23:13:21.052411Z", + "iopub.status.busy": "2024-06-25T23:13:21.052111Z", + "iopub.status.idle": "2024-06-25T23:13:21.054810Z", + "shell.execute_reply": "2024-06-25T23:13:21.054263Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:29.216761Z", - "iopub.status.busy": "2024-06-25T19:31:29.216593Z", - "iopub.status.idle": "2024-06-25T19:31:29.731597Z", - "shell.execute_reply": "2024-06-25T19:31:29.730952Z" + "iopub.execute_input": "2024-06-25T23:13:21.056799Z", + "iopub.status.busy": "2024-06-25T23:13:21.056479Z", + "iopub.status.idle": "2024-06-25T23:13:21.584928Z", + "shell.execute_reply": "2024-06-25T23:13:21.584385Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:29.733935Z", - "iopub.status.busy": "2024-06-25T19:31:29.733740Z", - "iopub.status.idle": "2024-06-25T19:31:31.552423Z", - "shell.execute_reply": "2024-06-25T19:31:31.551801Z" + "iopub.execute_input": "2024-06-25T23:13:21.587427Z", + "iopub.status.busy": "2024-06-25T23:13:21.587080Z", + "iopub.status.idle": "2024-06-25T23:13:23.402116Z", + "shell.execute_reply": "2024-06-25T23:13:23.401472Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.554814Z", - "iopub.status.busy": "2024-06-25T19:31:31.554296Z", - "iopub.status.idle": "2024-06-25T19:31:31.564323Z", - "shell.execute_reply": "2024-06-25T19:31:31.563854Z" + "iopub.execute_input": "2024-06-25T23:13:23.404837Z", + "iopub.status.busy": "2024-06-25T23:13:23.404191Z", + "iopub.status.idle": "2024-06-25T23:13:23.414068Z", + "shell.execute_reply": "2024-06-25T23:13:23.413559Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.566389Z", - "iopub.status.busy": "2024-06-25T19:31:31.566065Z", - "iopub.status.idle": "2024-06-25T19:31:31.570002Z", - "shell.execute_reply": "2024-06-25T19:31:31.569569Z" + "iopub.execute_input": "2024-06-25T23:13:23.416257Z", + "iopub.status.busy": "2024-06-25T23:13:23.415941Z", + "iopub.status.idle": "2024-06-25T23:13:23.420056Z", + "shell.execute_reply": "2024-06-25T23:13:23.419521Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.572029Z", - "iopub.status.busy": "2024-06-25T19:31:31.571709Z", - "iopub.status.idle": "2024-06-25T19:31:31.579030Z", - "shell.execute_reply": "2024-06-25T19:31:31.578475Z" + "iopub.execute_input": "2024-06-25T23:13:23.422287Z", + "iopub.status.busy": "2024-06-25T23:13:23.421904Z", + "iopub.status.idle": "2024-06-25T23:13:23.429186Z", + "shell.execute_reply": "2024-06-25T23:13:23.428630Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.581187Z", - "iopub.status.busy": "2024-06-25T19:31:31.580887Z", - "iopub.status.idle": "2024-06-25T19:31:31.691824Z", - "shell.execute_reply": "2024-06-25T19:31:31.691204Z" + "iopub.execute_input": "2024-06-25T23:13:23.431342Z", + "iopub.status.busy": "2024-06-25T23:13:23.431023Z", + "iopub.status.idle": "2024-06-25T23:13:23.542534Z", + "shell.execute_reply": "2024-06-25T23:13:23.542044Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.694170Z", - "iopub.status.busy": "2024-06-25T19:31:31.693686Z", - "iopub.status.idle": "2024-06-25T19:31:31.696628Z", - "shell.execute_reply": "2024-06-25T19:31:31.696102Z" + "iopub.execute_input": "2024-06-25T23:13:23.544624Z", + "iopub.status.busy": "2024-06-25T23:13:23.544286Z", + "iopub.status.idle": "2024-06-25T23:13:23.546943Z", + "shell.execute_reply": "2024-06-25T23:13:23.546515Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.698847Z", - "iopub.status.busy": "2024-06-25T19:31:31.698415Z", - "iopub.status.idle": "2024-06-25T19:31:33.679358Z", - "shell.execute_reply": "2024-06-25T19:31:33.678623Z" + "iopub.execute_input": "2024-06-25T23:13:23.548943Z", + "iopub.status.busy": "2024-06-25T23:13:23.548635Z", + "iopub.status.idle": "2024-06-25T23:13:25.510005Z", + "shell.execute_reply": "2024-06-25T23:13:25.509395Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:33.682516Z", - "iopub.status.busy": "2024-06-25T19:31:33.681890Z", - "iopub.status.idle": "2024-06-25T19:31:33.693245Z", - "shell.execute_reply": "2024-06-25T19:31:33.692694Z" + "iopub.execute_input": "2024-06-25T23:13:25.513097Z", + "iopub.status.busy": "2024-06-25T23:13:25.512371Z", + "iopub.status.idle": "2024-06-25T23:13:25.523496Z", + "shell.execute_reply": "2024-06-25T23:13:25.522944Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:33.695397Z", - "iopub.status.busy": "2024-06-25T19:31:33.695096Z", - "iopub.status.idle": "2024-06-25T19:31:33.841440Z", - "shell.execute_reply": "2024-06-25T19:31:33.840949Z" + "iopub.execute_input": "2024-06-25T23:13:25.525641Z", + "iopub.status.busy": "2024-06-25T23:13:25.525323Z", + "iopub.status.idle": "2024-06-25T23:13:25.545176Z", + "shell.execute_reply": "2024-06-25T23:13:25.544739Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index a83013185..9af680b6f 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:37.218802Z", - "iopub.status.busy": "2024-06-25T19:31:37.218626Z", - "iopub.status.idle": "2024-06-25T19:31:40.132819Z", - "shell.execute_reply": "2024-06-25T19:31:40.132198Z" + "iopub.execute_input": "2024-06-25T23:13:28.905676Z", + "iopub.status.busy": "2024-06-25T23:13:28.905503Z", + "iopub.status.idle": "2024-06-25T23:13:31.555296Z", + "shell.execute_reply": "2024-06-25T23:13:31.554730Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.135382Z", - "iopub.status.busy": "2024-06-25T19:31:40.135098Z", - "iopub.status.idle": "2024-06-25T19:31:40.138344Z", - "shell.execute_reply": "2024-06-25T19:31:40.137917Z" + "iopub.execute_input": "2024-06-25T23:13:31.557860Z", + "iopub.status.busy": "2024-06-25T23:13:31.557469Z", + "iopub.status.idle": "2024-06-25T23:13:31.560897Z", + "shell.execute_reply": "2024-06-25T23:13:31.560352Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.140291Z", - "iopub.status.busy": "2024-06-25T19:31:40.139985Z", - "iopub.status.idle": "2024-06-25T19:31:40.143618Z", - "shell.execute_reply": "2024-06-25T19:31:40.143162Z" + "iopub.execute_input": "2024-06-25T23:13:31.562942Z", + "iopub.status.busy": "2024-06-25T23:13:31.562629Z", + "iopub.status.idle": "2024-06-25T23:13:31.565542Z", + "shell.execute_reply": "2024-06-25T23:13:31.565096Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.145468Z", - "iopub.status.busy": "2024-06-25T19:31:40.145298Z", - "iopub.status.idle": "2024-06-25T19:31:40.303499Z", - "shell.execute_reply": "2024-06-25T19:31:40.302894Z" + "iopub.execute_input": "2024-06-25T23:13:31.567524Z", + "iopub.status.busy": "2024-06-25T23:13:31.567195Z", + "iopub.status.idle": "2024-06-25T23:13:31.589244Z", + "shell.execute_reply": "2024-06-25T23:13:31.588737Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.305557Z", - "iopub.status.busy": "2024-06-25T19:31:40.305379Z", - "iopub.status.idle": "2024-06-25T19:31:40.309091Z", - "shell.execute_reply": "2024-06-25T19:31:40.308646Z" + "iopub.execute_input": "2024-06-25T23:13:31.591105Z", + "iopub.status.busy": "2024-06-25T23:13:31.590840Z", + "iopub.status.idle": "2024-06-25T23:13:31.594215Z", + "shell.execute_reply": "2024-06-25T23:13:31.593789Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.311111Z", - "iopub.status.busy": "2024-06-25T19:31:40.310718Z", - "iopub.status.idle": "2024-06-25T19:31:40.314252Z", - "shell.execute_reply": "2024-06-25T19:31:40.313796Z" + "iopub.execute_input": "2024-06-25T23:13:31.596064Z", + "iopub.status.busy": "2024-06-25T23:13:31.595883Z", + "iopub.status.idle": "2024-06-25T23:13:31.599153Z", + "shell.execute_reply": "2024-06-25T23:13:31.598670Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard'}\n" + "Classes: {'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.316289Z", - "iopub.status.busy": "2024-06-25T19:31:40.315953Z", - "iopub.status.idle": "2024-06-25T19:31:40.318817Z", - "shell.execute_reply": "2024-06-25T19:31:40.318324Z" + "iopub.execute_input": "2024-06-25T23:13:31.601175Z", + "iopub.status.busy": "2024-06-25T23:13:31.600751Z", + "iopub.status.idle": "2024-06-25T23:13:31.603901Z", + "shell.execute_reply": "2024-06-25T23:13:31.603365Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.320894Z", - "iopub.status.busy": "2024-06-25T19:31:40.320580Z", - "iopub.status.idle": "2024-06-25T19:31:40.323708Z", - "shell.execute_reply": "2024-06-25T19:31:40.323263Z" + "iopub.execute_input": "2024-06-25T23:13:31.606046Z", + "iopub.status.busy": "2024-06-25T23:13:31.605618Z", + "iopub.status.idle": "2024-06-25T23:13:31.608973Z", + "shell.execute_reply": "2024-06-25T23:13:31.608424Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.325657Z", - "iopub.status.busy": "2024-06-25T19:31:40.325357Z", - "iopub.status.idle": "2024-06-25T19:31:46.067731Z", - "shell.execute_reply": "2024-06-25T19:31:46.067125Z" + "iopub.execute_input": "2024-06-25T23:13:31.610942Z", + "iopub.status.busy": "2024-06-25T23:13:31.610641Z", + "iopub.status.idle": "2024-06-25T23:13:35.909329Z", + "shell.execute_reply": "2024-06-25T23:13:35.908695Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e9ebd3cab6ee4b38af6e19b1c2a2b7a0", + "model_id": "6477ae421e3e43aa814150445e014ac0", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a8fe72969fe348a99c98be80dccd6c53", + "model_id": "e62034a9e6c043cc997861592486168a", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2e5e14c62e1a4cf09b6fb8b0bb5ca451", + "model_id": "1e2c610098e54fea94839bb48d055f22", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "293b01a69e094447aeebb1e7e866fd51", + "model_id": "5b6e029c7f61484d880737df09cb3291", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9bbf8e629233461d84330aac6c38bc36", + "model_id": "e750160df873483c9096b064baeab112", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "38046751c5324a119490bbe8a5ec326c", + "model_id": "ddf577727f0e42a1b074bcb455a4258a", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7f84e049288f438cbb050b771815ee1a", + "model_id": "97155a33cf37454f8282b21b3806031d", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:46.070234Z", - "iopub.status.busy": "2024-06-25T19:31:46.070036Z", - "iopub.status.idle": "2024-06-25T19:31:46.072782Z", - "shell.execute_reply": "2024-06-25T19:31:46.072301Z" + "iopub.execute_input": "2024-06-25T23:13:35.912144Z", + "iopub.status.busy": "2024-06-25T23:13:35.911799Z", + "iopub.status.idle": "2024-06-25T23:13:35.914630Z", + "shell.execute_reply": "2024-06-25T23:13:35.914095Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:46.074901Z", - "iopub.status.busy": "2024-06-25T19:31:46.074488Z", - "iopub.status.idle": "2024-06-25T19:31:46.077148Z", - "shell.execute_reply": "2024-06-25T19:31:46.076714Z" + "iopub.execute_input": "2024-06-25T23:13:35.916621Z", + "iopub.status.busy": "2024-06-25T23:13:35.916300Z", + "iopub.status.idle": "2024-06-25T23:13:35.918968Z", + "shell.execute_reply": "2024-06-25T23:13:35.918524Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:46.078970Z", - "iopub.status.busy": "2024-06-25T19:31:46.078798Z", - "iopub.status.idle": "2024-06-25T19:31:48.698188Z", - "shell.execute_reply": "2024-06-25T19:31:48.697474Z" + "iopub.execute_input": "2024-06-25T23:13:35.920827Z", + "iopub.status.busy": "2024-06-25T23:13:35.920512Z", + "iopub.status.idle": "2024-06-25T23:13:38.614446Z", + "shell.execute_reply": "2024-06-25T23:13:38.613776Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.701194Z", - "iopub.status.busy": "2024-06-25T19:31:48.700490Z", - "iopub.status.idle": "2024-06-25T19:31:48.707774Z", - "shell.execute_reply": "2024-06-25T19:31:48.707224Z" + "iopub.execute_input": "2024-06-25T23:13:38.617773Z", + "iopub.status.busy": "2024-06-25T23:13:38.616881Z", + "iopub.status.idle": "2024-06-25T23:13:38.624576Z", + "shell.execute_reply": "2024-06-25T23:13:38.624128Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.709878Z", - "iopub.status.busy": "2024-06-25T19:31:48.709556Z", - "iopub.status.idle": "2024-06-25T19:31:48.713210Z", - "shell.execute_reply": "2024-06-25T19:31:48.712781Z" + "iopub.execute_input": "2024-06-25T23:13:38.626671Z", + "iopub.status.busy": "2024-06-25T23:13:38.626274Z", + "iopub.status.idle": "2024-06-25T23:13:38.630173Z", + "shell.execute_reply": "2024-06-25T23:13:38.629644Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.715198Z", - "iopub.status.busy": "2024-06-25T19:31:48.714884Z", - "iopub.status.idle": "2024-06-25T19:31:48.717917Z", - "shell.execute_reply": "2024-06-25T19:31:48.717397Z" + "iopub.execute_input": "2024-06-25T23:13:38.632131Z", + "iopub.status.busy": "2024-06-25T23:13:38.631753Z", + "iopub.status.idle": "2024-06-25T23:13:38.634921Z", + "shell.execute_reply": "2024-06-25T23:13:38.634406Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.719920Z", - "iopub.status.busy": "2024-06-25T19:31:48.719615Z", - "iopub.status.idle": "2024-06-25T19:31:48.722447Z", - "shell.execute_reply": "2024-06-25T19:31:48.722011Z" + "iopub.execute_input": "2024-06-25T23:13:38.636934Z", + "iopub.status.busy": "2024-06-25T23:13:38.636530Z", + "iopub.status.idle": "2024-06-25T23:13:38.639393Z", + "shell.execute_reply": "2024-06-25T23:13:38.638964Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.724470Z", - "iopub.status.busy": "2024-06-25T19:31:48.724080Z", - "iopub.status.idle": "2024-06-25T19:31:48.730838Z", - "shell.execute_reply": "2024-06-25T19:31:48.730303Z" + "iopub.execute_input": "2024-06-25T23:13:38.641436Z", + "iopub.status.busy": "2024-06-25T23:13:38.641098Z", + "iopub.status.idle": "2024-06-25T23:13:38.647659Z", + "shell.execute_reply": "2024-06-25T23:13:38.647204Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.733056Z", - "iopub.status.busy": "2024-06-25T19:31:48.732753Z", - "iopub.status.idle": "2024-06-25T19:31:48.956488Z", - "shell.execute_reply": "2024-06-25T19:31:48.955930Z" + "iopub.execute_input": "2024-06-25T23:13:38.649778Z", + "iopub.status.busy": "2024-06-25T23:13:38.649479Z", + "iopub.status.idle": "2024-06-25T23:13:38.874003Z", + "shell.execute_reply": "2024-06-25T23:13:38.873478Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.958874Z", - "iopub.status.busy": "2024-06-25T19:31:48.958385Z", - "iopub.status.idle": "2024-06-25T19:31:49.133338Z", - "shell.execute_reply": "2024-06-25T19:31:49.132807Z" + "iopub.execute_input": "2024-06-25T23:13:38.876436Z", + "iopub.status.busy": "2024-06-25T23:13:38.876051Z", + "iopub.status.idle": "2024-06-25T23:13:39.048915Z", + "shell.execute_reply": "2024-06-25T23:13:39.048432Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:49.135767Z", - "iopub.status.busy": "2024-06-25T19:31:49.135370Z", - "iopub.status.idle": "2024-06-25T19:31:49.139272Z", - "shell.execute_reply": "2024-06-25T19:31:49.138786Z" + "iopub.execute_input": "2024-06-25T23:13:39.051340Z", + "iopub.status.busy": "2024-06-25T23:13:39.050964Z", + "iopub.status.idle": "2024-06-25T23:13:39.054620Z", + "shell.execute_reply": "2024-06-25T23:13:39.054132Z" }, "nbsphinx": "hidden" }, @@ -1113,30 +1113,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "007989e5e6cd44a5ada30dda1923d065": { + "02a072ed32924507837162ad70da9612": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8b998a37935c4d30856e95a2cd3f1439", - "placeholder": "​", - "style": "IPY_MODEL_200586c52a4549678a949ca57213c920", + "layout": "IPY_MODEL_1aab5456eec04063a5df26734e017b79", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d7c835da9be44280b48466c92cb851d6", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 121kB/s]" + "value": 231508.0 } }, - "054e6f2fd5d14973972b7db9b5e4ed03": { + "03d9becbdd8046bf81525afd016ed573": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1152,23 +1155,53 @@ "description_width": "" } }, - "0bd860a7540947f98823d4a40bdafb86": { + "075ca50b902b46989673d1147902560d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_65b932c28ff3495098c0db8b56dd18de", + "placeholder": "​", + "style": "IPY_MODEL_e098c9499e5142759ba844e4486a6da6", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } + }, + "0ee27b719c824572adc4d14d07e72cf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_68a06976e74d4773829c8f1f5d4cc2ab", + "placeholder": "​", + "style": "IPY_MODEL_7bc89cc511714eb3b9db0329b0ad4f47", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "1047a464f8ad4f08a9c39e32ef88f77b": { + "197c89430b124236a2a7ca6374f1edf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1221,132 +1254,7 @@ "width": null } }, - "200586c52a4549678a949ca57213c920": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "226f358553304154b872be466bcda2cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2606990b2b654e949895c6ea13bace1b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "293b01a69e094447aeebb1e7e866fd51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f9e7d310eb764ed9abf54e3695e98058", - "IPY_MODEL_acd50c68e1bb474ca7e642fdbecd2231", - "IPY_MODEL_a4ea888fe4004256885e50c60385b700" - ], - "layout": "IPY_MODEL_91bc4e78a8934597a32b965150f632af", - "tabbable": null, - "tooltip": null - } - }, - "2db6e61311574d2799f341e0f2b280db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e95f58118fca41f79754cf64dc768e55", - "placeholder": "​", - "style": "IPY_MODEL_5d0e81a247724335969fb0549b56194b", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "2e5e14c62e1a4cf09b6fb8b0bb5ca451": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ccb993dd72c4674bf4c5129e4e19f7b", - "IPY_MODEL_4105d4a519b74c618417f38830a92826", - "IPY_MODEL_007989e5e6cd44a5ada30dda1923d065" - ], - "layout": "IPY_MODEL_811eb3464f8b4658af7b92cb22fd5db1", - "tabbable": null, - "tooltip": null - } - }, - "2ed7ba0d1cb94817b121646f00c5a089": { + "1a996c0fb30c4181aef76b9d0b39bd20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1399,33 +1307,7 @@ "width": null } }, - "3156c56a2d1e46779554f6e680768b77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6da0de8fbedc40cca53799f8e45cf74b", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b0f309cd65ee48e4902fba4c141424a9", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "371271d754f04722b9ba2102ec6453b3": { + "1aab5456eec04063a5df26734e017b79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1478,31 +1360,7 @@ "width": null } }, - "38046751c5324a119490bbe8a5ec326c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_684d44672b7e4f3e87afb7ff19a14a7d", - "IPY_MODEL_703a1805a6e14459bff5e7bc196e2924", - "IPY_MODEL_9678a77b61324383a27e704a34123184" - ], - "layout": "IPY_MODEL_7f83efe5fa43477c83b7dd0eab30b115", - "tabbable": null, - "tooltip": null - } - }, - "3b3726b7d15f4242bbe2a0e0323f5edd": { + "1b04ac435f764f288a38e492f152ec20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1555,25 +1413,54 @@ "width": null } }, - "3c288e9049ba4814a9020bbda1512944": { + "1d787eed2c504168b62c71e3e8b823c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c363fe3444424a62b964efb6ec305f7f", + "placeholder": "​", + "style": "IPY_MODEL_d622adb2d6724d848794f6e7c40de0b3", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 422kB/s]" + } + }, + "1e2c610098e54fea94839bb48d055f22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e7466595e3ae479d9ee9e989b0fa9efb", + "IPY_MODEL_8784e3b2891144468a5d989adaf62ae7", + "IPY_MODEL_a6280db66f3e434bbdb20ebab4989dec" + ], + "layout": "IPY_MODEL_32522284f75645f69b58819ffe34d2a7", + "tabbable": null, + "tooltip": null } }, - "3e906d417956421a978812281c844e7e": { + "20471efe14204b3fa973ce7c173612f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1588,15 +1475,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c673f7ac4ec44149b7f219298381ca5", + "layout": "IPY_MODEL_5dc7272ce64644afa609af3b2046a38e", "placeholder": "​", - "style": "IPY_MODEL_e3282f6972624465bd15f84c183446ed", + "style": "IPY_MODEL_c220349ac77649e3bffdb0998b40b102", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 64.5kB/s]" + "value": " 54.2M/54.2M [00:00<00:00, 298MB/s]" } }, - "4105d4a519b74c618417f38830a92826": { + "2808a2dd85f840dc8384e96b6e31d382": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1612,81 +1499,24 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a7fc4b58838f4350b7cce239e6cf7c4d", - "max": 665.0, + "layout": "IPY_MODEL_8f55a6cbd0184173b7c3ecca3b2be6a1", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a7755505c8604626b66bd90ac49165ab", + "style": "IPY_MODEL_670785469ef5401e82177c280f877928", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 466062.0 } }, - "43e54781cf104522a0a7479b4684f176": { - "model_module": "@jupyter-widgets/controls", + "2b78fa97669e4067a4bd3de6ccaaa88a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "47c94c5344ac480795afc89535d19275": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4c280f6c890c468db24cfa085162f8eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d98e8d3d73134c40b8256b723de4c9ba", - "placeholder": "​", - "style": "IPY_MODEL_55cc185655a64110894ebe751347ee97", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 422kB/s]" - } - }, - "4c673f7ac4ec44149b7f219298381ca5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -1732,7 +1562,33 @@ "width": null } }, - "52f1b4fab3d74ad180e90f63881f6b32": { + "2e901b505de34984a7c06e4ff7be8ebe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab64f8b595ef4648a47b1b2da8eac241", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_03d9becbdd8046bf81525afd016ed573", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 + } + }, + "2fe0de05b5e847e89ba80b8e4d398c4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1785,25 +1641,7 @@ "width": null } }, - "55cc185655a64110894ebe751347ee97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5c2455143c7b4c9d8179735a17395106": { + "32522284f75645f69b58819ffe34d2a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1856,30 +1694,7 @@ "width": null } }, - "5ccb993dd72c4674bf4c5129e4e19f7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c693822d0e9f45a5a0c3d5598c8464f4", - "placeholder": "​", - "style": "IPY_MODEL_6c14e14271b4450f89db48de72dffebe", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "5d0e81a247724335969fb0549b56194b": { + "328a64a36aa14cc4a13e8c232d198977": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1897,7 +1712,7 @@ "text_color": null } }, - "5e1fb144070e4665b06631fd83e8a769": { + "35b5e0b171c7498d8e1a3633c745e073": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1912,84 +1727,77 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ed7ba0d1cb94817b121646f00c5a089", + "layout": "IPY_MODEL_93beb5b9f7914314ac973bada268bcc2", "placeholder": "​", - "style": "IPY_MODEL_e45f1523c8d6445cacf72f4752609a80", + "style": "IPY_MODEL_71736b2d04e142cea126cbddad9801e2", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 3.42MB/s]" + "value": "tokenizer.json: 100%" } }, - "65fb96fdd89c4a7aa6863a61cd8c8281": { + "3c2efa0519364cd7ad5d4149de79bec8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a2f3a938880745e29369216068f395dc", - "placeholder": "​", - "style": "IPY_MODEL_79bb28d92fc14400815dc3c2c98b31e6", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "684d44672b7e4f3e87afb7ff19a14a7d": { + "3c700601fd7d4148894afa4961283a88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_69f6ccf772ad48fa86cea5e7b57f6c92", - "placeholder": "​", - "style": "IPY_MODEL_2606990b2b654e949895c6ea13bace1b", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6854a7c0f0b846a99e2cc07332f5e2ad": { + "42243b174d064f20a73f6c60315575eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1047a464f8ad4f08a9c39e32ef88f77b", - "placeholder": "​", - "style": "IPY_MODEL_d22816db94ed4b3aa623fb9f9eb42646", + "layout": "IPY_MODEL_de1cc30d88f74d2299519f8846818183", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6e166f17ea384c918f9777404649330c", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": 391.0 } }, - "68caf9f94f8b49e29f2522245cfc1967": { + "485477b3f18244cb8e82240fdfc321c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2042,7 +1850,7 @@ "width": null } }, - "68d5eef2d9154625b81ca5a98ad95302": { + "4a7d8e7b7ba3464fa41165f58db05e12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2095,7 +1903,7 @@ "width": null } }, - "69f6ccf772ad48fa86cea5e7b57f6c92": { + "4d312e2d3f524fb1bf8dba710216c761": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2148,25 +1956,7 @@ "width": null } }, - "6c14e14271b4450f89db48de72dffebe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6d917afdd1bf47ea943ba43a44498f21": { + "537d23f9aefe4d35aa82e5454ab78815": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2219,7 +2009,31 @@ "width": null } }, - "6da0de8fbedc40cca53799f8e45cf74b": { + "5b6e029c7f61484d880737df09cb3291": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fdddfa973dd841b39245eda900cf0339", + "IPY_MODEL_2e901b505de34984a7c06e4ff7be8ebe", + "IPY_MODEL_20471efe14204b3fa973ce7c173612f3" + ], + "layout": "IPY_MODEL_b0d211d5585d414d93c249182a668daf", + "tabbable": null, + "tooltip": null + } + }, + "5da1ee68b4f848c98bea7614ebf85f59": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2272,69 +2086,7 @@ "width": null } }, - "703a1805a6e14459bff5e7bc196e2924": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c467bba142d440348c677b9b88920801", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9e515a523986480cbbe1094ca437f513", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "72118120122f4623822582e300065947": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "76977b7a679849439d4159579b51c480": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "77399e1417a148bbaaf8c99c6e4b2bb5": { + "5dc7272ce64644afa609af3b2046a38e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2387,7 +2139,7 @@ "width": null } }, - "7930ae36275240238ba62db1afd25ce2": { + "5f117a6515e1436cad7028680580b6a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2440,7 +2192,7 @@ "width": null } }, - "79bb28d92fc14400815dc3c2c98b31e6": { + "634f7b4ddf0e46f3b98d4b3c9ce87c86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2458,63 +2210,10 @@ "text_color": null } }, - "7f83efe5fa43477c83b7dd0eab30b115": { - "model_module": "@jupyter-widgets/base", + "6477ae421e3e43aa814150445e014ac0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7f84e049288f438cbb050b771815ee1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2526,16 +2225,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6854a7c0f0b846a99e2cc07332f5e2ad", - "IPY_MODEL_f674728a058e4ebc9cda63400ca9a97a", - "IPY_MODEL_b780cdac15fd4ff5bf0b64d9369ef63b" + "IPY_MODEL_075ca50b902b46989673d1147902560d", + "IPY_MODEL_42243b174d064f20a73f6c60315575eb", + "IPY_MODEL_bbe4f79369114ed9839dd57535856697" ], - "layout": "IPY_MODEL_52f1b4fab3d74ad180e90f63881f6b32", + "layout": "IPY_MODEL_1b04ac435f764f288a38e492f152ec20", "tabbable": null, "tooltip": null } }, - "811eb3464f8b4658af7b92cb22fd5db1": { + "65b932c28ff3495098c0db8b56dd18de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2588,7 +2287,7 @@ "width": null } }, - "8b998a37935c4d30856e95a2cd3f1439": { + "66d43ed9bf3f4ef6aedf76e3d08d36c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2641,7 +2340,7 @@ "width": null } }, - "8f663dc8059d42e4a1c16507affd40e3": { + "670785469ef5401e82177c280f877928": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2657,7 +2356,7 @@ "description_width": "" } }, - "91bc4e78a8934597a32b965150f632af": { + "68a06976e74d4773829c8f1f5d4cc2ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2710,7 +2409,59 @@ "width": null } }, - "9678a77b61324383a27e704a34123184": { + "6e166f17ea384c918f9777404649330c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6f576e9c9374443588b496e63f781624": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "71736b2d04e142cea126cbddad9801e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7261cd19786a4a0b95b770c51f033b0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2725,55 +2476,100 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7930ae36275240238ba62db1afd25ce2", + "layout": "IPY_MODEL_1a996c0fb30c4181aef76b9d0b39bd20", "placeholder": "​", - "style": "IPY_MODEL_226f358553304154b872be466bcda2cc", + "style": "IPY_MODEL_8d98dfc145534a779ad6c609609abd31", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.10kB/s]" + "value": " 466k/466k [00:00<00:00, 14.0MB/s]" } }, - "9bbf8e629233461d84330aac6c38bc36": { + "7bc89cc511714eb3b9db0329b0ad4f47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7dbd67a2cb264612b0d638e5e63a9a07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8674027fdc534d3791107a43a5e491ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_65fb96fdd89c4a7aa6863a61cd8c8281", - "IPY_MODEL_3156c56a2d1e46779554f6e680768b77", - "IPY_MODEL_5e1fb144070e4665b06631fd83e8a769" - ], - "layout": "IPY_MODEL_5c2455143c7b4c9d8179735a17395106", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dfd5800b7e4c41fb90cf34888c17c960", + "placeholder": "​", + "style": "IPY_MODEL_9bdcb01ac1254e4ca46f786f1f48635e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "README.md: 100%" } }, - "9e515a523986480cbbe1094ca437f513": { + "8784e3b2891144468a5d989adaf62ae7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e98f8f44d5174617bc22e566a83f2e14", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9e9b474bbbd44555ac3344b5d173ecd4", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "a2f3a938880745e29369216068f395dc": { + "8c2a54a50b174504b67275f6fc1758ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2826,46 +2622,25 @@ "width": null } }, - "a4ea888fe4004256885e50c60385b700": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_371271d754f04722b9ba2102ec6453b3", - "placeholder": "​", - "style": "IPY_MODEL_72118120122f4623822582e300065947", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 137MB/s]" - } - }, - "a7755505c8604626b66bd90ac49165ab": { + "8d98dfc145534a779ad6c609609abd31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a7fc4b58838f4350b7cce239e6cf7c4d": { + "8f55a6cbd0184173b7c3ecca3b2be6a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2918,31 +2693,7 @@ "width": null } }, - "a8fe72969fe348a99c98be80dccd6c53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2db6e61311574d2799f341e0f2b280db", - "IPY_MODEL_c768456d220342ec8cc60cc2528c3732", - "IPY_MODEL_4c280f6c890c468db24cfa085162f8eb" - ], - "layout": "IPY_MODEL_dd1d6b6bcb61451a9984bb2bddd1826e", - "tabbable": null, - "tooltip": null - } - }, - "acd50c68e1bb474ca7e642fdbecd2231": { + "937b241a390b4aa1b76cb3c07905b257": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2958,59 +2709,131 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_68caf9f94f8b49e29f2522245cfc1967", - "max": 54245363.0, + "layout": "IPY_MODEL_4d312e2d3f524fb1bf8dba710216c761", + "max": 48.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0bd860a7540947f98823d4a40bdafb86", + "style": "IPY_MODEL_b11b3d0461c94c138ecf254a642eb544", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": 48.0 } }, - "b0f309cd65ee48e4902fba4c141424a9": { - "model_module": "@jupyter-widgets/controls", + "93beb5b9f7914314ac973bada268bcc2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b780cdac15fd4ff5bf0b64d9369ef63b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d76c41fd805e466081dfeb1d93477c92", - "placeholder": "​", - "style": "IPY_MODEL_76977b7a679849439d4159579b51c480", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 3.55MB/s]" - } - }, - "baa0ee8552c34f9f808dc9985cb43d88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97155a33cf37454f8282b21b3806031d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0ee27b719c824572adc4d14d07e72cf6", + "IPY_MODEL_02a072ed32924507837162ad70da9612", + "IPY_MODEL_c73c253ce5ce4c0c9744f5c0cb9d0530" + ], + "layout": "IPY_MODEL_bd8af8fcf5f34f848183718d176ce55f", + "tabbable": null, + "tooltip": null + } + }, + "9bdcb01ac1254e4ca46f786f1f48635e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9e9b474bbbd44555ac3344b5d173ecd4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a6280db66f3e434bbdb20ebab4989dec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3022,15 +2845,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_77399e1417a148bbaaf8c99c6e4b2bb5", + "layout": "IPY_MODEL_2b78fa97669e4067a4bd3de6ccaaa88a", "placeholder": "​", - "style": "IPY_MODEL_3c288e9049ba4814a9020bbda1512944", + "style": "IPY_MODEL_7dbd67a2cb264612b0d638e5e63a9a07", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": " 665/665 [00:00<00:00, 129kB/s]" } }, - "c467bba142d440348c677b9b88920801": { + "a859632225cf4c338d075b33f4abd2e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a7d8e7b7ba3464fa41165f58db05e12", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c7cdf638b52549a3923f4d9f4dacf40d", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "aa703043d8574c99856909333746a558": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_537d23f9aefe4d35aa82e5454ab78815", + "placeholder": "​", + "style": "IPY_MODEL_3c700601fd7d4148894afa4961283a88", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "ab64f8b595ef4648a47b1b2da8eac241": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3083,7 +2955,7 @@ "width": null } }, - "c693822d0e9f45a5a0c3d5598c8464f4": { + "b0d211d5585d414d93c249182a668daf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3136,77 +3008,46 @@ "width": null } }, - "c768456d220342ec8cc60cc2528c3732": { + "b11b3d0461c94c138ecf254a642eb544": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3b3726b7d15f4242bbe2a0e0323f5edd", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_054e6f2fd5d14973972b7db9b5e4ed03", - "tabbable": null, - "tooltip": null, - "value": 2211.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ca2793614f594cf4a384748bfd36b073": { + "bbe4f79369114ed9839dd57535856697": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ff59fb88d4aa46d481bfabbfb12c3c08", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8f663dc8059d42e4a1c16507affd40e3", + "layout": "IPY_MODEL_f933a441f363402d9fc2e796940cf4d3", + "placeholder": "​", + "style": "IPY_MODEL_328a64a36aa14cc4a13e8c232d198977", "tabbable": null, "tooltip": null, - "value": 391.0 - } - }, - "d22816db94ed4b3aa623fb9f9eb42646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 391/391 [00:00<00:00, 68.8kB/s]" } }, - "d76c41fd805e466081dfeb1d93477c92": { + "bd8af8fcf5f34f848183718d176ce55f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3259,7 +3100,25 @@ "width": null } }, - "d8c1ad41f4fe4cf0a3f44d363086f32b": { + "c220349ac77649e3bffdb0998b40b102": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c363fe3444424a62b964efb6ec305f7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3312,7 +3171,127 @@ "width": null } }, - "d98e8d3d73134c40b8256b723de4c9ba": { + "c73c253ce5ce4c0c9744f5c0cb9d0530": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_66d43ed9bf3f4ef6aedf76e3d08d36c7", + "placeholder": "​", + "style": "IPY_MODEL_3c2efa0519364cd7ad5d4149de79bec8", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 16.1MB/s]" + } + }, + "c7cdf638b52549a3923f4d9f4dacf40d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c9a979755e9a403eb0ca342120826ee6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_197c89430b124236a2a7ca6374f1edf0", + "placeholder": "​", + "style": "IPY_MODEL_634f7b4ddf0e46f3b98d4b3c9ce87c86", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.85kB/s]" + } + }, + "d622adb2d6724d848794f6e7c40de0b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d7c835da9be44280b48466c92cb851d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ddf577727f0e42a1b074bcb455a4258a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aa703043d8574c99856909333746a558", + "IPY_MODEL_937b241a390b4aa1b76cb3c07905b257", + "IPY_MODEL_c9a979755e9a403eb0ca342120826ee6" + ], + "layout": "IPY_MODEL_5f117a6515e1436cad7028680580b6a5", + "tabbable": null, + "tooltip": null + } + }, + "de1cc30d88f74d2299519f8846818183": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3365,7 +3344,7 @@ "width": null } }, - "dd1d6b6bcb61451a9984bb2bddd1826e": { + "dfd5800b7e4c41fb90cf34888c17c960": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3418,7 +3397,7 @@ "width": null } }, - "e3282f6972624465bd15f84c183446ed": { + "e098c9499e5142759ba844e4486a6da6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3436,25 +3415,78 @@ "text_color": null } }, - "e45f1523c8d6445cacf72f4752609a80": { + "e62034a9e6c043cc997861592486168a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8674027fdc534d3791107a43a5e491ab", + "IPY_MODEL_a859632225cf4c338d075b33f4abd2e0", + "IPY_MODEL_1d787eed2c504168b62c71e3e8b823c8" + ], + "layout": "IPY_MODEL_5da1ee68b4f848c98bea7614ebf85f59", + "tabbable": null, + "tooltip": null } }, - "e95f58118fca41f79754cf64dc768e55": { + "e7466595e3ae479d9ee9e989b0fa9efb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c2a54a50b174504b67275f6fc1758ea", + "placeholder": "​", + "style": "IPY_MODEL_fd9acfb5facf4aeaa71d2088d344d085", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "e750160df873483c9096b064baeab112": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_35b5e0b171c7498d8e1a3633c745e073", + "IPY_MODEL_2808a2dd85f840dc8384e96b6e31d382", + "IPY_MODEL_7261cd19786a4a0b95b770c51f033b0c" + ], + "layout": "IPY_MODEL_485477b3f18244cb8e82240fdfc321c6", + "tabbable": null, + "tooltip": null + } + }, + "e98f8f44d5174617bc22e566a83f2e14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3507,80 +3539,7 @@ "width": null } }, - "e9ebd3cab6ee4b38af6e19b1c2a2b7a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_baa0ee8552c34f9f808dc9985cb43d88", - "IPY_MODEL_ca2793614f594cf4a384748bfd36b073", - "IPY_MODEL_3e906d417956421a978812281c844e7e" - ], - "layout": "IPY_MODEL_68d5eef2d9154625b81ca5a98ad95302", - "tabbable": null, - "tooltip": null - } - }, - "f674728a058e4ebc9cda63400ca9a97a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d8c1ad41f4fe4cf0a3f44d363086f32b", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_43e54781cf104522a0a7479b4684f176", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "f9e7d310eb764ed9abf54e3695e98058": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d917afdd1bf47ea943ba43a44498f21", - "placeholder": "​", - "style": "IPY_MODEL_47c94c5344ac480795afc89535d19275", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "ff59fb88d4aa46d481bfabbfb12c3c08": { + "f933a441f363402d9fc2e796940cf4d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3632,6 +3591,47 @@ "visibility": null, "width": null } + }, + "fd9acfb5facf4aeaa71d2088d344d085": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fdddfa973dd841b39245eda900cf0339": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2fe0de05b5e847e89ba80b8e4d398c4c", + "placeholder": "​", + "style": "IPY_MODEL_6f576e9c9374443588b496e63f781624", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 411158583..d40b1db54 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:53.133508Z", - "iopub.status.busy": "2024-06-25T19:31:53.133336Z", - "iopub.status.idle": "2024-06-25T19:31:58.248746Z", - "shell.execute_reply": "2024-06-25T19:31:58.248110Z" + "iopub.execute_input": "2024-06-25T23:13:42.048585Z", + "iopub.status.busy": "2024-06-25T23:13:42.048169Z", + "iopub.status.idle": "2024-06-25T23:13:47.015851Z", + "shell.execute_reply": "2024-06-25T23:13:47.015219Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:58.251604Z", - "iopub.status.busy": "2024-06-25T19:31:58.251034Z", - "iopub.status.idle": "2024-06-25T19:31:58.254389Z", - "shell.execute_reply": "2024-06-25T19:31:58.253843Z" + "iopub.execute_input": "2024-06-25T23:13:47.018616Z", + "iopub.status.busy": "2024-06-25T23:13:47.018295Z", + "iopub.status.idle": "2024-06-25T23:13:47.021447Z", + "shell.execute_reply": "2024-06-25T23:13:47.020989Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:58.256549Z", - "iopub.status.busy": "2024-06-25T19:31:58.256239Z", - "iopub.status.idle": "2024-06-25T19:31:58.260899Z", - "shell.execute_reply": "2024-06-25T19:31:58.260338Z" + "iopub.execute_input": "2024-06-25T23:13:47.023397Z", + "iopub.status.busy": "2024-06-25T23:13:47.023066Z", + "iopub.status.idle": "2024-06-25T23:13:47.027579Z", + "shell.execute_reply": "2024-06-25T23:13:47.027038Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T19:31:58.263210Z", - "iopub.status.busy": "2024-06-25T19:31:58.262770Z", - "iopub.status.idle": "2024-06-25T19:32:00.256796Z", - "shell.execute_reply": "2024-06-25T19:32:00.256144Z" + "iopub.execute_input": "2024-06-25T23:13:47.029706Z", + "iopub.status.busy": "2024-06-25T23:13:47.029408Z", + "iopub.status.idle": "2024-06-25T23:13:48.557949Z", + "shell.execute_reply": "2024-06-25T23:13:48.557324Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:00.259356Z", - "iopub.status.busy": "2024-06-25T19:32:00.259045Z", - "iopub.status.idle": "2024-06-25T19:32:00.269498Z", - "shell.execute_reply": "2024-06-25T19:32:00.269022Z" + "iopub.execute_input": "2024-06-25T23:13:48.560586Z", + "iopub.status.busy": "2024-06-25T23:13:48.560204Z", + "iopub.status.idle": "2024-06-25T23:13:48.570753Z", + "shell.execute_reply": "2024-06-25T23:13:48.570316Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:00.271550Z", - "iopub.status.busy": "2024-06-25T19:32:00.271221Z", - "iopub.status.idle": "2024-06-25T19:32:00.276417Z", - "shell.execute_reply": "2024-06-25T19:32:00.275932Z" + "iopub.execute_input": "2024-06-25T23:13:48.572948Z", + "iopub.status.busy": "2024-06-25T23:13:48.572614Z", + "iopub.status.idle": "2024-06-25T23:13:48.578335Z", + "shell.execute_reply": "2024-06-25T23:13:48.577906Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:00.278484Z", - "iopub.status.busy": "2024-06-25T19:32:00.278163Z", - "iopub.status.idle": "2024-06-25T19:32:00.762955Z", - "shell.execute_reply": "2024-06-25T19:32:00.762362Z" + "iopub.execute_input": "2024-06-25T23:13:48.580333Z", + "iopub.status.busy": "2024-06-25T23:13:48.580014Z", + "iopub.status.idle": "2024-06-25T23:13:49.044116Z", + "shell.execute_reply": "2024-06-25T23:13:49.043554Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:00.765136Z", - "iopub.status.busy": "2024-06-25T19:32:00.764811Z", - "iopub.status.idle": "2024-06-25T19:32:03.050183Z", - "shell.execute_reply": "2024-06-25T19:32:03.049698Z" + "iopub.execute_input": "2024-06-25T23:13:49.046459Z", + "iopub.status.busy": "2024-06-25T23:13:49.046048Z", + "iopub.status.idle": "2024-06-25T23:13:49.682286Z", + "shell.execute_reply": "2024-06-25T23:13:49.681791Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:03.052760Z", - "iopub.status.busy": "2024-06-25T19:32:03.052414Z", - "iopub.status.idle": "2024-06-25T19:32:03.070136Z", - "shell.execute_reply": "2024-06-25T19:32:03.069620Z" + "iopub.execute_input": "2024-06-25T23:13:49.685227Z", + "iopub.status.busy": "2024-06-25T23:13:49.684826Z", + "iopub.status.idle": "2024-06-25T23:13:49.703315Z", + "shell.execute_reply": "2024-06-25T23:13:49.702790Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:03.072148Z", - "iopub.status.busy": "2024-06-25T19:32:03.071949Z", - "iopub.status.idle": "2024-06-25T19:32:03.075039Z", - "shell.execute_reply": "2024-06-25T19:32:03.074605Z" + "iopub.execute_input": "2024-06-25T23:13:49.705384Z", + "iopub.status.busy": "2024-06-25T23:13:49.705205Z", + "iopub.status.idle": "2024-06-25T23:13:49.708482Z", + "shell.execute_reply": "2024-06-25T23:13:49.708013Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:03.077054Z", - "iopub.status.busy": "2024-06-25T19:32:03.076730Z", - "iopub.status.idle": "2024-06-25T19:32:17.091941Z", - "shell.execute_reply": "2024-06-25T19:32:17.091336Z" + "iopub.execute_input": "2024-06-25T23:13:49.710490Z", + "iopub.status.busy": "2024-06-25T23:13:49.710159Z", + "iopub.status.idle": "2024-06-25T23:14:03.836426Z", + "shell.execute_reply": "2024-06-25T23:14:03.835865Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.094601Z", - "iopub.status.busy": "2024-06-25T19:32:17.094212Z", - "iopub.status.idle": "2024-06-25T19:32:17.098282Z", - "shell.execute_reply": "2024-06-25T19:32:17.097813Z" + "iopub.execute_input": "2024-06-25T23:14:03.839037Z", + "iopub.status.busy": "2024-06-25T23:14:03.838661Z", + "iopub.status.idle": "2024-06-25T23:14:03.842744Z", + "shell.execute_reply": "2024-06-25T23:14:03.842282Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.100415Z", - "iopub.status.busy": "2024-06-25T19:32:17.100030Z", - "iopub.status.idle": "2024-06-25T19:32:17.781950Z", - "shell.execute_reply": "2024-06-25T19:32:17.781387Z" + "iopub.execute_input": "2024-06-25T23:14:03.844717Z", + "iopub.status.busy": "2024-06-25T23:14:03.844392Z", + "iopub.status.idle": "2024-06-25T23:14:04.554198Z", + "shell.execute_reply": "2024-06-25T23:14:04.553609Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.785604Z", - "iopub.status.busy": "2024-06-25T19:32:17.784675Z", - "iopub.status.idle": "2024-06-25T19:32:17.791417Z", - "shell.execute_reply": "2024-06-25T19:32:17.790891Z" + "iopub.execute_input": "2024-06-25T23:14:04.557144Z", + "iopub.status.busy": "2024-06-25T23:14:04.556722Z", + "iopub.status.idle": "2024-06-25T23:14:04.561566Z", + "shell.execute_reply": "2024-06-25T23:14:04.561058Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.794921Z", - "iopub.status.busy": "2024-06-25T19:32:17.794005Z", - "iopub.status.idle": "2024-06-25T19:32:17.890859Z", - "shell.execute_reply": "2024-06-25T19:32:17.890238Z" + "iopub.execute_input": "2024-06-25T23:14:04.563987Z", + "iopub.status.busy": "2024-06-25T23:14:04.563613Z", + "iopub.status.idle": "2024-06-25T23:14:04.661144Z", + "shell.execute_reply": "2024-06-25T23:14:04.660555Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.893215Z", - "iopub.status.busy": "2024-06-25T19:32:17.892852Z", - "iopub.status.idle": "2024-06-25T19:32:17.904591Z", - "shell.execute_reply": "2024-06-25T19:32:17.904119Z" + "iopub.execute_input": "2024-06-25T23:14:04.663549Z", + "iopub.status.busy": "2024-06-25T23:14:04.663180Z", + "iopub.status.idle": "2024-06-25T23:14:04.675655Z", + "shell.execute_reply": "2024-06-25T23:14:04.675200Z" }, "scrolled": true }, @@ -880,10 +880,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.906706Z", - "iopub.status.busy": "2024-06-25T19:32:17.906385Z", - "iopub.status.idle": "2024-06-25T19:32:17.914138Z", - "shell.execute_reply": "2024-06-25T19:32:17.913686Z" + "iopub.execute_input": "2024-06-25T23:14:04.677803Z", + "iopub.status.busy": "2024-06-25T23:14:04.677480Z", + "iopub.status.idle": "2024-06-25T23:14:04.685163Z", + "shell.execute_reply": "2024-06-25T23:14:04.684654Z" } }, "outputs": [ @@ -987,10 +987,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.916135Z", - "iopub.status.busy": "2024-06-25T19:32:17.915799Z", - "iopub.status.idle": "2024-06-25T19:32:17.919765Z", - "shell.execute_reply": "2024-06-25T19:32:17.919222Z" + "iopub.execute_input": "2024-06-25T23:14:04.687288Z", + "iopub.status.busy": "2024-06-25T23:14:04.686965Z", + "iopub.status.idle": "2024-06-25T23:14:04.691175Z", + "shell.execute_reply": "2024-06-25T23:14:04.690734Z" } }, "outputs": [ @@ -1028,10 +1028,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.921837Z", - "iopub.status.busy": "2024-06-25T19:32:17.921500Z", - "iopub.status.idle": "2024-06-25T19:32:17.926898Z", - "shell.execute_reply": "2024-06-25T19:32:17.926399Z" + "iopub.execute_input": "2024-06-25T23:14:04.693198Z", + "iopub.status.busy": "2024-06-25T23:14:04.692832Z", + "iopub.status.idle": "2024-06-25T23:14:04.698386Z", + "shell.execute_reply": "2024-06-25T23:14:04.697923Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1158,10 +1158,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.929118Z", - "iopub.status.busy": "2024-06-25T19:32:17.928697Z", - "iopub.status.idle": "2024-06-25T19:32:18.039116Z", - "shell.execute_reply": "2024-06-25T19:32:18.038547Z" + "iopub.execute_input": "2024-06-25T23:14:04.700375Z", + "iopub.status.busy": "2024-06-25T23:14:04.700060Z", + "iopub.status.idle": "2024-06-25T23:14:04.810591Z", + "shell.execute_reply": "2024-06-25T23:14:04.810025Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1215,10 +1215,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:18.041334Z", - "iopub.status.busy": "2024-06-25T19:32:18.040985Z", - "iopub.status.idle": "2024-06-25T19:32:18.143028Z", - "shell.execute_reply": "2024-06-25T19:32:18.142549Z" + "iopub.execute_input": "2024-06-25T23:14:04.812699Z", + "iopub.status.busy": "2024-06-25T23:14:04.812492Z", + "iopub.status.idle": "2024-06-25T23:14:04.914526Z", + "shell.execute_reply": "2024-06-25T23:14:04.913959Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1263,10 +1263,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:18.145023Z", - "iopub.status.busy": "2024-06-25T19:32:18.144735Z", - "iopub.status.idle": "2024-06-25T19:32:18.245208Z", - "shell.execute_reply": "2024-06-25T19:32:18.244749Z" + "iopub.execute_input": "2024-06-25T23:14:04.916775Z", + "iopub.status.busy": "2024-06-25T23:14:04.916438Z", + "iopub.status.idle": "2024-06-25T23:14:05.017283Z", + "shell.execute_reply": "2024-06-25T23:14:05.016746Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1307,10 +1307,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:18.247314Z", - "iopub.status.busy": "2024-06-25T19:32:18.246984Z", - "iopub.status.idle": "2024-06-25T19:32:18.345698Z", - "shell.execute_reply": "2024-06-25T19:32:18.345236Z" + "iopub.execute_input": "2024-06-25T23:14:05.019268Z", + "iopub.status.busy": "2024-06-25T23:14:05.019087Z", + "iopub.status.idle": "2024-06-25T23:14:05.125584Z", + "shell.execute_reply": "2024-06-25T23:14:05.124990Z" } }, "outputs": [ @@ -1358,10 +1358,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:18.347691Z", - "iopub.status.busy": "2024-06-25T19:32:18.347361Z", - "iopub.status.idle": "2024-06-25T19:32:18.350505Z", - "shell.execute_reply": "2024-06-25T19:32:18.349977Z" + "iopub.execute_input": "2024-06-25T23:14:05.127830Z", + "iopub.status.busy": "2024-06-25T23:14:05.127392Z", + "iopub.status.idle": "2024-06-25T23:14:05.130680Z", + "shell.execute_reply": "2024-06-25T23:14:05.130142Z" }, "nbsphinx": "hidden" }, @@ -1402,30 +1402,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0160f38ecac34b8a9a6e60b79941cb42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6c2f4eab88df4fcfbf60ea1461b407fb", - "placeholder": "​", - "style": "IPY_MODEL_47f71961c8254da1a0cb8fe2f90ef9f5", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "09e511f313fe4deaa3db651dc2ad1f38": { + "01d773c5fc084c74bf3898f08469f8f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1478,7 +1455,7 @@ "width": null } }, - "0f81bdbdfded4d61a103fbc884fdb8b7": { + "048952d61d4143eeb7a3064dac9fe4ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1531,83 +1508,69 @@ "width": null } }, - "13b1cd45cfea4f85bfb6caa46af5a63a": { - "model_module": "@jupyter-widgets/base", + "065d70114b74423d9f2fa424de1b7a1e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1965785719184160b13d07134d9c01cd": { + "0c2f7ca60ab147c99ae03f759db46297": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "11546fd8d68648da9c138662014585e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9be1debd539947d495510d3e71e91a33", - "placeholder": "​", - "style": "IPY_MODEL_9593182600264e2aa5c5035fced2937b", + "layout": "IPY_MODEL_048952d61d4143eeb7a3064dac9fe4ac", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cd596207fea4447b96658e0f41eec607", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": 128619.0 } }, - "1aea1d112c054eec950bd686a0ca1d14": { + "12f57656dd504d218c054ef511da9ab4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1660,30 +1623,7 @@ "width": null } }, - "1b43dce850cb49019716fe7f052cd3f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b142eabfac84901b7edb8e5cf1db87e", - "placeholder": "​", - "style": "IPY_MODEL_751e8bbb861243c0b292b81647f5a7c8", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 32.9MB/s]" - } - }, - "1c18c2753518415ea3cf39b985a054ad": { + "14c9df2de7cc4e1bbaf4f1a58d5e3037": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1736,7 +1676,7 @@ "width": null } }, - "295a0df817014d6fbb6377dcc33be2b3": { + "1510d16cc79a49c88e3542daf3152481": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1751,32 +1691,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_bfc1a00c4e8f4270af1f947f378411f7", - "IPY_MODEL_dcd54291f5a341bb9379d41671c00d95", - "IPY_MODEL_bec49e231d374b619cca6a3dbb6c9b4f" + "IPY_MODEL_bd56af9d1df24f959c2e27458bf28564", + "IPY_MODEL_b83e50a6f4c94c46b81bc9ccac82d8ce", + "IPY_MODEL_d74890bb53b24653a178d14fa9fb1027" ], - "layout": "IPY_MODEL_5375b29786b24fc182c5b06dc46c21f5", + "layout": "IPY_MODEL_12f57656dd504d218c054ef511da9ab4", "tabbable": null, "tooltip": null } }, - "386b0038b80f44249027e46144d33c35": { + "186fee51c3124d608de6a5c71a289764": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8ca4da4898bb4451994f9434ae2ffbed", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_98428c59f17b40cdb1c0a7543994cae1", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "47f71961c8254da1a0cb8fe2f90ef9f5": { + "1dc5d0b009d545d1922ea03e17fa99b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1794,7 +1744,56 @@ "text_color": null } }, - "48203e358e5e4c599815faec66f84717": { + "1e7ea41fcad145359a3915227cd3a572": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_50e8d183b2e146bfa57d74e4574d6bf6", + "placeholder": "​", + "style": "IPY_MODEL_7936b993c44f45fc8f53ff71690b204e", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 328MB/s]" + } + }, + "227af90915cb483c9537459db20c2dcc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_78b9bcb39b554c0290d9800dc940ff71", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5869d031c1004d448f247c32b8c702e1", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "3740245a44544188bb5216cfbbe7c096": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1809,16 +1808,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0160f38ecac34b8a9a6e60b79941cb42", - "IPY_MODEL_cfb6db0858744f68a8074c3433dec014", - "IPY_MODEL_1b43dce850cb49019716fe7f052cd3f9" + "IPY_MODEL_ae1c35581029419bac126538cc5ba8f3", + "IPY_MODEL_186fee51c3124d608de6a5c71a289764", + "IPY_MODEL_1e7ea41fcad145359a3915227cd3a572" ], - "layout": "IPY_MODEL_5f9ac971b36144c99f166c6afca8b98c", + "layout": "IPY_MODEL_fe755d796bba4ebfa0a4fd20368887fa", "tabbable": null, "tooltip": null } }, - "5375b29786b24fc182c5b06dc46c21f5": { + "3d0bc58be6a64dbb9402e4f43247bbd9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1871,7 +1870,30 @@ "width": null } }, - "5a7fcc571ae3417ca7f32e5ac2e0f7ed": { + "40d6d738f9e542e98ecc6d953d704d68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ecd21cd3f9be4e8587ead71ef6eddacf", + "placeholder": "​", + "style": "IPY_MODEL_a873413b3495435bb8797c848d57b59a", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 508kB/s]" + } + }, + "4673aa7828d449fdb54b14aa87a8046b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1924,54 +1946,7 @@ "width": null } }, - "5b63774c214c467f836bfdcb44bf9b9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b1eae32f9cd4561b35edcb6a450623c", - "IPY_MODEL_e4e0fafef42746d1a3f83998a48e68fb", - "IPY_MODEL_b61aaac35e2a498c8712ccc1a79e72b4" - ], - "layout": "IPY_MODEL_13b1cd45cfea4f85bfb6caa46af5a63a", - "tabbable": null, - "tooltip": null - } - }, - "5de7ce2185e149b199420cef3937b004": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d05aa5c2f7ed4f049aeb55cefb06f57f", - "placeholder": "​", - "style": "IPY_MODEL_df36694caa324dc08d075a690e55fed5", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 860kB/s]" - } - }, - "5f9ac971b36144c99f166c6afca8b98c": { + "4bdd74d6b6f54d1fb924effdb6c35e73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2024,26 +1999,34 @@ "width": null } }, - "67c2bbd993f544be9aaa55f1059ee0c5": { + "4c68ee845d584f78b9ec889e427c9ab8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6c2f4eab88df4fcfbf60ea1461b407fb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ab9f826f70f04ba3b63e2e5db1d325f2", + "IPY_MODEL_11546fd8d68648da9c138662014585e5", + "IPY_MODEL_b5a2a7d91c7b447f8108b8896269f607" + ], + "layout": "IPY_MODEL_8954d8479e4b48759b6e0dbf92041c0c", + "tabbable": null, + "tooltip": null + } + }, + "4e926992584a4181a8551035087cce4c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -2093,25 +2076,7 @@ "width": null } }, - "751e8bbb861243c0b292b81647f5a7c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7b142eabfac84901b7edb8e5cf1db87e": { + "50e8d183b2e146bfa57d74e4574d6bf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2164,30 +2129,39 @@ "width": null } }, - "7b1eae32f9cd4561b35edcb6a450623c": { + "54403dba12ff4f26beb5b09e37a94253": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a3fcca569d54278b1f243ca468eb2e8", - "placeholder": "​", - "style": "IPY_MODEL_e8bef6ec94b841649328908a1e03f796", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5869d031c1004d448f247c32b8c702e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7c6fa0df6a7a4993ae1942f5e66eb942": { + "59bb523ac7f646b8b418eac0ba2650ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2240,7 +2214,7 @@ "width": null } }, - "8a3fcca569d54278b1f243ca468eb2e8": { + "5f72fda67a4f475ebe8560f39a8c3d76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2293,49 +2267,7 @@ "width": null } }, - "8d0cc257082a482b8a9c20f2623d1dd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d3aabef313ae48b184adb3612e11f7c0", - "IPY_MODEL_9926def0468e4ef78a40becf734e408b", - "IPY_MODEL_5de7ce2185e149b199420cef3937b004" - ], - "layout": "IPY_MODEL_cad71209689044bf95c6a56cd4254c5d", - "tabbable": null, - "tooltip": null - } - }, - "9593182600264e2aa5c5035fced2937b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95a7d374743e47b785481b53802557f9": { + "67850b52aee848a899a4c1cc7561c6dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2353,33 +2285,7 @@ "text_color": null } }, - "9926def0468e4ef78a40becf734e408b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_feef464c625b4ce98e733ec61ac7047a", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_67c2bbd993f544be9aaa55f1059ee0c5", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "9be1debd539947d495510d3e71e91a33": { + "78b9bcb39b554c0290d9800dc940ff71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2432,7 +2338,7 @@ "width": null } }, - "b61aaac35e2a498c8712ccc1a79e72b4": { + "7906a23ebb7146d593158f78421f5ed4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2447,77 +2353,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f8e6a2a4f4ac44968d7ab7e8b41cd9e5", + "layout": "IPY_MODEL_4e926992584a4181a8551035087cce4c", "placeholder": "​", - "style": "IPY_MODEL_fd7987d5664246479c5c48a19962bcff", + "style": "IPY_MODEL_065d70114b74423d9f2fa424de1b7a1e", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 33.4MB/s]" + "value": "hyperparams.yaml: 100%" } }, - "bc925d23337a4990bcbb6ad1d3ba0714": { + "7936b993c44f45fc8f53ff71690b204e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bec49e231d374b619cca6a3dbb6c9b4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cec08439b11541149be6a96ed609992c", - "placeholder": "​", - "style": "IPY_MODEL_95a7d374743e47b785481b53802557f9", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 514kB/s]" - } - }, - "bfc1a00c4e8f4270af1f947f378411f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0f81bdbdfded4d61a103fbc884fdb8b7", - "placeholder": "​", - "style": "IPY_MODEL_d7ac88820da9447ebde38eee5408d525", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cad71209689044bf95c6a56cd4254c5d": { + "8954d8479e4b48759b6e0dbf92041c0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2570,7 +2432,7 @@ "width": null } }, - "cec08439b11541149be6a96ed609992c": { + "8ca4da4898bb4451994f9434ae2ffbed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2623,33 +2485,116 @@ "width": null } }, - "cfb6db0858744f68a8074c3433dec014": { + "91f8c32305604aa6ad4753866f6428a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "98428c59f17b40cdb1c0a7543994cae1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a172e9a2a9464f0597dc89df0bc665f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a7376840cbcd4df89be2e35d1d83b7a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a873413b3495435bb8797c848d57b59a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ab9f826f70f04ba3b63e2e5db1d325f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c18c2753518415ea3cf39b985a054ad", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bc925d23337a4990bcbb6ad1d3ba0714", + "layout": "IPY_MODEL_01d773c5fc084c74bf3898f08469f8f7", + "placeholder": "​", + "style": "IPY_MODEL_1dc5d0b009d545d1922ea03e17fa99b3", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": "label_encoder.txt: 100%" } }, - "d05aa5c2f7ed4f049aeb55cefb06f57f": { + "acd3ca854a9b41b0a7e7c7c976d08dce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2702,7 +2647,7 @@ "width": null } }, - "d3aabef313ae48b184adb3612e11f7c0": { + "ae1c35581029419bac126538cc5ba8f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2717,33 +2662,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_efde3254ff184e58b1e14968ab98b2eb", + "layout": "IPY_MODEL_59bb523ac7f646b8b418eac0ba2650ec", "placeholder": "​", - "style": "IPY_MODEL_e51bddc0c26e45c28f6280a03fa6c570", + "style": "IPY_MODEL_91f8c32305604aa6ad4753866f6428a8", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "d7ac88820da9447ebde38eee5408d525": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "classifier.ckpt: 100%" } }, - "dc42c71988f64ceba56aa56cc9c662d3": { + "b5a2a7d91c7b447f8108b8896269f607": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2758,15 +2685,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7c6fa0df6a7a4993ae1942f5e66eb942", + "layout": "IPY_MODEL_14c9df2de7cc4e1bbaf4f1a58d5e3037", "placeholder": "​", - "style": "IPY_MODEL_fe2e22def9dd4fb9b35244ac0e211f6d", + "style": "IPY_MODEL_c805d0141fdb44038dfd6b1b6edf7abe", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 7.29MB/s]" + "value": " 129k/129k [00:00<00:00, 7.47MB/s]" } }, - "dcd54291f5a341bb9379d41671c00d95": { + "b83e50a6f4c94c46b81bc9ccac82d8ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2782,35 +2709,93 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1aea1d112c054eec950bd686a0ca1d14", - "max": 2041.0, + "layout": "IPY_MODEL_acd3ca854a9b41b0a7e7c7c976d08dce", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e83b02ee750444739a17f78b4d3f184f", + "style": "IPY_MODEL_a7376840cbcd4df89be2e35d1d83b7a7", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 16887676.0 } }, - "df36694caa324dc08d075a690e55fed5": { + "bd56af9d1df24f959c2e27458bf28564": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d0bc58be6a64dbb9402e4f43247bbd9", + "placeholder": "​", + "style": "IPY_MODEL_a172e9a2a9464f0597dc89df0bc665f5", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "c25723012a2d443ba16eb7f6c52bc3a5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e4e0fafef42746d1a3f83998a48e68fb": { + "c7c838e69efb43a2b0ac48deb78c922d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2826,17 +2811,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_09e511f313fe4deaa3db651dc2ad1f38", - "max": 16887676.0, + "layout": "IPY_MODEL_f1d6704797ff4e7da238df4899d6eb75", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ff0fbdda3a2745cab371f835eea2071a", + "style": "IPY_MODEL_54403dba12ff4f26beb5b09e37a94253", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": 3201.0 } }, - "e51bddc0c26e45c28f6280a03fa6c570": { + "c805d0141fdb44038dfd6b1b6edf7abe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2854,7 +2839,7 @@ "text_color": null } }, - "e83b02ee750444739a17f78b4d3f184f": { + "cd596207fea4447b96658e0f41eec607": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2870,51 +2855,77 @@ "description_width": "" } }, - "e8bef6ec94b841649328908a1e03f796": { + "d74890bb53b24653a178d14fa9fb1027": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4673aa7828d449fdb54b14aa87a8046b", + "placeholder": "​", + "style": "IPY_MODEL_f63a5476d3574388b856445769573334", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 194MB/s]" } }, - "ec7119530ac242a8bf5cd0417e5460c5": { + "d8e5131818de460ba01fb92aed10a852": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_edb975a882cd4029ab886291208a5a5c", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_386b0038b80f44249027e46144d33c35", + "layout": "IPY_MODEL_f3b0e8a956184e818936ebd0416f606e", + "placeholder": "​", + "style": "IPY_MODEL_67850b52aee848a899a4c1cc7561c6dd", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": " 3.20k/3.20k [00:00<00:00, 795kB/s]" + } + }, + "e4e22d23b27f43a5843b7ba91eb92b25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7906a23ebb7146d593158f78421f5ed4", + "IPY_MODEL_227af90915cb483c9537459db20c2dcc", + "IPY_MODEL_40d6d738f9e542e98ecc6d953d704d68" + ], + "layout": "IPY_MODEL_4bdd74d6b6f54d1fb924effdb6c35e73", + "tabbable": null, + "tooltip": null } }, - "edb975a882cd4029ab886291208a5a5c": { + "ecd21cd3f9be4e8587ead71ef6eddacf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2967,7 +2978,7 @@ "width": null } }, - "efde3254ff184e58b1e14968ab98b2eb": { + "f1d6704797ff4e7da238df4899d6eb75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3020,31 +3031,7 @@ "width": null } }, - "f26aa1a5503c462e89477a33079f160a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1965785719184160b13d07134d9c01cd", - "IPY_MODEL_ec7119530ac242a8bf5cd0417e5460c5", - "IPY_MODEL_dc42c71988f64ceba56aa56cc9c662d3" - ], - "layout": "IPY_MODEL_5a7fcc571ae3417ca7f32e5ac2e0f7ed", - "tabbable": null, - "tooltip": null - } - }, - "f8e6a2a4f4ac44968d7ab7e8b41cd9e5": { + "f3b0e8a956184e818936ebd0416f606e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3097,7 +3084,7 @@ "width": null } }, - "fd7987d5664246479c5c48a19962bcff": { + "f63a5476d3574388b856445769573334": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3115,25 +3102,54 @@ "text_color": null } }, - "fe2e22def9dd4fb9b35244ac0e211f6d": { + "fb4875c647a74da78ce0b565e117d890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fe276545fde34f708d296c6f254d81e8", + "IPY_MODEL_c7c838e69efb43a2b0ac48deb78c922d", + "IPY_MODEL_d8e5131818de460ba01fb92aed10a852" + ], + "layout": "IPY_MODEL_5f72fda67a4f475ebe8560f39a8c3d76", + "tabbable": null, + "tooltip": null + } + }, + "fe276545fde34f708d296c6f254d81e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c25723012a2d443ba16eb7f6c52bc3a5", + "placeholder": "​", + "style": "IPY_MODEL_0c2f7ca60ab147c99ae03f759db46297", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "feef464c625b4ce98e733ec61ac7047a": { + "fe755d796bba4ebfa0a4fd20368887fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3185,22 +3201,6 @@ "visibility": null, "width": null } - }, - "ff0fbdda3a2745cab371f835eea2071a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 33af481ea..17bb19429 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:21.525415Z", - "iopub.status.busy": "2024-06-25T19:32:21.525221Z", - "iopub.status.idle": "2024-06-25T19:32:22.681975Z", - "shell.execute_reply": "2024-06-25T19:32:22.681418Z" + "iopub.execute_input": "2024-06-25T23:14:09.178246Z", + "iopub.status.busy": "2024-06-25T23:14:09.177763Z", + "iopub.status.idle": "2024-06-25T23:14:10.319594Z", + "shell.execute_reply": "2024-06-25T23:14:10.319043Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:22.684626Z", - "iopub.status.busy": "2024-06-25T19:32:22.684217Z", - "iopub.status.idle": "2024-06-25T19:32:22.687052Z", - "shell.execute_reply": "2024-06-25T19:32:22.686634Z" + "iopub.execute_input": "2024-06-25T23:14:10.322187Z", + "iopub.status.busy": "2024-06-25T23:14:10.321743Z", + "iopub.status.idle": "2024-06-25T23:14:10.324748Z", + "shell.execute_reply": "2024-06-25T23:14:10.324303Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:22.689175Z", - "iopub.status.busy": "2024-06-25T19:32:22.688918Z", - "iopub.status.idle": "2024-06-25T19:32:22.697425Z", - "shell.execute_reply": "2024-06-25T19:32:22.696900Z" + "iopub.execute_input": "2024-06-25T23:14:10.326836Z", + "iopub.status.busy": "2024-06-25T23:14:10.326547Z", + "iopub.status.idle": "2024-06-25T23:14:10.335582Z", + "shell.execute_reply": "2024-06-25T23:14:10.335001Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:22.699485Z", - "iopub.status.busy": "2024-06-25T19:32:22.699153Z", - "iopub.status.idle": "2024-06-25T19:32:22.703881Z", - "shell.execute_reply": "2024-06-25T19:32:22.703445Z" + "iopub.execute_input": "2024-06-25T23:14:10.337605Z", + "iopub.status.busy": "2024-06-25T23:14:10.337298Z", + "iopub.status.idle": "2024-06-25T23:14:10.342294Z", + "shell.execute_reply": "2024-06-25T23:14:10.341736Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:22.706034Z", - "iopub.status.busy": "2024-06-25T19:32:22.705704Z", - "iopub.status.idle": "2024-06-25T19:32:22.888024Z", - "shell.execute_reply": "2024-06-25T19:32:22.887415Z" + "iopub.execute_input": "2024-06-25T23:14:10.344309Z", + "iopub.status.busy": "2024-06-25T23:14:10.344016Z", + "iopub.status.idle": "2024-06-25T23:14:10.523981Z", + "shell.execute_reply": "2024-06-25T23:14:10.523494Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:22.890902Z", - "iopub.status.busy": "2024-06-25T19:32:22.890533Z", - "iopub.status.idle": "2024-06-25T19:32:23.256766Z", - "shell.execute_reply": "2024-06-25T19:32:23.256201Z" + "iopub.execute_input": "2024-06-25T23:14:10.526345Z", + "iopub.status.busy": "2024-06-25T23:14:10.525993Z", + "iopub.status.idle": "2024-06-25T23:14:10.892857Z", + "shell.execute_reply": "2024-06-25T23:14:10.892276Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:23.259088Z", - "iopub.status.busy": "2024-06-25T19:32:23.258748Z", - "iopub.status.idle": "2024-06-25T19:32:23.281774Z", - "shell.execute_reply": "2024-06-25T19:32:23.281210Z" + "iopub.execute_input": "2024-06-25T23:14:10.895029Z", + "iopub.status.busy": "2024-06-25T23:14:10.894803Z", + "iopub.status.idle": "2024-06-25T23:14:10.917811Z", + "shell.execute_reply": "2024-06-25T23:14:10.917259Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:23.284159Z", - "iopub.status.busy": "2024-06-25T19:32:23.283828Z", - "iopub.status.idle": "2024-06-25T19:32:23.294542Z", - "shell.execute_reply": "2024-06-25T19:32:23.294124Z" + "iopub.execute_input": "2024-06-25T23:14:10.920262Z", + "iopub.status.busy": "2024-06-25T23:14:10.919694Z", + "iopub.status.idle": "2024-06-25T23:14:10.930815Z", + "shell.execute_reply": "2024-06-25T23:14:10.930406Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:23.296628Z", - "iopub.status.busy": "2024-06-25T19:32:23.296301Z", - "iopub.status.idle": "2024-06-25T19:32:25.256890Z", - "shell.execute_reply": "2024-06-25T19:32:25.256295Z" + "iopub.execute_input": "2024-06-25T23:14:10.932988Z", + "iopub.status.busy": "2024-06-25T23:14:10.932566Z", + "iopub.status.idle": "2024-06-25T23:14:12.886828Z", + "shell.execute_reply": "2024-06-25T23:14:12.886199Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.259406Z", - "iopub.status.busy": "2024-06-25T19:32:25.258951Z", - "iopub.status.idle": "2024-06-25T19:32:25.279987Z", - "shell.execute_reply": "2024-06-25T19:32:25.279554Z" + "iopub.execute_input": "2024-06-25T23:14:12.889582Z", + "iopub.status.busy": "2024-06-25T23:14:12.888947Z", + "iopub.status.idle": "2024-06-25T23:14:12.909728Z", + "shell.execute_reply": "2024-06-25T23:14:12.909257Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.281917Z", - "iopub.status.busy": "2024-06-25T19:32:25.281742Z", - "iopub.status.idle": "2024-06-25T19:32:25.300001Z", - "shell.execute_reply": "2024-06-25T19:32:25.299441Z" + "iopub.execute_input": "2024-06-25T23:14:12.911863Z", + "iopub.status.busy": "2024-06-25T23:14:12.911538Z", + "iopub.status.idle": "2024-06-25T23:14:12.929776Z", + "shell.execute_reply": "2024-06-25T23:14:12.929180Z" } }, "outputs": [ @@ -949,10 +949,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.302199Z", - "iopub.status.busy": "2024-06-25T19:32:25.301790Z", - "iopub.status.idle": "2024-06-25T19:32:25.315854Z", - "shell.execute_reply": "2024-06-25T19:32:25.315290Z" + "iopub.execute_input": "2024-06-25T23:14:12.931746Z", + "iopub.status.busy": "2024-06-25T23:14:12.931414Z", + "iopub.status.idle": "2024-06-25T23:14:12.945573Z", + "shell.execute_reply": "2024-06-25T23:14:12.945130Z" } }, "outputs": [ @@ -1087,17 +1087,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.317886Z", - "iopub.status.busy": "2024-06-25T19:32:25.317705Z", - "iopub.status.idle": "2024-06-25T19:32:25.337431Z", - "shell.execute_reply": "2024-06-25T19:32:25.336840Z" + "iopub.execute_input": "2024-06-25T23:14:12.947591Z", + "iopub.status.busy": "2024-06-25T23:14:12.947261Z", + "iopub.status.idle": "2024-06-25T23:14:12.966119Z", + "shell.execute_reply": "2024-06-25T23:14:12.965554Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9160678898ef4935b4c5e9badf645887", + "model_id": "a7755a803c3a40ef93dda582347c1c91", "version_major": 2, "version_minor": 0 }, @@ -1133,10 +1133,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.339545Z", - "iopub.status.busy": "2024-06-25T19:32:25.339254Z", - "iopub.status.idle": "2024-06-25T19:32:25.353979Z", - "shell.execute_reply": "2024-06-25T19:32:25.353546Z" + "iopub.execute_input": "2024-06-25T23:14:12.967941Z", + "iopub.status.busy": "2024-06-25T23:14:12.967765Z", + "iopub.status.idle": "2024-06-25T23:14:12.982515Z", + "shell.execute_reply": "2024-06-25T23:14:12.981981Z" } }, "outputs": [ @@ -1259,10 +1259,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.355891Z", - "iopub.status.busy": "2024-06-25T19:32:25.355714Z", - "iopub.status.idle": "2024-06-25T19:32:25.361530Z", - "shell.execute_reply": "2024-06-25T19:32:25.360999Z" + "iopub.execute_input": "2024-06-25T23:14:12.984568Z", + "iopub.status.busy": "2024-06-25T23:14:12.984190Z", + "iopub.status.idle": "2024-06-25T23:14:12.989904Z", + "shell.execute_reply": "2024-06-25T23:14:12.989416Z" } }, "outputs": [], @@ -1319,10 +1319,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.363640Z", - "iopub.status.busy": "2024-06-25T19:32:25.363214Z", - "iopub.status.idle": "2024-06-25T19:32:25.380614Z", - "shell.execute_reply": "2024-06-25T19:32:25.380174Z" + "iopub.execute_input": "2024-06-25T23:14:12.991867Z", + "iopub.status.busy": "2024-06-25T23:14:12.991560Z", + "iopub.status.idle": "2024-06-25T23:14:13.010114Z", + "shell.execute_reply": "2024-06-25T23:14:13.009557Z" } }, "outputs": [ @@ -1459,7 +1459,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "066581bfe5e048229e24f4456c525a9f": { + "1300012c40154e1da99babb9fe20b16e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1512,25 +1512,30 @@ "width": null } }, - "1c1065c6e3be428aa1ed6d3ef05adb52": { + "261be93bad834528939faa8054552fd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2b2ed3b3a7ae4284a9bdf276850e3b28", + "placeholder": "​", + "style": "IPY_MODEL_ce12a71d028f4bb7883a05d9bc842498", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "31beebcbb1ed40e98e72f51b7111d288": { + "2b2ed3b3a7ae4284a9bdf276850e3b28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1583,7 +1588,30 @@ "width": null } }, - "495eb3b3071f43e1bf30631ee18ec38f": { + "6489f0184cc74d83bb9ddc2889d4a3e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1300012c40154e1da99babb9fe20b16e", + "placeholder": "​", + "style": "IPY_MODEL_a579e009a0944dd19902993fdacfd504", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13503.61 examples/s]" + } + }, + "781b877c2bbc46b7969db8529c1eb5c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1599,53 +1627,49 @@ "description_width": "" } }, - "514a0c7d656e41c7a0ef7156f7db70a4": { + "a579e009a0944dd19902993fdacfd504": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_066581bfe5e048229e24f4456c525a9f", - "placeholder": "​", - "style": "IPY_MODEL_e9790c7defa446cc93cb40beb3946950", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5b75a7f5ee634ecbb513ceba0cf27697": { + "a7755a803c3a40ef93dda582347c1c91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_74ffd90dc17c436bb5ca21cab1e64b31", - "placeholder": "​", - "style": "IPY_MODEL_1c1065c6e3be428aa1ed6d3ef05adb52", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_261be93bad834528939faa8054552fd1", + "IPY_MODEL_f70f2f9233844bc59865eab3649c0e10", + "IPY_MODEL_6489f0184cc74d83bb9ddc2889d4a3e0" + ], + "layout": "IPY_MODEL_c6f6f871cbae4bd6b342d6cfded8728e", "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12588.35 examples/s]" + "tooltip": null } }, - "74ffd90dc17c436bb5ca21cab1e64b31": { + "c6f6f871cbae4bd6b342d6cfded8728e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1698,31 +1722,25 @@ "width": null } }, - "9160678898ef4935b4c5e9badf645887": { + "ce12a71d028f4bb7883a05d9bc842498": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_514a0c7d656e41c7a0ef7156f7db70a4", - "IPY_MODEL_e905864ed9704e29b5c76d93504b2f9f", - "IPY_MODEL_5b75a7f5ee634ecbb513ceba0cf27697" - ], - "layout": "IPY_MODEL_e0f1e9f09fb84534aee2fa9a795b3c91", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e0f1e9f09fb84534aee2fa9a795b3c91": { + "daa1004e74fa4197b88715988591c621": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1775,7 +1793,7 @@ "width": null } }, - "e905864ed9704e29b5c76d93504b2f9f": { + "f70f2f9233844bc59865eab3649c0e10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1791,33 +1809,15 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_31beebcbb1ed40e98e72f51b7111d288", + "layout": "IPY_MODEL_daa1004e74fa4197b88715988591c621", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_495eb3b3071f43e1bf30631ee18ec38f", + "style": "IPY_MODEL_781b877c2bbc46b7969db8529c1eb5c3", "tabbable": null, "tooltip": null, "value": 132.0 } - }, - "e9790c7defa446cc93cb40beb3946950": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 701b2fb18..4fb163767 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:28.076768Z", - "iopub.status.busy": "2024-06-25T19:32:28.076417Z", - "iopub.status.idle": "2024-06-25T19:32:29.230065Z", - "shell.execute_reply": "2024-06-25T19:32:29.229522Z" + "iopub.execute_input": "2024-06-25T23:14:15.711188Z", + "iopub.status.busy": "2024-06-25T23:14:15.711012Z", + "iopub.status.idle": "2024-06-25T23:14:16.870873Z", + "shell.execute_reply": "2024-06-25T23:14:16.870268Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.232655Z", - "iopub.status.busy": "2024-06-25T19:32:29.232386Z", - "iopub.status.idle": "2024-06-25T19:32:29.235452Z", - "shell.execute_reply": "2024-06-25T19:32:29.234935Z" + "iopub.execute_input": "2024-06-25T23:14:16.873481Z", + "iopub.status.busy": "2024-06-25T23:14:16.873232Z", + "iopub.status.idle": "2024-06-25T23:14:16.876287Z", + "shell.execute_reply": "2024-06-25T23:14:16.875762Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.237717Z", - "iopub.status.busy": "2024-06-25T19:32:29.237325Z", - "iopub.status.idle": "2024-06-25T19:32:29.246331Z", - "shell.execute_reply": "2024-06-25T19:32:29.245844Z" + "iopub.execute_input": "2024-06-25T23:14:16.878379Z", + "iopub.status.busy": "2024-06-25T23:14:16.878075Z", + "iopub.status.idle": "2024-06-25T23:14:16.887427Z", + "shell.execute_reply": "2024-06-25T23:14:16.886901Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.248332Z", - "iopub.status.busy": "2024-06-25T19:32:29.248005Z", - "iopub.status.idle": "2024-06-25T19:32:29.252728Z", - "shell.execute_reply": "2024-06-25T19:32:29.252172Z" + "iopub.execute_input": "2024-06-25T23:14:16.889377Z", + "iopub.status.busy": "2024-06-25T23:14:16.889034Z", + "iopub.status.idle": "2024-06-25T23:14:16.893463Z", + "shell.execute_reply": "2024-06-25T23:14:16.893025Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.254880Z", - "iopub.status.busy": "2024-06-25T19:32:29.254709Z", - "iopub.status.idle": "2024-06-25T19:32:29.437885Z", - "shell.execute_reply": "2024-06-25T19:32:29.437386Z" + "iopub.execute_input": "2024-06-25T23:14:16.895454Z", + "iopub.status.busy": "2024-06-25T23:14:16.895124Z", + "iopub.status.idle": "2024-06-25T23:14:17.076668Z", + "shell.execute_reply": "2024-06-25T23:14:17.076135Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.440194Z", - "iopub.status.busy": "2024-06-25T19:32:29.440000Z", - "iopub.status.idle": "2024-06-25T19:32:29.811011Z", - "shell.execute_reply": "2024-06-25T19:32:29.810430Z" + "iopub.execute_input": "2024-06-25T23:14:17.079016Z", + "iopub.status.busy": "2024-06-25T23:14:17.078687Z", + "iopub.status.idle": "2024-06-25T23:14:17.444945Z", + "shell.execute_reply": "2024-06-25T23:14:17.444376Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.813249Z", - "iopub.status.busy": "2024-06-25T19:32:29.812907Z", - "iopub.status.idle": "2024-06-25T19:32:29.815709Z", - "shell.execute_reply": "2024-06-25T19:32:29.815239Z" + "iopub.execute_input": "2024-06-25T23:14:17.447239Z", + "iopub.status.busy": "2024-06-25T23:14:17.446903Z", + "iopub.status.idle": "2024-06-25T23:14:17.449525Z", + "shell.execute_reply": "2024-06-25T23:14:17.449111Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.817838Z", - "iopub.status.busy": "2024-06-25T19:32:29.817412Z", - "iopub.status.idle": "2024-06-25T19:32:29.852590Z", - "shell.execute_reply": "2024-06-25T19:32:29.852033Z" + "iopub.execute_input": "2024-06-25T23:14:17.451586Z", + "iopub.status.busy": "2024-06-25T23:14:17.451263Z", + "iopub.status.idle": "2024-06-25T23:14:17.486312Z", + "shell.execute_reply": "2024-06-25T23:14:17.485793Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.854728Z", - "iopub.status.busy": "2024-06-25T19:32:29.854340Z", - "iopub.status.idle": "2024-06-25T19:32:31.848165Z", - "shell.execute_reply": "2024-06-25T19:32:31.847549Z" + "iopub.execute_input": "2024-06-25T23:14:17.488380Z", + "iopub.status.busy": "2024-06-25T23:14:17.488048Z", + "iopub.status.idle": "2024-06-25T23:14:19.486184Z", + "shell.execute_reply": "2024-06-25T23:14:19.485493Z" } }, "outputs": [ @@ -710,10 +710,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.850423Z", - "iopub.status.busy": "2024-06-25T19:32:31.850093Z", - "iopub.status.idle": "2024-06-25T19:32:31.868614Z", - "shell.execute_reply": "2024-06-25T19:32:31.868087Z" + "iopub.execute_input": "2024-06-25T23:14:19.488814Z", + "iopub.status.busy": "2024-06-25T23:14:19.488306Z", + "iopub.status.idle": "2024-06-25T23:14:19.506666Z", + "shell.execute_reply": "2024-06-25T23:14:19.506238Z" } }, "outputs": [ @@ -846,10 +846,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.870858Z", - "iopub.status.busy": "2024-06-25T19:32:31.870547Z", - "iopub.status.idle": "2024-06-25T19:32:31.877139Z", - "shell.execute_reply": "2024-06-25T19:32:31.876698Z" + "iopub.execute_input": "2024-06-25T23:14:19.508882Z", + "iopub.status.busy": "2024-06-25T23:14:19.508469Z", + "iopub.status.idle": "2024-06-25T23:14:19.514832Z", + "shell.execute_reply": "2024-06-25T23:14:19.514311Z" } }, "outputs": [ @@ -960,10 +960,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.879087Z", - "iopub.status.busy": "2024-06-25T19:32:31.878912Z", - "iopub.status.idle": "2024-06-25T19:32:31.884810Z", - "shell.execute_reply": "2024-06-25T19:32:31.884314Z" + "iopub.execute_input": "2024-06-25T23:14:19.516791Z", + "iopub.status.busy": "2024-06-25T23:14:19.516482Z", + "iopub.status.idle": "2024-06-25T23:14:19.522090Z", + "shell.execute_reply": "2024-06-25T23:14:19.521611Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.886777Z", - "iopub.status.busy": "2024-06-25T19:32:31.886603Z", - "iopub.status.idle": "2024-06-25T19:32:31.897515Z", - "shell.execute_reply": "2024-06-25T19:32:31.897079Z" + "iopub.execute_input": "2024-06-25T23:14:19.524150Z", + "iopub.status.busy": "2024-06-25T23:14:19.523753Z", + "iopub.status.idle": "2024-06-25T23:14:19.533902Z", + "shell.execute_reply": "2024-06-25T23:14:19.533440Z" } }, "outputs": [ @@ -1225,10 +1225,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.899532Z", - "iopub.status.busy": "2024-06-25T19:32:31.899178Z", - "iopub.status.idle": "2024-06-25T19:32:31.908000Z", - "shell.execute_reply": "2024-06-25T19:32:31.907553Z" + "iopub.execute_input": "2024-06-25T23:14:19.535870Z", + "iopub.status.busy": "2024-06-25T23:14:19.535545Z", + "iopub.status.idle": "2024-06-25T23:14:19.544125Z", + "shell.execute_reply": "2024-06-25T23:14:19.543654Z" } }, "outputs": [ @@ -1344,10 +1344,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.910005Z", - "iopub.status.busy": "2024-06-25T19:32:31.909678Z", - "iopub.status.idle": "2024-06-25T19:32:31.916574Z", - "shell.execute_reply": "2024-06-25T19:32:31.916117Z" + "iopub.execute_input": "2024-06-25T23:14:19.546177Z", + "iopub.status.busy": "2024-06-25T23:14:19.545853Z", + "iopub.status.idle": "2024-06-25T23:14:19.552700Z", + "shell.execute_reply": "2024-06-25T23:14:19.552255Z" }, "scrolled": true }, @@ -1472,10 +1472,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.918557Z", - "iopub.status.busy": "2024-06-25T19:32:31.918225Z", - "iopub.status.idle": "2024-06-25T19:32:31.927581Z", - "shell.execute_reply": "2024-06-25T19:32:31.927120Z" + "iopub.execute_input": "2024-06-25T23:14:19.554580Z", + "iopub.status.busy": "2024-06-25T23:14:19.554407Z", + "iopub.status.idle": "2024-06-25T23:14:19.563718Z", + "shell.execute_reply": "2024-06-25T23:14:19.563190Z" } }, "outputs": [ @@ -1578,10 +1578,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.929562Z", - "iopub.status.busy": "2024-06-25T19:32:31.929235Z", - "iopub.status.idle": "2024-06-25T19:32:31.940775Z", - "shell.execute_reply": "2024-06-25T19:32:31.940218Z" + "iopub.execute_input": "2024-06-25T23:14:19.565768Z", + "iopub.status.busy": "2024-06-25T23:14:19.565442Z", + "iopub.status.idle": "2024-06-25T23:14:19.576977Z", + "shell.execute_reply": "2024-06-25T23:14:19.576554Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index a549a7040..da3ecdeb8 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:34.714453Z", - "iopub.status.busy": "2024-06-25T19:32:34.714061Z", - "iopub.status.idle": "2024-06-25T19:32:37.483269Z", - "shell.execute_reply": "2024-06-25T19:32:37.482729Z" + "iopub.execute_input": "2024-06-25T23:14:22.349033Z", + "iopub.status.busy": "2024-06-25T23:14:22.348862Z", + "iopub.status.idle": "2024-06-25T23:14:25.155777Z", + "shell.execute_reply": "2024-06-25T23:14:25.155231Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:37.485856Z", - "iopub.status.busy": "2024-06-25T19:32:37.485436Z", - "iopub.status.idle": "2024-06-25T19:32:37.489039Z", - "shell.execute_reply": "2024-06-25T19:32:37.488503Z" + "iopub.execute_input": "2024-06-25T23:14:25.158288Z", + "iopub.status.busy": "2024-06-25T23:14:25.158017Z", + "iopub.status.idle": "2024-06-25T23:14:25.161499Z", + "shell.execute_reply": "2024-06-25T23:14:25.161043Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:37.491139Z", - "iopub.status.busy": "2024-06-25T19:32:37.490837Z", - "iopub.status.idle": "2024-06-25T19:32:52.986261Z", - "shell.execute_reply": "2024-06-25T19:32:52.985738Z" + "iopub.execute_input": "2024-06-25T23:14:25.163549Z", + "iopub.status.busy": "2024-06-25T23:14:25.163223Z", + "iopub.status.idle": "2024-06-25T23:14:35.757240Z", + "shell.execute_reply": "2024-06-25T23:14:35.756685Z" } }, "outputs": [ @@ -172,7 +172,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e85af83531bc4182b052d4cfe7f1020e", + "model_id": "99fb59566db2452bab382261d05e2879", "version_major": 2, "version_minor": 0 }, @@ -186,7 +186,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9abe31b01bc04cc89ff967d26e368fdf", + "model_id": "cacaca4358c34e93a46a3e2019d188d4", "version_major": 2, "version_minor": 0 }, @@ -200,7 +200,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1585cf2dc2e448068ac19676773a2a4b", + "model_id": "46c5f1e4a9ca403d83a2aa33da63b600", "version_major": 2, "version_minor": 0 }, @@ -214,7 +214,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a9c34fb99987402ba4f521a988475574", + "model_id": "cc7010cd50844e48a3db713a6ea5f850", "version_major": 2, "version_minor": 0 }, @@ -228,7 +228,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "815effa183cf4ca4a7160696d4e9eb83", + "model_id": "1e806f052f23419ba6ec80aa76644ed5", "version_major": 2, "version_minor": 0 }, @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "79a15df271d14bfa8e4ed6dbe1c37a8a", + "model_id": "3590fcc9756749e0b9130b8809114216", "version_major": 2, "version_minor": 0 }, @@ -256,7 +256,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4d2025fc902f41b2b7c3474d4e9cd2fb", + "model_id": "489746a2a7db4406b7ebfd5f2a155361", "version_major": 2, "version_minor": 0 }, @@ -270,7 +270,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bdbb1b6b96824b1ba8715b85852886fe", + "model_id": "b9c41de7ac0442aabfb15bbf3b5308c8", "version_major": 2, "version_minor": 0 }, @@ -312,10 +312,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:52.988486Z", - "iopub.status.busy": "2024-06-25T19:32:52.988150Z", - "iopub.status.idle": "2024-06-25T19:32:52.992110Z", - "shell.execute_reply": "2024-06-25T19:32:52.991660Z" + "iopub.execute_input": "2024-06-25T23:14:35.759372Z", + "iopub.status.busy": "2024-06-25T23:14:35.759148Z", + "iopub.status.idle": "2024-06-25T23:14:35.763037Z", + "shell.execute_reply": "2024-06-25T23:14:35.762503Z" } }, "outputs": [ @@ -340,17 +340,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:52.994131Z", - "iopub.status.busy": "2024-06-25T19:32:52.993820Z", - "iopub.status.idle": "2024-06-25T19:33:03.871847Z", - "shell.execute_reply": "2024-06-25T19:33:03.871235Z" + "iopub.execute_input": "2024-06-25T23:14:35.765199Z", + "iopub.status.busy": "2024-06-25T23:14:35.764868Z", + "iopub.status.idle": "2024-06-25T23:14:46.667044Z", + "shell.execute_reply": "2024-06-25T23:14:46.666518Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2d29dc28e7140b792fc1ee3fcb857cb", + "model_id": "e075f5bd416a447eb67433e0d225370f", "version_major": 2, "version_minor": 0 }, @@ -388,10 +388,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:03.874363Z", - "iopub.status.busy": "2024-06-25T19:33:03.874071Z", - "iopub.status.idle": "2024-06-25T19:33:22.807154Z", - "shell.execute_reply": "2024-06-25T19:33:22.806523Z" + "iopub.execute_input": "2024-06-25T23:14:46.669519Z", + "iopub.status.busy": "2024-06-25T23:14:46.669228Z", + "iopub.status.idle": "2024-06-25T23:15:05.072765Z", + "shell.execute_reply": "2024-06-25T23:15:05.072224Z" } }, "outputs": [], @@ -424,10 +424,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:22.809827Z", - "iopub.status.busy": "2024-06-25T19:33:22.809607Z", - "iopub.status.idle": "2024-06-25T19:33:22.814504Z", - "shell.execute_reply": "2024-06-25T19:33:22.813958Z" + "iopub.execute_input": "2024-06-25T23:15:05.075378Z", + "iopub.status.busy": "2024-06-25T23:15:05.075000Z", + "iopub.status.idle": "2024-06-25T23:15:05.080668Z", + "shell.execute_reply": "2024-06-25T23:15:05.080229Z" } }, "outputs": [], @@ -465,10 +465,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:22.816419Z", - "iopub.status.busy": "2024-06-25T19:33:22.816239Z", - "iopub.status.idle": "2024-06-25T19:33:22.820245Z", - "shell.execute_reply": "2024-06-25T19:33:22.819819Z" + "iopub.execute_input": "2024-06-25T23:15:05.082696Z", + "iopub.status.busy": "2024-06-25T23:15:05.082377Z", + "iopub.status.idle": "2024-06-25T23:15:05.086277Z", + "shell.execute_reply": "2024-06-25T23:15:05.085865Z" }, "nbsphinx": "hidden" }, @@ -605,10 +605,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:22.822196Z", - "iopub.status.busy": "2024-06-25T19:33:22.822022Z", - "iopub.status.idle": "2024-06-25T19:33:22.831142Z", - "shell.execute_reply": "2024-06-25T19:33:22.830697Z" + "iopub.execute_input": "2024-06-25T23:15:05.088252Z", + "iopub.status.busy": "2024-06-25T23:15:05.087933Z", + "iopub.status.idle": "2024-06-25T23:15:05.096769Z", + "shell.execute_reply": "2024-06-25T23:15:05.096319Z" }, "nbsphinx": "hidden" }, @@ -733,10 +733,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:22.833164Z", - "iopub.status.busy": "2024-06-25T19:33:22.832846Z", - "iopub.status.idle": "2024-06-25T19:33:22.860883Z", - "shell.execute_reply": "2024-06-25T19:33:22.860460Z" + "iopub.execute_input": "2024-06-25T23:15:05.098773Z", + "iopub.status.busy": "2024-06-25T23:15:05.098471Z", + "iopub.status.idle": "2024-06-25T23:15:05.125306Z", + "shell.execute_reply": "2024-06-25T23:15:05.124855Z" } }, "outputs": [], @@ -773,10 +773,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:22.862805Z", - "iopub.status.busy": "2024-06-25T19:33:22.862633Z", - "iopub.status.idle": "2024-06-25T19:33:54.927685Z", - "shell.execute_reply": "2024-06-25T19:33:54.927065Z" + "iopub.execute_input": "2024-06-25T23:15:05.127482Z", + "iopub.status.busy": "2024-06-25T23:15:05.127151Z", + "iopub.status.idle": "2024-06-25T23:15:37.033092Z", + "shell.execute_reply": "2024-06-25T23:15:37.032511Z" } }, "outputs": [ @@ -792,21 +792,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.704\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.649\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.525\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.481\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b56125fc059b47e3b228dc3ed3b629c0", + "model_id": "8835da69dbeb4826a96baa0561232a18", "version_major": 2, "version_minor": 0 }, @@ -827,7 +827,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5c565e132b5a46d398435caf4df461d4", + "model_id": "1141e88c1cd549c1ad36f5867b926978", "version_major": 2, "version_minor": 0 }, @@ -850,21 +850,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.714\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.663\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.460\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.663\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "63e4117109d44d79bcece5146781039a", + "model_id": "2a3f5349b34148209445198c9ae64559", "version_major": 2, "version_minor": 0 }, @@ -885,7 +885,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "09c8fb8f5f2945a4948b758b41efb311", + "model_id": "2c1834764c78450699f4a69ba292fe8e", "version_major": 2, "version_minor": 0 }, @@ -908,21 +908,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.742\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.680\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.468\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.450\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "85c627e125a94180abe254acf928a1fc", + "model_id": "02ef28fe5e5647e49f15e9889ac88c8f", "version_major": 2, "version_minor": 0 }, @@ -943,7 +943,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "85af3d53abef4aa8a6046017943dc826", + "model_id": "ebc081ac7cef42f58f0c46bdca672b27", "version_major": 2, "version_minor": 0 }, @@ -1022,10 +1022,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:54.930258Z", - "iopub.status.busy": "2024-06-25T19:33:54.929870Z", - "iopub.status.idle": "2024-06-25T19:33:54.943872Z", - "shell.execute_reply": "2024-06-25T19:33:54.943339Z" + "iopub.execute_input": "2024-06-25T23:15:37.035751Z", + "iopub.status.busy": "2024-06-25T23:15:37.035236Z", + "iopub.status.idle": "2024-06-25T23:15:37.049525Z", + "shell.execute_reply": "2024-06-25T23:15:37.049035Z" } }, "outputs": [], @@ -1050,10 +1050,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:54.946038Z", - "iopub.status.busy": "2024-06-25T19:33:54.945618Z", - "iopub.status.idle": "2024-06-25T19:33:55.403627Z", - "shell.execute_reply": "2024-06-25T19:33:55.402981Z" + "iopub.execute_input": "2024-06-25T23:15:37.051460Z", + "iopub.status.busy": "2024-06-25T23:15:37.051284Z", + "iopub.status.idle": "2024-06-25T23:15:37.533678Z", + "shell.execute_reply": "2024-06-25T23:15:37.533181Z" } }, "outputs": [], @@ -1073,10 +1073,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:55.406220Z", - "iopub.status.busy": "2024-06-25T19:33:55.406041Z", - "iopub.status.idle": "2024-06-25T19:35:30.535430Z", - "shell.execute_reply": "2024-06-25T19:35:30.534808Z" + "iopub.execute_input": "2024-06-25T23:15:37.536010Z", + "iopub.status.busy": "2024-06-25T23:15:37.535826Z", + "iopub.status.idle": "2024-06-25T23:17:13.081610Z", + "shell.execute_reply": "2024-06-25T23:17:13.080989Z" } }, "outputs": [ @@ -1123,7 +1123,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d65cb8246aa14189b49a0eeae6f3bad0", + "model_id": "55c0a386d760485f92009bb75259396b", "version_major": 2, "version_minor": 0 }, @@ -1162,10 +1162,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:30.537781Z", - "iopub.status.busy": "2024-06-25T19:35:30.537412Z", - "iopub.status.idle": "2024-06-25T19:35:30.983712Z", - "shell.execute_reply": "2024-06-25T19:35:30.983121Z" + "iopub.execute_input": "2024-06-25T23:17:13.084039Z", + "iopub.status.busy": "2024-06-25T23:17:13.083667Z", + "iopub.status.idle": "2024-06-25T23:17:13.530568Z", + "shell.execute_reply": "2024-06-25T23:17:13.530038Z" } }, "outputs": [ @@ -1311,10 +1311,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:30.986665Z", - "iopub.status.busy": "2024-06-25T19:35:30.986208Z", - "iopub.status.idle": "2024-06-25T19:35:31.048426Z", - "shell.execute_reply": "2024-06-25T19:35:31.047866Z" + "iopub.execute_input": "2024-06-25T23:17:13.532958Z", + "iopub.status.busy": "2024-06-25T23:17:13.532616Z", + "iopub.status.idle": "2024-06-25T23:17:13.595525Z", + "shell.execute_reply": "2024-06-25T23:17:13.594969Z" } }, "outputs": [ @@ -1418,10 +1418,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.050749Z", - "iopub.status.busy": "2024-06-25T19:35:31.050363Z", - "iopub.status.idle": "2024-06-25T19:35:31.060546Z", - "shell.execute_reply": "2024-06-25T19:35:31.060026Z" + "iopub.execute_input": "2024-06-25T23:17:13.597922Z", + "iopub.status.busy": "2024-06-25T23:17:13.597476Z", + "iopub.status.idle": "2024-06-25T23:17:13.606785Z", + "shell.execute_reply": "2024-06-25T23:17:13.606218Z" } }, "outputs": [ @@ -1551,10 +1551,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.062742Z", - "iopub.status.busy": "2024-06-25T19:35:31.062469Z", - "iopub.status.idle": "2024-06-25T19:35:31.068251Z", - "shell.execute_reply": "2024-06-25T19:35:31.067801Z" + "iopub.execute_input": "2024-06-25T23:17:13.609099Z", + "iopub.status.busy": "2024-06-25T23:17:13.608903Z", + "iopub.status.idle": "2024-06-25T23:17:13.613602Z", + "shell.execute_reply": "2024-06-25T23:17:13.613147Z" }, "nbsphinx": "hidden" }, @@ -1600,10 +1600,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.070241Z", - "iopub.status.busy": "2024-06-25T19:35:31.069928Z", - "iopub.status.idle": "2024-06-25T19:35:31.828844Z", - "shell.execute_reply": "2024-06-25T19:35:31.828271Z" + "iopub.execute_input": "2024-06-25T23:17:13.615408Z", + "iopub.status.busy": "2024-06-25T23:17:13.615233Z", + "iopub.status.idle": "2024-06-25T23:17:14.118370Z", + "shell.execute_reply": "2024-06-25T23:17:14.117787Z" } }, "outputs": [ @@ -1638,10 +1638,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.831222Z", - "iopub.status.busy": "2024-06-25T19:35:31.830895Z", - "iopub.status.idle": "2024-06-25T19:35:31.839311Z", - "shell.execute_reply": "2024-06-25T19:35:31.838857Z" + "iopub.execute_input": "2024-06-25T23:17:14.120491Z", + "iopub.status.busy": "2024-06-25T23:17:14.120304Z", + "iopub.status.idle": "2024-06-25T23:17:14.128885Z", + "shell.execute_reply": "2024-06-25T23:17:14.128442Z" } }, "outputs": [ @@ -1808,10 +1808,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.841482Z", - "iopub.status.busy": "2024-06-25T19:35:31.841163Z", - "iopub.status.idle": "2024-06-25T19:35:31.848176Z", - "shell.execute_reply": "2024-06-25T19:35:31.847749Z" + "iopub.execute_input": "2024-06-25T23:17:14.131053Z", + "iopub.status.busy": "2024-06-25T23:17:14.130639Z", + "iopub.status.idle": "2024-06-25T23:17:14.433754Z", + "shell.execute_reply": "2024-06-25T23:17:14.433138Z" }, "nbsphinx": "hidden" }, @@ -1887,10 +1887,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.850195Z", - "iopub.status.busy": "2024-06-25T19:35:31.849881Z", - "iopub.status.idle": "2024-06-25T19:35:32.292692Z", - "shell.execute_reply": "2024-06-25T19:35:32.292043Z" + "iopub.execute_input": "2024-06-25T23:17:14.437185Z", + "iopub.status.busy": "2024-06-25T23:17:14.436581Z", + "iopub.status.idle": "2024-06-25T23:17:14.910179Z", + "shell.execute_reply": "2024-06-25T23:17:14.909590Z" } }, "outputs": [ @@ -1927,10 +1927,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.295116Z", - "iopub.status.busy": "2024-06-25T19:35:32.294759Z", - "iopub.status.idle": "2024-06-25T19:35:32.310913Z", - "shell.execute_reply": "2024-06-25T19:35:32.310451Z" + "iopub.execute_input": "2024-06-25T23:17:14.912393Z", + "iopub.status.busy": "2024-06-25T23:17:14.912024Z", + "iopub.status.idle": "2024-06-25T23:17:14.927515Z", + "shell.execute_reply": "2024-06-25T23:17:14.926933Z" } }, "outputs": [ @@ -2087,10 +2087,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.313089Z", - "iopub.status.busy": "2024-06-25T19:35:32.312752Z", - "iopub.status.idle": "2024-06-25T19:35:32.318396Z", - "shell.execute_reply": "2024-06-25T19:35:32.317860Z" + "iopub.execute_input": "2024-06-25T23:17:14.929547Z", + "iopub.status.busy": "2024-06-25T23:17:14.929372Z", + "iopub.status.idle": "2024-06-25T23:17:14.935923Z", + "shell.execute_reply": "2024-06-25T23:17:14.935427Z" }, "nbsphinx": "hidden" }, @@ -2135,10 +2135,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.320370Z", - "iopub.status.busy": "2024-06-25T19:35:32.320196Z", - "iopub.status.idle": "2024-06-25T19:35:32.779377Z", - "shell.execute_reply": "2024-06-25T19:35:32.778856Z" + "iopub.execute_input": "2024-06-25T23:17:14.937944Z", + "iopub.status.busy": "2024-06-25T23:17:14.937612Z", + "iopub.status.idle": "2024-06-25T23:17:15.400691Z", + "shell.execute_reply": "2024-06-25T23:17:15.399712Z" } }, "outputs": [ @@ -2220,10 +2220,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.782553Z", - "iopub.status.busy": "2024-06-25T19:35:32.782090Z", - "iopub.status.idle": "2024-06-25T19:35:32.791666Z", - "shell.execute_reply": "2024-06-25T19:35:32.790923Z" + "iopub.execute_input": "2024-06-25T23:17:15.403380Z", + "iopub.status.busy": "2024-06-25T23:17:15.403170Z", + "iopub.status.idle": "2024-06-25T23:17:15.412375Z", + "shell.execute_reply": "2024-06-25T23:17:15.411801Z" } }, "outputs": [ @@ -2248,47 +2248,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2351,10 +2351,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.794003Z", - "iopub.status.busy": "2024-06-25T19:35:32.793805Z", - "iopub.status.idle": "2024-06-25T19:35:32.799849Z", - "shell.execute_reply": "2024-06-25T19:35:32.799106Z" + "iopub.execute_input": "2024-06-25T23:17:15.414938Z", + "iopub.status.busy": "2024-06-25T23:17:15.414744Z", + "iopub.status.idle": "2024-06-25T23:17:15.420451Z", + "shell.execute_reply": "2024-06-25T23:17:15.419881Z" }, "nbsphinx": "hidden" }, @@ -2391,10 +2391,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.802393Z", - "iopub.status.busy": "2024-06-25T19:35:32.802198Z", - "iopub.status.idle": "2024-06-25T19:35:33.003653Z", - "shell.execute_reply": "2024-06-25T19:35:33.003206Z" + "iopub.execute_input": "2024-06-25T23:17:15.422902Z", + "iopub.status.busy": "2024-06-25T23:17:15.422710Z", + "iopub.status.idle": "2024-06-25T23:17:15.624779Z", + "shell.execute_reply": "2024-06-25T23:17:15.624291Z" } }, "outputs": [ @@ -2436,10 +2436,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:33.005778Z", - "iopub.status.busy": "2024-06-25T19:35:33.005613Z", - "iopub.status.idle": "2024-06-25T19:35:33.013113Z", - "shell.execute_reply": "2024-06-25T19:35:33.012647Z" + "iopub.execute_input": "2024-06-25T23:17:15.627227Z", + "iopub.status.busy": "2024-06-25T23:17:15.626865Z", + "iopub.status.idle": "2024-06-25T23:17:15.634605Z", + "shell.execute_reply": "2024-06-25T23:17:15.634166Z" } }, "outputs": [ @@ -2464,47 +2464,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2525,10 +2525,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:33.015062Z", - "iopub.status.busy": "2024-06-25T19:35:33.014721Z", - "iopub.status.idle": "2024-06-25T19:35:33.209360Z", - "shell.execute_reply": "2024-06-25T19:35:33.208767Z" + "iopub.execute_input": "2024-06-25T23:17:15.636681Z", + "iopub.status.busy": "2024-06-25T23:17:15.636363Z", + "iopub.status.idle": "2024-06-25T23:17:15.834587Z", + "shell.execute_reply": "2024-06-25T23:17:15.834003Z" } }, "outputs": [ @@ -2568,10 +2568,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:33.211913Z", - "iopub.status.busy": "2024-06-25T19:35:33.211538Z", - "iopub.status.idle": "2024-06-25T19:35:33.216052Z", - "shell.execute_reply": "2024-06-25T19:35:33.215616Z" + "iopub.execute_input": "2024-06-25T23:17:15.836769Z", + "iopub.status.busy": "2024-06-25T23:17:15.836460Z", + "iopub.status.idle": "2024-06-25T23:17:15.840847Z", + "shell.execute_reply": "2024-06-25T23:17:15.840296Z" }, "nbsphinx": "hidden" }, @@ -2608,7 +2608,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0011fb26fc5d4baa896547da4133122f": { + "003b69c44f834dd6bd767bd85d0282c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "01e9581b8f904ce9bd99cf2093d8e0b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2661,48 +2679,31 @@ "width": null } }, - "00644b1a57b2451e9cdebb4eb7250f78": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "007876448c144ee39084540ed6eb06b9": { + "02ef28fe5e5647e49f15e9889ac88c8f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5745328a69db48878efba6c4bdb99305", - "placeholder": "​", - "style": "IPY_MODEL_b54eac280dff4e5dbe0c1d2b48743535", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_17898a71a5eb4556a9c02c78df55aeb3", + "IPY_MODEL_aae89dad290345f5acc2526904d6d4e5", + "IPY_MODEL_18560e45d46d48bf99bbf1a153e2502c" + ], + "layout": "IPY_MODEL_22708ad181354289ac5fa640bd1c4121", "tabbable": null, - "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.45MB/s]" + "tooltip": null } }, - "0120148eaefd42fd9a38edc77bc35ac7": { + "0302bede64084627a211292664570913": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2720,7 +2721,7 @@ "text_color": null } }, - "0261398aaa894092b6eca7f630c39440": { + "040097e76c3b414292ef486207e132ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2773,113 +2774,76 @@ "width": null } }, - "031211ba610a4802b4a54cdf1bba56a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b9a030c7a18e43e0a9ade7e2489ba818", - "placeholder": "​", - "style": "IPY_MODEL_7824f895073b4989aabcc1118fe1e570", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "03ab3894bf4242d8999349575ac3ab13": { + "04bfeccaeea6416e98641eb5e663ae0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "03b60960744f469c8562f78a5948c4a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_46f3bc1415b94874ba19257d22e4bfed", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44210013b27e41639717a483f6daeb8c", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "0419dce41e82427eba5f201dcd3224ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fe37a821e1f04c6f9903e3722f9ab4c2", - "placeholder": "​", - "style": "IPY_MODEL_7f8b4b75f0c545ac966463807f510230", - "tabbable": null, - "tooltip": null, - "value": "100%" + "bar_color": null, + "description_width": "" } }, - "05b056eafe984430926b52278f208393": { - "model_module": "@jupyter-widgets/controls", + "08971fe179644eda8bcd42e21d601e92": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0637c05b667541e782a074923de85b45": { + "08fa3b07fef4433e8a950677af858234": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2894,39 +2858,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_74f4d829ffbb4508957bfb49f70fe734", + "layout": "IPY_MODEL_72b19493a1ca42c793bcda945b230961", "placeholder": "​", - "style": "IPY_MODEL_13a871b41cce4be6bd9b0c8fb1116aec", + "style": "IPY_MODEL_afdd5bafd5ba49909abaaef0bb7f6038", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.59it/s]" - } - }, - "09c8fb8f5f2945a4948b758b41efb311": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_031211ba610a4802b4a54cdf1bba56a7", - "IPY_MODEL_42fc637a41cf41029345fe4e9b68d6c9", - "IPY_MODEL_c1899c2c83a146b4b5eccb8d3c0892ae" - ], - "layout": "IPY_MODEL_44661251f61148bab2d1f3993f625718", - "tabbable": null, - "tooltip": null + "value": " 26.4M/26.4M [00:00<00:00, 114MB/s]" } }, - "0b157a2c7cf7434fbc4448eaf5ad92d7": { + "0ada4c3d2a88412599516fae13401849": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2942,48 +2882,7 @@ "description_width": "" } }, - "0d79223cae9246eaaa4f673e81a780a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0f7c857000414450bdc92196b4466489": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88408a65c5eb4eb48911a14aadbc74cf", - "placeholder": "​", - "style": "IPY_MODEL_26f5985a24fd4b3cb9fb40bc0c1b22a2", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "112a5fd388db49e4b8a0f9dffab06426": { + "0fc5778c044d4fcd9e8f745663d100c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3036,94 +2935,10 @@ "width": null } }, - "12693e79b18144d2be2b4b4399f4789e": { - "model_module": "@jupyter-widgets/controls", + "103b52da5fd24c24a14b4605ba5c3120": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf14a805f3944138b263cb978e9fcf8b", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_51c208e957a24da184c9f20ebc42f546", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "12da0c3d2bd5449dbb811de7fd8b2093": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "13a871b41cce4be6bd9b0c8fb1116aec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1585cf2dc2e448068ac19676773a2a4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_744802ca32e849ab9fea4e8e3861b154", - "IPY_MODEL_2cca5f207862410483ac41718382a443", - "IPY_MODEL_5b650c7c7114407ca633a6f913edbef2" - ], - "layout": "IPY_MODEL_90c7589ac13b443eb422dd2f647490a3", - "tabbable": null, - "tooltip": null - } - }, - "175a6c09ad6c4cbfbdd9543952ef9ffc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -3173,30 +2988,7 @@ "width": null } }, - "1a2d0d43f24f4a179401f7bde3fcbf11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ec23491fb0024cb8a1b7dfd205775551", - "placeholder": "​", - "style": "IPY_MODEL_8946f270b2954b22801e92ce10bf7c63", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "1b72621c613b4da3999f4f434c596d23": { + "10833dd9b558436e8141086cd6457744": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3249,82 +3041,49 @@ "width": null } }, - "1bb8a6dd435048b28340d4eac6730019": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c1f07c0e6cb7453cb234322863c6974b", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_494b87319f8d45ab8596d3cc2028f7f6", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "1c96211615924c808f262fae38d4ab01": { + "1141e88c1cd549c1ad36f5867b926978": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1b72621c613b4da3999f4f434c596d23", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b461446aa899462d865a83e0c727b5c5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7a70b6d736914713b75013fd280cd1fb", + "IPY_MODEL_233edc846cd2411699f747246a5c017b", + "IPY_MODEL_9b8b5db0d4ec47ae8f14fbae0720d3e0" + ], + "layout": "IPY_MODEL_32715003f9374a25a98d8e94a71e934d", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "1d5a9e2ed91b479f9781063cdce66b7e": { + "11828cd7a97146ac81748612b0601834": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4266637c8f4c47fbb4c9e7bd9cc2cabf", - "placeholder": "​", - "style": "IPY_MODEL_2047417b76614aad92d50e9d57fa28a2", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:06<00:00, 8928.67 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1f1d67e48a1c45258572b6fbf8ebe4e2": { + "11e93782fa6f464e9f6900e0c646f5cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3377,7 +3136,7 @@ "width": null } }, - "1fbec845f4cf42bb8efb9b83163e0b9b": { + "1232a69e4cd748539b2d4cdde35b417c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3430,25 +3189,60 @@ "width": null } }, - "2047417b76614aad92d50e9d57fa28a2": { - "model_module": "@jupyter-widgets/controls", + "12fb080c89ea44b788b8036e7c269e2e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2426b36b4bcd4538a7a1a6c6f443b609": { + "176f4fe537ab44709eed5f4771e5a748": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3501,67 +3295,48 @@ "width": null } }, - "26f5985a24fd4b3cb9fb40bc0c1b22a2": { + "17898a71a5eb4556a9c02c78df55aeb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a805af9f6458409cbfcf1ef1829794dc", + "placeholder": "​", + "style": "IPY_MODEL_7f159f23ebfd44699351ad51261161f4", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "2854eeec578a4c3e9a9828ec08c1652c": { + "17af51078a0c4c0f92db9850c8c773d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2a37f3b6e2e64eda9d5aad4e57bb6475": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1f1d67e48a1c45258572b6fbf8ebe4e2", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b58b8eff8e745eb9e937354fedb1807", - "tabbable": null, - "tooltip": null, - "value": 5148.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2c916b2e66ff458bae959988d3edfc7f": { + "18560e45d46d48bf99bbf1a153e2502c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3576,15 +3351,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0011fb26fc5d4baa896547da4133122f", + "layout": "IPY_MODEL_040097e76c3b414292ef486207e132ee", "placeholder": "​", - "style": "IPY_MODEL_9d3b7c0890814f2c9985eb79f97a04ac", + "style": "IPY_MODEL_0302bede64084627a211292664570913", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": " 40/40 [00:00<00:00, 60.88it/s]" } }, - "2cca5f207862410483ac41718382a443": { + "18e5b3625d2a4b3abbfea651a20eef56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3600,74 +3375,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ecde01d38be144db9d996498b953e5b4", - "max": 26421880.0, + "layout": "IPY_MODEL_01e9581b8f904ce9bd99cf2093d8e0b6", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_555d30c920d344059abb5d85084268de", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "2f9e9f6f7ebe42afa59802bdf7306ccb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "30a335f232c04fe7b668ed6a418d27b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3253c6b3e3464da88809a4ce236555f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_495d2ed12e8446bc80ad465a9f89a896", - "placeholder": "​", - "style": "IPY_MODEL_00644b1a57b2451e9cdebb4eb7250f78", + "style": "IPY_MODEL_293b9b52ffaa471e9c10ec006eefc31e", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.41it/s]" + "value": 40.0 } }, - "32b6d99a486e461eacd6e063c5420eff": { + "1a2ffe0f3d68433d9fc120a9b894e762": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3720,7 +3438,7 @@ "width": null } }, - "38eb030b83c64212b25df93cfe516570": { + "1cdb544e05fe49e5b616044f82615b00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3735,33 +3453,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_77b7d71484644232938d588a6fbcc4ed", + "layout": "IPY_MODEL_12fb080c89ea44b788b8036e7c269e2e", "placeholder": "​", - "style": "IPY_MODEL_cd436773aeeb4e5f811c805cd47f7071", + "style": "IPY_MODEL_2b67454e45604716a3d08831b42d274a", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "39314c631f444d01903b4f50ccfc66df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Downloading data: 100%" } }, - "420adb2a809a4b7693bda83cb040e60c": { + "1e4148a5a5464b22b94684bad558cbec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3814,86 +3514,49 @@ "width": null } }, - "4266637c8f4c47fbb4c9e7bd9cc2cabf": { - "model_module": "@jupyter-widgets/base", + "1e806f052f23419ba6ec80aa76644ed5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1cdb544e05fe49e5b616044f82615b00", + "IPY_MODEL_b602e59393ab410ba774d7c2419c556d", + "IPY_MODEL_d6337601ed54490eb0d452da36303706" + ], + "layout": "IPY_MODEL_1a2ffe0f3d68433d9fc120a9b894e762", + "tabbable": null, + "tooltip": null } }, - "4268b194fef1470096c0d165c23da82f": { + "1f7f1fac2dd34d07b7fc07f799729df6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b218eb25d1544b2198406c8d0daa0439", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_53d0e7a8e50247a88566f4b59b14d553", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "42c998dc50734d8c93d723bb78939244": { + "20376214a3ff45e29c894539ac53a963": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3946,109 +3609,30 @@ "width": null } }, - "42e73c1ad6b74b238d722d1c7ee516b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "42fc637a41cf41029345fe4e9b68d6c9": { + "20aa2cb116fa42218107305be2c9121a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_175a6c09ad6c4cbfbdd9543952ef9ffc", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0b157a2c7cf7434fbc4448eaf5ad92d7", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "434f1175a8614296b63392ddd951670e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "44210013b27e41639717a483f6daeb8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4439d6c4067d42b2bc7b5b49e651de05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_70c9b3de67694dc4a8c38a542842ae3c", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2854eeec578a4c3e9a9828ec08c1652c", + "layout": "IPY_MODEL_dd549dafe96d457a9f3e32fa6dda0ce5", + "placeholder": "​", + "style": "IPY_MODEL_6f6e9c74347e4652b414406bd4c67238", "tabbable": null, "tooltip": null, - "value": 4.0 + "value": " 29.5k/29.5k [00:00<00:00, 4.38MB/s]" } }, - "44661251f61148bab2d1f3993f625718": { + "20e8c6a9ab644e3da69655bfbc794894": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4101,7 +3685,33 @@ "width": null } }, - "46692e2429834f6b8ad6d2e3bd669ac5": { + "2253900d1539484ea6c5fb5f87e34fae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8b39eaec8f5843a3942f7b65e5320363", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e675357d5efc42b3968d61c273ca5f7f", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "22708ad181354289ac5fa640bd1c4121": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4154,7 +3764,7 @@ "width": null } }, - "46f3bc1415b94874ba19257d22e4bfed": { + "22e4e1da97fe49e290e9dac292880148": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4207,7 +3817,127 @@ "width": null } }, - "470cbbcbb3d44bb493031e8387fe6adc": { + "22ece7076054425f8784c9f44cd9c512": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "231c040b6a13479f944b5bef41c9994a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "233edc846cd2411699f747246a5c017b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_816719582fe14c11a648b648bb9e2cbb", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_474d936989bb4423af34fd74a8db3b23", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "293b9b52ffaa471e9c10ec006eefc31e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2a3f5349b34148209445198c9ae64559": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bf0ad0d606f04b7aa5013f43b6f32049", + "IPY_MODEL_5788b965507d455ca17eabfc155de530", + "IPY_MODEL_453bcb1f0a7e4e41aa72dab72cbeed75" + ], + "layout": "IPY_MODEL_10833dd9b558436e8141086cd6457744", + "tabbable": null, + "tooltip": null + } + }, + "2b67454e45604716a3d08831b42d274a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2bf71c3624ce4413bc347a20e07c26d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4260,23 +3990,31 @@ "width": null } }, - "494b87319f8d45ab8596d3cc2028f7f6": { + "2c1834764c78450699f4a69ba292fe8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c6eb4afdd2a54d899795e4359d8c989d", + "IPY_MODEL_caabab78e31d438eb521e9c3f2e1c0a6", + "IPY_MODEL_e9b9c9bbe0374dd9b98a3a4c1553822f" + ], + "layout": "IPY_MODEL_20376214a3ff45e29c894539ac53a963", + "tabbable": null, + "tooltip": null } }, - "495d2ed12e8446bc80ad465a9f89a896": { + "2d69655ca2a545e9a4b05f6865cdf2a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4329,7 +4067,53 @@ "width": null } }, - "4b1c1c0a8eb2477b91cae9a52c47e58c": { + "307355aaf24e41138019598af025ac1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_715dab8821f5465eade13b7f8765ed47", + "placeholder": "​", + "style": "IPY_MODEL_71217b3eed354f73861bde4bfaf66ffd", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1535.58it/s]" + } + }, + "311422b25c3d435280a7ae2e6c1b5cbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_485dd48b720d4e1dbfce8f76953b154e", + "placeholder": "​", + "style": "IPY_MODEL_8c6b20c613cf48bd9f826dbeb5124369", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "32715003f9374a25a98d8e94a71e934d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4382,7 +4166,7 @@ "width": null } }, - "4b9e51775e974654a075cfdb1d1b699c": { + "32d10bf33ee54d2bac909d0748596dac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4435,25 +4219,7 @@ "width": null } }, - "4cfef00083ee41c18334522b0aaafbf6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4d2025fc902f41b2b7c3474d4e9cd2fb": { + "3590fcc9756749e0b9130b8809114216": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4468,16 +4234,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2c916b2e66ff458bae959988d3edfc7f", - "IPY_MODEL_f3a3a4eba3674c53882dfe2a1c081653", - "IPY_MODEL_1d5a9e2ed91b479f9781063cdce66b7e" + "IPY_MODEL_9c8e988dcc76462ea4a6543f9f1dd759", + "IPY_MODEL_61530f93052c4966a3ed9c90ec90c547", + "IPY_MODEL_3c58f7da1e954e5f85811b8c931dddf3" ], - "layout": "IPY_MODEL_e7dae7ac77284ca7a938a5140aea14ba", + "layout": "IPY_MODEL_839cc7aeb6cf41cba2328b772dda1354", "tabbable": null, "tooltip": null } }, - "4f814c4fdc474d7e8305f032c2caaf1d": { + "37059badcffc423fbad95494b9745859": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4492,81 +4258,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7437bf57da394059a3d162f5d7a1a77a", + "layout": "IPY_MODEL_50aef71653f04eb49e220d1870cbf7ff", "placeholder": "​", - "style": "IPY_MODEL_434f1175a8614296b63392ddd951670e", + "style": "IPY_MODEL_eb33301487694b0f9f4a664fce743134", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "51c208e957a24da184c9f20ebc42f546": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "53d0e7a8e50247a88566f4b59b14d553": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "555d30c920d344059abb5d85084268de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "569d3453747c444a9c2661732c8b1fb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/60000 [00:06<00:00, 8813.66 examples/s]" } }, - "5745328a69db48878efba6c4bdb99305": { + "373768b5fd4c42118d61459d55c65ad2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4619,7 +4319,46 @@ "width": null } }, - "594f571cc61a464d8934a2a6ebaff1ed": { + "3764b604f5ba43288217fe3f4372b542": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3779e0b1881642b8b80007dfa03126bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e4148a5a5464b22b94684bad558cbec", + "placeholder": "​", + "style": "IPY_MODEL_885a1c18bad74f47ae49ef86de2c3a67", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "38bd0231f7c34338a8ccd2536adb5809": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4672,7 +4411,48 @@ "width": null } }, - "5a36ed53de5c4a9c8637a7b4013dfb54": { + "3c58f7da1e954e5f85811b8c931dddf3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d8441cb494324dad83d4a88dd3c805e6", + "placeholder": "​", + "style": "IPY_MODEL_3e99f4f8639445f0810c65d14dccca89", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 906kB/s]" + } + }, + "3c76ee6a2244430cbb3e8e8416d1a23c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3e86a20ac6b044d4adccfeaba4245d25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4725,86 +4505,77 @@ "width": null } }, - "5b650c7c7114407ca633a6f913edbef2": { + "3e99f4f8639445f0810c65d14dccca89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6b409257aab47b888b2954d7b04073e", - "placeholder": "​", - "style": "IPY_MODEL_d067169b2a1745bd893cbaa56705df57", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 124MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5c565e132b5a46d398435caf4df461d4": { + "40e314c496664e698c489a3f5c279e1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4f814c4fdc474d7e8305f032c2caaf1d", - "IPY_MODEL_bb91a65b9f7c4bcbae0545c6e0c0c603", - "IPY_MODEL_e39cdb7fe88f4310bfd8b1dcd8ac5ae2" - ], - "layout": "IPY_MODEL_a7668c39f7324f3abf6dee2fb270336f", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_08971fe179644eda8bcd42e21d601e92", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0ada4c3d2a88412599516fae13401849", "tabbable": null, - "tooltip": null - } - }, - "5c5b477c793d4588a25705aece5a2a2e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": 10000.0 } }, - "5d69e819f44b493a8d07e58cb39a6a69": { + "41aa359adc6640ab9d5ea2369493623a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4ae6fd916d6d470190a53d061fb0b02f", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_63f97e8188cb4370abab083114492da0", + "tabbable": null, + "tooltip": null, + "value": 8845.0 } }, - "5efe1df058ed48ae9674a8448d855c64": { + "4251756ae8d344e8923025afa5b3be9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4857,31 +4628,23 @@ "width": null } }, - "63e4117109d44d79bcece5146781039a": { + "42c5eeb19b2a4542b4159e63110273e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eb56ed8bd1a74a87a2a7cf25c0992594", - "IPY_MODEL_ee448c322caa4ddbae258419893e01e8", - "IPY_MODEL_3253c6b3e3464da88809a4ce236555f1" - ], - "layout": "IPY_MODEL_659e46eb96e64415a9a947aea4256de6", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6566ace6c0aa4a21abbf6d708cb457b0": { + "42f688e5fa0a4f698ca681a4433e115d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4934,7 +4697,7 @@ "width": null } }, - "659e46eb96e64415a9a947aea4256de6": { + "431d46eafa8c450b8c8f1bf1f7883cf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4987,7 +4750,7 @@ "width": null } }, - "670532c752594999bbc5db2f86da0bfa": { + "4536c7080de841acaaec729cdf955c0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5040,51 +4803,70 @@ "width": null } }, - "67bb2dfe0bed499ea09cbd03e6cf7fd1": { + "453bcb1f0a7e4e41aa72dab72cbeed75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_470cbbcbb3d44bb493031e8387fe6adc", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_42e73c1ad6b74b238d722d1c7ee516b1", + "layout": "IPY_MODEL_103b52da5fd24c24a14b4605ba5c3120", + "placeholder": "​", + "style": "IPY_MODEL_9d8907e922884b4c98182bd90146f805", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 60.08it/s]" } }, - "6b4971a3c52247978439a6e52e61bca9": { + "46c5f1e4a9ca403d83a2aa33da63b600": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_667ac6e91c614fc09ad352122a696161", + "IPY_MODEL_59358b3c018e40c1b73065b80810af12", + "IPY_MODEL_08fa3b07fef4433e8a950677af858234" + ], + "layout": "IPY_MODEL_4251756ae8d344e8923025afa5b3be9a", + "tabbable": null, + "tooltip": null + } + }, + "474d936989bb4423af34fd74a8db3b23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6bf38f634a0d459bbfabdc8331eb6e3b": { + "485dd48b720d4e1dbfce8f76953b154e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5137,60 +4919,49 @@ "width": null } }, - "70c9b3de67694dc4a8c38a542842ae3c": { - "model_module": "@jupyter-widgets/base", + "489746a2a7db4406b7ebfd5f2a155361": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ae4bdbf2d6494345acc4f7003fcd9cd9", + "IPY_MODEL_dd4b960c1fc54808ac7ec7abfbe1ccbc", + "IPY_MODEL_37059badcffc423fbad95494b9745859" + ], + "layout": "IPY_MODEL_73593795a4ac4b21a0677dccf1a525cb", + "tabbable": null, + "tooltip": null + } + }, + "4a74983359df462095cf64e3c2706a4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "71c3b5aba9c94572b460be6639753985": { + "4ae6fd916d6d470190a53d061fb0b02f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5243,7 +5014,23 @@ "width": null } }, - "720932772aa64aba973045693c189137": { + "4d2f1756b094437bb3ff9f30ea93cbb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4de2163b87c545ed89dfc257d6a7e304": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5296,7 +5083,7 @@ "width": null } }, - "7437bf57da394059a3d162f5d7a1a77a": { + "50aef71653f04eb49e220d1870cbf7ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5349,7 +5136,7 @@ "width": null } }, - "744802ca32e849ab9fea4e8e3861b154": { + "52638684784d4b5fb05e436a7f614243": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5364,38 +5151,107 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f19d1922e1974c3fa19988e4d4701f69", + "layout": "IPY_MODEL_ed7068ef4b08440eaae3bd1ba5cca147", "placeholder": "​", - "style": "IPY_MODEL_f924af4748c740ce948540ad741071d9", + "style": "IPY_MODEL_91c032ac4bfb4eceba18d1021672143e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 4.83k/4.83k [00:00<00:00, 586kB/s]" } }, - "74a2396570a8494a948c33421fd20593": { + "55c0a386d760485f92009bb75259396b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ed6f311b0f784e268d2c2f765d55a94a", + "IPY_MODEL_9e8ad22d82bc455da31ccd997a15763c", + "IPY_MODEL_307355aaf24e41138019598af025ac1b" + ], + "layout": "IPY_MODEL_1232a69e4cd748539b2d4cdde35b417c", + "tabbable": null, + "tooltip": null + } + }, + "5788b965507d455ca17eabfc155de530": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_32b6d99a486e461eacd6e063c5420eff", - "placeholder": "​", - "style": "IPY_MODEL_8ec14b76495d43b599a2c06778d3e9c7", + "layout": "IPY_MODEL_b37bca5ee3994510a0c5bf88495f1a10", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6c1210fd37c047b69d6bb77d7a585576", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "59358b3c018e40c1b73065b80810af12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6b3ea7da7caf4dc294c20842ed8cac54", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3764b604f5ba43288217fe3f4372b542", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:35<00:00, 1632.10it/s]" + "value": 26421880.0 + } + }, + "5a5ab3c1640f48e7953b2212cf787f29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "74f4d829ffbb4508957bfb49f70fe734": { + "5aed3d8999204da4abd99966f9859da8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5448,7 +5304,7 @@ "width": null } }, - "757e89f53d174fc6b18a1a8380eb5700": { + "5c2cc530fc7746919e9df959510c6dc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5501,23 +5357,51 @@ "width": null } }, - "778338997ef84774b5fc1b3e363f63c9": { + "5cbd075f38af4a35bd49255f7c6854c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "61530f93052c4966a3ed9c90ec90c547": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0fc5778c044d4fcd9e8f745663d100c5", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bbcf2512f0a048e99a7d2ad46cb7b594", + "tabbable": null, + "tooltip": null, + "value": 5148.0 } }, - "77b7d71484644232938d588a6fbcc4ed": { + "629ccac58fe74198b172012097674576": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5570,102 +5454,69 @@ "width": null } }, - "7824f895073b4989aabcc1118fe1e570": { + "63e3c00666534cf78aef58362ab798ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8abe4aff024b461ea93d3d85dd84f1f7", + "placeholder": "​", + "style": "IPY_MODEL_5cbd075f38af4a35bd49255f7c6854c3", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "789ca2ff29a44242935c400b234b1969": { - "model_module": "@jupyter-widgets/base", + "63f97e8188cb4370abab083114492da0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "79a15df271d14bfa8e4ed6dbe1c37a8a": { + "667ac6e91c614fc09ad352122a696161": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0f7c857000414450bdc92196b4466489", - "IPY_MODEL_2a37f3b6e2e64eda9d5aad4e57bb6475", - "IPY_MODEL_beba078ac8d64eb893f533808fb9cfdd" - ], - "layout": "IPY_MODEL_1fbec845f4cf42bb8efb9b83163e0b9b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8852f488ece4717923d24f0f949869a", + "placeholder": "​", + "style": "IPY_MODEL_11828cd7a97146ac81748612b0601834", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "7a1637c606824542971bdd53178cb547": { + "6a96595df722450495b69e3d9407c566": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5683,7 +5534,7 @@ "text_color": null } }, - "7ea218ed3bac4e3fb0038d64392dab79": { + "6b3ea7da7caf4dc294c20842ed8cac54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5736,166 +5587,93 @@ "width": null } }, - "7f8b4b75f0c545ac966463807f510230": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "815effa183cf4ca4a7160696d4e9eb83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a36a0824e2bc4b84adf3d6f24bae08e7", - "IPY_MODEL_f05de778ce8641daad6aaad095cd0a12", - "IPY_MODEL_fa8ee62999bf48be85571066708c3a70" - ], - "layout": "IPY_MODEL_c22ca0c1ac314ae3b7526a4ab19f5d59", - "tabbable": null, - "tooltip": null - } - }, - "826306b901dc424696b95e114b1441ca": { + "6c1210fd37c047b69d6bb77d7a585576": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5efe1df058ed48ae9674a8448d855c64", - "placeholder": "​", - "style": "IPY_MODEL_569d3453747c444a9c2661732c8b1fb5", - "tabbable": null, - "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.61MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8310ed48648242c0a8109e15f13f0f84": { + "6c53714694714ec184a3175a51eca22d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf1140bdc30747b7875150c89a9b56d2", - "placeholder": "​", - "style": "IPY_MODEL_c9d9f8c0348541bc93ce2df33d9b1138", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1391.72it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "85af3d53abef4aa8a6046017943dc826": { + "6f6e9c74347e4652b414406bd4c67238": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f293407e061d47a9b2a576f458cfc91a", - "IPY_MODEL_67bb2dfe0bed499ea09cbd03e6cf7fd1", - "IPY_MODEL_0637c05b667541e782a074923de85b45" - ], - "layout": "IPY_MODEL_db5a222bfbda444ca14ba447f3de1c6b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "85c627e125a94180abe254acf928a1fc": { + "6fa798d1f46540b9bd3e051f98c21430": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0419dce41e82427eba5f201dcd3224ce", - "IPY_MODEL_fe9dd2d447a247b29fd9568449e4c772", - "IPY_MODEL_f1b29538d40a44f88d457938817aa9ca" - ], - "layout": "IPY_MODEL_ddf398ca235a4371928fa707d2edfab3", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "877f435c18c84cdb9acff7996168eee1": { + "71217b3eed354f73861bde4bfaf66ffd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ff64e02006ba4b3b90e1f252f3c58e25", - "placeholder": "​", - "style": "IPY_MODEL_8dcbfb9f172b4a8296952470fd844435", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "88408a65c5eb4eb48911a14aadbc74cf": { + "715dab8821f5465eade13b7f8765ed47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5948,25 +5726,7 @@ "width": null } }, - "8946f270b2954b22801e92ce10bf7c63": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "895c5faa034242eeb651e5c6bf3b1a51": { + "72b19493a1ca42c793bcda945b230961": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6019,7 +5779,7 @@ "width": null } }, - "8a47898db9234aa796ec7fb93a91d6e9": { + "73593795a4ac4b21a0677dccf1a525cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6072,25 +5832,7 @@ "width": null } }, - "8dcbfb9f172b4a8296952470fd844435": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8ec14b76495d43b599a2c06778d3e9c7": { + "7439b162e309483580266f93e7ac4add": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6108,7 +5850,7 @@ "text_color": null } }, - "90c7589ac13b443eb422dd2f647490a3": { + "7461d590e55e4b9389cb1fa4b8b01858": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6161,7 +5903,30 @@ "width": null } }, - "965ba01b14474336b39a9ed4b2b5dcb5": { + "7a70b6d736914713b75013fd280cd1fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5aed3d8999204da4abd99966f9859da8", + "placeholder": "​", + "style": "IPY_MODEL_003b69c44f834dd6bd767bd85d0282c1", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7b9f6a000ece4e85bd677afa0c44a483": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6176,15 +5941,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f984f1911a3a4d3d97fb914d1b6abbce", + "layout": "IPY_MODEL_a261db39bdb34321bc03d5b7cdb18bd6", "placeholder": "​", - "style": "IPY_MODEL_03ab3894bf4242d8999349575ac3ab13", + "style": "IPY_MODEL_4a74983359df462095cf64e3c2706a4b", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8813.96 examples/s]" + "value": " 40/40 [00:00<00:00, 61.37it/s]" } }, - "96d31dd7865d4b63adc5a9c556d6d472": { + "7ba456d195e144f7ba05947f8e466206": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6237,7 +6002,30 @@ "width": null } }, - "9a2bf66dd6c64060b9a09eaba40a26a8": { + "7c3c537f030046e892febf09fbb3953f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42f688e5fa0a4f698ca681a4433e115d", + "placeholder": "​", + "style": "IPY_MODEL_a034a2ade0914168baff132569eeeb46", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" + } + }, + "7defd4db8e0e4d9d806b06b0ad18bad9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6290,70 +6078,7 @@ "width": null } }, - "9abe31b01bc04cc89ff967d26e368fdf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1a2d0d43f24f4a179401f7bde3fcbf11", - "IPY_MODEL_e87b060be03d4626b55c248e0abe4a42", - "IPY_MODEL_007876448c144ee39084540ed6eb06b9" - ], - "layout": "IPY_MODEL_9a2bf66dd6c64060b9a09eaba40a26a8", - "tabbable": null, - "tooltip": null - } - }, - "9b58b8eff8e745eb9e937354fedb1807": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9bb5412853cd41ffb7c03f1615108a7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d69fd7a89a8640babdbb4265c990aff2", - "placeholder": "​", - "style": "IPY_MODEL_a40425de9d3b4923a12d5dfc419b6cf3", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "9c72cef284e84cdaa2856f28c3593985": { + "7f159f23ebfd44699351ad51261161f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6371,25 +6096,60 @@ "text_color": null } }, - "9d3b7c0890814f2c9985eb79f97a04ac": { - "model_module": "@jupyter-widgets/controls", + "816719582fe14c11a648b648bb9e2cbb": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9dd47964eda34050b58a0ab2b3415ef0": { + "839cc7aeb6cf41cba2328b772dda1354": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6442,7 +6202,7 @@ "width": null } }, - "9fb3ff4fed8c462793870fe1a08d713c": { + "83fe2423c4494c2b9394412c402eca60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6460,7 +6220,7 @@ "text_color": null } }, - "a36a0824e2bc4b84adf3d6f24bae08e7": { + "865a8adbaefe44eb930f2df86dcd3a25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6475,15 +6235,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_46692e2429834f6b8ad6d2e3bd669ac5", + "layout": "IPY_MODEL_f35f77b3dc2d4f87b2f6435eb17b5f51", "placeholder": "​", - "style": "IPY_MODEL_0120148eaefd42fd9a38edc77bc35ac7", + "style": "IPY_MODEL_231c040b6a13479f944b5bef41c9994a", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": "Map (num_proc=4): 100%" + } + }, + "8835da69dbeb4826a96baa0561232a18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f99e5e0dbb254dd0a57ef096794a0277", + "IPY_MODEL_9444514d4589415d940c94d2a40f0c7a", + "IPY_MODEL_7b9f6a000ece4e85bd677afa0c44a483" + ], + "layout": "IPY_MODEL_8a730989a49141659124fe8758fe6b9f", + "tabbable": null, + "tooltip": null } }, - "a40425de9d3b4923a12d5dfc419b6cf3": { + "885a1c18bad74f47ae49ef86de2c3a67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6501,7 +6285,7 @@ "text_color": null } }, - "a67a308439454f8eb0f02917f9c68472": { + "8a730989a49141659124fe8758fe6b9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6554,25 +6338,7 @@ "width": null } }, - "a75ebf7ef9174d5e9cc59c872badcf44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a7668c39f7324f3abf6dee2fb270336f": { + "8abe4aff024b461ea93d3d85dd84f1f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6625,55 +6391,7 @@ "width": null } }, - "a9c34fb99987402ba4f521a988475574": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d76da02ff0a84d74ad2c21a60fdbf6a8", - "IPY_MODEL_12693e79b18144d2be2b4b4399f4789e", - "IPY_MODEL_826306b901dc424696b95e114b1441ca" - ], - "layout": "IPY_MODEL_594f571cc61a464d8934a2a6ebaff1ed", - "tabbable": null, - "tooltip": null - } - }, - "abcdd0c8b869449f849ce66d0123d168": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c336f45d284843d786cfce257d33793c", - "IPY_MODEL_4439d6c4067d42b2bc7b5b49e651de05", - "IPY_MODEL_8310ed48648242c0a8109e15f13f0f84" - ], - "layout": "IPY_MODEL_cb33ab7c5bf847199febe8a7955b0a6b", - "tabbable": null, - "tooltip": null - } - }, - "af23bba915a74358b250ef2bb1a7d577": { + "8b39eaec8f5843a3942f7b65e5320363": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6726,7 +6444,25 @@ "width": null } }, - "b218eb25d1544b2198406c8d0daa0439": { + "8c6b20c613cf48bd9f826dbeb5124369": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8ce5df9efdba4fd1bad996ee729dec94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6779,23 +6515,25 @@ "width": null } }, - "b461446aa899462d865a83e0c727b5c5": { + "91c032ac4bfb4eceba18d1021672143e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b496abba866a4243bc5d3e643a27bfaa": { + "91e935457d624042a2d02c107985c146": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6810,57 +6548,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5a36ed53de5c4a9c8637a7b4013dfb54", + "layout": "IPY_MODEL_3e86a20ac6b044d4adccfeaba4245d25", "placeholder": "​", - "style": "IPY_MODEL_c5dd4307fb0e435f9e6eecf7eba58ea3", + "style": "IPY_MODEL_e522f4fa76294f30ae3dc6a49425837b", "tabbable": null, "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 604kB/s]" - } - }, - "b54eac280dff4e5dbe0c1d2b48743535": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 65.93it/s]" } }, - "b56125fc059b47e3b228dc3ed3b629c0": { + "92f49f3012f849ceaece9962b9690310": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_38eb030b83c64212b25df93cfe516570", - "IPY_MODEL_1c96211615924c808f262fae38d4ab01", - "IPY_MODEL_bed8037a62494179a7e38b4603feef04" - ], - "layout": "IPY_MODEL_8a47898db9234aa796ec7fb93a91d6e9", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_373768b5fd4c42118d61459d55c65ad2", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d3230f794b7e47c9beebfa7400ee3522", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 29515.0 } }, - "b9a030c7a18e43e0a9ade7e2489ba818": { + "92fcc9156b2a48328c1fb11582bdbb81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6913,23 +6635,7 @@ "width": null } }, - "bb0480efe0bc4bd3801a7f7315323cf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bb91a65b9f7c4bcbae0545c6e0c0c603": { + "9444514d4589415d940c94d2a40f0c7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6945,17 +6651,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_757e89f53d174fc6b18a1a8380eb5700", + "layout": "IPY_MODEL_7ba456d195e144f7ba05947f8e466206", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_05b056eafe984430926b52278f208393", + "style": "IPY_MODEL_d837ff833a594ea2b02ce7f7523c9dcd", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "bdbb1b6b96824b1ba8715b85852886fe": { + "99fb59566db2452bab382261d05e2879": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6970,16 +6676,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_877f435c18c84cdb9acff7996168eee1", - "IPY_MODEL_03b60960744f469c8562f78a5948c4a9", - "IPY_MODEL_965ba01b14474336b39a9ed4b2b5dcb5" + "IPY_MODEL_63e3c00666534cf78aef58362ab798ef", + "IPY_MODEL_bee58d3e475246fba7aa8b971564b1a7", + "IPY_MODEL_52638684784d4b5fb05e436a7f614243" ], - "layout": "IPY_MODEL_4b1c1c0a8eb2477b91cae9a52c47e58c", + "layout": "IPY_MODEL_dbc28ec812a84d3f80f20f8fcab2939a", "tabbable": null, "tooltip": null } }, - "beba078ac8d64eb893f533808fb9cfdd": { + "9b8b5db0d4ec47ae8f14fbae0720d3e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6994,38 +6700,142 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_789ca2ff29a44242935c400b234b1969", + "layout": "IPY_MODEL_d1333e62f1304c11beca8dd72e8aa9f9", "placeholder": "​", - "style": "IPY_MODEL_0d79223cae9246eaaa4f673e81a780a8", + "style": "IPY_MODEL_c2680fc6a8544c869d7830d31ed37cea", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 823kB/s]" + "value": " 40/40 [00:00<00:00, 59.41it/s]" } }, - "bed8037a62494179a7e38b4603feef04": { + "9c8e988dcc76462ea4a6543f9f1dd759": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "_dom_classes": [], + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f08b9948f05248b3b3ef10bd15ffc7d8", + "placeholder": "​", + "style": "IPY_MODEL_bcf73aedcb8442be80cd3903dca5729d", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "9d8907e922884b4c98182bd90146f805": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9e8ad22d82bc455da31ccd997a15763c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b9a6301405d54fc48fe5e9c1fcb3ff2f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4d2f1756b094437bb3ff9f30ea93cbb2", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "9f427bf1023e48e693afcd4ee468c279": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9f7de506f89c48b29c2cbb938a4e7210": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7461d590e55e4b9389cb1fa4b8b01858", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_42c5eeb19b2a4542b4159e63110273e4", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "a034a2ade0914168baff132569eeeb46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af23bba915a74358b250ef2bb1a7d577", - "placeholder": "​", - "style": "IPY_MODEL_4cfef00083ee41c18334522b0aaafbf6", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.66it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bf1140bdc30747b7875150c89a9b56d2": { + "a261db39bdb34321bc03d5b7cdb18bd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7078,7 +6888,48 @@ "width": null } }, - "bf14a805f3944138b263cb978e9fcf8b": { + "a3d6f09afbca4e6482b56fd6d71d9b25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a518055f2d994914bf1de3d11ea03a82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c32f5e002a7a4c4ea804958d4deec82a", + "placeholder": "​", + "style": "IPY_MODEL_f332684f2b70406ab76c95d24f2f40ed", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "a805af9f6458409cbfcf1ef1829794dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7131,7 +6982,33 @@ "width": null } }, - "c1899c2c83a146b4b5eccb8d3c0892ae": { + "aae89dad290345f5acc2526904d6d4e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_38bd0231f7c34338a8ccd2536adb5809", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c78a7456a9d940dd9a6d4e769ce24dc3", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "ae4bdbf2d6494345acc4f7003fcd9cd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7146,15 +7023,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9dd47964eda34050b58a0ab2b3415ef0", + "layout": "IPY_MODEL_32d10bf33ee54d2bac909d0748596dac", "placeholder": "​", - "style": "IPY_MODEL_da7255e4a0a1407392cd379cdb23eb3c", + "style": "IPY_MODEL_bfc04f78f5024cc4b45fce30bcc4e7b2", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.06it/s]" + "value": "Generating train split: 100%" + } + }, + "afdd5bafd5ba49909abaaef0bb7f6038": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c1f07c0e6cb7453cb234322863c6974b": { + "b37bca5ee3994510a0c5bf88495f1a10": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7207,7 +7102,25 @@ "width": null } }, - "c22ca0c1ac314ae3b7526a4ab19f5d59": { + "b45281dbfb444428b286e76808d4a658": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b5852aa7675d4ad7ab4bb8a846b7eead": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7260,48 +7173,33 @@ "width": null } }, - "c336f45d284843d786cfce257d33793c": { + "b602e59393ab410ba774d7c2419c556d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_670532c752594999bbc5db2f86da0bfa", - "placeholder": "​", - "style": "IPY_MODEL_9fb3ff4fed8c462793870fe1a08d713c", + "layout": "IPY_MODEL_2d69655ca2a545e9a4b05f6865cdf2a8", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9f427bf1023e48e693afcd4ee468c279", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "c5dd4307fb0e435f9e6eecf7eba58ea3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 4422102.0 } }, - "c63bcc18843a48cd9b4c1b91951a299e": { + "b6bcf233e0084809823abddff92adea2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7316,15 +7214,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_71c3b5aba9c94572b460be6639753985", + "layout": "IPY_MODEL_4de2163b87c545ed89dfc257d6a7e304", "placeholder": "​", - "style": "IPY_MODEL_7a1637c606824542971bdd53178cb547", + "style": "IPY_MODEL_7439b162e309483580266f93e7ac4add", "tabbable": null, "tooltip": null, - "value": "Downloading builder script: 100%" + "value": " 8.85k/8.85k [00:00<00:00, 1.46MB/s]" } }, - "c6b17708d8404f668a926cfeef0a478f": { + "b9a6301405d54fc48fe5e9c1fcb3ff2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7377,25 +7275,47 @@ "width": null } }, - "c8922b8978bf4fc58458e70640f1b5c5": { + "b9c41de7ac0442aabfb15bbf3b5308c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3779e0b1881642b8b80007dfa03126bb", + "IPY_MODEL_40e314c496664e698c489a3f5c279e1c", + "IPY_MODEL_c6f60e04093c46f981b6f7b80f94e2d4" + ], + "layout": "IPY_MODEL_d6092c5dc4c74213a968d6db282bed10", + "tabbable": null, + "tooltip": null + } + }, + "bbcf2512f0a048e99a7d2ad46cb7b594": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c9d9f8c0348541bc93ce2df33d9b1138": { + "bcf73aedcb8442be80cd3903dca5729d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7413,78 +7333,56 @@ "text_color": null } }, - "cb33ab7c5bf847199febe8a7955b0a6b": { - "model_module": "@jupyter-widgets/base", + "bee58d3e475246fba7aa8b971564b1a7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b5852aa7675d4ad7ab4bb8a846b7eead", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a5ab3c1640f48e7953b2212cf787f29", + "tabbable": null, + "tooltip": null, + "value": 4833.0 } }, - "cd436773aeeb4e5f811c805cd47f7071": { + "bf0ad0d606f04b7aa5013f43b6f32049": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4536c7080de841acaaec729cdf955c0a", + "placeholder": "​", + "style": "IPY_MODEL_6a96595df722450495b69e3d9407c566", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "d067169b2a1745bd893cbaa56705df57": { + "bfc04f78f5024cc4b45fce30bcc4e7b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7502,7 +7400,7 @@ "text_color": null } }, - "d10a94f6f1994a14b0ce8071ec84d170": { + "c1f41731ec4247e3ab4c57371cd20bf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7555,7 +7453,25 @@ "width": null } }, - "d50d3c5c4ecd49cfbbcb44e787a993ba": { + "c2680fc6a8544c869d7830d31ed37cea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c32f5e002a7a4c4ea804958d4deec82a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7608,7 +7524,53 @@ "width": null } }, - "d65cb8246aa14189b49a0eeae6f3bad0": { + "c6eb4afdd2a54d899795e4359d8c989d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c2cc530fc7746919e9df959510c6dc7", + "placeholder": "​", + "style": "IPY_MODEL_22ece7076054425f8784c9f44cd9c512", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "c6f60e04093c46f981b6f7b80f94e2d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_92fcc9156b2a48328c1fb11582bdbb81", + "placeholder": "​", + "style": "IPY_MODEL_e06347bb350642c28c5755357c9f6b4f", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8738.82 examples/s]" + } + }, + "c75b1e8b04fc4bbe8b789d1cfa5fe576": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7623,16 +7585,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ee7c6e7d3d1b43138e41e0146c75cd98", - "IPY_MODEL_4268b194fef1470096c0d165c23da82f", - "IPY_MODEL_74a2396570a8494a948c33421fd20593" + "IPY_MODEL_d8736cab840549168545a3a77aa8e714", + "IPY_MODEL_9f7de506f89c48b29c2cbb938a4e7210", + "IPY_MODEL_dc708bb2c5314b17862c251eeb9db099" ], - "layout": "IPY_MODEL_d10a94f6f1994a14b0ce8071ec84d170", + "layout": "IPY_MODEL_22e4e1da97fe49e290e9dac292880148", "tabbable": null, "tooltip": null } }, - "d69fd7a89a8640babdbb4265c990aff2": { + "c78a7456a9d940dd9a6d4e769ce24dc3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c82a1f05b0ec418a9670fcf0e44708f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7685,7 +7663,7 @@ "width": null } }, - "d6b409257aab47b888b2954d7b04073e": { + "c8e6913e68754e7a9e614de447103505": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7738,101 +7716,81 @@ "width": null } }, - "d76da02ff0a84d74ad2c21a60fdbf6a8": { + "caabab78e31d438eb521e9c3f2e1c0a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2426b36b4bcd4538a7a1a6c6f443b609", - "placeholder": "​", - "style": "IPY_MODEL_c8922b8978bf4fc58458e70640f1b5c5", + "layout": "IPY_MODEL_c1f41731ec4247e3ab4c57371cd20bf3", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6fa798d1f46540b9bd3e051f98c21430", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 40.0 } }, - "da7255e4a0a1407392cd379cdb23eb3c": { + "cacaca4358c34e93a46a3e2019d188d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7c3c537f030046e892febf09fbb3953f", + "IPY_MODEL_41aa359adc6640ab9d5ea2369493623a", + "IPY_MODEL_b6bcf233e0084809823abddff92adea2" + ], + "layout": "IPY_MODEL_fb9b135b97bd45978b3759750aac7be4", + "tabbable": null, + "tooltip": null } }, - "db5a222bfbda444ca14ba447f3de1c6b": { - "model_module": "@jupyter-widgets/base", + "cc7010cd50844e48a3db713a6ea5f850": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_311422b25c3d435280a7ae2e6c1b5cbc", + "IPY_MODEL_92f49f3012f849ceaece9962b9690310", + "IPY_MODEL_20aa2cb116fa42218107305be2c9121a" + ], + "layout": "IPY_MODEL_20e8c6a9ab644e3da69655bfbc794894", + "tabbable": null, + "tooltip": null } }, - "ddf398ca235a4371928fa707d2edfab3": { + "d1333e62f1304c11beca8dd72e8aa9f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7885,30 +7843,23 @@ "width": null } }, - "e0619bd42a814114974327c4c92cbc96": { + "d3230f794b7e47c9beebfa7400ee3522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6566ace6c0aa4a21abbf6d708cb457b0", - "placeholder": "​", - "style": "IPY_MODEL_e45644a5a73d43e8a12aaa8ea0e71934", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:10<00:00, 7472.24 examples/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e2caa9efa27847b7b3dd441f4a803cb2": { + "d6092c5dc4c74213a968d6db282bed10": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7961,7 +7912,7 @@ "width": null } }, - "e39cdb7fe88f4310bfd8b1dcd8ac5ae2": { + "d6337601ed54490eb0d452da36303706": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7976,33 +7927,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_720932772aa64aba973045693c189137", + "layout": "IPY_MODEL_c8e6913e68754e7a9e614de447103505", "placeholder": "​", - "style": "IPY_MODEL_39314c631f444d01903b4f50ccfc66df", + "style": "IPY_MODEL_6c53714694714ec184a3175a51eca22d", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.47it/s]" + "value": " 4.42M/4.42M [00:00<00:00, 95.7MB/s]" } }, - "e45644a5a73d43e8a12aaa8ea0e71934": { + "d837ff833a594ea2b02ce7f7523c9dcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "e7dae7ac77284ca7a938a5140aea14ba": { + "d8441cb494324dad83d4a88dd3c805e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8055,57 +8004,7 @@ "width": null } }, - "e85af83531bc4182b052d4cfe7f1020e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c63bcc18843a48cd9b4c1b91951a299e", - "IPY_MODEL_f0a66657e7724cf4a18612d673b0df8e", - "IPY_MODEL_b496abba866a4243bc5d3e643a27bfaa" - ], - "layout": "IPY_MODEL_420adb2a809a4b7693bda83cb040e60c", - "tabbable": null, - "tooltip": null - } - }, - "e87b060be03d4626b55c248e0abe4a42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0261398aaa894092b6eca7f630c39440", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5d69e819f44b493a8d07e58cb39a6a69", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "eb56ed8bd1a74a87a2a7cf25c0992594": { + "d8736cab840549168545a3a77aa8e714": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8120,15 +8019,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b9e51775e974654a075cfdb1d1b699c", + "layout": "IPY_MODEL_11e93782fa6f464e9f6900e0c646f5cf", "placeholder": "​", - "style": "IPY_MODEL_a75ebf7ef9174d5e9cc59c872badcf44", + "style": "IPY_MODEL_83fe2423c4494c2b9394412c402eca60", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Computing checksums: 100%" } }, - "ec23491fb0024cb8a1b7dfd205775551": { + "dbc28ec812a84d3f80f20f8fcab2939a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8181,7 +8080,56 @@ "width": null } }, - "ecde01d38be144db9d996498b953e5b4": { + "dc708bb2c5314b17862c251eeb9db099": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c82a1f05b0ec418a9670fcf0e44708f1", + "placeholder": "​", + "style": "IPY_MODEL_3c76ee6a2244430cbb3e8e8416d1a23c", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1332.58it/s]" + } + }, + "dd4b960c1fc54808ac7ec7abfbe1ccbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7defd4db8e0e4d9d806b06b0ad18bad9", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_04bfeccaeea6416e98641eb5e663ae0b", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "dd549dafe96d457a9f3e32fa6dda0ce5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8234,108 +8182,83 @@ "width": null } }, - "ee448c322caa4ddbae258419893e01e8": { + "e06347bb350642c28c5755357c9f6b4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c6b17708d8404f668a926cfeef0a478f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_778338997ef84774b5fc1b3e363f63c9", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ee7c6e7d3d1b43138e41e0146c75cd98": { + "e075f5bd416a447eb67433e0d225370f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_96d31dd7865d4b63adc5a9c556d6d472", - "placeholder": "​", - "style": "IPY_MODEL_6b4971a3c52247978439a6e52e61bca9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_865a8adbaefe44eb930f2df86dcd3a25", + "IPY_MODEL_2253900d1539484ea6c5fb5f87e34fae", + "IPY_MODEL_f669341590db4e77b2110a49a3fa808c" + ], + "layout": "IPY_MODEL_431d46eafa8c450b8c8f1bf1f7883cf3", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "f05de778ce8641daad6aaad095cd0a12": { + "e522f4fa76294f30ae3dc6a49425837b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e2caa9efa27847b7b3dd441f4a803cb2", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_12da0c3d2bd5449dbb811de7fd8b2093", - "tabbable": null, - "tooltip": null, - "value": 4422102.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f0a66657e7724cf4a18612d673b0df8e": { + "e675357d5efc42b3968d61c273ca5f7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6bf38f634a0d459bbfabdc8331eb6e3b", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5c5b477c793d4588a25705aece5a2a2e", - "tabbable": null, - "tooltip": null, - "value": 4833.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f19d1922e1974c3fa19988e4d4701f69": { + "e7e60d48deb84f8681aa2b4aaa1ad387": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8388,7 +8311,7 @@ "width": null } }, - "f1b29538d40a44f88d457938817aa9ca": { + "e9b9c9bbe0374dd9b98a3a4c1553822f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8403,38 +8326,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d50d3c5c4ecd49cfbbcb44e787a993ba", + "layout": "IPY_MODEL_629ccac58fe74198b172012097674576", "placeholder": "​", - "style": "IPY_MODEL_fe0a6190f0794548839615a5f024d71f", + "style": "IPY_MODEL_1f7f1fac2dd34d07b7fc07f799729df6", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.94it/s]" + "value": " 40/40 [00:00<00:00, 59.81it/s]" } }, - "f293407e061d47a9b2a576f458cfc91a": { + "eb33301487694b0f9f4a664fce743134": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_42c998dc50734d8c93d723bb78939244", - "placeholder": "​", - "style": "IPY_MODEL_30a335f232c04fe7b668ed6a418d27b2", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f2d29dc28e7140b792fc1ee3fcb857cb": { + "ebc081ac7cef42f58f0c46bdca672b27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8449,42 +8367,145 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9bb5412853cd41ffb7c03f1615108a7c", - "IPY_MODEL_1bb8a6dd435048b28340d4eac6730019", - "IPY_MODEL_e0619bd42a814114974327c4c92cbc96" + "IPY_MODEL_a518055f2d994914bf1de3d11ea03a82", + "IPY_MODEL_18e5b3625d2a4b3abbfea651a20eef56", + "IPY_MODEL_91e935457d624042a2d02c107985c146" ], - "layout": "IPY_MODEL_7ea218ed3bac4e3fb0038d64392dab79", + "layout": "IPY_MODEL_2bf71c3624ce4413bc347a20e07c26d5", "tabbable": null, "tooltip": null } }, - "f3a3a4eba3674c53882dfe2a1c081653": { + "ed6f311b0f784e268d2c2f765d55a94a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a67a308439454f8eb0f02917f9c68472", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2f9e9f6f7ebe42afa59802bdf7306ccb", + "layout": "IPY_MODEL_e7e60d48deb84f8681aa2b4aaa1ad387", + "placeholder": "​", + "style": "IPY_MODEL_17af51078a0c4c0f92db9850c8c773d7", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "100%" + } + }, + "ed7068ef4b08440eaae3bd1ba5cca147": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f08b9948f05248b3b3ef10bd15ffc7d8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f924af4748c740ce948540ad741071d9": { + "f332684f2b70406ab76c95d24f2f40ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8502,7 +8523,7 @@ "text_color": null } }, - "f984f1911a3a4d3d97fb914d1b6abbce": { + "f35f77b3dc2d4f87b2f6435eb17b5f51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8555,7 +8576,7 @@ "width": null } }, - "fa8ee62999bf48be85571066708c3a70": { + "f669341590db4e77b2110a49a3fa808c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8570,33 +8591,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_895c5faa034242eeb651e5c6bf3b1a51", + "layout": "IPY_MODEL_8ce5df9efdba4fd1bad996ee729dec94", "placeholder": "​", - "style": "IPY_MODEL_9c72cef284e84cdaa2856f28c3593985", + "style": "IPY_MODEL_a3d6f09afbca4e6482b56fd6d71d9b25", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 61.8MB/s]" - } - }, - "fe0a6190f0794548839615a5f024d71f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/60000 [00:10<00:00, 5815.53 examples/s]" } }, - "fe37a821e1f04c6f9903e3722f9ab4c2": { + "f8852f488ece4717923d24f0f949869a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8649,33 +8652,30 @@ "width": null } }, - "fe9dd2d447a247b29fd9568449e4c772": { + "f99e5e0dbb254dd0a57ef096794a0277": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_112a5fd388db49e4b8a0f9dffab06426", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bb0480efe0bc4bd3801a7f7315323cf5", + "layout": "IPY_MODEL_176f4fe537ab44709eed5f4771e5a748", + "placeholder": "​", + "style": "IPY_MODEL_b45281dbfb444428b286e76808d4a658", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "ff64e02006ba4b3b90e1f252f3c58e25": { + "fb9b135b97bd45978b3759750aac7be4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index d470496b0..7f5df08d9 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:36.731110Z", - "iopub.status.busy": "2024-06-25T19:35:36.730936Z", - "iopub.status.idle": "2024-06-25T19:35:37.834580Z", - "shell.execute_reply": "2024-06-25T19:35:37.833954Z" + "iopub.execute_input": "2024-06-25T23:17:19.488251Z", + "iopub.status.busy": "2024-06-25T23:17:19.488091Z", + "iopub.status.idle": "2024-06-25T23:17:20.586301Z", + "shell.execute_reply": "2024-06-25T23:17:20.585756Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.837363Z", - "iopub.status.busy": "2024-06-25T19:35:37.837076Z", - "iopub.status.idle": "2024-06-25T19:35:37.855298Z", - "shell.execute_reply": "2024-06-25T19:35:37.854810Z" + "iopub.execute_input": "2024-06-25T23:17:20.589007Z", + "iopub.status.busy": "2024-06-25T23:17:20.588566Z", + "iopub.status.idle": "2024-06-25T23:17:20.607142Z", + "shell.execute_reply": "2024-06-25T23:17:20.606704Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.857546Z", - "iopub.status.busy": "2024-06-25T19:35:37.857301Z", - "iopub.status.idle": "2024-06-25T19:35:37.902804Z", - "shell.execute_reply": "2024-06-25T19:35:37.902282Z" + "iopub.execute_input": "2024-06-25T23:17:20.609262Z", + "iopub.status.busy": "2024-06-25T23:17:20.608896Z", + "iopub.status.idle": "2024-06-25T23:17:20.630509Z", + "shell.execute_reply": "2024-06-25T23:17:20.630057Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.904835Z", - "iopub.status.busy": "2024-06-25T19:35:37.904541Z", - "iopub.status.idle": "2024-06-25T19:35:37.907889Z", - "shell.execute_reply": "2024-06-25T19:35:37.907366Z" + "iopub.execute_input": "2024-06-25T23:17:20.632342Z", + "iopub.status.busy": "2024-06-25T23:17:20.632168Z", + "iopub.status.idle": "2024-06-25T23:17:20.635695Z", + "shell.execute_reply": "2024-06-25T23:17:20.635234Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.909808Z", - "iopub.status.busy": "2024-06-25T19:35:37.909561Z", - "iopub.status.idle": "2024-06-25T19:35:37.917137Z", - "shell.execute_reply": "2024-06-25T19:35:37.916719Z" + "iopub.execute_input": "2024-06-25T23:17:20.637844Z", + "iopub.status.busy": "2024-06-25T23:17:20.637544Z", + "iopub.status.idle": "2024-06-25T23:17:20.644982Z", + "shell.execute_reply": "2024-06-25T23:17:20.644551Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.919119Z", - "iopub.status.busy": "2024-06-25T19:35:37.918944Z", - "iopub.status.idle": "2024-06-25T19:35:37.921447Z", - "shell.execute_reply": "2024-06-25T19:35:37.921009Z" + "iopub.execute_input": "2024-06-25T23:17:20.646840Z", + "iopub.status.busy": "2024-06-25T23:17:20.646673Z", + "iopub.status.idle": "2024-06-25T23:17:20.649384Z", + "shell.execute_reply": "2024-06-25T23:17:20.648911Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.923229Z", - "iopub.status.busy": "2024-06-25T19:35:37.923058Z", - "iopub.status.idle": "2024-06-25T19:35:40.863311Z", - "shell.execute_reply": "2024-06-25T19:35:40.862782Z" + "iopub.execute_input": "2024-06-25T23:17:20.651376Z", + "iopub.status.busy": "2024-06-25T23:17:20.651062Z", + "iopub.status.idle": "2024-06-25T23:17:23.603750Z", + "shell.execute_reply": "2024-06-25T23:17:23.603132Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:40.866333Z", - "iopub.status.busy": "2024-06-25T19:35:40.865865Z", - "iopub.status.idle": "2024-06-25T19:35:40.875269Z", - "shell.execute_reply": "2024-06-25T19:35:40.874719Z" + "iopub.execute_input": "2024-06-25T23:17:23.606640Z", + "iopub.status.busy": "2024-06-25T23:17:23.606173Z", + "iopub.status.idle": "2024-06-25T23:17:23.615532Z", + "shell.execute_reply": "2024-06-25T23:17:23.614991Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:40.877815Z", - "iopub.status.busy": "2024-06-25T19:35:40.877412Z", - "iopub.status.idle": "2024-06-25T19:35:42.759452Z", - "shell.execute_reply": "2024-06-25T19:35:42.758773Z" + "iopub.execute_input": "2024-06-25T23:17:23.617787Z", + "iopub.status.busy": "2024-06-25T23:17:23.617408Z", + "iopub.status.idle": "2024-06-25T23:17:25.503397Z", + "shell.execute_reply": "2024-06-25T23:17:25.502726Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.761931Z", - "iopub.status.busy": "2024-06-25T19:35:42.761498Z", - "iopub.status.idle": "2024-06-25T19:35:42.780225Z", - "shell.execute_reply": "2024-06-25T19:35:42.779777Z" + "iopub.execute_input": "2024-06-25T23:17:25.506132Z", + "iopub.status.busy": "2024-06-25T23:17:25.505476Z", + "iopub.status.idle": "2024-06-25T23:17:25.524117Z", + "shell.execute_reply": "2024-06-25T23:17:25.523676Z" }, "scrolled": true }, @@ -617,10 +617,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.782418Z", - "iopub.status.busy": "2024-06-25T19:35:42.782011Z", - "iopub.status.idle": "2024-06-25T19:35:42.789930Z", - "shell.execute_reply": "2024-06-25T19:35:42.789485Z" + "iopub.execute_input": "2024-06-25T23:17:25.526096Z", + "iopub.status.busy": "2024-06-25T23:17:25.525830Z", + "iopub.status.idle": "2024-06-25T23:17:25.533770Z", + "shell.execute_reply": "2024-06-25T23:17:25.533230Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.791897Z", - "iopub.status.busy": "2024-06-25T19:35:42.791568Z", - "iopub.status.idle": "2024-06-25T19:35:42.800098Z", - "shell.execute_reply": "2024-06-25T19:35:42.799646Z" + "iopub.execute_input": "2024-06-25T23:17:25.535755Z", + "iopub.status.busy": "2024-06-25T23:17:25.535435Z", + "iopub.status.idle": "2024-06-25T23:17:25.544816Z", + "shell.execute_reply": "2024-06-25T23:17:25.544397Z" } }, "outputs": [ @@ -856,10 +856,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.802085Z", - "iopub.status.busy": "2024-06-25T19:35:42.801908Z", - "iopub.status.idle": "2024-06-25T19:35:42.809958Z", - "shell.execute_reply": "2024-06-25T19:35:42.809510Z" + "iopub.execute_input": "2024-06-25T23:17:25.546828Z", + "iopub.status.busy": "2024-06-25T23:17:25.546524Z", + "iopub.status.idle": "2024-06-25T23:17:25.554523Z", + "shell.execute_reply": "2024-06-25T23:17:25.554077Z" } }, "outputs": [ @@ -973,10 +973,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.811794Z", - "iopub.status.busy": "2024-06-25T19:35:42.811623Z", - "iopub.status.idle": "2024-06-25T19:35:42.820374Z", - "shell.execute_reply": "2024-06-25T19:35:42.819927Z" + "iopub.execute_input": "2024-06-25T23:17:25.556497Z", + "iopub.status.busy": "2024-06-25T23:17:25.556176Z", + "iopub.status.idle": "2024-06-25T23:17:25.564618Z", + "shell.execute_reply": "2024-06-25T23:17:25.564170Z" } }, "outputs": [ @@ -1087,10 +1087,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.822187Z", - "iopub.status.busy": "2024-06-25T19:35:42.822017Z", - "iopub.status.idle": "2024-06-25T19:35:42.829544Z", - "shell.execute_reply": "2024-06-25T19:35:42.829102Z" + "iopub.execute_input": "2024-06-25T23:17:25.566583Z", + "iopub.status.busy": "2024-06-25T23:17:25.566262Z", + "iopub.status.idle": "2024-06-25T23:17:25.573703Z", + "shell.execute_reply": "2024-06-25T23:17:25.573162Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.831790Z", - "iopub.status.busy": "2024-06-25T19:35:42.831383Z", - "iopub.status.idle": "2024-06-25T19:35:42.838578Z", - "shell.execute_reply": "2024-06-25T19:35:42.838124Z" + "iopub.execute_input": "2024-06-25T23:17:25.575840Z", + "iopub.status.busy": "2024-06-25T23:17:25.575524Z", + "iopub.status.idle": "2024-06-25T23:17:25.582660Z", + "shell.execute_reply": "2024-06-25T23:17:25.582224Z" } }, "outputs": [ @@ -1308,10 +1308,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.840523Z", - "iopub.status.busy": "2024-06-25T19:35:42.840354Z", - "iopub.status.idle": "2024-06-25T19:35:42.848877Z", - "shell.execute_reply": "2024-06-25T19:35:42.848311Z" + "iopub.execute_input": "2024-06-25T23:17:25.584694Z", + "iopub.status.busy": "2024-06-25T23:17:25.584373Z", + "iopub.status.idle": "2024-06-25T23:17:25.592350Z", + "shell.execute_reply": "2024-06-25T23:17:25.591901Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 5e2df2074..47d0847e3 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:45.390789Z", - "iopub.status.busy": "2024-06-25T19:35:45.390619Z", - "iopub.status.idle": "2024-06-25T19:35:48.008658Z", - "shell.execute_reply": "2024-06-25T19:35:48.008097Z" + "iopub.execute_input": "2024-06-25T23:17:28.279893Z", + "iopub.status.busy": "2024-06-25T23:17:28.279723Z", + "iopub.status.idle": "2024-06-25T23:17:30.902204Z", + "shell.execute_reply": "2024-06-25T23:17:30.901649Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.011088Z", - "iopub.status.busy": "2024-06-25T19:35:48.010783Z", - "iopub.status.idle": "2024-06-25T19:35:48.014230Z", - "shell.execute_reply": "2024-06-25T19:35:48.013782Z" + "iopub.execute_input": "2024-06-25T23:17:30.904858Z", + "iopub.status.busy": "2024-06-25T23:17:30.904404Z", + "iopub.status.idle": "2024-06-25T23:17:30.907555Z", + "shell.execute_reply": "2024-06-25T23:17:30.907124Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.016267Z", - "iopub.status.busy": "2024-06-25T19:35:48.015916Z", - "iopub.status.idle": "2024-06-25T19:35:48.019094Z", - "shell.execute_reply": "2024-06-25T19:35:48.018529Z" + "iopub.execute_input": "2024-06-25T23:17:30.909531Z", + "iopub.status.busy": "2024-06-25T23:17:30.909235Z", + "iopub.status.idle": "2024-06-25T23:17:30.912305Z", + "shell.execute_reply": "2024-06-25T23:17:30.911777Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.021232Z", - "iopub.status.busy": "2024-06-25T19:35:48.020813Z", - "iopub.status.idle": "2024-06-25T19:35:48.073023Z", - "shell.execute_reply": "2024-06-25T19:35:48.072456Z" + "iopub.execute_input": "2024-06-25T23:17:30.914377Z", + "iopub.status.busy": "2024-06-25T23:17:30.913988Z", + "iopub.status.idle": "2024-06-25T23:17:30.934290Z", + "shell.execute_reply": "2024-06-25T23:17:30.933773Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.075330Z", - "iopub.status.busy": "2024-06-25T19:35:48.074995Z", - "iopub.status.idle": "2024-06-25T19:35:48.078963Z", - "shell.execute_reply": "2024-06-25T19:35:48.078513Z" + "iopub.execute_input": "2024-06-25T23:17:30.936266Z", + "iopub.status.busy": "2024-06-25T23:17:30.935961Z", + "iopub.status.idle": "2024-06-25T23:17:30.939627Z", + "shell.execute_reply": "2024-06-25T23:17:30.939095Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies'}\n" + "Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'getting_spare_card', 'change_pin', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'cancel_transfer'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.080913Z", - "iopub.status.busy": "2024-06-25T19:35:48.080733Z", - "iopub.status.idle": "2024-06-25T19:35:48.083997Z", - "shell.execute_reply": "2024-06-25T19:35:48.083535Z" + "iopub.execute_input": "2024-06-25T23:17:30.941560Z", + "iopub.status.busy": "2024-06-25T23:17:30.941250Z", + "iopub.status.idle": "2024-06-25T23:17:30.944331Z", + "shell.execute_reply": "2024-06-25T23:17:30.943818Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.086043Z", - "iopub.status.busy": "2024-06-25T19:35:48.085869Z", - "iopub.status.idle": "2024-06-25T19:35:52.539336Z", - "shell.execute_reply": "2024-06-25T19:35:52.538772Z" + "iopub.execute_input": "2024-06-25T23:17:30.946381Z", + "iopub.status.busy": "2024-06-25T23:17:30.946063Z", + "iopub.status.idle": "2024-06-25T23:17:34.606408Z", + "shell.execute_reply": "2024-06-25T23:17:34.605752Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:52.541851Z", - "iopub.status.busy": "2024-06-25T19:35:52.541641Z", - "iopub.status.idle": "2024-06-25T19:35:53.417381Z", - "shell.execute_reply": "2024-06-25T19:35:53.416793Z" + "iopub.execute_input": "2024-06-25T23:17:34.609229Z", + "iopub.status.busy": "2024-06-25T23:17:34.608851Z", + "iopub.status.idle": "2024-06-25T23:17:35.466411Z", + "shell.execute_reply": "2024-06-25T23:17:35.465834Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:53.420304Z", - "iopub.status.busy": "2024-06-25T19:35:53.419913Z", - "iopub.status.idle": "2024-06-25T19:35:53.422789Z", - "shell.execute_reply": "2024-06-25T19:35:53.422303Z" + "iopub.execute_input": "2024-06-25T23:17:35.469450Z", + "iopub.status.busy": "2024-06-25T23:17:35.469026Z", + "iopub.status.idle": "2024-06-25T23:17:35.471951Z", + "shell.execute_reply": "2024-06-25T23:17:35.471467Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:53.425167Z", - "iopub.status.busy": "2024-06-25T19:35:53.424776Z", - "iopub.status.idle": "2024-06-25T19:35:55.333188Z", - "shell.execute_reply": "2024-06-25T19:35:55.332528Z" + "iopub.execute_input": "2024-06-25T23:17:35.474346Z", + "iopub.status.busy": "2024-06-25T23:17:35.473954Z", + "iopub.status.idle": "2024-06-25T23:17:37.379211Z", + "shell.execute_reply": "2024-06-25T23:17:37.378561Z" }, "scrolled": true }, @@ -537,10 +537,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.336733Z", - "iopub.status.busy": "2024-06-25T19:35:55.336306Z", - "iopub.status.idle": "2024-06-25T19:35:55.363099Z", - "shell.execute_reply": "2024-06-25T19:35:55.362613Z" + "iopub.execute_input": "2024-06-25T23:17:37.383383Z", + "iopub.status.busy": "2024-06-25T23:17:37.382233Z", + "iopub.status.idle": "2024-06-25T23:17:37.408704Z", + "shell.execute_reply": "2024-06-25T23:17:37.408212Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.366640Z", - "iopub.status.busy": "2024-06-25T19:35:55.365705Z", - "iopub.status.idle": "2024-06-25T19:35:55.376030Z", - "shell.execute_reply": "2024-06-25T19:35:55.375622Z" + "iopub.execute_input": "2024-06-25T23:17:37.412193Z", + "iopub.status.busy": "2024-06-25T23:17:37.411277Z", + "iopub.status.idle": "2024-06-25T23:17:37.421651Z", + "shell.execute_reply": "2024-06-25T23:17:37.421256Z" }, "scrolled": true }, @@ -783,10 +783,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.378837Z", - "iopub.status.busy": "2024-06-25T19:35:55.378517Z", - "iopub.status.idle": "2024-06-25T19:35:55.382599Z", - "shell.execute_reply": "2024-06-25T19:35:55.382206Z" + "iopub.execute_input": "2024-06-25T23:17:37.424437Z", + "iopub.status.busy": "2024-06-25T23:17:37.423704Z", + "iopub.status.idle": "2024-06-25T23:17:37.428917Z", + "shell.execute_reply": "2024-06-25T23:17:37.428520Z" } }, "outputs": [ @@ -824,10 +824,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.384693Z", - "iopub.status.busy": "2024-06-25T19:35:55.384439Z", - "iopub.status.idle": "2024-06-25T19:35:55.390208Z", - "shell.execute_reply": "2024-06-25T19:35:55.389819Z" + "iopub.execute_input": "2024-06-25T23:17:37.430883Z", + "iopub.status.busy": "2024-06-25T23:17:37.430707Z", + "iopub.status.idle": "2024-06-25T23:17:37.438445Z", + "shell.execute_reply": "2024-06-25T23:17:37.437883Z" } }, "outputs": [ @@ -944,10 +944,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.392385Z", - "iopub.status.busy": "2024-06-25T19:35:55.392130Z", - "iopub.status.idle": "2024-06-25T19:35:55.398230Z", - "shell.execute_reply": "2024-06-25T19:35:55.397669Z" + "iopub.execute_input": "2024-06-25T23:17:37.440387Z", + "iopub.status.busy": "2024-06-25T23:17:37.440214Z", + "iopub.status.idle": "2024-06-25T23:17:37.446599Z", + "shell.execute_reply": "2024-06-25T23:17:37.446157Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.400097Z", - "iopub.status.busy": "2024-06-25T19:35:55.399777Z", - "iopub.status.idle": "2024-06-25T19:35:55.405709Z", - "shell.execute_reply": "2024-06-25T19:35:55.405249Z" + "iopub.execute_input": "2024-06-25T23:17:37.448520Z", + "iopub.status.busy": "2024-06-25T23:17:37.448196Z", + "iopub.status.idle": "2024-06-25T23:17:37.454046Z", + "shell.execute_reply": "2024-06-25T23:17:37.453485Z" } }, "outputs": [ @@ -1141,10 +1141,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.407786Z", - "iopub.status.busy": "2024-06-25T19:35:55.407389Z", - "iopub.status.idle": "2024-06-25T19:35:55.415929Z", - "shell.execute_reply": "2024-06-25T19:35:55.415484Z" + "iopub.execute_input": "2024-06-25T23:17:37.456157Z", + "iopub.status.busy": "2024-06-25T23:17:37.455839Z", + "iopub.status.idle": "2024-06-25T23:17:37.464219Z", + "shell.execute_reply": "2024-06-25T23:17:37.463796Z" } }, "outputs": [ @@ -1255,10 +1255,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.417871Z", - "iopub.status.busy": "2024-06-25T19:35:55.417696Z", - "iopub.status.idle": "2024-06-25T19:35:55.422924Z", - "shell.execute_reply": "2024-06-25T19:35:55.422488Z" + "iopub.execute_input": "2024-06-25T23:17:37.466195Z", + "iopub.status.busy": "2024-06-25T23:17:37.465883Z", + "iopub.status.idle": "2024-06-25T23:17:37.471233Z", + "shell.execute_reply": "2024-06-25T23:17:37.470679Z" } }, "outputs": [ @@ -1326,10 +1326,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.424972Z", - "iopub.status.busy": "2024-06-25T19:35:55.424657Z", - "iopub.status.idle": "2024-06-25T19:35:55.429929Z", - "shell.execute_reply": "2024-06-25T19:35:55.429503Z" + "iopub.execute_input": "2024-06-25T23:17:37.473304Z", + "iopub.status.busy": "2024-06-25T23:17:37.472970Z", + "iopub.status.idle": "2024-06-25T23:17:37.478474Z", + "shell.execute_reply": "2024-06-25T23:17:37.478028Z" } }, "outputs": [ @@ -1408,10 +1408,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.431977Z", - "iopub.status.busy": "2024-06-25T19:35:55.431649Z", - "iopub.status.idle": "2024-06-25T19:35:55.435259Z", - "shell.execute_reply": "2024-06-25T19:35:55.434820Z" + "iopub.execute_input": "2024-06-25T23:17:37.480531Z", + "iopub.status.busy": "2024-06-25T23:17:37.480222Z", + "iopub.status.idle": "2024-06-25T23:17:37.483860Z", + "shell.execute_reply": "2024-06-25T23:17:37.483411Z" } }, "outputs": [ @@ -1459,10 +1459,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.437276Z", - "iopub.status.busy": "2024-06-25T19:35:55.436956Z", - "iopub.status.idle": "2024-06-25T19:35:55.441824Z", - "shell.execute_reply": "2024-06-25T19:35:55.441386Z" + "iopub.execute_input": "2024-06-25T23:17:37.485748Z", + "iopub.status.busy": "2024-06-25T23:17:37.485580Z", + "iopub.status.idle": "2024-06-25T23:17:37.490849Z", + "shell.execute_reply": "2024-06-25T23:17:37.490382Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 073e233c2..05570c79a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:59.467250Z", - "iopub.status.busy": "2024-06-25T19:35:59.467073Z", - "iopub.status.idle": "2024-06-25T19:35:59.885710Z", - "shell.execute_reply": "2024-06-25T19:35:59.885107Z" + "iopub.execute_input": "2024-06-25T23:17:40.853361Z", + "iopub.status.busy": "2024-06-25T23:17:40.852930Z", + "iopub.status.idle": "2024-06-25T23:17:41.272322Z", + "shell.execute_reply": "2024-06-25T23:17:41.271713Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:59.888637Z", - "iopub.status.busy": "2024-06-25T19:35:59.888151Z", - "iopub.status.idle": "2024-06-25T19:36:00.014649Z", - "shell.execute_reply": "2024-06-25T19:36:00.014148Z" + "iopub.execute_input": "2024-06-25T23:17:41.275299Z", + "iopub.status.busy": "2024-06-25T23:17:41.274749Z", + "iopub.status.idle": "2024-06-25T23:17:41.403175Z", + "shell.execute_reply": "2024-06-25T23:17:41.402663Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:00.016873Z", - "iopub.status.busy": "2024-06-25T19:36:00.016623Z", - "iopub.status.idle": "2024-06-25T19:36:00.039876Z", - "shell.execute_reply": "2024-06-25T19:36:00.039305Z" + "iopub.execute_input": "2024-06-25T23:17:41.405438Z", + "iopub.status.busy": "2024-06-25T23:17:41.405028Z", + "iopub.status.idle": "2024-06-25T23:17:41.427834Z", + "shell.execute_reply": "2024-06-25T23:17:41.427281Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:00.042285Z", - "iopub.status.busy": "2024-06-25T19:36:00.041898Z", - "iopub.status.idle": "2024-06-25T19:36:02.696869Z", - "shell.execute_reply": "2024-06-25T19:36:02.696318Z" + "iopub.execute_input": "2024-06-25T23:17:41.430652Z", + "iopub.status.busy": "2024-06-25T23:17:41.430206Z", + "iopub.status.idle": "2024-06-25T23:17:44.079438Z", + "shell.execute_reply": "2024-06-25T23:17:44.078785Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:02.699546Z", - "iopub.status.busy": "2024-06-25T19:36:02.698988Z", - "iopub.status.idle": "2024-06-25T19:36:11.210546Z", - "shell.execute_reply": "2024-06-25T19:36:11.209947Z" + "iopub.execute_input": "2024-06-25T23:17:44.082102Z", + "iopub.status.busy": "2024-06-25T23:17:44.081500Z", + "iopub.status.idle": "2024-06-25T23:17:51.711133Z", + "shell.execute_reply": "2024-06-25T23:17:51.710550Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:11.212912Z", - "iopub.status.busy": "2024-06-25T19:36:11.212489Z", - "iopub.status.idle": "2024-06-25T19:36:11.354224Z", - "shell.execute_reply": "2024-06-25T19:36:11.353605Z" + "iopub.execute_input": "2024-06-25T23:17:51.713313Z", + "iopub.status.busy": "2024-06-25T23:17:51.713127Z", + "iopub.status.idle": "2024-06-25T23:17:51.857400Z", + "shell.execute_reply": "2024-06-25T23:17:51.856753Z" } }, "outputs": [], @@ -854,10 +854,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:11.356684Z", - "iopub.status.busy": "2024-06-25T19:36:11.356497Z", - "iopub.status.idle": "2024-06-25T19:36:12.692416Z", - "shell.execute_reply": "2024-06-25T19:36:12.691867Z" + "iopub.execute_input": "2024-06-25T23:17:51.860009Z", + "iopub.status.busy": "2024-06-25T23:17:51.859627Z", + "iopub.status.idle": "2024-06-25T23:17:53.181642Z", + "shell.execute_reply": "2024-06-25T23:17:53.181004Z" } }, "outputs": [ @@ -1016,10 +1016,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:12.694507Z", - "iopub.status.busy": "2024-06-25T19:36:12.694321Z", - "iopub.status.idle": "2024-06-25T19:36:13.110943Z", - "shell.execute_reply": "2024-06-25T19:36:13.110403Z" + "iopub.execute_input": "2024-06-25T23:17:53.183695Z", + "iopub.status.busy": "2024-06-25T23:17:53.183507Z", + "iopub.status.idle": "2024-06-25T23:17:53.614506Z", + "shell.execute_reply": "2024-06-25T23:17:53.613154Z" } }, "outputs": [ @@ -1098,10 +1098,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.113354Z", - "iopub.status.busy": "2024-06-25T19:36:13.112876Z", - "iopub.status.idle": "2024-06-25T19:36:13.121876Z", - "shell.execute_reply": "2024-06-25T19:36:13.121426Z" + "iopub.execute_input": "2024-06-25T23:17:53.617165Z", + "iopub.status.busy": "2024-06-25T23:17:53.616488Z", + "iopub.status.idle": "2024-06-25T23:17:53.625569Z", + "shell.execute_reply": "2024-06-25T23:17:53.625088Z" } }, "outputs": [], @@ -1131,10 +1131,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.123927Z", - "iopub.status.busy": "2024-06-25T19:36:13.123749Z", - "iopub.status.idle": "2024-06-25T19:36:13.143234Z", - "shell.execute_reply": "2024-06-25T19:36:13.142805Z" + "iopub.execute_input": "2024-06-25T23:17:53.627646Z", + "iopub.status.busy": "2024-06-25T23:17:53.627333Z", + "iopub.status.idle": "2024-06-25T23:17:53.647292Z", + "shell.execute_reply": "2024-06-25T23:17:53.646870Z" } }, "outputs": [], @@ -1162,10 +1162,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.145167Z", - "iopub.status.busy": "2024-06-25T19:36:13.144993Z", - "iopub.status.idle": "2024-06-25T19:36:13.369942Z", - "shell.execute_reply": "2024-06-25T19:36:13.369417Z" + "iopub.execute_input": "2024-06-25T23:17:53.649278Z", + "iopub.status.busy": "2024-06-25T23:17:53.648956Z", + "iopub.status.idle": "2024-06-25T23:17:53.876935Z", + "shell.execute_reply": "2024-06-25T23:17:53.876376Z" } }, "outputs": [], @@ -1205,10 +1205,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.372709Z", - "iopub.status.busy": "2024-06-25T19:36:13.372266Z", - "iopub.status.idle": "2024-06-25T19:36:13.391271Z", - "shell.execute_reply": "2024-06-25T19:36:13.390786Z" + "iopub.execute_input": "2024-06-25T23:17:53.879777Z", + "iopub.status.busy": "2024-06-25T23:17:53.879575Z", + "iopub.status.idle": "2024-06-25T23:17:53.898417Z", + "shell.execute_reply": "2024-06-25T23:17:53.897956Z" } }, "outputs": [ @@ -1406,10 +1406,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.393275Z", - "iopub.status.busy": "2024-06-25T19:36:13.392955Z", - "iopub.status.idle": "2024-06-25T19:36:13.562067Z", - "shell.execute_reply": "2024-06-25T19:36:13.561518Z" + "iopub.execute_input": "2024-06-25T23:17:53.900637Z", + "iopub.status.busy": "2024-06-25T23:17:53.900291Z", + "iopub.status.idle": "2024-06-25T23:17:54.067010Z", + "shell.execute_reply": "2024-06-25T23:17:54.066325Z" } }, "outputs": [ @@ -1476,10 +1476,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.564551Z", - "iopub.status.busy": "2024-06-25T19:36:13.564210Z", - "iopub.status.idle": "2024-06-25T19:36:13.574249Z", - "shell.execute_reply": "2024-06-25T19:36:13.573705Z" + "iopub.execute_input": "2024-06-25T23:17:54.069491Z", + "iopub.status.busy": "2024-06-25T23:17:54.069138Z", + "iopub.status.idle": "2024-06-25T23:17:54.080042Z", + "shell.execute_reply": "2024-06-25T23:17:54.079594Z" } }, "outputs": [ @@ -1745,10 +1745,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.576275Z", - "iopub.status.busy": "2024-06-25T19:36:13.575975Z", - "iopub.status.idle": "2024-06-25T19:36:13.585430Z", - "shell.execute_reply": "2024-06-25T19:36:13.584885Z" + "iopub.execute_input": "2024-06-25T23:17:54.083209Z", + "iopub.status.busy": "2024-06-25T23:17:54.082726Z", + "iopub.status.idle": "2024-06-25T23:17:54.092500Z", + "shell.execute_reply": "2024-06-25T23:17:54.092040Z" } }, "outputs": [ @@ -1935,10 +1935,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.587370Z", - "iopub.status.busy": "2024-06-25T19:36:13.587068Z", - "iopub.status.idle": "2024-06-25T19:36:13.629038Z", - "shell.execute_reply": "2024-06-25T19:36:13.628478Z" + "iopub.execute_input": "2024-06-25T23:17:54.094651Z", + "iopub.status.busy": "2024-06-25T23:17:54.094321Z", + "iopub.status.idle": "2024-06-25T23:17:54.125818Z", + "shell.execute_reply": "2024-06-25T23:17:54.122177Z" } }, "outputs": [], @@ -1972,10 +1972,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.631050Z", - "iopub.status.busy": "2024-06-25T19:36:13.630746Z", - "iopub.status.idle": "2024-06-25T19:36:13.633461Z", - "shell.execute_reply": "2024-06-25T19:36:13.632931Z" + "iopub.execute_input": "2024-06-25T23:17:54.128194Z", + "iopub.status.busy": "2024-06-25T23:17:54.127850Z", + "iopub.status.idle": "2024-06-25T23:17:54.130729Z", + "shell.execute_reply": "2024-06-25T23:17:54.130269Z" } }, "outputs": [], @@ -1997,10 +1997,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.635387Z", - "iopub.status.busy": "2024-06-25T19:36:13.635196Z", - "iopub.status.idle": "2024-06-25T19:36:13.655022Z", - "shell.execute_reply": "2024-06-25T19:36:13.654546Z" + "iopub.execute_input": "2024-06-25T23:17:54.132753Z", + "iopub.status.busy": "2024-06-25T23:17:54.132426Z", + "iopub.status.idle": "2024-06-25T23:17:54.151669Z", + "shell.execute_reply": "2024-06-25T23:17:54.151107Z" } }, "outputs": [ @@ -2158,10 +2158,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.657280Z", - "iopub.status.busy": "2024-06-25T19:36:13.656950Z", - "iopub.status.idle": "2024-06-25T19:36:13.661121Z", - "shell.execute_reply": "2024-06-25T19:36:13.660700Z" + "iopub.execute_input": "2024-06-25T23:17:54.153875Z", + "iopub.status.busy": "2024-06-25T23:17:54.153542Z", + "iopub.status.idle": "2024-06-25T23:17:54.157885Z", + "shell.execute_reply": "2024-06-25T23:17:54.157427Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.663070Z", - "iopub.status.busy": "2024-06-25T19:36:13.662753Z", - "iopub.status.idle": "2024-06-25T19:36:13.690582Z", - "shell.execute_reply": "2024-06-25T19:36:13.690034Z" + "iopub.execute_input": "2024-06-25T23:17:54.159942Z", + "iopub.status.busy": "2024-06-25T23:17:54.159537Z", + "iopub.status.idle": "2024-06-25T23:17:54.187254Z", + "shell.execute_reply": "2024-06-25T23:17:54.186748Z" } }, "outputs": [ @@ -2343,10 +2343,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.692558Z", - "iopub.status.busy": "2024-06-25T19:36:13.692385Z", - "iopub.status.idle": "2024-06-25T19:36:14.062207Z", - "shell.execute_reply": "2024-06-25T19:36:14.061647Z" + "iopub.execute_input": "2024-06-25T23:17:54.189370Z", + "iopub.status.busy": "2024-06-25T23:17:54.189020Z", + "iopub.status.idle": "2024-06-25T23:17:54.563581Z", + "shell.execute_reply": "2024-06-25T23:17:54.563004Z" } }, "outputs": [ @@ -2413,10 +2413,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.064536Z", - "iopub.status.busy": "2024-06-25T19:36:14.064346Z", - "iopub.status.idle": "2024-06-25T19:36:14.067724Z", - "shell.execute_reply": "2024-06-25T19:36:14.067250Z" + "iopub.execute_input": "2024-06-25T23:17:54.566043Z", + "iopub.status.busy": "2024-06-25T23:17:54.565580Z", + "iopub.status.idle": "2024-06-25T23:17:54.568905Z", + "shell.execute_reply": "2024-06-25T23:17:54.568452Z" } }, "outputs": [ @@ -2467,10 +2467,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.069713Z", - "iopub.status.busy": "2024-06-25T19:36:14.069543Z", - "iopub.status.idle": "2024-06-25T19:36:14.082545Z", - "shell.execute_reply": "2024-06-25T19:36:14.082110Z" + "iopub.execute_input": "2024-06-25T23:17:54.570928Z", + "iopub.status.busy": "2024-06-25T23:17:54.570747Z", + "iopub.status.idle": "2024-06-25T23:17:54.584558Z", + "shell.execute_reply": "2024-06-25T23:17:54.584061Z" } }, "outputs": [ @@ -2749,10 +2749,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.084372Z", - "iopub.status.busy": "2024-06-25T19:36:14.084199Z", - "iopub.status.idle": "2024-06-25T19:36:14.097558Z", - "shell.execute_reply": "2024-06-25T19:36:14.097135Z" + "iopub.execute_input": "2024-06-25T23:17:54.586622Z", + "iopub.status.busy": "2024-06-25T23:17:54.586423Z", + "iopub.status.idle": "2024-06-25T23:17:54.600724Z", + "shell.execute_reply": "2024-06-25T23:17:54.600241Z" } }, "outputs": [ @@ -3019,10 +3019,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.099340Z", - "iopub.status.busy": "2024-06-25T19:36:14.099173Z", - "iopub.status.idle": "2024-06-25T19:36:14.108741Z", - "shell.execute_reply": "2024-06-25T19:36:14.108314Z" + "iopub.execute_input": "2024-06-25T23:17:54.602957Z", + "iopub.status.busy": "2024-06-25T23:17:54.602518Z", + "iopub.status.idle": "2024-06-25T23:17:54.612377Z", + "shell.execute_reply": "2024-06-25T23:17:54.611952Z" } }, "outputs": [], @@ -3047,10 +3047,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.110562Z", - "iopub.status.busy": "2024-06-25T19:36:14.110394Z", - "iopub.status.idle": "2024-06-25T19:36:14.119786Z", - "shell.execute_reply": "2024-06-25T19:36:14.119280Z" + "iopub.execute_input": "2024-06-25T23:17:54.614486Z", + "iopub.status.busy": "2024-06-25T23:17:54.614156Z", + "iopub.status.idle": "2024-06-25T23:17:54.623497Z", + "shell.execute_reply": "2024-06-25T23:17:54.622945Z" } }, "outputs": [ @@ -3222,10 +3222,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.121705Z", - "iopub.status.busy": "2024-06-25T19:36:14.121535Z", - "iopub.status.idle": "2024-06-25T19:36:14.125253Z", - "shell.execute_reply": "2024-06-25T19:36:14.124849Z" + "iopub.execute_input": "2024-06-25T23:17:54.625637Z", + "iopub.status.busy": "2024-06-25T23:17:54.625295Z", + "iopub.status.idle": "2024-06-25T23:17:54.630830Z", + "shell.execute_reply": "2024-06-25T23:17:54.629019Z" } }, "outputs": [], @@ -3257,10 +3257,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.127233Z", - "iopub.status.busy": "2024-06-25T19:36:14.126914Z", - "iopub.status.idle": "2024-06-25T19:36:14.177262Z", - "shell.execute_reply": "2024-06-25T19:36:14.176812Z" + "iopub.execute_input": "2024-06-25T23:17:54.633124Z", + "iopub.status.busy": "2024-06-25T23:17:54.632790Z", + "iopub.status.idle": "2024-06-25T23:17:54.684363Z", + "shell.execute_reply": "2024-06-25T23:17:54.683802Z" } }, "outputs": [ @@ -3268,230 +3268,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3567,10 +3567,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.179445Z", - "iopub.status.busy": "2024-06-25T19:36:14.179018Z", - "iopub.status.idle": "2024-06-25T19:36:14.184786Z", - "shell.execute_reply": "2024-06-25T19:36:14.184224Z" + "iopub.execute_input": "2024-06-25T23:17:54.686913Z", + "iopub.status.busy": "2024-06-25T23:17:54.686475Z", + "iopub.status.idle": "2024-06-25T23:17:54.692178Z", + "shell.execute_reply": "2024-06-25T23:17:54.691645Z" } }, "outputs": [], @@ -3609,10 +3609,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.186887Z", - "iopub.status.busy": "2024-06-25T19:36:14.186471Z", - "iopub.status.idle": "2024-06-25T19:36:14.196806Z", - "shell.execute_reply": "2024-06-25T19:36:14.196244Z" + "iopub.execute_input": "2024-06-25T23:17:54.694316Z", + "iopub.status.busy": "2024-06-25T23:17:54.693981Z", + "iopub.status.idle": "2024-06-25T23:17:54.705261Z", + "shell.execute_reply": "2024-06-25T23:17:54.704802Z" } }, "outputs": [ @@ -3648,10 +3648,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.198752Z", - "iopub.status.busy": "2024-06-25T19:36:14.198440Z", - "iopub.status.idle": "2024-06-25T19:36:14.412825Z", - "shell.execute_reply": "2024-06-25T19:36:14.412259Z" + "iopub.execute_input": "2024-06-25T23:17:54.707234Z", + "iopub.status.busy": "2024-06-25T23:17:54.707059Z", + "iopub.status.idle": "2024-06-25T23:17:54.923905Z", + "shell.execute_reply": "2024-06-25T23:17:54.923350Z" } }, "outputs": [ @@ -3703,10 +3703,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.414958Z", - "iopub.status.busy": "2024-06-25T19:36:14.414688Z", - "iopub.status.idle": "2024-06-25T19:36:14.422114Z", - "shell.execute_reply": "2024-06-25T19:36:14.421663Z" + "iopub.execute_input": "2024-06-25T23:17:54.926218Z", + "iopub.status.busy": "2024-06-25T23:17:54.925878Z", + "iopub.status.idle": "2024-06-25T23:17:54.933331Z", + "shell.execute_reply": "2024-06-25T23:17:54.932869Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 6a954c6b0..d462fdaea 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:17.536909Z", - "iopub.status.busy": "2024-06-25T19:36:17.536739Z", - "iopub.status.idle": "2024-06-25T19:36:18.659278Z", - "shell.execute_reply": "2024-06-25T19:36:18.658730Z" + "iopub.execute_input": "2024-06-25T23:17:58.501344Z", + "iopub.status.busy": "2024-06-25T23:17:58.500004Z", + "iopub.status.idle": "2024-06-25T23:17:59.801482Z", + "shell.execute_reply": "2024-06-25T23:17:59.800950Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:18.661733Z", - "iopub.status.busy": "2024-06-25T19:36:18.661422Z", - "iopub.status.idle": "2024-06-25T19:36:18.664275Z", - "shell.execute_reply": "2024-06-25T19:36:18.663748Z" + "iopub.execute_input": "2024-06-25T23:17:59.804004Z", + "iopub.status.busy": "2024-06-25T23:17:59.803708Z", + "iopub.status.idle": "2024-06-25T23:17:59.806736Z", + "shell.execute_reply": "2024-06-25T23:17:59.806281Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:18.666336Z", - "iopub.status.busy": "2024-06-25T19:36:18.666027Z", - "iopub.status.idle": "2024-06-25T19:36:18.678092Z", - "shell.execute_reply": "2024-06-25T19:36:18.677567Z" + "iopub.execute_input": "2024-06-25T23:17:59.808933Z", + "iopub.status.busy": "2024-06-25T23:17:59.808705Z", + "iopub.status.idle": "2024-06-25T23:17:59.821999Z", + "shell.execute_reply": "2024-06-25T23:17:59.821381Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:18.680164Z", - "iopub.status.busy": "2024-06-25T19:36:18.679860Z", - "iopub.status.idle": "2024-06-25T19:36:28.874863Z", - "shell.execute_reply": "2024-06-25T19:36:28.874371Z" + "iopub.execute_input": "2024-06-25T23:17:59.824481Z", + "iopub.status.busy": "2024-06-25T23:17:59.824047Z", + "iopub.status.idle": "2024-06-25T23:18:03.535596Z", + "shell.execute_reply": "2024-06-25T23:18:03.535061Z" }, "id": "dhTHOg8Pyv5G" }, @@ -694,13 +694,7 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", @@ -2565,7 +2559,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " * Overall, about 18% (1,846 of the 10,000) labels in your dataset have potential issues.\n", " ** The overall label health score for this dataset is: 0.82.\n", "\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 649612439..713861397 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:31.054579Z", - "iopub.status.busy": "2024-06-25T19:36:31.054404Z", - "iopub.status.idle": "2024-06-25T19:36:32.183683Z", - "shell.execute_reply": "2024-06-25T19:36:32.183056Z" + "iopub.execute_input": "2024-06-25T23:18:05.926443Z", + "iopub.status.busy": "2024-06-25T23:18:05.926263Z", + "iopub.status.idle": "2024-06-25T23:18:07.103304Z", + "shell.execute_reply": "2024-06-25T23:18:07.102799Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:32.186495Z", - "iopub.status.busy": "2024-06-25T19:36:32.186073Z", - "iopub.status.idle": "2024-06-25T19:36:32.189610Z", - "shell.execute_reply": "2024-06-25T19:36:32.189148Z" + "iopub.execute_input": "2024-06-25T23:18:07.106148Z", + "iopub.status.busy": "2024-06-25T23:18:07.105603Z", + "iopub.status.idle": "2024-06-25T23:18:07.109155Z", + "shell.execute_reply": "2024-06-25T23:18:07.108679Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:32.191776Z", - "iopub.status.busy": "2024-06-25T19:36:32.191309Z", - "iopub.status.idle": "2024-06-25T19:36:35.412500Z", - "shell.execute_reply": "2024-06-25T19:36:35.411739Z" + "iopub.execute_input": "2024-06-25T23:18:07.111219Z", + "iopub.status.busy": "2024-06-25T23:18:07.110877Z", + "iopub.status.idle": "2024-06-25T23:18:10.366450Z", + "shell.execute_reply": "2024-06-25T23:18:10.365818Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.415868Z", - "iopub.status.busy": "2024-06-25T19:36:35.414996Z", - "iopub.status.idle": "2024-06-25T19:36:35.452492Z", - "shell.execute_reply": "2024-06-25T19:36:35.451863Z" + "iopub.execute_input": "2024-06-25T23:18:10.369846Z", + "iopub.status.busy": "2024-06-25T23:18:10.369009Z", + "iopub.status.idle": "2024-06-25T23:18:10.408435Z", + "shell.execute_reply": "2024-06-25T23:18:10.407723Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.455265Z", - "iopub.status.busy": "2024-06-25T19:36:35.454795Z", - "iopub.status.idle": "2024-06-25T19:36:35.489174Z", - "shell.execute_reply": "2024-06-25T19:36:35.488560Z" + "iopub.execute_input": "2024-06-25T23:18:10.411187Z", + "iopub.status.busy": "2024-06-25T23:18:10.410945Z", + "iopub.status.idle": "2024-06-25T23:18:10.447524Z", + "shell.execute_reply": "2024-06-25T23:18:10.446786Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.491931Z", - "iopub.status.busy": "2024-06-25T19:36:35.491449Z", - "iopub.status.idle": "2024-06-25T19:36:35.494631Z", - "shell.execute_reply": "2024-06-25T19:36:35.494157Z" + "iopub.execute_input": "2024-06-25T23:18:10.450344Z", + "iopub.status.busy": "2024-06-25T23:18:10.450101Z", + "iopub.status.idle": "2024-06-25T23:18:10.453289Z", + "shell.execute_reply": "2024-06-25T23:18:10.452762Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.496822Z", - "iopub.status.busy": "2024-06-25T19:36:35.496395Z", - "iopub.status.idle": "2024-06-25T19:36:35.499017Z", - "shell.execute_reply": "2024-06-25T19:36:35.498537Z" + "iopub.execute_input": "2024-06-25T23:18:10.455428Z", + "iopub.status.busy": "2024-06-25T23:18:10.455099Z", + "iopub.status.idle": "2024-06-25T23:18:10.457834Z", + "shell.execute_reply": "2024-06-25T23:18:10.457357Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.501249Z", - "iopub.status.busy": "2024-06-25T19:36:35.500816Z", - "iopub.status.idle": "2024-06-25T19:36:35.525422Z", - "shell.execute_reply": "2024-06-25T19:36:35.524821Z" + "iopub.execute_input": "2024-06-25T23:18:10.459894Z", + "iopub.status.busy": "2024-06-25T23:18:10.459627Z", + "iopub.status.idle": "2024-06-25T23:18:10.483748Z", + "shell.execute_reply": "2024-06-25T23:18:10.483202Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d8af54b634f1457680edc574c7fcb110", + "model_id": "558d7887a3b248ccbc78e41ae8f6a2ad", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84b64175499142ae9cf770d1e88b80ac", + "model_id": "633ecf7c235f443883ad78f8a1d748cd", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.532028Z", - "iopub.status.busy": "2024-06-25T19:36:35.531847Z", - "iopub.status.idle": "2024-06-25T19:36:35.538645Z", - "shell.execute_reply": "2024-06-25T19:36:35.538198Z" + "iopub.execute_input": "2024-06-25T23:18:10.488896Z", + "iopub.status.busy": "2024-06-25T23:18:10.488605Z", + "iopub.status.idle": "2024-06-25T23:18:10.495342Z", + "shell.execute_reply": "2024-06-25T23:18:10.494804Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.540612Z", - "iopub.status.busy": "2024-06-25T19:36:35.540437Z", - "iopub.status.idle": "2024-06-25T19:36:35.543848Z", - "shell.execute_reply": "2024-06-25T19:36:35.543410Z" + "iopub.execute_input": "2024-06-25T23:18:10.497491Z", + "iopub.status.busy": "2024-06-25T23:18:10.497223Z", + "iopub.status.idle": "2024-06-25T23:18:10.500578Z", + "shell.execute_reply": "2024-06-25T23:18:10.500143Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.545806Z", - "iopub.status.busy": "2024-06-25T19:36:35.545508Z", - "iopub.status.idle": "2024-06-25T19:36:35.551703Z", - "shell.execute_reply": "2024-06-25T19:36:35.551260Z" + "iopub.execute_input": "2024-06-25T23:18:10.502533Z", + "iopub.status.busy": "2024-06-25T23:18:10.502242Z", + "iopub.status.idle": "2024-06-25T23:18:10.508483Z", + "shell.execute_reply": "2024-06-25T23:18:10.507959Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.553602Z", - "iopub.status.busy": "2024-06-25T19:36:35.553415Z", - "iopub.status.idle": "2024-06-25T19:36:35.589414Z", - "shell.execute_reply": "2024-06-25T19:36:35.588805Z" + "iopub.execute_input": "2024-06-25T23:18:10.510615Z", + "iopub.status.busy": "2024-06-25T23:18:10.510302Z", + "iopub.status.idle": "2024-06-25T23:18:10.546530Z", + "shell.execute_reply": "2024-06-25T23:18:10.545827Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.592001Z", - "iopub.status.busy": "2024-06-25T19:36:35.591752Z", - "iopub.status.idle": "2024-06-25T19:36:35.628128Z", - "shell.execute_reply": "2024-06-25T19:36:35.627508Z" + "iopub.execute_input": "2024-06-25T23:18:10.548998Z", + "iopub.status.busy": "2024-06-25T23:18:10.548767Z", + "iopub.status.idle": "2024-06-25T23:18:10.582483Z", + "shell.execute_reply": "2024-06-25T23:18:10.581909Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.630864Z", - "iopub.status.busy": "2024-06-25T19:36:35.630509Z", - "iopub.status.idle": "2024-06-25T19:36:35.751028Z", - "shell.execute_reply": "2024-06-25T19:36:35.750367Z" + "iopub.execute_input": "2024-06-25T23:18:10.585385Z", + "iopub.status.busy": "2024-06-25T23:18:10.584868Z", + "iopub.status.idle": "2024-06-25T23:18:10.710386Z", + "shell.execute_reply": "2024-06-25T23:18:10.709794Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.753981Z", - "iopub.status.busy": "2024-06-25T19:36:35.753115Z", - "iopub.status.idle": "2024-06-25T19:36:38.820276Z", - "shell.execute_reply": "2024-06-25T19:36:38.819614Z" + "iopub.execute_input": "2024-06-25T23:18:10.713077Z", + "iopub.status.busy": "2024-06-25T23:18:10.712538Z", + "iopub.status.idle": "2024-06-25T23:18:13.846109Z", + "shell.execute_reply": "2024-06-25T23:18:13.845478Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:38.822817Z", - "iopub.status.busy": "2024-06-25T19:36:38.822359Z", - "iopub.status.idle": "2024-06-25T19:36:38.881135Z", - "shell.execute_reply": "2024-06-25T19:36:38.880677Z" + "iopub.execute_input": "2024-06-25T23:18:13.848642Z", + "iopub.status.busy": "2024-06-25T23:18:13.848179Z", + "iopub.status.idle": "2024-06-25T23:18:13.910214Z", + "shell.execute_reply": "2024-06-25T23:18:13.909621Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:38.883155Z", - "iopub.status.busy": "2024-06-25T19:36:38.882856Z", - "iopub.status.idle": "2024-06-25T19:36:38.922999Z", - "shell.execute_reply": "2024-06-25T19:36:38.922558Z" + "iopub.execute_input": "2024-06-25T23:18:13.912512Z", + "iopub.status.busy": "2024-06-25T23:18:13.912056Z", + "iopub.status.idle": "2024-06-25T23:18:13.955394Z", + "shell.execute_reply": "2024-06-25T23:18:13.954784Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "91d13c0b", + "id": "411cb3b4", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "838b0e29", + "id": "c0fc51ac", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "72c82160", + "id": "31d0af7b", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "c8ef0e49", + "id": "ddefd054", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:38.925175Z", - "iopub.status.busy": "2024-06-25T19:36:38.924869Z", - "iopub.status.idle": "2024-06-25T19:36:38.933100Z", - "shell.execute_reply": "2024-06-25T19:36:38.932519Z" + "iopub.execute_input": "2024-06-25T23:18:13.957642Z", + "iopub.status.busy": "2024-06-25T23:18:13.957445Z", + "iopub.status.idle": "2024-06-25T23:18:13.965853Z", + "shell.execute_reply": "2024-06-25T23:18:13.965258Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "bfd8eea7", + "id": "96a1ec22", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "7515c699", + "id": "d478ad17", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:38.935170Z", - "iopub.status.busy": "2024-06-25T19:36:38.934961Z", - "iopub.status.idle": "2024-06-25T19:36:38.958819Z", - "shell.execute_reply": "2024-06-25T19:36:38.958261Z" + "iopub.execute_input": "2024-06-25T23:18:13.968394Z", + "iopub.status.busy": "2024-06-25T23:18:13.968108Z", + "iopub.status.idle": "2024-06-25T23:18:13.989832Z", + "shell.execute_reply": "2024-06-25T23:18:13.989245Z" } }, "outputs": [ @@ -1495,7 +1495,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7655/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7878/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1529,13 +1529,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "0be681e4", + "id": "ff936017", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:38.960846Z", - "iopub.status.busy": "2024-06-25T19:36:38.960529Z", - "iopub.status.idle": "2024-06-25T19:36:38.963912Z", - "shell.execute_reply": "2024-06-25T19:36:38.963342Z" + "iopub.execute_input": "2024-06-25T23:18:13.992065Z", + "iopub.status.busy": "2024-06-25T23:18:13.991705Z", + "iopub.status.idle": "2024-06-25T23:18:13.994946Z", + "shell.execute_reply": "2024-06-25T23:18:13.994403Z" } }, "outputs": [ @@ -1630,7 +1630,75 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1ac8a486230942529a1f92b9b04d7e25": { + "01de1302b1ac41a68c4d605171741bc4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "05b22c53719c4c21a23fad4a52106f28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0e5d155060264c219bd191119ba7e533": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0f44c68a58214c4e8e72391024cc96e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "20b4f1fb000f40e69908d463dce3c07d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1683,7 +1751,7 @@ "width": null } }, - "1e692354f23845bf94b6ee7d9d7b2637": { + "21bd4c1e909b435f96eccf76ffa92cec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1701,7 +1769,7 @@ "text_color": null } }, - "27e85dda33254222a2c4e9d42bf88ff4": { + "2414d070f8b94c0488b54d3ad24457fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1719,7 +1787,31 @@ "text_color": null } }, - "2f598ca1115244399eac8ba3ae5fcba3": { + "558d7887a3b248ccbc78e41ae8f6a2ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_95142643f01f48508a522fc8ef8c8553", + "IPY_MODEL_e962ea686d414b5ca4d9f4f904cd468f", + "IPY_MODEL_db994fd696e94ac29224215d7f867ee2" + ], + "layout": "IPY_MODEL_5eb199074cca45eebcd2fae654f3d219", + "tabbable": null, + "tooltip": null + } + }, + "5baa096c30154543accc624858291e39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1772,7 +1864,7 @@ "width": null } }, - "3e18aac5a76f4d2f8ce8f5acb53421d0": { + "5eb199074cca45eebcd2fae654f3d219": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1825,49 +1917,31 @@ "width": null } }, - "45a1fa5ae2f84e1b9e7c58b238c02698": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "58d31513ffc848d98369cbd1a5fadbf4": { + "633ecf7c235f443883ad78f8a1d748cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f598ca1115244399eac8ba3ae5fcba3", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_45a1fa5ae2f84e1b9e7c58b238c02698", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a6fc608ec49049b99b50be3158f92470", + "IPY_MODEL_b5ef166a707247e98779b17c09955c28", + "IPY_MODEL_9218df49202c42f186276c2b0c86c0ef" + ], + "layout": "IPY_MODEL_81ac2032ca0b474aba6329ab92b63efd", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "83e8730e8f4b4919bc838506ae45e9f1": { + "80ffedccfbbc46d0bd395580acfaf87f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1920,31 +1994,60 @@ "width": null } }, - "84b64175499142ae9cf770d1e88b80ac": { - "model_module": "@jupyter-widgets/controls", + "81ac2032ca0b474aba6329ab92b63efd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_89f81d1899184862ad07ccb4185e5559", - "IPY_MODEL_58d31513ffc848d98369cbd1a5fadbf4", - "IPY_MODEL_f724bd9057e2403697996412c3965090" - ], - "layout": "IPY_MODEL_1ac8a486230942529a1f92b9b04d7e25", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "89f81d1899184862ad07ccb4185e5559": { + "9218df49202c42f186276c2b0c86c0ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1959,41 +2062,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd49361ee585455e9e0ea110e22cd11e", + "layout": "IPY_MODEL_5baa096c30154543accc624858291e39", "placeholder": "​", - "style": "IPY_MODEL_1e692354f23845bf94b6ee7d9d7b2637", + "style": "IPY_MODEL_05b22c53719c4c21a23fad4a52106f28", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": " 10000/? [00:00<00:00, 1516982.17it/s]" } }, - "9e433498da854beaad7447e349a6c08e": { + "95142643f01f48508a522fc8ef8c8553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3e18aac5a76f4d2f8ce8f5acb53421d0", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dcebb06a360d4208903b16c601b8b9f0", + "layout": "IPY_MODEL_c84021d7d3264151a5fb14b29eaf1cee", + "placeholder": "​", + "style": "IPY_MODEL_21bd4c1e909b435f96eccf76ffa92cec", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": "number of examples processed for estimating thresholds: " } }, - "a4ce410049214dbe89d19e4dbe853b25": { + "a6fc608ec49049b99b50be3158f92470": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2008,91 +2108,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bbe8dc417f9d43f1ae6a2da9fe46bcfd", + "layout": "IPY_MODEL_efd5cc9a580b4925b2b71b81f5bd69d9", "placeholder": "​", - "style": "IPY_MODEL_c0572681372e40379a108207eae59244", + "style": "IPY_MODEL_01de1302b1ac41a68c4d605171741bc4", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "b2b8153149be48568be2b6c09e02fa2f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": "number of examples processed for checking labels: " } }, - "ba90ec735ab140eda8d3905b17d24bf0": { + "b5ef166a707247e98779b17c09955c28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b2b8153149be48568be2b6c09e02fa2f", - "placeholder": "​", - "style": "IPY_MODEL_27e85dda33254222a2c4e9d42bf88ff4", + "layout": "IPY_MODEL_c4f061a7d9044c3cbc2d5dc4162c65ef", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0f44c68a58214c4e8e72391024cc96e8", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1015594.57it/s]" + "value": 50.0 } }, - "bbe8dc417f9d43f1ae6a2da9fe46bcfd": { + "c4f061a7d9044c3cbc2d5dc4162c65ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2145,7 +2195,7 @@ "width": null } }, - "bd49361ee585455e9e0ea110e22cd11e": { + "c84021d7d3264151a5fb14b29eaf1cee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2198,65 +2248,56 @@ "width": null } }, - "c0572681372e40379a108207eae59244": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d8af54b634f1457680edc574c7fcb110": { + "db994fd696e94ac29224215d7f867ee2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4ce410049214dbe89d19e4dbe853b25", - "IPY_MODEL_9e433498da854beaad7447e349a6c08e", - "IPY_MODEL_ba90ec735ab140eda8d3905b17d24bf0" - ], - "layout": "IPY_MODEL_83e8730e8f4b4919bc838506ae45e9f1", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_20b4f1fb000f40e69908d463dce3c07d", + "placeholder": "​", + "style": "IPY_MODEL_2414d070f8b94c0488b54d3ad24457fb", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1059381.69it/s]" } }, - "dcebb06a360d4208903b16c601b8b9f0": { + "e962ea686d414b5ca4d9f4f904cd468f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_80ffedccfbbc46d0bd395580acfaf87f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0e5d155060264c219bd191119ba7e533", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "ef7c6e423a9041328b6cffec28d2d266": { + "efd5cc9a580b4925b2b71b81f5bd69d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2308,47 +2349,6 @@ "visibility": null, "width": null } - }, - "f724bd9057e2403697996412c3965090": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ef7c6e423a9041328b6cffec28d2d266", - "placeholder": "​", - "style": "IPY_MODEL_f9185cf0646b4409bb846af3b144c5a1", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1581801.18it/s]" - } - }, - "f9185cf0646b4409bb846af3b144c5a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 3a6310e80..902b836cf 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:41.976010Z", - "iopub.status.busy": "2024-06-25T19:36:41.975837Z", - "iopub.status.idle": "2024-06-25T19:36:43.122752Z", - "shell.execute_reply": "2024-06-25T19:36:43.122216Z" + "iopub.execute_input": "2024-06-25T23:18:17.256748Z", + "iopub.status.busy": "2024-06-25T23:18:17.256569Z", + "iopub.status.idle": "2024-06-25T23:18:18.418999Z", + "shell.execute_reply": "2024-06-25T23:18:18.418397Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:43.125429Z", - "iopub.status.busy": "2024-06-25T19:36:43.124947Z", - "iopub.status.idle": "2024-06-25T19:36:43.300656Z", - "shell.execute_reply": "2024-06-25T19:36:43.300064Z" + "iopub.execute_input": "2024-06-25T23:18:18.421550Z", + "iopub.status.busy": "2024-06-25T23:18:18.421304Z", + "iopub.status.idle": "2024-06-25T23:18:18.599266Z", + "shell.execute_reply": "2024-06-25T23:18:18.598641Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:43.303142Z", - "iopub.status.busy": "2024-06-25T19:36:43.302695Z", - "iopub.status.idle": "2024-06-25T19:36:43.314281Z", - "shell.execute_reply": "2024-06-25T19:36:43.313721Z" + "iopub.execute_input": "2024-06-25T23:18:18.601825Z", + "iopub.status.busy": "2024-06-25T23:18:18.601625Z", + "iopub.status.idle": "2024-06-25T23:18:18.613136Z", + "shell.execute_reply": "2024-06-25T23:18:18.612703Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:43.316604Z", - "iopub.status.busy": "2024-06-25T19:36:43.316167Z", - "iopub.status.idle": "2024-06-25T19:36:43.522010Z", - "shell.execute_reply": "2024-06-25T19:36:43.521428Z" + "iopub.execute_input": "2024-06-25T23:18:18.615067Z", + "iopub.status.busy": "2024-06-25T23:18:18.614888Z", + "iopub.status.idle": "2024-06-25T23:18:18.849624Z", + "shell.execute_reply": "2024-06-25T23:18:18.849023Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:43.524390Z", - "iopub.status.busy": "2024-06-25T19:36:43.524031Z", - "iopub.status.idle": "2024-06-25T19:36:43.550098Z", - "shell.execute_reply": "2024-06-25T19:36:43.549668Z" + "iopub.execute_input": "2024-06-25T23:18:18.851953Z", + "iopub.status.busy": "2024-06-25T23:18:18.851541Z", + "iopub.status.idle": "2024-06-25T23:18:18.877468Z", + "shell.execute_reply": "2024-06-25T23:18:18.877017Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:43.552184Z", - "iopub.status.busy": "2024-06-25T19:36:43.551843Z", - "iopub.status.idle": "2024-06-25T19:36:45.543682Z", - "shell.execute_reply": "2024-06-25T19:36:45.542976Z" + "iopub.execute_input": "2024-06-25T23:18:18.879561Z", + "iopub.status.busy": "2024-06-25T23:18:18.879211Z", + "iopub.status.idle": "2024-06-25T23:18:20.899666Z", + "shell.execute_reply": "2024-06-25T23:18:20.898976Z" } }, "outputs": [ @@ -482,10 +482,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:45.546502Z", - "iopub.status.busy": "2024-06-25T19:36:45.545811Z", - "iopub.status.idle": "2024-06-25T19:36:45.563579Z", - "shell.execute_reply": "2024-06-25T19:36:45.563096Z" + "iopub.execute_input": "2024-06-25T23:18:20.901960Z", + "iopub.status.busy": "2024-06-25T23:18:20.901648Z", + "iopub.status.idle": "2024-06-25T23:18:20.919398Z", + "shell.execute_reply": "2024-06-25T23:18:20.918920Z" }, "scrolled": true }, @@ -615,10 +615,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:45.565656Z", - "iopub.status.busy": "2024-06-25T19:36:45.565330Z", - "iopub.status.idle": "2024-06-25T19:36:46.995317Z", - "shell.execute_reply": "2024-06-25T19:36:46.994691Z" + "iopub.execute_input": "2024-06-25T23:18:20.921440Z", + "iopub.status.busy": "2024-06-25T23:18:20.921079Z", + "iopub.status.idle": "2024-06-25T23:18:22.361092Z", + "shell.execute_reply": "2024-06-25T23:18:22.360462Z" }, "id": "AaHC5MRKjruT" }, @@ -737,10 +737,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:46.998304Z", - "iopub.status.busy": "2024-06-25T19:36:46.997491Z", - "iopub.status.idle": "2024-06-25T19:36:47.010764Z", - "shell.execute_reply": "2024-06-25T19:36:47.010231Z" + "iopub.execute_input": "2024-06-25T23:18:22.363669Z", + "iopub.status.busy": "2024-06-25T23:18:22.363060Z", + "iopub.status.idle": "2024-06-25T23:18:22.376718Z", + "shell.execute_reply": "2024-06-25T23:18:22.376170Z" }, "id": "Wy27rvyhjruU" }, @@ -789,10 +789,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.012994Z", - "iopub.status.busy": "2024-06-25T19:36:47.012685Z", - "iopub.status.idle": "2024-06-25T19:36:47.092028Z", - "shell.execute_reply": "2024-06-25T19:36:47.091384Z" + "iopub.execute_input": "2024-06-25T23:18:22.378792Z", + "iopub.status.busy": "2024-06-25T23:18:22.378469Z", + "iopub.status.idle": "2024-06-25T23:18:22.452119Z", + "shell.execute_reply": "2024-06-25T23:18:22.451527Z" }, "id": "Db8YHnyVjruU" }, @@ -899,10 +899,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.094203Z", - "iopub.status.busy": "2024-06-25T19:36:47.093979Z", - "iopub.status.idle": "2024-06-25T19:36:47.306398Z", - "shell.execute_reply": "2024-06-25T19:36:47.305822Z" + "iopub.execute_input": "2024-06-25T23:18:22.454608Z", + "iopub.status.busy": "2024-06-25T23:18:22.454246Z", + "iopub.status.idle": "2024-06-25T23:18:22.662363Z", + "shell.execute_reply": "2024-06-25T23:18:22.661824Z" }, "id": "iJqAHuS2jruV" }, @@ -939,10 +939,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.308648Z", - "iopub.status.busy": "2024-06-25T19:36:47.308280Z", - "iopub.status.idle": "2024-06-25T19:36:47.324852Z", - "shell.execute_reply": "2024-06-25T19:36:47.324401Z" + "iopub.execute_input": "2024-06-25T23:18:22.664593Z", + "iopub.status.busy": "2024-06-25T23:18:22.664244Z", + "iopub.status.idle": "2024-06-25T23:18:22.681198Z", + "shell.execute_reply": "2024-06-25T23:18:22.680722Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1408,10 +1408,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.326839Z", - "iopub.status.busy": "2024-06-25T19:36:47.326575Z", - "iopub.status.idle": "2024-06-25T19:36:47.335814Z", - "shell.execute_reply": "2024-06-25T19:36:47.335352Z" + "iopub.execute_input": "2024-06-25T23:18:22.683372Z", + "iopub.status.busy": "2024-06-25T23:18:22.682962Z", + "iopub.status.idle": "2024-06-25T23:18:22.692419Z", + "shell.execute_reply": "2024-06-25T23:18:22.691897Z" }, "id": "0lonvOYvjruV" }, @@ -1558,10 +1558,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.337943Z", - "iopub.status.busy": "2024-06-25T19:36:47.337629Z", - "iopub.status.idle": "2024-06-25T19:36:47.419127Z", - "shell.execute_reply": "2024-06-25T19:36:47.418522Z" + "iopub.execute_input": "2024-06-25T23:18:22.694507Z", + "iopub.status.busy": "2024-06-25T23:18:22.694073Z", + "iopub.status.idle": "2024-06-25T23:18:22.776192Z", + "shell.execute_reply": "2024-06-25T23:18:22.775639Z" }, "id": "MfqTCa3kjruV" }, @@ -1642,10 +1642,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.421368Z", - "iopub.status.busy": "2024-06-25T19:36:47.421141Z", - "iopub.status.idle": "2024-06-25T19:36:47.538207Z", - "shell.execute_reply": "2024-06-25T19:36:47.537601Z" + "iopub.execute_input": "2024-06-25T23:18:22.778586Z", + "iopub.status.busy": "2024-06-25T23:18:22.778226Z", + "iopub.status.idle": "2024-06-25T23:18:22.894081Z", + "shell.execute_reply": "2024-06-25T23:18:22.893472Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1705,10 +1705,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.540745Z", - "iopub.status.busy": "2024-06-25T19:36:47.540377Z", - "iopub.status.idle": "2024-06-25T19:36:47.544346Z", - "shell.execute_reply": "2024-06-25T19:36:47.543812Z" + "iopub.execute_input": "2024-06-25T23:18:22.896294Z", + "iopub.status.busy": "2024-06-25T23:18:22.896067Z", + "iopub.status.idle": "2024-06-25T23:18:22.899817Z", + "shell.execute_reply": "2024-06-25T23:18:22.899290Z" }, "id": "0rXP3ZPWjruW" }, @@ -1746,10 +1746,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.546251Z", - "iopub.status.busy": "2024-06-25T19:36:47.546076Z", - "iopub.status.idle": "2024-06-25T19:36:47.549903Z", - "shell.execute_reply": "2024-06-25T19:36:47.549356Z" + "iopub.execute_input": "2024-06-25T23:18:22.901918Z", + "iopub.status.busy": "2024-06-25T23:18:22.901602Z", + "iopub.status.idle": "2024-06-25T23:18:22.905366Z", + "shell.execute_reply": "2024-06-25T23:18:22.904793Z" }, "id": "-iRPe8KXjruW" }, @@ -1804,10 +1804,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.552020Z", - "iopub.status.busy": "2024-06-25T19:36:47.551608Z", - "iopub.status.idle": "2024-06-25T19:36:47.587995Z", - "shell.execute_reply": "2024-06-25T19:36:47.587566Z" + "iopub.execute_input": "2024-06-25T23:18:22.907395Z", + "iopub.status.busy": "2024-06-25T23:18:22.907096Z", + "iopub.status.idle": "2024-06-25T23:18:22.943768Z", + "shell.execute_reply": "2024-06-25T23:18:22.943295Z" }, "id": "ZpipUliyjruW" }, @@ -1858,10 +1858,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.589852Z", - "iopub.status.busy": "2024-06-25T19:36:47.589680Z", - "iopub.status.idle": "2024-06-25T19:36:47.630699Z", - "shell.execute_reply": "2024-06-25T19:36:47.630137Z" + "iopub.execute_input": "2024-06-25T23:18:22.945705Z", + "iopub.status.busy": "2024-06-25T23:18:22.945390Z", + "iopub.status.idle": "2024-06-25T23:18:22.987000Z", + "shell.execute_reply": "2024-06-25T23:18:22.986556Z" }, "id": "SLq-3q4xjruX" }, @@ -1930,10 +1930,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.632515Z", - "iopub.status.busy": "2024-06-25T19:36:47.632349Z", - "iopub.status.idle": "2024-06-25T19:36:47.720647Z", - "shell.execute_reply": "2024-06-25T19:36:47.719956Z" + "iopub.execute_input": "2024-06-25T23:18:22.989099Z", + "iopub.status.busy": "2024-06-25T23:18:22.988778Z", + "iopub.status.idle": "2024-06-25T23:18:23.079367Z", + "shell.execute_reply": "2024-06-25T23:18:23.078808Z" }, "id": "g5LHhhuqFbXK" }, @@ -1965,10 +1965,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.723084Z", - "iopub.status.busy": "2024-06-25T19:36:47.722899Z", - "iopub.status.idle": "2024-06-25T19:36:47.802159Z", - "shell.execute_reply": "2024-06-25T19:36:47.801549Z" + "iopub.execute_input": "2024-06-25T23:18:23.081992Z", + "iopub.status.busy": "2024-06-25T23:18:23.081632Z", + "iopub.status.idle": "2024-06-25T23:18:23.163660Z", + "shell.execute_reply": "2024-06-25T23:18:23.163108Z" }, "id": "p7w8F8ezBcet" }, @@ -2025,10 +2025,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.804647Z", - "iopub.status.busy": "2024-06-25T19:36:47.804175Z", - "iopub.status.idle": "2024-06-25T19:36:48.012610Z", - "shell.execute_reply": "2024-06-25T19:36:48.012009Z" + "iopub.execute_input": "2024-06-25T23:18:23.166170Z", + "iopub.status.busy": "2024-06-25T23:18:23.165696Z", + "iopub.status.idle": "2024-06-25T23:18:23.373652Z", + "shell.execute_reply": "2024-06-25T23:18:23.373076Z" }, "id": "WETRL74tE_sU" }, @@ -2063,10 +2063,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:48.014974Z", - "iopub.status.busy": "2024-06-25T19:36:48.014733Z", - "iopub.status.idle": "2024-06-25T19:36:48.197734Z", - "shell.execute_reply": "2024-06-25T19:36:48.197109Z" + "iopub.execute_input": "2024-06-25T23:18:23.375920Z", + "iopub.status.busy": "2024-06-25T23:18:23.375563Z", + "iopub.status.idle": "2024-06-25T23:18:23.542133Z", + "shell.execute_reply": "2024-06-25T23:18:23.541601Z" }, "id": "kCfdx2gOLmXS" }, @@ -2228,10 +2228,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:48.200133Z", - "iopub.status.busy": "2024-06-25T19:36:48.199890Z", - "iopub.status.idle": "2024-06-25T19:36:48.206211Z", - "shell.execute_reply": "2024-06-25T19:36:48.205745Z" + "iopub.execute_input": "2024-06-25T23:18:23.544310Z", + "iopub.status.busy": "2024-06-25T23:18:23.544080Z", + "iopub.status.idle": "2024-06-25T23:18:23.550244Z", + "shell.execute_reply": "2024-06-25T23:18:23.549696Z" }, "id": "-uogYRWFYnuu" }, @@ -2285,10 +2285,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:48.208373Z", - "iopub.status.busy": "2024-06-25T19:36:48.207949Z", - "iopub.status.idle": "2024-06-25T19:36:48.423251Z", - "shell.execute_reply": "2024-06-25T19:36:48.422679Z" + "iopub.execute_input": "2024-06-25T23:18:23.552552Z", + "iopub.status.busy": "2024-06-25T23:18:23.552102Z", + "iopub.status.idle": "2024-06-25T23:18:23.765551Z", + "shell.execute_reply": "2024-06-25T23:18:23.764971Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2335,10 +2335,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:48.425569Z", - "iopub.status.busy": "2024-06-25T19:36:48.425133Z", - "iopub.status.idle": "2024-06-25T19:36:49.482076Z", - "shell.execute_reply": "2024-06-25T19:36:49.481529Z" + "iopub.execute_input": "2024-06-25T23:18:23.767794Z", + "iopub.status.busy": "2024-06-25T23:18:23.767426Z", + "iopub.status.idle": "2024-06-25T23:18:24.838654Z", + "shell.execute_reply": "2024-06-25T23:18:24.838036Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 906c55fbe..b4c4a33f9 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:52.983005Z", - "iopub.status.busy": "2024-06-25T19:36:52.982831Z", - "iopub.status.idle": "2024-06-25T19:36:54.092198Z", - "shell.execute_reply": "2024-06-25T19:36:54.091645Z" + "iopub.execute_input": "2024-06-25T23:18:28.410867Z", + "iopub.status.busy": "2024-06-25T23:18:28.410704Z", + "iopub.status.idle": "2024-06-25T23:18:29.523341Z", + "shell.execute_reply": "2024-06-25T23:18:29.522804Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.094787Z", - "iopub.status.busy": "2024-06-25T19:36:54.094431Z", - "iopub.status.idle": "2024-06-25T19:36:54.097617Z", - "shell.execute_reply": "2024-06-25T19:36:54.097173Z" + "iopub.execute_input": "2024-06-25T23:18:29.525967Z", + "iopub.status.busy": "2024-06-25T23:18:29.525510Z", + "iopub.status.idle": "2024-06-25T23:18:29.528645Z", + "shell.execute_reply": "2024-06-25T23:18:29.528187Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.099720Z", - "iopub.status.busy": "2024-06-25T19:36:54.099372Z", - "iopub.status.idle": "2024-06-25T19:36:54.107610Z", - "shell.execute_reply": "2024-06-25T19:36:54.107140Z" + "iopub.execute_input": "2024-06-25T23:18:29.530912Z", + "iopub.status.busy": "2024-06-25T23:18:29.530502Z", + "iopub.status.idle": "2024-06-25T23:18:29.538778Z", + "shell.execute_reply": "2024-06-25T23:18:29.538338Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.109674Z", - "iopub.status.busy": "2024-06-25T19:36:54.109247Z", - "iopub.status.idle": "2024-06-25T19:36:54.157412Z", - "shell.execute_reply": "2024-06-25T19:36:54.156840Z" + "iopub.execute_input": "2024-06-25T23:18:29.540895Z", + "iopub.status.busy": "2024-06-25T23:18:29.540489Z", + "iopub.status.idle": "2024-06-25T23:18:29.587259Z", + "shell.execute_reply": "2024-06-25T23:18:29.586733Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.159654Z", - "iopub.status.busy": "2024-06-25T19:36:54.159472Z", - "iopub.status.idle": "2024-06-25T19:36:54.177229Z", - "shell.execute_reply": "2024-06-25T19:36:54.176762Z" + "iopub.execute_input": "2024-06-25T23:18:29.589466Z", + "iopub.status.busy": "2024-06-25T23:18:29.589277Z", + "iopub.status.idle": "2024-06-25T23:18:29.606524Z", + "shell.execute_reply": "2024-06-25T23:18:29.606095Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.179344Z", - "iopub.status.busy": "2024-06-25T19:36:54.179010Z", - "iopub.status.idle": "2024-06-25T19:36:54.182993Z", - "shell.execute_reply": "2024-06-25T19:36:54.182561Z" + "iopub.execute_input": "2024-06-25T23:18:29.608443Z", + "iopub.status.busy": "2024-06-25T23:18:29.608267Z", + "iopub.status.idle": "2024-06-25T23:18:29.612218Z", + "shell.execute_reply": "2024-06-25T23:18:29.611771Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.185097Z", - "iopub.status.busy": "2024-06-25T19:36:54.184777Z", - "iopub.status.idle": "2024-06-25T19:36:54.198824Z", - "shell.execute_reply": "2024-06-25T19:36:54.198358Z" + "iopub.execute_input": "2024-06-25T23:18:29.614226Z", + "iopub.status.busy": "2024-06-25T23:18:29.614054Z", + "iopub.status.idle": "2024-06-25T23:18:29.631367Z", + "shell.execute_reply": "2024-06-25T23:18:29.630956Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.200845Z", - "iopub.status.busy": "2024-06-25T19:36:54.200664Z", - "iopub.status.idle": "2024-06-25T19:36:54.227151Z", - "shell.execute_reply": "2024-06-25T19:36:54.226585Z" + "iopub.execute_input": "2024-06-25T23:18:29.633306Z", + "iopub.status.busy": "2024-06-25T23:18:29.632964Z", + "iopub.status.idle": "2024-06-25T23:18:29.658440Z", + "shell.execute_reply": "2024-06-25T23:18:29.658012Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.229370Z", - "iopub.status.busy": "2024-06-25T19:36:54.228984Z", - "iopub.status.idle": "2024-06-25T19:36:56.088954Z", - "shell.execute_reply": "2024-06-25T19:36:56.088321Z" + "iopub.execute_input": "2024-06-25T23:18:29.660435Z", + "iopub.status.busy": "2024-06-25T23:18:29.660092Z", + "iopub.status.idle": "2024-06-25T23:18:31.561212Z", + "shell.execute_reply": "2024-06-25T23:18:31.560640Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.091797Z", - "iopub.status.busy": "2024-06-25T19:36:56.091365Z", - "iopub.status.idle": "2024-06-25T19:36:56.098121Z", - "shell.execute_reply": "2024-06-25T19:36:56.097667Z" + "iopub.execute_input": "2024-06-25T23:18:31.563955Z", + "iopub.status.busy": "2024-06-25T23:18:31.563327Z", + "iopub.status.idle": "2024-06-25T23:18:31.570324Z", + "shell.execute_reply": "2024-06-25T23:18:31.569880Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.100176Z", - "iopub.status.busy": "2024-06-25T19:36:56.099747Z", - "iopub.status.idle": "2024-06-25T19:36:56.112314Z", - "shell.execute_reply": "2024-06-25T19:36:56.111779Z" + "iopub.execute_input": "2024-06-25T23:18:31.572276Z", + "iopub.status.busy": "2024-06-25T23:18:31.571950Z", + "iopub.status.idle": "2024-06-25T23:18:31.584255Z", + "shell.execute_reply": "2024-06-25T23:18:31.583817Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.114307Z", - "iopub.status.busy": "2024-06-25T19:36:56.113989Z", - "iopub.status.idle": "2024-06-25T19:36:56.120308Z", - "shell.execute_reply": "2024-06-25T19:36:56.119759Z" + "iopub.execute_input": "2024-06-25T23:18:31.586203Z", + "iopub.status.busy": "2024-06-25T23:18:31.585878Z", + "iopub.status.idle": "2024-06-25T23:18:31.591999Z", + "shell.execute_reply": "2024-06-25T23:18:31.591576Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.122321Z", - "iopub.status.busy": "2024-06-25T19:36:56.122009Z", - "iopub.status.idle": "2024-06-25T19:36:56.124766Z", - "shell.execute_reply": "2024-06-25T19:36:56.124216Z" + "iopub.execute_input": "2024-06-25T23:18:31.594128Z", + "iopub.status.busy": "2024-06-25T23:18:31.593809Z", + "iopub.status.idle": "2024-06-25T23:18:31.596328Z", + "shell.execute_reply": "2024-06-25T23:18:31.595895Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.126666Z", - "iopub.status.busy": "2024-06-25T19:36:56.126364Z", - "iopub.status.idle": "2024-06-25T19:36:56.129930Z", - "shell.execute_reply": "2024-06-25T19:36:56.129387Z" + "iopub.execute_input": "2024-06-25T23:18:31.598281Z", + "iopub.status.busy": "2024-06-25T23:18:31.597974Z", + "iopub.status.idle": "2024-06-25T23:18:31.601541Z", + "shell.execute_reply": "2024-06-25T23:18:31.600983Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.132039Z", - "iopub.status.busy": "2024-06-25T19:36:56.131738Z", - "iopub.status.idle": "2024-06-25T19:36:56.134411Z", - "shell.execute_reply": "2024-06-25T19:36:56.133864Z" + "iopub.execute_input": "2024-06-25T23:18:31.603595Z", + "iopub.status.busy": "2024-06-25T23:18:31.603264Z", + "iopub.status.idle": "2024-06-25T23:18:31.605889Z", + "shell.execute_reply": "2024-06-25T23:18:31.605456Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.136459Z", - "iopub.status.busy": "2024-06-25T19:36:56.136150Z", - "iopub.status.idle": "2024-06-25T19:36:56.140438Z", - "shell.execute_reply": "2024-06-25T19:36:56.139976Z" + "iopub.execute_input": "2024-06-25T23:18:31.607856Z", + "iopub.status.busy": "2024-06-25T23:18:31.607558Z", + "iopub.status.idle": "2024-06-25T23:18:31.611501Z", + "shell.execute_reply": "2024-06-25T23:18:31.611048Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.142440Z", - "iopub.status.busy": "2024-06-25T19:36:56.142121Z", - "iopub.status.idle": "2024-06-25T19:36:56.170976Z", - "shell.execute_reply": "2024-06-25T19:36:56.170425Z" + "iopub.execute_input": "2024-06-25T23:18:31.613408Z", + "iopub.status.busy": "2024-06-25T23:18:31.613238Z", + "iopub.status.idle": "2024-06-25T23:18:31.641822Z", + "shell.execute_reply": "2024-06-25T23:18:31.641266Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.173162Z", - "iopub.status.busy": "2024-06-25T19:36:56.172858Z", - "iopub.status.idle": "2024-06-25T19:36:56.177426Z", - "shell.execute_reply": "2024-06-25T19:36:56.176864Z" + "iopub.execute_input": "2024-06-25T23:18:31.644000Z", + "iopub.status.busy": "2024-06-25T23:18:31.643674Z", + "iopub.status.idle": "2024-06-25T23:18:31.648272Z", + "shell.execute_reply": "2024-06-25T23:18:31.647708Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 9e634f2f3..9593cdb90 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:58.919980Z", - "iopub.status.busy": "2024-06-25T19:36:58.919807Z", - "iopub.status.idle": "2024-06-25T19:37:00.071287Z", - "shell.execute_reply": "2024-06-25T19:37:00.070749Z" + "iopub.execute_input": "2024-06-25T23:18:34.388005Z", + "iopub.status.busy": "2024-06-25T23:18:34.387509Z", + "iopub.status.idle": "2024-06-25T23:18:35.555688Z", + "shell.execute_reply": "2024-06-25T23:18:35.555141Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:00.073825Z", - "iopub.status.busy": "2024-06-25T19:37:00.073418Z", - "iopub.status.idle": "2024-06-25T19:37:00.265456Z", - "shell.execute_reply": "2024-06-25T19:37:00.264849Z" + "iopub.execute_input": "2024-06-25T23:18:35.558285Z", + "iopub.status.busy": "2024-06-25T23:18:35.557842Z", + "iopub.status.idle": "2024-06-25T23:18:35.751397Z", + "shell.execute_reply": "2024-06-25T23:18:35.750860Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:00.268256Z", - "iopub.status.busy": "2024-06-25T19:37:00.267860Z", - "iopub.status.idle": "2024-06-25T19:37:00.281177Z", - "shell.execute_reply": "2024-06-25T19:37:00.280743Z" + "iopub.execute_input": "2024-06-25T23:18:35.754209Z", + "iopub.status.busy": "2024-06-25T23:18:35.753733Z", + "iopub.status.idle": "2024-06-25T23:18:35.767096Z", + "shell.execute_reply": "2024-06-25T23:18:35.766635Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:00.283272Z", - "iopub.status.busy": "2024-06-25T19:37:00.282948Z", - "iopub.status.idle": "2024-06-25T19:37:02.915319Z", - "shell.execute_reply": "2024-06-25T19:37:02.914720Z" + "iopub.execute_input": "2024-06-25T23:18:35.769292Z", + "iopub.status.busy": "2024-06-25T23:18:35.768939Z", + "iopub.status.idle": "2024-06-25T23:18:38.460798Z", + "shell.execute_reply": "2024-06-25T23:18:38.460293Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:02.917655Z", - "iopub.status.busy": "2024-06-25T19:37:02.917303Z", - "iopub.status.idle": "2024-06-25T19:37:04.262113Z", - "shell.execute_reply": "2024-06-25T19:37:04.261389Z" + "iopub.execute_input": "2024-06-25T23:18:38.463138Z", + "iopub.status.busy": "2024-06-25T23:18:38.462688Z", + "iopub.status.idle": "2024-06-25T23:18:39.817391Z", + "shell.execute_reply": "2024-06-25T23:18:39.816843Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:04.264665Z", - "iopub.status.busy": "2024-06-25T19:37:04.264273Z", - "iopub.status.idle": "2024-06-25T19:37:04.268776Z", - "shell.execute_reply": "2024-06-25T19:37:04.268171Z" + "iopub.execute_input": "2024-06-25T23:18:39.819916Z", + "iopub.status.busy": "2024-06-25T23:18:39.819475Z", + "iopub.status.idle": "2024-06-25T23:18:39.823477Z", + "shell.execute_reply": "2024-06-25T23:18:39.822931Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:04.271017Z", - "iopub.status.busy": "2024-06-25T19:37:04.270694Z", - "iopub.status.idle": "2024-06-25T19:37:06.209152Z", - "shell.execute_reply": "2024-06-25T19:37:06.208542Z" + "iopub.execute_input": "2024-06-25T23:18:39.825523Z", + "iopub.status.busy": "2024-06-25T23:18:39.825189Z", + "iopub.status.idle": "2024-06-25T23:18:41.816360Z", + "shell.execute_reply": "2024-06-25T23:18:41.815747Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:06.211688Z", - "iopub.status.busy": "2024-06-25T19:37:06.211198Z", - "iopub.status.idle": "2024-06-25T19:37:06.218564Z", - "shell.execute_reply": "2024-06-25T19:37:06.218036Z" + "iopub.execute_input": "2024-06-25T23:18:41.818930Z", + "iopub.status.busy": "2024-06-25T23:18:41.818429Z", + "iopub.status.idle": "2024-06-25T23:18:41.826321Z", + "shell.execute_reply": "2024-06-25T23:18:41.825851Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:06.220591Z", - "iopub.status.busy": "2024-06-25T19:37:06.220264Z", - "iopub.status.idle": "2024-06-25T19:37:08.793564Z", - "shell.execute_reply": "2024-06-25T19:37:08.792970Z" + "iopub.execute_input": "2024-06-25T23:18:41.828406Z", + "iopub.status.busy": "2024-06-25T23:18:41.828097Z", + "iopub.status.idle": "2024-06-25T23:18:44.431218Z", + "shell.execute_reply": "2024-06-25T23:18:44.430687Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:08.795901Z", - "iopub.status.busy": "2024-06-25T19:37:08.795549Z", - "iopub.status.idle": "2024-06-25T19:37:08.798884Z", - "shell.execute_reply": "2024-06-25T19:37:08.798350Z" + "iopub.execute_input": "2024-06-25T23:18:44.433395Z", + "iopub.status.busy": "2024-06-25T23:18:44.433032Z", + "iopub.status.idle": "2024-06-25T23:18:44.436462Z", + "shell.execute_reply": "2024-06-25T23:18:44.435934Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:08.800984Z", - "iopub.status.busy": "2024-06-25T19:37:08.800677Z", - "iopub.status.idle": "2024-06-25T19:37:08.804151Z", - "shell.execute_reply": "2024-06-25T19:37:08.803635Z" + "iopub.execute_input": "2024-06-25T23:18:44.438430Z", + "iopub.status.busy": "2024-06-25T23:18:44.438123Z", + "iopub.status.idle": "2024-06-25T23:18:44.441587Z", + "shell.execute_reply": "2024-06-25T23:18:44.441125Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:08.806163Z", - "iopub.status.busy": "2024-06-25T19:37:08.805988Z", - "iopub.status.idle": "2024-06-25T19:37:08.809167Z", - "shell.execute_reply": "2024-06-25T19:37:08.808609Z" + "iopub.execute_input": "2024-06-25T23:18:44.443586Z", + "iopub.status.busy": "2024-06-25T23:18:44.443248Z", + "iopub.status.idle": "2024-06-25T23:18:44.446272Z", + "shell.execute_reply": "2024-06-25T23:18:44.445845Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index aebe787bb..ceb7220d6 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:11.308794Z", - "iopub.status.busy": "2024-06-25T19:37:11.308627Z", - "iopub.status.idle": "2024-06-25T19:37:12.452711Z", - "shell.execute_reply": "2024-06-25T19:37:12.452159Z" + "iopub.execute_input": "2024-06-25T23:18:46.821534Z", + "iopub.status.busy": "2024-06-25T23:18:46.821356Z", + "iopub.status.idle": "2024-06-25T23:18:47.991566Z", + "shell.execute_reply": "2024-06-25T23:18:47.991020Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:12.455258Z", - "iopub.status.busy": "2024-06-25T19:37:12.454827Z", - "iopub.status.idle": "2024-06-25T19:37:14.890620Z", - "shell.execute_reply": "2024-06-25T19:37:14.889969Z" + "iopub.execute_input": "2024-06-25T23:18:47.994044Z", + "iopub.status.busy": "2024-06-25T23:18:47.993746Z", + "iopub.status.idle": "2024-06-25T23:18:49.077383Z", + "shell.execute_reply": "2024-06-25T23:18:49.076740Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:14.893309Z", - "iopub.status.busy": "2024-06-25T19:37:14.892942Z", - "iopub.status.idle": "2024-06-25T19:37:14.896049Z", - "shell.execute_reply": "2024-06-25T19:37:14.895624Z" + "iopub.execute_input": "2024-06-25T23:18:49.079931Z", + "iopub.status.busy": "2024-06-25T23:18:49.079715Z", + "iopub.status.idle": "2024-06-25T23:18:49.083128Z", + "shell.execute_reply": "2024-06-25T23:18:49.082576Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:14.898040Z", - "iopub.status.busy": "2024-06-25T19:37:14.897713Z", - "iopub.status.idle": "2024-06-25T19:37:14.903653Z", - "shell.execute_reply": "2024-06-25T19:37:14.903185Z" + "iopub.execute_input": "2024-06-25T23:18:49.085315Z", + "iopub.status.busy": "2024-06-25T23:18:49.084875Z", + "iopub.status.idle": "2024-06-25T23:18:49.090995Z", + "shell.execute_reply": "2024-06-25T23:18:49.090565Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:14.905688Z", - "iopub.status.busy": "2024-06-25T19:37:14.905360Z", - "iopub.status.idle": "2024-06-25T19:37:15.391751Z", - "shell.execute_reply": "2024-06-25T19:37:15.391128Z" + "iopub.execute_input": "2024-06-25T23:18:49.092987Z", + "iopub.status.busy": "2024-06-25T23:18:49.092664Z", + "iopub.status.idle": "2024-06-25T23:18:49.578049Z", + "shell.execute_reply": "2024-06-25T23:18:49.577480Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:15.394507Z", - "iopub.status.busy": "2024-06-25T19:37:15.394142Z", - "iopub.status.idle": "2024-06-25T19:37:15.399398Z", - "shell.execute_reply": "2024-06-25T19:37:15.398860Z" + "iopub.execute_input": "2024-06-25T23:18:49.581141Z", + "iopub.status.busy": "2024-06-25T23:18:49.580804Z", + "iopub.status.idle": "2024-06-25T23:18:49.586187Z", + "shell.execute_reply": "2024-06-25T23:18:49.585728Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:15.401545Z", - "iopub.status.busy": "2024-06-25T19:37:15.401225Z", - "iopub.status.idle": "2024-06-25T19:37:15.404995Z", - "shell.execute_reply": "2024-06-25T19:37:15.404569Z" + "iopub.execute_input": "2024-06-25T23:18:49.588207Z", + "iopub.status.busy": "2024-06-25T23:18:49.587912Z", + "iopub.status.idle": "2024-06-25T23:18:49.592364Z", + "shell.execute_reply": "2024-06-25T23:18:49.591919Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:15.407039Z", - "iopub.status.busy": "2024-06-25T19:37:15.406711Z", - "iopub.status.idle": "2024-06-25T19:37:16.295944Z", - "shell.execute_reply": "2024-06-25T19:37:16.295383Z" + "iopub.execute_input": "2024-06-25T23:18:49.594287Z", + "iopub.status.busy": "2024-06-25T23:18:49.594112Z", + "iopub.status.idle": "2024-06-25T23:18:50.586165Z", + "shell.execute_reply": "2024-06-25T23:18:50.585507Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:16.298196Z", - "iopub.status.busy": "2024-06-25T19:37:16.297999Z", - "iopub.status.idle": "2024-06-25T19:37:16.525061Z", - "shell.execute_reply": "2024-06-25T19:37:16.524590Z" + "iopub.execute_input": "2024-06-25T23:18:50.588520Z", + "iopub.status.busy": "2024-06-25T23:18:50.588324Z", + "iopub.status.idle": "2024-06-25T23:18:50.808698Z", + "shell.execute_reply": "2024-06-25T23:18:50.808228Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:16.527288Z", - "iopub.status.busy": "2024-06-25T19:37:16.526859Z", - "iopub.status.idle": "2024-06-25T19:37:16.531244Z", - "shell.execute_reply": "2024-06-25T19:37:16.530747Z" + "iopub.execute_input": "2024-06-25T23:18:50.810921Z", + "iopub.status.busy": "2024-06-25T23:18:50.810585Z", + "iopub.status.idle": "2024-06-25T23:18:50.815013Z", + "shell.execute_reply": "2024-06-25T23:18:50.814577Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:16.533265Z", - "iopub.status.busy": "2024-06-25T19:37:16.533088Z", - "iopub.status.idle": "2024-06-25T19:37:16.979069Z", - "shell.execute_reply": "2024-06-25T19:37:16.978477Z" + "iopub.execute_input": "2024-06-25T23:18:50.816841Z", + "iopub.status.busy": "2024-06-25T23:18:50.816666Z", + "iopub.status.idle": "2024-06-25T23:18:51.264514Z", + "shell.execute_reply": "2024-06-25T23:18:51.263937Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:16.981738Z", - "iopub.status.busy": "2024-06-25T19:37:16.981547Z", - "iopub.status.idle": "2024-06-25T19:37:17.310927Z", - "shell.execute_reply": "2024-06-25T19:37:17.310336Z" + "iopub.execute_input": "2024-06-25T23:18:51.267205Z", + "iopub.status.busy": "2024-06-25T23:18:51.266984Z", + "iopub.status.idle": "2024-06-25T23:18:51.597569Z", + "shell.execute_reply": "2024-06-25T23:18:51.596965Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:17.313292Z", - "iopub.status.busy": "2024-06-25T19:37:17.312887Z", - "iopub.status.idle": "2024-06-25T19:37:17.645849Z", - "shell.execute_reply": "2024-06-25T19:37:17.645269Z" + "iopub.execute_input": "2024-06-25T23:18:51.599806Z", + "iopub.status.busy": "2024-06-25T23:18:51.599595Z", + "iopub.status.idle": "2024-06-25T23:18:51.933374Z", + "shell.execute_reply": "2024-06-25T23:18:51.932766Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:17.649071Z", - "iopub.status.busy": "2024-06-25T19:37:17.648711Z", - "iopub.status.idle": "2024-06-25T19:37:18.056258Z", - "shell.execute_reply": "2024-06-25T19:37:18.055723Z" + "iopub.execute_input": "2024-06-25T23:18:51.936579Z", + "iopub.status.busy": "2024-06-25T23:18:51.936094Z", + "iopub.status.idle": "2024-06-25T23:18:52.348181Z", + "shell.execute_reply": "2024-06-25T23:18:52.347588Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:18.060462Z", - "iopub.status.busy": "2024-06-25T19:37:18.060093Z", - "iopub.status.idle": "2024-06-25T19:37:18.505775Z", - "shell.execute_reply": "2024-06-25T19:37:18.505169Z" + "iopub.execute_input": "2024-06-25T23:18:52.352428Z", + "iopub.status.busy": "2024-06-25T23:18:52.351994Z", + "iopub.status.idle": "2024-06-25T23:18:52.773521Z", + "shell.execute_reply": "2024-06-25T23:18:52.772929Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:18.508548Z", - "iopub.status.busy": "2024-06-25T19:37:18.508203Z", - "iopub.status.idle": "2024-06-25T19:37:18.698418Z", - "shell.execute_reply": "2024-06-25T19:37:18.697831Z" + "iopub.execute_input": "2024-06-25T23:18:52.776870Z", + "iopub.status.busy": "2024-06-25T23:18:52.776447Z", + "iopub.status.idle": "2024-06-25T23:18:52.965633Z", + "shell.execute_reply": "2024-06-25T23:18:52.965014Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:18.700790Z", - "iopub.status.busy": "2024-06-25T19:37:18.700610Z", - "iopub.status.idle": "2024-06-25T19:37:18.880703Z", - "shell.execute_reply": "2024-06-25T19:37:18.880186Z" + "iopub.execute_input": "2024-06-25T23:18:52.968518Z", + "iopub.status.busy": "2024-06-25T23:18:52.968035Z", + "iopub.status.idle": "2024-06-25T23:18:53.169696Z", + "shell.execute_reply": "2024-06-25T23:18:53.169139Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:18.882941Z", - "iopub.status.busy": "2024-06-25T19:37:18.882765Z", - "iopub.status.idle": "2024-06-25T19:37:18.885792Z", - "shell.execute_reply": "2024-06-25T19:37:18.885246Z" + "iopub.execute_input": "2024-06-25T23:18:53.171908Z", + "iopub.status.busy": "2024-06-25T23:18:53.171701Z", + "iopub.status.idle": "2024-06-25T23:18:53.174679Z", + "shell.execute_reply": "2024-06-25T23:18:53.174135Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:18.887722Z", - "iopub.status.busy": "2024-06-25T19:37:18.887391Z", - "iopub.status.idle": "2024-06-25T19:37:19.791276Z", - "shell.execute_reply": "2024-06-25T19:37:19.790730Z" + "iopub.execute_input": "2024-06-25T23:18:53.176658Z", + "iopub.status.busy": "2024-06-25T23:18:53.176332Z", + "iopub.status.idle": "2024-06-25T23:18:54.151841Z", + "shell.execute_reply": "2024-06-25T23:18:54.151257Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:19.793943Z", - "iopub.status.busy": "2024-06-25T19:37:19.793573Z", - "iopub.status.idle": "2024-06-25T19:37:19.935555Z", - "shell.execute_reply": "2024-06-25T19:37:19.935101Z" + "iopub.execute_input": "2024-06-25T23:18:54.153970Z", + "iopub.status.busy": "2024-06-25T23:18:54.153788Z", + "iopub.status.idle": "2024-06-25T23:18:54.367334Z", + "shell.execute_reply": "2024-06-25T23:18:54.366782Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:19.937552Z", - "iopub.status.busy": "2024-06-25T19:37:19.937378Z", - "iopub.status.idle": "2024-06-25T19:37:20.088397Z", - "shell.execute_reply": "2024-06-25T19:37:20.087796Z" + "iopub.execute_input": "2024-06-25T23:18:54.369532Z", + "iopub.status.busy": "2024-06-25T23:18:54.369222Z", + "iopub.status.idle": "2024-06-25T23:18:54.583472Z", + "shell.execute_reply": "2024-06-25T23:18:54.582875Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:20.090556Z", - "iopub.status.busy": "2024-06-25T19:37:20.090235Z", - "iopub.status.idle": "2024-06-25T19:37:20.751985Z", - "shell.execute_reply": "2024-06-25T19:37:20.751385Z" + "iopub.execute_input": "2024-06-25T23:18:54.585760Z", + "iopub.status.busy": "2024-06-25T23:18:54.585359Z", + "iopub.status.idle": "2024-06-25T23:18:55.323353Z", + "shell.execute_reply": "2024-06-25T23:18:55.322814Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:20.754413Z", - "iopub.status.busy": "2024-06-25T19:37:20.753942Z", - "iopub.status.idle": "2024-06-25T19:37:20.757882Z", - "shell.execute_reply": "2024-06-25T19:37:20.757342Z" + "iopub.execute_input": "2024-06-25T23:18:55.325548Z", + "iopub.status.busy": "2024-06-25T23:18:55.325207Z", + "iopub.status.idle": "2024-06-25T23:18:55.329284Z", + "shell.execute_reply": "2024-06-25T23:18:55.328852Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 3359ecfd0..4aeee095a 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:22.937714Z", - "iopub.status.busy": "2024-06-25T19:37:22.937546Z", - "iopub.status.idle": "2024-06-25T19:37:25.620183Z", - "shell.execute_reply": "2024-06-25T19:37:25.619593Z" + "iopub.execute_input": "2024-06-25T23:18:57.455185Z", + "iopub.status.busy": "2024-06-25T23:18:57.455007Z", + "iopub.status.idle": "2024-06-25T23:19:00.140522Z", + "shell.execute_reply": "2024-06-25T23:19:00.139964Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:25.622737Z", - "iopub.status.busy": "2024-06-25T19:37:25.622414Z", - "iopub.status.idle": "2024-06-25T19:37:25.936079Z", - "shell.execute_reply": "2024-06-25T19:37:25.935452Z" + "iopub.execute_input": "2024-06-25T23:19:00.143299Z", + "iopub.status.busy": "2024-06-25T23:19:00.142777Z", + "iopub.status.idle": "2024-06-25T23:19:00.459330Z", + "shell.execute_reply": "2024-06-25T23:19:00.458710Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:25.938723Z", - "iopub.status.busy": "2024-06-25T19:37:25.938422Z", - "iopub.status.idle": "2024-06-25T19:37:25.942622Z", - "shell.execute_reply": "2024-06-25T19:37:25.942185Z" + "iopub.execute_input": "2024-06-25T23:19:00.461903Z", + "iopub.status.busy": "2024-06-25T23:19:00.461603Z", + "iopub.status.idle": "2024-06-25T23:19:00.465997Z", + "shell.execute_reply": "2024-06-25T23:19:00.465462Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:25.944514Z", - "iopub.status.busy": "2024-06-25T19:37:25.944341Z", - "iopub.status.idle": "2024-06-25T19:37:33.410224Z", - "shell.execute_reply": "2024-06-25T19:37:33.409701Z" + "iopub.execute_input": "2024-06-25T23:19:00.468073Z", + "iopub.status.busy": "2024-06-25T23:19:00.467652Z", + "iopub.status.idle": "2024-06-25T23:19:04.713802Z", + "shell.execute_reply": "2024-06-25T23:19:04.713212Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<10:33, 269061.34it/s]" + " 1%| | 1867776/170498071 [00:00<00:09, 18674661.14it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<02:43, 1044330.69it/s]" + " 8%|▊ | 13533184/170498071 [00:00<00:02, 76238255.65it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:56, 2986468.56it/s]" + " 15%|█▍ | 25133056/170498071 [00:00<00:01, 94330786.80it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3506176/170498071 [00:00<00:15, 10508236.75it/s]" + " 22%|██▏ | 36732928/170498071 [00:00<00:01, 102749472.78it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 8552448/170498071 [00:00<00:06, 23273913.94it/s]" + " 28%|██▊ | 48431104/170498071 [00:00<00:01, 107856210.55it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 12877824/170498071 [00:00<00:05, 29531831.70it/s]" + " 35%|███▍ | 59244544/170498071 [00:00<00:01, 104969542.54it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17661952/170498071 [00:00<00:04, 34683944.45it/s]" + " 41%|████▏ | 70385664/170498071 [00:00<00:00, 106967167.13it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22478848/170498071 [00:00<00:03, 38419021.56it/s]" + " 48%|████▊ | 82051072/170498071 [00:00<00:00, 109967427.14it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 27590656/170498071 [00:00<00:03, 42218756.72it/s]" + " 55%|█████▍ | 93618176/170498071 [00:00<00:00, 111587704.91it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32145408/170498071 [00:01<00:03, 42979378.57it/s]" + " 62%|██████▏ | 105381888/170498071 [00:01<00:00, 113341455.44it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37552128/170498071 [00:01<00:02, 46248329.44it/s]" + " 69%|██████▊ | 116850688/170498071 [00:01<00:00, 113640126.52it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 42237952/170498071 [00:01<00:02, 45894868.35it/s]" + " 75%|███████▌ | 128221184/170498071 [00:01<00:00, 112577089.48it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 47546368/170498071 [00:01<00:02, 47987784.85it/s]" + " 82%|████████▏ | 139886592/170498071 [00:01<00:00, 113733636.99it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52396032/170498071 [00:01<00:02, 47660760.18it/s]" + " 89%|████████▉ | 151355392/170498071 [00:01<00:00, 113996738.39it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 57212928/170498071 [00:01<00:02, 46221672.73it/s]" + " 96%|█████████▌| 163020800/170498071 [00:01<00:00, 114693076.37it/s]" ] }, { @@ -372,183 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 62259200/170498071 [00:01<00:02, 47420663.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 39%|███▉ | 67043328/170498071 [00:01<00:02, 46870615.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 42%|████▏ | 72187904/170498071 [00:01<00:02, 48207181.06it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 45%|████▌ | 77037568/170498071 [00:02<00:01, 47426096.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 48%|████▊ | 82477056/170498071 [00:02<00:01, 48903231.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 51%|█████▏ | 87392256/170498071 [00:02<00:01, 48876811.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 54%|█████▍ | 92307456/170498071 [00:02<00:01, 46456343.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 97714176/170498071 [00:02<00:01, 48622672.55it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|██████ | 102629376/170498071 [00:02<00:01, 47303583.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 107839488/170498071 [00:02<00:01, 48660290.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 112754688/170498071 [00:02<00:01, 48170138.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 117604352/170498071 [00:02<00:01, 48147632.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 122552320/170498071 [00:02<00:01, 47622185.83it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▍ | 127336448/170498071 [00:03<00:00, 46393005.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 133300224/170498071 [00:03<00:00, 50178503.28it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 138346496/170498071 [00:03<00:00, 48020765.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 143196160/170498071 [00:03<00:00, 46334061.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 149061632/170498071 [00:03<00:00, 49353288.69it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 154042368/170498071 [00:03<00:00, 48340337.16it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 158924800/170498071 [00:03<00:00, 46140400.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 164921344/170498071 [00:03<00:00, 49140811.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 169869312/170498071 [00:03<00:00, 48444737.50it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 43010872.29it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 107997102.42it/s]" ] }, { @@ -666,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:33.412458Z", - "iopub.status.busy": "2024-06-25T19:37:33.412129Z", - "iopub.status.idle": "2024-06-25T19:37:33.416824Z", - "shell.execute_reply": "2024-06-25T19:37:33.416305Z" + "iopub.execute_input": "2024-06-25T23:19:04.715884Z", + "iopub.status.busy": "2024-06-25T23:19:04.715703Z", + "iopub.status.idle": "2024-06-25T23:19:04.720331Z", + "shell.execute_reply": "2024-06-25T23:19:04.719901Z" }, "nbsphinx": "hidden" }, @@ -720,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:33.418809Z", - "iopub.status.busy": "2024-06-25T19:37:33.418495Z", - "iopub.status.idle": "2024-06-25T19:37:33.960026Z", - "shell.execute_reply": "2024-06-25T19:37:33.959496Z" + "iopub.execute_input": "2024-06-25T23:19:04.722383Z", + "iopub.status.busy": "2024-06-25T23:19:04.722067Z", + "iopub.status.idle": "2024-06-25T23:19:05.264665Z", + "shell.execute_reply": "2024-06-25T23:19:05.264156Z" } }, "outputs": [ @@ -756,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:33.962172Z", - "iopub.status.busy": "2024-06-25T19:37:33.961834Z", - "iopub.status.idle": "2024-06-25T19:37:34.466908Z", - "shell.execute_reply": "2024-06-25T19:37:34.466308Z" + "iopub.execute_input": "2024-06-25T23:19:05.266862Z", + "iopub.status.busy": "2024-06-25T23:19:05.266533Z", + "iopub.status.idle": "2024-06-25T23:19:05.782683Z", + "shell.execute_reply": "2024-06-25T23:19:05.782187Z" } }, "outputs": [ @@ -797,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:34.469197Z", - "iopub.status.busy": "2024-06-25T19:37:34.468825Z", - "iopub.status.idle": "2024-06-25T19:37:34.472416Z", - "shell.execute_reply": "2024-06-25T19:37:34.471962Z" + "iopub.execute_input": "2024-06-25T23:19:05.784979Z", + "iopub.status.busy": "2024-06-25T23:19:05.784496Z", + "iopub.status.idle": "2024-06-25T23:19:05.788141Z", + "shell.execute_reply": "2024-06-25T23:19:05.787582Z" } }, "outputs": [], @@ -823,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:34.474255Z", - "iopub.status.busy": "2024-06-25T19:37:34.474084Z", - "iopub.status.idle": "2024-06-25T19:37:46.991980Z", - "shell.execute_reply": "2024-06-25T19:37:46.991418Z" + "iopub.execute_input": "2024-06-25T23:19:05.790197Z", + "iopub.status.busy": "2024-06-25T23:19:05.789889Z", + "iopub.status.idle": "2024-06-25T23:19:18.262418Z", + "shell.execute_reply": "2024-06-25T23:19:18.261753Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3a6eebd9a9694b07864d194c78cdb317", + "model_id": "c487c0c381e74a26a4f49ff121b50dc9", "version_major": 2, "version_minor": 0 }, @@ -892,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:46.994340Z", - "iopub.status.busy": "2024-06-25T19:37:46.994149Z", - "iopub.status.idle": "2024-06-25T19:37:49.075191Z", - "shell.execute_reply": "2024-06-25T19:37:49.074609Z" + "iopub.execute_input": "2024-06-25T23:19:18.264580Z", + "iopub.status.busy": "2024-06-25T23:19:18.264398Z", + "iopub.status.idle": "2024-06-25T23:19:20.351765Z", + "shell.execute_reply": "2024-06-25T23:19:20.351216Z" } }, "outputs": [ @@ -939,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:49.077233Z", - "iopub.status.busy": "2024-06-25T19:37:49.077055Z", - "iopub.status.idle": "2024-06-25T19:37:49.302913Z", - "shell.execute_reply": "2024-06-25T19:37:49.302334Z" + "iopub.execute_input": "2024-06-25T23:19:20.354001Z", + "iopub.status.busy": "2024-06-25T23:19:20.353823Z", + "iopub.status.idle": "2024-06-25T23:19:20.594457Z", + "shell.execute_reply": "2024-06-25T23:19:20.593862Z" } }, "outputs": [ @@ -978,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:49.305112Z", - "iopub.status.busy": "2024-06-25T19:37:49.304932Z", - "iopub.status.idle": "2024-06-25T19:37:49.943529Z", - "shell.execute_reply": "2024-06-25T19:37:49.942935Z" + "iopub.execute_input": "2024-06-25T23:19:20.597502Z", + "iopub.status.busy": "2024-06-25T23:19:20.596997Z", + "iopub.status.idle": "2024-06-25T23:19:21.266452Z", + "shell.execute_reply": "2024-06-25T23:19:21.265865Z" } }, "outputs": [ @@ -1031,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:49.945968Z", - "iopub.status.busy": "2024-06-25T19:37:49.945641Z", - "iopub.status.idle": "2024-06-25T19:37:50.264955Z", - "shell.execute_reply": "2024-06-25T19:37:50.264439Z" + "iopub.execute_input": "2024-06-25T23:19:21.269364Z", + "iopub.status.busy": "2024-06-25T23:19:21.269161Z", + "iopub.status.idle": "2024-06-25T23:19:21.610132Z", + "shell.execute_reply": "2024-06-25T23:19:21.609580Z" } }, "outputs": [ @@ -1082,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:50.267076Z", - "iopub.status.busy": "2024-06-25T19:37:50.266888Z", - "iopub.status.idle": "2024-06-25T19:37:50.495188Z", - "shell.execute_reply": "2024-06-25T19:37:50.494600Z" + "iopub.execute_input": "2024-06-25T23:19:21.612438Z", + "iopub.status.busy": "2024-06-25T23:19:21.612030Z", + "iopub.status.idle": "2024-06-25T23:19:21.854392Z", + "shell.execute_reply": "2024-06-25T23:19:21.853886Z" } }, "outputs": [ @@ -1141,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:50.497736Z", - "iopub.status.busy": "2024-06-25T19:37:50.497230Z", - "iopub.status.idle": "2024-06-25T19:37:50.573192Z", - "shell.execute_reply": "2024-06-25T19:37:50.572575Z" + "iopub.execute_input": "2024-06-25T23:19:21.857100Z", + "iopub.status.busy": "2024-06-25T23:19:21.856718Z", + "iopub.status.idle": "2024-06-25T23:19:21.949451Z", + "shell.execute_reply": "2024-06-25T23:19:21.948923Z" } }, "outputs": [], @@ -1165,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:50.575685Z", - "iopub.status.busy": "2024-06-25T19:37:50.575502Z", - "iopub.status.idle": "2024-06-25T19:38:00.831598Z", - "shell.execute_reply": "2024-06-25T19:38:00.830941Z" + "iopub.execute_input": "2024-06-25T23:19:21.951971Z", + "iopub.status.busy": "2024-06-25T23:19:21.951792Z", + "iopub.status.idle": "2024-06-25T23:19:32.299281Z", + "shell.execute_reply": "2024-06-25T23:19:32.298639Z" } }, "outputs": [ @@ -1205,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:00.834016Z", - "iopub.status.busy": "2024-06-25T19:38:00.833627Z", - "iopub.status.idle": "2024-06-25T19:38:02.973271Z", - "shell.execute_reply": "2024-06-25T19:38:02.972713Z" + "iopub.execute_input": "2024-06-25T23:19:32.301554Z", + "iopub.status.busy": "2024-06-25T23:19:32.301299Z", + "iopub.status.idle": "2024-06-25T23:19:34.462906Z", + "shell.execute_reply": "2024-06-25T23:19:34.462279Z" } }, "outputs": [ @@ -1239,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:02.975964Z", - "iopub.status.busy": "2024-06-25T19:38:02.975476Z", - "iopub.status.idle": "2024-06-25T19:38:03.180118Z", - "shell.execute_reply": "2024-06-25T19:38:03.179626Z" + "iopub.execute_input": "2024-06-25T23:19:34.465814Z", + "iopub.status.busy": "2024-06-25T23:19:34.465269Z", + "iopub.status.idle": "2024-06-25T23:19:34.668011Z", + "shell.execute_reply": "2024-06-25T23:19:34.667512Z" } }, "outputs": [], @@ -1256,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:03.182510Z", - "iopub.status.busy": "2024-06-25T19:38:03.182166Z", - "iopub.status.idle": "2024-06-25T19:38:03.185175Z", - "shell.execute_reply": "2024-06-25T19:38:03.184750Z" + "iopub.execute_input": "2024-06-25T23:19:34.670373Z", + "iopub.status.busy": "2024-06-25T23:19:34.670183Z", + "iopub.status.idle": "2024-06-25T23:19:34.673433Z", + "shell.execute_reply": "2024-06-25T23:19:34.672977Z" } }, "outputs": [], @@ -1281,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:03.187201Z", - "iopub.status.busy": "2024-06-25T19:38:03.186922Z", - "iopub.status.idle": "2024-06-25T19:38:03.194967Z", - "shell.execute_reply": "2024-06-25T19:38:03.194449Z" + "iopub.execute_input": "2024-06-25T23:19:34.675236Z", + "iopub.status.busy": "2024-06-25T23:19:34.675068Z", + "iopub.status.idle": "2024-06-25T23:19:34.683440Z", + "shell.execute_reply": "2024-06-25T23:19:34.682879Z" }, "nbsphinx": "hidden" }, @@ -1329,31 +1153,67 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "3a6eebd9a9694b07864d194c78cdb317": { + "2a6c0688ba264a97aee90eb6e37e9dc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2ed8f22a488e446d9dd09c9e760c1fb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3a433760fb114684b1ce550e725410f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d314e5a0eb894d12bc8321b569f74cd0", - "IPY_MODEL_932ee016f6a74520b9da6cc833f044b5", - "IPY_MODEL_de1dfc7949d842468505de0b2a43b4f7" - ], - "layout": "IPY_MODEL_8876ddc2f4f248ff81bbe8f98f0e2826", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cac77136c4f843fea7898f1735deb973", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2a6c0688ba264a97aee90eb6e37e9dc2", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 102469840.0 } }, - "8876ddc2f4f248ff81bbe8f98f0e2826": { + "55e4c9a3e7c7475b9b79a0916ea74432": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1406,49 +1266,48 @@ "width": null } }, - "9117500d199d44088b40d306a6001f86": { + "7b2c005a31c74359a9e6040ef88246ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55e4c9a3e7c7475b9b79a0916ea74432", + "placeholder": "​", + "style": "IPY_MODEL_2ed8f22a488e446d9dd09c9e760c1fb2", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" } }, - "932ee016f6a74520b9da6cc833f044b5": { + "acf4b18dbb8e42a391b0dfa7d26e3612": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be482c428a914ad9bc5accbfcda59810", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9117500d199d44088b40d306a6001f86", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9345c22a7d26444e94e7dc281c6f7083": { + "b8d3a0d6f70d45e596f645995e60a137": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1501,7 +1360,31 @@ "width": null } }, - "a0c0e9532ae04b61941f4f996fe124d2": { + "c487c0c381e74a26a4f49ff121b50dc9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b2c005a31c74359a9e6040ef88246ae", + "IPY_MODEL_3a433760fb114684b1ce550e725410f3", + "IPY_MODEL_d732fe2e90af4c978675ca6771e1718c" + ], + "layout": "IPY_MODEL_d9309721bf15440c9369f140e0453a0f", + "tabbable": null, + "tooltip": null + } + }, + "cac77136c4f843fea7898f1735deb973": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1554,7 +1437,30 @@ "width": null } }, - "be482c428a914ad9bc5accbfcda59810": { + "d732fe2e90af4c978675ca6771e1718c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b8d3a0d6f70d45e596f645995e60a137", + "placeholder": "​", + "style": "IPY_MODEL_acf4b18dbb8e42a391b0dfa7d26e3612", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 218MB/s]" + } + }, + "d9309721bf15440c9369f140e0453a0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1606,88 +1512,6 @@ "visibility": null, "width": null } - }, - "d314e5a0eb894d12bc8321b569f74cd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9345c22a7d26444e94e7dc281c6f7083", - "placeholder": "​", - "style": "IPY_MODEL_ed999755dbfa4b068fb1bc1851f1d2ea", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "d8c964fe861d44eeb4663c74d1331470": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de1dfc7949d842468505de0b2a43b4f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a0c0e9532ae04b61941f4f996fe124d2", - "placeholder": "​", - "style": "IPY_MODEL_d8c964fe861d44eeb4663c74d1331470", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 265MB/s]" - } - }, - "ed999755dbfa4b068fb1bc1851f1d2ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 1e51dfcdc..4dccd9a0a 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:07.555838Z", - "iopub.status.busy": "2024-06-25T19:38:07.555668Z", - "iopub.status.idle": "2024-06-25T19:38:08.722369Z", - "shell.execute_reply": "2024-06-25T19:38:08.721811Z" + "iopub.execute_input": "2024-06-25T23:19:38.796252Z", + "iopub.status.busy": "2024-06-25T23:19:38.796082Z", + "iopub.status.idle": "2024-06-25T23:19:39.953258Z", + "shell.execute_reply": "2024-06-25T23:19:39.952691Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:08.724901Z", - "iopub.status.busy": "2024-06-25T19:38:08.724626Z", - "iopub.status.idle": "2024-06-25T19:38:08.741782Z", - "shell.execute_reply": "2024-06-25T19:38:08.741233Z" + "iopub.execute_input": "2024-06-25T23:19:39.955862Z", + "iopub.status.busy": "2024-06-25T23:19:39.955512Z", + "iopub.status.idle": "2024-06-25T23:19:39.972881Z", + "shell.execute_reply": "2024-06-25T23:19:39.972463Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:08.744094Z", - "iopub.status.busy": "2024-06-25T19:38:08.743687Z", - "iopub.status.idle": "2024-06-25T19:38:08.746763Z", - "shell.execute_reply": "2024-06-25T19:38:08.746228Z" + "iopub.execute_input": "2024-06-25T23:19:39.975108Z", + "iopub.status.busy": "2024-06-25T23:19:39.974726Z", + "iopub.status.idle": "2024-06-25T23:19:39.977547Z", + "shell.execute_reply": "2024-06-25T23:19:39.977124Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:08.748783Z", - "iopub.status.busy": "2024-06-25T19:38:08.748471Z", - "iopub.status.idle": "2024-06-25T19:38:09.023742Z", - "shell.execute_reply": "2024-06-25T19:38:09.023127Z" + "iopub.execute_input": "2024-06-25T23:19:39.979571Z", + "iopub.status.busy": "2024-06-25T23:19:39.979249Z", + "iopub.status.idle": "2024-06-25T23:19:40.010006Z", + "shell.execute_reply": "2024-06-25T23:19:40.009548Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.025867Z", - "iopub.status.busy": "2024-06-25T19:38:09.025685Z", - "iopub.status.idle": "2024-06-25T19:38:09.204489Z", - "shell.execute_reply": "2024-06-25T19:38:09.203970Z" + "iopub.execute_input": "2024-06-25T23:19:40.012066Z", + "iopub.status.busy": "2024-06-25T23:19:40.011740Z", + "iopub.status.idle": "2024-06-25T23:19:40.191233Z", + "shell.execute_reply": "2024-06-25T23:19:40.190672Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.206625Z", - "iopub.status.busy": "2024-06-25T19:38:09.206444Z", - "iopub.status.idle": "2024-06-25T19:38:09.445281Z", - "shell.execute_reply": "2024-06-25T19:38:09.444670Z" + "iopub.execute_input": "2024-06-25T23:19:40.193662Z", + "iopub.status.busy": "2024-06-25T23:19:40.193313Z", + "iopub.status.idle": "2024-06-25T23:19:40.401417Z", + "shell.execute_reply": "2024-06-25T23:19:40.400809Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.447540Z", - "iopub.status.busy": "2024-06-25T19:38:09.447186Z", - "iopub.status.idle": "2024-06-25T19:38:09.451599Z", - "shell.execute_reply": "2024-06-25T19:38:09.451044Z" + "iopub.execute_input": "2024-06-25T23:19:40.403764Z", + "iopub.status.busy": "2024-06-25T23:19:40.403425Z", + "iopub.status.idle": "2024-06-25T23:19:40.407638Z", + "shell.execute_reply": "2024-06-25T23:19:40.407217Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.453555Z", - "iopub.status.busy": "2024-06-25T19:38:09.453375Z", - "iopub.status.idle": "2024-06-25T19:38:09.460592Z", - "shell.execute_reply": "2024-06-25T19:38:09.460157Z" + "iopub.execute_input": "2024-06-25T23:19:40.409677Z", + "iopub.status.busy": "2024-06-25T23:19:40.409360Z", + "iopub.status.idle": "2024-06-25T23:19:40.415770Z", + "shell.execute_reply": "2024-06-25T23:19:40.415356Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.462899Z", - "iopub.status.busy": "2024-06-25T19:38:09.462366Z", - "iopub.status.idle": "2024-06-25T19:38:09.465304Z", - "shell.execute_reply": "2024-06-25T19:38:09.464836Z" + "iopub.execute_input": "2024-06-25T23:19:40.417772Z", + "iopub.status.busy": "2024-06-25T23:19:40.417455Z", + "iopub.status.idle": "2024-06-25T23:19:40.420042Z", + "shell.execute_reply": "2024-06-25T23:19:40.419591Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.467150Z", - "iopub.status.busy": "2024-06-25T19:38:09.466976Z", - "iopub.status.idle": "2024-06-25T19:38:18.068771Z", - "shell.execute_reply": "2024-06-25T19:38:18.068131Z" + "iopub.execute_input": "2024-06-25T23:19:40.421960Z", + "iopub.status.busy": "2024-06-25T23:19:40.421649Z", + "iopub.status.idle": "2024-06-25T23:19:48.997759Z", + "shell.execute_reply": "2024-06-25T23:19:48.997063Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.071591Z", - "iopub.status.busy": "2024-06-25T19:38:18.071196Z", - "iopub.status.idle": "2024-06-25T19:38:18.078371Z", - "shell.execute_reply": "2024-06-25T19:38:18.077824Z" + "iopub.execute_input": "2024-06-25T23:19:49.000433Z", + "iopub.status.busy": "2024-06-25T23:19:49.000048Z", + "iopub.status.idle": "2024-06-25T23:19:49.007281Z", + "shell.execute_reply": "2024-06-25T23:19:49.006704Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.080333Z", - "iopub.status.busy": "2024-06-25T19:38:18.080152Z", - "iopub.status.idle": "2024-06-25T19:38:18.083810Z", - "shell.execute_reply": "2024-06-25T19:38:18.083366Z" + "iopub.execute_input": "2024-06-25T23:19:49.009612Z", + "iopub.status.busy": "2024-06-25T23:19:49.009171Z", + "iopub.status.idle": "2024-06-25T23:19:49.013898Z", + "shell.execute_reply": "2024-06-25T23:19:49.013343Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.085821Z", - "iopub.status.busy": "2024-06-25T19:38:18.085497Z", - "iopub.status.idle": "2024-06-25T19:38:18.088621Z", - "shell.execute_reply": "2024-06-25T19:38:18.088109Z" + "iopub.execute_input": "2024-06-25T23:19:49.016095Z", + "iopub.status.busy": "2024-06-25T23:19:49.015919Z", + "iopub.status.idle": "2024-06-25T23:19:49.019068Z", + "shell.execute_reply": "2024-06-25T23:19:49.018547Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.090576Z", - "iopub.status.busy": "2024-06-25T19:38:18.090262Z", - "iopub.status.idle": "2024-06-25T19:38:18.093389Z", - "shell.execute_reply": "2024-06-25T19:38:18.092821Z" + "iopub.execute_input": "2024-06-25T23:19:49.020914Z", + "iopub.status.busy": "2024-06-25T23:19:49.020745Z", + "iopub.status.idle": "2024-06-25T23:19:49.023808Z", + "shell.execute_reply": "2024-06-25T23:19:49.023350Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.095470Z", - "iopub.status.busy": "2024-06-25T19:38:18.095154Z", - "iopub.status.idle": "2024-06-25T19:38:18.103228Z", - "shell.execute_reply": "2024-06-25T19:38:18.102775Z" + "iopub.execute_input": "2024-06-25T23:19:49.025803Z", + "iopub.status.busy": "2024-06-25T23:19:49.025488Z", + "iopub.status.idle": "2024-06-25T23:19:49.033564Z", + "shell.execute_reply": "2024-06-25T23:19:49.033138Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.105003Z", - "iopub.status.busy": "2024-06-25T19:38:18.104832Z", - "iopub.status.idle": "2024-06-25T19:38:18.107625Z", - "shell.execute_reply": "2024-06-25T19:38:18.107128Z" + "iopub.execute_input": "2024-06-25T23:19:49.035573Z", + "iopub.status.busy": "2024-06-25T23:19:49.035256Z", + "iopub.status.idle": "2024-06-25T23:19:49.037707Z", + "shell.execute_reply": "2024-06-25T23:19:49.037270Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.109671Z", - "iopub.status.busy": "2024-06-25T19:38:18.109367Z", - "iopub.status.idle": "2024-06-25T19:38:18.236233Z", - "shell.execute_reply": "2024-06-25T19:38:18.235732Z" + "iopub.execute_input": "2024-06-25T23:19:49.039639Z", + "iopub.status.busy": "2024-06-25T23:19:49.039383Z", + "iopub.status.idle": "2024-06-25T23:19:49.162747Z", + "shell.execute_reply": "2024-06-25T23:19:49.162268Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.238299Z", - "iopub.status.busy": "2024-06-25T19:38:18.237942Z", - "iopub.status.idle": "2024-06-25T19:38:18.347132Z", - "shell.execute_reply": "2024-06-25T19:38:18.346641Z" + "iopub.execute_input": "2024-06-25T23:19:49.164799Z", + "iopub.status.busy": "2024-06-25T23:19:49.164444Z", + "iopub.status.idle": "2024-06-25T23:19:49.269361Z", + "shell.execute_reply": "2024-06-25T23:19:49.268836Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.349402Z", - "iopub.status.busy": "2024-06-25T19:38:18.349044Z", - "iopub.status.idle": "2024-06-25T19:38:18.839672Z", - "shell.execute_reply": "2024-06-25T19:38:18.839073Z" + "iopub.execute_input": "2024-06-25T23:19:49.271927Z", + "iopub.status.busy": "2024-06-25T23:19:49.271573Z", + "iopub.status.idle": "2024-06-25T23:19:49.761626Z", + "shell.execute_reply": "2024-06-25T23:19:49.760979Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.841931Z", - "iopub.status.busy": "2024-06-25T19:38:18.841755Z", - "iopub.status.idle": "2024-06-25T19:38:18.912662Z", - "shell.execute_reply": "2024-06-25T19:38:18.912091Z" + "iopub.execute_input": "2024-06-25T23:19:49.764216Z", + "iopub.status.busy": "2024-06-25T23:19:49.763834Z", + "iopub.status.idle": "2024-06-25T23:19:49.843367Z", + "shell.execute_reply": "2024-06-25T23:19:49.842743Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.915065Z", - "iopub.status.busy": "2024-06-25T19:38:18.914579Z", - "iopub.status.idle": "2024-06-25T19:38:18.923159Z", - "shell.execute_reply": "2024-06-25T19:38:18.922730Z" + "iopub.execute_input": "2024-06-25T23:19:49.845464Z", + "iopub.status.busy": "2024-06-25T23:19:49.845235Z", + "iopub.status.idle": "2024-06-25T23:19:49.853788Z", + "shell.execute_reply": "2024-06-25T23:19:49.853340Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.925120Z", - "iopub.status.busy": "2024-06-25T19:38:18.924947Z", - "iopub.status.idle": "2024-06-25T19:38:18.927502Z", - "shell.execute_reply": "2024-06-25T19:38:18.927067Z" + "iopub.execute_input": "2024-06-25T23:19:49.855684Z", + "iopub.status.busy": "2024-06-25T23:19:49.855513Z", + "iopub.status.idle": "2024-06-25T23:19:49.858498Z", + "shell.execute_reply": "2024-06-25T23:19:49.857932Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.929453Z", - "iopub.status.busy": "2024-06-25T19:38:18.929127Z", - "iopub.status.idle": "2024-06-25T19:38:24.397527Z", - "shell.execute_reply": "2024-06-25T19:38:24.396937Z" + "iopub.execute_input": "2024-06-25T23:19:49.860435Z", + "iopub.status.busy": "2024-06-25T23:19:49.860125Z", + "iopub.status.idle": "2024-06-25T23:19:55.315583Z", + "shell.execute_reply": "2024-06-25T23:19:55.315005Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:24.400077Z", - "iopub.status.busy": "2024-06-25T19:38:24.399563Z", - "iopub.status.idle": "2024-06-25T19:38:24.408142Z", - "shell.execute_reply": "2024-06-25T19:38:24.407603Z" + "iopub.execute_input": "2024-06-25T23:19:55.317789Z", + "iopub.status.busy": "2024-06-25T23:19:55.317611Z", + "iopub.status.idle": "2024-06-25T23:19:55.326379Z", + "shell.execute_reply": "2024-06-25T23:19:55.325834Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:24.410281Z", - "iopub.status.busy": "2024-06-25T19:38:24.409820Z", - "iopub.status.idle": "2024-06-25T19:38:24.473861Z", - "shell.execute_reply": "2024-06-25T19:38:24.473281Z" + "iopub.execute_input": "2024-06-25T23:19:55.328528Z", + "iopub.status.busy": "2024-06-25T23:19:55.328125Z", + "iopub.status.idle": "2024-06-25T23:19:55.396039Z", + "shell.execute_reply": "2024-06-25T23:19:55.395563Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 253b92cf5..d70cfaf4e 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:27.445776Z", - "iopub.status.busy": "2024-06-25T19:38:27.445616Z", - "iopub.status.idle": "2024-06-25T19:38:29.357688Z", - "shell.execute_reply": "2024-06-25T19:38:29.356961Z" + "iopub.execute_input": "2024-06-25T23:19:58.399516Z", + "iopub.status.busy": "2024-06-25T23:19:58.399339Z", + "iopub.status.idle": "2024-06-25T23:19:59.729255Z", + "shell.execute_reply": "2024-06-25T23:19:59.728521Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:29.360485Z", - "iopub.status.busy": "2024-06-25T19:38:29.360106Z", - "iopub.status.idle": "2024-06-25T19:39:24.167594Z", - "shell.execute_reply": "2024-06-25T19:39:24.166933Z" + "iopub.execute_input": "2024-06-25T23:19:59.731986Z", + "iopub.status.busy": "2024-06-25T23:19:59.731605Z", + "iopub.status.idle": "2024-06-25T23:20:48.710370Z", + "shell.execute_reply": "2024-06-25T23:20:48.709721Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:24.170328Z", - "iopub.status.busy": "2024-06-25T19:39:24.169968Z", - "iopub.status.idle": "2024-06-25T19:39:25.274825Z", - "shell.execute_reply": "2024-06-25T19:39:25.274283Z" + "iopub.execute_input": "2024-06-25T23:20:48.712844Z", + "iopub.status.busy": "2024-06-25T23:20:48.712648Z", + "iopub.status.idle": "2024-06-25T23:20:49.819754Z", + "shell.execute_reply": "2024-06-25T23:20:49.819207Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:25.277334Z", - "iopub.status.busy": "2024-06-25T19:39:25.276961Z", - "iopub.status.idle": "2024-06-25T19:39:25.280274Z", - "shell.execute_reply": "2024-06-25T19:39:25.279814Z" + "iopub.execute_input": "2024-06-25T23:20:49.822551Z", + "iopub.status.busy": "2024-06-25T23:20:49.821983Z", + "iopub.status.idle": "2024-06-25T23:20:49.825360Z", + "shell.execute_reply": "2024-06-25T23:20:49.824898Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:25.282318Z", - "iopub.status.busy": "2024-06-25T19:39:25.282060Z", - "iopub.status.idle": "2024-06-25T19:39:25.285902Z", - "shell.execute_reply": "2024-06-25T19:39:25.285458Z" + "iopub.execute_input": "2024-06-25T23:20:49.827409Z", + "iopub.status.busy": "2024-06-25T23:20:49.827081Z", + "iopub.status.idle": "2024-06-25T23:20:49.830739Z", + "shell.execute_reply": "2024-06-25T23:20:49.830321Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:25.287764Z", - "iopub.status.busy": "2024-06-25T19:39:25.287595Z", - "iopub.status.idle": "2024-06-25T19:39:25.291186Z", - "shell.execute_reply": "2024-06-25T19:39:25.290735Z" + "iopub.execute_input": "2024-06-25T23:20:49.832814Z", + "iopub.status.busy": "2024-06-25T23:20:49.832481Z", + "iopub.status.idle": "2024-06-25T23:20:49.835986Z", + "shell.execute_reply": "2024-06-25T23:20:49.835546Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:25.293004Z", - "iopub.status.busy": "2024-06-25T19:39:25.292834Z", - "iopub.status.idle": "2024-06-25T19:39:25.296491Z", - "shell.execute_reply": "2024-06-25T19:39:25.296049Z" + "iopub.execute_input": "2024-06-25T23:20:49.837816Z", + "iopub.status.busy": "2024-06-25T23:20:49.837650Z", + "iopub.status.idle": "2024-06-25T23:20:49.841360Z", + "shell.execute_reply": "2024-06-25T23:20:49.840870Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:25.298372Z", - "iopub.status.busy": "2024-06-25T19:39:25.298196Z", - "iopub.status.idle": "2024-06-25T19:39:58.536591Z", - "shell.execute_reply": "2024-06-25T19:39:58.535983Z" + "iopub.execute_input": "2024-06-25T23:20:49.843348Z", + "iopub.status.busy": "2024-06-25T23:20:49.843045Z", + "iopub.status.idle": "2024-06-25T23:21:23.312097Z", + "shell.execute_reply": "2024-06-25T23:21:23.311395Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "944591b9a0384c6388bc6a076330ac62", + "model_id": "198f978c68c04b42bb7f505400e75581", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "456e1a39f8a0484d84df60d119f7d9b3", + "model_id": "4b186141820047419c3ae004111754f6", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:58.539357Z", - "iopub.status.busy": "2024-06-25T19:39:58.538990Z", - "iopub.status.idle": "2024-06-25T19:39:59.206448Z", - "shell.execute_reply": "2024-06-25T19:39:59.205970Z" + "iopub.execute_input": "2024-06-25T23:21:23.314740Z", + "iopub.status.busy": "2024-06-25T23:21:23.314519Z", + "iopub.status.idle": "2024-06-25T23:21:23.985247Z", + "shell.execute_reply": "2024-06-25T23:21:23.984646Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:59.208781Z", - "iopub.status.busy": "2024-06-25T19:39:59.208330Z", - "iopub.status.idle": "2024-06-25T19:40:01.948266Z", - "shell.execute_reply": "2024-06-25T19:40:01.947672Z" + "iopub.execute_input": "2024-06-25T23:21:23.987564Z", + "iopub.status.busy": "2024-06-25T23:21:23.987136Z", + "iopub.status.idle": "2024-06-25T23:21:26.705173Z", + "shell.execute_reply": "2024-06-25T23:21:26.704585Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:01.950510Z", - "iopub.status.busy": "2024-06-25T19:40:01.950173Z", - "iopub.status.idle": "2024-06-25T19:40:34.744210Z", - "shell.execute_reply": "2024-06-25T19:40:34.743718Z" + "iopub.execute_input": "2024-06-25T23:21:26.707473Z", + "iopub.status.busy": "2024-06-25T23:21:26.707134Z", + "iopub.status.idle": "2024-06-25T23:22:00.356055Z", + "shell.execute_reply": "2024-06-25T23:22:00.355524Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f91d1545f3254e83bb88ef07ebe6e9fe", + "model_id": "28a8baec191044f3831c5b052b050cba", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:34.746367Z", - "iopub.status.busy": "2024-06-25T19:40:34.746041Z", - "iopub.status.idle": "2024-06-25T19:40:49.559228Z", - "shell.execute_reply": "2024-06-25T19:40:49.558651Z" + "iopub.execute_input": "2024-06-25T23:22:00.358322Z", + "iopub.status.busy": "2024-06-25T23:22:00.357991Z", + "iopub.status.idle": "2024-06-25T23:22:14.992649Z", + "shell.execute_reply": "2024-06-25T23:22:14.992097Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:49.561671Z", - "iopub.status.busy": "2024-06-25T19:40:49.561368Z", - "iopub.status.idle": "2024-06-25T19:40:53.237064Z", - "shell.execute_reply": "2024-06-25T19:40:53.236459Z" + "iopub.execute_input": "2024-06-25T23:22:14.994920Z", + "iopub.status.busy": "2024-06-25T23:22:14.994721Z", + "iopub.status.idle": "2024-06-25T23:22:18.704345Z", + "shell.execute_reply": "2024-06-25T23:22:18.703738Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:53.239303Z", - "iopub.status.busy": "2024-06-25T19:40:53.238898Z", - "iopub.status.idle": "2024-06-25T19:40:54.630349Z", - "shell.execute_reply": "2024-06-25T19:40:54.629762Z" + "iopub.execute_input": "2024-06-25T23:22:18.706711Z", + "iopub.status.busy": "2024-06-25T23:22:18.706375Z", + "iopub.status.idle": "2024-06-25T23:22:20.102205Z", + "shell.execute_reply": "2024-06-25T23:22:20.101646Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c3ec5543994844ccbea4230fb9d7b4eb", + "model_id": "e9e7048a47b3430f853de8ee7bd0cedf", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:54.632662Z", - "iopub.status.busy": "2024-06-25T19:40:54.632244Z", - "iopub.status.idle": "2024-06-25T19:40:54.661012Z", - "shell.execute_reply": "2024-06-25T19:40:54.660347Z" + "iopub.execute_input": "2024-06-25T23:22:20.104725Z", + "iopub.status.busy": "2024-06-25T23:22:20.104340Z", + "iopub.status.idle": "2024-06-25T23:22:20.133203Z", + "shell.execute_reply": "2024-06-25T23:22:20.132635Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:54.663568Z", - "iopub.status.busy": "2024-06-25T19:40:54.663357Z", - "iopub.status.idle": "2024-06-25T19:41:00.730286Z", - "shell.execute_reply": "2024-06-25T19:41:00.729759Z" + "iopub.execute_input": "2024-06-25T23:22:20.135579Z", + "iopub.status.busy": "2024-06-25T23:22:20.135375Z", + "iopub.status.idle": "2024-06-25T23:22:26.135540Z", + "shell.execute_reply": "2024-06-25T23:22:26.134957Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:00.732454Z", - "iopub.status.busy": "2024-06-25T19:41:00.732273Z", - "iopub.status.idle": "2024-06-25T19:41:00.787546Z", - "shell.execute_reply": "2024-06-25T19:41:00.786977Z" + "iopub.execute_input": "2024-06-25T23:22:26.137624Z", + "iopub.status.busy": "2024-06-25T23:22:26.137444Z", + "iopub.status.idle": "2024-06-25T23:22:26.192958Z", + "shell.execute_reply": "2024-06-25T23:22:26.192454Z" }, "nbsphinx": "hidden" }, @@ -1038,60 +1038,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0413905ec4a1476eab10c5ca853497d3": { - "model_module": "@jupyter-widgets/base", + "0220fd3c35e849c1a03e5c8abca06016": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "04229ad3351b4f7aaf0a891a50bc135d": { + "0d5018ed1be44175807c78ce0ab57606": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1144,7 +1109,7 @@ "width": null } }, - "07201424d87b4671ac4b1cfa673d7986": { + "119e57b6fb1844baa93ee07fae718fb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1159,33 +1124,125 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a832d5b427714b918a469d3e99a8e9ff", + "layout": "IPY_MODEL_d68c68f5e35245c4a160a0468811587d", "placeholder": "​", - "style": "IPY_MODEL_0965a0f7f5304df18ccd851b34fef9fb", + "style": "IPY_MODEL_bf890124360a4567a82d5d03676272de", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.44it/s]" + "value": " 30/30 [00:01<00:00, 21.82it/s]" } }, - "0965a0f7f5304df18ccd851b34fef9fb": { + "198f978c68c04b42bb7f505400e75581": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a772478a0f704e3fa3325fbef037b4cd", + "IPY_MODEL_5777ae56d3c54e35b67a204b112139e6", + "IPY_MODEL_3e183c14ae544e71b619db5e0b367992" + ], + "layout": "IPY_MODEL_c28b42730873450e95180653991778ed", + "tabbable": null, + "tooltip": null + } + }, + "1b5e7f7edd7e41a48c9ee3f889c53756": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ca265e653b2b43779eb1e897adba0a8c", + "placeholder": "​", + "style": "IPY_MODEL_4b05b13a08364b5d9d060ee36c605fd5", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.42it/s]" + } + }, + "28a8baec191044f3831c5b052b050cba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_da3ca18af3434b998fd38fd9dc359605", + "IPY_MODEL_8e863ef8f3304af0a1299abfe8ad02b8", + "IPY_MODEL_f9315252473d439f95f4fd58000719ed" + ], + "layout": "IPY_MODEL_cb251166fe62454094fce22ed9bd897a", + "tabbable": null, + "tooltip": null + } + }, + "367bfe277ffe4be9b8bae4bdaaa320ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0b658cb143704dbbb7f0ac48f95429f2": { + "3e183c14ae544e71b619db5e0b367992": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8e80dd483054ca091488456a8397301", + "placeholder": "​", + "style": "IPY_MODEL_0220fd3c35e849c1a03e5c8abca06016", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 758.41it/s]" + } + }, + "42d0aa720c6e4a2ca9f245568eca8de9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1201,7 +1258,7 @@ "description_width": "" } }, - "13d8b2f426d2467cbc47898751b6f6dd": { + "4b05b13a08364b5d9d060ee36c605fd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1219,23 +1276,84 @@ "text_color": null } }, - "15f5d288daf5495ba283ee4fad4d58fd": { + "4b186141820047419c3ae004111754f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a43127ec4fc484eb12e55de443c3a15", + "IPY_MODEL_4ff8dfedbd2949a5bb4270735a77c539", + "IPY_MODEL_1b5e7f7edd7e41a48c9ee3f889c53756" + ], + "layout": "IPY_MODEL_b3e446b4b0bf43d0806173baf332511b", + "tabbable": null, + "tooltip": null + } + }, + "4bb96c22484d421c85c644ab03e8eb56": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "215c528b84a347b1a955651a8792356a": { + "4ff8dfedbd2949a5bb4270735a77c539": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1251,40 +1369,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8d3f186b66e646faa88abf0438b28125", + "layout": "IPY_MODEL_c9d9ec1dbde84cafb318173cee06bece", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_476d964c770641a799b799e08d88ea6e", + "style": "IPY_MODEL_e3c898e2f5ff4cd480ab8c04bffe7dfb", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "2184a8202604452c862d764c590163a7": { + "5777ae56d3c54e35b67a204b112139e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e251eadf4c0d45e99ed477a752be3d71", - "placeholder": "​", - "style": "IPY_MODEL_9238a3aeb6694a54a16d5276afd69748", + "layout": "IPY_MODEL_d8fb8c2405ca482185ac5e7c6f667650", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_42d0aa720c6e4a2ca9f245568eca8de9", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154374.13it/s]" + "value": 30.0 } }, - "2a9e65f5f4ec40d496f43ad1adfd040a": { + "5fe269722f6a4605a143155dac3bcd01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1337,7 +1458,43 @@ "width": null } }, - "2f266a82a0cd46529aa761f6c67f7700": { + "680f5ec724904dd1a968ede02eacb19b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "69f5479f692f4d43b82f5df028e467d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "85982aca8cc345109d878dbd7bbe9828": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1390,57 +1547,74 @@ "width": null } }, - "38cf33a9b7b9481cb9a58609d734b80f": { + "8a43127ec4fc484eb12e55de443c3a15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f266a82a0cd46529aa761f6c67f7700", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8978b1bc574944349ad8045c8d081583", + "layout": "IPY_MODEL_eb1f2e4f38da4c9190ae6c4d6714e087", + "placeholder": "​", + "style": "IPY_MODEL_f47a2b8a8ebb4314850e6e3193fcd946", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": "number of examples processed for checking labels: 100%" } }, - "456e1a39f8a0484d84df60d119f7d9b3": { + "8b038c68d122401fbb4e96c1ad051c9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8e863ef8f3304af0a1299abfe8ad02b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a858829ede1a452ba7407428df24b4fa", - "IPY_MODEL_8aaa8a35422241b2a265233527fbf1e7", - "IPY_MODEL_07201424d87b4671ac4b1cfa673d7986" - ], - "layout": "IPY_MODEL_cb515331da754c33a0c68f56fd6918b5", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0d5018ed1be44175807c78ce0ab57606", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_367bfe277ffe4be9b8bae4bdaaa320ae", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 4997683.0 } }, - "476d964c770641a799b799e08d88ea6e": { + "96ab128e8fca4ba6874dc9eef5cf4ff3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1456,43 +1630,79 @@ "description_width": "" } }, - "4e6a4c23dd054908be889d0f3d83ee3b": { + "9da954de4d5f49119869cd8370e5e154": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_85982aca8cc345109d878dbd7bbe9828", + "placeholder": "​", + "style": "IPY_MODEL_c5e54c3a78384206bc828910a703fec0", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "531002ec92784d8c8567de9c2f6b2001": { + "a772478a0f704e3fa3325fbef037b4cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5fe269722f6a4605a143155dac3bcd01", + "placeholder": "​", + "style": "IPY_MODEL_680f5ec724904dd1a968ede02eacb19b", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "5868ffb252c44ac4aa39f70440bc622f": { + "a9a87800c31f4b0c8cd52338e21b3cc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f9477ce7cdc74a22959c387b134e9c01", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_96ab128e8fca4ba6874dc9eef5cf4ff3", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "b3e446b4b0bf43d0806173baf332511b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1545,30 +1755,25 @@ "width": null } }, - "61c316c9d6e6417db8e8f67c88ca16b3": { + "bf890124360a4567a82d5d03676272de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ab2778b3faa74fc58eae618ac7ad06b7", - "placeholder": "​", - "style": "IPY_MODEL_d9e435b2b0064cb389b0eba2fdb3ae58", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 756.08it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6a036f411aba4cdc9fa68388d47ac9c0": { + "c28b42730873450e95180653991778ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1621,7 +1826,7 @@ "width": null } }, - "6c8bceb12179495a84b898f7d7fb9df2": { + "c5e54c3a78384206bc828910a703fec0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1639,7 +1844,7 @@ "text_color": null } }, - "6dabf219795b408dabf8afe1ed3b2ba9": { + "c9d9ec1dbde84cafb318173cee06bece": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1692,7 +1897,7 @@ "width": null } }, - "74b719a4753841d48ddef0f60728929c": { + "ca265e653b2b43779eb1e897adba0a8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1745,49 +1950,7 @@ "width": null } }, - "8978b1bc574944349ad8045c8d081583": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8aaa8a35422241b2a265233527fbf1e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5868ffb252c44ac4aa39f70440bc622f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_15f5d288daf5495ba283ee4fad4d58fd", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "8d3f186b66e646faa88abf0438b28125": { + "cb251166fe62454094fce22ed9bd897a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1840,49 +2003,7 @@ "width": null } }, - "9238a3aeb6694a54a16d5276afd69748": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "944591b9a0384c6388bc6a076330ac62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e3e1e81a9a074a9699b1c756208a42d1", - "IPY_MODEL_c2abb97f3c0f47e89640d65ea0507ceb", - "IPY_MODEL_61c316c9d6e6417db8e8f67c88ca16b3" - ], - "layout": "IPY_MODEL_f0c67deadadc41a681e33253811fe3c3", - "tabbable": null, - "tooltip": null - } - }, - "a10c8b997a924841b67b483401b9d8c3": { + "cf29f93a566f4e018c0e0d5c5ad96a05": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1935,25 +2056,7 @@ "width": null } }, - "a61e682d08cd4b079011fff3976213c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a832d5b427714b918a469d3e99a8e9ff": { + "d68c68f5e35245c4a160a0468811587d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,30 +2109,7 @@ "width": null } }, - "a858829ede1a452ba7407428df24b4fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a10c8b997a924841b67b483401b9d8c3", - "placeholder": "​", - "style": "IPY_MODEL_4e6a4c23dd054908be889d0f3d83ee3b", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "ab2778b3faa74fc58eae618ac7ad06b7": { + "d8fb8c2405ca482185ac5e7c6f667650": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2082,7 +2162,7 @@ "width": null } }, - "b05c6a6bdf664a62a6cbd8f66104b29f": { + "da3ca18af3434b998fd38fd9dc359605": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2097,15 +2177,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_74b719a4753841d48ddef0f60728929c", + "layout": "IPY_MODEL_fcba50827939420b83ea40b9e3507089", "placeholder": "​", - "style": "IPY_MODEL_531002ec92784d8c8567de9c2f6b2001", + "style": "IPY_MODEL_69f5479f692f4d43b82f5df028e467d7", "tabbable": null, "tooltip": null, "value": "100%" } }, - "c1f546fd71c24d498d05b3908214bd7d": { + "e3c898e2f5ff4cd480ab8c04bffe7dfb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e8e80dd483054ca091488456a8397301": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2158,33 +2254,7 @@ "width": null } }, - "c2abb97f3c0f47e89640d65ea0507ceb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c1f546fd71c24d498d05b3908214bd7d", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0b658cb143704dbbb7f0ac48f95429f2", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "c3ec5543994844ccbea4230fb9d7b4eb": { + "e9e7048a47b3430f853de8ee7bd0cedf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2199,16 +2269,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f1b83d31de91416b8454f54a7486c222", - "IPY_MODEL_215c528b84a347b1a955651a8792356a", - "IPY_MODEL_cc71964c79fb4cc48ccbc1e58b722da3" + "IPY_MODEL_9da954de4d5f49119869cd8370e5e154", + "IPY_MODEL_a9a87800c31f4b0c8cd52338e21b3cc8", + "IPY_MODEL_119e57b6fb1844baa93ee07fae718fb0" ], - "layout": "IPY_MODEL_6a036f411aba4cdc9fa68388d47ac9c0", + "layout": "IPY_MODEL_4bb96c22484d421c85c644ab03e8eb56", "tabbable": null, "tooltip": null } }, - "cb515331da754c33a0c68f56fd6918b5": { + "eb1f2e4f38da4c9190ae6c4d6714e087": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2261,7 +2331,25 @@ "width": null } }, - "cc71964c79fb4cc48ccbc1e58b722da3": { + "f47a2b8a8ebb4314850e6e3193fcd946": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f9315252473d439f95f4fd58000719ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2276,33 +2364,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0413905ec4a1476eab10c5ca853497d3", + "layout": "IPY_MODEL_cf29f93a566f4e018c0e0d5c5ad96a05", "placeholder": "​", - "style": "IPY_MODEL_6c8bceb12179495a84b898f7d7fb9df2", + "style": "IPY_MODEL_8b038c68d122401fbb4e96c1ad051c9f", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.71it/s]" - } - }, - "d9e435b2b0064cb389b0eba2fdb3ae58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 4997683/4997683 [00:33<00:00, 150147.59it/s]" } }, - "e251eadf4c0d45e99ed477a752be3d71": { + "f9477ce7cdc74a22959c387b134e9c01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2355,30 +2425,7 @@ "width": null } }, - "e3e1e81a9a074a9699b1c756208a42d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6dabf219795b408dabf8afe1ed3b2ba9", - "placeholder": "​", - "style": "IPY_MODEL_a61e682d08cd4b079011fff3976213c6", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "f0c67deadadc41a681e33253811fe3c3": { + "fcba50827939420b83ea40b9e3507089": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2430,53 +2477,6 @@ "visibility": null, "width": null } - }, - "f1b83d31de91416b8454f54a7486c222": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a9e65f5f4ec40d496f43ad1adfd040a", - "placeholder": "​", - "style": "IPY_MODEL_13d8b2f426d2467cbc47898751b6f6dd", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "f91d1545f3254e83bb88ef07ebe6e9fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b05c6a6bdf664a62a6cbd8f66104b29f", - "IPY_MODEL_38cf33a9b7b9481cb9a58609d734b80f", - "IPY_MODEL_2184a8202604452c862d764c590163a7" - ], - "layout": "IPY_MODEL_04229ad3351b4f7aaf0a891a50bc135d", - "tabbable": null, - "tooltip": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index c6bf67460..28feac438 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:02.971504Z", - "iopub.status.busy": "2024-06-25T19:41:02.971078Z", - "iopub.status.idle": "2024-06-25T19:41:04.919925Z", - "shell.execute_reply": "2024-06-25T19:41:04.919315Z" + "iopub.execute_input": "2024-06-25T23:22:28.297877Z", + "iopub.status.busy": "2024-06-25T23:22:28.297692Z", + "iopub.status.idle": "2024-06-25T23:22:29.566144Z", + "shell.execute_reply": "2024-06-25T23:22:29.565466Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-25 19:41:02-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-06-25 23:22:28-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,16 +94,24 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.249.162, 2400:52e0:1a01::984:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.162|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", - "Length: 982975 (960K) [application/zip]\r\n" + "185.93.1.250, 2400:52e0:1a00::1068:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", + "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", "\r", @@ -117,7 +125,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-06-25 19:41:03 (8.03 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-06-25 23:22:28 (6.31 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -137,22 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-25 19:41:03-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.196.49, 52.216.88.99, 3.5.9.136, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.196.49|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-06-25 23:22:29-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.25.196, 54.231.139.49, 52.216.48.57, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.25.196|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -173,15 +168,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 1%[ ] 296.53K 1.27MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 30%[=====> ] 4.94M 10.8MB/s " + "pred_probs.npz 58%[==========> ] 9.47M 47.3MB/s " ] }, { @@ -189,9 +176,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 25.4MB/s in 0.6s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 55.6MB/s in 0.3s \r\n", "\r\n", - "2024-06-25 19:41:04 (25.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-06-25 23:22:29 (55.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -208,10 +195,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:04.922457Z", - "iopub.status.busy": "2024-06-25T19:41:04.922075Z", - "iopub.status.idle": "2024-06-25T19:41:06.198016Z", - "shell.execute_reply": "2024-06-25T19:41:06.197533Z" + "iopub.execute_input": "2024-06-25T23:22:29.568875Z", + "iopub.status.busy": "2024-06-25T23:22:29.568431Z", + "iopub.status.idle": "2024-06-25T23:22:30.789853Z", + "shell.execute_reply": "2024-06-25T23:22:30.789338Z" }, "nbsphinx": "hidden" }, @@ -222,7 +209,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -248,10 +235,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:06.200733Z", - "iopub.status.busy": "2024-06-25T19:41:06.200196Z", - "iopub.status.idle": "2024-06-25T19:41:06.203668Z", - "shell.execute_reply": "2024-06-25T19:41:06.203192Z" + "iopub.execute_input": "2024-06-25T23:22:30.792349Z", + "iopub.status.busy": "2024-06-25T23:22:30.792077Z", + "iopub.status.idle": "2024-06-25T23:22:30.795305Z", + "shell.execute_reply": "2024-06-25T23:22:30.794873Z" } }, "outputs": [], @@ -301,10 +288,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:06.205901Z", - "iopub.status.busy": "2024-06-25T19:41:06.205502Z", - "iopub.status.idle": "2024-06-25T19:41:06.208636Z", - "shell.execute_reply": "2024-06-25T19:41:06.208180Z" + "iopub.execute_input": "2024-06-25T23:22:30.797547Z", + "iopub.status.busy": "2024-06-25T23:22:30.797222Z", + "iopub.status.idle": "2024-06-25T23:22:30.800066Z", + "shell.execute_reply": "2024-06-25T23:22:30.799649Z" }, "nbsphinx": "hidden" }, @@ -322,10 +309,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:06.210610Z", - "iopub.status.busy": "2024-06-25T19:41:06.210285Z", - "iopub.status.idle": "2024-06-25T19:41:15.082955Z", - "shell.execute_reply": "2024-06-25T19:41:15.082336Z" + "iopub.execute_input": "2024-06-25T23:22:30.801968Z", + "iopub.status.busy": "2024-06-25T23:22:30.801793Z", + "iopub.status.idle": "2024-06-25T23:22:39.539487Z", + "shell.execute_reply": "2024-06-25T23:22:39.538935Z" } }, "outputs": [], @@ -399,10 +386,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:15.085860Z", - "iopub.status.busy": "2024-06-25T19:41:15.085425Z", - "iopub.status.idle": "2024-06-25T19:41:15.091166Z", - "shell.execute_reply": "2024-06-25T19:41:15.090711Z" + "iopub.execute_input": "2024-06-25T23:22:39.542320Z", + "iopub.status.busy": "2024-06-25T23:22:39.541861Z", + "iopub.status.idle": "2024-06-25T23:22:39.547429Z", + "shell.execute_reply": "2024-06-25T23:22:39.546974Z" }, "nbsphinx": "hidden" }, @@ -442,10 +429,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:15.093228Z", - "iopub.status.busy": "2024-06-25T19:41:15.092906Z", - "iopub.status.idle": "2024-06-25T19:41:15.428454Z", - "shell.execute_reply": "2024-06-25T19:41:15.427900Z" + "iopub.execute_input": "2024-06-25T23:22:39.549434Z", + "iopub.status.busy": "2024-06-25T23:22:39.549088Z", + "iopub.status.idle": "2024-06-25T23:22:39.886323Z", + "shell.execute_reply": "2024-06-25T23:22:39.885773Z" } }, "outputs": [], @@ -482,10 +469,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:15.430886Z", - "iopub.status.busy": "2024-06-25T19:41:15.430536Z", - "iopub.status.idle": "2024-06-25T19:41:15.435028Z", - "shell.execute_reply": "2024-06-25T19:41:15.434547Z" + "iopub.execute_input": "2024-06-25T23:22:39.888760Z", + "iopub.status.busy": "2024-06-25T23:22:39.888567Z", + "iopub.status.idle": "2024-06-25T23:22:39.892822Z", + "shell.execute_reply": "2024-06-25T23:22:39.892289Z" } }, "outputs": [ @@ -557,10 +544,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:15.437005Z", - "iopub.status.busy": "2024-06-25T19:41:15.436676Z", - "iopub.status.idle": "2024-06-25T19:41:17.963765Z", - "shell.execute_reply": "2024-06-25T19:41:17.963047Z" + "iopub.execute_input": "2024-06-25T23:22:39.894754Z", + "iopub.status.busy": "2024-06-25T23:22:39.894582Z", + "iopub.status.idle": "2024-06-25T23:22:42.439150Z", + "shell.execute_reply": "2024-06-25T23:22:42.438377Z" } }, "outputs": [], @@ -582,10 +569,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:17.966718Z", - "iopub.status.busy": "2024-06-25T19:41:17.966151Z", - "iopub.status.idle": "2024-06-25T19:41:17.970271Z", - "shell.execute_reply": "2024-06-25T19:41:17.969727Z" + "iopub.execute_input": "2024-06-25T23:22:42.442203Z", + "iopub.status.busy": "2024-06-25T23:22:42.441641Z", + "iopub.status.idle": "2024-06-25T23:22:42.445478Z", + "shell.execute_reply": "2024-06-25T23:22:42.444915Z" } }, "outputs": [ @@ -621,10 +608,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:17.972401Z", - "iopub.status.busy": "2024-06-25T19:41:17.971969Z", - "iopub.status.idle": "2024-06-25T19:41:17.977900Z", - "shell.execute_reply": "2024-06-25T19:41:17.977348Z" + "iopub.execute_input": "2024-06-25T23:22:42.447472Z", + "iopub.status.busy": "2024-06-25T23:22:42.447297Z", + "iopub.status.idle": "2024-06-25T23:22:42.452716Z", + "shell.execute_reply": "2024-06-25T23:22:42.452215Z" } }, "outputs": [ @@ -802,10 +789,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:17.979833Z", - "iopub.status.busy": "2024-06-25T19:41:17.979657Z", - "iopub.status.idle": "2024-06-25T19:41:18.005794Z", - "shell.execute_reply": "2024-06-25T19:41:18.005228Z" + "iopub.execute_input": "2024-06-25T23:22:42.454685Z", + "iopub.status.busy": "2024-06-25T23:22:42.454421Z", + "iopub.status.idle": "2024-06-25T23:22:42.480225Z", + "shell.execute_reply": "2024-06-25T23:22:42.479796Z" } }, "outputs": [ @@ -907,10 +894,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:18.007758Z", - "iopub.status.busy": "2024-06-25T19:41:18.007580Z", - "iopub.status.idle": "2024-06-25T19:41:18.011709Z", - "shell.execute_reply": "2024-06-25T19:41:18.011185Z" + "iopub.execute_input": "2024-06-25T23:22:42.482279Z", + "iopub.status.busy": "2024-06-25T23:22:42.481978Z", + "iopub.status.idle": "2024-06-25T23:22:42.486286Z", + "shell.execute_reply": "2024-06-25T23:22:42.485735Z" } }, "outputs": [ @@ -984,10 +971,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:18.013608Z", - "iopub.status.busy": "2024-06-25T19:41:18.013435Z", - "iopub.status.idle": "2024-06-25T19:41:19.410422Z", - "shell.execute_reply": "2024-06-25T19:41:19.409926Z" + "iopub.execute_input": "2024-06-25T23:22:42.488404Z", + "iopub.status.busy": "2024-06-25T23:22:42.487905Z", + "iopub.status.idle": "2024-06-25T23:22:43.900411Z", + "shell.execute_reply": "2024-06-25T23:22:43.899904Z" } }, "outputs": [ @@ -1159,10 +1146,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:19.412440Z", - "iopub.status.busy": "2024-06-25T19:41:19.412255Z", - "iopub.status.idle": "2024-06-25T19:41:19.416447Z", - "shell.execute_reply": "2024-06-25T19:41:19.415988Z" + "iopub.execute_input": "2024-06-25T23:22:43.902625Z", + "iopub.status.busy": "2024-06-25T23:22:43.902291Z", + "iopub.status.idle": "2024-06-25T23:22:43.906202Z", + "shell.execute_reply": "2024-06-25T23:22:43.905768Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 9bd33b173ca77e8fbf41ca8b6f96cf67abf4d6ff..a2c991a17d9d9dc8db031a04ba356a420e6b7ed3 100644 GIT binary patch delta 62 zcmX>tep-A(E~8;dRtep-A(E~8W diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 391f5d390374fffe16d00ab870c6d6c505261e8d..86cdf7b1184c426fcaed919e29bc8598ed35c87d 100644 GIT binary patch delta 64 zcmcb6i}~&?<_%{!4NJ0$4b9@slJ(6k3{sMlEDQ~k3{p%@Oj1%)lT(ch%#%`*Ee%tX UEz?X4QqxQ=OiVWaOw)`F%~CCmOiV44Q%zISOp?tl U5>pIK%u-E_3`{rw`55{*EF#3*1Be@KgUJ>?N8rHBz)+fsfo zBAAn~1BTQ_6G%jDZOk!<(8lP89|Xb=7-B<=2^xv;C5eeR_Br>K(_1;q55CN4KYG)< z&RTP>HOCxd&Uqev@|;JXJm=8w&!G3-v6HH8Ds0k*#NZ93owT9F<-Ya9Gxs*#Id@hU5BKg_7#`TO=7Rff-|4n)+kVg1ZC`gg?@jjv zcTXIy-^*8p+uU7WOIx?yefwP-u4*@QZ{JZ}I@qvvcemrVYVGj5dvEy&_Z*)4*JgOu zgZsP3c2pNE^vA*Z#bLX@8UAAbrNh7MUwvM0C(N9-@+%K*I%i_#2_p}NYRz!he)W-T zbmYK8N3Lv?(Ap)zXyQq5=L{885+P(FRJbtQ@$>y{VGS9QS1&yB$wTj+)+WUW7tSUX zh~ObutBs=4GJ$`Tal?0xK3HDVZ};x6j-S@j#Db!PSd*m4$ys5z^EL}Q5NI%Z;n=gbcOaddxi&G(P3K62|H&ONea9df6$e6W~+H8zahT?B` zu&XZ^9eTFjve2qTmC95n$Bh8+O}6k$5TS(SoP=)2i`Dtvo-|lJI`Faj8&xA16Wmkm zi<`@gIL)&Py_HgGnYzut#ol-4!Ru8s+X~+O^ojbWvH|Xy$~H=R%UNJ1XD+Nncm)!@ z@lwS|P3+$M^TeaA3yb~ltgtpoDwvkmJLIq=5YA3T*X?@)E3f%i^=!4MWpI*sOPCkR z8mlyqlnRaikcx~hyK(Shh3J}faO(EmKOjvi9C~L*p>eG*w)t}N_N(E@WZ z;yJi9QYkxL+F|KJN6s6ZF>0@?pQ_q|DSYBu$%=h1)w=t_v-KygHXF^I*KOK)>$=^$ zuWHu;5=cgZ%dGo2F$Mvagk_mZmICW8yJqrYTNX+QtzUZK=;b@>hpRng_M63ZIQjEm zx@FsqH-GN>FK#Qusy}&k;S%+_Td(Raf3IG>INP=Eop_*&H#j9}f`=j)r>!uhcS3^#SZe!l)#6LXY?5U-O62xQ;~X-gPm z0@cB)>6f(-6P{2PD7?aQCsYQ#WSRj-E=PbZAZ8R24pM0hl8eYSf|zIrYLf^U>PAQ@ zFH~*eSTYXRws2zVUIAXapZ~7Dqz!;zPF&y*6HYO2l}H(cgVc$r&7*@4*LN*6Q8DJC zXHjVe0un}BkyX+`keG;{Aa)GHmPT!KN|6QdG04*^7IaV3#v8_i8C`qs;5SwA;0f?b z=f3iXiah?n;PmeOH!9J}=x9nf667I}0F6&hgEN!Q1`%f`&J>A!gmnK@wWshRD}du> z2O~KdW~ED7hFQ_2Zu4gbpKOvf*<{F92~JW}`@mR2(sPDq28>k)PGHO?>jik)`v|oJ z!Ub@I@G?@(Q;6fGCol%8Gunv6Ju`h)6(CP1ky@>bE-U8JBmqxAR?y z*S=lZ7CGKY(K8b~LLhkro|ai<;7gk1mf|u;i`3v{?h^zQjMFqSVoZcjk(ln-;cA&4 z5^hFGD-(xq)Hd3bV2ZJxWC*`J0a#Nwx1%rBv@M(}C-_?XR{imod2O)21_32O6cFtr zkIIS z#1tm*Y6|C${b+RI*fFi$^?tSfQ+A5fIFrb^23#wZz>`=nje)f4(@13S=)HRTLQ{~p zleGWUh59?yp2Ewl09qj+^~pdhUDq9dB7!M0P~Ehs>cN%Pg{6 z&JZIOd?Ao;x;LMzAhpJt5+4S4|H znhc{_qlhA?fVE}jl;RG*GL9j7B~%2uLk2}*LXoTzicoGw5UhW%+JXhNdy&?g%ZHB@ z&{F@PZto@Ed;Ax!IJ-G?7C4iSA|hU6&g?;<)dGd!Fu9S87Q z-h;X)Q5rN-3Y0iSF@+)d;fqnvn^l~T&}u$&@|Lpi?&MkD5M1{ zZj;oMFVO;2x%uA z>R0KtCPC6Z$9RI2wSDkH)yzJ7NiG+TrM)w%TdM}^H&U^YOkq$Uu(U>A0PKW79}&^T z1j%rMGa4p!HhK)G$Y-}*rs;6zlcDpo0$8)7m7To0bZyHpY)YP?m|vnpkOXCkMV=)S z8BCZ_*+GX9Mpe*i3W|&9FL{or#nV|4C=^b}sEJVEGlc%*2To!`#G&>~AY3i+0_DHg z2yz|>S`*SUIi)p z2%>WPLJJ5HG^S{dy3fDH*q(Gih?E%)Y1g67xu}oUXAp*(a5NT?QZ)KY7X1jc-8cu2 zDu)EVM2UrS<%AN8=Z=fJJvR@oXaJ7@vpDe21VaynK~Xq`V>3-LPeTul7^n;Z>P9aQ z+R_7wAiQ8hGT3Ai$rDZt7VK`dl*u|lcmmo`*)s~=%~S%rp}Dj&sk8-CCP-YIZAEuz zRZYiq_{Ust_>_@TqEu!|wNsL!r69NpE^5MzG6Yq+SEHkctGgG94a=p%4^_m>=QOD&8jI2|21`h*8w} zxDm9Gl?oOGhmkZ+o@}bWNth#=rHJk_)EoGdYY4plPO*ogOB7f-y!+XG_2%N)U z-vk4qwj>Ir66%47w8{;7-Ue+F=$n9YaCF(F1C&ZAZjBAd^x!m9_J~wyHyG-Piz1KQ zs=?8!At^EVPq6_U&@erS2$4i|f<(;!Jw^-X`yPLEapv)&uM=qZ?;V3n8l|G(=tKI9 zj#SFZ0djB-2@vI}0z>t664D4u*%9=nxe_627sqlArJU|dhY!-o(^V5RR!bg|4Co^f z2m~Rr#1B24O5Wpn&2)3KV1ZsvCi>Z@AR|wD*tXH@PPZs8rg;Qr7^U1=gBbxbS zq1e!$`UcK?vM`@4EPrvVFb7-FW0_ADK5VWrpDfHL3-igs(l@6IjobNT;llh P{bXUw=!-#YU@dbuS? delta 13360 zcmeHNTdZAG70uq~8Yr)(LR&E0yEm=SP%2&TM+{Mkniy@di7`=1%6ft!QVWWTt%a5! zj6{-?u%pHY@dFZ2!NweekJ1?Z@IxW|s38I|CTKK)FZnR&*!!GY&c%3EqJEx_rfIvn z=bCHIF~^v5-miS^qOW}Iq9=a2iGD`gLqUVIOh_A&j9CP2T%Xiz5l=YZ(sf5ue*zGt1esFwWr^J`p-RbrvIGfo=~T3B31~YT}s~5q?1u9$Mw&Z4)veA=~r9MZLRm& zB*iR4{wo@d;G8%YRN%%3u7=x{4xJ*;U2ty84G~I9iYH>iQEG*SlgT&X|l_!6j+M7x}$AgMd^WOYe*JdL(ZzIA^6 znW_nnY0DKAFo6gQ$Bod!_#C;1(GJh{0h-Gh%-=QUb$ zYmr`5I|_^5xoiS5Rsjdh`|hPb)-$hK9`KUM;zhlK_rh7i5TEF%qztLly=Tj4`{e1> z`jM)^cSuS`O1zE8HXC9hK5Jy~f=4sKWBsgZ3&v%4@7*K5y4dKmcaKPS-FNDy0Yo&< z+69q<5ER$cnNiEE;f4k`b*24HeQ>4W%&@GiW{L@+q>of0Spqd2e@t=Cla|9{M4M_W zm0;9aZ46}$Uo=7hH4}LK)2b~PA6y|#T5Py`_E!~o=nJEBx(_~HzkQFmR^E2~-aBvF zaqQThc84+%X`5NJR0_qU@12s)f?%xVo!dOxIvKoMTU^Y#El(k&H?P!Rs*V@JWOl&r z2R{6?Ew_YZZB6&0P+MtyYQbooH2ULRzp!5)! zWF~OUS$E`gb@2>)r7Lu+KdEmh-eADqkAG6157v=c8cIz@9j94aErEU|Vt=V5=djnv zNRpwB39T6ltnA4Jvu=vbv_5Iaxwm2MqBW6n3 zxbbx1h5T8BmE4*l%;_A2mj>k$eA!cF2#IlG;>%X4%E!L>RSl;l-x=;=pOh(y}vD7z<2NYTV>mz zEH{h+H#Q52LP-LTQd)z$twa{nP_C*#1?Z1y>V=Rb8ymea5&A9W+|di`ZL@Sl;(BX& zjG7@GweS%4J@28cP@DA(S0$@Gqmg!@QQ%>UtJRn5%Uc7Z#&O64i4bt4Kl%&lScp7R z!R^$IHAaXu(3T8>P*{bo1L6tvpc&=Cb}v0uAt47?5u&ZJkd!J!fv~vfIEf%}2)Ia8 zUvw_*$XiF7CNKV}{wA1wvHiiJlKC@ds;jyuQ1S+DyZxWlmDkWYWWKqYYZYL9BOTJ*>?v%GTJ&PD%V_yk^~S5 z^&V<6IGrG1a`Y*H?Yg#qt|{yachKFtHrF3%7Fsu|bB|VgyRTQH&5eRYf!0OU0Z4R0 zDsm`B?$B*mli4huLI;Rl3B`rdVUU&5WfXhK!Q7VV2@(%srzCl;K;YK-42I{* z%47|hwEIS_P-7jSxiSS^ zdwu(gG0??`=T3o?Jrl5q zfVagh;5^C;>3+{)6OZQxKlJl5GONz)MxZC&D4_dDf9}q z)f9T0-!W=1?TFgrg(&D2U8Y8RO_flYkN^%hc5+0GfIW=bsAN2tsKDF7A$S0xmP`@r z%(TZD2(QKP1U))D)&x;Ovq#XJ(;N-QWI-!CYv4+Dr;Z>^7TG1eBdS|fqbslF*9tZV zIvG&ZB`7;+4@Df|8rl=-D0&o0$y5eS#|MRJNq=;m=?dX`6P5}Isy8C9^lA$sa zns7%kXK|RXK9u4zDlR<$Zyy!#Gt{RT{R?-A>EkPMa2Qb52$@0vV zlHmb!zt8oqJ(SGJN{se+%1LG<5Bla{I3@w;2b|}`Q##jP7blMsOaZ=89WMoFBYsM` zx$$)A$=1=Pn0{w$R2Z1oMIi70-Pf}=1lQJa&;?qH6 z3RG+~-6B&xRHiwaYcskZ&5T3Gf#$~tP^42Fj1rv1c+AaVt}R@{ci+1UWLLPsOk3{% zY<*#aD{72iA(!D@Cg^hlI#kY5hQ`u*-Y=+JLltH}(2W@CgUT=}^3dAJ3#P=B@Blgq zYz2}rvJeU#e?l%3%{fCQ0kkLdqdn*roAuL7Em)k<-0Me1n3rf35S@tH)nf>39CPwC zLXja=&sGoc6JVsBLenOoqcKmW(n>@JV{$RibB))im(c~x$M7;)dU%9cQm+OQblr4b z(iF^2{U}%+SnkHX{8}mJ365p-&=`qh2qdudGU&W}L5Xo`R-Uhyk zDY@}<;icY~o5+Go-MtUiKU^*bmWzSqVqnq!YPlF#E(Vs10gMKgi-9>E*%aok(~fw# z7&yC)SS|*Zi-F~0V7VAru$Wjb2F@;4mWzSqVqm!#_)mMBB}8TNSgt;DKnG?5@Sd*5hHsi|3yf35W|QLw(CV5sqhQbW3)RK+Ax2Tn@r z148XU3ke$sDvmmE;y^i2(9(gkO3gqJ)M7_ggO8y@zkT-2&Ak!t!ubhg5IB4P>)-$P zT7Pc5eDpUjAN|?$hve74{Dia@Y&zpu}TAf_Ic%i%4 z4Ti1HLdztDpiIP7kxN=dPEM#IS3fz^{b%l)cpT!kX-aloTD2 z(%Dy411Wqw8C{U$Lx02J9y_x2(?##RutDh(qmyK_@md z&c;RK$FF_0J2r|xERU=%-dO%%(UZtFJI&P>L#lW#DcOw4;A2p>75SIy;51}s9Yr-FjXC03_vy>h-y6dQg>{1_^$4|iz^4uiB6*E!=L=Zg|m-*^kbj6 z&_HL}|Lewg9xwf(+v)@6n*dJ=J`%_qTye=I?`#&F(+U{8 z)D6LDXPHEbDO0WtK&YZkmYMM-g4F-(#=HNyJUr+uVlo_y4VH3@kPB4^v)_dgGHS3c|s$DmHe9Zmp6NGW&3F!SUR;Iyo-?y}Yj{>vRZ? z6+_QFKximR3V?QCL3VugEs%q!7Tu#=UoB8bn2|P)G;_qEh>Ww|IIZ;vIXJ$0?8frB z#Q=P>7cm;3m#on^4`)d=_!^~9ZYBS?{3S@)DE`gAc5-NxC9v%LgVNL4+YFPc;#kJ! zY(Q=$ISB)b87Xt{AxcK$ z;Ii!JS?h~|XXCX8y0;IF-e{L*cb$;gLfoK>wNh~zQqH+zFh1K7-MIby{1v{~^+ZDF z81U{&RoPggiNY7{fLLYp#IzqTPC#EZ7wb!n5F`cOCg?3*#mOr*ZlA~dW}?-DOPlfU z_e{3dC_5AFnIqlZeNx6LEu;zxIMq1n)Izn%sF-xv?d8#KfX7ysf)xQkhN$>ZgsyJ# zU$V-()w!#%t-gX=){v>WXsQmnqr6SFDrhpxvd0j9`;qR4Foc6oaQ*v$YOD0x<*vM= zJJnYmMd9F$l?<1Y>@^z7f~2ih*jWL4>)42BR44_`7BIO$Ndl{Q4DL03@m-0)uI|+PoHu*i%~Ypq4%P+e zpfe@H!>y>=2Tm|sJ4xcD?gWC7GszNkoHFz$6*Ov1k z8;^dxyZ^ns$JuIe2Kn9F7y}jbBtWyQgtpA=>J)o#IUDXALXio;AYpbuqfs!r8Y9A% z@Bq(kXKM{;KWiGOyu$}uA8nUojo!j-j`afcGAdh{Ns=zGf}jNwSiq&PP?*6vBwSf6 z?t>LWBLp&!u*F4GlDH^ZaVtPdX~@>h*|LS71)t=EU?nhPHf8pfnPiQ+<7=PoKGiHc zlkDlwb#ESo%+Bcq)Cs2KC{_*KsQ8EV6<4h}KMpb{gQO{h$2AuL7;amF&_y~VDj)T1 zX+wy3NLiR!6%>PxRwFSRh)dSW)E#*CjiTcM;jme9wz3P|$w4A_Be7nj>utTmfE79PqNvQ?A_vR_9U(S%?<~VlFgoE u`rn$yjdZgo`LE5)W>2!&lWg`Rn>~rpn?1>`z0&``CvmHL@7?fy4TK~=Cug0t z*Z11%&#xZ7`Rd_c{^o%CmXGI(lh2*j&PguD7_!YM$5E4wg>7wAd`MN1W2>e8&Yc5S z?;M!n_q&HX2X>C@+3xV*CwBI)&R*+JT@+8vRpO+oQo2Y>%q3cxs|zm4GXA`O`N!h$ zaCs)qh>nBFQZsuiiO8Fnly5#{s-~$xtyh2Fd2skeFJ7E=wNy(ws%DcRm2)&cR#MKZ zB4v$sxb;DCXVy(rr~ZxS#52={)1P)e-pLkJuDQ0#m8w%oNz-x(__CTq_QQ=U;#sj@ zeZtRzmNi9m!MU;t%xp=9YWr_o6GwXax1GJ=*}dH#&gQMCBxNBEjkK4ksTRpM;{z$x z{D7W+H=C?|{Uss0&6TyieoM&y`77d)dEp`hnV6NbC_^!`OVM$4GRCNfTj#|E(M6kl zHJ&^fCZBz7NtL!!Vgw7g>1ROS9_Z|r=2x-i&vx_{tb zI|sXfLO_poab!2BubL)P61l)x^W9cBWNr>xLK!S^6pap1hNKvb^wBMWIrmv{VxwCu zm8?@4&DN4#A}gIXJy3plc;W@|v)N?f1v;n7F8KAh+e6`MzCPzLNTL^8$=yWcvt@;3`Qc4A1k5|S}f`^(G=!TE%bsiw0py5MQr4+51;h2HCyt30#QMk1k#4G^9)SGF$gTIx85D3-oVJ+? z$H3kgE|^F0l6)F&{83yK`$gwmV>Hd8U5*%*wM|JInPsu}6AR+%DmOU-ni%GmNJ0>r zH^lIV1+iX-R&FlazkUd=<@`k51+TulCm!e+o@KP9Hu@-A@QNY&E~Fd-c$HUpgpNQV ziY(eO2ChSMI>-c4C0DGME5WZOB@hsTlbGzjP5D<+U zKBOTyC&XiwNqSi2A{BOsbY4ZLO2B+;Lgp(uG=?`xZV?e>nWdz15|+&cau0J$F*$ZJ zdmvOnO!YDj&L@hF+}ht-tic-O-kY^c!ukfcI_HOS0iry;t zSIz-Ehb2qoE#ML6>tO@Fgt39&&*qs-EgUS`8{ZYZa*chHRu`oBxcvTZq9iYOl?fEm`qRM2#-m#0z=w`*Y^T3*K^z}njG0Af9WEZw5UJycNQVoOMlP}m z_n}3kH;BkmnvjERgwPSC_6)2N?pOv1<9@H=;+2Zl$W%0G9A2}fN>UzI83$imhQRqm z;r{j)#pk-ox(h;G{gU{=9Cr~_aci;&oa8G-Yn7~qz2b-<+CO>b-i0yRXb|?Dl-d!( z5e&jgV_V^>M=4)oaz8qYy9?+ystwqr3~WIesu9{ydPwcv7&uYeEO0qhbzxeU&WU54 zFRqO@4wn`R2D?;nnr7KK&iLC>8|IJ!)*7)OR(M;E$f=r;93?DDHMji0uU7H%*&J6I zjj_Z4Yepc+unctVN{N83uEWd!9HZb=-9;4KT(mCO^}X}r(Gz-&UCAS%<1i7d0fmBp z8qF3E!HvNWhfaW89SkZ#;w*-NFo@iaLHcBj^dlK%TCodyxM?tToi9^xTz`7vpv>J{ z)_h|>ymGDE7eqMp)8SoU!TW8*Ozwyq+$}%i&_Z!>& z#&*AfwfuI!ac`lrh>F|&#&*B4-EVC78}HnxZ1)>j*KGG2+x^CNzcH@c)^Az=_x*++ LK74fdSMUEH<;>lb diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 778a47711f051a7bfe43e3b7f0e447adb008acc8..b0853cfeea732781037de1d373a112abebfa959c 100644 GIT binary patch delta 1963 zcmeH{J!=+G5QW*@NH7N8LP!E4Szg3Kf|>h0(<>sxL`x9~ckV|a7J{)BwDSkJRSFv| zwQ@Tp|3Et-g#;8)F^z$gdh?2qG;U*=dS_?mIdjh4+MeCoo_+Q1q}aG~U)XgUmK{P2 zj6yI(qjgLvBnggVAdv!P4JjMc`f)YWS2NZ5Z>@LE7>}TW@&{i@#pn%6rCku^ukOlT z^=PoF|GHPLeQBfj0zfCHv)6(gBRXLS(U1sMicb8jPxqrU&8?}{p!i%4!Ob1pI0K@kH~X8eZh(r+RgG zh0$)k+^u}BXIjZJMa9ZHpR`2niDQ<|qJgAX;$gCog!E2CkeD^ILsTA2Bo3&hChUs} zZ>m;W!HE?6h)NrYq$vAx38RgXIZniy?^hR^=cRUN{M#Qjv_pft!n4r|1pq<@4Z`Ro zq9Wb1`1vax0FOm6p+# zg;PW)@i5@of7-u$zhBSwn~Tkp>fz9}#!Kz^>h+uJ*VZmwURfXV>e1>U>BhI0x@XhP p+%Q>D$kDIMizX8$SGl&2H delta 1955 zcmeH{KWi016vf%yNH7LoVMqcNZ+VD?1T%N$-ucrjBE&>X5eYN1cPdK*c7j&<0&b;X zW2=?hDftGLLJA2eqGFl^QtG_C2x^hV{`GhFp5Hn5%+Buo&hGr{_h(_txXq}=!&RxZ z;HZ>BN(wYPiR2t!b|x z7LR+Uy03@D#+O<_U=A?^;06Wfe;Szxf&qX=THC@wdA=K5sP4|x=!k;~N*G9}7(!A) zD_{nj32Zu^ZTDxY#cr@yZWT2nELmWX$xS}!KAx#Q6#YV8eJa=c zB@Fh<)pqT3Iadp<$!3jAEYM2nSYkpX9Z8b^y?jE(&NvZG!^tD+7@dj%MaZ-cwIk7G z7v2^_0`%iCO_~v+@q&{9(#bTz2;Yi>a=BYyu3i@X+u!{tMKBBuz56VBp?f~8wu?tSN#SUv9^JTgXY=O9)oW{;eRulzbf0;ndn@gW*=n)w pVS}+J7oUzQ(++-?xBD9~t>Uzbr#%GID*pS9{a+Q|jH;b;zW`#%IdcF2 diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 9e5b4b1d0672ebbdaf8bd63e926a08224c872ebf..5ddac3a1f929c7238e36e7fdb73a99c0c9df02a9 100644 GIT binary patch delta 72 zcmZpi!Pz*2bHf!*!;-9GL$i3ZWPNiBgOubX3q!*sgA`K}la$od%)HG8I6O(3Eu69-~#_gHjFd-G6>2x--~f86dX2}?pwC3XaooM2=9K=i%c z7t0bzuu}O)1xpS|Y*Mz7Sn#E6j1d*fj)52%n};C*scaKFK|xB9;MfI(xMD{ol8CBQ z*$I|5pMLkv?952K{>vhNJXC0RX71c`Z+D+_zUO`p%3k&E4;}jWHGlW2ebdILf3z~LQ94%2>(VRC7gZ>n3%b8u?y7XV z8*ey!-&B{4X^W_R#Z83@PI>9QQo)z1E`^xiZj!mGd-VRn;g4T=<31j*v7!)7FoFe$ z+IbafTPR;fZ(3&-_sd+>-*2-yW8buhPL!=MvXx2~Rn3hWC%m_1$^C=rUpIGEdfjJl z=XT0eqHUVWn$qejin=P4sGSp4QD|9|{q1sBrQ3bw?*02FuCgq@^fuI5i?X({Zi8v1 zFN{%T(cevHu1a_N%-gTsH>nz3glK&uv}P0Pwk}Lvx2iTuxW@H&t20-nyZx7c`iAqS zQCQQOI_RSGTJvPQu~Jb4DUGtC?QfU6>Nh`h><@Dq)KGQt+ zn>RlDzvth);Z(VG<&l%WcIsE2@0*(^rw@$Y`-g+ye9mpUPhURxj+5)pT=v|b+;PQV z|LomsgZHmZol}M*T7^2++R4&aW$nE%Wg!)-zgVl>RkNqp2N#?*W$QUWt|>USx@rm^ zREYzZwytDZ*~QIrSF!N3ufJsQ+KpjZs_y7yU`G69YrS6a^XCnCrRV(Q#%B+7?RO0R zbn8d2{2MpldbhtlzU8v1KEC+m*2beGF^FKj1U)6s+ zNvkToYK_uWjjOS$qSD$Fm1`;=OKr>|ROPNp3-K4n1}{EqDx1P7ZA;x)r;R8Hg_=#P zy{u##UF?rw?y7XZuUtA`SSL7#2fGWe7#tfKvAwq4f4V#^?(_XLt?%nyTHn(@eQ9@F zH8^W=gMM+p>C)mZxg;IfGrCV-Hu&c|FWY{Kw7{=>-k;1^--p(wLdI6QHkxQkoKaV8 zVPfT6;J5$#@Sm(r zZaZ;n@Nc{Q*4s{;xF=4h^S_^H?tEL^ue8&yd+Wa#oO8A~E`_S3+;4=mV*b4srSECu z+`>i5~{L8_ibWveTSMDcC>G?(b_?8j{QSOza;gN5n`SJSj z!^dtrar6B3Z{GR-H{bfgEI@Jg;Qa3A#zXh*eT;{%8BDr|Hioyp;G1E$&cb_sXycam z{Lq1)`Tc4Czi->2oIP;H@N<8wyZ88T(mj3l+PM2*xi;#)QVch{vriEQu9L$<-H*!Q zOWwPGcu6ZiVkiPmi>8qQE=XZ}ESewp%LJaZu zzkW+E>%Lm8oiQ8g;g7E+bBDSw+u?aXe;I$d^s?c;?$Lj>cHa5>wQ$xfR)6acaa_2n zlHJw6ODKHfM+c+s=#~7|^;a%_tGmJS<$ZSR%Xg)p^5tmc3}`gnI63**-D7t6k{8}I z4t}7M)$kWyddHnVf`h-Mz4L8v_IKZQ=UWyI-u>HZc;tmzh@aXR9_~JN_1Z=!E+5+e zUmj`FJ$A*ge&P4#t=}~~=LNSq``neo51liqjWbjzwzMW_AFQu+T|4hUAT~xnd+<%8 zJ4X}a4aII#lv=dfMOztFOIgUKwa&J(`^F!wAMAeai=)G{N4{rt&tO`|Xk1WHgF1BC z*4}#W>dF>Crn>NU_O(A9KE-9rjfd{&L+jU1mfNnntK;y}?z0cApE-5Drv7bPA$6_G zBKk@N3Skq1({0h(*#mmxuF;V?q=HI04~A8#uBxOlt!+wYbTfP89mCHKrlpFi5uz+h zV03y-pO^quN?+T`#dh}aEu()um}D$={=h~tHO*3sD!oCR#$ZLsopqfGZV|nYst!f% zP1E>7+u4D4jNUSuR7E2wj2cZ*si7-sYNSvIDqbrKt-5c#YvbJ6$NtayuMH-$1O_?{ zVh_4DZ4FJKRq1V8QXy+K``Q=QKQq`|Znl4ejM3OV_{sHKE}_u6{neMAxaHW}-+uA* zSg0H6DDex)X$q=!qLrd`ZR2YR5bcUPh6iW&y>EQ;XmdHQl1|s5+4UEU-#NH9w=Kso z{5{wI;H|H@?z{i?wYTPu;qI$VX1$Kxa&h;bdxnRnnK$#@H{LmV#Z*&jwV^7?PzDW^ zQVDNV5M{we)Izq4{VY{m+2~+=np#uMduS!$6g4WxGWhO^Yj(NTL>G`crt+bIH{t3k znCPV{D-H6Ls$bTxzG3}84(_D6m)aM-dwuU8uAe!fIw_rtruD+>wxpc& zC6$X#WJFPzK2}VWig_5SMVx+_`XOF&P_?f}fHmZTWXoV6&m(is< zvTg-Op;m;Kxr2Rnu({M?=)Mt#Vv@1gJ&Y4}-}N8XU%m;$hoh+4*~VxSgR4T@NMi$D z5%I&{A03)K5;>Abw5sZ&lo154VJMuCW!Y9LaXQ*}51%`F+3bx^4S#j8S(kMKqXiv< z+XC#JRK5F@@M!VmE~3Xl3`hKUu%%mE~(r`&wJ` zTZFO->QWnsj#^p%Fwkp_t>f&0_YH~S87i?mdWzTY{VcaTyFDj!CjIWKm#>(Y+kTdL zD?RtKNm;81ZRc%6JP(bmbR*dc$?o#PX7TO{?gAE6!=pjDO6MrW+NfGwPS!?ugL}t2 zGuS4zvSAe)QMjl@Q`A<8($tPpUHEo(^!WIH405Ksi=JBl2h)sY5M|0=k3F^i;!Q^` zCchFj$()6)qzY2EqQ$pe*+){+=&wSzFLMalE385{Xop04Du zmXX*^yl)#p%ut4;Eg^2oqMW_;(J>B|vH9pPkiaNVm)Xz1tDL+Kg-5e zs&0a>w5cg^tFn9Rr$z^P`kO{m--f_8z^}3wRmFqB_{CO0QnaN|u8$BC;aab1!8Wz? z5aWCW^JJ}uea6dXSO2|@6i1euEfyhSxykNm9NX@XpILwT#f9GCS6Z3^g4svF3?wx{ zN(pIv>rJidxVp3&a9bU_}00bOW&){V4KQvb{)te z=mtt1oWVgdBplO}#((18@m-@yP%KGnD-B%Kwy8+Db?dDbB1TTzUcZ_U=3&g>JY?%& zXrt$>S5+zNs;q=6=IL&B?|&Tq(E!I;W*su_^tF074 z$0F2i6J2Y|gk}q3fPZv&@Do3~PV{feS_<4oHMnCPsup585!9vtH+5h8J@)eP|2F#Y zV3P8*grzf$3UqQL4Grs~j3p5R*w-DsaCC6?bg}X4gRJ!fA0HM|x70E*;EB%>=br%4fccTXrt-JsO8 zs!C(PxC9c~E?XIFc~2^xo-HrS>`b%UZ!*VH?7lj)Tz)%)W!|dKU{e|9FWZ2c5-O=Y zC4d3=l%@%EpxhSnhaR?d3)ZKwavU#@549$Abx74ZvN+K0(bQxy8f?iqX|IXd z17i|G*7V%ZGFE}z$C@kONdOfxxnRVo4gFBg?%&USLPX~ygvF1qf^uO44; zyfVk_4u31WY}+VW6{rwt5?5_gaICA^RlI3A0}p{1Gu_y<09*c+*_=HdlsTJWx4-3< zY}?;5Zv|07Wj3L2Y^-&uIU4{*p-NeR^H(YgY0>Q1);eK(f_^JJy%Z7^KoeL`6TP-b z0XlH?PSiN%9Fh$yLZ@tWRi=J^s2Vnz|5I_;*@K^3|N3CE+`j1^{=V^b(~NE1uX{v8A7qMbWaml6zU&IR6 zO@f7_@}L2#c!kiag_mXQb_c#6_^XziW#v*)_WC%!@RCaGq(GdiSVB+39vs2zQKw7b zhn3`M%C$bJWt9xGuRSsTrNO<`@=d9ByG-sR?!G#=TH6kmd80)_LrPHu^cm5>IMtPM z71#n~QM;P@#B3!rsssaEL<=H4DIkFpLx?4F(^yk+uXjxCZY6znR34pA*4#d6DSU!&o&OU*XP z&1`r7t431@(BsD4cK0^dC}m85o_ctW3?xSnd<+*rp)U|X^ayI&SW}bIYG?rXQz9V1 z1hG{^Jx4#Etk-*5W_R>%-^rZHJ&7-~U{&(8*ZtS^!;{P_B^-T0ch{GP>l2)U3N6$w zvX!9<$gCg&YT=QQ)gF!va(?#okB#6BAdMrD5@Nq(H;M85K~)n;eLjlr=uht=K>+-C zZwdQB!h+j!kV%nv1}cw5vsK+ttl@CWpMgyI?$PxVk+FZ^ed8-8N|J@qN-25>I-s&6 zcUCa=RBx0!es?Zl3fvv0gd$jeu?p&NvPYj~g1LLOjf}?Rs zYlToL^*3R0Ml)ucMK)V*c3y3Y?hC&=KG6N02glPX3|wqMwGf&@!+wH&DLxBl@v7Fg zTO@F-m7*rrj$#z>PogE`mYmW^=~iqJI-o;?sC_bKh!uWlUbZvXZ1Iajzsp<%lD9<(Gj{-}TRU3bJ2+ump4qZK_NU;-N<3!hjT zQgT~(L?_LRW5teT#B+%s+QO2V9ov)YGN*J;rI%U6(+-$w7KNl5095Pr3Q(YT`5Fa*?cL{W4&6)oY`$3kiHAxU$0`)oq@hj2PakR+N!w6l0g z(M6e8#i9?uJxP*z0NGvsDM*sc11u`HKmHUX2?|oqAw4%klB3C2SCp5Uqh`>lLM6}L z57nN5=bOhDt6L4m;b;TQ;J6zkqIN;yDa-SUn&t+rLrMB~f&&z2AgDqjMM?pur$>;7 zF16eH-y~zV^N=XX{X`;~P>0fROyI(SyNF^C959CjgBmFhbmZ)jKZEO^h!T2)BnPwr z5^$xlh&~N$R$JD(UA#*Jvq8Goq9VD|3vfkUww5=7o{cgr=*W!O1sxfeo9qt!;)d=1 z=jX>Szrrea+{tg@cpS2d)EgRPc@T7plnzISI+>S@p_uuX5h|xSo#`U$W%jDxo%J$D zbdS?z)^3ZIq_wvEjl{fw+oZ&SSD?3;#M#ONu_QZDqR3N7v%0~*hXv}lmbNwQ&~%Obl>P#2S=7#?hgFrP);+3eJVdi z_ohD^f9J$C(S#QN$F^=$%Q`^mMlg95sC@e}X9BT<{JZi{df@dERcdW$kfKv80u{iF z$D8;2;I&d6AP{0lmIvOMZexmm-ihvp$Hs>id}_w(yq}gc+8v$3`_I$db-yxt$p%HD zIc`*U{$t~F;dUwXBV<3}*B~wDxE0WEfDQ*QtQMFuX2jXayFNhUdgcJHNeoqMCcZ*AE`1JbWdge%6c5Mx7Ywe-QtQo>Iiy(^XCj^1tSl=A$L z1~eUQz)FkWLp4$oZwc4In$lC0?Qh?TFHWS7#y8pFr<4mL+ zJQ}TG{slu)AO==+&n$!}IXILHhFJ4D6?;ODh7uLkH)SaRLJ{x;qXT`qef&>0J~Eip z4I%BBq)NGzEO(* zi@FU=WbrZ>1sts@3TiS(_k(hpDxs-+*gVyc_9#18qneY6xS%B^1q(aIS)jGLmBOf( zLW69pp=C@T2cpbsi}(upkSJ`w^*v z7%erML`$Ok=yz}I-(>zQv1}qF3XX|EfG^03)?k%}IOdsi(d-5PGoKh*3v*`#ugTlc zOC{H$cPbakE2tC7K>^YRj?tR)e(qu#KWTx_y5~bkhs(_-VaOy+Yb~+ZE3Zgk`zJKa z>eS^zOaNaaHHt>GV33i-Cu+gIRGC0tRS*meSFlU9ZYZ)+y;ebu!1{_FBc?~I6QNA6 zo#d6oM=G6|ZbcDoI99~w+EW~nEVfGlISM~PSIjbq1?3VerS6)5#o0KQTjBdtWn zN2ApdgBh}-+qyu$nK7#rS+d2K<6f&J-ku2C?egX?B1_CSsHN(K^@<)D#Y8 zQWBsV)k^qA0ee1|4Ns`#ml^NgcxwFG>2lL*p=+E2L}--;0-KP|o{@Me$YY!fk_K`g z!gld8FtR{gLGPBZFH?2sIH72h5{+m&Bw>eU_g%D3`>cfNOCqP#&rf*~ZVcruxsd*o zTQu5wQAoygufAPwxLA;m$<3xEfg!2hfKQe_zoV99pco`bvgJt9fB3D$o>KbKkD=~F z)&#YR?y5m&WqDFcwsuRR87rs*U`M1cP0HpghJYcm(nu_W&s!SkjLkVn+@x$;VzRsX z%OKr3MobCpI0?+{Okh;?w&cW61-2+8cuA@Vign%;(qmrm_o+EEftb|MTdsyQZrLvF zX+h_X=5B16Te)plTmE8j3iF1w0^_6lU=5iRSM~*ZTWFCSLgT{+8YK|oZKA{_^5+Wpmad;2Ju!yx$e68qpqMkc11M6# zBc20DQw74KL4m^&)2en77tvus?Q>8}g`_r3U~BvlB_@Nsbm2>IZGrak6iAT@%W)hn z6f@h1oQ1J>N>J-UYe0teqJo)bOwMV=VzS)gyb&l;A-10u2Gf+56>U_~Qqf_8i=pd9 z)F@r}2M;xjbq%RN+Nti|f!<0DC z#PB%)=u4&-LW%c*B4;~Dj4WzvW){d_=yO}|sZ2;q1;sNHA`xy;0Ve-^{g*kF$m45t_$DzM zHEEHC8|(pXQ}mFn0Zh&XAQ_XrV`VJH9gfwY{)3eee0~A(89v4(^apd1KGDL-(-;xb zQBl3>e$+f6bv-wR*MY}6iwaPEZe_DntoW$ChQ z`5H35;GpH_qx5)F+tg(D?YS7Z!8U2HQ4t_QNbMO$D%j#Q z)P*8pe*AV|#|a`X@|g_O3(&QEqy)q{z^t-FQ%fS9ixw6ITILB7k$=NvxqXz)Cr6i0 zqm3oSy$ca72UI)bFmR#Td!Igg!r2AhLbDE-BsasaH8hN5081Ihe49xchP;E)(M7zGFrrh0oua>E@p*LRAcCPl^I4 zRhlnNAhH?qId7ZP1)Ix19if~4G*JKkXNLc5aBpVM_OOVVL%OGHmRZPp+xapt)jj>r z(S_YDf4*V5>wjte#?{Q{YUXq4sOf6vb9+X1%f(hRpR1YA)y(J4+3MBI=kt!6u4X=0 zGoOo3T--U0wwn1|&3r!3#OZ40b2an1n)zJKd@k6>)y(JV&+b{xd_H&HbT#w2n)%#0 zh`UD)vYPo^Hgvk0`CQF>u4X=0GoP!O&*vX9UCn$Ro~&j*S2Lfhna}O{+&$|2)y(If zNz>KL=W6Ej`Tm1ENtm^o`CQF>?w&JU&3yJB44#>gT+Mv0WJ}2(fDU0z3)EH;1~~h#vd^6-We4zj{RouefHV=Y};TAsnR3{kJEstJ!aVF zV-wfLAJ}d_S~5_gv{b0J8Nx>7gA8p9B0<4*lS@p%wyH#l3dL?|p`k!Y+EmC@W28t; zMeONs-*fN0``+012niBJx(G$Q`_9~T_QzW5zyANVUcU6L(U-n8`qU$P=|PU+lLOxQO8s9@%wuR9=_(rbIuui zS7kbs&bh*Bp-QhquB3NGp>3X9-7dE4skGS5YR@_2Lgq~fUKUx!-g@n=G{QJj>&7)@ zk+omf^;G)0XK&@}tn-pnQdV+CW$;C#o7&W6Bdg5%!na@7^;G)0uivxxoKdZW%0uOZ z3R;$`w5;9g^lnwH!ffyK@~7Ip``kOPSk6w0D-wJ)Q_iR4MRlfJ+ zslObb{H15Avp>A?*}s^6c*AKkfAZkTkDvba=lXE-X6q;a`$fGsZ1majcxcqi2il1FX1(%* zm-JZAS--jQ*?lp*r1z)uU;W?2#U;ETzT)cM;l3%(>}~unSEbE; zuHUBpeRGlacl);&##>zP+}RhjoBN$2ZSIms(rw)nKXYa8UoSp(<}K0&zwtSLGhu%p zTpJT-jj|0l);rRGAdIVA`zkn9cp0i$DC>ACZN;~)Nn4w;N>=9?-xIVacp1TMk=E&~ zt_o%5-?#j!^nFiU*AuTB*Cr=2C~dr#ydN&*yl5KVn2?peo_SN(Q+(e)`||z0$(Qe6 z`{jQa@Bhx)1@YYv`r|Ek-+gbhH`9eK#{5TYDLh4~^uK5S`H6S%KrWOO>4Wru z&Wq{8iw|TjGt-}WKxV?7^?=Pp*8YR^gf&I`c>B@RMj@P@e?=ywEaInZ|6p{3{tN$B zzWRmny!HOSn!ft6?QK6c-S=b1|GG9l+iSD$dgDKGb^m4YQ`fF-#QTPQ`?qxoTk*k- z{_(%*yK~~Z-Tl@jrvEqj#RqhF(7Ey4C}s{g|H?@zB?9LGoIpM55Mc2f$w z(?`zB+D9&lKbG|`NS_^uUq8}6KmD^y;z!PW_S+es{gYeQ&S^vL&xt-E_ix7f#qk?% zZO^2y`#-xDPs{#A@oTn!;Rml|g-`q*YyGXO`g?|ZwJ2;JAOF3zOXIVz?(d0*u9^RS z%ktw5cK+jS*YM+gXMX!^!Hc8Zo@%Xkoeu@xwd${8rZ}<1y za>wm$fQzSH|G@WbDe}DDOXHEN`o&+T(T85w8^teN-7mjSn|Rl&`!D|feD&lHuIYdD z#UoROtOzF4Uepx!C52)Mq{=eclvLRhfAPj0gH#Prb=buZnPee>aWzVq_&VXcI(OXWdnFe}!$tgJoEMk%ytjHo8x{PW=*gHZ=v zH2LO}!(Zv0sLb*sIgG&{Ir*) zFWXc`a^*ZViqpa=e5mpk{}NT^w2uDq{sq7DZ~He5MtN;qQ%D!I<`ptu)WSA7H<8NI zcr&@{cZMJ7jhe!iBHdBecOgqVK6S#6o)mGX%K=0%hZY!VkPE3!_X#>L~O678$C=vF6GC2n_ksKm@Fur;sTYMkinMql%okU@_iRfo|YS*V9m=-$9)g?<%sQF zYMFZ}{Nw=DP6^NW`h2VK>?FO4fuD zs6FV+eDe5v`uL0xwy*~Fu##FsFgZ~WN(97O!#S0cYkzFxbG^;wCgZ-p?5k0^++g%? z+OYABUtPcK2lLl&yOr~*493*8sf`dfN zN9nkVYUk4(8|9K)H4hCBz}_xhQS99}yo@VRH$v7~0ecBoQ@YwYqg_$DJZtiD^1z4s zDNE(VIZ-(!>P%~xGJ;@U7ddC7Oi|CW)TXK`4@bjE8l|PsMdsnEExc<13mnC5{r!^@ z|9SA0bQ71Fjh8*O{u7;6+eGz+r`FHkl&+Rk%Z+qaR~b|<%rUfVtu4-AA}&7*4)7!z zI?i&>V3w-}Dv4X>Ys>q>=SHsCEZC21qOw)xGu0HZ7^Mr1*GX1)vxOebqZeK5c{_!*GmtL;)qK9EWFC5Z9R%)F!rBIY! zhx;c-Up9Pi??lG|>79PF{Br7S=hGegrIMGu@lV$AvgNCagv*!3JHOUnAC*CBvNmE5 z`AXt(%5YMSu<1e-iWU%V=CV?Pk2rRvYjB>f94^(M`lyh{-hWu%AOGc-5~BK%!M(k) zQ~-bmid7cLe-(6KN!rUC>CYBmsumb_*e>I5{lM_(c)4wDT8DeXdBbx@3db)qZfIG7 zTeHFg$cX)hqzi8@wmoi)wxm>9u+B2*Q00Vm!~{W*4YCCO&f_aWf zRNNB7AMbntqKAlI6vOkz+8C!AuD&afMh&ukzHG&0jt-#q30YH7a^bNsh^1u+VHR>?g7GfO+ZG7_c{Wk$B z@pK9#k>L)ip#sh&HCd`xOX+8zckC()#0{z-&FYHnRYlHQ6}-BemYXe9Op0rRHs>4> z1>k~%qBR*39#48ZEd^$Xx5I9WcstA{7c1g_d+qS$R~WffEI3)ExMiSOUuA@L&cfzE zMeR$9kDQD6vElw{NwT?IT8`KLKJmQGX&onHcREeSecXi{JN8Y?U2L>`U3mnk%yOCx z5)z^zV9H9P>7of!nS~Ncf-(wRICV2uBGyqI@F@_bDP7|-o8>xyJi~q z8havy&_w=RzyLW#YXktu7+thgO{dW*d>pH#M!jl1jig_B(x`$RNWSLKpS7Tl%t$_N z5ef^GS*5ayTt|v(2xP<+aAhIAMOd7WaUbn%mShY7y|0RzvmlRWA>baPeXJYxOxSdY6{5INr=hMsgtFF&DS;vavz7NfuY;38#$X^W&HBJL4JYlZz z@N86HM4f7OCn;nah^w5#q6TUl?J~4&R0Kt7@_6bEJAorO%~9)8>RJ*7Z6}p2p&}u_ zaxx&rdkY-9Y{x6^9bPvkPA{>oswr^1RBwqXgOw^15EH?YT%MwMqR~nfii7~6(b`lt z#-}nU1A;_R!O*~v7FGb#$XvCREPI*_#&l4DI`f*{fLN@lJ*!Y5irYHN_%~I{DvrC1 z#v4ApE=L_E(>g@_-Jcu2GNJj@5JRVk01TFp7rCUuqP`*8n0glZD(dM_RHQw2h+Zq+ zr%@!^4DwUTto5-G*BGKhgDJ?#ssaJiI?>2H$SjCZELNHwX4N!QY%Vt&-}*3I{(Y|+ z9NKbn%c@)MIYTZ&lFWa zp8yB4S`ua+8O%{**8%PHpRRkk^XZPA(`USG`NGV$w~f59K7-hxN+Uy&$3zgyNgG^c z*pu18DrjOCOk#-}yfAq30gY;PKwdXh6)95}Q`#tG9@3jwno(C&6ifxzprK~RKa+bV zq&drJ9WS8b1MeRk9d*3`;p6H}fqEaPGby{sQ;9k?aO1V7{LG}9?E6RX-(xBoPFxf) zZc+zTL7kBNtP9S1L2Jp(&-jHjB^lY^l;m^LMxIy}2=F>oHq88Nxk(jTKkG2r`q>x% z-Ed$0;Zwsg3^D2l3PVBo*AVpx2d;tRbX5fcE9Y5Rz$8d~k&-NBY^Um6G=K+78BnxY z86N-R@Eml{04{1LVOG*YaX5Yoz%D7<}4{MwMkN*k|EE2V`G23^%KJv zzlt`UEn|<}tDy0kpZ0IR^S0*hGv3#5G>!G3b%Gh}wkPCy`lf_$z#!!;Fpj!<0T(Ee zu0z}DO&ynX7eyjFc5&`|2af9}g8x_cnLj!GDmOW*Lq?!x9)1WK!0Ap`3BK zg0iIigj_g7jThDienL3|0ab9cw0i{$Pb&?DP_xMJcNm_QY@-gdEi;1iiE*HR5pEL* zOz^5nTKJxmx~9Pt2DqA2kb<0%p&L++k-y*?p#L=t76m82k!QpT6f^=5coP0pckV zAVX9l<{23Cgr4t&2!aZ*8MSKxrRVAIr9(O+!U|Oc8{(nUJF2vi1ciG96Rsvyf2rUl z(4o+JC?fFB*1?Wkvi{ZH!DYtFc-I#;ZWt{$Zes7`;41iO7iwCp9SSVq3qhS!ps3ay z1ab&%Zr(()(F&p_B{uC;=An6@!jU3eX{z|pMT3iHdM?ltSO$6}_CpSZln1jQjm#xg zpq*pK4zn%j8Z9>)5)&-r+x~3$@{!5WkI6OMMA!mYPMQNuo#=}al^w+#Epzhp&kT+Y z4(c3D%;(;sQc{|+l%#+*^i+b*CQsfpcnmQ`7*+;~2RG7pt2xn3!B0|ZRzS{la5L(( z)ABw@(amP5(Rjlr`YIm%#PB8Y`d=Ts=xWff+EV&?Qkrd89}E=DpOr?EMD@&4B}s2% z?deDOlYUE)jJjIL7m`}nsqIW^9oKZ1<8|z%nLFNS`NHfXM^aj4l!S@pI@TU)9&Vn1 z4h+P>Kw(MuptS(dlGV(^VRBS`v{FlJL88g0jUXdgIle31P>S{{mEnAMpbEri zeJR>pFyls++s&dsJ$(JB!){6jB0h6^xMxJXv=m-cSzJk#!7LPY>R5s9sW{syrQ9m; zI1@0J*$;?5SepQ;%B#YWg59jJ?MpuK)s5fmZ65x@Y80crvI1IQQ?DK*6#o4iec!QnK( z8)V@$v4f<6^Lm)B3GVe+Z<8uj&|HG>NnbWR1d{|bs2jpb!@piA;YPm0@Y8i)j?-k% z5~C*JN*j;gy?$s*ZW*&s!cqOh0TsXmg1o16qfsKI?Tn=&rnh1FT^~x!|MJO)cJuFl zrvEQ`Cm@lRos-z*a?3C2uFP02-@5G@u4`r6w4|j|ijgK7f6zn&G_xdf;!XuR8f@Hj zW$jfJ)U`R}S7?AbbOE{438D}U(AhRDWI1r1P(bzH|w z@D|Dcx?W(a03`n#b4zJ50ud8JrW$-Iw9y1fh+J7ar%ebfP!nJ;WNPR?Q=;?|Z0njf zD@c%LrngbrN{XofpTw{c+eO1h5YRG7IH7F>f#{+cvDaa@b-XUKXB=+tPNy?>uEE#2gnRgBAw&lG2-o0WP|D z5=Au=Xb9y?CWPumxvk@f>YYy4aWi)nZyj59M&BNHEo%xe$H~Pk0EWUvz#=mMh$9ig zh+!!l%@>b!26yb7Z4$jijmO-TEHh>fsotRKX02Iih_C{mauao3<6{U5fH$~jdR2&E zkI>%r zuo}82a2+15$mCT)5$9{z=?RJ{9T!9zdJl`T#yKhOkn;hQ6oHj+)U|FQBT$wsx7&JH zhgrSgVH96zgSAYZE83JKU*r=21<)So>?V(YG__h#p3)+R{AQ_!(Bp8T20RV-Ln;h* zCIDm#bWEMrWJyQ%w4tQNLuky*&=&N;6SQNr-DMp{^|<2y_fG-kaGk%?pTp& zJu5|W3I&JU3!;ZENP!&qoGb2M2=hBB=t$y<(cu%w6U@%0_5|vLkWYEAX-r*IveAZ# ztMDe08_NJO1$!P)?5L1{=kS-?>`2!eOr30V`3uAc-nTAW7?~RD=p`d*(V&GxbC782 zDBBE+QNXl~b|VWD&SlMMbfSji*80>s%q$WD06JicO`iClgWsTY5GqqL=xQXfCXukz zOVA{Am(ajV=iXGz9(R~6S|95$D;9jrQTYO{l0He{i?o*)p5{?iX57vuY-5aZ?Qy7_ zu2NbAQs)+BS&cM7%2ISeZ3`J>Kl({%5$CbgS(7&v{h^fLaI*+KGis#EZYtqAO>U<# z;GziD z)8hwf;v93|GEPITE^ z@Gr6D^g7ITq#uD&=`=@3?S1UWT^zmcW{+NNW@5of13fn>?euQlG-&C$v1E>dsUF}0fq)Spw6_xZH=trm!?@B+Bt%7n zLZx}uScp|zRe_-s2V2vng@swDSZ+3J7tv{R+sUp_Te(|wGKQ8E6b)zzUq?zy>KUP! zE;s&2$5h5{%m0q?_e7n}Wo$ZXmYk0CJAJL=R_>xey0&fRYZo0{wyZ@FyG*2OBGV*& zjr;()fh^4=3{7=HXH$6B?f@JKTr!k0ljU5x0-1~}S2D1M&Xc#o^n$x>riOnSiMYwM zGt=1Q0H^Q}49{c~2N6km-s9i(4yWSqhEbRKDg7Z%4$d7VF+$d}{1XMZb zpFiX>*X6-Y=z*TJL29xHyFg{SUO~$=?N@%WzrSf1q(Pg6MxkMvhU}E#Xr455rZAkA z%FHQkPHWS0(=-0R%QR)CoO<1uKM!Jh9w6 zSCgR6KZUxQ1YJ#n!f8F%UtL|4rdN}ot4Yx9;nUS5=<nD1YJ#nE{veACP7z| zpsPvH)g3)2t>z=L4v#Nzm0K=-D&6JH@iqBxCGCPDdw#;Zxt)g1q=6y5rx|Nze(Cpg;8k{~swz>pTDe diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 049a3c95df8e1cc7d27e9133fbab7cb602244874..c98a3a9704d0a9a094b310fc9269fdb97f535675 100644 GIT binary patch delta 62 zcmZ23wOndLBBNnRROw)`F%~CCmOiV44Q%zISOp?tl Y5>pIK%u-E_3{0Efb8dgn$*6S`0QV9VzW@LL diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 0937a93f4bdfaf492492af4211035f36e2ad84ea..cbd01578d40874ce095382383d6683bfe4e32551 100644 GIT binary patch delta 428 zcmaF9kMsFH&J8;_4NJ0$4b9@slJ(6k3{sMlEDQ~k3{p%@Oj1%)lT(ch%#%`*Ee%tX zEz?X4QqxQ=OiVVvI*JSSat^4WCV$&Kmq zlMT})ChtfWWQwVsoOoV#vUNrzSvtk0PY`9|oV+`;8SFrv9A##ZwFfUSicD_EVgdR{ zV)ET=@ySoJG$$X*mR2pxEKZEiFN)7iEG|hcN=__F0XZ`{F)ukaC%&X8F|Rl+wP><- Swiy+TYxc|8?w7+T`56F6`KNdQ delta 434 zcmaF9kMsFH&J8;_4NJ`}Ow)`F%~CCmOiV44Q%zISOp?tl z5>pIK%u-E_3`{q_CtGJklB`Q?`UFuX&dIwoo58M=0$Eg+S)3T3UlgC4SX`1? zl$=@F?#5yCJi!%mC(YY-dN^fZ?-GovUWF0?5L92i*v_<8I4WOb}sZN;A z!NgxZI#7d4)MbXn*^Y&hR$-VfJZ+~1+y05ceDfSfy3LPbuV4%H3QQ9p*yUi91g#sa~#nB!NIF(Sq z*vq10_N|TDc^s>+FFauJ z1;X8y0`sayU%F2*@L3IfMFu{bfzPh>MZ*J%0kQC<0mB1U1Dx>ba76|<;nU%43EVXxz{20k55NYvqkPlpo{({Q{t!l?ra-D$w^fbi*X_C$U< zobc&z#RfRxi|T+51EBEfa3uyf;nU%q1~}o9xM*@~Dq?TyQc<0{kc!widZcjbkw)vH zq%BNTo($#1rQyqOv^0v*+Ne%Fz0v9@>hhQmo6P3+wg4;aBdgqx@ts+(vB5qnlh1eh zs9Kt)e)>?FJNl_snqT)*qcp>1)GWTu-i46ovIhXlbmHEC1;bt=0&e@zXL^UP;6v8)&6= z#@%yVvKZMuNGr4>4ZD&f6N9u|J2DkiM^;G{{|-`wiwX*ygE;GVq zR!1mL&g_m*r8LbOsY06nL=ePv1jQRVLM{m?s0MfL5N%A!EMmQNoW;XgP7Y}^;{yle zz|TYUhK%#q5JDag=&pl+={j<0g3jya zL4Cu#Qa6XO9`}bK=V(3Tw2t81eKUgOpN=4l$xYxM{TO?}-9YQ5xV#gT#rdAz3N5EcQ6cv>obTK* zRLDQ3-IXOQu`5}jmy+9ZZVWPRc_HIZF9KM$qXy>FRFz8HDNYKT-A?bwHCnNQ%C+N( z^O_jXX3NHDr3AUgwSt_gAOZR^1$s0NRin*N)piD|7Pmmv^D}tU*PKmOI@XHvKR!zv zB=>kLw)JnV@P2oW>LpB5K)n+S92GB*C&-B1(R4K*!Spk~pYv@kYRO?VHzE0ego2SSFfLdd#K2szTJ ziy(wN>7@5%guE_j=;?xn+9@2qXI*I#?5c+HYrG(2OK{p9SYCl&ya8vLlVo?0X-+cD zNv1i;G$;5@F?#5yCJi!%mC(YY;|N^gJCO(;b{)&YuwRsmbM6qO$~fCyrxI(0e+ z6MyySKn*TYmrb^Be%M^%{IV?SB>OsN`fU3H{s?BDzJKAlEGvv0~9d0$`Xlu8tuHu$9 z#qJC_tQJR6TUhNY>I?Vxs-bf|Im?e0nobm&=J4NK{>!;tXrg^)8T|f9ZvXkI3Y0u$8#f`I-t;<0SpfapAP3ptWSp% zJ{`_!fD^u`4(Kuf3ZD*FY=9F!9gf%Y3j&2t;-ab2R77p+mXdVpLMozg^hn{Q1Tf?{CXloRsy-7Ot^hUd*B)7+W&}25Zwy3PAm#nfL<2!R+V?(`EDxdH4 zQk67Kee|I;cl1$>G{5endTEABsZpB0l+re7-rYx)(tNp}HcRt?hX$niq@OD1;Z?xu z&eH2FZ;*1CZ$B-Qn6CX)BF(9^Im1oO%y@HZ=J#IA{N0P0=5l&Z1__i?sR^7Grc}}5 zB&mOp91`@b9LgULB1*vlDwBYR>&TOiqOhI_Esj-iw~2DVcH<4tv-Tj;UlQ-{Ax@K zRwDsrA0Yv=)l{R|NN)#E{mvRHNDH*HSwF9x%Qf_-q-r_}0p?l==&FT)sao=Ag3jsU zK?BElrfwd?e%wC>IfpkwPV;e`yKjzT@lTIq6%(7lJ@PSX!COb`q_~0;z&@yh`O0Rn z&7Pq0^y-{U@$uCy+``rQPtt1b$eG6Eh$b1%WHJQ&kCRx;f={4odJ9zL*VDRmJeQ~o zX8DveEj@+8C^?12KdpzzhiPxL0V$boKuYqqYEPysdA>z#(+JM@)K+LYJ%S8*x8Z!} zk0L|CQEgQgvqV+0B0r_da&{ClZuueOPd@@!wj&4T(^Q#WxLceQHnW}Hk$bdk2bF2Z z6X!KCp39bu(Q*m$jA;eAlY#{3%QWcG7*vfkLRHHds9M+rRnO1hO<#RBmFZYB(*O7@ zt(V+m%_!^Nn&JKK9Bq_TIRCp&Y zfp_K-c$Lq=8*c+|Nr*m>>nR*hC6{%MBfI(Sv(=?!5*ftGXeiyIU7V z2oYgAzaR_C-AixjF5sH0IvSR2bCPV_^w&#+tF_TB*ys|RaR-)H;1_Se+2$nG9b}u6 zY;%%rPO{AjzS7y|B-@-M{<>n><|NykBr|n63|^-P^D$~EWlCO7KC8b$4H@2+dvgoeuQw>Fnc8@htm((wv75BI>OY_|Fkk=x diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 5a1aa5abe4bcab5e53c652418f72d39ec0760e0e..934e2fe977c2e28540969366da8768be2b012217 100644 GIT binary patch delta 80 zcmbR9NqEjD;SGB@4NJ0$4b9@slJ(6k3{sMlEDQ~k3{p%@Oj1%)lT(ch%#%`*Ee%tX hEz?X4QqxQ=OiY^Ja<;$aWCUU+AZFhFmXk&QJpgxl91j2h delta 80 zcmbR9NqEjD;SGB@4NJ`}Ow)`F%~CCmOiV44Q%zISOp?tl h5>pIK%u-E_3{0Efa<;$aWCUU+AZFhFmXk&QJpek38p;3w diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 1075bcc607a7a61397726c5e7d6aade1577223ee..8ec33956b0a38aea1013a644f45e2c5041b067b0 100644 GIT binary patch delta 4070 zcmeHJzl&W(6y{A9F=UNkG?nDtEH*+&=FIQ0F-jz?7)=la31OKzGXshkA&cD_(8|VQ z7a4+Og1^X0WRcrQ*vdjdvD0D;3nLZ}V;39a*?s$Bo`K9C;H%!d!`!*w_nq%MXGRcKC)xV;QcpYn7_8m=@`3vEB71hS zglua6ul1D|+2hko{mIj8nGYQ=B`3rZBPx@4OwyAsJYWgM+5Y$%J3rU)tP^O>4HrhC z03Q>00QwC!Ybon9YwSS1{V6+Gx3*Zn{qOoPdn0l%&LjmYY78n-6^iEylQOQ-(U0~w zKVv@)x(13;fBci3YNLSP*%S5ekJ!HY{rhZhhfZ-p1xS)mgNC3>BqYM;Pylo83HAB8 zA;hE*vgbZ3DxWu*_(IRY`W3duS;=ZHy^kd0PFCINNu7x`!NDmy#Z4C$Eax4*H6 z`r9|y%HU$Fh70ul#nZ1YoqFlSb1y74oLr`Nw`5#6cceaYnH}sJ1broWo*beo+(592 zf}>DUml8=QRA2-eohJ#Uwu6SO=maQK*<~xF2QElGs;3((FrCmY>RiB>V7V2_X78-^ z5iD{~Jpje{rQL`&U`!&~f-$N1IHJQ`k|uxzn=I{xjv`v1CSG(TAEvu&%pqlvTto;& zp85)^WVi+kRsl7y|Jr#NOhLn4Mn%eb@^;ibW(nFAPju^<@5n!Iea)^84&4`oABVL0 z{Ry?5kUmwfeZ>wBbqs-fgOY<*TFHQjhK3E5iKddA;z#5KYH7jac8?80mXH)R7vQGs z7Nh>#hlXB&ONCV90+lG>jIahp@^YfjS$gcWw%;NwDMf*+9MLYB(FHG?;hqyt9GIW&`zqH&A;TsPp^( E0T8Rg1poj5 delta 4042 zcmeHJzl&W(6z0t?;*vFjFI*^AiLyMWWcO0j+E- zvd9oD6a0m%kwtE|EQl5c6gw@purR^mVeDdKJny}Ix|_(}f8cfZ4(Hx;zH`3sd^1>| zAFR(`|7Z^0Fm5?&{?;*}HP2B>iKu~X{m$H*SDIvf zQ5dwu0;r6(Jg2A(g_jrr`0D#t-{}lm=htpN*jV}vf>G!kpzztnVhm4^tqqp@IQms* z5WjZt-N9NrSnIv^!Hia_9(s-q+NBe0fA8PdO0R>8C)wKYsHKQMdaJj;dZ7NY#GaWP zMYb#cxBBu6?6KWP?a9;ZBJax#*88Zu(FKzzHfCFtk3mTkkZSKQ_Gr8LIXgSsPcetU zwU?SF6x=#418C|!1RGo#h1R>Du!Xv{#oFQ1M&mNlK%7n9Qm3=`$sn3cM_xy6bA5W1 z9cXWV%6{%O9i{O4)1T~A(@_Pl@H>0F{{11_SATeq&GkdbHbt6EaS3GspS2gsyOL3d zSlZ*O?EGvKxiUgqkVa(W(l`&?3U0E`iim`xI_u^YHrxKV#Xjye9%Dw}9Gw76l*1(; zu)`-MgHU5&^ucGnrlW*Zk6&iIyMzg_`MPAQCe#4 z`Psgqf>QEQ3WY)lFCu2@gb2mjQtkuR58jcCj8r}Vk|4ZI(s32QB!Qu{M2HQ7)RBA$ z2|9C65E%(dIXtS&s~3-5IJda6a->7hTyV^$_62A7efNCicevi8r$0Js6~#o*;&S9;A3qzA)%8Ra#pk*6iqerOn7+~ zA|`-59&rO%J0TSo!h&69ojqhc;$4a9>Mxz zgBfYTaySZhhd_bo=!fl<+@Vl{c4l!RxWF+{X=)o^m+Ou3eSeER)ZV?xR(hAZrng&k zT`b-m-O;IrWQK2(5Z#~XX8@~ty2sA Mzxx4M==}bF0G>Rv>;M1& diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 574d6fd30099cafe9b87bf8a6e820f719cf73554..25c2482f944a205c37d40146f24c156eacee7b45 100644 GIT binary patch delta 76 zcmaERf%okN-VFyh4NJ0$4b9@slJ(6k3{sMlEDQ~k3{p%@Oj1%)lT(ch%#%`*Ee%tX eEz?X4QqxQ=OiY?Ta<+fuWCUWS?H@UrYvKSTff}#? delta 76 zcmaERf%okN-VFyh4NJ`}Ow)`F%~CCmOiV44Q%zISOp?tl e5>pIK%u-E_3{0Cpa<+fuWCUWS?H@UrYvKUxmlsaadwQAfsVPRsaadwQAfsWaxn+E^nL&lVk(rr6YO=Ahv59G#v7uS2rICrLWpb)%N}5TsxkX}% Rp@~_lsgZ%{<|f92TmV8!5(fYP diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 7f161161ca21880886407e4c6916133b52efb3c4..55b5cb470079ef52ac4debc400592d3d24d19765 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4NJ0$4b9@slJ(6k3{sMlEDQ~k3{p%@Oj1%)lT(ch%#%`*Ee%tX cEz?X4QqxQ=OiY^Ja<;$aWZeFilc|#r0IMVzp#T5? delta 72 zcmeyif#cf-jtzS_4NJ`}Ow)`F%~CCmOiV44Q%zISOp?tl c5>pIK%u-E_3{0Efa<;$aWZeFilc|#r0C-&&TmS$7 diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 7893d247c4b0af171f2d392d5093d8c692ca15a2..56a49101680a27b4c09f7306ae4a913b2ae48767 100644 GIT binary patch delta 80 zcmaFyo%zLg<_(uPZA-F>4b9@slJ(6k3{sMlEDQ~k3{p%@Oj1%)lT(ch%#%`*Ee%tX kEz?X4QqxQ=Oic7s@{^18i}Op1l2a!aGHY$NOw)`F%~CCmOiV44Q%zISOp?tl k5>pIK%u-E_3{3S?@{^18i}Op1l2a!aGHY$NOw)`F%~CCmOiV44Q%zISOp?tl c5>pIK%u-E_3{0Cpa<+fuWZeFdlWB=008tti{r~^~ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index f785496e8b6cf7add13c70351ee36a34b736e086..07fdc75ce5d0ed6c1ba3fda13296b0fc8bd4b1e4 100644 GIT binary patch delta 2257 zcmeHHOG{Nz7AJc4 z*+w*exrEpdGhJLjYqUT}LrV#<&KVa&uC0;C8R-dho(e+de>4u91H%bdeI4lFmGN!} z4?&oZ5ad#F1mjK;kBoPfid%ZR#;&{G^6;i&d3eWE^~J7#y+}6b8(=1#+Y9nZzd6!| zdTN$UzP^f9!CGpB!+(3f`a-67`DdLIr z9>qx0;FwINp5My^&3C@|Qf!_6`J}G;O>K5p$A(pDq*PAIZ+C-2ce_!BbA*{8UJ&e^ z;zA0KIHuNV$t!bxV6;Ap6*G_tp#u@3Bv;N!=rnVfJ84av?z;wdR`Lcs0_|84j5&i| zBSe@W8W~3^bUda6L7#?-&FN1{e2Kh?p?tD#4BSAe+PQQ2?{MuPEz`w6It~%RGmcP)8;6 zj8G|QXs;0FOH)`9rHl{G3#)Yy6)P+k^W_z{aTppye~Fp_?HtG6#bK<<2j{q8oEpW# zZaBn|Fw2@UDO5FOHeb=yls>!(@*PMNj)vssCMNPx&Pog=4{PpGxChWk%%n%bUPx$= z?^mnL3dth2IlVXunktWPg9$L1HM(3N(0}^EP~lYH@smRttBlv8ZH9%pVm@6M0IgA` h!eGzrdNS9O8P3gmGMA6)+N}M@WDZvL+y&oT{s6c-c>DkW delta 2188 zcmeHHJ8M)y6n0=uR4f!FDJ*ich#;))JkGo{M3GnsE*go5;AWYp5qt!r5QSjSG6AEz zda?5XBKQCevZX)4QnAy@!ooiwIJ+jG7`@u(b^~YTd!6szc+vCic~5C}?VaA2rDyBO zWvLrZ;OQzA0td$!10ER>K~vz`1@0p_sf;He0;iZSeq4Y21UlV(Vn!-#$JtAJG2Vl5 zB?E>DR+8?f`pl*3RDHuxb@E~uZcX&oTN9h-yBGTZaG_bU)97Av^V3T6u-mtl4gLOR z^S;}bFYH9U#dBBDiRKG4Twdv!F12M&-LVzX7T@|uLm4w71nafYLW9Lp3GhUB>~P*P zBAd4#TrV72gop3yee>(WxycDLb!Mv7Y~A^EcTM+uJ&0<1GaEor2UHnNz<6yPH_qAU zyy03A+`cuA&X+Pxh~yY22HFE)r7U32urLB+5|zkDkD)E?>V7nbGROgqVWg9aFZzzq&o>0~~&NdqO83mqjmk2^y8 z+r#J4K9sIp7& z+JRKY^2|&nD=Q_1Pe~*t6jY3gSQ}K-D&jyD6-%Ou*1kh`Yu-48Hs&8j&|p3}hMsng zFR%H6w91LZp`#}owId@34>yXI^w()$U}Cvm$zMg(mldh(xU)U~GK*xMjib@R{a>x$ WYW6K}vFxg`r`RL5it~NlI#Ja;lMmc~VNUrD1Ba TWtxdWYMQBqiOJ?{Mq?)cirN!i delta 64 zcmbQ&&N#1~af213VX3)ge6pEAg}#xQnL%o@v9Ym` TVv3=OS*od#f$8RKMq?)cVmlHU diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 657dee6980d9f216dba3a2b4ccc4c3b340ada63d..897d75f4e68e33e5ec0a65226956d5cf631a38d0 100644 GIT binary patch delta 68 zcmdmUm~GEtwhdc24NJ0$4b9@slJ(6k3{sMlEDQ~k3{p%@Oj1%)lT(ch%#%`*Ee%tX YEz?X4QqxQ=OiY@ea&CXh$#{J_05dHYj{pDw delta 68 zcmdmUm~GEtwhdc24NJ`}Ow)`F%~CCmOiV44Q%zISOp?tl Y5>pIK%u-E_3{0D!a&CXh$#{J_00nv$N&o-= diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 963a5a4a37ab46e8eb22dffd34369a862bb6a74c..71a8bf5e2c05c58c0d8e089d44bed03e16c0f16a 100644 GIT binary patch delta 7675 zcmeHLO^9Sy6{fT`(z;dl zzVDo`_HRDFfAjg*ez7U8e*RfuE}67v9px0A5RtNG&ZVRx$;O<#D9Kl*Qnh3L=KkhO z`sO>;!BJb`o|9 z_CeTPu+!81%`>0)JelU)mU0W(vVdN~Um-DflW`YvW1^E*C$Ye6RcdWYE^yP_)S^X)a1f zV}nFtgpfk{Vn*C{=XCgLcVp7@JZ?YOU)*l^9e@8==LTJiG~P;CO<+Sh2v$Pt9FmGD zlUM{{993PCmF$Ug7Qy5FxsWU&Md9Q4^7ZcI^tH$PA5XS}#WCvwRph&<8kCZ{#!^Yy z$Z34$Vt;D-)YrQoA?Swp@r|cD8k)`#$=>*_+xz>*-KV;H2UHcv%j^`|IR)~9onvi+ zQ{Jk>n6^nusz|re#j#H!kSaR45b+a3V*K{??$kV_K^5Ut5{v>d7b~I>K1W?BDr3Eu zQ-uGkNz?H`I8DEAUh2en|K;u@=iPZ0m#^+U`{d5GYrDfvk`6dU1kNhfRJ<0Bj8@(Y zYh9VXb))<8#{YoW>)rA3jX!p`O>ds=zczW{=yK&9cz*CRpS|?(r$6<;Lzh}@x_Y{m zx1A?9)3y4lU1`_3m@?Ecoof3poP4sBVo)IAK*Pg-is)&O5d*Dmm|pth!cC zXa)*ED*#n%v3Y#`rS8PI_mysIddG+Q=OzQ!>T)f(ReJV8$62PyDvfSVNbxfKQsV_P z_&wZuzz?>1@yg@f=5~pq$}*$492k?qQz#~JHdb&UH@-FLk57k--4h$zmB9%S%vkU| zg|0>un4*MNHD%As9SfdQLfVqJCUy)bvH;eF84VwVo_B21`EQ=?MAI!A_6y^mUhK{d zDM+IWS~5yJ&{_|_#d#ZY3=~{iunB|2qfmjIG8}dG8GtKAnFI!^SueAR0L*N)C1+b$ zfM}D)$?BX(S*)G{rN5qRHyn?D{$VGErrQG^xp2AL8vnA@pWc;A*oz9OGZ9zB$|@6p zho+06&d3cDejeF&W4g^MbmBkQyEb{DRi;%qwVHJGbR%;H;2Zw|>j zM5F^_-H}b$Aqv2yts%20Fjz5y+N}lHI2Ipgvz%iNAt;IdUd%l3v{9uxB#}5&3PO4x z@Jkmmq0yH?*YZ66?4JJ7q2+iy`{DlML&XB2$w}*#XGzhi5}2aL*d#jX9j+5vYRqwkz;U~-3}8AUvci|;8J-&6=QF(N{1AJ$jQ9Kgt_RdTU%YxB(Z`5( zKldCKN-NNKY|m@I1j-a=*hAFCV5MU6AiE-E$v);8>ns9qZ;8tj5vXica}{T;E?zy| z$ZTGq@>G9xXa|_Q`(Pke&zMnIJae*GFs0YnyqyKXqP~fySE#?T(VKt~fTvb0t1%d7 z88W0mfFx8Fwf`NKf~9#Fd~nb&l$59-z2s8XQYj2n5mibn&}=+F9L&Q3t$5T6)GQ)5 zIPIMb*o;%cjw8rtJOfkNM$m|pZc$P!+F0#WuueH3*u;eIAQgfoRZF6!ULJf7UPFCx zMiYAh-D7;pPFX6t2+ebBHa*Y#xas(ykAM1Tf1%G%R>om%R=|-?9E71jY#bD!cGJJ# z=&o!Gu{uvevch**QEhNC>rCJ=BdyG3IS@R(Xd6w1gklsic!j0M)_{!^T7(vX9PJmp zb+A-79UlVna{vGU delta 7631 zcmeHL%d4bE6{q!TW=x{S%*)LEy1%((BA82VJx*1fGUx;`i$J0#i-ZuvSWg@jAD9rc z7{s`cxH2Mst~3ilP{C}H7D372U!V&a7XxPJ6@&y_i@&eC@6bIaxBh{KdlnapI^U^t zevi|KH(orv@#1U0KPjJg{&KS7I|s^IQIgi0Ox4mBugLgROs3?2k`;K2NAa+P9VlJA41%YxC3z~;=_oKAU=w?3-K|;-H20&(}**Ovxswu zk0b6uoSz?_-2KdFdr$Zp8GR6%DOt@NlMTXItwl&y4UhkH_oeo!SDxHGJ^$~cyMH|~ zGq%W}edQpCDdVqNk)`z2WgqqOLTa3vN2P+=V-bE(3WSn!awEH7)G zT72D!VfVsM`lL%ThP3ziI7%s&KuU`meRh#bT;A9`HQxBfe)sPSeUjCXt=Y+>D3j+b zOw?Ymk`%Mc^K0MizP{6oXbq<*NjpI~#^@^Em$-UE%2zd?{H*)=q)#fu=v~!GRC0yA zC6TQuK^Wl@J`cCuJ?~%W{yv#C5)ZRSrjIrA4u5&F)r{?|VyJvQ0!OCJ;Wx**^6wV7NYpvQltE5iDk6!N1&0l+J`m0G_G;UxSFkFs; zx86sYoUuwU9zDzXD=&9{oHUca^~+B7jkI>G<6!vVozn-0{V#X-&q7qranv;gM>QEP zp;*ZwxsZj8^J_cPZ|wBh7t#hL3SlWl%|40}gQ_{|Pz(?F!n3PttW1D!^4S(k(&fm7 zt96Mv1!<#RR?{~UyW!2RbfTSjQO>0+-6s$11A?zScku0J_pV;u@As-m*5wj%$cbdI zEQ-7mi%(yE>1?>7D zMdIka3lIfHVhavpO#+0R`DQPv*g#3?3~C`TODxPji>mWji;nA48rU!^UouFT46y46 z;8UEdqKLAOrnHfHF{QIc;^Erm?yJK;Ug|FPfwjuu4uB4{=K(abKI`IrU=a0DH-xt) zi0Z1*V8JRmrOZY~O|?{C*DIL`r-USMD&tYCljt$%qXz4AcAn=Tnm^6TBX>G7p4z;^EfY^uV=1Xid%6QJS2s#aDDDyq(j`8(G;uqk^mu8hez z0{v+6A+sQpAc-su>y^f7P8AR7ql*w>nP5HuDggo36j{`p8V9sB5{uz?_f4N@CLS() zV*2UcQFPJ=av)2RnK);7378Y7*ejowt(+Pyg-|7VeJE(>MBqaaqcDmw_H zfyi4OmNfXbo&I_OViX+;u z$wgQ;W2}*Z9a?BCI=`}=fMhH0QUDui%UB5aD)?fd(3MJp(IsyyX{nuow)eK80 zT~w8n%?eVGVj{<$9VWn5oAbH=RvB4m5O(pB;LDf{LHePCY!l>t1dN{Og(NseLEcFo%s$qcu{72q%)0hYT}z zMKDfCV9q7~x3{KSAlK^EtspvnNHp9@Y`g+(9U*q*%0F9{LR2SToq8p9d^VZ+;d{*&+T=bS7P7AC0z%*3?G zzK#SUl#;A_lGGSA_cB+U0?o7|$IF|~Bsk6Ishy%RwVs)g0R$%R`={7y&A8Q?>C;94 D)a8P< delta 1538 zcmZ4fglp{+E|vz?smvQ$j&K^5np?&vn;BH-8=09Iq$V318=IJ>85^3VS{j*{S|+EO zrlgr9n_DEN7@C-+ni?6HZvM&n+f?3?m4U&gpeWUjOIO#(z{o_`z)aW3RKd{F%EZvh zz-aP;fKUxRJv{|OGfO=~Qv*FC6CiD7q@!SDVqjopYLseVWteDSXk}$-VKUhv(1Z_F z-DE+xXM9k@j1@F2^bCwAA9Vc30TY_s80wGt~pyXl$mV0CdLWgMJYlFr`4Vy(hPMHtHFf>Y4aD=@%;iL1vzUfu3107Z;{y zOcXRgDkpz*aUYr9c9>l1mCZO|@c|LC-^uKh~qVi zut>uhzmvE7B_X0#(f=B$(Rv`%fBO1VCiY?M!F7_V!0bw!jOrNvm_Q^_no)};zxL-L vHC8{mm@7`nV2_=WAs8_dJ-_)_g42A?sZGp`3?MK$@xMW=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 13d038510..1333c9749 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 9f5e5caa9..745c17b57 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 9ec7961a2..04d4a7903 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 92, 96, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 90, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 96, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 96, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 90, 96, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 96, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 90, 94, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 92, 94, 95, 96, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 92, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 91, 96, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 94, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 94, 96, 103, 104], "trace": [1, 90, 91, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 91, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 90, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 94, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 96, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 91, 94, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 94, 96, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 90, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 95, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 96, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 96, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 92, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 94, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 94, 95, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 90, 91, 92, 94, 95, 99], "yield": [1, 38, 42], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 92, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 90, 94, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 90, 91, 92, 94, 95, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 96], "python": [1, 2, 42, 61, 74, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 95, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 95, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 94, 96, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 96, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 90, 92, 96, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 92, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 96, 97, 98], "choic": [1, 8, 44, 53, 55, 92, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 95, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 94, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 96, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 94, 96, 97, 99, 101, 102], "max_it": [1, 88, 89, 95, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 92, 94, 95, 96, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 94, 95, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 90, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90, 92, 96, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 96], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 91, 95, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 91, 92, 95, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 94, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 96, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 95, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 90, 92, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 90, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 92, 94, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 91, 95, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 90, 91, 92, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 92, 95, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 91, 92, 96, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 95, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 90, 91, 92, 94, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 92, 96, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 91, 92, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 96, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 94, 95, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 94, 95, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 96, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 89, 90, 91, 94, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 94, 96, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 92, 93, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 94, 95, 96, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 95, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 90, 92, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 92, 94, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 94, 95, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 95], "loss": [2, 39, 61, 72, 74, 92], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 92, 96, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 96, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 92, 94, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 90, 91, 92, 96, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 92, 95, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 89, 90, 96, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 90, 91, 92, 94, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 96, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 92, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 95, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 92], "independ": [2, 3, 10, 63, 74, 95, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 96, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 92, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 92, 95, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 91, 92, 94, 95, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 95, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 90, 95, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 92, 94, 95, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 92, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 91, 92, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 94, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 94, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 93, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 90, 91, 92, 96, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 90, 91, 94, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 90, 91, 92, 94, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 90, 91, 95, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 92, 95, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 90, 91, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 88, 90, 92, 95, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 90, 91, 92, 94, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 90, 92, 94, 95, 96, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 92, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 90, 91, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 90, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 88, 90, 91, 92, 95, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 96, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 95], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 90, 91, 96, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 90, 91, 92, 94, 95, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 92, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 91, 95, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 90, 94, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 94, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 90, 95, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 96, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 91, 97, 98], "robust": [2, 47, 52, 74, 91, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 90, 91, 95, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 94, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 96, 98, 104], "dimens": [2, 57, 76, 79, 92, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 92, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 94, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 90, 96, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 90, 91, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 96, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 91, 95, 96], "close": [2, 3, 10, 41, 47, 71, 89, 90, 91, 92, 94, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 96, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 90], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 95, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 91, 98, 99], "impact": [2, 4, 10, 90, 91, 92, 96], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 92, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 96, 98, 101, 105], "caus": [2, 44, 49, 90, 91, 96, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 90, 91, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 90, 91, 96, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 96, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 90, 92, 95, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 96, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 90, 96, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 92, 95, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 92, 94, 95, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 94, 96, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 92, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71, 96], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 91, 92, 94, 95, 96, 99], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 96], "torch": [2, 38, 39, 42, 88, 89, 92, 95, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 90, 91, 92, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 91, 92, 94, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 89, 90, 91, 92, 94, 96, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 92, 95, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 92, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 95, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 90, 91, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 94, 96, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 91, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 90, 96, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 92, 94, 96, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 91, 93, 96, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 91, 92, 95, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 92, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 91, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 92, 96, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 92, 94, 95, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 91, 96, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 91, 92, 95, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 92, 96, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 98], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 92, 94, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 92, 94, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 96, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 92, 96, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 90, 94, 95, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 90, 92, 94, 96, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 91, 94, 96, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 89, 92, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 92, 95, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 91, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 96, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 90, 94, 102, 103], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 90, 92, 94, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 92, 96, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 88, 91, 92, 95, 97, 102], "hyperparamet": [2, 66, 71, 92], "purpos": [2, 52, 90, 91, 96, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 92, 95, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74, 98], "yourself": [2, 5, 41, 91, 96], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 92, 94, 95, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 92, 94, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 90, 91, 95, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 90, 92, 95, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 90, 96], "label_issues_df": [2, 74, 92], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 94, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 90, 91], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 94, 96, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 92, 96, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 91, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 90, 96, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 96, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 94, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 95, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 91, 92, 94, 95, 96, 97, 98, 99, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 90, 91, 92, 95, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 92, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 93, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 94, 95, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 90, 91, 92, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 90, 91, 94, 95, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 91, 92, 94, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 95], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 90, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 90, 92, 96, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 96, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 95, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 95, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 90, 91, 96, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 96, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 91, 92, 94, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 90, 94, 96, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 91, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 96, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 94], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 91, 92, 94, 95, 96, 97, 99], "clear": [2, 38, 42, 54, 74, 88, 95, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 92, 94, 96, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 92, 94, 95, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 92, 94, 95, 98], "care": [2, 10, 38, 42, 52, 74, 95, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 90, 91, 94, 95, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 94, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 92, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 90, 91, 98], "metadata": [2, 10, 42, 74, 92, 94, 95, 108], "through": [2, 5, 7, 42, 74, 88, 89, 91, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 91, 95, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 92, 96, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 99], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 92, 94, 96], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 89, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 90, 95, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 95, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 92], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 94, 95, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 90, 91, 92, 94, 95, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 94, 96, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 91, 92, 94, 96, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 91, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 91, 96, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 91, 92, 94, 95, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 92, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 96, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 91, 92, 94, 96, 97, 98, 99, 104, 106], "As": [3, 7, 84, 90, 91, 95, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 95, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 94, 96, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 91, 92, 95, 96, 99, 106], "know": [3, 10, 90, 91, 92, 94, 95, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 91, 96, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 94, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 94, 95, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 94, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 90, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 94, 95, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 96, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 92, 96, 98, 107], "practic": [3, 87, 88, 91, 92, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 91, 96, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 92, 96, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 96, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 96, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 96, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 96], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87, 96], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 90, 94, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 94, 96], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 90, 91, 92, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 92, 94, 95, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 94, 95, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 90, 92, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 95, 96, 98, 99, 101, 103], "littl": [3, 41, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 92, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 96, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 90, 94, 95, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 94, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 90, 92, 94, 96, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 96, 103], "contribut": [4, 10, 19, 96, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 94, 96], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 92, 94, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 91, 95, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 90, 91, 92, 94, 95, 96, 98, 99, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 71, 94, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 92, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 91, 95, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 91, 92, 94, 96, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 96, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 90, 91, 94, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 90, 91, 92, 95, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 96, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 94, 95, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 94, 96, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 96], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 94, 104], "cosin": [4, 10, 52, 53, 55, 71, 96, 104], "dim": [4, 71, 92, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 94], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 94, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 96, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 94, 95, 99], "exce": [4, 52, 92, 96], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 91, 92, 95, 96, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 90, 91, 92, 94, 95, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 96, 99], "closer": [4, 10, 69, 103], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 96, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 90, 91, 96, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 92, 95, 97, 98], "55": [4, 56, 96, 97, 103, 106], "525": [4, 92], "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 92, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 96, 97], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 96], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 90, 95, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 97, 98, 99], "intermedi": [5, 9, 91], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 91, 94, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 92], "face": [5, 10, 13, 17, 92, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 95, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 94, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 90, 91, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 90, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 90, 91, 93, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 94, 95, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 95, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 90, 91, 93, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 96, 106], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 91, 92, 98, 100, 102, 107], "load_dataset": [5, 13, 92], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 91, 96, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 91, 93, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "world": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "interact": [5, 17, 95, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 94, 95, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 94, 95, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 94, 95, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52, 96], "evenli": 5, "omit": [5, 69, 70, 92, 96, 103], "itself": [5, 33, 38, 42, 52, 96, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 94, 97, 99, 101, 105, 106, 107, 108], "indptr": [5, 96], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 95, 102, 103, 108], "ascend": [5, 37, 63, 92, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 94, 95, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 94], "illustr": [5, 96], "todens": 5, "second": [5, 49, 57, 70, 72, 90, 94, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 96, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 96, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 95, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 96, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 92, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 96], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 96], "toarrai": [5, 52, 96], "NOT": [5, 41, 95], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 91], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 94, 96, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 90, 96, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 94, 95, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 91, 92, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 96, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 98, 99, 102, 103], "familiar": [5, 96], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 90, 91, 94, 96, 99, 103], "issue_summari": [5, 7, 10, 14, 90, 96], "With": [5, 9, 10, 41, 88, 95, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 92, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 94, 95, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 96], "wherea": [5, 10, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 90, 91, 96, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 91, 92, 94, 95, 96, 99], "hypothesi": [5, 96], "iid": [5, 7, 9, 27, 94, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 90, 91, 92, 94, 95, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 94, 95, 99], "focu": [5, 10, 14, 95, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 92, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 90, 91, 92, 94, 95, 96, 99], "get_issue_summari": [5, 10, 14, 91, 96], "get_info": [5, 14, 91, 95, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 90], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 90, 92], "load": [5, 13, 41, 70, 92, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 88, 89, 90, 92, 95, 98], "overwrit": [5, 90], "separ": [5, 37, 49, 66, 90, 91, 92, 96, 98, 103, 105], "static": 5, "rememb": [5, 95, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 90, 96, 97, 107, 108], "ident": [5, 10, 23, 57, 95, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 90, 98], "pre": [7, 8, 10, 38, 42, 90, 91, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 92, 98], "issue_manager_factori": [7, 15, 90], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 96, 99, 106], "next": [7, 62, 84, 87, 88, 89, 92, 94, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 96], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 91, 99], "rand": [7, 49, 52, 90, 91, 96], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "whole": [7, 10, 27, 38, 42, 91, 96], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "popul": [7, 91, 95], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 96, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 90, 98, 104], "sin_filt": 7, "sin": 7, "arang": [7, 96], "kernel": [7, 96], "affect": [7, 10, 38, 42, 53, 76, 82, 95, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 91, 94, 95, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 96, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 94, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 91, 92, 94, 95, 98, 99, 107], "won": [7, 38, 42, 90, 91, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 90], "instanti": [7, 17, 41, 61, 71, 88, 89, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 94, 95, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 90, 91, 94, 95, 98, 99, 102, 106], "sensit": [8, 10, 55, 96], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 96], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 96], "cluster_id": [8, 10, 11, 32, 96], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 91, 92, 94, 95, 96, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 96, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 91], "null": [9, 11, 15, 22, 91, 92, 95, 99], "togeth": [9, 10, 47, 88, 90, 91, 92, 94, 95, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 94, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 92, 94, 95, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 94, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 92, 94, 95, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 95, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 92, 95, 98, 106], "power": [9, 10, 92, 94, 95, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 92, 94, 95, 107], "foundat": [9, 10, 84, 96], "improv": [9, 10, 62, 87, 88, 91, 92, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 95, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 91, 97, 98, 106], "free": [9, 10, 84, 89, 91, 92, 94, 95, 98, 99], "page": [10, 91, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 95], "matter": [10, 37, 63, 88, 95], "didn": [10, 96], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 94, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 91, 92, 94, 95, 96, 99], "data_valu": [10, 11, 15, 22, 96], "No": [10, 11, 87, 88, 95, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 90, 91, 92, 94, 95, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 90, 91, 94, 95, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89], "expertis": 10, "interpret": [10, 97, 98, 99, 102, 106], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 94, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 94, 95, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 91, 92, 94, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 91, 96, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 92, 97], "analyt": [10, 84, 96, 98, 101], "lead": [10, 69, 72, 92, 96, 103], "draw": [10, 90, 91], "conclus": [10, 95], "let": [10, 38, 42, 71, 72, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 91, 96, 97, 99, 103], "680894": 10, "41": [10, 96, 97, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 97, 98, 106], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 92, 96, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 94, 95, 98, 99], "anomal": [10, 72, 90, 91, 92, 94, 95, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 95], "consequ": 10, "inspect": [10, 88, 89, 91, 92, 99, 103, 106], "011562": 10, "62": [10, 96, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 92, 96, 97, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 95, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 102, 103], "extrem": [10, 90, 91, 92, 94, 95, 96, 98, 99], "record": [10, 38, 42, 89, 94, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 90, 91, 93, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 94, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 91, 92, 94, 95], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 96, 97, 108], "066009": 10, "80": [10, 39, 87, 94, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 94, 96, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 96, 97, 99, 102, 106], "signific": [10, 94, 95, 99], "violat": [10, 94, 95, 96, 99], "assumpt": [10, 94, 95, 96, 99], "changepoint": [10, 94, 95, 99], "shift": [10, 52, 54, 94, 95, 99], "drift": [10, 91, 94, 96, 99], "autocorrel": [10, 94, 95, 99], "almost": [10, 94, 95, 99], "adjac": [10, 52, 94, 95, 99], "tend": [10, 37, 47, 94, 95, 99, 107, 108], "sequenti": [10, 38, 42, 61, 92], "pai": [10, 95], "attent": [10, 96], "realli": [10, 88, 95, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 94, 96, 107], "necessarili": [10, 62, 70, 95, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 95, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 94, 99, 105, 106], "similarli": [10, 38, 42, 90, 92, 94, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 92, 95, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91], "underli": [10, 43, 54, 71, 80, 82, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 90], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 92, 94, 95], "problem": [10, 33, 41, 49, 79, 84, 90, 91, 92, 95, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 94, 95, 99, 105, 108], "diagnos": [10, 91, 98], "24": [10, 89, 96, 97, 99, 101, 103, 106], "681458": 10, "37": [10, 90, 96, 97], "804582": 10, "64": [10, 42, 87, 92, 94, 96, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 94, 97, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 98], "rarest": [10, 91], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 92, 95, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 96, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 96, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 92], "dark": [10, 107], "bright": [10, 108], "blurri": [10, 92], "lack": [10, 61, 96], "unusu": [10, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 84, 91, 92, 94, 95, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 96, 106, 107], "tabular": [10, 84, 86, 90, 91, 93, 96, 98, 101], "categor": [10, 71, 86, 87, 90, 91, 93, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 94, 95, 98, 106, 107], "71": [10, 96, 97, 99, 103, 106], "70": [10, 82, 94, 96], "69": [10, 99, 106], "subgroup": [10, 96], "wors": [10, 96, 101], "ratio": 10, "miss": [10, 28, 38, 42, 57, 67, 69, 98, 103, 106], "pattern": [10, 96], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 90, 92, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 90, 96, 97, 101, 103], "valuabl": [10, 19, 96], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 94, 95, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29, 90], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 92, 94, 95, 96, 101, 105, 107], "mandatori": [10, 92], "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 92, 97, 103, 107], "29": [10, 92, 96, 97, 101, 102, 103, 107, 108], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 90, 96, 97, 101, 102, 103], "odd_siz": [10, 92], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 94, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 94, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 90, 91, 92, 94, 95, 98, 99], "is_non_iid_issu": [11, 91, 94, 95, 96, 99], "non_iid_scor": [11, 27, 91, 94, 95, 96, 99], "is_class_imbalance_issu": [11, 91, 96], "class_imbalance_scor": [11, 21, 91, 96], "is_underperforming_group_issu": [11, 91, 96], "underperforming_group_scor": [11, 32, 91, 96], "is_null_issu": [11, 91, 96], "null_scor": [11, 28, 91, 96], "is_data_valuation_issu": [11, 96], "data_valuation_scor": [11, 19, 96], "studio": [12, 84, 91, 92, 94, 95, 98], "data_issu": [12, 16, 17, 34, 90], "issue_find": [12, 16, 96], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 92], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": [14, 92], "strategi": [14, 49, 96, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 92, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 90], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 96, 99, 103, 107, 108], "creation": [17, 42, 96], "execut": [17, 38, 42, 90, 92, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 92, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 91, 92, 96, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 95, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 84, 87, 89, 90, 92, 96, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 94, 96, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 92, 96, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 90, 104, 106], "prompt": 28, "address": [28, 88, 90, 91, 95, 98], "enabl": [28, 42, 54], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 96, 98, 99, 101, 103, 104, 106], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 90, 92, 96, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 91, 98], "datset": 34, "exclud": [34, 43, 79, 83, 90, 98, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91], "continu": [35, 61, 87, 88, 92, 95, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 90, 91], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 91, 92, 94, 95, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 98, 99], "rank_classes_by_label_qu": [37, 91], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 94, 96, 99, 101], "df": [37, 57, 83, 89, 96, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 92, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72, 96], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63], "car": [37, 97, 103, 107], "frequent": [37, 62, 96, 98, 106], "characterist": 37, "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39, 92], "noisy_label": [37, 90, 91, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 91], "cnn": [38, 40, 42, 92], "cifar": [38, 39, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 96], "master": [38, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 92, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 94], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 92], "init": [38, 42, 99], "no_grad": [38, 42, 92, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 92, 95], "fill_": [38, 42], "net": [38, 42, 89, 92, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 92], "tensor": [38, 39, 42, 88, 89, 92, 95, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 92], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 92], "devic": [38, 42, 89, 92], "gpu": [38, 42, 88, 89, 95], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 94, 96, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 92, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 90, 96, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 96, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 95], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 92, 96, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 92], "break": [38, 42, 92, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 92], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 91, 92, 96, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 96, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 90, 92, 96, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46, 88, 89, 95, 98], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 94], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 90, 91], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 92, 94, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 95], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 89, 92, 98], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 92], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42, 89], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 95, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42, 88, 95], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 92], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 92], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 92, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 96, 98], "250": [39, 90, 91, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 92, 95, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 92, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 96, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 92, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 92], "loader": [40, 42, 92], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 95], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 91, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 92, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 90, 98, 103, 104], "store_result": 41, "becom": [41, 96, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 96, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 95, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 92], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 96, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 95], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 95, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 91, 92, 98, 103], "thread": [44, 64], "window": [44, 89, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 96], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 96], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 90, 96, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 94, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 89, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 96, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 96, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 94, 95, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 92, 94, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 92, 99, 103], "underflow": 49, "nan": [49, 62, 87, 94, 96, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 96], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 92], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 92, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 94, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 95, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 96, 101, 106], "701": 52, "900": [52, 87, 94, 106], "436": 52, "000": [52, 88, 92, 95, 97, 108], "idea": [52, 72, 103], "dens": [52, 61, 96], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 91], "exact_duplicate_set": 52, "main": [52, 62], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 94, 96], "slower": 53, "decid": [53, 62, 88, 95, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 94, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 71, 72, 90], "dt": 55, "right": [55, 67, 70, 88, 95, 102, 103, 104], "strength": [55, 70, 96], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 90, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 94, 96, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 94, 96, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 96, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 94, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 92, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 95, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 96, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 94, 95, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 92, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 96, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 94, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 91, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 95, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 97, 101], "chosen": [62, 72, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 92, 94, 95, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 94, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 90, 92, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": [62, 90, 91, 92, 94, 95, 96, 98, 99], "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 90, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 94], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 96], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 92, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 96, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 96, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 91], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 94, 95, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 91, 96, 108], "abnorm": [70, 92, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 96, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 96, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 96, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 96, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 92], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": [70, 96], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 94, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 92], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 95, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 90, 91, 94, 95, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 92, 95, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 95], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 95], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 90, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 95, 104], "grain": 74, "grid": 74, "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 91, 92, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 92, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 90], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 92, 96, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 96, 102, 103, 106, 107], "colormap": 79, "background": [79, 96], "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 95, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 92], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": [82, 96], "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 90, 91, 96, 99, 103, 108], "03": [82, 94, 96, 97, 99, 103, 104, 108], "04": [82, 94, 96, 103, 108], "08": [82, 96, 99, 103, 106, 108], "commonli": [83, 85, 90, 91, 102, 108], "But": [83, 95, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 96, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 92, 94, 95, 100], "minut": [84, 87, 88, 89, 94, 95, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 92, 98], "your_dataset": [84, 89, 90, 91, 92, 94, 95, 98], "column_name_of_label": [84, 89, 90, 91, 92, 94, 95], "plagu": [84, 91], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 91], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 99, 102, 104, 106], "deal": [84, 91, 96], "tutori": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 91, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 92, 94, 95, 98], "edit": [84, 98], "easier": [84, 96, 99], "unreli": [84, 87, 89, 94, 95], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 94], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 94, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 94], "databas": [87, 94], "excel": [87, 94], "parquet": [87, 94], "student": [87, 94, 106, 108], "grade": [87, 94, 106], "exam": [87, 94, 106], "letter": [87, 94, 108], "hundr": [87, 94], "mistak": [87, 88, 92, 94, 95], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 91, 94, 96, 104, 106], "standardscal": [87, 94, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 104], "accuracy_scor": [87, 88, 89, 95, 99], "grades_data": [87, 94], "read_csv": [87, 88, 94, 95, 96, 106], "demo": [87, 91, 94, 102], "stud_id": [87, 94], "exam_1": [87, 94, 106], "exam_2": [87, 94, 106], "exam_3": [87, 94, 106], "letter_grad": [87, 94], "f48f73": [87, 94], "53": [87, 90, 91, 94, 96, 97, 102, 103], "00": [87, 90, 91, 94, 96, 97, 104], "77": [87, 90, 91, 94, 103], "0bd4e7": [87, 94], "81": [87, 94, 95, 103, 106, 108], "great": [87, 94, 97], "particip": [87, 94], "cb9d7a": [87, 94], "61": [87, 94, 96, 99, 103, 106], "94": [87, 94, 97, 99, 103, 106], "9acca4": [87, 94], "48": [87, 94, 96, 97, 99, 103], "x_raw": [87, 94], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 94], "get_dummi": [87, 94, 106], "drop_first": [87, 94], "numeric_featur": [87, 94], "scaler": [87, 94, 104], "x_process": [87, 94], "fit_transform": [87, 94, 96], "bring": [87, 88, 92, 94, 95, 101, 106], "byod": [87, 88, 92, 94, 95, 101, 106], "tress": 87, "held": [87, 89, 94, 95, 97, 103, 104, 105], "straightforward": [87, 89, 94], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 94, 101], "tabl": [87, 94, 97, 101], "212": [87, 99], "review": [87, 88, 91, 94, 95, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 94, 95, 106], "92": [87, 90, 99, 103], "93": [87, 97, 103, 106], "827": 87, "99": [87, 96, 97, 99, 108], "86": [87, 91, 92, 94, 99, 103, 106], "74": [87, 96, 103, 106], "637": [87, 94], "79": [87, 97, 103], "65": [87, 90, 96, 103], "cheat": 87, "0pt": 87, "120": [87, 90, 91], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 99, 102, 103, 106], "suspici": [87, 94], "carefulli": [87, 92, 94, 95], "examin": [87, 90, 91, 94, 96, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 95], "servic": [88, 95, 98], "onlin": [88, 95], "bank": [88, 95, 97], "banking77": [88, 95], "oo": [88, 95], "categori": [88, 92, 95, 96], "shortlist": [88, 95, 106], "scope": [88, 95], "logist": [88, 90, 91, 95, 101, 104], "probabilit": [88, 89], "drop": [88, 94, 96, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 95], "sentencetransform": [88, 95], "payment": [88, 95], "cancel_transf": [88, 95], "transfer": [88, 95], "fund": [88, 95], "cancel": [88, 95], "transact": [88, 95], "my": [88, 95], "revert": [88, 95], "morn": [88, 95], "realis": [88, 95], "yesterdai": [88, 95], "rent": [88, 95], "tomorrow": [88, 95], "raw_text": [88, 95], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "beneficiary_not_allow": [88, 95], "card_about_to_expir": [88, 95], "getting_spare_card": [88, 95], "supported_cards_and_curr": [88, 95], "card_payment_fee_charg": [88, 95], "change_pin": [88, 95], "apple_pay_or_google_pai": [88, 95], "lost_or_stolen_phon": [88, 95], "visa_or_mastercard": [88, 95], "card": [88, 95, 97], "utter": [88, 95], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 95, 96, 97, 98], "electra": [88, 95], "discrimin": [88, 95], "googl": [88, 95], "train_text": 88, "test_text": 88, "home": [88, 90, 91, 95, 96, 97], "runner": [88, 90, 91, 95, 96], "google_electra": [88, 95], "pool": [88, 95, 98, 104], "opt": [88, 89, 91, 92, 94, 95, 96, 99], "hostedtoolcach": [88, 89, 91, 92, 94, 95, 96, 99], "x64": [88, 89, 91, 92, 94, 95, 96, 99], "lib": [88, 89, 91, 92, 94, 95, 96, 99], "python3": [88, 89, 91, 92, 94, 95, 96, 99], "site": [88, 89, 91, 92, 94, 95, 96, 99], "_util": [88, 95], "831": [88, 95], "userwarn": [88, 89, 90, 91, 95, 96], "typedstorag": [88, 95], "untypedstorag": [88, 95], "untyped_storag": [88, 95], "fget": [88, 95], "__get__": [88, 95], "owner": [88, 95], "leverag": [88, 89, 95, 98, 99, 101], "computation": [88, 89, 95], "intens": [88, 89, 95], "400": [88, 95], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 95, 99, 106], "to_numpi": [88, 95, 96, 106], "44": [88, 96, 97, 102, 103], "646": 88, "390": 88, "628": 88, "121": [88, 99], "702": 88, "863": [88, 89], "135": 88, "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 95], "cash": [88, 95], "holidai": [88, 95], "sent": [88, 95, 108], "mine": [88, 95], "expir": [88, 95], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 95, 96], "whoever": [88, 95], "consum": [88, 106], "18": [88, 89, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [88, 106], "87": [88, 91, 92, 103, 106], "acceler": [88, 106], "19": [88, 89, 92, 95, 96, 97, 98, 99, 103, 104, 106, 107, 108], "89": [88, 90, 94, 103, 106], "spoken": 89, "500": [89, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 90, 91, 92, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 94, 95], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 94, 96, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 104], "gz": [89, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 92, 96, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": 89, "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 96], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 92], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 92], "embeddings_arrai": 89, "650": 89, "stft": 89, "return_complex": 89, "view_as_r": 89, "recov": 89, "trigger": 89, "aten": 89, "src": 89, "nativ": 89, "spectralop": 89, "cpp": 89, "_vf": 89, "n_fft": 89, "hop_length": 89, "win_length": 89, "attr": 89, "512": [89, 92], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 96, 97, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 92, 96, 97, 99, 103, 106], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 98], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 94, 95, 99], "lt": [89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 104], "gt": [89, 90, 91, 92, 94, 95, 96, 99, 101, 108], "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 95], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "underneath": 90, "hood": [90, 96, 98], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "toi": [90, 91, 92, 96, 97, 99, 101], "inf": [90, 91], "mid": [90, 91], "bins_map": [90, 91], "create_data": [90, 91], "y_bin": [90, 91], "y_i": [90, 91], "y_bin_idx": [90, 91], "y_train": [90, 91, 99, 106], "y_test": [90, 91, 99, 106], "y_train_idx": [90, 91], "y_test_idx": [90, 91], "slide": [90, 91, 97], "frame": [90, 91], "x_out": [90, 91], "tini": [90, 91], "concaten": [90, 91, 105], "y_out": [90, 91], "y_out_bin": [90, 91], "y_out_bin_idx": [90, 91], "exact_duplicate_idx": [90, 91], "x_duplic": [90, 91], "y_duplic": [90, 91], "y_duplicate_idx": [90, 91], "noisy_labels_idx": [90, 91, 102], "scatter": [90, 91, 96, 99, 102, 106], "black": [90, 91, 97, 106], "cyan": [90, 91], "plot_data": [90, 91, 96, 99, 102, 106], "fig": [90, 91, 92, 97, 104, 106], "ax": [90, 91, 92, 96, 104, 106], "subplot": [90, 91, 92, 104], "set_titl": [90, 91, 92, 104], "set_xlabel": [90, 91], "x_1": [90, 91], "fontsiz": [90, 91, 92, 96, 99, 102], "set_ylabel": [90, 91], "x_2": [90, 91], "set_xlim": [90, 91], "set_ylim": [90, 91], "linestyl": [90, 91, 96], "circl": [90, 91, 99, 102], "misclassifi": [90, 91], "zip": [90, 91, 92, 103, 108], "label_err": [90, 91], "180": [90, 91, 103], "marker": [90, 91], "facecolor": [90, 91, 96], "edgecolor": [90, 91, 96], "linewidth": [90, 91, 96, 104], "dup": [90, 91], "first_legend": [90, 91], "align": [90, 91], "title_fontproperti": [90, 91], "semibold": [90, 91], "second_legend": [90, 91], "45": [90, 91, 96, 97, 99, 103], "gca": [90, 91], "add_artist": [90, 91], "tight_layout": [90, 91, 96], "ideal": [90, 91], "remaind": 90, "modal": [90, 91, 98, 101], "132": [90, 91, 99, 103], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96, 97], "014828": 90, "107": [90, 91, 99, 102], "021241": 90, "026407": 90, "notic": [90, 99, 101, 103], "3558": [90, 91], "126": [90, 91, 99, 103], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "131": [90, 91, 107], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 96, 99, 103, 106], "51": [90, 91, 94, 96, 97, 99, 103], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 98, 102, 107, 108], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 97, 99, 101, 103, 108], "54": [90, 96, 97, 99, 103], "039122": 90, "044598": 90, "105": [90, 103], "105196": 90, "133654": 90, "43": [90, 96, 97, 99, 103], "168033": 90, "125": 90, "101107": 90, "183382": 90, "109": [90, 97, 103], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 97, 103, 108], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 103], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 97, 99, 103, 108], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 97, 99, 101, 103], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 99], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 96, 99], "246": [91, 92, 94, 95, 96, 99, 103], "efficiencywarn": [91, 92, 94, 95, 96, 99], "sort_graph_by_row_valu": [91, 92, 94, 95, 96, 99], "warn_when_not_sort": [91, 92, 94, 95, 96, 99], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 98], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 93, 108], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 97], "952381": 91, "666667": [91, 96], "portion": 91, "huge": [91, 99], "worri": [91, 95], "critic": 91, "60": [92, 96, 99, 106], "torchvis": [92, 104], "tensordataset": 92, "stratifiedkfold": [92, 102], "tqdm": 92, "autonotebook": 92, "math": 92, "fashion_mnist": 92, "1486": 92, "futurewarn": 92, "hf": 92, "messag": 92, "trust_remote_cod": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 97], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 102, 104], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 104], "energi": 92, "trainload": [92, 104], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 106], "acc": [92, 99], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 108], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "704": 92, "329": [92, 94, 103], "88": [92, 97, 98, 99, 102, 103, 106, 108], "195": 92, "493": 92, "060": 92, "714": 92, "330": [92, 103], "505": 92, "460": 92, "476": 92, "340": 92, "742": 92, "328": [92, 103], "310": 92, "468": 92, "reorder": 92, "hstack": [92, 98, 99, 101], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "166": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 99, 103, 108], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 97], "shirt": [92, 97], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 97, 104, 105], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 108], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 97], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 104], "nrow": [92, 104], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 104], "cmap": [92, 96, 106], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": [92, 96], "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 98], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 103, 107], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "difficult": 92, "disproportion": [92, 96], "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "workflow": [93, 98, 100, 106], "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 98, 101, 106], "xgboost": [94, 98, 106], "think": [94, 95, 98, 102, 107, 108], "nonzero": 94, "358": 94, "941": 94, "294": [94, 103], "46": [94, 96, 97, 99, 103], "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 97, 103], "187": [94, 97], "898": 94, "0000": [94, 95, 97, 99], "865": 94, "515002": 94, "837": 94, "556480": 94, "622": 94, "593068": 94, "593207": 94, "920": 94, "618041": 94, "4386345844794593e": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 97, 102, 103, 106], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 97, 106], "96": [94, 96, 97, 99, 102, 103, 106], "style": [94, 96, 107], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "lowest_scoring_dupl": 94, "idxmin": [94, 98], "indices_to_displai": 94, "tolist": [94, 98, 102], "perhap": [94, 99, 101], "second_lowest_scoring_dupl": 94, "next_indices_to_displai": 94, "wari": [94, 95, 98], "dive": [95, 96], "your_featur": 95, "text_embed": 95, "data_dict": [95, 99, 101], "85": [95, 103], "38": [95, 96, 97, 103], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 97], "000224": 95, "971": 95, "000507": 95, "980": [95, 97], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "160": [95, 106], "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "313": [95, 103], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 97, 99, 101, 103], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 97], "gone": 95, "samp": 95, "br": 95, "press": [95, 108], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "go": [95, 96, 97, 99], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "bigger": 96, "make_classif": 96, "5000": [96, 104], "n_featur": 96, "n_inform": 96, "n_redund": 96, "n_repeat": 96, "n_class": 96, "n_clusters_per_class": 96, "flip_i": 96, "class_sep": 96, "faiss": 96, "x_faiss": 96, "float32": [96, 103], "normalize_l2": 96, "index_factori": 96, "hnsw32": 96, "flat": [96, 97], "metric_inner_product": 96, "a_min": 96, "a_max": 96, "create_knn_graph": 96, "assert": 96, "indices_1d": 96, "ravel": 96, "distances_1d": 96, "50000": 96, "116": 96, "523": 96, "991400": 96, "356958": 96, "362": 96, "619565": 96, "108": [96, 103], "500000": 96, "651929": 96, "999827": 96, "031217": 96, "933716": 96, "627345": 96, "998540": 96, "530909": 96, "296974": 96, "646765": 96, "942721": 96, "332824": 96, "803246": 96, "625202": 96, "999816": 96, "474031": 96, "706253": 96, "655108": 96, "997703": 96, "131466": 96, "912389": 96, "639200": 96, "4995": 96, "998646": 96, "504755": 96, "746777": 96, "680033": 96, "4996": 96, "894230": 96, "340986": 96, "816472": 96, "640711": 96, "4997": 96, "999100": 96, "428545": 96, "592421": 96, "658949": 96, "4998": 96, "986792": 96, "273710": 96, "618033": 96, "4999": 96, "986776": 96, "273524": 96, "618084": 96, "instabl": 96, "proxim": 96, "analys": 96, "comfort": 96, "explor": [96, 103, 104], "third": 96, "parti": [96, 108], "newsgroup": 96, "alt": [96, 97], "atheism": [96, 97], "sci": [96, 97], "fetch_20newsgroup": 96, "newsgroups_train": 96, "header": 96, "footer": 96, "quot": 96, "df_text": 96, "target_nam": 96, "enlighten": 96, "omnipot": 96, "19apr199320262420": 96, "kelvin": 96, "jpl": 96, "nasa": 96, "gov": 96, "baa": 96, "nhenri": 96, "he": 96, "nno": 96, "ge": 96, "nlucki": 96, "babi": [96, 97], "tfidfvector": 96, "feature_extract": 96, "x_vector": 96, "data_valuation_issu": 96, "147": [96, 99, 103], "500047": 96, "500093": 96, "499953": 96, "1068": 96, "1069": 96, "1070": 96, "1071": 96, "1072": 96, "1073": 96, "concentr": 96, "seaborn": 96, "sn": 96, "distinguish": 96, "strip": 96, "stripplot": 96, "hue": [96, 106], "dodg": 96, "jitter": 96, "axvlin": [96, 104], "xlabel": 96, "ourselv": 96, "make_blob": 96, "center": [96, 97], "cluster_std": 96, "n_noisy_label": 96, "meaning": [96, 98, 104], "silhouette_scor": 96, "gridsearchcv": 96, "silhouett": 96, "cluster_label": 96, "fit_predict": 96, "param_grid": 96, "grid_search": 96, "best_kmean": 96, "best_estimator_": 96, "underperforming_group_issu": 96, "328308": 96, "tab10": 96, "domain": 96, "knowledg": [96, 99], "dataset_tsv": 96, "ag": [96, 106], "gender": 96, "educ": 96, "experi": 96, "highsalari": 96, "indiana": 96, "phd": 96, "male": 96, "bachelor": 96, "femal": 96, "kansa": 96, "school": [96, 97], "ohio": 96, "57": [96, 97, 99], "california": 96, "59": [96, 97, 103], "63": [96, 99, 103, 106], "47": [96, 97, 103], "stringio": 96, "sep": [96, 108], "simplic": [96, 102], "ordinalencod": 96, "columns_to_encod": 96, "encoded_df": 96, "salari": 96, "573681": 96, "underpin": 96, "caught": 96, "whenev": 96, "generate_data_depend": 96, "num_sampl": 96, "a1": 96, "a2": 96, "a3": 96, "375": 96, "975": 96, "non_iid_issu": 96, "796474": 96, "842432": 96, "922562": 96, "820759": 96, "873136": 96, "887373": 96, "825101": 96, "855875": 96, "751795": 96, "835796": 96, "ylabel": [96, 104], "coolwarm": 96, "colorbar": [96, 106], "strong": 96, "evid": 96, "inter": 96, "mitig": 96, "risk": 96, "deeper": 96, "tsv": 96, "tab": 96, "pars": 96, "annual_spend": 96, "number_of_transact": 96, "last_purchase_d": 96, "rural": 96, "4099": 96, "2024": [96, 108], "6421": 96, "nat": 96, "suburban": 96, "5436": 96, "4046": 96, "66": [96, 97], "3467": 96, "67": [96, 97, 103, 106], "4757": 96, "4199": 96, "4991": 96, "4655": 96, "82": [96, 97, 99, 103, 106], "5584": 96, "urban": 96, "3102": 96, "6637": 96, "9167": 96, "6790": 96, "5327": 96, "parse_d": 96, "lose": 96, "intact": 96, "encode_categorical_column": 96, "placehold": 96, "dropna": [96, 101], "category_to_numb": 96, "_encod": 96, "gender_encod": 96, "location_encod": 96, "focus": [96, 99, 101, 102, 106], "null_issu": 96, "833333": 96, "sorted_indic": [96, 103], "sorted_df": 96, "nice": 96, "styler": 96, "combined_df": 96, "concat": [96, 106], "highlight_null_valu": 96, "val": [96, 99], "yellow": [96, 97], "highlight_datalab_column": 96, "lightblu": 96, "highlight_is_null_issu": 96, "orang": [96, 97], "styled_df": 96, "nbsp": [96, 98, 99], "160000": 96, "820000": 96, "460000": 96, "470000": 96, "960000": 96, "620000": 96, "550000": 96, "660000": 96, "670000": [96, 97], "370000": 96, "530000": 96, "710000": 96, "020000": 96, "320000": 96, "990000": 96, "rarer": 96, "fairer": 96, "randomli": [96, 99], "class_imbalance_issu": 96, "countplot": 96, "xtick": 96, "rotat": 96, "ytick": 96, "filtered_df": 96, "xy": 96, "va": 96, "textual": 96, "get_ytick": 96, "nbar": 96, "nimbal": 96, "get_legend_handles_label": 96, "title_fonts": 96, "refin": 97, "instruct": [97, 98], "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "fly": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "monitor": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "sleep": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "websit": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "bytesio": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "ve": [97, 98, 99, 101, 103], "capit": 97, "29780": 97, "256": [97, 98, 103], "780": 97, "medic": [97, 108], "doctor": 97, "254": [97, 103], "359223": 97, "640777": 97, "184": [97, 99], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "251": [97, 103], "167": [97, 99, 103], "252": 97, "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "002216": 97, "000974": 97, "000873": 97, "000739": 97, "32635": 97, "32636": 97, "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "035": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": [97, 108], "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0014": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "seamless": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "from_dict": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "feed": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "tmp": 98, "ipykernel_7655": 98, "1995098996": 98, "deprecationwarn": 98, "dataframegroupbi": 98, "include_group": 98, "silenc": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "alter": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103, 108], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "enhanc": [99, 101, 103], "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103, 108], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "117": [99, 106], "206": [99, 103], "115": [99, 103], "193": 99, "194": 99, "201": [99, 103], "174": 99, "163": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106], "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "143": [102, 103], "216": [102, 103, 108], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "295": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "327": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "153": 103, "149": 103, "140": 103, "124": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": [103, 108], "145": 103, "173": 103, "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "320": 103, "314": 103, "199": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "anomali": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "root": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "43010872": 104, "29it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "img": [104, 106], "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "162": 108, "2400": 108, "52e0": 108, "1a01": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "kb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "4mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 92, 94, 95, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102], "creat": [7, 90, 91, 99, 101], "your": [7, 84, 90, 91, 95, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": [7, 96], "intermedi": 7, "advanc": [7, 90], "us": [7, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 96], "cluster": [8, 96, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 90], "cleanlab": [9, 10, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 92, 94, 95], "mode": [9, 10, 84, 92, 94, 95], "can": [10, 91, 97, 98, 99, 101], "detect": [10, 89, 91, 92, 94, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 92, 94, 95, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 91, 92, 94, 95], "duplic": [10, 20, 91, 92, 94, 95, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 95, 96], "iid": [10, 95, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 96, 99, 107], "imbal": [10, 21, 96], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 92, 104], "specif": [10, 22, 107], "underperform": [10, 96, 98], "group": [10, 96, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 96], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 96], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 96], "paramet": [10, 99], "get": [12, 90, 91, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 92], "dataset": [37, 63, 84, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 90], "token_classification_util": 56, "util": 57, "valid": [58, 92, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 91, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 92, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 96, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 91, 92, 94, 96, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 99, 106], "pre": [85, 89, 96, 98, 104], "function": [85, 90], "name": 85, "chang": 85, "modul": [85, 99], "new": 85, "remov": 85, "argument": [85, 90], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 93, 97, 100], "structur": 87, "tabular": [87, 94], "requir": [87, 88, 90, 91, 92, 94, 95, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 94, 95, 96, 106], "process": [87, 94, 104, 106], "select": [87, 94], "comput": [87, 89, 92, 94, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 94, 95, 101, 105], "sampl": [87, 89, 90, 91, 92, 94, 95, 101, 105], "predict": [87, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 94, 95, 96, 101, 105], "more": [87, 88, 91, 99, 106], "text": [88, 95, 96, 108], "format": [88, 95, 98, 102, 103], "defin": [88, 92, 95, 96, 106], "potenti": [88, 101, 106], "an": [89, 92, 98], "audio": 89, "import": [89, 90, 91, 92, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 92, 104], "fit": 89, "linear": 89, "workflow": [90, 96, 99], "audit": [90, 91], "classifi": [90, 91, 96], "instanti": 90, "object": [90, 103], "increment": 90, "specifi": [90, 98], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 99], "kind": [91, 103], "skip": [91, 97, 99, 101], "detail": [91, 97, 99, 101], "about": 91, "addit": 91, "inform": [91, 92], "fetch": [92, 97], "normal": 92, "fashion": 92, "mnist": 92, "prepar": [92, 96], "k": [92, 94, 105], "fold": [92, 105], "cross": [92, 105], "embed": [92, 104], "7": [92, 99], "view": 92, "most": [92, 108], "like": 92, "exampl": [92, 98, 99, 104], "sever": 92, "set": [92, 99], "dark": 92, "top": [92, 107], "low": 92, "numer": 94, "categor": [94, 96], "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": [94, 96], "drift": [95, 102], "miscellan": 96, "acceler": 96, "knn": 96, "obtain": 96, "identifi": [96, 98, 103], "explan": 96, "vector": 96, "perform": 96, "visual": [96, 99, 103, 104, 107], "score": [96, 99, 101, 102, 103, 107, 108], "synthet": 96, "result": 96, "predefin": 96, "slice": [96, 98], "i": [96, 98, 99, 105], "catch": 96, "valu": 96, "encod": 96, "initi": [96, 101], "sort": 96, "6": [96, 99], "understand": 97, "evalu": 97, "health": [97, 99], "8": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "when": [98, 99], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "better": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[96, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[96, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[96, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[96, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[96, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[96, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[96, "Explanation:"]], "Data Valuation": [[96, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[96, "1.-Load-and-Prepare-the-Dataset"], [96, "id2"], [96, "id5"]], "2. Vectorize the Text Data": [[96, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[96, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[96, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[96, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[96, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[96, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [96, "id3"]], "3. (Optional) Cluster the Data": [[96, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[96, "4.-Identify-Underperforming-Groups-with-Datalab"], [96, "id4"]], "5. (Optional) Visualize the Results": [[96, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[96, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[96, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[96, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[96, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[96, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[96, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[96, "1.-Load-the-Dataset"]], "2: Encode Categorical Values": [[96, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[96, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[96, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[96, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[96, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[96, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[96, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[96, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[96, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[98, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 92, 96, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 90, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 96, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 96, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 90, 96, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 96, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 90, 94, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 92, 94, 95, 96, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 92, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 91, 96, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 94, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 94, 96, 103, 104], "trace": [1, 90, 91, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 91, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 90, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 94, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 96, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 91, 94, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 94, 96, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 90, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 95, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 96, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 96, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 92, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 94, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 94, 95, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 90, 91, 92, 94, 95, 99], "yield": [1, 38, 42], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 92, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 90, 94, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 90, 91, 92, 94, 95, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 96], "python": [1, 2, 42, 61, 74, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 95, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 95, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 94, 96, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 96, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 90, 92, 96, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 92, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 96, 97, 98], "choic": [1, 8, 44, 53, 55, 92, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 95, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 94, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 96, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 94, 96, 97, 99, 101, 102], "max_it": [1, 88, 89, 95, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 92, 94, 95, 96, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 94, 95, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 90, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90, 92, 96, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 96], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 91, 95, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 91, 92, 95, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 94, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 96, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 95, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 90, 92, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 90, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 92, 94, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 91, 95, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 90, 91, 92, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 92, 95, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 91, 92, 96, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 95, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 90, 91, 92, 94, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 92, 96, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 91, 92, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 96, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 94, 95, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 94, 95, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 96, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 89, 90, 91, 94, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 94, 96, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 92, 93, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 94, 95, 96, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 95, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 90, 92, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 92, 94, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 94, 95, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 95], "loss": [2, 39, 61, 72, 74, 92], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 92, 96, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 96, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 92, 94, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 90, 91, 92, 96, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 92, 95, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 89, 90, 96, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 90, 91, 92, 94, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 96, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 92, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 95, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 92], "independ": [2, 3, 10, 63, 74, 95, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 96, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 92, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 92, 95, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 91, 92, 94, 95, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 95, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 90, 95, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 92, 94, 95, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 92, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 91, 92, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 94, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 94, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 93, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 90, 91, 92, 96, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 90, 91, 94, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 90, 91, 92, 94, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 90, 91, 95, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 92, 95, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 90, 91, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 88, 90, 92, 95, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 90, 91, 92, 94, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 90, 92, 94, 95, 96, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 92, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 90, 91, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 90, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 88, 90, 91, 92, 95, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 96, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 95], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 90, 91, 96, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 90, 91, 92, 94, 95, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 92, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 91, 95, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 90, 94, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 94, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 90, 95, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 96, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 91, 97, 98], "robust": [2, 47, 52, 74, 91, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 90, 91, 95, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 94, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 96, 98, 104], "dimens": [2, 57, 76, 79, 92, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 92, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 94, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 90, 96, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 90, 91, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 96, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 91, 95, 96], "close": [2, 3, 10, 41, 47, 71, 89, 90, 91, 92, 94, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 96, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 90], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 95, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 91, 98, 99], "impact": [2, 4, 10, 90, 91, 92, 96], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 92, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 96, 98, 101, 105], "caus": [2, 44, 49, 90, 91, 96, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 90, 91, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 90, 91, 96, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 96, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 90, 92, 95, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 96, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 90, 96, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 92, 95, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 92, 94, 95, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 94, 96, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 92, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71, 96], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 91, 92, 94, 95, 96, 99], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 96], "torch": [2, 38, 39, 42, 88, 89, 92, 95, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 90, 91, 92, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 91, 92, 94, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 89, 90, 91, 92, 94, 96, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 92, 95, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 92, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 95, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 90, 91, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 94, 96, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 91, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 90, 96, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 92, 94, 96, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 91, 93, 96, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 91, 92, 95, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 92, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 91, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 92, 96, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 92, 94, 95, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 91, 96, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 91, 92, 95, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 92, 96, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 98], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 92, 94, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 92, 94, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 96, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 92, 96, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 90, 94, 95, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 90, 92, 94, 96, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 91, 94, 96, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 89, 92, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 92, 95, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 91, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 96, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 90, 94, 102, 103], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 90, 92, 94, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 92, 96, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 88, 91, 92, 95, 97, 102], "hyperparamet": [2, 66, 71, 92], "purpos": [2, 52, 90, 91, 96, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 92, 95, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74, 98], "yourself": [2, 5, 41, 91, 96], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 92, 94, 95, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 92, 94, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 90, 91, 95, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 90, 92, 95, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 90, 96], "label_issues_df": [2, 74, 92], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 94, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 90, 91], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 94, 96, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 92, 96, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 91, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 90, 96, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 96, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 94, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 95, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 91, 92, 94, 95, 96, 97, 98, 99, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 90, 91, 92, 95, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 92, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 93, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 94, 95, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 90, 91, 92, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 90, 91, 94, 95, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 91, 92, 94, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 95], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 90, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 90, 92, 96, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 96, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 95, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 95, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 90, 91, 96, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 96, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 91, 92, 94, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 90, 94, 96, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 91, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 96, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 94], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 91, 92, 94, 95, 96, 97, 99], "clear": [2, 38, 42, 54, 74, 88, 95, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 92, 94, 96, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 92, 94, 95, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 92, 94, 95, 98], "care": [2, 10, 38, 42, 52, 74, 95, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 90, 91, 94, 95, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 94, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 92, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 90, 91, 98], "metadata": [2, 10, 42, 74, 92, 94, 95, 108], "through": [2, 5, 7, 42, 74, 88, 89, 91, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 91, 95, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 92, 96, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 99], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 92, 94, 96], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 89, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 90, 95, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 95, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 92], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 94, 95, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 90, 91, 92, 94, 95, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 94, 96, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 91, 92, 94, 96, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 91, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 91, 96, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 91, 92, 94, 95, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 92, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 96, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 91, 92, 94, 96, 97, 98, 99, 104, 106], "As": [3, 7, 84, 90, 91, 95, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 95, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 94, 96, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 91, 92, 95, 96, 99, 106], "know": [3, 10, 90, 91, 92, 94, 95, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 91, 96, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 94, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 94, 95, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 94, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 90, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 94, 95, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 96, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 92, 96, 98, 107], "practic": [3, 87, 88, 91, 92, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 91, 96, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 92, 96, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 96, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 96, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 96, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 96], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87, 96], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 90, 94, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 94, 96], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 90, 91, 92, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 92, 94, 95, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 94, 95, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 90, 92, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 95, 96, 98, 99, 101, 103], "littl": [3, 41, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 92, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 96, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 90, 94, 95, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 94, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 90, 92, 94, 96, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 96, 103], "contribut": [4, 10, 19, 96, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 94, 96], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 92, 94, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 91, 95, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 90, 91, 92, 94, 95, 96, 98, 99, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 71, 94, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 92, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 91, 95, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 91, 92, 94, 96, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 96, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 90, 91, 94, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 90, 91, 92, 95, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 96, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 94, 95, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 94, 96, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 96], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 94, 104], "cosin": [4, 10, 52, 53, 55, 71, 96, 104], "dim": [4, 71, 92, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 94], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 94, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 96, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 94, 95, 99], "exce": [4, 52, 92, 96], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 91, 92, 95, 96, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 90, 91, 92, 94, 95, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 96, 99], "closer": [4, 10, 69, 103], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 96, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 90, 91, 96, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 92, 95, 97, 98], "55": [4, 56, 96, 97, 103, 106, 108], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 92, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 96, 97], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 96], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 90, 95, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 97, 98, 99], "intermedi": [5, 9, 91], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 91, 94, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 92], "face": [5, 10, 13, 17, 92, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 95, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 94, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 90, 91, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 90, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 90, 91, 93, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 94, 95, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 95, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 90, 91, 93, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 96, 106], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 91, 92, 98, 100, 102, 107], "load_dataset": [5, 13, 92], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 91, 96, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 91, 93, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "world": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "interact": [5, 17, 95, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 94, 95, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 94, 95, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 94, 95, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52, 96], "evenli": 5, "omit": [5, 69, 70, 92, 96, 103], "itself": [5, 33, 38, 42, 52, 96, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 94, 97, 99, 101, 105, 106, 107, 108], "indptr": [5, 96], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 95, 102, 103, 108], "ascend": [5, 37, 63, 92, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 94, 95, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 94], "illustr": [5, 96], "todens": 5, "second": [5, 49, 57, 70, 72, 90, 94, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 96, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 96, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 95, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 96, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 92, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 96], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 96], "toarrai": [5, 52, 96], "NOT": [5, 41, 95], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 91], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 94, 96, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 90, 96, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 94, 95, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 91, 92, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 96, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 98, 99, 102, 103], "familiar": [5, 96], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 90, 91, 94, 96, 99, 103], "issue_summari": [5, 7, 10, 14, 90, 96], "With": [5, 9, 10, 41, 88, 95, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 92, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 94, 95, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 96], "wherea": [5, 10, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 90, 91, 96, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 91, 92, 94, 95, 96, 99], "hypothesi": [5, 96], "iid": [5, 7, 9, 27, 94, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 90, 91, 92, 94, 95, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 94, 95, 99], "focu": [5, 10, 14, 95, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 92, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 90, 91, 92, 94, 95, 96, 99], "get_issue_summari": [5, 10, 14, 91, 96], "get_info": [5, 14, 91, 95, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 90], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 90, 92], "load": [5, 13, 41, 70, 92, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 88, 89, 90, 92, 95, 98], "overwrit": [5, 90], "separ": [5, 37, 49, 66, 90, 91, 92, 96, 98, 103, 105], "static": 5, "rememb": [5, 95, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 90, 96, 97, 107, 108], "ident": [5, 10, 23, 57, 95, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 90, 98], "pre": [7, 8, 10, 38, 42, 90, 91, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 92, 98], "issue_manager_factori": [7, 15, 90], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 96, 99, 106], "next": [7, 62, 84, 87, 88, 89, 92, 94, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 96], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 91, 99], "rand": [7, 49, 52, 90, 91, 96], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "whole": [7, 10, 27, 38, 42, 91, 96], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "popul": [7, 91, 95], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 96, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 90, 98, 104], "sin_filt": 7, "sin": 7, "arang": [7, 96], "kernel": [7, 96], "affect": [7, 10, 38, 42, 53, 76, 82, 95, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 91, 94, 95, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 96, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 94, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 91, 92, 94, 95, 98, 99, 107], "won": [7, 38, 42, 90, 91, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 90], "instanti": [7, 17, 41, 61, 71, 88, 89, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 94, 95, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 90, 91, 94, 95, 98, 99, 102, 106], "sensit": [8, 10, 55, 96], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 96], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 96], "cluster_id": [8, 10, 11, 32, 96], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 91, 92, 94, 95, 96, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 96, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 91], "null": [9, 11, 15, 22, 91, 92, 95, 99], "togeth": [9, 10, 47, 88, 90, 91, 92, 94, 95, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 94, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 92, 94, 95, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 94, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 92, 94, 95, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 95, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 92, 95, 98, 106], "power": [9, 10, 92, 94, 95, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 92, 94, 95, 107], "foundat": [9, 10, 84, 96], "improv": [9, 10, 62, 87, 88, 91, 92, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 95, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 91, 97, 98, 106], "free": [9, 10, 84, 89, 91, 92, 94, 95, 98, 99], "page": [10, 91, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 95], "matter": [10, 37, 63, 88, 95], "didn": [10, 96], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 94, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 91, 92, 94, 95, 96, 99], "data_valu": [10, 11, 15, 22, 96], "No": [10, 11, 87, 88, 95, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 90, 91, 92, 94, 95, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 90, 91, 94, 95, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89], "expertis": 10, "interpret": [10, 97, 98, 99, 102, 106], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 94, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 94, 95, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 91, 92, 94, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 91, 96, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 92, 97], "analyt": [10, 84, 96, 98, 101], "lead": [10, 69, 72, 92, 96, 103], "draw": [10, 90, 91], "conclus": [10, 95], "let": [10, 38, 42, 71, 72, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 91, 96, 97, 99, 103], "680894": 10, "41": [10, 96, 97, 103, 106], "746043": 10, "794894": 10, "98": [10, 97, 98, 106], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 92, 96, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 94, 95, 98, 99], "anomal": [10, 72, 90, 91, 92, 94, 95, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 95], "consequ": 10, "inspect": [10, 88, 89, 91, 92, 99, 103, 106], "011562": 10, "62": [10, 96, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 92, 96, 97, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 95, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 102, 103], "extrem": [10, 90, 91, 92, 94, 95, 96, 98, 99], "record": [10, 38, 42, 89, 94, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 90, 91, 93, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 94, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 91, 92, 94, 95], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 96, 97, 108], "066009": 10, "80": [10, 39, 87, 94, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 94, 96, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 96, 97, 99, 102, 106], "signific": [10, 94, 95, 99], "violat": [10, 94, 95, 96, 99], "assumpt": [10, 94, 95, 96, 99], "changepoint": [10, 94, 95, 99], "shift": [10, 52, 54, 94, 95, 99], "drift": [10, 91, 94, 96, 99], "autocorrel": [10, 94, 95, 99], "almost": [10, 94, 95, 99], "adjac": [10, 52, 94, 95, 99], "tend": [10, 37, 47, 94, 95, 99, 107, 108], "sequenti": [10, 38, 42, 61, 92], "pai": [10, 95], "attent": [10, 96], "realli": [10, 88, 95, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 94, 96, 107], "necessarili": [10, 62, 70, 95, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 95, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 94, 99, 105, 106], "similarli": [10, 38, 42, 90, 92, 94, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 92, 95, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91], "underli": [10, 43, 54, 71, 80, 82, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 90], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 92, 94, 95], "problem": [10, 33, 41, 49, 79, 84, 90, 91, 92, 95, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 94, 95, 99, 105, 108], "diagnos": [10, 91, 98], "24": [10, 89, 96, 97, 99, 101, 103, 106], "681458": 10, "37": [10, 90, 96, 97], "804582": 10, "64": [10, 42, 87, 92, 94, 96, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 94, 97, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 98], "rarest": [10, 91], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 92, 95, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 96, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 96, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 92], "dark": [10, 107], "bright": [10, 108], "blurri": [10, 92], "lack": [10, 61, 96], "unusu": [10, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 84, 91, 92, 94, 95, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 96, 106, 107], "tabular": [10, 84, 86, 90, 91, 93, 96, 98, 101], "categor": [10, 71, 86, 87, 90, 91, 93, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 94, 95, 98, 106, 107], "71": [10, 96, 97, 99, 103, 106], "70": [10, 82, 94, 96], "69": [10, 99, 106], "subgroup": [10, 96], "wors": [10, 96, 101], "ratio": 10, "miss": [10, 28, 38, 42, 57, 67, 69, 98, 103, 106], "pattern": [10, 96], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 90, 92, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 90, 96, 97, 101, 103], "valuabl": [10, 19, 96], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 94, 95, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29, 90], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 92, 94, 95, 96, 101, 105, 107], "mandatori": [10, 92], "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 92, 97, 103, 107], "29": [10, 92, 96, 97, 101, 102, 103, 107, 108], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 90, 96, 97, 101, 102, 103], "odd_siz": [10, 92], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 94, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 94, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 90, 91, 92, 94, 95, 98, 99], "is_non_iid_issu": [11, 91, 94, 95, 96, 99], "non_iid_scor": [11, 27, 91, 94, 95, 96, 99], "is_class_imbalance_issu": [11, 91, 96], "class_imbalance_scor": [11, 21, 91, 96], "is_underperforming_group_issu": [11, 91, 96], "underperforming_group_scor": [11, 32, 91, 96], "is_null_issu": [11, 91, 96], "null_scor": [11, 28, 91, 96], "is_data_valuation_issu": [11, 96], "data_valuation_scor": [11, 19, 96], "studio": [12, 84, 91, 92, 94, 95, 98], "data_issu": [12, 16, 17, 34, 90], "issue_find": [12, 16, 96], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 92], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": [14, 92], "strategi": [14, 49, 96, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 92, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 90], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 96, 99, 103, 107, 108], "creation": [17, 42, 96], "execut": [17, 38, 42, 90, 92, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 92, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 91, 92, 96, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 95, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 84, 87, 89, 90, 92, 96, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 94, 96, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 92, 96, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 90, 104, 106], "prompt": 28, "address": [28, 88, 90, 91, 95, 98], "enabl": [28, 42, 54], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 96, 98, 99, 101, 103, 104, 106], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 90, 92, 96, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 91, 98], "datset": 34, "exclud": [34, 43, 79, 83, 90, 98, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91], "continu": [35, 61, 87, 88, 92, 95, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 90, 91], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 91, 92, 94, 95, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 98, 99], "rank_classes_by_label_qu": [37, 91], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 94, 96, 99, 101], "df": [37, 57, 83, 89, 96, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 92, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72, 96], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63], "car": [37, 97, 103, 107], "frequent": [37, 62, 96, 98, 106], "characterist": 37, "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39, 92], "noisy_label": [37, 90, 91, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 91], "cnn": [38, 40, 42, 92], "cifar": [38, 39, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 96], "master": [38, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 92, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 94], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 92], "init": [38, 42, 99], "no_grad": [38, 42, 92, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 92, 95], "fill_": [38, 42], "net": [38, 42, 89, 92, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 92], "tensor": [38, 39, 42, 88, 89, 92, 95, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 92], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 92], "devic": [38, 42, 89, 92], "gpu": [38, 42, 88, 89, 95], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 94, 96, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 92, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 90, 96, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 96, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 95], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 92, 96, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 92], "break": [38, 42, 92, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 92], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 91, 92, 96, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 96, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 90, 92, 96, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46, 88, 89, 95, 98], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 94], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 90, 91], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 92, 94, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 95], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 89, 92, 98], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 92], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42, 89], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 95, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42, 88, 95], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 92], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 92], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 92, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 96, 98], "250": [39, 90, 91, 99, 103, 108], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 92, 95, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 92, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 96, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 92, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 92], "loader": [40, 42, 92], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 95], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 91, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 92, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 90, 98, 103, 104], "store_result": 41, "becom": [41, 96, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 96, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 95, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 92], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 96, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 95], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 95, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 91, 92, 98, 103], "thread": [44, 64], "window": [44, 89, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 96], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 96], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 90, 96, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 94, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 89, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 96, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 96, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 94, 95, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 92, 94, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 92, 99, 103], "underflow": 49, "nan": [49, 62, 87, 94, 96, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 96], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 92], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 92, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 94, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 95, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 96, 101, 106], "701": 52, "900": [52, 87, 94, 106], "436": 52, "000": [52, 88, 92, 95, 97, 108], "idea": [52, 72, 103], "dens": [52, 61, 96], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 91], "exact_duplicate_set": 52, "main": [52, 62], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 94, 96], "slower": 53, "decid": [53, 62, 88, 95, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 94, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 71, 72, 90], "dt": 55, "right": [55, 67, 70, 88, 95, 102, 103, 104], "strength": [55, 70, 96], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 90, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 94, 96, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 94, 96, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 96, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 94, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 92, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 95, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 96, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 94, 95, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 92, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 96, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 94, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 91, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 95, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 97, 101], "chosen": [62, 72, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 92, 94, 95, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 94, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 90, 92, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": [62, 90, 91, 92, 94, 95, 96, 98, 99], "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 90, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 94], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 96], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 92, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 96, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 96, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 91], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 94, 95, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 91, 96, 108], "abnorm": [70, 92, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 96, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 96, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 96, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 96, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 92], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": [70, 96], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 94, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 92], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 95, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 90, 91, 94, 95, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 92, 95, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 95], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 95], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 90, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 95, 104], "grain": 74, "grid": 74, "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 91, 92, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 92, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 90], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 92, 96, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 96, 102, 103, 106, 107], "colormap": 79, "background": [79, 96], "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 95, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 92], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": [82, 96], "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 90, 91, 96, 99, 103], "03": [82, 94, 96, 97, 99, 103, 108], "04": [82, 94, 96, 103], "08": [82, 96, 99, 103, 106, 108], "commonli": [83, 85, 90, 91, 102, 108], "But": [83, 95, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 96, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 92, 94, 95, 100], "minut": [84, 87, 88, 89, 94, 95, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 92, 98], "your_dataset": [84, 89, 90, 91, 92, 94, 95, 98], "column_name_of_label": [84, 89, 90, 91, 92, 94, 95], "plagu": [84, 91], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 91], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 99, 102, 104, 106], "deal": [84, 91, 96], "tutori": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 91, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 92, 94, 95, 98], "edit": [84, 98], "easier": [84, 96, 99], "unreli": [84, 87, 89, 94, 95], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 94], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 94, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 94], "databas": [87, 94], "excel": [87, 94], "parquet": [87, 94], "student": [87, 94, 106, 108], "grade": [87, 94, 106], "exam": [87, 94, 106], "letter": [87, 94, 108], "hundr": [87, 94], "mistak": [87, 88, 92, 94, 95], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 91, 94, 96, 104, 106], "standardscal": [87, 94, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 104], "accuracy_scor": [87, 88, 89, 95, 99], "grades_data": [87, 94], "read_csv": [87, 88, 94, 95, 96, 106], "demo": [87, 91, 94, 102], "stud_id": [87, 94], "exam_1": [87, 94, 106], "exam_2": [87, 94, 106], "exam_3": [87, 94, 106], "letter_grad": [87, 94], "f48f73": [87, 94], "53": [87, 90, 91, 94, 96, 97, 102, 103], "00": [87, 90, 91, 94, 96, 97, 104], "77": [87, 90, 91, 94, 103], "0bd4e7": [87, 94], "81": [87, 94, 95, 103, 106, 108], "great": [87, 94, 97], "particip": [87, 94], "cb9d7a": [87, 94], "61": [87, 94, 96, 99, 103, 106], "94": [87, 94, 97, 99, 103, 106], "9acca4": [87, 94], "48": [87, 94, 96, 97, 99, 103, 108], "x_raw": [87, 94], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 94], "get_dummi": [87, 94, 106], "drop_first": [87, 94], "numeric_featur": [87, 94], "scaler": [87, 94, 104], "x_process": [87, 94], "fit_transform": [87, 94, 96], "bring": [87, 88, 92, 94, 95, 101, 106], "byod": [87, 88, 92, 94, 95, 101, 106], "tress": 87, "held": [87, 89, 94, 95, 97, 103, 104, 105], "straightforward": [87, 89, 94], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 94, 101], "tabl": [87, 94, 97, 101], "212": [87, 99], "review": [87, 88, 91, 94, 95, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 94, 95, 106], "92": [87, 90, 99, 103], "93": [87, 97, 103, 106, 108], "827": 87, "99": [87, 96, 97, 99], "86": [87, 91, 92, 94, 99, 103, 106], "74": [87, 96, 103, 106], "637": [87, 94], "79": [87, 97, 103], "65": [87, 90, 96, 103], "cheat": 87, "0pt": 87, "120": [87, 90, 91], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 99, 102, 103, 106], "suspici": [87, 94], "carefulli": [87, 92, 94, 95], "examin": [87, 90, 91, 94, 96, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 95], "servic": [88, 95, 98], "onlin": [88, 95], "bank": [88, 95, 97], "banking77": [88, 95], "oo": [88, 95], "categori": [88, 92, 95, 96], "shortlist": [88, 95, 106], "scope": [88, 95], "logist": [88, 90, 91, 95, 101, 104], "probabilit": [88, 89], "drop": [88, 94, 96, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 95], "sentencetransform": [88, 95], "payment": [88, 95], "cancel_transf": [88, 95], "transfer": [88, 95], "fund": [88, 95], "cancel": [88, 95], "transact": [88, 95], "my": [88, 95], "revert": [88, 95], "morn": [88, 95], "realis": [88, 95], "yesterdai": [88, 95], "rent": [88, 95], "tomorrow": [88, 95], "raw_text": [88, 95], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "card_about_to_expir": [88, 95], "supported_cards_and_curr": [88, 95], "apple_pay_or_google_pai": [88, 95], "beneficiary_not_allow": [88, 95], "getting_spare_card": [88, 95], "visa_or_mastercard": [88, 95], "lost_or_stolen_phon": [88, 95], "change_pin": [88, 95], "card_payment_fee_charg": [88, 95], "card": [88, 95, 97], "utter": [88, 95], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 95, 96, 97, 98], "electra": [88, 95], "discrimin": [88, 95], "googl": [88, 95], "train_text": 88, "test_text": 88, "home": [88, 90, 91, 95, 96, 97], "runner": [88, 90, 91, 95, 96], "google_electra": [88, 95], "pool": [88, 95, 98, 104], "opt": [88, 89, 91, 92, 94, 95, 96, 99], "hostedtoolcach": [88, 89, 91, 92, 94, 95, 96, 99], "x64": [88, 89, 91, 92, 94, 95, 96, 99], "lib": [88, 89, 91, 92, 94, 95, 96, 99], "python3": [88, 89, 91, 92, 94, 95, 96, 99], "site": [88, 89, 91, 92, 94, 95, 96, 99], "_util": [88, 95], "831": [88, 95], "userwarn": [88, 89, 90, 91, 95, 96], "typedstorag": [88, 95], "untypedstorag": [88, 95], "untyped_storag": [88, 95], "fget": [88, 95], "__get__": [88, 95], "owner": [88, 95], "leverag": [88, 89, 95, 98, 99, 101], "computation": [88, 89, 95], "intens": [88, 89, 95], "400": [88, 95], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 95, 99, 106], "to_numpi": [88, 95, 96, 106], "44": [88, 96, 97, 102, 103], "646": 88, "390": 88, "628": 88, "121": [88, 99], "702": 88, "863": [88, 89], "135": 88, "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 95], "cash": [88, 95], "holidai": [88, 95], "sent": [88, 95, 108], "mine": [88, 95], "expir": [88, 95], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 95, 96], "whoever": [88, 95], "consum": [88, 106], "18": [88, 89, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [88, 106], "87": [88, 91, 92, 103, 106], "acceler": [88, 106], "19": [88, 89, 92, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [88, 90, 94, 103, 106], "spoken": 89, "500": [89, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 90, 91, 92, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 94, 95], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 94, 96, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 104], "gz": [89, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 92, 96, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": 89, "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 96], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 92], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 92], "embeddings_arrai": 89, "650": 89, "stft": 89, "return_complex": 89, "view_as_r": 89, "recov": 89, "trigger": 89, "aten": 89, "src": 89, "nativ": 89, "spectralop": 89, "cpp": 89, "_vf": 89, "n_fft": 89, "hop_length": 89, "win_length": 89, "attr": 89, "512": [89, 92], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 96, 97, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 92, 96, 97, 99, 103, 106, 108], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 98], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 94, 95, 99], "lt": [89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 104], "gt": [89, 90, 91, 92, 94, 95, 96, 99, 101, 108], "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 95], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "underneath": 90, "hood": [90, 96, 98], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "toi": [90, 91, 92, 96, 97, 99, 101], "inf": [90, 91], "mid": [90, 91], "bins_map": [90, 91], "create_data": [90, 91], "y_bin": [90, 91], "y_i": [90, 91], "y_bin_idx": [90, 91], "y_train": [90, 91, 99, 106], "y_test": [90, 91, 99, 106], "y_train_idx": [90, 91], "y_test_idx": [90, 91], "slide": [90, 91, 97], "frame": [90, 91], "x_out": [90, 91], "tini": [90, 91], "concaten": [90, 91, 105], "y_out": [90, 91], "y_out_bin": [90, 91], "y_out_bin_idx": [90, 91], "exact_duplicate_idx": [90, 91], "x_duplic": [90, 91], "y_duplic": [90, 91], "y_duplicate_idx": [90, 91], "noisy_labels_idx": [90, 91, 102], "scatter": [90, 91, 96, 99, 102, 106], "black": [90, 91, 97, 106], "cyan": [90, 91], "plot_data": [90, 91, 96, 99, 102, 106], "fig": [90, 91, 92, 97, 104, 106], "ax": [90, 91, 92, 96, 104, 106], "subplot": [90, 91, 92, 104], "set_titl": [90, 91, 92, 104], "set_xlabel": [90, 91], "x_1": [90, 91], "fontsiz": [90, 91, 92, 96, 99, 102], "set_ylabel": [90, 91], "x_2": [90, 91], "set_xlim": [90, 91], "set_ylim": [90, 91], "linestyl": [90, 91, 96], "circl": [90, 91, 99, 102], "misclassifi": [90, 91], "zip": [90, 91, 92, 103, 108], "label_err": [90, 91], "180": [90, 91, 103], "marker": [90, 91], "facecolor": [90, 91, 96], "edgecolor": [90, 91, 96], "linewidth": [90, 91, 96, 104], "dup": [90, 91], "first_legend": [90, 91], "align": [90, 91], "title_fontproperti": [90, 91], "semibold": [90, 91], "second_legend": [90, 91], "45": [90, 91, 96, 97, 99, 103], "gca": [90, 91], "add_artist": [90, 91], "tight_layout": [90, 91, 96], "ideal": [90, 91], "remaind": 90, "modal": [90, 91, 98, 101], "132": [90, 91, 99, 103], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96, 97], "014828": 90, "107": [90, 91, 99, 102], "021241": 90, "026407": 90, "notic": [90, 99, 101, 103], "3558": [90, 91], "126": [90, 91, 99, 103], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "131": [90, 91, 107], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 96, 99, 103, 106], "51": [90, 91, 94, 96, 97, 99, 103], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 98, 102, 107, 108], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 97, 99, 101, 103, 108], "54": [90, 96, 97, 99, 103, 108], "039122": 90, "044598": 90, "105": [90, 103], "105196": 90, "133654": 90, "43": [90, 96, 97, 99, 103], "168033": 90, "125": 90, "101107": 90, "183382": 90, "109": [90, 97, 103], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 97, 103, 108], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 103], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 97, 99, 103, 108], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 97, 99, 101, 103], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 99], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 96, 99], "246": [91, 92, 94, 95, 96, 99, 103], "efficiencywarn": [91, 92, 94, 95, 96, 99], "sort_graph_by_row_valu": [91, 92, 94, 95, 96, 99], "warn_when_not_sort": [91, 92, 94, 95, 96, 99], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 98], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 93, 108], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 97], "952381": 91, "666667": [91, 96], "portion": 91, "huge": [91, 99], "worri": [91, 95], "critic": 91, "60": [92, 96, 99, 106], "torchvis": [92, 104], "tensordataset": 92, "stratifiedkfold": [92, 102], "tqdm": 92, "autonotebook": 92, "math": 92, "fashion_mnist": 92, "1486": 92, "futurewarn": 92, "hf": 92, "messag": 92, "trust_remote_cod": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 97], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 102, 104], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 104], "energi": 92, "trainload": [92, 104], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 106], "acc": [92, 99], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 108], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "649": 92, "329": [92, 94, 103], "88": [92, 97, 98, 99, 102, 103, 106], "195": 92, "481": [92, 95], "493": 92, "060": 92, "663": 92, "330": [92, 103], "505": 92, "476": 92, "340": 92, "680": 92, "328": [92, 103], "310": 92, "450": 92, "reorder": 92, "hstack": [92, 98, 99, 101], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "166": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 99, 103, 108], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 97], "shirt": [92, 97], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 97, 104, 105], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 108], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 97], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 104], "nrow": [92, 104], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 104], "cmap": [92, 96, 106], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": [92, 96], "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 98], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 103, 107], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "difficult": 92, "disproportion": [92, 96], "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "workflow": [93, 98, 100, 106], "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 98, 101, 106], "xgboost": [94, 98, 106], "think": [94, 95, 98, 102, 107, 108], "nonzero": 94, "358": 94, "941": 94, "294": [94, 103], "46": [94, 96, 97, 99, 103], "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 97, 103, 108], "187": [94, 97], "898": 94, "0000": [94, 95, 97, 99], "865": 94, "515002": 94, "837": 94, "556480": 94, "622": 94, "593068": 94, "593207": 94, "920": 94, "618041": 94, "4386345844794593e": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 97, 102, 103, 106], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 97, 106], "96": [94, 96, 97, 99, 102, 103, 106], "style": [94, 96, 107], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "lowest_scoring_dupl": 94, "idxmin": [94, 98], "indices_to_displai": 94, "tolist": [94, 98, 102], "perhap": [94, 99, 101], "second_lowest_scoring_dupl": 94, "next_indices_to_displai": 94, "wari": [94, 95, 98], "dive": [95, 96], "your_featur": 95, "text_embed": 95, "data_dict": [95, 99, 101], "85": [95, 103], "38": [95, 96, 97, 103], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 97], "000224": 95, "971": 95, "000507": 95, "980": [95, 97], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "160": [95, 106], "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "123418": 95, "008165": 95, "313": [95, 103], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 97, 99, 101, 103, 108], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 97], "gone": 95, "samp": 95, "br": 95, "press": [95, 108], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "go": [95, 96, 97, 99], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "bigger": 96, "make_classif": 96, "5000": [96, 104], "n_featur": 96, "n_inform": 96, "n_redund": 96, "n_repeat": 96, "n_class": 96, "n_clusters_per_class": 96, "flip_i": 96, "class_sep": 96, "faiss": 96, "x_faiss": 96, "float32": [96, 103], "normalize_l2": 96, "index_factori": 96, "hnsw32": 96, "flat": [96, 97], "metric_inner_product": 96, "a_min": 96, "a_max": 96, "create_knn_graph": 96, "assert": 96, "indices_1d": 96, "ravel": 96, "distances_1d": 96, "50000": 96, "116": 96, "523": 96, "991400": 96, "356958": 96, "362": 96, "619565": 96, "108": [96, 103], "500000": 96, "651929": 96, "999827": 96, "031217": 96, "933716": 96, "627345": 96, "998540": 96, "530909": 96, "296974": 96, "646765": 96, "942721": 96, "332824": 96, "803246": 96, "625202": 96, "999816": 96, "474031": 96, "706253": 96, "655108": 96, "997703": 96, "131466": 96, "912389": 96, "639200": 96, "4995": 96, "998646": 96, "504755": 96, "746777": 96, "680033": 96, "4996": 96, "894230": 96, "340986": 96, "816472": 96, "640711": 96, "4997": 96, "999100": 96, "428545": 96, "592421": 96, "658949": 96, "4998": 96, "986792": 96, "273710": 96, "618033": 96, "4999": 96, "986776": 96, "273524": 96, "618084": 96, "instabl": 96, "proxim": 96, "analys": 96, "comfort": 96, "explor": [96, 103, 104], "third": 96, "parti": [96, 108], "newsgroup": 96, "alt": [96, 97], "atheism": [96, 97], "sci": [96, 97], "fetch_20newsgroup": 96, "newsgroups_train": 96, "header": 96, "footer": 96, "quot": 96, "df_text": 96, "target_nam": 96, "enlighten": 96, "omnipot": 96, "19apr199320262420": 96, "kelvin": 96, "jpl": 96, "nasa": 96, "gov": 96, "baa": 96, "nhenri": 96, "he": 96, "nno": 96, "ge": 96, "nlucki": 96, "babi": [96, 97], "tfidfvector": 96, "feature_extract": 96, "x_vector": 96, "data_valuation_issu": 96, "147": [96, 99, 103], "500047": 96, "500093": 96, "499953": 96, "1068": [96, 108], "1069": 96, "1070": 96, "1071": 96, "1072": 96, "1073": 96, "concentr": 96, "seaborn": 96, "sn": 96, "distinguish": 96, "strip": 96, "stripplot": 96, "hue": [96, 106], "dodg": 96, "jitter": 96, "axvlin": [96, 104], "xlabel": 96, "ourselv": 96, "make_blob": 96, "center": [96, 97], "cluster_std": 96, "n_noisy_label": 96, "meaning": [96, 98, 104], "silhouette_scor": 96, "gridsearchcv": 96, "silhouett": 96, "cluster_label": 96, "fit_predict": 96, "param_grid": 96, "grid_search": 96, "best_kmean": 96, "best_estimator_": 96, "underperforming_group_issu": 96, "328308": 96, "tab10": 96, "domain": 96, "knowledg": [96, 99], "dataset_tsv": 96, "ag": [96, 106], "gender": 96, "educ": 96, "experi": 96, "highsalari": 96, "indiana": 96, "phd": 96, "male": 96, "bachelor": 96, "femal": 96, "kansa": 96, "school": [96, 97], "ohio": 96, "57": [96, 97, 99, 108], "california": 96, "59": [96, 97, 103], "63": [96, 99, 103, 106], "47": [96, 97, 103], "stringio": 96, "sep": [96, 108], "simplic": [96, 102], "ordinalencod": 96, "columns_to_encod": 96, "encoded_df": 96, "salari": 96, "573681": 96, "underpin": 96, "caught": 96, "whenev": 96, "generate_data_depend": 96, "num_sampl": 96, "a1": 96, "a2": 96, "a3": 96, "375": 96, "975": 96, "non_iid_issu": 96, "796474": 96, "842432": 96, "922562": 96, "820759": 96, "873136": 96, "887373": 96, "825101": 96, "855875": 96, "751795": 96, "835796": 96, "ylabel": [96, 104], "coolwarm": 96, "colorbar": [96, 106], "strong": 96, "evid": 96, "inter": 96, "mitig": 96, "risk": 96, "deeper": 96, "tsv": 96, "tab": 96, "pars": 96, "annual_spend": 96, "number_of_transact": 96, "last_purchase_d": 96, "rural": 96, "4099": 96, "2024": [96, 108], "6421": 96, "nat": 96, "suburban": 96, "5436": 96, "4046": 96, "66": [96, 97], "3467": 96, "67": [96, 97, 103, 106], "4757": 96, "4199": 96, "4991": 96, "4655": 96, "82": [96, 97, 99, 103, 106], "5584": 96, "urban": 96, "3102": 96, "6637": 96, "9167": 96, "6790": 96, "5327": 96, "parse_d": 96, "lose": 96, "intact": 96, "encode_categorical_column": 96, "placehold": 96, "dropna": [96, 101], "category_to_numb": 96, "_encod": 96, "gender_encod": 96, "location_encod": 96, "focus": [96, 99, 101, 102, 106], "null_issu": 96, "833333": 96, "sorted_indic": [96, 103], "sorted_df": 96, "nice": 96, "styler": 96, "combined_df": 96, "concat": [96, 106], "highlight_null_valu": 96, "val": [96, 99], "yellow": [96, 97], "highlight_datalab_column": 96, "lightblu": 96, "highlight_is_null_issu": 96, "orang": [96, 97], "styled_df": 96, "nbsp": [96, 98, 99], "160000": 96, "820000": 96, "460000": 96, "470000": 96, "960000": 96, "620000": 96, "550000": 96, "660000": 96, "670000": [96, 97], "370000": 96, "530000": 96, "710000": 96, "020000": 96, "320000": 96, "990000": 96, "rarer": 96, "fairer": 96, "randomli": [96, 99], "class_imbalance_issu": 96, "countplot": 96, "xtick": 96, "rotat": 96, "ytick": 96, "filtered_df": 96, "xy": 96, "va": 96, "textual": 96, "get_ytick": 96, "nbar": 96, "nimbal": 96, "get_legend_handles_label": 96, "title_fonts": 96, "refin": 97, "instruct": [97, 98], "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "fly": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "monitor": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "sleep": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "websit": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "bytesio": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "ve": [97, 98, 99, 101, 103], "capit": 97, "29780": 97, "256": [97, 98, 103], "780": 97, "medic": [97, 108], "doctor": 97, "254": [97, 103], "359223": 97, "640777": 97, "184": [97, 99], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "251": [97, 103], "167": [97, 99, 103], "252": 97, "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "002216": 97, "000974": 97, "000873": 97, "000739": 97, "32635": 97, "32636": 97, "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "035": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": 97, "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0014": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "seamless": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "from_dict": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "feed": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "tmp": 98, "ipykernel_7878": 98, "1995098996": 98, "deprecationwarn": 98, "dataframegroupbi": 98, "include_group": 98, "silenc": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "alter": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "enhanc": [99, 101, 103], "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103, 108], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "117": [99, 106], "206": [99, 103], "115": [99, 103], "193": 99, "194": 99, "201": [99, 103], "174": 99, "163": 99, "150": [99, 101, 103], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106], "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": [102, 108], "143": [102, 103], "216": [102, 103, 108], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "295": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "327": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": 103, "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "153": 103, "149": 103, "140": 103, "124": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "173": 103, "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "320": 103, "314": 103, "199": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "anomali": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "root": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "107997102": 104, "42it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "img": [104, 106], "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "kb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "6mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 92, 94, 95, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102], "creat": [7, 90, 91, 99, 101], "your": [7, 84, 90, 91, 95, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": [7, 96], "intermedi": 7, "advanc": [7, 90], "us": [7, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 96], "cluster": [8, 96, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 90], "cleanlab": [9, 10, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 92, 94, 95], "mode": [9, 10, 84, 92, 94, 95], "can": [10, 91, 97, 98, 99, 101], "detect": [10, 89, 91, 92, 94, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 92, 94, 95, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 91, 92, 94, 95], "duplic": [10, 20, 91, 92, 94, 95, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 95, 96], "iid": [10, 95, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 96, 99, 107], "imbal": [10, 21, 96], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 92, 104], "specif": [10, 22, 107], "underperform": [10, 96, 98], "group": [10, 96, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 96], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 96], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 96], "paramet": [10, 99], "get": [12, 90, 91, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 92], "dataset": [37, 63, 84, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 90], "token_classification_util": 56, "util": 57, "valid": [58, 92, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 91, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 92, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 96, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 91, 92, 94, 96, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 99, 106], "pre": [85, 89, 96, 98, 104], "function": [85, 90], "name": 85, "chang": 85, "modul": [85, 99], "new": 85, "remov": 85, "argument": [85, 90], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 93, 97, 100], "structur": 87, "tabular": [87, 94], "requir": [87, 88, 90, 91, 92, 94, 95, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 94, 95, 96, 106], "process": [87, 94, 104, 106], "select": [87, 94], "comput": [87, 89, 92, 94, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 94, 95, 101, 105], "sampl": [87, 89, 90, 91, 92, 94, 95, 101, 105], "predict": [87, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 94, 95, 96, 101, 105], "more": [87, 88, 91, 99, 106], "text": [88, 95, 96, 108], "format": [88, 95, 98, 102, 103], "defin": [88, 92, 95, 96, 106], "potenti": [88, 101, 106], "an": [89, 92, 98], "audio": 89, "import": [89, 90, 91, 92, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 92, 104], "fit": 89, "linear": 89, "workflow": [90, 96, 99], "audit": [90, 91], "classifi": [90, 91, 96], "instanti": 90, "object": [90, 103], "increment": 90, "specifi": [90, 98], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 99], "kind": [91, 103], "skip": [91, 97, 99, 101], "detail": [91, 97, 99, 101], "about": 91, "addit": 91, "inform": [91, 92], "fetch": [92, 97], "normal": 92, "fashion": 92, "mnist": 92, "prepar": [92, 96], "k": [92, 94, 105], "fold": [92, 105], "cross": [92, 105], "embed": [92, 104], "7": [92, 99], "view": 92, "most": [92, 108], "like": 92, "exampl": [92, 98, 99, 104], "sever": 92, "set": [92, 99], "dark": 92, "top": [92, 107], "low": 92, "numer": 94, "categor": [94, 96], "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": [94, 96], "drift": [95, 102], "miscellan": 96, "acceler": 96, "knn": 96, "obtain": 96, "identifi": [96, 98, 103], "explan": 96, "vector": 96, "perform": 96, "visual": [96, 99, 103, 104, 107], "score": [96, 99, 101, 102, 103, 107, 108], "synthet": 96, "result": 96, "predefin": 96, "slice": [96, 98], "i": [96, 98, 99, 105], "catch": 96, "valu": 96, "encod": 96, "initi": [96, 101], "sort": 96, "6": [96, 99], "understand": 97, "evalu": 97, "health": [97, 99], "8": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "when": [98, 99], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "better": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[96, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[96, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[96, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[96, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[96, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[96, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[96, "Explanation:"]], "Data Valuation": [[96, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[96, "1.-Load-and-Prepare-the-Dataset"], [96, "id2"], [96, "id5"]], "2. Vectorize the Text Data": [[96, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[96, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[96, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[96, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[96, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[96, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [96, "id3"]], "3. (Optional) Cluster the Data": [[96, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[96, "4.-Identify-Underperforming-Groups-with-Datalab"], [96, "id4"]], "5. (Optional) Visualize the Results": [[96, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[96, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[96, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[96, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[96, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[96, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[96, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[96, "1.-Load-the-Dataset"]], "2: Encode Categorical Values": [[96, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[96, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[96, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[96, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[96, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[96, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[96, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[96, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[96, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[98, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index cc8956d28..f3d888536 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:27.766466Z", - "iopub.status.busy": "2024-06-25T19:31:27.766073Z", - "iopub.status.idle": "2024-06-25T19:31:28.950995Z", - "shell.execute_reply": "2024-06-25T19:31:28.950453Z" + "iopub.execute_input": "2024-06-25T23:13:19.683650Z", + "iopub.status.busy": "2024-06-25T23:13:19.683483Z", + "iopub.status.idle": "2024-06-25T23:13:20.876411Z", + "shell.execute_reply": "2024-06-25T23:13:20.875863Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:28.953618Z", - "iopub.status.busy": "2024-06-25T19:31:28.953345Z", - "iopub.status.idle": "2024-06-25T19:31:28.970797Z", - "shell.execute_reply": "2024-06-25T19:31:28.970252Z" + "iopub.execute_input": "2024-06-25T23:13:20.879016Z", + "iopub.status.busy": "2024-06-25T23:13:20.878582Z", + "iopub.status.idle": "2024-06-25T23:13:20.895831Z", + "shell.execute_reply": "2024-06-25T23:13:20.895402Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:28.973223Z", - "iopub.status.busy": "2024-06-25T19:31:28.972835Z", - "iopub.status.idle": "2024-06-25T19:31:29.167625Z", - "shell.execute_reply": "2024-06-25T19:31:29.167053Z" + "iopub.execute_input": "2024-06-25T23:13:20.897855Z", + "iopub.status.busy": "2024-06-25T23:13:20.897628Z", + "iopub.status.idle": "2024-06-25T23:13:21.010572Z", + "shell.execute_reply": "2024-06-25T23:13:21.009996Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:29.197486Z", - "iopub.status.busy": "2024-06-25T19:31:29.197079Z", - "iopub.status.idle": "2024-06-25T19:31:29.200622Z", - "shell.execute_reply": "2024-06-25T19:31:29.200145Z" + "iopub.execute_input": "2024-06-25T23:13:21.037181Z", + "iopub.status.busy": "2024-06-25T23:13:21.036568Z", + "iopub.status.idle": "2024-06-25T23:13:21.040405Z", + "shell.execute_reply": "2024-06-25T23:13:21.039967Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:29.202620Z", - "iopub.status.busy": "2024-06-25T19:31:29.202441Z", - "iopub.status.idle": "2024-06-25T19:31:29.210646Z", - "shell.execute_reply": "2024-06-25T19:31:29.210233Z" + "iopub.execute_input": "2024-06-25T23:13:21.042333Z", + "iopub.status.busy": "2024-06-25T23:13:21.042161Z", + "iopub.status.idle": "2024-06-25T23:13:21.050408Z", + "shell.execute_reply": "2024-06-25T23:13:21.049993Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:29.212637Z", - "iopub.status.busy": "2024-06-25T19:31:29.212443Z", - "iopub.status.idle": "2024-06-25T19:31:29.214911Z", - "shell.execute_reply": "2024-06-25T19:31:29.214495Z" + "iopub.execute_input": "2024-06-25T23:13:21.052411Z", + "iopub.status.busy": "2024-06-25T23:13:21.052111Z", + "iopub.status.idle": "2024-06-25T23:13:21.054810Z", + "shell.execute_reply": "2024-06-25T23:13:21.054263Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:29.216761Z", - "iopub.status.busy": "2024-06-25T19:31:29.216593Z", - "iopub.status.idle": "2024-06-25T19:31:29.731597Z", - "shell.execute_reply": "2024-06-25T19:31:29.730952Z" + "iopub.execute_input": "2024-06-25T23:13:21.056799Z", + "iopub.status.busy": "2024-06-25T23:13:21.056479Z", + "iopub.status.idle": "2024-06-25T23:13:21.584928Z", + "shell.execute_reply": "2024-06-25T23:13:21.584385Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:29.733935Z", - "iopub.status.busy": "2024-06-25T19:31:29.733740Z", - "iopub.status.idle": "2024-06-25T19:31:31.552423Z", - "shell.execute_reply": "2024-06-25T19:31:31.551801Z" + "iopub.execute_input": "2024-06-25T23:13:21.587427Z", + "iopub.status.busy": "2024-06-25T23:13:21.587080Z", + "iopub.status.idle": "2024-06-25T23:13:23.402116Z", + "shell.execute_reply": "2024-06-25T23:13:23.401472Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.554814Z", - "iopub.status.busy": "2024-06-25T19:31:31.554296Z", - "iopub.status.idle": "2024-06-25T19:31:31.564323Z", - "shell.execute_reply": "2024-06-25T19:31:31.563854Z" + "iopub.execute_input": "2024-06-25T23:13:23.404837Z", + "iopub.status.busy": "2024-06-25T23:13:23.404191Z", + "iopub.status.idle": "2024-06-25T23:13:23.414068Z", + "shell.execute_reply": "2024-06-25T23:13:23.413559Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.566389Z", - "iopub.status.busy": "2024-06-25T19:31:31.566065Z", - "iopub.status.idle": "2024-06-25T19:31:31.570002Z", - "shell.execute_reply": "2024-06-25T19:31:31.569569Z" + "iopub.execute_input": "2024-06-25T23:13:23.416257Z", + "iopub.status.busy": "2024-06-25T23:13:23.415941Z", + "iopub.status.idle": "2024-06-25T23:13:23.420056Z", + "shell.execute_reply": "2024-06-25T23:13:23.419521Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.572029Z", - "iopub.status.busy": "2024-06-25T19:31:31.571709Z", - "iopub.status.idle": "2024-06-25T19:31:31.579030Z", - "shell.execute_reply": "2024-06-25T19:31:31.578475Z" + "iopub.execute_input": "2024-06-25T23:13:23.422287Z", + "iopub.status.busy": "2024-06-25T23:13:23.421904Z", + "iopub.status.idle": "2024-06-25T23:13:23.429186Z", + "shell.execute_reply": "2024-06-25T23:13:23.428630Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.581187Z", - "iopub.status.busy": "2024-06-25T19:31:31.580887Z", - "iopub.status.idle": "2024-06-25T19:31:31.691824Z", - "shell.execute_reply": "2024-06-25T19:31:31.691204Z" + "iopub.execute_input": "2024-06-25T23:13:23.431342Z", + "iopub.status.busy": "2024-06-25T23:13:23.431023Z", + "iopub.status.idle": "2024-06-25T23:13:23.542534Z", + "shell.execute_reply": "2024-06-25T23:13:23.542044Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.694170Z", - "iopub.status.busy": "2024-06-25T19:31:31.693686Z", - "iopub.status.idle": "2024-06-25T19:31:31.696628Z", - "shell.execute_reply": "2024-06-25T19:31:31.696102Z" + "iopub.execute_input": "2024-06-25T23:13:23.544624Z", + "iopub.status.busy": "2024-06-25T23:13:23.544286Z", + "iopub.status.idle": "2024-06-25T23:13:23.546943Z", + "shell.execute_reply": "2024-06-25T23:13:23.546515Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:31.698847Z", - "iopub.status.busy": "2024-06-25T19:31:31.698415Z", - "iopub.status.idle": "2024-06-25T19:31:33.679358Z", - "shell.execute_reply": "2024-06-25T19:31:33.678623Z" + "iopub.execute_input": "2024-06-25T23:13:23.548943Z", + "iopub.status.busy": "2024-06-25T23:13:23.548635Z", + "iopub.status.idle": "2024-06-25T23:13:25.510005Z", + "shell.execute_reply": "2024-06-25T23:13:25.509395Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:33.682516Z", - "iopub.status.busy": "2024-06-25T19:31:33.681890Z", - "iopub.status.idle": "2024-06-25T19:31:33.693245Z", - "shell.execute_reply": "2024-06-25T19:31:33.692694Z" + "iopub.execute_input": "2024-06-25T23:13:25.513097Z", + "iopub.status.busy": "2024-06-25T23:13:25.512371Z", + "iopub.status.idle": "2024-06-25T23:13:25.523496Z", + "shell.execute_reply": "2024-06-25T23:13:25.522944Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:33.695397Z", - "iopub.status.busy": "2024-06-25T19:31:33.695096Z", - "iopub.status.idle": "2024-06-25T19:31:33.841440Z", - "shell.execute_reply": "2024-06-25T19:31:33.840949Z" + "iopub.execute_input": "2024-06-25T23:13:25.525641Z", + "iopub.status.busy": "2024-06-25T23:13:25.525323Z", + "iopub.status.idle": "2024-06-25T23:13:25.545176Z", + "shell.execute_reply": "2024-06-25T23:13:25.544739Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 22a2112a2..bab4e39b3 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard'}
+Classes: {'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged'}
 

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1215,7 +1215,7 @@

4. Train a more robust model from noisy labels -{"state": {"ff59fb88d4aa46d481bfabbfb12c3c08": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8f663dc8059d42e4a1c16507affd40e3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ca2793614f594cf4a384748bfd36b073": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ff59fb88d4aa46d481bfabbfb12c3c08", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8f663dc8059d42e4a1c16507affd40e3", "tabbable": null, "tooltip": null, "value": 391.0}}, "77399e1417a148bbaaf8c99c6e4b2bb5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c288e9049ba4814a9020bbda1512944": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "baa0ee8552c34f9f808dc9985cb43d88": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_77399e1417a148bbaaf8c99c6e4b2bb5", "placeholder": "\u200b", "style": "IPY_MODEL_3c288e9049ba4814a9020bbda1512944", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "4c673f7ac4ec44149b7f219298381ca5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3282f6972624465bd15f84c183446ed": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3e906d417956421a978812281c844e7e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c673f7ac4ec44149b7f219298381ca5", "placeholder": "\u200b", "style": "IPY_MODEL_e3282f6972624465bd15f84c183446ed", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200764.5kB/s]"}}, "68d5eef2d9154625b81ca5a98ad95302": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9ebd3cab6ee4b38af6e19b1c2a2b7a0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_baa0ee8552c34f9f808dc9985cb43d88", "IPY_MODEL_ca2793614f594cf4a384748bfd36b073", "IPY_MODEL_3e906d417956421a978812281c844e7e"], "layout": "IPY_MODEL_68d5eef2d9154625b81ca5a98ad95302", "tabbable": null, "tooltip": null}}, "3b3726b7d15f4242bbe2a0e0323f5edd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "054e6f2fd5d14973972b7db9b5e4ed03": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c768456d220342ec8cc60cc2528c3732": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3b3726b7d15f4242bbe2a0e0323f5edd", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_054e6f2fd5d14973972b7db9b5e4ed03", "tabbable": null, "tooltip": null, "value": 2211.0}}, "e95f58118fca41f79754cf64dc768e55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5d0e81a247724335969fb0549b56194b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2db6e61311574d2799f341e0f2b280db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e95f58118fca41f79754cf64dc768e55", "placeholder": "\u200b", "style": "IPY_MODEL_5d0e81a247724335969fb0549b56194b", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "d98e8d3d73134c40b8256b723de4c9ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55cc185655a64110894ebe751347ee97": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4c280f6c890c468db24cfa085162f8eb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d98e8d3d73134c40b8256b723de4c9ba", "placeholder": "\u200b", "style": "IPY_MODEL_55cc185655a64110894ebe751347ee97", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007422kB/s]"}}, "dd1d6b6bcb61451a9984bb2bddd1826e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a8fe72969fe348a99c98be80dccd6c53": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2db6e61311574d2799f341e0f2b280db", "IPY_MODEL_c768456d220342ec8cc60cc2528c3732", "IPY_MODEL_4c280f6c890c468db24cfa085162f8eb"], "layout": "IPY_MODEL_dd1d6b6bcb61451a9984bb2bddd1826e", "tabbable": null, "tooltip": null}}, "a7fc4b58838f4350b7cce239e6cf7c4d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a7755505c8604626b66bd90ac49165ab": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4105d4a519b74c618417f38830a92826": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a7fc4b58838f4350b7cce239e6cf7c4d", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a7755505c8604626b66bd90ac49165ab", "tabbable": null, "tooltip": null, "value": 665.0}}, "c693822d0e9f45a5a0c3d5598c8464f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c14e14271b4450f89db48de72dffebe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5ccb993dd72c4674bf4c5129e4e19f7b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c693822d0e9f45a5a0c3d5598c8464f4", "placeholder": "\u200b", "style": "IPY_MODEL_6c14e14271b4450f89db48de72dffebe", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "8b998a37935c4d30856e95a2cd3f1439": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "200586c52a4549678a949ca57213c920": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "007989e5e6cd44a5ada30dda1923d065": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b998a37935c4d30856e95a2cd3f1439", "placeholder": "\u200b", "style": "IPY_MODEL_200586c52a4549678a949ca57213c920", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007121kB/s]"}}, "811eb3464f8b4658af7b92cb22fd5db1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e5e14c62e1a4cf09b6fb8b0bb5ca451": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5ccb993dd72c4674bf4c5129e4e19f7b", "IPY_MODEL_4105d4a519b74c618417f38830a92826", "IPY_MODEL_007989e5e6cd44a5ada30dda1923d065"], "layout": "IPY_MODEL_811eb3464f8b4658af7b92cb22fd5db1", "tabbable": null, "tooltip": null}}, "68caf9f94f8b49e29f2522245cfc1967": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0bd860a7540947f98823d4a40bdafb86": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "acd50c68e1bb474ca7e642fdbecd2231": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_68caf9f94f8b49e29f2522245cfc1967", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0bd860a7540947f98823d4a40bdafb86", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "6d917afdd1bf47ea943ba43a44498f21": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47c94c5344ac480795afc89535d19275": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f9e7d310eb764ed9abf54e3695e98058": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6d917afdd1bf47ea943ba43a44498f21", "placeholder": "\u200b", "style": "IPY_MODEL_47c94c5344ac480795afc89535d19275", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "371271d754f04722b9ba2102ec6453b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72118120122f4623822582e300065947": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a4ea888fe4004256885e50c60385b700": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_371271d754f04722b9ba2102ec6453b3", "placeholder": "\u200b", "style": "IPY_MODEL_72118120122f4623822582e300065947", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007137MB/s]"}}, "91bc4e78a8934597a32b965150f632af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "293b01a69e094447aeebb1e7e866fd51": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f9e7d310eb764ed9abf54e3695e98058", "IPY_MODEL_acd50c68e1bb474ca7e642fdbecd2231", "IPY_MODEL_a4ea888fe4004256885e50c60385b700"], "layout": "IPY_MODEL_91bc4e78a8934597a32b965150f632af", "tabbable": null, "tooltip": null}}, "6da0de8fbedc40cca53799f8e45cf74b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0f309cd65ee48e4902fba4c141424a9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3156c56a2d1e46779554f6e680768b77": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6da0de8fbedc40cca53799f8e45cf74b", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b0f309cd65ee48e4902fba4c141424a9", "tabbable": null, "tooltip": null, "value": 466062.0}}, "a2f3a938880745e29369216068f395dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79bb28d92fc14400815dc3c2c98b31e6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "65fb96fdd89c4a7aa6863a61cd8c8281": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a2f3a938880745e29369216068f395dc", "placeholder": "\u200b", "style": "IPY_MODEL_79bb28d92fc14400815dc3c2c98b31e6", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "2ed7ba0d1cb94817b121646f00c5a089": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e45f1523c8d6445cacf72f4752609a80": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5e1fb144070e4665b06631fd83e8a769": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ed7ba0d1cb94817b121646f00c5a089", "placeholder": "\u200b", "style": "IPY_MODEL_e45f1523c8d6445cacf72f4752609a80", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20073.42MB/s]"}}, "5c2455143c7b4c9d8179735a17395106": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9bbf8e629233461d84330aac6c38bc36": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_65fb96fdd89c4a7aa6863a61cd8c8281", "IPY_MODEL_3156c56a2d1e46779554f6e680768b77", "IPY_MODEL_5e1fb144070e4665b06631fd83e8a769"], "layout": "IPY_MODEL_5c2455143c7b4c9d8179735a17395106", "tabbable": null, "tooltip": null}}, "c467bba142d440348c677b9b88920801": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e515a523986480cbbe1094ca437f513": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "703a1805a6e14459bff5e7bc196e2924": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c467bba142d440348c677b9b88920801", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9e515a523986480cbbe1094ca437f513", "tabbable": null, "tooltip": null, "value": 48.0}}, "69f6ccf772ad48fa86cea5e7b57f6c92": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2606990b2b654e949895c6ea13bace1b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "684d44672b7e4f3e87afb7ff19a14a7d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_69f6ccf772ad48fa86cea5e7b57f6c92", "placeholder": "\u200b", "style": "IPY_MODEL_2606990b2b654e949895c6ea13bace1b", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "7930ae36275240238ba62db1afd25ce2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "226f358553304154b872be466bcda2cc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9678a77b61324383a27e704a34123184": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7930ae36275240238ba62db1afd25ce2", "placeholder": "\u200b", "style": "IPY_MODEL_226f358553304154b872be466bcda2cc", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20079.10kB/s]"}}, "7f83efe5fa43477c83b7dd0eab30b115": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "38046751c5324a119490bbe8a5ec326c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_684d44672b7e4f3e87afb7ff19a14a7d", "IPY_MODEL_703a1805a6e14459bff5e7bc196e2924", "IPY_MODEL_9678a77b61324383a27e704a34123184"], "layout": "IPY_MODEL_7f83efe5fa43477c83b7dd0eab30b115", "tabbable": null, "tooltip": null}}, "d8c1ad41f4fe4cf0a3f44d363086f32b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "43e54781cf104522a0a7479b4684f176": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f674728a058e4ebc9cda63400ca9a97a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d8c1ad41f4fe4cf0a3f44d363086f32b", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_43e54781cf104522a0a7479b4684f176", "tabbable": null, "tooltip": null, "value": 231508.0}}, "1047a464f8ad4f08a9c39e32ef88f77b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d22816db94ed4b3aa623fb9f9eb42646": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6854a7c0f0b846a99e2cc07332f5e2ad": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1047a464f8ad4f08a9c39e32ef88f77b", "placeholder": "\u200b", "style": "IPY_MODEL_d22816db94ed4b3aa623fb9f9eb42646", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "d76c41fd805e466081dfeb1d93477c92": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "76977b7a679849439d4159579b51c480": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b780cdac15fd4ff5bf0b64d9369ef63b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d76c41fd805e466081dfeb1d93477c92", "placeholder": "\u200b", "style": "IPY_MODEL_76977b7a679849439d4159579b51c480", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u20073.55MB/s]"}}, "52f1b4fab3d74ad180e90f63881f6b32": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7f84e049288f438cbb050b771815ee1a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6854a7c0f0b846a99e2cc07332f5e2ad", "IPY_MODEL_f674728a058e4ebc9cda63400ca9a97a", "IPY_MODEL_b780cdac15fd4ff5bf0b64d9369ef63b"], "layout": "IPY_MODEL_52f1b4fab3d74ad180e90f63881f6b32", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"de1cc30d88f74d2299519f8846818183": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e166f17ea384c918f9777404649330c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "42243b174d064f20a73f6c60315575eb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_de1cc30d88f74d2299519f8846818183", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6e166f17ea384c918f9777404649330c", "tabbable": null, "tooltip": null, "value": 391.0}}, "65b932c28ff3495098c0db8b56dd18de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e098c9499e5142759ba844e4486a6da6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "075ca50b902b46989673d1147902560d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_65b932c28ff3495098c0db8b56dd18de", "placeholder": "\u200b", "style": "IPY_MODEL_e098c9499e5142759ba844e4486a6da6", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "f933a441f363402d9fc2e796940cf4d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "328a64a36aa14cc4a13e8c232d198977": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bbe4f79369114ed9839dd57535856697": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f933a441f363402d9fc2e796940cf4d3", "placeholder": "\u200b", "style": "IPY_MODEL_328a64a36aa14cc4a13e8c232d198977", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200768.8kB/s]"}}, "1b04ac435f764f288a38e492f152ec20": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6477ae421e3e43aa814150445e014ac0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_075ca50b902b46989673d1147902560d", "IPY_MODEL_42243b174d064f20a73f6c60315575eb", "IPY_MODEL_bbe4f79369114ed9839dd57535856697"], "layout": "IPY_MODEL_1b04ac435f764f288a38e492f152ec20", "tabbable": null, "tooltip": null}}, "4a7d8e7b7ba3464fa41165f58db05e12": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c7cdf638b52549a3923f4d9f4dacf40d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a859632225cf4c338d075b33f4abd2e0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a7d8e7b7ba3464fa41165f58db05e12", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c7cdf638b52549a3923f4d9f4dacf40d", "tabbable": null, "tooltip": null, "value": 2211.0}}, "dfd5800b7e4c41fb90cf34888c17c960": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9bdcb01ac1254e4ca46f786f1f48635e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8674027fdc534d3791107a43a5e491ab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dfd5800b7e4c41fb90cf34888c17c960", "placeholder": "\u200b", "style": "IPY_MODEL_9bdcb01ac1254e4ca46f786f1f48635e", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "c363fe3444424a62b964efb6ec305f7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d622adb2d6724d848794f6e7c40de0b3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1d787eed2c504168b62c71e3e8b823c8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c363fe3444424a62b964efb6ec305f7f", "placeholder": "\u200b", "style": "IPY_MODEL_d622adb2d6724d848794f6e7c40de0b3", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007422kB/s]"}}, "5da1ee68b4f848c98bea7614ebf85f59": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e62034a9e6c043cc997861592486168a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8674027fdc534d3791107a43a5e491ab", "IPY_MODEL_a859632225cf4c338d075b33f4abd2e0", "IPY_MODEL_1d787eed2c504168b62c71e3e8b823c8"], "layout": "IPY_MODEL_5da1ee68b4f848c98bea7614ebf85f59", "tabbable": null, "tooltip": null}}, "e98f8f44d5174617bc22e566a83f2e14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e9b474bbbd44555ac3344b5d173ecd4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8784e3b2891144468a5d989adaf62ae7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e98f8f44d5174617bc22e566a83f2e14", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9e9b474bbbd44555ac3344b5d173ecd4", "tabbable": null, "tooltip": null, "value": 665.0}}, "8c2a54a50b174504b67275f6fc1758ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd9acfb5facf4aeaa71d2088d344d085": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e7466595e3ae479d9ee9e989b0fa9efb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c2a54a50b174504b67275f6fc1758ea", "placeholder": "\u200b", "style": "IPY_MODEL_fd9acfb5facf4aeaa71d2088d344d085", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "2b78fa97669e4067a4bd3de6ccaaa88a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7dbd67a2cb264612b0d638e5e63a9a07": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a6280db66f3e434bbdb20ebab4989dec": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b78fa97669e4067a4bd3de6ccaaa88a", "placeholder": "\u200b", "style": "IPY_MODEL_7dbd67a2cb264612b0d638e5e63a9a07", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007129kB/s]"}}, "32522284f75645f69b58819ffe34d2a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e2c610098e54fea94839bb48d055f22": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e7466595e3ae479d9ee9e989b0fa9efb", "IPY_MODEL_8784e3b2891144468a5d989adaf62ae7", "IPY_MODEL_a6280db66f3e434bbdb20ebab4989dec"], "layout": "IPY_MODEL_32522284f75645f69b58819ffe34d2a7", "tabbable": null, "tooltip": null}}, "ab64f8b595ef4648a47b1b2da8eac241": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03d9becbdd8046bf81525afd016ed573": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2e901b505de34984a7c06e4ff7be8ebe": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab64f8b595ef4648a47b1b2da8eac241", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_03d9becbdd8046bf81525afd016ed573", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "2fe0de05b5e847e89ba80b8e4d398c4c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f576e9c9374443588b496e63f781624": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fdddfa973dd841b39245eda900cf0339": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2fe0de05b5e847e89ba80b8e4d398c4c", "placeholder": "\u200b", "style": "IPY_MODEL_6f576e9c9374443588b496e63f781624", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "5dc7272ce64644afa609af3b2046a38e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c220349ac77649e3bffdb0998b40b102": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "20471efe14204b3fa973ce7c173612f3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5dc7272ce64644afa609af3b2046a38e", "placeholder": "\u200b", "style": "IPY_MODEL_c220349ac77649e3bffdb0998b40b102", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007298MB/s]"}}, "b0d211d5585d414d93c249182a668daf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b6e029c7f61484d880737df09cb3291": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fdddfa973dd841b39245eda900cf0339", "IPY_MODEL_2e901b505de34984a7c06e4ff7be8ebe", "IPY_MODEL_20471efe14204b3fa973ce7c173612f3"], "layout": "IPY_MODEL_b0d211d5585d414d93c249182a668daf", "tabbable": null, "tooltip": null}}, "8f55a6cbd0184173b7c3ecca3b2be6a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "670785469ef5401e82177c280f877928": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2808a2dd85f840dc8384e96b6e31d382": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f55a6cbd0184173b7c3ecca3b2be6a1", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_670785469ef5401e82177c280f877928", "tabbable": null, "tooltip": null, "value": 466062.0}}, "93beb5b9f7914314ac973bada268bcc2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "71736b2d04e142cea126cbddad9801e2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "35b5e0b171c7498d8e1a3633c745e073": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_93beb5b9f7914314ac973bada268bcc2", "placeholder": "\u200b", "style": "IPY_MODEL_71736b2d04e142cea126cbddad9801e2", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "1a996c0fb30c4181aef76b9d0b39bd20": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d98dfc145534a779ad6c609609abd31": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7261cd19786a4a0b95b770c51f033b0c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1a996c0fb30c4181aef76b9d0b39bd20", "placeholder": "\u200b", "style": "IPY_MODEL_8d98dfc145534a779ad6c609609abd31", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200714.0MB/s]"}}, "485477b3f18244cb8e82240fdfc321c6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e750160df873483c9096b064baeab112": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_35b5e0b171c7498d8e1a3633c745e073", "IPY_MODEL_2808a2dd85f840dc8384e96b6e31d382", "IPY_MODEL_7261cd19786a4a0b95b770c51f033b0c"], "layout": "IPY_MODEL_485477b3f18244cb8e82240fdfc321c6", "tabbable": null, "tooltip": null}}, "4d312e2d3f524fb1bf8dba710216c761": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b11b3d0461c94c138ecf254a642eb544": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "937b241a390b4aa1b76cb3c07905b257": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4d312e2d3f524fb1bf8dba710216c761", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b11b3d0461c94c138ecf254a642eb544", "tabbable": null, "tooltip": null, "value": 48.0}}, "537d23f9aefe4d35aa82e5454ab78815": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c700601fd7d4148894afa4961283a88": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aa703043d8574c99856909333746a558": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_537d23f9aefe4d35aa82e5454ab78815", "placeholder": "\u200b", "style": "IPY_MODEL_3c700601fd7d4148894afa4961283a88", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "197c89430b124236a2a7ca6374f1edf0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "634f7b4ddf0e46f3b98d4b3c9ce87c86": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c9a979755e9a403eb0ca342120826ee6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_197c89430b124236a2a7ca6374f1edf0", "placeholder": "\u200b", "style": "IPY_MODEL_634f7b4ddf0e46f3b98d4b3c9ce87c86", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20079.85kB/s]"}}, "5f117a6515e1436cad7028680580b6a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ddf577727f0e42a1b074bcb455a4258a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_aa703043d8574c99856909333746a558", "IPY_MODEL_937b241a390b4aa1b76cb3c07905b257", "IPY_MODEL_c9a979755e9a403eb0ca342120826ee6"], "layout": "IPY_MODEL_5f117a6515e1436cad7028680580b6a5", "tabbable": null, "tooltip": null}}, "1aab5456eec04063a5df26734e017b79": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d7c835da9be44280b48466c92cb851d6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "02a072ed32924507837162ad70da9612": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1aab5456eec04063a5df26734e017b79", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d7c835da9be44280b48466c92cb851d6", "tabbable": null, "tooltip": null, "value": 231508.0}}, "68a06976e74d4773829c8f1f5d4cc2ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7bc89cc511714eb3b9db0329b0ad4f47": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0ee27b719c824572adc4d14d07e72cf6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_68a06976e74d4773829c8f1f5d4cc2ab", "placeholder": "\u200b", "style": "IPY_MODEL_7bc89cc511714eb3b9db0329b0ad4f47", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "66d43ed9bf3f4ef6aedf76e3d08d36c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c2efa0519364cd7ad5d4149de79bec8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c73c253ce5ce4c0c9744f5c0cb9d0530": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_66d43ed9bf3f4ef6aedf76e3d08d36c7", "placeholder": "\u200b", "style": "IPY_MODEL_3c2efa0519364cd7ad5d4149de79bec8", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200716.1MB/s]"}}, "bd8af8fcf5f34f848183718d176ce55f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97155a33cf37454f8282b21b3806031d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0ee27b719c824572adc4d14d07e72cf6", "IPY_MODEL_02a072ed32924507837162ad70da9612", "IPY_MODEL_c73c253ce5ce4c0c9744f5c0cb9d0530"], "layout": "IPY_MODEL_bd8af8fcf5f34f848183718d176ce55f", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index a83013185..9af680b6f 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:37.218802Z", - "iopub.status.busy": "2024-06-25T19:31:37.218626Z", - "iopub.status.idle": "2024-06-25T19:31:40.132819Z", - "shell.execute_reply": "2024-06-25T19:31:40.132198Z" + "iopub.execute_input": "2024-06-25T23:13:28.905676Z", + "iopub.status.busy": "2024-06-25T23:13:28.905503Z", + "iopub.status.idle": "2024-06-25T23:13:31.555296Z", + "shell.execute_reply": "2024-06-25T23:13:31.554730Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.135382Z", - "iopub.status.busy": "2024-06-25T19:31:40.135098Z", - "iopub.status.idle": "2024-06-25T19:31:40.138344Z", - "shell.execute_reply": "2024-06-25T19:31:40.137917Z" + "iopub.execute_input": "2024-06-25T23:13:31.557860Z", + "iopub.status.busy": "2024-06-25T23:13:31.557469Z", + "iopub.status.idle": "2024-06-25T23:13:31.560897Z", + "shell.execute_reply": "2024-06-25T23:13:31.560352Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.140291Z", - "iopub.status.busy": "2024-06-25T19:31:40.139985Z", - "iopub.status.idle": "2024-06-25T19:31:40.143618Z", - "shell.execute_reply": "2024-06-25T19:31:40.143162Z" + "iopub.execute_input": "2024-06-25T23:13:31.562942Z", + "iopub.status.busy": "2024-06-25T23:13:31.562629Z", + "iopub.status.idle": "2024-06-25T23:13:31.565542Z", + "shell.execute_reply": "2024-06-25T23:13:31.565096Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.145468Z", - "iopub.status.busy": "2024-06-25T19:31:40.145298Z", - "iopub.status.idle": "2024-06-25T19:31:40.303499Z", - "shell.execute_reply": "2024-06-25T19:31:40.302894Z" + "iopub.execute_input": "2024-06-25T23:13:31.567524Z", + "iopub.status.busy": "2024-06-25T23:13:31.567195Z", + "iopub.status.idle": "2024-06-25T23:13:31.589244Z", + "shell.execute_reply": "2024-06-25T23:13:31.588737Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.305557Z", - "iopub.status.busy": "2024-06-25T19:31:40.305379Z", - "iopub.status.idle": "2024-06-25T19:31:40.309091Z", - "shell.execute_reply": "2024-06-25T19:31:40.308646Z" + "iopub.execute_input": "2024-06-25T23:13:31.591105Z", + "iopub.status.busy": "2024-06-25T23:13:31.590840Z", + "iopub.status.idle": "2024-06-25T23:13:31.594215Z", + "shell.execute_reply": "2024-06-25T23:13:31.593789Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.311111Z", - "iopub.status.busy": "2024-06-25T19:31:40.310718Z", - "iopub.status.idle": "2024-06-25T19:31:40.314252Z", - "shell.execute_reply": "2024-06-25T19:31:40.313796Z" + "iopub.execute_input": "2024-06-25T23:13:31.596064Z", + "iopub.status.busy": "2024-06-25T23:13:31.595883Z", + "iopub.status.idle": "2024-06-25T23:13:31.599153Z", + "shell.execute_reply": "2024-06-25T23:13:31.598670Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard'}\n" + "Classes: {'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.316289Z", - "iopub.status.busy": "2024-06-25T19:31:40.315953Z", - "iopub.status.idle": "2024-06-25T19:31:40.318817Z", - "shell.execute_reply": "2024-06-25T19:31:40.318324Z" + "iopub.execute_input": "2024-06-25T23:13:31.601175Z", + "iopub.status.busy": "2024-06-25T23:13:31.600751Z", + "iopub.status.idle": "2024-06-25T23:13:31.603901Z", + "shell.execute_reply": "2024-06-25T23:13:31.603365Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.320894Z", - "iopub.status.busy": "2024-06-25T19:31:40.320580Z", - "iopub.status.idle": "2024-06-25T19:31:40.323708Z", - "shell.execute_reply": "2024-06-25T19:31:40.323263Z" + "iopub.execute_input": "2024-06-25T23:13:31.606046Z", + "iopub.status.busy": "2024-06-25T23:13:31.605618Z", + "iopub.status.idle": "2024-06-25T23:13:31.608973Z", + "shell.execute_reply": "2024-06-25T23:13:31.608424Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:40.325657Z", - "iopub.status.busy": "2024-06-25T19:31:40.325357Z", - "iopub.status.idle": "2024-06-25T19:31:46.067731Z", - "shell.execute_reply": "2024-06-25T19:31:46.067125Z" + "iopub.execute_input": "2024-06-25T23:13:31.610942Z", + "iopub.status.busy": "2024-06-25T23:13:31.610641Z", + "iopub.status.idle": "2024-06-25T23:13:35.909329Z", + "shell.execute_reply": "2024-06-25T23:13:35.908695Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e9ebd3cab6ee4b38af6e19b1c2a2b7a0", + "model_id": "6477ae421e3e43aa814150445e014ac0", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a8fe72969fe348a99c98be80dccd6c53", + "model_id": "e62034a9e6c043cc997861592486168a", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2e5e14c62e1a4cf09b6fb8b0bb5ca451", + "model_id": "1e2c610098e54fea94839bb48d055f22", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "293b01a69e094447aeebb1e7e866fd51", + "model_id": "5b6e029c7f61484d880737df09cb3291", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9bbf8e629233461d84330aac6c38bc36", + "model_id": "e750160df873483c9096b064baeab112", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "38046751c5324a119490bbe8a5ec326c", + "model_id": "ddf577727f0e42a1b074bcb455a4258a", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7f84e049288f438cbb050b771815ee1a", + "model_id": "97155a33cf37454f8282b21b3806031d", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:46.070234Z", - "iopub.status.busy": "2024-06-25T19:31:46.070036Z", - "iopub.status.idle": "2024-06-25T19:31:46.072782Z", - "shell.execute_reply": "2024-06-25T19:31:46.072301Z" + "iopub.execute_input": "2024-06-25T23:13:35.912144Z", + "iopub.status.busy": "2024-06-25T23:13:35.911799Z", + "iopub.status.idle": "2024-06-25T23:13:35.914630Z", + "shell.execute_reply": "2024-06-25T23:13:35.914095Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:46.074901Z", - "iopub.status.busy": "2024-06-25T19:31:46.074488Z", - "iopub.status.idle": "2024-06-25T19:31:46.077148Z", - "shell.execute_reply": "2024-06-25T19:31:46.076714Z" + "iopub.execute_input": "2024-06-25T23:13:35.916621Z", + "iopub.status.busy": "2024-06-25T23:13:35.916300Z", + "iopub.status.idle": "2024-06-25T23:13:35.918968Z", + "shell.execute_reply": "2024-06-25T23:13:35.918524Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:46.078970Z", - "iopub.status.busy": "2024-06-25T19:31:46.078798Z", - "iopub.status.idle": "2024-06-25T19:31:48.698188Z", - "shell.execute_reply": "2024-06-25T19:31:48.697474Z" + "iopub.execute_input": "2024-06-25T23:13:35.920827Z", + "iopub.status.busy": "2024-06-25T23:13:35.920512Z", + "iopub.status.idle": "2024-06-25T23:13:38.614446Z", + "shell.execute_reply": "2024-06-25T23:13:38.613776Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.701194Z", - "iopub.status.busy": "2024-06-25T19:31:48.700490Z", - "iopub.status.idle": "2024-06-25T19:31:48.707774Z", - "shell.execute_reply": "2024-06-25T19:31:48.707224Z" + "iopub.execute_input": "2024-06-25T23:13:38.617773Z", + "iopub.status.busy": "2024-06-25T23:13:38.616881Z", + "iopub.status.idle": "2024-06-25T23:13:38.624576Z", + "shell.execute_reply": "2024-06-25T23:13:38.624128Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.709878Z", - "iopub.status.busy": "2024-06-25T19:31:48.709556Z", - "iopub.status.idle": "2024-06-25T19:31:48.713210Z", - "shell.execute_reply": "2024-06-25T19:31:48.712781Z" + "iopub.execute_input": "2024-06-25T23:13:38.626671Z", + "iopub.status.busy": "2024-06-25T23:13:38.626274Z", + "iopub.status.idle": "2024-06-25T23:13:38.630173Z", + "shell.execute_reply": "2024-06-25T23:13:38.629644Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.715198Z", - "iopub.status.busy": "2024-06-25T19:31:48.714884Z", - "iopub.status.idle": "2024-06-25T19:31:48.717917Z", - "shell.execute_reply": "2024-06-25T19:31:48.717397Z" + "iopub.execute_input": "2024-06-25T23:13:38.632131Z", + "iopub.status.busy": "2024-06-25T23:13:38.631753Z", + "iopub.status.idle": "2024-06-25T23:13:38.634921Z", + "shell.execute_reply": "2024-06-25T23:13:38.634406Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.719920Z", - "iopub.status.busy": "2024-06-25T19:31:48.719615Z", - "iopub.status.idle": "2024-06-25T19:31:48.722447Z", - "shell.execute_reply": "2024-06-25T19:31:48.722011Z" + "iopub.execute_input": "2024-06-25T23:13:38.636934Z", + "iopub.status.busy": "2024-06-25T23:13:38.636530Z", + "iopub.status.idle": "2024-06-25T23:13:38.639393Z", + "shell.execute_reply": "2024-06-25T23:13:38.638964Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.724470Z", - "iopub.status.busy": "2024-06-25T19:31:48.724080Z", - "iopub.status.idle": "2024-06-25T19:31:48.730838Z", - "shell.execute_reply": "2024-06-25T19:31:48.730303Z" + "iopub.execute_input": "2024-06-25T23:13:38.641436Z", + "iopub.status.busy": "2024-06-25T23:13:38.641098Z", + "iopub.status.idle": "2024-06-25T23:13:38.647659Z", + "shell.execute_reply": "2024-06-25T23:13:38.647204Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.733056Z", - "iopub.status.busy": "2024-06-25T19:31:48.732753Z", - "iopub.status.idle": "2024-06-25T19:31:48.956488Z", - "shell.execute_reply": "2024-06-25T19:31:48.955930Z" + "iopub.execute_input": "2024-06-25T23:13:38.649778Z", + "iopub.status.busy": "2024-06-25T23:13:38.649479Z", + "iopub.status.idle": "2024-06-25T23:13:38.874003Z", + "shell.execute_reply": "2024-06-25T23:13:38.873478Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:48.958874Z", - "iopub.status.busy": "2024-06-25T19:31:48.958385Z", - "iopub.status.idle": "2024-06-25T19:31:49.133338Z", - "shell.execute_reply": "2024-06-25T19:31:49.132807Z" + "iopub.execute_input": "2024-06-25T23:13:38.876436Z", + "iopub.status.busy": "2024-06-25T23:13:38.876051Z", + "iopub.status.idle": "2024-06-25T23:13:39.048915Z", + "shell.execute_reply": "2024-06-25T23:13:39.048432Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:49.135767Z", - "iopub.status.busy": "2024-06-25T19:31:49.135370Z", - "iopub.status.idle": "2024-06-25T19:31:49.139272Z", - "shell.execute_reply": "2024-06-25T19:31:49.138786Z" + "iopub.execute_input": "2024-06-25T23:13:39.051340Z", + "iopub.status.busy": "2024-06-25T23:13:39.050964Z", + "iopub.status.idle": "2024-06-25T23:13:39.054620Z", + "shell.execute_reply": "2024-06-25T23:13:39.054132Z" }, "nbsphinx": "hidden" }, @@ -1113,30 +1113,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "007989e5e6cd44a5ada30dda1923d065": { + "02a072ed32924507837162ad70da9612": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8b998a37935c4d30856e95a2cd3f1439", - "placeholder": "​", - "style": "IPY_MODEL_200586c52a4549678a949ca57213c920", + "layout": "IPY_MODEL_1aab5456eec04063a5df26734e017b79", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d7c835da9be44280b48466c92cb851d6", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 121kB/s]" + "value": 231508.0 } }, - "054e6f2fd5d14973972b7db9b5e4ed03": { + "03d9becbdd8046bf81525afd016ed573": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1152,23 +1155,53 @@ "description_width": "" } }, - "0bd860a7540947f98823d4a40bdafb86": { + "075ca50b902b46989673d1147902560d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_65b932c28ff3495098c0db8b56dd18de", + "placeholder": "​", + "style": "IPY_MODEL_e098c9499e5142759ba844e4486a6da6", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } + }, + "0ee27b719c824572adc4d14d07e72cf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_68a06976e74d4773829c8f1f5d4cc2ab", + "placeholder": "​", + "style": "IPY_MODEL_7bc89cc511714eb3b9db0329b0ad4f47", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "1047a464f8ad4f08a9c39e32ef88f77b": { + "197c89430b124236a2a7ca6374f1edf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1221,132 +1254,7 @@ "width": null } }, - "200586c52a4549678a949ca57213c920": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "226f358553304154b872be466bcda2cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2606990b2b654e949895c6ea13bace1b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "293b01a69e094447aeebb1e7e866fd51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f9e7d310eb764ed9abf54e3695e98058", - "IPY_MODEL_acd50c68e1bb474ca7e642fdbecd2231", - "IPY_MODEL_a4ea888fe4004256885e50c60385b700" - ], - "layout": "IPY_MODEL_91bc4e78a8934597a32b965150f632af", - "tabbable": null, - "tooltip": null - } - }, - "2db6e61311574d2799f341e0f2b280db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e95f58118fca41f79754cf64dc768e55", - "placeholder": "​", - "style": "IPY_MODEL_5d0e81a247724335969fb0549b56194b", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "2e5e14c62e1a4cf09b6fb8b0bb5ca451": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ccb993dd72c4674bf4c5129e4e19f7b", - "IPY_MODEL_4105d4a519b74c618417f38830a92826", - "IPY_MODEL_007989e5e6cd44a5ada30dda1923d065" - ], - "layout": "IPY_MODEL_811eb3464f8b4658af7b92cb22fd5db1", - "tabbable": null, - "tooltip": null - } - }, - "2ed7ba0d1cb94817b121646f00c5a089": { + "1a996c0fb30c4181aef76b9d0b39bd20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1399,33 +1307,7 @@ "width": null } }, - "3156c56a2d1e46779554f6e680768b77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6da0de8fbedc40cca53799f8e45cf74b", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b0f309cd65ee48e4902fba4c141424a9", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "371271d754f04722b9ba2102ec6453b3": { + "1aab5456eec04063a5df26734e017b79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1478,31 +1360,7 @@ "width": null } }, - "38046751c5324a119490bbe8a5ec326c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_684d44672b7e4f3e87afb7ff19a14a7d", - "IPY_MODEL_703a1805a6e14459bff5e7bc196e2924", - "IPY_MODEL_9678a77b61324383a27e704a34123184" - ], - "layout": "IPY_MODEL_7f83efe5fa43477c83b7dd0eab30b115", - "tabbable": null, - "tooltip": null - } - }, - "3b3726b7d15f4242bbe2a0e0323f5edd": { + "1b04ac435f764f288a38e492f152ec20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1555,25 +1413,54 @@ "width": null } }, - "3c288e9049ba4814a9020bbda1512944": { + "1d787eed2c504168b62c71e3e8b823c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c363fe3444424a62b964efb6ec305f7f", + "placeholder": "​", + "style": "IPY_MODEL_d622adb2d6724d848794f6e7c40de0b3", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 422kB/s]" + } + }, + "1e2c610098e54fea94839bb48d055f22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e7466595e3ae479d9ee9e989b0fa9efb", + "IPY_MODEL_8784e3b2891144468a5d989adaf62ae7", + "IPY_MODEL_a6280db66f3e434bbdb20ebab4989dec" + ], + "layout": "IPY_MODEL_32522284f75645f69b58819ffe34d2a7", + "tabbable": null, + "tooltip": null } }, - "3e906d417956421a978812281c844e7e": { + "20471efe14204b3fa973ce7c173612f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1588,15 +1475,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c673f7ac4ec44149b7f219298381ca5", + "layout": "IPY_MODEL_5dc7272ce64644afa609af3b2046a38e", "placeholder": "​", - "style": "IPY_MODEL_e3282f6972624465bd15f84c183446ed", + "style": "IPY_MODEL_c220349ac77649e3bffdb0998b40b102", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 64.5kB/s]" + "value": " 54.2M/54.2M [00:00<00:00, 298MB/s]" } }, - "4105d4a519b74c618417f38830a92826": { + "2808a2dd85f840dc8384e96b6e31d382": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1612,81 +1499,24 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a7fc4b58838f4350b7cce239e6cf7c4d", - "max": 665.0, + "layout": "IPY_MODEL_8f55a6cbd0184173b7c3ecca3b2be6a1", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a7755505c8604626b66bd90ac49165ab", + "style": "IPY_MODEL_670785469ef5401e82177c280f877928", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 466062.0 } }, - "43e54781cf104522a0a7479b4684f176": { - "model_module": "@jupyter-widgets/controls", + "2b78fa97669e4067a4bd3de6ccaaa88a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "47c94c5344ac480795afc89535d19275": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4c280f6c890c468db24cfa085162f8eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d98e8d3d73134c40b8256b723de4c9ba", - "placeholder": "​", - "style": "IPY_MODEL_55cc185655a64110894ebe751347ee97", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 422kB/s]" - } - }, - "4c673f7ac4ec44149b7f219298381ca5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -1732,7 +1562,33 @@ "width": null } }, - "52f1b4fab3d74ad180e90f63881f6b32": { + "2e901b505de34984a7c06e4ff7be8ebe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab64f8b595ef4648a47b1b2da8eac241", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_03d9becbdd8046bf81525afd016ed573", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 + } + }, + "2fe0de05b5e847e89ba80b8e4d398c4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1785,25 +1641,7 @@ "width": null } }, - "55cc185655a64110894ebe751347ee97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5c2455143c7b4c9d8179735a17395106": { + "32522284f75645f69b58819ffe34d2a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1856,30 +1694,7 @@ "width": null } }, - "5ccb993dd72c4674bf4c5129e4e19f7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c693822d0e9f45a5a0c3d5598c8464f4", - "placeholder": "​", - "style": "IPY_MODEL_6c14e14271b4450f89db48de72dffebe", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "5d0e81a247724335969fb0549b56194b": { + "328a64a36aa14cc4a13e8c232d198977": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1897,7 +1712,7 @@ "text_color": null } }, - "5e1fb144070e4665b06631fd83e8a769": { + "35b5e0b171c7498d8e1a3633c745e073": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1912,84 +1727,77 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ed7ba0d1cb94817b121646f00c5a089", + "layout": "IPY_MODEL_93beb5b9f7914314ac973bada268bcc2", "placeholder": "​", - "style": "IPY_MODEL_e45f1523c8d6445cacf72f4752609a80", + "style": "IPY_MODEL_71736b2d04e142cea126cbddad9801e2", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 3.42MB/s]" + "value": "tokenizer.json: 100%" } }, - "65fb96fdd89c4a7aa6863a61cd8c8281": { + "3c2efa0519364cd7ad5d4149de79bec8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a2f3a938880745e29369216068f395dc", - "placeholder": "​", - "style": "IPY_MODEL_79bb28d92fc14400815dc3c2c98b31e6", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "684d44672b7e4f3e87afb7ff19a14a7d": { + "3c700601fd7d4148894afa4961283a88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_69f6ccf772ad48fa86cea5e7b57f6c92", - "placeholder": "​", - "style": "IPY_MODEL_2606990b2b654e949895c6ea13bace1b", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6854a7c0f0b846a99e2cc07332f5e2ad": { + "42243b174d064f20a73f6c60315575eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1047a464f8ad4f08a9c39e32ef88f77b", - "placeholder": "​", - "style": "IPY_MODEL_d22816db94ed4b3aa623fb9f9eb42646", + "layout": "IPY_MODEL_de1cc30d88f74d2299519f8846818183", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6e166f17ea384c918f9777404649330c", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": 391.0 } }, - "68caf9f94f8b49e29f2522245cfc1967": { + "485477b3f18244cb8e82240fdfc321c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2042,7 +1850,7 @@ "width": null } }, - "68d5eef2d9154625b81ca5a98ad95302": { + "4a7d8e7b7ba3464fa41165f58db05e12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2095,7 +1903,7 @@ "width": null } }, - "69f6ccf772ad48fa86cea5e7b57f6c92": { + "4d312e2d3f524fb1bf8dba710216c761": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2148,25 +1956,7 @@ "width": null } }, - "6c14e14271b4450f89db48de72dffebe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6d917afdd1bf47ea943ba43a44498f21": { + "537d23f9aefe4d35aa82e5454ab78815": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2219,7 +2009,31 @@ "width": null } }, - "6da0de8fbedc40cca53799f8e45cf74b": { + "5b6e029c7f61484d880737df09cb3291": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fdddfa973dd841b39245eda900cf0339", + "IPY_MODEL_2e901b505de34984a7c06e4ff7be8ebe", + "IPY_MODEL_20471efe14204b3fa973ce7c173612f3" + ], + "layout": "IPY_MODEL_b0d211d5585d414d93c249182a668daf", + "tabbable": null, + "tooltip": null + } + }, + "5da1ee68b4f848c98bea7614ebf85f59": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2272,69 +2086,7 @@ "width": null } }, - "703a1805a6e14459bff5e7bc196e2924": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c467bba142d440348c677b9b88920801", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9e515a523986480cbbe1094ca437f513", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "72118120122f4623822582e300065947": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "76977b7a679849439d4159579b51c480": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "77399e1417a148bbaaf8c99c6e4b2bb5": { + "5dc7272ce64644afa609af3b2046a38e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2387,7 +2139,7 @@ "width": null } }, - "7930ae36275240238ba62db1afd25ce2": { + "5f117a6515e1436cad7028680580b6a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2440,7 +2192,7 @@ "width": null } }, - "79bb28d92fc14400815dc3c2c98b31e6": { + "634f7b4ddf0e46f3b98d4b3c9ce87c86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2458,63 +2210,10 @@ "text_color": null } }, - "7f83efe5fa43477c83b7dd0eab30b115": { - "model_module": "@jupyter-widgets/base", + "6477ae421e3e43aa814150445e014ac0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7f84e049288f438cbb050b771815ee1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2526,16 +2225,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6854a7c0f0b846a99e2cc07332f5e2ad", - "IPY_MODEL_f674728a058e4ebc9cda63400ca9a97a", - "IPY_MODEL_b780cdac15fd4ff5bf0b64d9369ef63b" + "IPY_MODEL_075ca50b902b46989673d1147902560d", + "IPY_MODEL_42243b174d064f20a73f6c60315575eb", + "IPY_MODEL_bbe4f79369114ed9839dd57535856697" ], - "layout": "IPY_MODEL_52f1b4fab3d74ad180e90f63881f6b32", + "layout": "IPY_MODEL_1b04ac435f764f288a38e492f152ec20", "tabbable": null, "tooltip": null } }, - "811eb3464f8b4658af7b92cb22fd5db1": { + "65b932c28ff3495098c0db8b56dd18de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2588,7 +2287,7 @@ "width": null } }, - "8b998a37935c4d30856e95a2cd3f1439": { + "66d43ed9bf3f4ef6aedf76e3d08d36c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2641,7 +2340,7 @@ "width": null } }, - "8f663dc8059d42e4a1c16507affd40e3": { + "670785469ef5401e82177c280f877928": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2657,7 +2356,7 @@ "description_width": "" } }, - "91bc4e78a8934597a32b965150f632af": { + "68a06976e74d4773829c8f1f5d4cc2ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2710,7 +2409,59 @@ "width": null } }, - "9678a77b61324383a27e704a34123184": { + "6e166f17ea384c918f9777404649330c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6f576e9c9374443588b496e63f781624": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "71736b2d04e142cea126cbddad9801e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7261cd19786a4a0b95b770c51f033b0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2725,55 +2476,100 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7930ae36275240238ba62db1afd25ce2", + "layout": "IPY_MODEL_1a996c0fb30c4181aef76b9d0b39bd20", "placeholder": "​", - "style": "IPY_MODEL_226f358553304154b872be466bcda2cc", + "style": "IPY_MODEL_8d98dfc145534a779ad6c609609abd31", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.10kB/s]" + "value": " 466k/466k [00:00<00:00, 14.0MB/s]" } }, - "9bbf8e629233461d84330aac6c38bc36": { + "7bc89cc511714eb3b9db0329b0ad4f47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7dbd67a2cb264612b0d638e5e63a9a07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8674027fdc534d3791107a43a5e491ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_65fb96fdd89c4a7aa6863a61cd8c8281", - "IPY_MODEL_3156c56a2d1e46779554f6e680768b77", - "IPY_MODEL_5e1fb144070e4665b06631fd83e8a769" - ], - "layout": "IPY_MODEL_5c2455143c7b4c9d8179735a17395106", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dfd5800b7e4c41fb90cf34888c17c960", + "placeholder": "​", + "style": "IPY_MODEL_9bdcb01ac1254e4ca46f786f1f48635e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "README.md: 100%" } }, - "9e515a523986480cbbe1094ca437f513": { + "8784e3b2891144468a5d989adaf62ae7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e98f8f44d5174617bc22e566a83f2e14", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9e9b474bbbd44555ac3344b5d173ecd4", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "a2f3a938880745e29369216068f395dc": { + "8c2a54a50b174504b67275f6fc1758ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2826,46 +2622,25 @@ "width": null } }, - "a4ea888fe4004256885e50c60385b700": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_371271d754f04722b9ba2102ec6453b3", - "placeholder": "​", - "style": "IPY_MODEL_72118120122f4623822582e300065947", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 137MB/s]" - } - }, - "a7755505c8604626b66bd90ac49165ab": { + "8d98dfc145534a779ad6c609609abd31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a7fc4b58838f4350b7cce239e6cf7c4d": { + "8f55a6cbd0184173b7c3ecca3b2be6a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2918,31 +2693,7 @@ "width": null } }, - "a8fe72969fe348a99c98be80dccd6c53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2db6e61311574d2799f341e0f2b280db", - "IPY_MODEL_c768456d220342ec8cc60cc2528c3732", - "IPY_MODEL_4c280f6c890c468db24cfa085162f8eb" - ], - "layout": "IPY_MODEL_dd1d6b6bcb61451a9984bb2bddd1826e", - "tabbable": null, - "tooltip": null - } - }, - "acd50c68e1bb474ca7e642fdbecd2231": { + "937b241a390b4aa1b76cb3c07905b257": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2958,59 +2709,131 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_68caf9f94f8b49e29f2522245cfc1967", - "max": 54245363.0, + "layout": "IPY_MODEL_4d312e2d3f524fb1bf8dba710216c761", + "max": 48.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0bd860a7540947f98823d4a40bdafb86", + "style": "IPY_MODEL_b11b3d0461c94c138ecf254a642eb544", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": 48.0 } }, - "b0f309cd65ee48e4902fba4c141424a9": { - "model_module": "@jupyter-widgets/controls", + "93beb5b9f7914314ac973bada268bcc2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b780cdac15fd4ff5bf0b64d9369ef63b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d76c41fd805e466081dfeb1d93477c92", - "placeholder": "​", - "style": "IPY_MODEL_76977b7a679849439d4159579b51c480", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 3.55MB/s]" - } - }, - "baa0ee8552c34f9f808dc9985cb43d88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97155a33cf37454f8282b21b3806031d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0ee27b719c824572adc4d14d07e72cf6", + "IPY_MODEL_02a072ed32924507837162ad70da9612", + "IPY_MODEL_c73c253ce5ce4c0c9744f5c0cb9d0530" + ], + "layout": "IPY_MODEL_bd8af8fcf5f34f848183718d176ce55f", + "tabbable": null, + "tooltip": null + } + }, + "9bdcb01ac1254e4ca46f786f1f48635e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9e9b474bbbd44555ac3344b5d173ecd4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a6280db66f3e434bbdb20ebab4989dec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3022,15 +2845,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_77399e1417a148bbaaf8c99c6e4b2bb5", + "layout": "IPY_MODEL_2b78fa97669e4067a4bd3de6ccaaa88a", "placeholder": "​", - "style": "IPY_MODEL_3c288e9049ba4814a9020bbda1512944", + "style": "IPY_MODEL_7dbd67a2cb264612b0d638e5e63a9a07", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": " 665/665 [00:00<00:00, 129kB/s]" } }, - "c467bba142d440348c677b9b88920801": { + "a859632225cf4c338d075b33f4abd2e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a7d8e7b7ba3464fa41165f58db05e12", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c7cdf638b52549a3923f4d9f4dacf40d", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "aa703043d8574c99856909333746a558": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_537d23f9aefe4d35aa82e5454ab78815", + "placeholder": "​", + "style": "IPY_MODEL_3c700601fd7d4148894afa4961283a88", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "ab64f8b595ef4648a47b1b2da8eac241": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3083,7 +2955,7 @@ "width": null } }, - "c693822d0e9f45a5a0c3d5598c8464f4": { + "b0d211d5585d414d93c249182a668daf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3136,77 +3008,46 @@ "width": null } }, - "c768456d220342ec8cc60cc2528c3732": { + "b11b3d0461c94c138ecf254a642eb544": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3b3726b7d15f4242bbe2a0e0323f5edd", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_054e6f2fd5d14973972b7db9b5e4ed03", - "tabbable": null, - "tooltip": null, - "value": 2211.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ca2793614f594cf4a384748bfd36b073": { + "bbe4f79369114ed9839dd57535856697": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ff59fb88d4aa46d481bfabbfb12c3c08", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8f663dc8059d42e4a1c16507affd40e3", + "layout": "IPY_MODEL_f933a441f363402d9fc2e796940cf4d3", + "placeholder": "​", + "style": "IPY_MODEL_328a64a36aa14cc4a13e8c232d198977", "tabbable": null, "tooltip": null, - "value": 391.0 - } - }, - "d22816db94ed4b3aa623fb9f9eb42646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 391/391 [00:00<00:00, 68.8kB/s]" } }, - "d76c41fd805e466081dfeb1d93477c92": { + "bd8af8fcf5f34f848183718d176ce55f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3259,7 +3100,25 @@ "width": null } }, - "d8c1ad41f4fe4cf0a3f44d363086f32b": { + "c220349ac77649e3bffdb0998b40b102": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c363fe3444424a62b964efb6ec305f7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3312,7 +3171,127 @@ "width": null } }, - "d98e8d3d73134c40b8256b723de4c9ba": { + "c73c253ce5ce4c0c9744f5c0cb9d0530": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_66d43ed9bf3f4ef6aedf76e3d08d36c7", + "placeholder": "​", + "style": "IPY_MODEL_3c2efa0519364cd7ad5d4149de79bec8", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 16.1MB/s]" + } + }, + "c7cdf638b52549a3923f4d9f4dacf40d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c9a979755e9a403eb0ca342120826ee6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_197c89430b124236a2a7ca6374f1edf0", + "placeholder": "​", + "style": "IPY_MODEL_634f7b4ddf0e46f3b98d4b3c9ce87c86", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.85kB/s]" + } + }, + "d622adb2d6724d848794f6e7c40de0b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d7c835da9be44280b48466c92cb851d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ddf577727f0e42a1b074bcb455a4258a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aa703043d8574c99856909333746a558", + "IPY_MODEL_937b241a390b4aa1b76cb3c07905b257", + "IPY_MODEL_c9a979755e9a403eb0ca342120826ee6" + ], + "layout": "IPY_MODEL_5f117a6515e1436cad7028680580b6a5", + "tabbable": null, + "tooltip": null + } + }, + "de1cc30d88f74d2299519f8846818183": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3365,7 +3344,7 @@ "width": null } }, - "dd1d6b6bcb61451a9984bb2bddd1826e": { + "dfd5800b7e4c41fb90cf34888c17c960": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3418,7 +3397,7 @@ "width": null } }, - "e3282f6972624465bd15f84c183446ed": { + "e098c9499e5142759ba844e4486a6da6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3436,25 +3415,78 @@ "text_color": null } }, - "e45f1523c8d6445cacf72f4752609a80": { + "e62034a9e6c043cc997861592486168a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8674027fdc534d3791107a43a5e491ab", + "IPY_MODEL_a859632225cf4c338d075b33f4abd2e0", + "IPY_MODEL_1d787eed2c504168b62c71e3e8b823c8" + ], + "layout": "IPY_MODEL_5da1ee68b4f848c98bea7614ebf85f59", + "tabbable": null, + "tooltip": null } }, - "e95f58118fca41f79754cf64dc768e55": { + "e7466595e3ae479d9ee9e989b0fa9efb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c2a54a50b174504b67275f6fc1758ea", + "placeholder": "​", + "style": "IPY_MODEL_fd9acfb5facf4aeaa71d2088d344d085", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "e750160df873483c9096b064baeab112": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_35b5e0b171c7498d8e1a3633c745e073", + "IPY_MODEL_2808a2dd85f840dc8384e96b6e31d382", + "IPY_MODEL_7261cd19786a4a0b95b770c51f033b0c" + ], + "layout": "IPY_MODEL_485477b3f18244cb8e82240fdfc321c6", + "tabbable": null, + "tooltip": null + } + }, + "e98f8f44d5174617bc22e566a83f2e14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3507,80 +3539,7 @@ "width": null } }, - "e9ebd3cab6ee4b38af6e19b1c2a2b7a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_baa0ee8552c34f9f808dc9985cb43d88", - "IPY_MODEL_ca2793614f594cf4a384748bfd36b073", - "IPY_MODEL_3e906d417956421a978812281c844e7e" - ], - "layout": "IPY_MODEL_68d5eef2d9154625b81ca5a98ad95302", - "tabbable": null, - "tooltip": null - } - }, - "f674728a058e4ebc9cda63400ca9a97a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d8c1ad41f4fe4cf0a3f44d363086f32b", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_43e54781cf104522a0a7479b4684f176", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "f9e7d310eb764ed9abf54e3695e98058": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d917afdd1bf47ea943ba43a44498f21", - "placeholder": "​", - "style": "IPY_MODEL_47c94c5344ac480795afc89535d19275", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "ff59fb88d4aa46d481bfabbfb12c3c08": { + "f933a441f363402d9fc2e796940cf4d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3632,6 +3591,47 @@ "visibility": null, "width": null } + }, + "fd9acfb5facf4aeaa71d2088d344d085": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fdddfa973dd841b39245eda900cf0339": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2fe0de05b5e847e89ba80b8e4d398c4c", + "placeholder": "​", + "style": "IPY_MODEL_6f576e9c9374443588b496e63f781624", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index b4b5b5038..fd7c7c4e4 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1357,7 +1357,7 @@

5. Use cleanlab to find label issues -{"state": {"1aea1d112c054eec950bd686a0ca1d14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e83b02ee750444739a17f78b4d3f184f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "dcd54291f5a341bb9379d41671c00d95": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1aea1d112c054eec950bd686a0ca1d14", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e83b02ee750444739a17f78b4d3f184f", "tabbable": null, "tooltip": null, "value": 2041.0}}, "0f81bdbdfded4d61a103fbc884fdb8b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d7ac88820da9447ebde38eee5408d525": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bfc1a00c4e8f4270af1f947f378411f7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0f81bdbdfded4d61a103fbc884fdb8b7", "placeholder": "\u200b", "style": "IPY_MODEL_d7ac88820da9447ebde38eee5408d525", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "cec08439b11541149be6a96ed609992c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95a7d374743e47b785481b53802557f9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bec49e231d374b619cca6a3dbb6c9b4f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cec08439b11541149be6a96ed609992c", "placeholder": "\u200b", "style": "IPY_MODEL_95a7d374743e47b785481b53802557f9", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007514kB/s]"}}, "5375b29786b24fc182c5b06dc46c21f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "295a0df817014d6fbb6377dcc33be2b3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bfc1a00c4e8f4270af1f947f378411f7", "IPY_MODEL_dcd54291f5a341bb9379d41671c00d95", "IPY_MODEL_bec49e231d374b619cca6a3dbb6c9b4f"], "layout": "IPY_MODEL_5375b29786b24fc182c5b06dc46c21f5", "tabbable": null, "tooltip": null}}, "09e511f313fe4deaa3db651dc2ad1f38": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff0fbdda3a2745cab371f835eea2071a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e4e0fafef42746d1a3f83998a48e68fb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_09e511f313fe4deaa3db651dc2ad1f38", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ff0fbdda3a2745cab371f835eea2071a", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "8a3fcca569d54278b1f243ca468eb2e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8bef6ec94b841649328908a1e03f796": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b1eae32f9cd4561b35edcb6a450623c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8a3fcca569d54278b1f243ca468eb2e8", "placeholder": "\u200b", "style": "IPY_MODEL_e8bef6ec94b841649328908a1e03f796", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "f8e6a2a4f4ac44968d7ab7e8b41cd9e5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd7987d5664246479c5c48a19962bcff": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b61aaac35e2a498c8712ccc1a79e72b4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f8e6a2a4f4ac44968d7ab7e8b41cd9e5", "placeholder": "\u200b", "style": "IPY_MODEL_fd7987d5664246479c5c48a19962bcff", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200733.4MB/s]"}}, "13b1cd45cfea4f85bfb6caa46af5a63a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b63774c214c467f836bfdcb44bf9b9f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7b1eae32f9cd4561b35edcb6a450623c", "IPY_MODEL_e4e0fafef42746d1a3f83998a48e68fb", "IPY_MODEL_b61aaac35e2a498c8712ccc1a79e72b4"], "layout": "IPY_MODEL_13b1cd45cfea4f85bfb6caa46af5a63a", "tabbable": null, "tooltip": null}}, "feef464c625b4ce98e733ec61ac7047a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "67c2bbd993f544be9aaa55f1059ee0c5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9926def0468e4ef78a40becf734e408b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_feef464c625b4ce98e733ec61ac7047a", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_67c2bbd993f544be9aaa55f1059ee0c5", "tabbable": null, "tooltip": null, "value": 3201.0}}, "efde3254ff184e58b1e14968ab98b2eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e51bddc0c26e45c28f6280a03fa6c570": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d3aabef313ae48b184adb3612e11f7c0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_efde3254ff184e58b1e14968ab98b2eb", "placeholder": "\u200b", "style": "IPY_MODEL_e51bddc0c26e45c28f6280a03fa6c570", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "d05aa5c2f7ed4f049aeb55cefb06f57f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df36694caa324dc08d075a690e55fed5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5de7ce2185e149b199420cef3937b004": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d05aa5c2f7ed4f049aeb55cefb06f57f", "placeholder": "\u200b", "style": "IPY_MODEL_df36694caa324dc08d075a690e55fed5", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007860kB/s]"}}, "cad71209689044bf95c6a56cd4254c5d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d0cc257082a482b8a9c20f2623d1dd0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d3aabef313ae48b184adb3612e11f7c0", "IPY_MODEL_9926def0468e4ef78a40becf734e408b", "IPY_MODEL_5de7ce2185e149b199420cef3937b004"], "layout": "IPY_MODEL_cad71209689044bf95c6a56cd4254c5d", "tabbable": null, "tooltip": null}}, "1c18c2753518415ea3cf39b985a054ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc925d23337a4990bcbb6ad1d3ba0714": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cfb6db0858744f68a8074c3433dec014": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c18c2753518415ea3cf39b985a054ad", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bc925d23337a4990bcbb6ad1d3ba0714", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "6c2f4eab88df4fcfbf60ea1461b407fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47f71961c8254da1a0cb8fe2f90ef9f5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0160f38ecac34b8a9a6e60b79941cb42": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6c2f4eab88df4fcfbf60ea1461b407fb", "placeholder": "\u200b", "style": "IPY_MODEL_47f71961c8254da1a0cb8fe2f90ef9f5", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "7b142eabfac84901b7edb8e5cf1db87e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "751e8bbb861243c0b292b81647f5a7c8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1b43dce850cb49019716fe7f052cd3f9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b142eabfac84901b7edb8e5cf1db87e", "placeholder": "\u200b", "style": "IPY_MODEL_751e8bbb861243c0b292b81647f5a7c8", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200732.9MB/s]"}}, "5f9ac971b36144c99f166c6afca8b98c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48203e358e5e4c599815faec66f84717": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0160f38ecac34b8a9a6e60b79941cb42", "IPY_MODEL_cfb6db0858744f68a8074c3433dec014", "IPY_MODEL_1b43dce850cb49019716fe7f052cd3f9"], "layout": "IPY_MODEL_5f9ac971b36144c99f166c6afca8b98c", "tabbable": null, "tooltip": null}}, "edb975a882cd4029ab886291208a5a5c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "386b0038b80f44249027e46144d33c35": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ec7119530ac242a8bf5cd0417e5460c5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_edb975a882cd4029ab886291208a5a5c", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_386b0038b80f44249027e46144d33c35", "tabbable": null, "tooltip": null, "value": 128619.0}}, "9be1debd539947d495510d3e71e91a33": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9593182600264e2aa5c5035fced2937b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1965785719184160b13d07134d9c01cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9be1debd539947d495510d3e71e91a33", "placeholder": "\u200b", "style": "IPY_MODEL_9593182600264e2aa5c5035fced2937b", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "7c6fa0df6a7a4993ae1942f5e66eb942": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe2e22def9dd4fb9b35244ac0e211f6d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dc42c71988f64ceba56aa56cc9c662d3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7c6fa0df6a7a4993ae1942f5e66eb942", "placeholder": "\u200b", "style": "IPY_MODEL_fe2e22def9dd4fb9b35244ac0e211f6d", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20077.29MB/s]"}}, "5a7fcc571ae3417ca7f32e5ac2e0f7ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f26aa1a5503c462e89477a33079f160a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1965785719184160b13d07134d9c01cd", "IPY_MODEL_ec7119530ac242a8bf5cd0417e5460c5", "IPY_MODEL_dc42c71988f64ceba56aa56cc9c662d3"], "layout": "IPY_MODEL_5a7fcc571ae3417ca7f32e5ac2e0f7ed", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"78b9bcb39b554c0290d9800dc940ff71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5869d031c1004d448f247c32b8c702e1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "227af90915cb483c9537459db20c2dcc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_78b9bcb39b554c0290d9800dc940ff71", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5869d031c1004d448f247c32b8c702e1", "tabbable": null, "tooltip": null, "value": 2041.0}}, "4e926992584a4181a8551035087cce4c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "065d70114b74423d9f2fa424de1b7a1e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7906a23ebb7146d593158f78421f5ed4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4e926992584a4181a8551035087cce4c", "placeholder": "\u200b", "style": "IPY_MODEL_065d70114b74423d9f2fa424de1b7a1e", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "ecd21cd3f9be4e8587ead71ef6eddacf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a873413b3495435bb8797c848d57b59a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "40d6d738f9e542e98ecc6d953d704d68": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ecd21cd3f9be4e8587ead71ef6eddacf", "placeholder": "\u200b", "style": "IPY_MODEL_a873413b3495435bb8797c848d57b59a", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007508kB/s]"}}, "4bdd74d6b6f54d1fb924effdb6c35e73": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4e22d23b27f43a5843b7ba91eb92b25": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7906a23ebb7146d593158f78421f5ed4", "IPY_MODEL_227af90915cb483c9537459db20c2dcc", "IPY_MODEL_40d6d738f9e542e98ecc6d953d704d68"], "layout": "IPY_MODEL_4bdd74d6b6f54d1fb924effdb6c35e73", "tabbable": null, "tooltip": null}}, "acd3ca854a9b41b0a7e7c7c976d08dce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a7376840cbcd4df89be2e35d1d83b7a7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b83e50a6f4c94c46b81bc9ccac82d8ce": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_acd3ca854a9b41b0a7e7c7c976d08dce", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a7376840cbcd4df89be2e35d1d83b7a7", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "3d0bc58be6a64dbb9402e4f43247bbd9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a172e9a2a9464f0597dc89df0bc665f5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bd56af9d1df24f959c2e27458bf28564": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3d0bc58be6a64dbb9402e4f43247bbd9", "placeholder": "\u200b", "style": "IPY_MODEL_a172e9a2a9464f0597dc89df0bc665f5", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "4673aa7828d449fdb54b14aa87a8046b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f63a5476d3574388b856445769573334": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d74890bb53b24653a178d14fa9fb1027": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4673aa7828d449fdb54b14aa87a8046b", "placeholder": "\u200b", "style": "IPY_MODEL_f63a5476d3574388b856445769573334", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007194MB/s]"}}, "12f57656dd504d218c054ef511da9ab4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1510d16cc79a49c88e3542daf3152481": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bd56af9d1df24f959c2e27458bf28564", "IPY_MODEL_b83e50a6f4c94c46b81bc9ccac82d8ce", "IPY_MODEL_d74890bb53b24653a178d14fa9fb1027"], "layout": "IPY_MODEL_12f57656dd504d218c054ef511da9ab4", "tabbable": null, "tooltip": null}}, "f1d6704797ff4e7da238df4899d6eb75": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54403dba12ff4f26beb5b09e37a94253": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c7c838e69efb43a2b0ac48deb78c922d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f1d6704797ff4e7da238df4899d6eb75", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_54403dba12ff4f26beb5b09e37a94253", "tabbable": null, "tooltip": null, "value": 3201.0}}, "c25723012a2d443ba16eb7f6c52bc3a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0c2f7ca60ab147c99ae03f759db46297": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fe276545fde34f708d296c6f254d81e8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c25723012a2d443ba16eb7f6c52bc3a5", "placeholder": "\u200b", "style": "IPY_MODEL_0c2f7ca60ab147c99ae03f759db46297", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "f3b0e8a956184e818936ebd0416f606e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "67850b52aee848a899a4c1cc7561c6dd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d8e5131818de460ba01fb92aed10a852": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3b0e8a956184e818936ebd0416f606e", "placeholder": "\u200b", "style": "IPY_MODEL_67850b52aee848a899a4c1cc7561c6dd", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007795kB/s]"}}, "5f72fda67a4f475ebe8560f39a8c3d76": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb4875c647a74da78ce0b565e117d890": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fe276545fde34f708d296c6f254d81e8", "IPY_MODEL_c7c838e69efb43a2b0ac48deb78c922d", "IPY_MODEL_d8e5131818de460ba01fb92aed10a852"], "layout": "IPY_MODEL_5f72fda67a4f475ebe8560f39a8c3d76", "tabbable": null, "tooltip": null}}, "8ca4da4898bb4451994f9434ae2ffbed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "98428c59f17b40cdb1c0a7543994cae1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "186fee51c3124d608de6a5c71a289764": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8ca4da4898bb4451994f9434ae2ffbed", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_98428c59f17b40cdb1c0a7543994cae1", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "59bb523ac7f646b8b418eac0ba2650ec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91f8c32305604aa6ad4753866f6428a8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ae1c35581029419bac126538cc5ba8f3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59bb523ac7f646b8b418eac0ba2650ec", "placeholder": "\u200b", "style": "IPY_MODEL_91f8c32305604aa6ad4753866f6428a8", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "50e8d183b2e146bfa57d74e4574d6bf6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7936b993c44f45fc8f53ff71690b204e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1e7ea41fcad145359a3915227cd3a572": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_50e8d183b2e146bfa57d74e4574d6bf6", "placeholder": "\u200b", "style": "IPY_MODEL_7936b993c44f45fc8f53ff71690b204e", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007328MB/s]"}}, "fe755d796bba4ebfa0a4fd20368887fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3740245a44544188bb5216cfbbe7c096": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ae1c35581029419bac126538cc5ba8f3", "IPY_MODEL_186fee51c3124d608de6a5c71a289764", "IPY_MODEL_1e7ea41fcad145359a3915227cd3a572"], "layout": "IPY_MODEL_fe755d796bba4ebfa0a4fd20368887fa", "tabbable": null, "tooltip": null}}, "048952d61d4143eeb7a3064dac9fe4ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd596207fea4447b96658e0f41eec607": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "11546fd8d68648da9c138662014585e5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_048952d61d4143eeb7a3064dac9fe4ac", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cd596207fea4447b96658e0f41eec607", "tabbable": null, "tooltip": null, "value": 128619.0}}, "01d773c5fc084c74bf3898f08469f8f7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1dc5d0b009d545d1922ea03e17fa99b3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ab9f826f70f04ba3b63e2e5db1d325f2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_01d773c5fc084c74bf3898f08469f8f7", "placeholder": "\u200b", "style": "IPY_MODEL_1dc5d0b009d545d1922ea03e17fa99b3", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "14c9df2de7cc4e1bbaf4f1a58d5e3037": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c805d0141fdb44038dfd6b1b6edf7abe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b5a2a7d91c7b447f8108b8896269f607": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_14c9df2de7cc4e1bbaf4f1a58d5e3037", "placeholder": "\u200b", "style": "IPY_MODEL_c805d0141fdb44038dfd6b1b6edf7abe", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20077.47MB/s]"}}, "8954d8479e4b48759b6e0dbf92041c0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c68ee845d584f78b9ec889e427c9ab8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ab9f826f70f04ba3b63e2e5db1d325f2", "IPY_MODEL_11546fd8d68648da9c138662014585e5", "IPY_MODEL_b5a2a7d91c7b447f8108b8896269f607"], "layout": "IPY_MODEL_8954d8479e4b48759b6e0dbf92041c0c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 411158583..d40b1db54 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:53.133508Z", - "iopub.status.busy": "2024-06-25T19:31:53.133336Z", - "iopub.status.idle": "2024-06-25T19:31:58.248746Z", - "shell.execute_reply": "2024-06-25T19:31:58.248110Z" + "iopub.execute_input": "2024-06-25T23:13:42.048585Z", + "iopub.status.busy": "2024-06-25T23:13:42.048169Z", + "iopub.status.idle": "2024-06-25T23:13:47.015851Z", + "shell.execute_reply": "2024-06-25T23:13:47.015219Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:58.251604Z", - "iopub.status.busy": "2024-06-25T19:31:58.251034Z", - "iopub.status.idle": "2024-06-25T19:31:58.254389Z", - "shell.execute_reply": "2024-06-25T19:31:58.253843Z" + "iopub.execute_input": "2024-06-25T23:13:47.018616Z", + "iopub.status.busy": "2024-06-25T23:13:47.018295Z", + "iopub.status.idle": "2024-06-25T23:13:47.021447Z", + "shell.execute_reply": "2024-06-25T23:13:47.020989Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:31:58.256549Z", - "iopub.status.busy": "2024-06-25T19:31:58.256239Z", - "iopub.status.idle": "2024-06-25T19:31:58.260899Z", - "shell.execute_reply": "2024-06-25T19:31:58.260338Z" + "iopub.execute_input": "2024-06-25T23:13:47.023397Z", + "iopub.status.busy": "2024-06-25T23:13:47.023066Z", + "iopub.status.idle": "2024-06-25T23:13:47.027579Z", + "shell.execute_reply": "2024-06-25T23:13:47.027038Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T19:31:58.263210Z", - "iopub.status.busy": "2024-06-25T19:31:58.262770Z", - "iopub.status.idle": "2024-06-25T19:32:00.256796Z", - "shell.execute_reply": "2024-06-25T19:32:00.256144Z" + "iopub.execute_input": "2024-06-25T23:13:47.029706Z", + "iopub.status.busy": "2024-06-25T23:13:47.029408Z", + "iopub.status.idle": "2024-06-25T23:13:48.557949Z", + "shell.execute_reply": "2024-06-25T23:13:48.557324Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:00.259356Z", - "iopub.status.busy": "2024-06-25T19:32:00.259045Z", - "iopub.status.idle": "2024-06-25T19:32:00.269498Z", - "shell.execute_reply": "2024-06-25T19:32:00.269022Z" + "iopub.execute_input": "2024-06-25T23:13:48.560586Z", + "iopub.status.busy": "2024-06-25T23:13:48.560204Z", + "iopub.status.idle": "2024-06-25T23:13:48.570753Z", + "shell.execute_reply": "2024-06-25T23:13:48.570316Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:00.271550Z", - "iopub.status.busy": "2024-06-25T19:32:00.271221Z", - "iopub.status.idle": "2024-06-25T19:32:00.276417Z", - "shell.execute_reply": "2024-06-25T19:32:00.275932Z" + "iopub.execute_input": "2024-06-25T23:13:48.572948Z", + "iopub.status.busy": "2024-06-25T23:13:48.572614Z", + "iopub.status.idle": "2024-06-25T23:13:48.578335Z", + "shell.execute_reply": "2024-06-25T23:13:48.577906Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:00.278484Z", - "iopub.status.busy": "2024-06-25T19:32:00.278163Z", - "iopub.status.idle": "2024-06-25T19:32:00.762955Z", - "shell.execute_reply": "2024-06-25T19:32:00.762362Z" + "iopub.execute_input": "2024-06-25T23:13:48.580333Z", + "iopub.status.busy": "2024-06-25T23:13:48.580014Z", + "iopub.status.idle": "2024-06-25T23:13:49.044116Z", + "shell.execute_reply": "2024-06-25T23:13:49.043554Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:00.765136Z", - "iopub.status.busy": "2024-06-25T19:32:00.764811Z", - "iopub.status.idle": "2024-06-25T19:32:03.050183Z", - "shell.execute_reply": "2024-06-25T19:32:03.049698Z" + "iopub.execute_input": "2024-06-25T23:13:49.046459Z", + "iopub.status.busy": "2024-06-25T23:13:49.046048Z", + "iopub.status.idle": "2024-06-25T23:13:49.682286Z", + "shell.execute_reply": "2024-06-25T23:13:49.681791Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:03.052760Z", - "iopub.status.busy": "2024-06-25T19:32:03.052414Z", - "iopub.status.idle": "2024-06-25T19:32:03.070136Z", - "shell.execute_reply": "2024-06-25T19:32:03.069620Z" + "iopub.execute_input": "2024-06-25T23:13:49.685227Z", + "iopub.status.busy": "2024-06-25T23:13:49.684826Z", + "iopub.status.idle": "2024-06-25T23:13:49.703315Z", + "shell.execute_reply": "2024-06-25T23:13:49.702790Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:03.072148Z", - "iopub.status.busy": "2024-06-25T19:32:03.071949Z", - "iopub.status.idle": "2024-06-25T19:32:03.075039Z", - "shell.execute_reply": "2024-06-25T19:32:03.074605Z" + "iopub.execute_input": "2024-06-25T23:13:49.705384Z", + "iopub.status.busy": "2024-06-25T23:13:49.705205Z", + "iopub.status.idle": "2024-06-25T23:13:49.708482Z", + "shell.execute_reply": "2024-06-25T23:13:49.708013Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:03.077054Z", - "iopub.status.busy": "2024-06-25T19:32:03.076730Z", - "iopub.status.idle": "2024-06-25T19:32:17.091941Z", - "shell.execute_reply": "2024-06-25T19:32:17.091336Z" + "iopub.execute_input": "2024-06-25T23:13:49.710490Z", + "iopub.status.busy": "2024-06-25T23:13:49.710159Z", + "iopub.status.idle": "2024-06-25T23:14:03.836426Z", + "shell.execute_reply": "2024-06-25T23:14:03.835865Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.094601Z", - "iopub.status.busy": "2024-06-25T19:32:17.094212Z", - "iopub.status.idle": "2024-06-25T19:32:17.098282Z", - "shell.execute_reply": "2024-06-25T19:32:17.097813Z" + "iopub.execute_input": "2024-06-25T23:14:03.839037Z", + "iopub.status.busy": "2024-06-25T23:14:03.838661Z", + "iopub.status.idle": "2024-06-25T23:14:03.842744Z", + "shell.execute_reply": "2024-06-25T23:14:03.842282Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.100415Z", - "iopub.status.busy": "2024-06-25T19:32:17.100030Z", - "iopub.status.idle": "2024-06-25T19:32:17.781950Z", - "shell.execute_reply": "2024-06-25T19:32:17.781387Z" + "iopub.execute_input": "2024-06-25T23:14:03.844717Z", + "iopub.status.busy": "2024-06-25T23:14:03.844392Z", + "iopub.status.idle": "2024-06-25T23:14:04.554198Z", + "shell.execute_reply": "2024-06-25T23:14:04.553609Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.785604Z", - "iopub.status.busy": "2024-06-25T19:32:17.784675Z", - "iopub.status.idle": "2024-06-25T19:32:17.791417Z", - "shell.execute_reply": "2024-06-25T19:32:17.790891Z" + "iopub.execute_input": "2024-06-25T23:14:04.557144Z", + "iopub.status.busy": "2024-06-25T23:14:04.556722Z", + "iopub.status.idle": "2024-06-25T23:14:04.561566Z", + "shell.execute_reply": "2024-06-25T23:14:04.561058Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.794921Z", - "iopub.status.busy": "2024-06-25T19:32:17.794005Z", - "iopub.status.idle": "2024-06-25T19:32:17.890859Z", - "shell.execute_reply": "2024-06-25T19:32:17.890238Z" + "iopub.execute_input": "2024-06-25T23:14:04.563987Z", + "iopub.status.busy": "2024-06-25T23:14:04.563613Z", + "iopub.status.idle": "2024-06-25T23:14:04.661144Z", + "shell.execute_reply": "2024-06-25T23:14:04.660555Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.893215Z", - "iopub.status.busy": "2024-06-25T19:32:17.892852Z", - "iopub.status.idle": "2024-06-25T19:32:17.904591Z", - "shell.execute_reply": "2024-06-25T19:32:17.904119Z" + "iopub.execute_input": "2024-06-25T23:14:04.663549Z", + "iopub.status.busy": "2024-06-25T23:14:04.663180Z", + "iopub.status.idle": "2024-06-25T23:14:04.675655Z", + "shell.execute_reply": "2024-06-25T23:14:04.675200Z" }, "scrolled": true }, @@ -880,10 +880,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.906706Z", - "iopub.status.busy": "2024-06-25T19:32:17.906385Z", - "iopub.status.idle": "2024-06-25T19:32:17.914138Z", - "shell.execute_reply": "2024-06-25T19:32:17.913686Z" + "iopub.execute_input": "2024-06-25T23:14:04.677803Z", + "iopub.status.busy": "2024-06-25T23:14:04.677480Z", + "iopub.status.idle": "2024-06-25T23:14:04.685163Z", + "shell.execute_reply": "2024-06-25T23:14:04.684654Z" } }, "outputs": [ @@ -987,10 +987,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.916135Z", - "iopub.status.busy": "2024-06-25T19:32:17.915799Z", - "iopub.status.idle": "2024-06-25T19:32:17.919765Z", - "shell.execute_reply": "2024-06-25T19:32:17.919222Z" + "iopub.execute_input": "2024-06-25T23:14:04.687288Z", + "iopub.status.busy": "2024-06-25T23:14:04.686965Z", + "iopub.status.idle": "2024-06-25T23:14:04.691175Z", + "shell.execute_reply": "2024-06-25T23:14:04.690734Z" } }, "outputs": [ @@ -1028,10 +1028,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.921837Z", - "iopub.status.busy": "2024-06-25T19:32:17.921500Z", - "iopub.status.idle": "2024-06-25T19:32:17.926898Z", - "shell.execute_reply": "2024-06-25T19:32:17.926399Z" + "iopub.execute_input": "2024-06-25T23:14:04.693198Z", + "iopub.status.busy": "2024-06-25T23:14:04.692832Z", + "iopub.status.idle": "2024-06-25T23:14:04.698386Z", + "shell.execute_reply": "2024-06-25T23:14:04.697923Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1158,10 +1158,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:17.929118Z", - "iopub.status.busy": "2024-06-25T19:32:17.928697Z", - "iopub.status.idle": "2024-06-25T19:32:18.039116Z", - "shell.execute_reply": "2024-06-25T19:32:18.038547Z" + "iopub.execute_input": "2024-06-25T23:14:04.700375Z", + "iopub.status.busy": "2024-06-25T23:14:04.700060Z", + "iopub.status.idle": "2024-06-25T23:14:04.810591Z", + "shell.execute_reply": "2024-06-25T23:14:04.810025Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1215,10 +1215,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:18.041334Z", - "iopub.status.busy": "2024-06-25T19:32:18.040985Z", - "iopub.status.idle": "2024-06-25T19:32:18.143028Z", - "shell.execute_reply": "2024-06-25T19:32:18.142549Z" + "iopub.execute_input": "2024-06-25T23:14:04.812699Z", + "iopub.status.busy": "2024-06-25T23:14:04.812492Z", + "iopub.status.idle": "2024-06-25T23:14:04.914526Z", + "shell.execute_reply": "2024-06-25T23:14:04.913959Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1263,10 +1263,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T19:32:18.145023Z", - "iopub.status.busy": "2024-06-25T19:32:18.144735Z", - "iopub.status.idle": "2024-06-25T19:32:18.245208Z", - "shell.execute_reply": "2024-06-25T19:32:18.244749Z" + "iopub.execute_input": "2024-06-25T23:14:04.916775Z", + "iopub.status.busy": "2024-06-25T23:14:04.916438Z", + "iopub.status.idle": "2024-06-25T23:14:05.017283Z", + "shell.execute_reply": "2024-06-25T23:14:05.016746Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1307,10 +1307,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:18.247314Z", - "iopub.status.busy": "2024-06-25T19:32:18.246984Z", - "iopub.status.idle": "2024-06-25T19:32:18.345698Z", - "shell.execute_reply": "2024-06-25T19:32:18.345236Z" + "iopub.execute_input": "2024-06-25T23:14:05.019268Z", + "iopub.status.busy": "2024-06-25T23:14:05.019087Z", + "iopub.status.idle": "2024-06-25T23:14:05.125584Z", + "shell.execute_reply": "2024-06-25T23:14:05.124990Z" } }, "outputs": [ @@ -1358,10 +1358,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:18.347691Z", - "iopub.status.busy": "2024-06-25T19:32:18.347361Z", - "iopub.status.idle": "2024-06-25T19:32:18.350505Z", - "shell.execute_reply": "2024-06-25T19:32:18.349977Z" + "iopub.execute_input": "2024-06-25T23:14:05.127830Z", + "iopub.status.busy": "2024-06-25T23:14:05.127392Z", + "iopub.status.idle": "2024-06-25T23:14:05.130680Z", + "shell.execute_reply": "2024-06-25T23:14:05.130142Z" }, "nbsphinx": "hidden" }, @@ -1402,30 +1402,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0160f38ecac34b8a9a6e60b79941cb42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6c2f4eab88df4fcfbf60ea1461b407fb", - "placeholder": "​", - "style": "IPY_MODEL_47f71961c8254da1a0cb8fe2f90ef9f5", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "09e511f313fe4deaa3db651dc2ad1f38": { + "01d773c5fc084c74bf3898f08469f8f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1478,7 +1455,7 @@ "width": null } }, - "0f81bdbdfded4d61a103fbc884fdb8b7": { + "048952d61d4143eeb7a3064dac9fe4ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1531,83 +1508,69 @@ "width": null } }, - "13b1cd45cfea4f85bfb6caa46af5a63a": { - "model_module": "@jupyter-widgets/base", + "065d70114b74423d9f2fa424de1b7a1e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1965785719184160b13d07134d9c01cd": { + "0c2f7ca60ab147c99ae03f759db46297": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "11546fd8d68648da9c138662014585e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9be1debd539947d495510d3e71e91a33", - "placeholder": "​", - "style": "IPY_MODEL_9593182600264e2aa5c5035fced2937b", + "layout": "IPY_MODEL_048952d61d4143eeb7a3064dac9fe4ac", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cd596207fea4447b96658e0f41eec607", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": 128619.0 } }, - "1aea1d112c054eec950bd686a0ca1d14": { + "12f57656dd504d218c054ef511da9ab4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1660,30 +1623,7 @@ "width": null } }, - "1b43dce850cb49019716fe7f052cd3f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b142eabfac84901b7edb8e5cf1db87e", - "placeholder": "​", - "style": "IPY_MODEL_751e8bbb861243c0b292b81647f5a7c8", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 32.9MB/s]" - } - }, - "1c18c2753518415ea3cf39b985a054ad": { + "14c9df2de7cc4e1bbaf4f1a58d5e3037": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1736,7 +1676,7 @@ "width": null } }, - "295a0df817014d6fbb6377dcc33be2b3": { + "1510d16cc79a49c88e3542daf3152481": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1751,32 +1691,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_bfc1a00c4e8f4270af1f947f378411f7", - "IPY_MODEL_dcd54291f5a341bb9379d41671c00d95", - "IPY_MODEL_bec49e231d374b619cca6a3dbb6c9b4f" + "IPY_MODEL_bd56af9d1df24f959c2e27458bf28564", + "IPY_MODEL_b83e50a6f4c94c46b81bc9ccac82d8ce", + "IPY_MODEL_d74890bb53b24653a178d14fa9fb1027" ], - "layout": "IPY_MODEL_5375b29786b24fc182c5b06dc46c21f5", + "layout": "IPY_MODEL_12f57656dd504d218c054ef511da9ab4", "tabbable": null, "tooltip": null } }, - "386b0038b80f44249027e46144d33c35": { + "186fee51c3124d608de6a5c71a289764": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8ca4da4898bb4451994f9434ae2ffbed", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_98428c59f17b40cdb1c0a7543994cae1", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "47f71961c8254da1a0cb8fe2f90ef9f5": { + "1dc5d0b009d545d1922ea03e17fa99b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1794,7 +1744,56 @@ "text_color": null } }, - "48203e358e5e4c599815faec66f84717": { + "1e7ea41fcad145359a3915227cd3a572": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_50e8d183b2e146bfa57d74e4574d6bf6", + "placeholder": "​", + "style": "IPY_MODEL_7936b993c44f45fc8f53ff71690b204e", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 328MB/s]" + } + }, + "227af90915cb483c9537459db20c2dcc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_78b9bcb39b554c0290d9800dc940ff71", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5869d031c1004d448f247c32b8c702e1", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "3740245a44544188bb5216cfbbe7c096": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1809,16 +1808,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0160f38ecac34b8a9a6e60b79941cb42", - "IPY_MODEL_cfb6db0858744f68a8074c3433dec014", - "IPY_MODEL_1b43dce850cb49019716fe7f052cd3f9" + "IPY_MODEL_ae1c35581029419bac126538cc5ba8f3", + "IPY_MODEL_186fee51c3124d608de6a5c71a289764", + "IPY_MODEL_1e7ea41fcad145359a3915227cd3a572" ], - "layout": "IPY_MODEL_5f9ac971b36144c99f166c6afca8b98c", + "layout": "IPY_MODEL_fe755d796bba4ebfa0a4fd20368887fa", "tabbable": null, "tooltip": null } }, - "5375b29786b24fc182c5b06dc46c21f5": { + "3d0bc58be6a64dbb9402e4f43247bbd9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1871,7 +1870,30 @@ "width": null } }, - "5a7fcc571ae3417ca7f32e5ac2e0f7ed": { + "40d6d738f9e542e98ecc6d953d704d68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ecd21cd3f9be4e8587ead71ef6eddacf", + "placeholder": "​", + "style": "IPY_MODEL_a873413b3495435bb8797c848d57b59a", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 508kB/s]" + } + }, + "4673aa7828d449fdb54b14aa87a8046b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1924,54 +1946,7 @@ "width": null } }, - "5b63774c214c467f836bfdcb44bf9b9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b1eae32f9cd4561b35edcb6a450623c", - "IPY_MODEL_e4e0fafef42746d1a3f83998a48e68fb", - "IPY_MODEL_b61aaac35e2a498c8712ccc1a79e72b4" - ], - "layout": "IPY_MODEL_13b1cd45cfea4f85bfb6caa46af5a63a", - "tabbable": null, - "tooltip": null - } - }, - "5de7ce2185e149b199420cef3937b004": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d05aa5c2f7ed4f049aeb55cefb06f57f", - "placeholder": "​", - "style": "IPY_MODEL_df36694caa324dc08d075a690e55fed5", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 860kB/s]" - } - }, - "5f9ac971b36144c99f166c6afca8b98c": { + "4bdd74d6b6f54d1fb924effdb6c35e73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2024,26 +1999,34 @@ "width": null } }, - "67c2bbd993f544be9aaa55f1059ee0c5": { + "4c68ee845d584f78b9ec889e427c9ab8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6c2f4eab88df4fcfbf60ea1461b407fb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ab9f826f70f04ba3b63e2e5db1d325f2", + "IPY_MODEL_11546fd8d68648da9c138662014585e5", + "IPY_MODEL_b5a2a7d91c7b447f8108b8896269f607" + ], + "layout": "IPY_MODEL_8954d8479e4b48759b6e0dbf92041c0c", + "tabbable": null, + "tooltip": null + } + }, + "4e926992584a4181a8551035087cce4c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -2093,25 +2076,7 @@ "width": null } }, - "751e8bbb861243c0b292b81647f5a7c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7b142eabfac84901b7edb8e5cf1db87e": { + "50e8d183b2e146bfa57d74e4574d6bf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2164,30 +2129,39 @@ "width": null } }, - "7b1eae32f9cd4561b35edcb6a450623c": { + "54403dba12ff4f26beb5b09e37a94253": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a3fcca569d54278b1f243ca468eb2e8", - "placeholder": "​", - "style": "IPY_MODEL_e8bef6ec94b841649328908a1e03f796", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5869d031c1004d448f247c32b8c702e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7c6fa0df6a7a4993ae1942f5e66eb942": { + "59bb523ac7f646b8b418eac0ba2650ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2240,7 +2214,7 @@ "width": null } }, - "8a3fcca569d54278b1f243ca468eb2e8": { + "5f72fda67a4f475ebe8560f39a8c3d76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2293,49 +2267,7 @@ "width": null } }, - "8d0cc257082a482b8a9c20f2623d1dd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d3aabef313ae48b184adb3612e11f7c0", - "IPY_MODEL_9926def0468e4ef78a40becf734e408b", - "IPY_MODEL_5de7ce2185e149b199420cef3937b004" - ], - "layout": "IPY_MODEL_cad71209689044bf95c6a56cd4254c5d", - "tabbable": null, - "tooltip": null - } - }, - "9593182600264e2aa5c5035fced2937b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95a7d374743e47b785481b53802557f9": { + "67850b52aee848a899a4c1cc7561c6dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2353,33 +2285,7 @@ "text_color": null } }, - "9926def0468e4ef78a40becf734e408b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_feef464c625b4ce98e733ec61ac7047a", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_67c2bbd993f544be9aaa55f1059ee0c5", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "9be1debd539947d495510d3e71e91a33": { + "78b9bcb39b554c0290d9800dc940ff71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2432,7 +2338,7 @@ "width": null } }, - "b61aaac35e2a498c8712ccc1a79e72b4": { + "7906a23ebb7146d593158f78421f5ed4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2447,77 +2353,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f8e6a2a4f4ac44968d7ab7e8b41cd9e5", + "layout": "IPY_MODEL_4e926992584a4181a8551035087cce4c", "placeholder": "​", - "style": "IPY_MODEL_fd7987d5664246479c5c48a19962bcff", + "style": "IPY_MODEL_065d70114b74423d9f2fa424de1b7a1e", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 33.4MB/s]" + "value": "hyperparams.yaml: 100%" } }, - "bc925d23337a4990bcbb6ad1d3ba0714": { + "7936b993c44f45fc8f53ff71690b204e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bec49e231d374b619cca6a3dbb6c9b4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cec08439b11541149be6a96ed609992c", - "placeholder": "​", - "style": "IPY_MODEL_95a7d374743e47b785481b53802557f9", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 514kB/s]" - } - }, - "bfc1a00c4e8f4270af1f947f378411f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0f81bdbdfded4d61a103fbc884fdb8b7", - "placeholder": "​", - "style": "IPY_MODEL_d7ac88820da9447ebde38eee5408d525", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cad71209689044bf95c6a56cd4254c5d": { + "8954d8479e4b48759b6e0dbf92041c0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2570,7 +2432,7 @@ "width": null } }, - "cec08439b11541149be6a96ed609992c": { + "8ca4da4898bb4451994f9434ae2ffbed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2623,33 +2485,116 @@ "width": null } }, - "cfb6db0858744f68a8074c3433dec014": { + "91f8c32305604aa6ad4753866f6428a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "98428c59f17b40cdb1c0a7543994cae1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a172e9a2a9464f0597dc89df0bc665f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a7376840cbcd4df89be2e35d1d83b7a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a873413b3495435bb8797c848d57b59a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ab9f826f70f04ba3b63e2e5db1d325f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c18c2753518415ea3cf39b985a054ad", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bc925d23337a4990bcbb6ad1d3ba0714", + "layout": "IPY_MODEL_01d773c5fc084c74bf3898f08469f8f7", + "placeholder": "​", + "style": "IPY_MODEL_1dc5d0b009d545d1922ea03e17fa99b3", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": "label_encoder.txt: 100%" } }, - "d05aa5c2f7ed4f049aeb55cefb06f57f": { + "acd3ca854a9b41b0a7e7c7c976d08dce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2702,7 +2647,7 @@ "width": null } }, - "d3aabef313ae48b184adb3612e11f7c0": { + "ae1c35581029419bac126538cc5ba8f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2717,33 +2662,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_efde3254ff184e58b1e14968ab98b2eb", + "layout": "IPY_MODEL_59bb523ac7f646b8b418eac0ba2650ec", "placeholder": "​", - "style": "IPY_MODEL_e51bddc0c26e45c28f6280a03fa6c570", + "style": "IPY_MODEL_91f8c32305604aa6ad4753866f6428a8", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "d7ac88820da9447ebde38eee5408d525": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "classifier.ckpt: 100%" } }, - "dc42c71988f64ceba56aa56cc9c662d3": { + "b5a2a7d91c7b447f8108b8896269f607": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2758,15 +2685,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7c6fa0df6a7a4993ae1942f5e66eb942", + "layout": "IPY_MODEL_14c9df2de7cc4e1bbaf4f1a58d5e3037", "placeholder": "​", - "style": "IPY_MODEL_fe2e22def9dd4fb9b35244ac0e211f6d", + "style": "IPY_MODEL_c805d0141fdb44038dfd6b1b6edf7abe", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 7.29MB/s]" + "value": " 129k/129k [00:00<00:00, 7.47MB/s]" } }, - "dcd54291f5a341bb9379d41671c00d95": { + "b83e50a6f4c94c46b81bc9ccac82d8ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2782,35 +2709,93 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1aea1d112c054eec950bd686a0ca1d14", - "max": 2041.0, + "layout": "IPY_MODEL_acd3ca854a9b41b0a7e7c7c976d08dce", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e83b02ee750444739a17f78b4d3f184f", + "style": "IPY_MODEL_a7376840cbcd4df89be2e35d1d83b7a7", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 16887676.0 } }, - "df36694caa324dc08d075a690e55fed5": { + "bd56af9d1df24f959c2e27458bf28564": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d0bc58be6a64dbb9402e4f43247bbd9", + "placeholder": "​", + "style": "IPY_MODEL_a172e9a2a9464f0597dc89df0bc665f5", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "c25723012a2d443ba16eb7f6c52bc3a5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e4e0fafef42746d1a3f83998a48e68fb": { + "c7c838e69efb43a2b0ac48deb78c922d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2826,17 +2811,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_09e511f313fe4deaa3db651dc2ad1f38", - "max": 16887676.0, + "layout": "IPY_MODEL_f1d6704797ff4e7da238df4899d6eb75", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ff0fbdda3a2745cab371f835eea2071a", + "style": "IPY_MODEL_54403dba12ff4f26beb5b09e37a94253", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": 3201.0 } }, - "e51bddc0c26e45c28f6280a03fa6c570": { + "c805d0141fdb44038dfd6b1b6edf7abe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2854,7 +2839,7 @@ "text_color": null } }, - "e83b02ee750444739a17f78b4d3f184f": { + "cd596207fea4447b96658e0f41eec607": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2870,51 +2855,77 @@ "description_width": "" } }, - "e8bef6ec94b841649328908a1e03f796": { + "d74890bb53b24653a178d14fa9fb1027": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4673aa7828d449fdb54b14aa87a8046b", + "placeholder": "​", + "style": "IPY_MODEL_f63a5476d3574388b856445769573334", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 194MB/s]" } }, - "ec7119530ac242a8bf5cd0417e5460c5": { + "d8e5131818de460ba01fb92aed10a852": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_edb975a882cd4029ab886291208a5a5c", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_386b0038b80f44249027e46144d33c35", + "layout": "IPY_MODEL_f3b0e8a956184e818936ebd0416f606e", + "placeholder": "​", + "style": "IPY_MODEL_67850b52aee848a899a4c1cc7561c6dd", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": " 3.20k/3.20k [00:00<00:00, 795kB/s]" + } + }, + "e4e22d23b27f43a5843b7ba91eb92b25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7906a23ebb7146d593158f78421f5ed4", + "IPY_MODEL_227af90915cb483c9537459db20c2dcc", + "IPY_MODEL_40d6d738f9e542e98ecc6d953d704d68" + ], + "layout": "IPY_MODEL_4bdd74d6b6f54d1fb924effdb6c35e73", + "tabbable": null, + "tooltip": null } }, - "edb975a882cd4029ab886291208a5a5c": { + "ecd21cd3f9be4e8587ead71ef6eddacf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2967,7 +2978,7 @@ "width": null } }, - "efde3254ff184e58b1e14968ab98b2eb": { + "f1d6704797ff4e7da238df4899d6eb75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3020,31 +3031,7 @@ "width": null } }, - "f26aa1a5503c462e89477a33079f160a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1965785719184160b13d07134d9c01cd", - "IPY_MODEL_ec7119530ac242a8bf5cd0417e5460c5", - "IPY_MODEL_dc42c71988f64ceba56aa56cc9c662d3" - ], - "layout": "IPY_MODEL_5a7fcc571ae3417ca7f32e5ac2e0f7ed", - "tabbable": null, - "tooltip": null - } - }, - "f8e6a2a4f4ac44968d7ab7e8b41cd9e5": { + "f3b0e8a956184e818936ebd0416f606e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3097,7 +3084,7 @@ "width": null } }, - "fd7987d5664246479c5c48a19962bcff": { + "f63a5476d3574388b856445769573334": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3115,25 +3102,54 @@ "text_color": null } }, - "fe2e22def9dd4fb9b35244ac0e211f6d": { + "fb4875c647a74da78ce0b565e117d890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fe276545fde34f708d296c6f254d81e8", + "IPY_MODEL_c7c838e69efb43a2b0ac48deb78c922d", + "IPY_MODEL_d8e5131818de460ba01fb92aed10a852" + ], + "layout": "IPY_MODEL_5f72fda67a4f475ebe8560f39a8c3d76", + "tabbable": null, + "tooltip": null + } + }, + "fe276545fde34f708d296c6f254d81e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c25723012a2d443ba16eb7f6c52bc3a5", + "placeholder": "​", + "style": "IPY_MODEL_0c2f7ca60ab147c99ae03f759db46297", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "feef464c625b4ce98e733ec61ac7047a": { + "fe755d796bba4ebfa0a4fd20368887fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3185,22 +3201,6 @@ "visibility": null, "width": null } - }, - "ff0fbdda3a2745cab371f835eea2071a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index e73adf499..54ecba124 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1304,7 +1304,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1579,7 +1579,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"31beebcbb1ed40e98e72f51b7111d288": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "495eb3b3071f43e1bf30631ee18ec38f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e905864ed9704e29b5c76d93504b2f9f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31beebcbb1ed40e98e72f51b7111d288", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_495eb3b3071f43e1bf30631ee18ec38f", "tabbable": null, "tooltip": null, "value": 132.0}}, "066581bfe5e048229e24f4456c525a9f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9790c7defa446cc93cb40beb3946950": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "514a0c7d656e41c7a0ef7156f7db70a4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_066581bfe5e048229e24f4456c525a9f", "placeholder": "\u200b", "style": "IPY_MODEL_e9790c7defa446cc93cb40beb3946950", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "74ffd90dc17c436bb5ca21cab1e64b31": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c1065c6e3be428aa1ed6d3ef05adb52": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5b75a7f5ee634ecbb513ceba0cf27697": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_74ffd90dc17c436bb5ca21cab1e64b31", "placeholder": "\u200b", "style": "IPY_MODEL_1c1065c6e3be428aa1ed6d3ef05adb52", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712588.35\u2007examples/s]"}}, "e0f1e9f09fb84534aee2fa9a795b3c91": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9160678898ef4935b4c5e9badf645887": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_514a0c7d656e41c7a0ef7156f7db70a4", "IPY_MODEL_e905864ed9704e29b5c76d93504b2f9f", "IPY_MODEL_5b75a7f5ee634ecbb513ceba0cf27697"], "layout": "IPY_MODEL_e0f1e9f09fb84534aee2fa9a795b3c91", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"daa1004e74fa4197b88715988591c621": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "781b877c2bbc46b7969db8529c1eb5c3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f70f2f9233844bc59865eab3649c0e10": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_daa1004e74fa4197b88715988591c621", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_781b877c2bbc46b7969db8529c1eb5c3", "tabbable": null, "tooltip": null, "value": 132.0}}, "2b2ed3b3a7ae4284a9bdf276850e3b28": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce12a71d028f4bb7883a05d9bc842498": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "261be93bad834528939faa8054552fd1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b2ed3b3a7ae4284a9bdf276850e3b28", "placeholder": "\u200b", "style": "IPY_MODEL_ce12a71d028f4bb7883a05d9bc842498", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "1300012c40154e1da99babb9fe20b16e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a579e009a0944dd19902993fdacfd504": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6489f0184cc74d83bb9ddc2889d4a3e0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1300012c40154e1da99babb9fe20b16e", "placeholder": "\u200b", "style": "IPY_MODEL_a579e009a0944dd19902993fdacfd504", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713503.61\u2007examples/s]"}}, "c6f6f871cbae4bd6b342d6cfded8728e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a7755a803c3a40ef93dda582347c1c91": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_261be93bad834528939faa8054552fd1", "IPY_MODEL_f70f2f9233844bc59865eab3649c0e10", "IPY_MODEL_6489f0184cc74d83bb9ddc2889d4a3e0"], "layout": "IPY_MODEL_c6f6f871cbae4bd6b342d6cfded8728e", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 33af481ea..17bb19429 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:21.525415Z", - "iopub.status.busy": "2024-06-25T19:32:21.525221Z", - "iopub.status.idle": "2024-06-25T19:32:22.681975Z", - "shell.execute_reply": "2024-06-25T19:32:22.681418Z" + "iopub.execute_input": "2024-06-25T23:14:09.178246Z", + "iopub.status.busy": "2024-06-25T23:14:09.177763Z", + "iopub.status.idle": "2024-06-25T23:14:10.319594Z", + "shell.execute_reply": "2024-06-25T23:14:10.319043Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:22.684626Z", - "iopub.status.busy": "2024-06-25T19:32:22.684217Z", - "iopub.status.idle": "2024-06-25T19:32:22.687052Z", - "shell.execute_reply": "2024-06-25T19:32:22.686634Z" + "iopub.execute_input": "2024-06-25T23:14:10.322187Z", + "iopub.status.busy": "2024-06-25T23:14:10.321743Z", + "iopub.status.idle": "2024-06-25T23:14:10.324748Z", + "shell.execute_reply": "2024-06-25T23:14:10.324303Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:22.689175Z", - "iopub.status.busy": "2024-06-25T19:32:22.688918Z", - "iopub.status.idle": "2024-06-25T19:32:22.697425Z", - "shell.execute_reply": "2024-06-25T19:32:22.696900Z" + "iopub.execute_input": "2024-06-25T23:14:10.326836Z", + "iopub.status.busy": "2024-06-25T23:14:10.326547Z", + "iopub.status.idle": "2024-06-25T23:14:10.335582Z", + "shell.execute_reply": "2024-06-25T23:14:10.335001Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:22.699485Z", - "iopub.status.busy": "2024-06-25T19:32:22.699153Z", - "iopub.status.idle": "2024-06-25T19:32:22.703881Z", - "shell.execute_reply": "2024-06-25T19:32:22.703445Z" + "iopub.execute_input": "2024-06-25T23:14:10.337605Z", + "iopub.status.busy": "2024-06-25T23:14:10.337298Z", + "iopub.status.idle": "2024-06-25T23:14:10.342294Z", + "shell.execute_reply": "2024-06-25T23:14:10.341736Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:22.706034Z", - "iopub.status.busy": "2024-06-25T19:32:22.705704Z", - "iopub.status.idle": "2024-06-25T19:32:22.888024Z", - "shell.execute_reply": "2024-06-25T19:32:22.887415Z" + "iopub.execute_input": "2024-06-25T23:14:10.344309Z", + "iopub.status.busy": "2024-06-25T23:14:10.344016Z", + "iopub.status.idle": "2024-06-25T23:14:10.523981Z", + "shell.execute_reply": "2024-06-25T23:14:10.523494Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:22.890902Z", - "iopub.status.busy": "2024-06-25T19:32:22.890533Z", - "iopub.status.idle": "2024-06-25T19:32:23.256766Z", - "shell.execute_reply": "2024-06-25T19:32:23.256201Z" + "iopub.execute_input": "2024-06-25T23:14:10.526345Z", + "iopub.status.busy": "2024-06-25T23:14:10.525993Z", + "iopub.status.idle": "2024-06-25T23:14:10.892857Z", + "shell.execute_reply": "2024-06-25T23:14:10.892276Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:23.259088Z", - "iopub.status.busy": "2024-06-25T19:32:23.258748Z", - "iopub.status.idle": "2024-06-25T19:32:23.281774Z", - "shell.execute_reply": "2024-06-25T19:32:23.281210Z" + "iopub.execute_input": "2024-06-25T23:14:10.895029Z", + "iopub.status.busy": "2024-06-25T23:14:10.894803Z", + "iopub.status.idle": "2024-06-25T23:14:10.917811Z", + "shell.execute_reply": "2024-06-25T23:14:10.917259Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:23.284159Z", - "iopub.status.busy": "2024-06-25T19:32:23.283828Z", - "iopub.status.idle": "2024-06-25T19:32:23.294542Z", - "shell.execute_reply": "2024-06-25T19:32:23.294124Z" + "iopub.execute_input": "2024-06-25T23:14:10.920262Z", + "iopub.status.busy": "2024-06-25T23:14:10.919694Z", + "iopub.status.idle": "2024-06-25T23:14:10.930815Z", + "shell.execute_reply": "2024-06-25T23:14:10.930406Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:23.296628Z", - "iopub.status.busy": "2024-06-25T19:32:23.296301Z", - "iopub.status.idle": "2024-06-25T19:32:25.256890Z", - "shell.execute_reply": "2024-06-25T19:32:25.256295Z" + "iopub.execute_input": "2024-06-25T23:14:10.932988Z", + "iopub.status.busy": "2024-06-25T23:14:10.932566Z", + "iopub.status.idle": "2024-06-25T23:14:12.886828Z", + "shell.execute_reply": "2024-06-25T23:14:12.886199Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.259406Z", - "iopub.status.busy": "2024-06-25T19:32:25.258951Z", - "iopub.status.idle": "2024-06-25T19:32:25.279987Z", - "shell.execute_reply": "2024-06-25T19:32:25.279554Z" + "iopub.execute_input": "2024-06-25T23:14:12.889582Z", + "iopub.status.busy": "2024-06-25T23:14:12.888947Z", + "iopub.status.idle": "2024-06-25T23:14:12.909728Z", + "shell.execute_reply": "2024-06-25T23:14:12.909257Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.281917Z", - "iopub.status.busy": "2024-06-25T19:32:25.281742Z", - "iopub.status.idle": "2024-06-25T19:32:25.300001Z", - "shell.execute_reply": "2024-06-25T19:32:25.299441Z" + "iopub.execute_input": "2024-06-25T23:14:12.911863Z", + "iopub.status.busy": "2024-06-25T23:14:12.911538Z", + "iopub.status.idle": "2024-06-25T23:14:12.929776Z", + "shell.execute_reply": "2024-06-25T23:14:12.929180Z" } }, "outputs": [ @@ -949,10 +949,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.302199Z", - "iopub.status.busy": "2024-06-25T19:32:25.301790Z", - "iopub.status.idle": "2024-06-25T19:32:25.315854Z", - "shell.execute_reply": "2024-06-25T19:32:25.315290Z" + "iopub.execute_input": "2024-06-25T23:14:12.931746Z", + "iopub.status.busy": "2024-06-25T23:14:12.931414Z", + "iopub.status.idle": "2024-06-25T23:14:12.945573Z", + "shell.execute_reply": "2024-06-25T23:14:12.945130Z" } }, "outputs": [ @@ -1087,17 +1087,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.317886Z", - "iopub.status.busy": "2024-06-25T19:32:25.317705Z", - "iopub.status.idle": "2024-06-25T19:32:25.337431Z", - "shell.execute_reply": "2024-06-25T19:32:25.336840Z" + "iopub.execute_input": "2024-06-25T23:14:12.947591Z", + "iopub.status.busy": "2024-06-25T23:14:12.947261Z", + "iopub.status.idle": "2024-06-25T23:14:12.966119Z", + "shell.execute_reply": "2024-06-25T23:14:12.965554Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9160678898ef4935b4c5e9badf645887", + "model_id": "a7755a803c3a40ef93dda582347c1c91", "version_major": 2, "version_minor": 0 }, @@ -1133,10 +1133,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.339545Z", - "iopub.status.busy": "2024-06-25T19:32:25.339254Z", - "iopub.status.idle": "2024-06-25T19:32:25.353979Z", - "shell.execute_reply": "2024-06-25T19:32:25.353546Z" + "iopub.execute_input": "2024-06-25T23:14:12.967941Z", + "iopub.status.busy": "2024-06-25T23:14:12.967765Z", + "iopub.status.idle": "2024-06-25T23:14:12.982515Z", + "shell.execute_reply": "2024-06-25T23:14:12.981981Z" } }, "outputs": [ @@ -1259,10 +1259,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.355891Z", - "iopub.status.busy": "2024-06-25T19:32:25.355714Z", - "iopub.status.idle": "2024-06-25T19:32:25.361530Z", - "shell.execute_reply": "2024-06-25T19:32:25.360999Z" + "iopub.execute_input": "2024-06-25T23:14:12.984568Z", + "iopub.status.busy": "2024-06-25T23:14:12.984190Z", + "iopub.status.idle": "2024-06-25T23:14:12.989904Z", + "shell.execute_reply": "2024-06-25T23:14:12.989416Z" } }, "outputs": [], @@ -1319,10 +1319,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:25.363640Z", - "iopub.status.busy": "2024-06-25T19:32:25.363214Z", - "iopub.status.idle": "2024-06-25T19:32:25.380614Z", - "shell.execute_reply": "2024-06-25T19:32:25.380174Z" + "iopub.execute_input": "2024-06-25T23:14:12.991867Z", + "iopub.status.busy": "2024-06-25T23:14:12.991560Z", + "iopub.status.idle": "2024-06-25T23:14:13.010114Z", + "shell.execute_reply": "2024-06-25T23:14:13.009557Z" } }, "outputs": [ @@ -1459,7 +1459,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "066581bfe5e048229e24f4456c525a9f": { + "1300012c40154e1da99babb9fe20b16e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1512,25 +1512,30 @@ "width": null } }, - "1c1065c6e3be428aa1ed6d3ef05adb52": { + "261be93bad834528939faa8054552fd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2b2ed3b3a7ae4284a9bdf276850e3b28", + "placeholder": "​", + "style": "IPY_MODEL_ce12a71d028f4bb7883a05d9bc842498", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "31beebcbb1ed40e98e72f51b7111d288": { + "2b2ed3b3a7ae4284a9bdf276850e3b28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1583,7 +1588,30 @@ "width": null } }, - "495eb3b3071f43e1bf30631ee18ec38f": { + "6489f0184cc74d83bb9ddc2889d4a3e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1300012c40154e1da99babb9fe20b16e", + "placeholder": "​", + "style": "IPY_MODEL_a579e009a0944dd19902993fdacfd504", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13503.61 examples/s]" + } + }, + "781b877c2bbc46b7969db8529c1eb5c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1599,53 +1627,49 @@ "description_width": "" } }, - "514a0c7d656e41c7a0ef7156f7db70a4": { + "a579e009a0944dd19902993fdacfd504": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_066581bfe5e048229e24f4456c525a9f", - "placeholder": "​", - "style": "IPY_MODEL_e9790c7defa446cc93cb40beb3946950", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5b75a7f5ee634ecbb513ceba0cf27697": { + "a7755a803c3a40ef93dda582347c1c91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_74ffd90dc17c436bb5ca21cab1e64b31", - "placeholder": "​", - "style": "IPY_MODEL_1c1065c6e3be428aa1ed6d3ef05adb52", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_261be93bad834528939faa8054552fd1", + "IPY_MODEL_f70f2f9233844bc59865eab3649c0e10", + "IPY_MODEL_6489f0184cc74d83bb9ddc2889d4a3e0" + ], + "layout": "IPY_MODEL_c6f6f871cbae4bd6b342d6cfded8728e", "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12588.35 examples/s]" + "tooltip": null } }, - "74ffd90dc17c436bb5ca21cab1e64b31": { + "c6f6f871cbae4bd6b342d6cfded8728e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1698,31 +1722,25 @@ "width": null } }, - "9160678898ef4935b4c5e9badf645887": { + "ce12a71d028f4bb7883a05d9bc842498": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_514a0c7d656e41c7a0ef7156f7db70a4", - "IPY_MODEL_e905864ed9704e29b5c76d93504b2f9f", - "IPY_MODEL_5b75a7f5ee634ecbb513ceba0cf27697" - ], - "layout": "IPY_MODEL_e0f1e9f09fb84534aee2fa9a795b3c91", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e0f1e9f09fb84534aee2fa9a795b3c91": { + "daa1004e74fa4197b88715988591c621": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1775,7 +1793,7 @@ "width": null } }, - "e905864ed9704e29b5c76d93504b2f9f": { + "f70f2f9233844bc59865eab3649c0e10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1791,33 +1809,15 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_31beebcbb1ed40e98e72f51b7111d288", + "layout": "IPY_MODEL_daa1004e74fa4197b88715988591c621", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_495eb3b3071f43e1bf30631ee18ec38f", + "style": "IPY_MODEL_781b877c2bbc46b7969db8529c1eb5c3", "tabbable": null, "tooltip": null, "value": 132.0 } - }, - "e9790c7defa446cc93cb40beb3946950": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 701b2fb18..4fb163767 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:28.076768Z", - "iopub.status.busy": "2024-06-25T19:32:28.076417Z", - "iopub.status.idle": "2024-06-25T19:32:29.230065Z", - "shell.execute_reply": "2024-06-25T19:32:29.229522Z" + "iopub.execute_input": "2024-06-25T23:14:15.711188Z", + "iopub.status.busy": "2024-06-25T23:14:15.711012Z", + "iopub.status.idle": "2024-06-25T23:14:16.870873Z", + "shell.execute_reply": "2024-06-25T23:14:16.870268Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.232655Z", - "iopub.status.busy": "2024-06-25T19:32:29.232386Z", - "iopub.status.idle": "2024-06-25T19:32:29.235452Z", - "shell.execute_reply": "2024-06-25T19:32:29.234935Z" + "iopub.execute_input": "2024-06-25T23:14:16.873481Z", + "iopub.status.busy": "2024-06-25T23:14:16.873232Z", + "iopub.status.idle": "2024-06-25T23:14:16.876287Z", + "shell.execute_reply": "2024-06-25T23:14:16.875762Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.237717Z", - "iopub.status.busy": "2024-06-25T19:32:29.237325Z", - "iopub.status.idle": "2024-06-25T19:32:29.246331Z", - "shell.execute_reply": "2024-06-25T19:32:29.245844Z" + "iopub.execute_input": "2024-06-25T23:14:16.878379Z", + "iopub.status.busy": "2024-06-25T23:14:16.878075Z", + "iopub.status.idle": "2024-06-25T23:14:16.887427Z", + "shell.execute_reply": "2024-06-25T23:14:16.886901Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.248332Z", - "iopub.status.busy": "2024-06-25T19:32:29.248005Z", - "iopub.status.idle": "2024-06-25T19:32:29.252728Z", - "shell.execute_reply": "2024-06-25T19:32:29.252172Z" + "iopub.execute_input": "2024-06-25T23:14:16.889377Z", + "iopub.status.busy": "2024-06-25T23:14:16.889034Z", + "iopub.status.idle": "2024-06-25T23:14:16.893463Z", + "shell.execute_reply": "2024-06-25T23:14:16.893025Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.254880Z", - "iopub.status.busy": "2024-06-25T19:32:29.254709Z", - "iopub.status.idle": "2024-06-25T19:32:29.437885Z", - "shell.execute_reply": "2024-06-25T19:32:29.437386Z" + "iopub.execute_input": "2024-06-25T23:14:16.895454Z", + "iopub.status.busy": "2024-06-25T23:14:16.895124Z", + "iopub.status.idle": "2024-06-25T23:14:17.076668Z", + "shell.execute_reply": "2024-06-25T23:14:17.076135Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.440194Z", - "iopub.status.busy": "2024-06-25T19:32:29.440000Z", - "iopub.status.idle": "2024-06-25T19:32:29.811011Z", - "shell.execute_reply": "2024-06-25T19:32:29.810430Z" + "iopub.execute_input": "2024-06-25T23:14:17.079016Z", + "iopub.status.busy": "2024-06-25T23:14:17.078687Z", + "iopub.status.idle": "2024-06-25T23:14:17.444945Z", + "shell.execute_reply": "2024-06-25T23:14:17.444376Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.813249Z", - "iopub.status.busy": "2024-06-25T19:32:29.812907Z", - "iopub.status.idle": "2024-06-25T19:32:29.815709Z", - "shell.execute_reply": "2024-06-25T19:32:29.815239Z" + "iopub.execute_input": "2024-06-25T23:14:17.447239Z", + "iopub.status.busy": "2024-06-25T23:14:17.446903Z", + "iopub.status.idle": "2024-06-25T23:14:17.449525Z", + "shell.execute_reply": "2024-06-25T23:14:17.449111Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.817838Z", - "iopub.status.busy": "2024-06-25T19:32:29.817412Z", - "iopub.status.idle": "2024-06-25T19:32:29.852590Z", - "shell.execute_reply": "2024-06-25T19:32:29.852033Z" + "iopub.execute_input": "2024-06-25T23:14:17.451586Z", + "iopub.status.busy": "2024-06-25T23:14:17.451263Z", + "iopub.status.idle": "2024-06-25T23:14:17.486312Z", + "shell.execute_reply": "2024-06-25T23:14:17.485793Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:29.854728Z", - "iopub.status.busy": "2024-06-25T19:32:29.854340Z", - "iopub.status.idle": "2024-06-25T19:32:31.848165Z", - "shell.execute_reply": "2024-06-25T19:32:31.847549Z" + "iopub.execute_input": "2024-06-25T23:14:17.488380Z", + "iopub.status.busy": "2024-06-25T23:14:17.488048Z", + "iopub.status.idle": "2024-06-25T23:14:19.486184Z", + "shell.execute_reply": "2024-06-25T23:14:19.485493Z" } }, "outputs": [ @@ -710,10 +710,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.850423Z", - "iopub.status.busy": "2024-06-25T19:32:31.850093Z", - "iopub.status.idle": "2024-06-25T19:32:31.868614Z", - "shell.execute_reply": "2024-06-25T19:32:31.868087Z" + "iopub.execute_input": "2024-06-25T23:14:19.488814Z", + "iopub.status.busy": "2024-06-25T23:14:19.488306Z", + "iopub.status.idle": "2024-06-25T23:14:19.506666Z", + "shell.execute_reply": "2024-06-25T23:14:19.506238Z" } }, "outputs": [ @@ -846,10 +846,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.870858Z", - "iopub.status.busy": "2024-06-25T19:32:31.870547Z", - "iopub.status.idle": "2024-06-25T19:32:31.877139Z", - "shell.execute_reply": "2024-06-25T19:32:31.876698Z" + "iopub.execute_input": "2024-06-25T23:14:19.508882Z", + "iopub.status.busy": "2024-06-25T23:14:19.508469Z", + "iopub.status.idle": "2024-06-25T23:14:19.514832Z", + "shell.execute_reply": "2024-06-25T23:14:19.514311Z" } }, "outputs": [ @@ -960,10 +960,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.879087Z", - "iopub.status.busy": "2024-06-25T19:32:31.878912Z", - "iopub.status.idle": "2024-06-25T19:32:31.884810Z", - "shell.execute_reply": "2024-06-25T19:32:31.884314Z" + "iopub.execute_input": "2024-06-25T23:14:19.516791Z", + "iopub.status.busy": "2024-06-25T23:14:19.516482Z", + "iopub.status.idle": "2024-06-25T23:14:19.522090Z", + "shell.execute_reply": "2024-06-25T23:14:19.521611Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.886777Z", - "iopub.status.busy": "2024-06-25T19:32:31.886603Z", - "iopub.status.idle": "2024-06-25T19:32:31.897515Z", - "shell.execute_reply": "2024-06-25T19:32:31.897079Z" + "iopub.execute_input": "2024-06-25T23:14:19.524150Z", + "iopub.status.busy": "2024-06-25T23:14:19.523753Z", + "iopub.status.idle": "2024-06-25T23:14:19.533902Z", + "shell.execute_reply": "2024-06-25T23:14:19.533440Z" } }, "outputs": [ @@ -1225,10 +1225,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.899532Z", - "iopub.status.busy": "2024-06-25T19:32:31.899178Z", - "iopub.status.idle": "2024-06-25T19:32:31.908000Z", - "shell.execute_reply": "2024-06-25T19:32:31.907553Z" + "iopub.execute_input": "2024-06-25T23:14:19.535870Z", + "iopub.status.busy": "2024-06-25T23:14:19.535545Z", + "iopub.status.idle": "2024-06-25T23:14:19.544125Z", + "shell.execute_reply": "2024-06-25T23:14:19.543654Z" } }, "outputs": [ @@ -1344,10 +1344,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.910005Z", - "iopub.status.busy": "2024-06-25T19:32:31.909678Z", - "iopub.status.idle": "2024-06-25T19:32:31.916574Z", - "shell.execute_reply": "2024-06-25T19:32:31.916117Z" + "iopub.execute_input": "2024-06-25T23:14:19.546177Z", + "iopub.status.busy": "2024-06-25T23:14:19.545853Z", + "iopub.status.idle": "2024-06-25T23:14:19.552700Z", + "shell.execute_reply": "2024-06-25T23:14:19.552255Z" }, "scrolled": true }, @@ -1472,10 +1472,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.918557Z", - "iopub.status.busy": "2024-06-25T19:32:31.918225Z", - "iopub.status.idle": "2024-06-25T19:32:31.927581Z", - "shell.execute_reply": "2024-06-25T19:32:31.927120Z" + "iopub.execute_input": "2024-06-25T23:14:19.554580Z", + "iopub.status.busy": "2024-06-25T23:14:19.554407Z", + "iopub.status.idle": "2024-06-25T23:14:19.563718Z", + "shell.execute_reply": "2024-06-25T23:14:19.563190Z" } }, "outputs": [ @@ -1578,10 +1578,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:31.929562Z", - "iopub.status.busy": "2024-06-25T19:32:31.929235Z", - "iopub.status.idle": "2024-06-25T19:32:31.940775Z", - "shell.execute_reply": "2024-06-25T19:32:31.940218Z" + "iopub.execute_input": "2024-06-25T23:14:19.565768Z", + "iopub.status.busy": "2024-06-25T23:14:19.565442Z", + "iopub.status.idle": "2024-06-25T23:14:19.576977Z", + "shell.execute_reply": "2024-06-25T23:14:19.576554Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index d02e8abdb..1c428fccc 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -738,49 +738,49 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1093,7 +1093,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1125,7 +1125,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1157,7 +1157,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1957,35 +1957,35 @@

Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -2079,35 +2079,35 @@

Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -2135,7 +2135,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index a549a7040..da3ecdeb8 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:34.714453Z", - "iopub.status.busy": "2024-06-25T19:32:34.714061Z", - "iopub.status.idle": "2024-06-25T19:32:37.483269Z", - "shell.execute_reply": "2024-06-25T19:32:37.482729Z" + "iopub.execute_input": "2024-06-25T23:14:22.349033Z", + "iopub.status.busy": "2024-06-25T23:14:22.348862Z", + "iopub.status.idle": "2024-06-25T23:14:25.155777Z", + "shell.execute_reply": "2024-06-25T23:14:25.155231Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:37.485856Z", - "iopub.status.busy": "2024-06-25T19:32:37.485436Z", - "iopub.status.idle": "2024-06-25T19:32:37.489039Z", - "shell.execute_reply": "2024-06-25T19:32:37.488503Z" + "iopub.execute_input": "2024-06-25T23:14:25.158288Z", + "iopub.status.busy": "2024-06-25T23:14:25.158017Z", + "iopub.status.idle": "2024-06-25T23:14:25.161499Z", + "shell.execute_reply": "2024-06-25T23:14:25.161043Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:37.491139Z", - "iopub.status.busy": "2024-06-25T19:32:37.490837Z", - "iopub.status.idle": "2024-06-25T19:32:52.986261Z", - "shell.execute_reply": "2024-06-25T19:32:52.985738Z" + "iopub.execute_input": "2024-06-25T23:14:25.163549Z", + "iopub.status.busy": "2024-06-25T23:14:25.163223Z", + "iopub.status.idle": "2024-06-25T23:14:35.757240Z", + "shell.execute_reply": "2024-06-25T23:14:35.756685Z" } }, "outputs": [ @@ -172,7 +172,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e85af83531bc4182b052d4cfe7f1020e", + "model_id": "99fb59566db2452bab382261d05e2879", "version_major": 2, "version_minor": 0 }, @@ -186,7 +186,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9abe31b01bc04cc89ff967d26e368fdf", + "model_id": "cacaca4358c34e93a46a3e2019d188d4", "version_major": 2, "version_minor": 0 }, @@ -200,7 +200,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1585cf2dc2e448068ac19676773a2a4b", + "model_id": "46c5f1e4a9ca403d83a2aa33da63b600", "version_major": 2, "version_minor": 0 }, @@ -214,7 +214,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a9c34fb99987402ba4f521a988475574", + "model_id": "cc7010cd50844e48a3db713a6ea5f850", "version_major": 2, "version_minor": 0 }, @@ -228,7 +228,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "815effa183cf4ca4a7160696d4e9eb83", + "model_id": "1e806f052f23419ba6ec80aa76644ed5", "version_major": 2, "version_minor": 0 }, @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "79a15df271d14bfa8e4ed6dbe1c37a8a", + "model_id": "3590fcc9756749e0b9130b8809114216", "version_major": 2, "version_minor": 0 }, @@ -256,7 +256,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4d2025fc902f41b2b7c3474d4e9cd2fb", + "model_id": "489746a2a7db4406b7ebfd5f2a155361", "version_major": 2, "version_minor": 0 }, @@ -270,7 +270,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bdbb1b6b96824b1ba8715b85852886fe", + "model_id": "b9c41de7ac0442aabfb15bbf3b5308c8", "version_major": 2, "version_minor": 0 }, @@ -312,10 +312,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:52.988486Z", - "iopub.status.busy": "2024-06-25T19:32:52.988150Z", - "iopub.status.idle": "2024-06-25T19:32:52.992110Z", - "shell.execute_reply": "2024-06-25T19:32:52.991660Z" + "iopub.execute_input": "2024-06-25T23:14:35.759372Z", + "iopub.status.busy": "2024-06-25T23:14:35.759148Z", + "iopub.status.idle": "2024-06-25T23:14:35.763037Z", + "shell.execute_reply": "2024-06-25T23:14:35.762503Z" } }, "outputs": [ @@ -340,17 +340,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:32:52.994131Z", - "iopub.status.busy": "2024-06-25T19:32:52.993820Z", - "iopub.status.idle": "2024-06-25T19:33:03.871847Z", - "shell.execute_reply": "2024-06-25T19:33:03.871235Z" + "iopub.execute_input": "2024-06-25T23:14:35.765199Z", + "iopub.status.busy": "2024-06-25T23:14:35.764868Z", + "iopub.status.idle": "2024-06-25T23:14:46.667044Z", + "shell.execute_reply": "2024-06-25T23:14:46.666518Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2d29dc28e7140b792fc1ee3fcb857cb", + "model_id": "e075f5bd416a447eb67433e0d225370f", "version_major": 2, "version_minor": 0 }, @@ -388,10 +388,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:03.874363Z", - "iopub.status.busy": "2024-06-25T19:33:03.874071Z", - "iopub.status.idle": "2024-06-25T19:33:22.807154Z", - "shell.execute_reply": "2024-06-25T19:33:22.806523Z" + "iopub.execute_input": "2024-06-25T23:14:46.669519Z", + "iopub.status.busy": "2024-06-25T23:14:46.669228Z", + "iopub.status.idle": "2024-06-25T23:15:05.072765Z", + "shell.execute_reply": "2024-06-25T23:15:05.072224Z" } }, "outputs": [], @@ -424,10 +424,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:22.809827Z", - "iopub.status.busy": "2024-06-25T19:33:22.809607Z", - "iopub.status.idle": "2024-06-25T19:33:22.814504Z", - "shell.execute_reply": "2024-06-25T19:33:22.813958Z" + "iopub.execute_input": "2024-06-25T23:15:05.075378Z", + "iopub.status.busy": "2024-06-25T23:15:05.075000Z", + "iopub.status.idle": "2024-06-25T23:15:05.080668Z", + "shell.execute_reply": "2024-06-25T23:15:05.080229Z" } }, "outputs": [], @@ -465,10 +465,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:22.816419Z", - "iopub.status.busy": "2024-06-25T19:33:22.816239Z", - "iopub.status.idle": "2024-06-25T19:33:22.820245Z", - "shell.execute_reply": "2024-06-25T19:33:22.819819Z" + "iopub.execute_input": "2024-06-25T23:15:05.082696Z", + "iopub.status.busy": "2024-06-25T23:15:05.082377Z", + "iopub.status.idle": "2024-06-25T23:15:05.086277Z", + "shell.execute_reply": "2024-06-25T23:15:05.085865Z" }, "nbsphinx": "hidden" }, @@ -605,10 +605,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:22.822196Z", - "iopub.status.busy": "2024-06-25T19:33:22.822022Z", - "iopub.status.idle": "2024-06-25T19:33:22.831142Z", - "shell.execute_reply": "2024-06-25T19:33:22.830697Z" + "iopub.execute_input": "2024-06-25T23:15:05.088252Z", + "iopub.status.busy": "2024-06-25T23:15:05.087933Z", + "iopub.status.idle": "2024-06-25T23:15:05.096769Z", + "shell.execute_reply": "2024-06-25T23:15:05.096319Z" }, "nbsphinx": "hidden" }, @@ -733,10 +733,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:22.833164Z", - "iopub.status.busy": "2024-06-25T19:33:22.832846Z", - "iopub.status.idle": "2024-06-25T19:33:22.860883Z", - "shell.execute_reply": "2024-06-25T19:33:22.860460Z" + "iopub.execute_input": "2024-06-25T23:15:05.098773Z", + "iopub.status.busy": "2024-06-25T23:15:05.098471Z", + "iopub.status.idle": "2024-06-25T23:15:05.125306Z", + "shell.execute_reply": "2024-06-25T23:15:05.124855Z" } }, "outputs": [], @@ -773,10 +773,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:22.862805Z", - "iopub.status.busy": "2024-06-25T19:33:22.862633Z", - "iopub.status.idle": "2024-06-25T19:33:54.927685Z", - "shell.execute_reply": "2024-06-25T19:33:54.927065Z" + "iopub.execute_input": "2024-06-25T23:15:05.127482Z", + "iopub.status.busy": "2024-06-25T23:15:05.127151Z", + "iopub.status.idle": "2024-06-25T23:15:37.033092Z", + "shell.execute_reply": "2024-06-25T23:15:37.032511Z" } }, "outputs": [ @@ -792,21 +792,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.704\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.649\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.525\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.481\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b56125fc059b47e3b228dc3ed3b629c0", + "model_id": "8835da69dbeb4826a96baa0561232a18", "version_major": 2, "version_minor": 0 }, @@ -827,7 +827,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5c565e132b5a46d398435caf4df461d4", + "model_id": "1141e88c1cd549c1ad36f5867b926978", "version_major": 2, "version_minor": 0 }, @@ -850,21 +850,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.714\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.663\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.460\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.663\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "63e4117109d44d79bcece5146781039a", + "model_id": "2a3f5349b34148209445198c9ae64559", "version_major": 2, "version_minor": 0 }, @@ -885,7 +885,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "09c8fb8f5f2945a4948b758b41efb311", + "model_id": "2c1834764c78450699f4a69ba292fe8e", "version_major": 2, "version_minor": 0 }, @@ -908,21 +908,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.742\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.680\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.468\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.450\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "85c627e125a94180abe254acf928a1fc", + "model_id": "02ef28fe5e5647e49f15e9889ac88c8f", "version_major": 2, "version_minor": 0 }, @@ -943,7 +943,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "85af3d53abef4aa8a6046017943dc826", + "model_id": "ebc081ac7cef42f58f0c46bdca672b27", "version_major": 2, "version_minor": 0 }, @@ -1022,10 +1022,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:54.930258Z", - "iopub.status.busy": "2024-06-25T19:33:54.929870Z", - "iopub.status.idle": "2024-06-25T19:33:54.943872Z", - "shell.execute_reply": "2024-06-25T19:33:54.943339Z" + "iopub.execute_input": "2024-06-25T23:15:37.035751Z", + "iopub.status.busy": "2024-06-25T23:15:37.035236Z", + "iopub.status.idle": "2024-06-25T23:15:37.049525Z", + "shell.execute_reply": "2024-06-25T23:15:37.049035Z" } }, "outputs": [], @@ -1050,10 +1050,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:54.946038Z", - "iopub.status.busy": "2024-06-25T19:33:54.945618Z", - "iopub.status.idle": "2024-06-25T19:33:55.403627Z", - "shell.execute_reply": "2024-06-25T19:33:55.402981Z" + "iopub.execute_input": "2024-06-25T23:15:37.051460Z", + "iopub.status.busy": "2024-06-25T23:15:37.051284Z", + "iopub.status.idle": "2024-06-25T23:15:37.533678Z", + "shell.execute_reply": "2024-06-25T23:15:37.533181Z" } }, "outputs": [], @@ -1073,10 +1073,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:33:55.406220Z", - "iopub.status.busy": "2024-06-25T19:33:55.406041Z", - "iopub.status.idle": "2024-06-25T19:35:30.535430Z", - "shell.execute_reply": "2024-06-25T19:35:30.534808Z" + "iopub.execute_input": "2024-06-25T23:15:37.536010Z", + "iopub.status.busy": "2024-06-25T23:15:37.535826Z", + "iopub.status.idle": "2024-06-25T23:17:13.081610Z", + "shell.execute_reply": "2024-06-25T23:17:13.080989Z" } }, "outputs": [ @@ -1123,7 +1123,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d65cb8246aa14189b49a0eeae6f3bad0", + "model_id": "55c0a386d760485f92009bb75259396b", "version_major": 2, "version_minor": 0 }, @@ -1162,10 +1162,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:30.537781Z", - "iopub.status.busy": "2024-06-25T19:35:30.537412Z", - "iopub.status.idle": "2024-06-25T19:35:30.983712Z", - "shell.execute_reply": "2024-06-25T19:35:30.983121Z" + "iopub.execute_input": "2024-06-25T23:17:13.084039Z", + "iopub.status.busy": "2024-06-25T23:17:13.083667Z", + "iopub.status.idle": "2024-06-25T23:17:13.530568Z", + "shell.execute_reply": "2024-06-25T23:17:13.530038Z" } }, "outputs": [ @@ -1311,10 +1311,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:30.986665Z", - "iopub.status.busy": "2024-06-25T19:35:30.986208Z", - "iopub.status.idle": "2024-06-25T19:35:31.048426Z", - "shell.execute_reply": "2024-06-25T19:35:31.047866Z" + "iopub.execute_input": "2024-06-25T23:17:13.532958Z", + "iopub.status.busy": "2024-06-25T23:17:13.532616Z", + "iopub.status.idle": "2024-06-25T23:17:13.595525Z", + "shell.execute_reply": "2024-06-25T23:17:13.594969Z" } }, "outputs": [ @@ -1418,10 +1418,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.050749Z", - "iopub.status.busy": "2024-06-25T19:35:31.050363Z", - "iopub.status.idle": "2024-06-25T19:35:31.060546Z", - "shell.execute_reply": "2024-06-25T19:35:31.060026Z" + "iopub.execute_input": "2024-06-25T23:17:13.597922Z", + "iopub.status.busy": "2024-06-25T23:17:13.597476Z", + "iopub.status.idle": "2024-06-25T23:17:13.606785Z", + "shell.execute_reply": "2024-06-25T23:17:13.606218Z" } }, "outputs": [ @@ -1551,10 +1551,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.062742Z", - "iopub.status.busy": "2024-06-25T19:35:31.062469Z", - "iopub.status.idle": "2024-06-25T19:35:31.068251Z", - "shell.execute_reply": "2024-06-25T19:35:31.067801Z" + "iopub.execute_input": "2024-06-25T23:17:13.609099Z", + "iopub.status.busy": "2024-06-25T23:17:13.608903Z", + "iopub.status.idle": "2024-06-25T23:17:13.613602Z", + "shell.execute_reply": "2024-06-25T23:17:13.613147Z" }, "nbsphinx": "hidden" }, @@ -1600,10 +1600,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.070241Z", - "iopub.status.busy": "2024-06-25T19:35:31.069928Z", - "iopub.status.idle": "2024-06-25T19:35:31.828844Z", - "shell.execute_reply": "2024-06-25T19:35:31.828271Z" + "iopub.execute_input": "2024-06-25T23:17:13.615408Z", + "iopub.status.busy": "2024-06-25T23:17:13.615233Z", + "iopub.status.idle": "2024-06-25T23:17:14.118370Z", + "shell.execute_reply": "2024-06-25T23:17:14.117787Z" } }, "outputs": [ @@ -1638,10 +1638,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.831222Z", - "iopub.status.busy": "2024-06-25T19:35:31.830895Z", - "iopub.status.idle": "2024-06-25T19:35:31.839311Z", - "shell.execute_reply": "2024-06-25T19:35:31.838857Z" + "iopub.execute_input": "2024-06-25T23:17:14.120491Z", + "iopub.status.busy": "2024-06-25T23:17:14.120304Z", + "iopub.status.idle": "2024-06-25T23:17:14.128885Z", + "shell.execute_reply": "2024-06-25T23:17:14.128442Z" } }, "outputs": [ @@ -1808,10 +1808,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.841482Z", - "iopub.status.busy": "2024-06-25T19:35:31.841163Z", - "iopub.status.idle": "2024-06-25T19:35:31.848176Z", - "shell.execute_reply": "2024-06-25T19:35:31.847749Z" + "iopub.execute_input": "2024-06-25T23:17:14.131053Z", + "iopub.status.busy": "2024-06-25T23:17:14.130639Z", + "iopub.status.idle": "2024-06-25T23:17:14.433754Z", + "shell.execute_reply": "2024-06-25T23:17:14.433138Z" }, "nbsphinx": "hidden" }, @@ -1887,10 +1887,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:31.850195Z", - "iopub.status.busy": "2024-06-25T19:35:31.849881Z", - "iopub.status.idle": "2024-06-25T19:35:32.292692Z", - "shell.execute_reply": "2024-06-25T19:35:32.292043Z" + "iopub.execute_input": "2024-06-25T23:17:14.437185Z", + "iopub.status.busy": "2024-06-25T23:17:14.436581Z", + "iopub.status.idle": "2024-06-25T23:17:14.910179Z", + "shell.execute_reply": "2024-06-25T23:17:14.909590Z" } }, "outputs": [ @@ -1927,10 +1927,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.295116Z", - "iopub.status.busy": "2024-06-25T19:35:32.294759Z", - "iopub.status.idle": "2024-06-25T19:35:32.310913Z", - "shell.execute_reply": "2024-06-25T19:35:32.310451Z" + "iopub.execute_input": "2024-06-25T23:17:14.912393Z", + "iopub.status.busy": "2024-06-25T23:17:14.912024Z", + "iopub.status.idle": "2024-06-25T23:17:14.927515Z", + "shell.execute_reply": "2024-06-25T23:17:14.926933Z" } }, "outputs": [ @@ -2087,10 +2087,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.313089Z", - "iopub.status.busy": "2024-06-25T19:35:32.312752Z", - "iopub.status.idle": "2024-06-25T19:35:32.318396Z", - "shell.execute_reply": "2024-06-25T19:35:32.317860Z" + "iopub.execute_input": "2024-06-25T23:17:14.929547Z", + "iopub.status.busy": "2024-06-25T23:17:14.929372Z", + "iopub.status.idle": "2024-06-25T23:17:14.935923Z", + "shell.execute_reply": "2024-06-25T23:17:14.935427Z" }, "nbsphinx": "hidden" }, @@ -2135,10 +2135,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.320370Z", - "iopub.status.busy": "2024-06-25T19:35:32.320196Z", - "iopub.status.idle": "2024-06-25T19:35:32.779377Z", - "shell.execute_reply": "2024-06-25T19:35:32.778856Z" + "iopub.execute_input": "2024-06-25T23:17:14.937944Z", + "iopub.status.busy": "2024-06-25T23:17:14.937612Z", + "iopub.status.idle": "2024-06-25T23:17:15.400691Z", + "shell.execute_reply": "2024-06-25T23:17:15.399712Z" } }, "outputs": [ @@ -2220,10 +2220,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.782553Z", - "iopub.status.busy": "2024-06-25T19:35:32.782090Z", - "iopub.status.idle": "2024-06-25T19:35:32.791666Z", - "shell.execute_reply": "2024-06-25T19:35:32.790923Z" + "iopub.execute_input": "2024-06-25T23:17:15.403380Z", + "iopub.status.busy": "2024-06-25T23:17:15.403170Z", + "iopub.status.idle": "2024-06-25T23:17:15.412375Z", + "shell.execute_reply": "2024-06-25T23:17:15.411801Z" } }, "outputs": [ @@ -2248,47 +2248,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2351,10 +2351,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.794003Z", - "iopub.status.busy": "2024-06-25T19:35:32.793805Z", - "iopub.status.idle": "2024-06-25T19:35:32.799849Z", - "shell.execute_reply": "2024-06-25T19:35:32.799106Z" + "iopub.execute_input": "2024-06-25T23:17:15.414938Z", + "iopub.status.busy": "2024-06-25T23:17:15.414744Z", + "iopub.status.idle": "2024-06-25T23:17:15.420451Z", + "shell.execute_reply": "2024-06-25T23:17:15.419881Z" }, "nbsphinx": "hidden" }, @@ -2391,10 +2391,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:32.802393Z", - "iopub.status.busy": "2024-06-25T19:35:32.802198Z", - "iopub.status.idle": "2024-06-25T19:35:33.003653Z", - "shell.execute_reply": "2024-06-25T19:35:33.003206Z" + "iopub.execute_input": "2024-06-25T23:17:15.422902Z", + "iopub.status.busy": "2024-06-25T23:17:15.422710Z", + "iopub.status.idle": "2024-06-25T23:17:15.624779Z", + "shell.execute_reply": "2024-06-25T23:17:15.624291Z" } }, "outputs": [ @@ -2436,10 +2436,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:33.005778Z", - "iopub.status.busy": "2024-06-25T19:35:33.005613Z", - "iopub.status.idle": "2024-06-25T19:35:33.013113Z", - "shell.execute_reply": "2024-06-25T19:35:33.012647Z" + "iopub.execute_input": "2024-06-25T23:17:15.627227Z", + "iopub.status.busy": "2024-06-25T23:17:15.626865Z", + "iopub.status.idle": "2024-06-25T23:17:15.634605Z", + "shell.execute_reply": "2024-06-25T23:17:15.634166Z" } }, "outputs": [ @@ -2464,47 +2464,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "
" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2525,10 +2525,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:33.015062Z", - "iopub.status.busy": "2024-06-25T19:35:33.014721Z", - "iopub.status.idle": "2024-06-25T19:35:33.209360Z", - "shell.execute_reply": "2024-06-25T19:35:33.208767Z" + "iopub.execute_input": "2024-06-25T23:17:15.636681Z", + "iopub.status.busy": "2024-06-25T23:17:15.636363Z", + "iopub.status.idle": "2024-06-25T23:17:15.834587Z", + "shell.execute_reply": "2024-06-25T23:17:15.834003Z" } }, "outputs": [ @@ -2568,10 +2568,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:33.211913Z", - "iopub.status.busy": "2024-06-25T19:35:33.211538Z", - "iopub.status.idle": "2024-06-25T19:35:33.216052Z", - "shell.execute_reply": "2024-06-25T19:35:33.215616Z" + "iopub.execute_input": "2024-06-25T23:17:15.836769Z", + "iopub.status.busy": "2024-06-25T23:17:15.836460Z", + "iopub.status.idle": "2024-06-25T23:17:15.840847Z", + "shell.execute_reply": "2024-06-25T23:17:15.840296Z" }, "nbsphinx": "hidden" }, @@ -2608,7 +2608,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0011fb26fc5d4baa896547da4133122f": { + "003b69c44f834dd6bd767bd85d0282c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "01e9581b8f904ce9bd99cf2093d8e0b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2661,48 +2679,31 @@ "width": null } }, - "00644b1a57b2451e9cdebb4eb7250f78": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "007876448c144ee39084540ed6eb06b9": { + "02ef28fe5e5647e49f15e9889ac88c8f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5745328a69db48878efba6c4bdb99305", - "placeholder": "​", - "style": "IPY_MODEL_b54eac280dff4e5dbe0c1d2b48743535", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_17898a71a5eb4556a9c02c78df55aeb3", + "IPY_MODEL_aae89dad290345f5acc2526904d6d4e5", + "IPY_MODEL_18560e45d46d48bf99bbf1a153e2502c" + ], + "layout": "IPY_MODEL_22708ad181354289ac5fa640bd1c4121", "tabbable": null, - "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.45MB/s]" + "tooltip": null } }, - "0120148eaefd42fd9a38edc77bc35ac7": { + "0302bede64084627a211292664570913": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2720,7 +2721,7 @@ "text_color": null } }, - "0261398aaa894092b6eca7f630c39440": { + "040097e76c3b414292ef486207e132ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2773,113 +2774,76 @@ "width": null } }, - "031211ba610a4802b4a54cdf1bba56a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b9a030c7a18e43e0a9ade7e2489ba818", - "placeholder": "​", - "style": "IPY_MODEL_7824f895073b4989aabcc1118fe1e570", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "03ab3894bf4242d8999349575ac3ab13": { + "04bfeccaeea6416e98641eb5e663ae0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "03b60960744f469c8562f78a5948c4a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_46f3bc1415b94874ba19257d22e4bfed", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44210013b27e41639717a483f6daeb8c", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "0419dce41e82427eba5f201dcd3224ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fe37a821e1f04c6f9903e3722f9ab4c2", - "placeholder": "​", - "style": "IPY_MODEL_7f8b4b75f0c545ac966463807f510230", - "tabbable": null, - "tooltip": null, - "value": "100%" + "bar_color": null, + "description_width": "" } }, - "05b056eafe984430926b52278f208393": { - "model_module": "@jupyter-widgets/controls", + "08971fe179644eda8bcd42e21d601e92": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0637c05b667541e782a074923de85b45": { + "08fa3b07fef4433e8a950677af858234": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2894,39 +2858,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_74f4d829ffbb4508957bfb49f70fe734", + "layout": "IPY_MODEL_72b19493a1ca42c793bcda945b230961", "placeholder": "​", - "style": "IPY_MODEL_13a871b41cce4be6bd9b0c8fb1116aec", + "style": "IPY_MODEL_afdd5bafd5ba49909abaaef0bb7f6038", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.59it/s]" - } - }, - "09c8fb8f5f2945a4948b758b41efb311": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_031211ba610a4802b4a54cdf1bba56a7", - "IPY_MODEL_42fc637a41cf41029345fe4e9b68d6c9", - "IPY_MODEL_c1899c2c83a146b4b5eccb8d3c0892ae" - ], - "layout": "IPY_MODEL_44661251f61148bab2d1f3993f625718", - "tabbable": null, - "tooltip": null + "value": " 26.4M/26.4M [00:00<00:00, 114MB/s]" } }, - "0b157a2c7cf7434fbc4448eaf5ad92d7": { + "0ada4c3d2a88412599516fae13401849": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2942,48 +2882,7 @@ "description_width": "" } }, - "0d79223cae9246eaaa4f673e81a780a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0f7c857000414450bdc92196b4466489": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88408a65c5eb4eb48911a14aadbc74cf", - "placeholder": "​", - "style": "IPY_MODEL_26f5985a24fd4b3cb9fb40bc0c1b22a2", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "112a5fd388db49e4b8a0f9dffab06426": { + "0fc5778c044d4fcd9e8f745663d100c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3036,94 +2935,10 @@ "width": null } }, - "12693e79b18144d2be2b4b4399f4789e": { - "model_module": "@jupyter-widgets/controls", + "103b52da5fd24c24a14b4605ba5c3120": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf14a805f3944138b263cb978e9fcf8b", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_51c208e957a24da184c9f20ebc42f546", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "12da0c3d2bd5449dbb811de7fd8b2093": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "13a871b41cce4be6bd9b0c8fb1116aec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1585cf2dc2e448068ac19676773a2a4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_744802ca32e849ab9fea4e8e3861b154", - "IPY_MODEL_2cca5f207862410483ac41718382a443", - "IPY_MODEL_5b650c7c7114407ca633a6f913edbef2" - ], - "layout": "IPY_MODEL_90c7589ac13b443eb422dd2f647490a3", - "tabbable": null, - "tooltip": null - } - }, - "175a6c09ad6c4cbfbdd9543952ef9ffc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -3173,30 +2988,7 @@ "width": null } }, - "1a2d0d43f24f4a179401f7bde3fcbf11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ec23491fb0024cb8a1b7dfd205775551", - "placeholder": "​", - "style": "IPY_MODEL_8946f270b2954b22801e92ce10bf7c63", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "1b72621c613b4da3999f4f434c596d23": { + "10833dd9b558436e8141086cd6457744": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3249,82 +3041,49 @@ "width": null } }, - "1bb8a6dd435048b28340d4eac6730019": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c1f07c0e6cb7453cb234322863c6974b", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_494b87319f8d45ab8596d3cc2028f7f6", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "1c96211615924c808f262fae38d4ab01": { + "1141e88c1cd549c1ad36f5867b926978": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1b72621c613b4da3999f4f434c596d23", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b461446aa899462d865a83e0c727b5c5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7a70b6d736914713b75013fd280cd1fb", + "IPY_MODEL_233edc846cd2411699f747246a5c017b", + "IPY_MODEL_9b8b5db0d4ec47ae8f14fbae0720d3e0" + ], + "layout": "IPY_MODEL_32715003f9374a25a98d8e94a71e934d", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "1d5a9e2ed91b479f9781063cdce66b7e": { + "11828cd7a97146ac81748612b0601834": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4266637c8f4c47fbb4c9e7bd9cc2cabf", - "placeholder": "​", - "style": "IPY_MODEL_2047417b76614aad92d50e9d57fa28a2", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:06<00:00, 8928.67 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1f1d67e48a1c45258572b6fbf8ebe4e2": { + "11e93782fa6f464e9f6900e0c646f5cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3377,7 +3136,7 @@ "width": null } }, - "1fbec845f4cf42bb8efb9b83163e0b9b": { + "1232a69e4cd748539b2d4cdde35b417c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3430,25 +3189,60 @@ "width": null } }, - "2047417b76614aad92d50e9d57fa28a2": { - "model_module": "@jupyter-widgets/controls", + "12fb080c89ea44b788b8036e7c269e2e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2426b36b4bcd4538a7a1a6c6f443b609": { + "176f4fe537ab44709eed5f4771e5a748": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3501,67 +3295,48 @@ "width": null } }, - "26f5985a24fd4b3cb9fb40bc0c1b22a2": { + "17898a71a5eb4556a9c02c78df55aeb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a805af9f6458409cbfcf1ef1829794dc", + "placeholder": "​", + "style": "IPY_MODEL_7f159f23ebfd44699351ad51261161f4", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "2854eeec578a4c3e9a9828ec08c1652c": { + "17af51078a0c4c0f92db9850c8c773d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2a37f3b6e2e64eda9d5aad4e57bb6475": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1f1d67e48a1c45258572b6fbf8ebe4e2", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b58b8eff8e745eb9e937354fedb1807", - "tabbable": null, - "tooltip": null, - "value": 5148.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2c916b2e66ff458bae959988d3edfc7f": { + "18560e45d46d48bf99bbf1a153e2502c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3576,15 +3351,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0011fb26fc5d4baa896547da4133122f", + "layout": "IPY_MODEL_040097e76c3b414292ef486207e132ee", "placeholder": "​", - "style": "IPY_MODEL_9d3b7c0890814f2c9985eb79f97a04ac", + "style": "IPY_MODEL_0302bede64084627a211292664570913", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": " 40/40 [00:00<00:00, 60.88it/s]" } }, - "2cca5f207862410483ac41718382a443": { + "18e5b3625d2a4b3abbfea651a20eef56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3600,74 +3375,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ecde01d38be144db9d996498b953e5b4", - "max": 26421880.0, + "layout": "IPY_MODEL_01e9581b8f904ce9bd99cf2093d8e0b6", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_555d30c920d344059abb5d85084268de", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "2f9e9f6f7ebe42afa59802bdf7306ccb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "30a335f232c04fe7b668ed6a418d27b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3253c6b3e3464da88809a4ce236555f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_495d2ed12e8446bc80ad465a9f89a896", - "placeholder": "​", - "style": "IPY_MODEL_00644b1a57b2451e9cdebb4eb7250f78", + "style": "IPY_MODEL_293b9b52ffaa471e9c10ec006eefc31e", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.41it/s]" + "value": 40.0 } }, - "32b6d99a486e461eacd6e063c5420eff": { + "1a2ffe0f3d68433d9fc120a9b894e762": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3720,7 +3438,7 @@ "width": null } }, - "38eb030b83c64212b25df93cfe516570": { + "1cdb544e05fe49e5b616044f82615b00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3735,33 +3453,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_77b7d71484644232938d588a6fbcc4ed", + "layout": "IPY_MODEL_12fb080c89ea44b788b8036e7c269e2e", "placeholder": "​", - "style": "IPY_MODEL_cd436773aeeb4e5f811c805cd47f7071", + "style": "IPY_MODEL_2b67454e45604716a3d08831b42d274a", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "39314c631f444d01903b4f50ccfc66df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Downloading data: 100%" } }, - "420adb2a809a4b7693bda83cb040e60c": { + "1e4148a5a5464b22b94684bad558cbec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3814,86 +3514,49 @@ "width": null } }, - "4266637c8f4c47fbb4c9e7bd9cc2cabf": { - "model_module": "@jupyter-widgets/base", + "1e806f052f23419ba6ec80aa76644ed5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1cdb544e05fe49e5b616044f82615b00", + "IPY_MODEL_b602e59393ab410ba774d7c2419c556d", + "IPY_MODEL_d6337601ed54490eb0d452da36303706" + ], + "layout": "IPY_MODEL_1a2ffe0f3d68433d9fc120a9b894e762", + "tabbable": null, + "tooltip": null } }, - "4268b194fef1470096c0d165c23da82f": { + "1f7f1fac2dd34d07b7fc07f799729df6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b218eb25d1544b2198406c8d0daa0439", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_53d0e7a8e50247a88566f4b59b14d553", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "42c998dc50734d8c93d723bb78939244": { + "20376214a3ff45e29c894539ac53a963": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3946,109 +3609,30 @@ "width": null } }, - "42e73c1ad6b74b238d722d1c7ee516b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "42fc637a41cf41029345fe4e9b68d6c9": { + "20aa2cb116fa42218107305be2c9121a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_175a6c09ad6c4cbfbdd9543952ef9ffc", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0b157a2c7cf7434fbc4448eaf5ad92d7", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "434f1175a8614296b63392ddd951670e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "44210013b27e41639717a483f6daeb8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4439d6c4067d42b2bc7b5b49e651de05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_70c9b3de67694dc4a8c38a542842ae3c", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2854eeec578a4c3e9a9828ec08c1652c", + "layout": "IPY_MODEL_dd549dafe96d457a9f3e32fa6dda0ce5", + "placeholder": "​", + "style": "IPY_MODEL_6f6e9c74347e4652b414406bd4c67238", "tabbable": null, "tooltip": null, - "value": 4.0 + "value": " 29.5k/29.5k [00:00<00:00, 4.38MB/s]" } }, - "44661251f61148bab2d1f3993f625718": { + "20e8c6a9ab644e3da69655bfbc794894": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4101,7 +3685,33 @@ "width": null } }, - "46692e2429834f6b8ad6d2e3bd669ac5": { + "2253900d1539484ea6c5fb5f87e34fae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8b39eaec8f5843a3942f7b65e5320363", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e675357d5efc42b3968d61c273ca5f7f", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "22708ad181354289ac5fa640bd1c4121": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4154,7 +3764,7 @@ "width": null } }, - "46f3bc1415b94874ba19257d22e4bfed": { + "22e4e1da97fe49e290e9dac292880148": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4207,7 +3817,127 @@ "width": null } }, - "470cbbcbb3d44bb493031e8387fe6adc": { + "22ece7076054425f8784c9f44cd9c512": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "231c040b6a13479f944b5bef41c9994a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "233edc846cd2411699f747246a5c017b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_816719582fe14c11a648b648bb9e2cbb", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_474d936989bb4423af34fd74a8db3b23", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "293b9b52ffaa471e9c10ec006eefc31e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2a3f5349b34148209445198c9ae64559": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bf0ad0d606f04b7aa5013f43b6f32049", + "IPY_MODEL_5788b965507d455ca17eabfc155de530", + "IPY_MODEL_453bcb1f0a7e4e41aa72dab72cbeed75" + ], + "layout": "IPY_MODEL_10833dd9b558436e8141086cd6457744", + "tabbable": null, + "tooltip": null + } + }, + "2b67454e45604716a3d08831b42d274a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2bf71c3624ce4413bc347a20e07c26d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4260,23 +3990,31 @@ "width": null } }, - "494b87319f8d45ab8596d3cc2028f7f6": { + "2c1834764c78450699f4a69ba292fe8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c6eb4afdd2a54d899795e4359d8c989d", + "IPY_MODEL_caabab78e31d438eb521e9c3f2e1c0a6", + "IPY_MODEL_e9b9c9bbe0374dd9b98a3a4c1553822f" + ], + "layout": "IPY_MODEL_20376214a3ff45e29c894539ac53a963", + "tabbable": null, + "tooltip": null } }, - "495d2ed12e8446bc80ad465a9f89a896": { + "2d69655ca2a545e9a4b05f6865cdf2a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4329,7 +4067,53 @@ "width": null } }, - "4b1c1c0a8eb2477b91cae9a52c47e58c": { + "307355aaf24e41138019598af025ac1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_715dab8821f5465eade13b7f8765ed47", + "placeholder": "​", + "style": "IPY_MODEL_71217b3eed354f73861bde4bfaf66ffd", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1535.58it/s]" + } + }, + "311422b25c3d435280a7ae2e6c1b5cbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_485dd48b720d4e1dbfce8f76953b154e", + "placeholder": "​", + "style": "IPY_MODEL_8c6b20c613cf48bd9f826dbeb5124369", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "32715003f9374a25a98d8e94a71e934d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4382,7 +4166,7 @@ "width": null } }, - "4b9e51775e974654a075cfdb1d1b699c": { + "32d10bf33ee54d2bac909d0748596dac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4435,25 +4219,7 @@ "width": null } }, - "4cfef00083ee41c18334522b0aaafbf6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4d2025fc902f41b2b7c3474d4e9cd2fb": { + "3590fcc9756749e0b9130b8809114216": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4468,16 +4234,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2c916b2e66ff458bae959988d3edfc7f", - "IPY_MODEL_f3a3a4eba3674c53882dfe2a1c081653", - "IPY_MODEL_1d5a9e2ed91b479f9781063cdce66b7e" + "IPY_MODEL_9c8e988dcc76462ea4a6543f9f1dd759", + "IPY_MODEL_61530f93052c4966a3ed9c90ec90c547", + "IPY_MODEL_3c58f7da1e954e5f85811b8c931dddf3" ], - "layout": "IPY_MODEL_e7dae7ac77284ca7a938a5140aea14ba", + "layout": "IPY_MODEL_839cc7aeb6cf41cba2328b772dda1354", "tabbable": null, "tooltip": null } }, - "4f814c4fdc474d7e8305f032c2caaf1d": { + "37059badcffc423fbad95494b9745859": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4492,81 +4258,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7437bf57da394059a3d162f5d7a1a77a", + "layout": "IPY_MODEL_50aef71653f04eb49e220d1870cbf7ff", "placeholder": "​", - "style": "IPY_MODEL_434f1175a8614296b63392ddd951670e", + "style": "IPY_MODEL_eb33301487694b0f9f4a664fce743134", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "51c208e957a24da184c9f20ebc42f546": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "53d0e7a8e50247a88566f4b59b14d553": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "555d30c920d344059abb5d85084268de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "569d3453747c444a9c2661732c8b1fb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/60000 [00:06<00:00, 8813.66 examples/s]" } }, - "5745328a69db48878efba6c4bdb99305": { + "373768b5fd4c42118d61459d55c65ad2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4619,7 +4319,46 @@ "width": null } }, - "594f571cc61a464d8934a2a6ebaff1ed": { + "3764b604f5ba43288217fe3f4372b542": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3779e0b1881642b8b80007dfa03126bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e4148a5a5464b22b94684bad558cbec", + "placeholder": "​", + "style": "IPY_MODEL_885a1c18bad74f47ae49ef86de2c3a67", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "38bd0231f7c34338a8ccd2536adb5809": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4672,7 +4411,48 @@ "width": null } }, - "5a36ed53de5c4a9c8637a7b4013dfb54": { + "3c58f7da1e954e5f85811b8c931dddf3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d8441cb494324dad83d4a88dd3c805e6", + "placeholder": "​", + "style": "IPY_MODEL_3e99f4f8639445f0810c65d14dccca89", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 906kB/s]" + } + }, + "3c76ee6a2244430cbb3e8e8416d1a23c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3e86a20ac6b044d4adccfeaba4245d25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4725,86 +4505,77 @@ "width": null } }, - "5b650c7c7114407ca633a6f913edbef2": { + "3e99f4f8639445f0810c65d14dccca89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6b409257aab47b888b2954d7b04073e", - "placeholder": "​", - "style": "IPY_MODEL_d067169b2a1745bd893cbaa56705df57", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 124MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5c565e132b5a46d398435caf4df461d4": { + "40e314c496664e698c489a3f5c279e1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4f814c4fdc474d7e8305f032c2caaf1d", - "IPY_MODEL_bb91a65b9f7c4bcbae0545c6e0c0c603", - "IPY_MODEL_e39cdb7fe88f4310bfd8b1dcd8ac5ae2" - ], - "layout": "IPY_MODEL_a7668c39f7324f3abf6dee2fb270336f", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_08971fe179644eda8bcd42e21d601e92", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0ada4c3d2a88412599516fae13401849", "tabbable": null, - "tooltip": null - } - }, - "5c5b477c793d4588a25705aece5a2a2e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": 10000.0 } }, - "5d69e819f44b493a8d07e58cb39a6a69": { + "41aa359adc6640ab9d5ea2369493623a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4ae6fd916d6d470190a53d061fb0b02f", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_63f97e8188cb4370abab083114492da0", + "tabbable": null, + "tooltip": null, + "value": 8845.0 } }, - "5efe1df058ed48ae9674a8448d855c64": { + "4251756ae8d344e8923025afa5b3be9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4857,31 +4628,23 @@ "width": null } }, - "63e4117109d44d79bcece5146781039a": { + "42c5eeb19b2a4542b4159e63110273e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eb56ed8bd1a74a87a2a7cf25c0992594", - "IPY_MODEL_ee448c322caa4ddbae258419893e01e8", - "IPY_MODEL_3253c6b3e3464da88809a4ce236555f1" - ], - "layout": "IPY_MODEL_659e46eb96e64415a9a947aea4256de6", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6566ace6c0aa4a21abbf6d708cb457b0": { + "42f688e5fa0a4f698ca681a4433e115d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4934,7 +4697,7 @@ "width": null } }, - "659e46eb96e64415a9a947aea4256de6": { + "431d46eafa8c450b8c8f1bf1f7883cf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4987,7 +4750,7 @@ "width": null } }, - "670532c752594999bbc5db2f86da0bfa": { + "4536c7080de841acaaec729cdf955c0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5040,51 +4803,70 @@ "width": null } }, - "67bb2dfe0bed499ea09cbd03e6cf7fd1": { + "453bcb1f0a7e4e41aa72dab72cbeed75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_470cbbcbb3d44bb493031e8387fe6adc", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_42e73c1ad6b74b238d722d1c7ee516b1", + "layout": "IPY_MODEL_103b52da5fd24c24a14b4605ba5c3120", + "placeholder": "​", + "style": "IPY_MODEL_9d8907e922884b4c98182bd90146f805", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 60.08it/s]" } }, - "6b4971a3c52247978439a6e52e61bca9": { + "46c5f1e4a9ca403d83a2aa33da63b600": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_667ac6e91c614fc09ad352122a696161", + "IPY_MODEL_59358b3c018e40c1b73065b80810af12", + "IPY_MODEL_08fa3b07fef4433e8a950677af858234" + ], + "layout": "IPY_MODEL_4251756ae8d344e8923025afa5b3be9a", + "tabbable": null, + "tooltip": null + } + }, + "474d936989bb4423af34fd74a8db3b23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6bf38f634a0d459bbfabdc8331eb6e3b": { + "485dd48b720d4e1dbfce8f76953b154e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5137,60 +4919,49 @@ "width": null } }, - "70c9b3de67694dc4a8c38a542842ae3c": { - "model_module": "@jupyter-widgets/base", + "489746a2a7db4406b7ebfd5f2a155361": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ae4bdbf2d6494345acc4f7003fcd9cd9", + "IPY_MODEL_dd4b960c1fc54808ac7ec7abfbe1ccbc", + "IPY_MODEL_37059badcffc423fbad95494b9745859" + ], + "layout": "IPY_MODEL_73593795a4ac4b21a0677dccf1a525cb", + "tabbable": null, + "tooltip": null + } + }, + "4a74983359df462095cf64e3c2706a4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "71c3b5aba9c94572b460be6639753985": { + "4ae6fd916d6d470190a53d061fb0b02f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5243,7 +5014,23 @@ "width": null } }, - "720932772aa64aba973045693c189137": { + "4d2f1756b094437bb3ff9f30ea93cbb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4de2163b87c545ed89dfc257d6a7e304": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5296,7 +5083,7 @@ "width": null } }, - "7437bf57da394059a3d162f5d7a1a77a": { + "50aef71653f04eb49e220d1870cbf7ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5349,7 +5136,7 @@ "width": null } }, - "744802ca32e849ab9fea4e8e3861b154": { + "52638684784d4b5fb05e436a7f614243": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5364,38 +5151,107 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f19d1922e1974c3fa19988e4d4701f69", + "layout": "IPY_MODEL_ed7068ef4b08440eaae3bd1ba5cca147", "placeholder": "​", - "style": "IPY_MODEL_f924af4748c740ce948540ad741071d9", + "style": "IPY_MODEL_91c032ac4bfb4eceba18d1021672143e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 4.83k/4.83k [00:00<00:00, 586kB/s]" } }, - "74a2396570a8494a948c33421fd20593": { + "55c0a386d760485f92009bb75259396b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ed6f311b0f784e268d2c2f765d55a94a", + "IPY_MODEL_9e8ad22d82bc455da31ccd997a15763c", + "IPY_MODEL_307355aaf24e41138019598af025ac1b" + ], + "layout": "IPY_MODEL_1232a69e4cd748539b2d4cdde35b417c", + "tabbable": null, + "tooltip": null + } + }, + "5788b965507d455ca17eabfc155de530": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_32b6d99a486e461eacd6e063c5420eff", - "placeholder": "​", - "style": "IPY_MODEL_8ec14b76495d43b599a2c06778d3e9c7", + "layout": "IPY_MODEL_b37bca5ee3994510a0c5bf88495f1a10", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6c1210fd37c047b69d6bb77d7a585576", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "59358b3c018e40c1b73065b80810af12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6b3ea7da7caf4dc294c20842ed8cac54", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3764b604f5ba43288217fe3f4372b542", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:35<00:00, 1632.10it/s]" + "value": 26421880.0 + } + }, + "5a5ab3c1640f48e7953b2212cf787f29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "74f4d829ffbb4508957bfb49f70fe734": { + "5aed3d8999204da4abd99966f9859da8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5448,7 +5304,7 @@ "width": null } }, - "757e89f53d174fc6b18a1a8380eb5700": { + "5c2cc530fc7746919e9df959510c6dc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5501,23 +5357,51 @@ "width": null } }, - "778338997ef84774b5fc1b3e363f63c9": { + "5cbd075f38af4a35bd49255f7c6854c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "61530f93052c4966a3ed9c90ec90c547": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0fc5778c044d4fcd9e8f745663d100c5", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bbcf2512f0a048e99a7d2ad46cb7b594", + "tabbable": null, + "tooltip": null, + "value": 5148.0 } }, - "77b7d71484644232938d588a6fbcc4ed": { + "629ccac58fe74198b172012097674576": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5570,102 +5454,69 @@ "width": null } }, - "7824f895073b4989aabcc1118fe1e570": { + "63e3c00666534cf78aef58362ab798ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8abe4aff024b461ea93d3d85dd84f1f7", + "placeholder": "​", + "style": "IPY_MODEL_5cbd075f38af4a35bd49255f7c6854c3", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "789ca2ff29a44242935c400b234b1969": { - "model_module": "@jupyter-widgets/base", + "63f97e8188cb4370abab083114492da0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "79a15df271d14bfa8e4ed6dbe1c37a8a": { + "667ac6e91c614fc09ad352122a696161": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0f7c857000414450bdc92196b4466489", - "IPY_MODEL_2a37f3b6e2e64eda9d5aad4e57bb6475", - "IPY_MODEL_beba078ac8d64eb893f533808fb9cfdd" - ], - "layout": "IPY_MODEL_1fbec845f4cf42bb8efb9b83163e0b9b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8852f488ece4717923d24f0f949869a", + "placeholder": "​", + "style": "IPY_MODEL_11828cd7a97146ac81748612b0601834", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "7a1637c606824542971bdd53178cb547": { + "6a96595df722450495b69e3d9407c566": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5683,7 +5534,7 @@ "text_color": null } }, - "7ea218ed3bac4e3fb0038d64392dab79": { + "6b3ea7da7caf4dc294c20842ed8cac54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5736,166 +5587,93 @@ "width": null } }, - "7f8b4b75f0c545ac966463807f510230": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "815effa183cf4ca4a7160696d4e9eb83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a36a0824e2bc4b84adf3d6f24bae08e7", - "IPY_MODEL_f05de778ce8641daad6aaad095cd0a12", - "IPY_MODEL_fa8ee62999bf48be85571066708c3a70" - ], - "layout": "IPY_MODEL_c22ca0c1ac314ae3b7526a4ab19f5d59", - "tabbable": null, - "tooltip": null - } - }, - "826306b901dc424696b95e114b1441ca": { + "6c1210fd37c047b69d6bb77d7a585576": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5efe1df058ed48ae9674a8448d855c64", - "placeholder": "​", - "style": "IPY_MODEL_569d3453747c444a9c2661732c8b1fb5", - "tabbable": null, - "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.61MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8310ed48648242c0a8109e15f13f0f84": { + "6c53714694714ec184a3175a51eca22d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf1140bdc30747b7875150c89a9b56d2", - "placeholder": "​", - "style": "IPY_MODEL_c9d9f8c0348541bc93ce2df33d9b1138", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1391.72it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "85af3d53abef4aa8a6046017943dc826": { + "6f6e9c74347e4652b414406bd4c67238": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f293407e061d47a9b2a576f458cfc91a", - "IPY_MODEL_67bb2dfe0bed499ea09cbd03e6cf7fd1", - "IPY_MODEL_0637c05b667541e782a074923de85b45" - ], - "layout": "IPY_MODEL_db5a222bfbda444ca14ba447f3de1c6b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "85c627e125a94180abe254acf928a1fc": { + "6fa798d1f46540b9bd3e051f98c21430": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0419dce41e82427eba5f201dcd3224ce", - "IPY_MODEL_fe9dd2d447a247b29fd9568449e4c772", - "IPY_MODEL_f1b29538d40a44f88d457938817aa9ca" - ], - "layout": "IPY_MODEL_ddf398ca235a4371928fa707d2edfab3", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "877f435c18c84cdb9acff7996168eee1": { + "71217b3eed354f73861bde4bfaf66ffd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ff64e02006ba4b3b90e1f252f3c58e25", - "placeholder": "​", - "style": "IPY_MODEL_8dcbfb9f172b4a8296952470fd844435", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "88408a65c5eb4eb48911a14aadbc74cf": { + "715dab8821f5465eade13b7f8765ed47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5948,25 +5726,7 @@ "width": null } }, - "8946f270b2954b22801e92ce10bf7c63": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "895c5faa034242eeb651e5c6bf3b1a51": { + "72b19493a1ca42c793bcda945b230961": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6019,7 +5779,7 @@ "width": null } }, - "8a47898db9234aa796ec7fb93a91d6e9": { + "73593795a4ac4b21a0677dccf1a525cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6072,25 +5832,7 @@ "width": null } }, - "8dcbfb9f172b4a8296952470fd844435": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8ec14b76495d43b599a2c06778d3e9c7": { + "7439b162e309483580266f93e7ac4add": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6108,7 +5850,7 @@ "text_color": null } }, - "90c7589ac13b443eb422dd2f647490a3": { + "7461d590e55e4b9389cb1fa4b8b01858": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6161,7 +5903,30 @@ "width": null } }, - "965ba01b14474336b39a9ed4b2b5dcb5": { + "7a70b6d736914713b75013fd280cd1fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5aed3d8999204da4abd99966f9859da8", + "placeholder": "​", + "style": "IPY_MODEL_003b69c44f834dd6bd767bd85d0282c1", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7b9f6a000ece4e85bd677afa0c44a483": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6176,15 +5941,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f984f1911a3a4d3d97fb914d1b6abbce", + "layout": "IPY_MODEL_a261db39bdb34321bc03d5b7cdb18bd6", "placeholder": "​", - "style": "IPY_MODEL_03ab3894bf4242d8999349575ac3ab13", + "style": "IPY_MODEL_4a74983359df462095cf64e3c2706a4b", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8813.96 examples/s]" + "value": " 40/40 [00:00<00:00, 61.37it/s]" } }, - "96d31dd7865d4b63adc5a9c556d6d472": { + "7ba456d195e144f7ba05947f8e466206": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6237,7 +6002,30 @@ "width": null } }, - "9a2bf66dd6c64060b9a09eaba40a26a8": { + "7c3c537f030046e892febf09fbb3953f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42f688e5fa0a4f698ca681a4433e115d", + "placeholder": "​", + "style": "IPY_MODEL_a034a2ade0914168baff132569eeeb46", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" + } + }, + "7defd4db8e0e4d9d806b06b0ad18bad9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6290,70 +6078,7 @@ "width": null } }, - "9abe31b01bc04cc89ff967d26e368fdf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1a2d0d43f24f4a179401f7bde3fcbf11", - "IPY_MODEL_e87b060be03d4626b55c248e0abe4a42", - "IPY_MODEL_007876448c144ee39084540ed6eb06b9" - ], - "layout": "IPY_MODEL_9a2bf66dd6c64060b9a09eaba40a26a8", - "tabbable": null, - "tooltip": null - } - }, - "9b58b8eff8e745eb9e937354fedb1807": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9bb5412853cd41ffb7c03f1615108a7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d69fd7a89a8640babdbb4265c990aff2", - "placeholder": "​", - "style": "IPY_MODEL_a40425de9d3b4923a12d5dfc419b6cf3", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "9c72cef284e84cdaa2856f28c3593985": { + "7f159f23ebfd44699351ad51261161f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6371,25 +6096,60 @@ "text_color": null } }, - "9d3b7c0890814f2c9985eb79f97a04ac": { - "model_module": "@jupyter-widgets/controls", + "816719582fe14c11a648b648bb9e2cbb": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9dd47964eda34050b58a0ab2b3415ef0": { + "839cc7aeb6cf41cba2328b772dda1354": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6442,7 +6202,7 @@ "width": null } }, - "9fb3ff4fed8c462793870fe1a08d713c": { + "83fe2423c4494c2b9394412c402eca60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6460,7 +6220,7 @@ "text_color": null } }, - "a36a0824e2bc4b84adf3d6f24bae08e7": { + "865a8adbaefe44eb930f2df86dcd3a25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6475,15 +6235,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_46692e2429834f6b8ad6d2e3bd669ac5", + "layout": "IPY_MODEL_f35f77b3dc2d4f87b2f6435eb17b5f51", "placeholder": "​", - "style": "IPY_MODEL_0120148eaefd42fd9a38edc77bc35ac7", + "style": "IPY_MODEL_231c040b6a13479f944b5bef41c9994a", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": "Map (num_proc=4): 100%" + } + }, + "8835da69dbeb4826a96baa0561232a18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f99e5e0dbb254dd0a57ef096794a0277", + "IPY_MODEL_9444514d4589415d940c94d2a40f0c7a", + "IPY_MODEL_7b9f6a000ece4e85bd677afa0c44a483" + ], + "layout": "IPY_MODEL_8a730989a49141659124fe8758fe6b9f", + "tabbable": null, + "tooltip": null } }, - "a40425de9d3b4923a12d5dfc419b6cf3": { + "885a1c18bad74f47ae49ef86de2c3a67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6501,7 +6285,7 @@ "text_color": null } }, - "a67a308439454f8eb0f02917f9c68472": { + "8a730989a49141659124fe8758fe6b9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6554,25 +6338,7 @@ "width": null } }, - "a75ebf7ef9174d5e9cc59c872badcf44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a7668c39f7324f3abf6dee2fb270336f": { + "8abe4aff024b461ea93d3d85dd84f1f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6625,55 +6391,7 @@ "width": null } }, - "a9c34fb99987402ba4f521a988475574": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d76da02ff0a84d74ad2c21a60fdbf6a8", - "IPY_MODEL_12693e79b18144d2be2b4b4399f4789e", - "IPY_MODEL_826306b901dc424696b95e114b1441ca" - ], - "layout": "IPY_MODEL_594f571cc61a464d8934a2a6ebaff1ed", - "tabbable": null, - "tooltip": null - } - }, - "abcdd0c8b869449f849ce66d0123d168": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c336f45d284843d786cfce257d33793c", - "IPY_MODEL_4439d6c4067d42b2bc7b5b49e651de05", - "IPY_MODEL_8310ed48648242c0a8109e15f13f0f84" - ], - "layout": "IPY_MODEL_cb33ab7c5bf847199febe8a7955b0a6b", - "tabbable": null, - "tooltip": null - } - }, - "af23bba915a74358b250ef2bb1a7d577": { + "8b39eaec8f5843a3942f7b65e5320363": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6726,7 +6444,25 @@ "width": null } }, - "b218eb25d1544b2198406c8d0daa0439": { + "8c6b20c613cf48bd9f826dbeb5124369": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8ce5df9efdba4fd1bad996ee729dec94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6779,23 +6515,25 @@ "width": null } }, - "b461446aa899462d865a83e0c727b5c5": { + "91c032ac4bfb4eceba18d1021672143e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b496abba866a4243bc5d3e643a27bfaa": { + "91e935457d624042a2d02c107985c146": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6810,57 +6548,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5a36ed53de5c4a9c8637a7b4013dfb54", + "layout": "IPY_MODEL_3e86a20ac6b044d4adccfeaba4245d25", "placeholder": "​", - "style": "IPY_MODEL_c5dd4307fb0e435f9e6eecf7eba58ea3", + "style": "IPY_MODEL_e522f4fa76294f30ae3dc6a49425837b", "tabbable": null, "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 604kB/s]" - } - }, - "b54eac280dff4e5dbe0c1d2b48743535": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 65.93it/s]" } }, - "b56125fc059b47e3b228dc3ed3b629c0": { + "92f49f3012f849ceaece9962b9690310": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_38eb030b83c64212b25df93cfe516570", - "IPY_MODEL_1c96211615924c808f262fae38d4ab01", - "IPY_MODEL_bed8037a62494179a7e38b4603feef04" - ], - "layout": "IPY_MODEL_8a47898db9234aa796ec7fb93a91d6e9", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_373768b5fd4c42118d61459d55c65ad2", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d3230f794b7e47c9beebfa7400ee3522", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 29515.0 } }, - "b9a030c7a18e43e0a9ade7e2489ba818": { + "92fcc9156b2a48328c1fb11582bdbb81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6913,23 +6635,7 @@ "width": null } }, - "bb0480efe0bc4bd3801a7f7315323cf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bb91a65b9f7c4bcbae0545c6e0c0c603": { + "9444514d4589415d940c94d2a40f0c7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6945,17 +6651,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_757e89f53d174fc6b18a1a8380eb5700", + "layout": "IPY_MODEL_7ba456d195e144f7ba05947f8e466206", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_05b056eafe984430926b52278f208393", + "style": "IPY_MODEL_d837ff833a594ea2b02ce7f7523c9dcd", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "bdbb1b6b96824b1ba8715b85852886fe": { + "99fb59566db2452bab382261d05e2879": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6970,16 +6676,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_877f435c18c84cdb9acff7996168eee1", - "IPY_MODEL_03b60960744f469c8562f78a5948c4a9", - "IPY_MODEL_965ba01b14474336b39a9ed4b2b5dcb5" + "IPY_MODEL_63e3c00666534cf78aef58362ab798ef", + "IPY_MODEL_bee58d3e475246fba7aa8b971564b1a7", + "IPY_MODEL_52638684784d4b5fb05e436a7f614243" ], - "layout": "IPY_MODEL_4b1c1c0a8eb2477b91cae9a52c47e58c", + "layout": "IPY_MODEL_dbc28ec812a84d3f80f20f8fcab2939a", "tabbable": null, "tooltip": null } }, - "beba078ac8d64eb893f533808fb9cfdd": { + "9b8b5db0d4ec47ae8f14fbae0720d3e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6994,38 +6700,142 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_789ca2ff29a44242935c400b234b1969", + "layout": "IPY_MODEL_d1333e62f1304c11beca8dd72e8aa9f9", "placeholder": "​", - "style": "IPY_MODEL_0d79223cae9246eaaa4f673e81a780a8", + "style": "IPY_MODEL_c2680fc6a8544c869d7830d31ed37cea", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 823kB/s]" + "value": " 40/40 [00:00<00:00, 59.41it/s]" } }, - "bed8037a62494179a7e38b4603feef04": { + "9c8e988dcc76462ea4a6543f9f1dd759": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "_dom_classes": [], + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f08b9948f05248b3b3ef10bd15ffc7d8", + "placeholder": "​", + "style": "IPY_MODEL_bcf73aedcb8442be80cd3903dca5729d", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "9d8907e922884b4c98182bd90146f805": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9e8ad22d82bc455da31ccd997a15763c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b9a6301405d54fc48fe5e9c1fcb3ff2f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4d2f1756b094437bb3ff9f30ea93cbb2", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "9f427bf1023e48e693afcd4ee468c279": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9f7de506f89c48b29c2cbb938a4e7210": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7461d590e55e4b9389cb1fa4b8b01858", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_42c5eeb19b2a4542b4159e63110273e4", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "a034a2ade0914168baff132569eeeb46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af23bba915a74358b250ef2bb1a7d577", - "placeholder": "​", - "style": "IPY_MODEL_4cfef00083ee41c18334522b0aaafbf6", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.66it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bf1140bdc30747b7875150c89a9b56d2": { + "a261db39bdb34321bc03d5b7cdb18bd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7078,7 +6888,48 @@ "width": null } }, - "bf14a805f3944138b263cb978e9fcf8b": { + "a3d6f09afbca4e6482b56fd6d71d9b25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a518055f2d994914bf1de3d11ea03a82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c32f5e002a7a4c4ea804958d4deec82a", + "placeholder": "​", + "style": "IPY_MODEL_f332684f2b70406ab76c95d24f2f40ed", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "a805af9f6458409cbfcf1ef1829794dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7131,7 +6982,33 @@ "width": null } }, - "c1899c2c83a146b4b5eccb8d3c0892ae": { + "aae89dad290345f5acc2526904d6d4e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_38bd0231f7c34338a8ccd2536adb5809", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c78a7456a9d940dd9a6d4e769ce24dc3", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "ae4bdbf2d6494345acc4f7003fcd9cd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7146,15 +7023,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9dd47964eda34050b58a0ab2b3415ef0", + "layout": "IPY_MODEL_32d10bf33ee54d2bac909d0748596dac", "placeholder": "​", - "style": "IPY_MODEL_da7255e4a0a1407392cd379cdb23eb3c", + "style": "IPY_MODEL_bfc04f78f5024cc4b45fce30bcc4e7b2", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.06it/s]" + "value": "Generating train split: 100%" + } + }, + "afdd5bafd5ba49909abaaef0bb7f6038": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c1f07c0e6cb7453cb234322863c6974b": { + "b37bca5ee3994510a0c5bf88495f1a10": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7207,7 +7102,25 @@ "width": null } }, - "c22ca0c1ac314ae3b7526a4ab19f5d59": { + "b45281dbfb444428b286e76808d4a658": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b5852aa7675d4ad7ab4bb8a846b7eead": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7260,48 +7173,33 @@ "width": null } }, - "c336f45d284843d786cfce257d33793c": { + "b602e59393ab410ba774d7c2419c556d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_670532c752594999bbc5db2f86da0bfa", - "placeholder": "​", - "style": "IPY_MODEL_9fb3ff4fed8c462793870fe1a08d713c", + "layout": "IPY_MODEL_2d69655ca2a545e9a4b05f6865cdf2a8", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9f427bf1023e48e693afcd4ee468c279", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "c5dd4307fb0e435f9e6eecf7eba58ea3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 4422102.0 } }, - "c63bcc18843a48cd9b4c1b91951a299e": { + "b6bcf233e0084809823abddff92adea2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7316,15 +7214,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_71c3b5aba9c94572b460be6639753985", + "layout": "IPY_MODEL_4de2163b87c545ed89dfc257d6a7e304", "placeholder": "​", - "style": "IPY_MODEL_7a1637c606824542971bdd53178cb547", + "style": "IPY_MODEL_7439b162e309483580266f93e7ac4add", "tabbable": null, "tooltip": null, - "value": "Downloading builder script: 100%" + "value": " 8.85k/8.85k [00:00<00:00, 1.46MB/s]" } }, - "c6b17708d8404f668a926cfeef0a478f": { + "b9a6301405d54fc48fe5e9c1fcb3ff2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7377,25 +7275,47 @@ "width": null } }, - "c8922b8978bf4fc58458e70640f1b5c5": { + "b9c41de7ac0442aabfb15bbf3b5308c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3779e0b1881642b8b80007dfa03126bb", + "IPY_MODEL_40e314c496664e698c489a3f5c279e1c", + "IPY_MODEL_c6f60e04093c46f981b6f7b80f94e2d4" + ], + "layout": "IPY_MODEL_d6092c5dc4c74213a968d6db282bed10", + "tabbable": null, + "tooltip": null + } + }, + "bbcf2512f0a048e99a7d2ad46cb7b594": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c9d9f8c0348541bc93ce2df33d9b1138": { + "bcf73aedcb8442be80cd3903dca5729d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7413,78 +7333,56 @@ "text_color": null } }, - "cb33ab7c5bf847199febe8a7955b0a6b": { - "model_module": "@jupyter-widgets/base", + "bee58d3e475246fba7aa8b971564b1a7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b5852aa7675d4ad7ab4bb8a846b7eead", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a5ab3c1640f48e7953b2212cf787f29", + "tabbable": null, + "tooltip": null, + "value": 4833.0 } }, - "cd436773aeeb4e5f811c805cd47f7071": { + "bf0ad0d606f04b7aa5013f43b6f32049": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4536c7080de841acaaec729cdf955c0a", + "placeholder": "​", + "style": "IPY_MODEL_6a96595df722450495b69e3d9407c566", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "d067169b2a1745bd893cbaa56705df57": { + "bfc04f78f5024cc4b45fce30bcc4e7b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7502,7 +7400,7 @@ "text_color": null } }, - "d10a94f6f1994a14b0ce8071ec84d170": { + "c1f41731ec4247e3ab4c57371cd20bf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7555,7 +7453,25 @@ "width": null } }, - "d50d3c5c4ecd49cfbbcb44e787a993ba": { + "c2680fc6a8544c869d7830d31ed37cea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c32f5e002a7a4c4ea804958d4deec82a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7608,7 +7524,53 @@ "width": null } }, - "d65cb8246aa14189b49a0eeae6f3bad0": { + "c6eb4afdd2a54d899795e4359d8c989d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c2cc530fc7746919e9df959510c6dc7", + "placeholder": "​", + "style": "IPY_MODEL_22ece7076054425f8784c9f44cd9c512", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "c6f60e04093c46f981b6f7b80f94e2d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_92fcc9156b2a48328c1fb11582bdbb81", + "placeholder": "​", + "style": "IPY_MODEL_e06347bb350642c28c5755357c9f6b4f", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8738.82 examples/s]" + } + }, + "c75b1e8b04fc4bbe8b789d1cfa5fe576": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7623,16 +7585,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ee7c6e7d3d1b43138e41e0146c75cd98", - "IPY_MODEL_4268b194fef1470096c0d165c23da82f", - "IPY_MODEL_74a2396570a8494a948c33421fd20593" + "IPY_MODEL_d8736cab840549168545a3a77aa8e714", + "IPY_MODEL_9f7de506f89c48b29c2cbb938a4e7210", + "IPY_MODEL_dc708bb2c5314b17862c251eeb9db099" ], - "layout": "IPY_MODEL_d10a94f6f1994a14b0ce8071ec84d170", + "layout": "IPY_MODEL_22e4e1da97fe49e290e9dac292880148", "tabbable": null, "tooltip": null } }, - "d69fd7a89a8640babdbb4265c990aff2": { + "c78a7456a9d940dd9a6d4e769ce24dc3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c82a1f05b0ec418a9670fcf0e44708f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7685,7 +7663,7 @@ "width": null } }, - "d6b409257aab47b888b2954d7b04073e": { + "c8e6913e68754e7a9e614de447103505": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7738,101 +7716,81 @@ "width": null } }, - "d76da02ff0a84d74ad2c21a60fdbf6a8": { + "caabab78e31d438eb521e9c3f2e1c0a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2426b36b4bcd4538a7a1a6c6f443b609", - "placeholder": "​", - "style": "IPY_MODEL_c8922b8978bf4fc58458e70640f1b5c5", + "layout": "IPY_MODEL_c1f41731ec4247e3ab4c57371cd20bf3", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6fa798d1f46540b9bd3e051f98c21430", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 40.0 } }, - "da7255e4a0a1407392cd379cdb23eb3c": { + "cacaca4358c34e93a46a3e2019d188d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7c3c537f030046e892febf09fbb3953f", + "IPY_MODEL_41aa359adc6640ab9d5ea2369493623a", + "IPY_MODEL_b6bcf233e0084809823abddff92adea2" + ], + "layout": "IPY_MODEL_fb9b135b97bd45978b3759750aac7be4", + "tabbable": null, + "tooltip": null } }, - "db5a222bfbda444ca14ba447f3de1c6b": { - "model_module": "@jupyter-widgets/base", + "cc7010cd50844e48a3db713a6ea5f850": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_311422b25c3d435280a7ae2e6c1b5cbc", + "IPY_MODEL_92f49f3012f849ceaece9962b9690310", + "IPY_MODEL_20aa2cb116fa42218107305be2c9121a" + ], + "layout": "IPY_MODEL_20e8c6a9ab644e3da69655bfbc794894", + "tabbable": null, + "tooltip": null } }, - "ddf398ca235a4371928fa707d2edfab3": { + "d1333e62f1304c11beca8dd72e8aa9f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7885,30 +7843,23 @@ "width": null } }, - "e0619bd42a814114974327c4c92cbc96": { + "d3230f794b7e47c9beebfa7400ee3522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6566ace6c0aa4a21abbf6d708cb457b0", - "placeholder": "​", - "style": "IPY_MODEL_e45644a5a73d43e8a12aaa8ea0e71934", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:10<00:00, 7472.24 examples/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e2caa9efa27847b7b3dd441f4a803cb2": { + "d6092c5dc4c74213a968d6db282bed10": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7961,7 +7912,7 @@ "width": null } }, - "e39cdb7fe88f4310bfd8b1dcd8ac5ae2": { + "d6337601ed54490eb0d452da36303706": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7976,33 +7927,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_720932772aa64aba973045693c189137", + "layout": "IPY_MODEL_c8e6913e68754e7a9e614de447103505", "placeholder": "​", - "style": "IPY_MODEL_39314c631f444d01903b4f50ccfc66df", + "style": "IPY_MODEL_6c53714694714ec184a3175a51eca22d", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.47it/s]" + "value": " 4.42M/4.42M [00:00<00:00, 95.7MB/s]" } }, - "e45644a5a73d43e8a12aaa8ea0e71934": { + "d837ff833a594ea2b02ce7f7523c9dcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "e7dae7ac77284ca7a938a5140aea14ba": { + "d8441cb494324dad83d4a88dd3c805e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8055,57 +8004,7 @@ "width": null } }, - "e85af83531bc4182b052d4cfe7f1020e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c63bcc18843a48cd9b4c1b91951a299e", - "IPY_MODEL_f0a66657e7724cf4a18612d673b0df8e", - "IPY_MODEL_b496abba866a4243bc5d3e643a27bfaa" - ], - "layout": "IPY_MODEL_420adb2a809a4b7693bda83cb040e60c", - "tabbable": null, - "tooltip": null - } - }, - "e87b060be03d4626b55c248e0abe4a42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0261398aaa894092b6eca7f630c39440", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5d69e819f44b493a8d07e58cb39a6a69", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "eb56ed8bd1a74a87a2a7cf25c0992594": { + "d8736cab840549168545a3a77aa8e714": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8120,15 +8019,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b9e51775e974654a075cfdb1d1b699c", + "layout": "IPY_MODEL_11e93782fa6f464e9f6900e0c646f5cf", "placeholder": "​", - "style": "IPY_MODEL_a75ebf7ef9174d5e9cc59c872badcf44", + "style": "IPY_MODEL_83fe2423c4494c2b9394412c402eca60", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Computing checksums: 100%" } }, - "ec23491fb0024cb8a1b7dfd205775551": { + "dbc28ec812a84d3f80f20f8fcab2939a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8181,7 +8080,56 @@ "width": null } }, - "ecde01d38be144db9d996498b953e5b4": { + "dc708bb2c5314b17862c251eeb9db099": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c82a1f05b0ec418a9670fcf0e44708f1", + "placeholder": "​", + "style": "IPY_MODEL_3c76ee6a2244430cbb3e8e8416d1a23c", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1332.58it/s]" + } + }, + "dd4b960c1fc54808ac7ec7abfbe1ccbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7defd4db8e0e4d9d806b06b0ad18bad9", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_04bfeccaeea6416e98641eb5e663ae0b", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "dd549dafe96d457a9f3e32fa6dda0ce5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8234,108 +8182,83 @@ "width": null } }, - "ee448c322caa4ddbae258419893e01e8": { + "e06347bb350642c28c5755357c9f6b4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c6b17708d8404f668a926cfeef0a478f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_778338997ef84774b5fc1b3e363f63c9", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ee7c6e7d3d1b43138e41e0146c75cd98": { + "e075f5bd416a447eb67433e0d225370f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_96d31dd7865d4b63adc5a9c556d6d472", - "placeholder": "​", - "style": "IPY_MODEL_6b4971a3c52247978439a6e52e61bca9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_865a8adbaefe44eb930f2df86dcd3a25", + "IPY_MODEL_2253900d1539484ea6c5fb5f87e34fae", + "IPY_MODEL_f669341590db4e77b2110a49a3fa808c" + ], + "layout": "IPY_MODEL_431d46eafa8c450b8c8f1bf1f7883cf3", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "f05de778ce8641daad6aaad095cd0a12": { + "e522f4fa76294f30ae3dc6a49425837b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e2caa9efa27847b7b3dd441f4a803cb2", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_12da0c3d2bd5449dbb811de7fd8b2093", - "tabbable": null, - "tooltip": null, - "value": 4422102.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f0a66657e7724cf4a18612d673b0df8e": { + "e675357d5efc42b3968d61c273ca5f7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6bf38f634a0d459bbfabdc8331eb6e3b", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5c5b477c793d4588a25705aece5a2a2e", - "tabbable": null, - "tooltip": null, - "value": 4833.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f19d1922e1974c3fa19988e4d4701f69": { + "e7e60d48deb84f8681aa2b4aaa1ad387": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8388,7 +8311,7 @@ "width": null } }, - "f1b29538d40a44f88d457938817aa9ca": { + "e9b9c9bbe0374dd9b98a3a4c1553822f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8403,38 +8326,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d50d3c5c4ecd49cfbbcb44e787a993ba", + "layout": "IPY_MODEL_629ccac58fe74198b172012097674576", "placeholder": "​", - "style": "IPY_MODEL_fe0a6190f0794548839615a5f024d71f", + "style": "IPY_MODEL_1f7f1fac2dd34d07b7fc07f799729df6", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.94it/s]" + "value": " 40/40 [00:00<00:00, 59.81it/s]" } }, - "f293407e061d47a9b2a576f458cfc91a": { + "eb33301487694b0f9f4a664fce743134": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_42c998dc50734d8c93d723bb78939244", - "placeholder": "​", - "style": "IPY_MODEL_30a335f232c04fe7b668ed6a418d27b2", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f2d29dc28e7140b792fc1ee3fcb857cb": { + "ebc081ac7cef42f58f0c46bdca672b27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8449,42 +8367,145 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9bb5412853cd41ffb7c03f1615108a7c", - "IPY_MODEL_1bb8a6dd435048b28340d4eac6730019", - "IPY_MODEL_e0619bd42a814114974327c4c92cbc96" + "IPY_MODEL_a518055f2d994914bf1de3d11ea03a82", + "IPY_MODEL_18e5b3625d2a4b3abbfea651a20eef56", + "IPY_MODEL_91e935457d624042a2d02c107985c146" ], - "layout": "IPY_MODEL_7ea218ed3bac4e3fb0038d64392dab79", + "layout": "IPY_MODEL_2bf71c3624ce4413bc347a20e07c26d5", "tabbable": null, "tooltip": null } }, - "f3a3a4eba3674c53882dfe2a1c081653": { + "ed6f311b0f784e268d2c2f765d55a94a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a67a308439454f8eb0f02917f9c68472", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2f9e9f6f7ebe42afa59802bdf7306ccb", + "layout": "IPY_MODEL_e7e60d48deb84f8681aa2b4aaa1ad387", + "placeholder": "​", + "style": "IPY_MODEL_17af51078a0c4c0f92db9850c8c773d7", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "100%" + } + }, + "ed7068ef4b08440eaae3bd1ba5cca147": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f08b9948f05248b3b3ef10bd15ffc7d8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f924af4748c740ce948540ad741071d9": { + "f332684f2b70406ab76c95d24f2f40ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8502,7 +8523,7 @@ "text_color": null } }, - "f984f1911a3a4d3d97fb914d1b6abbce": { + "f35f77b3dc2d4f87b2f6435eb17b5f51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8555,7 +8576,7 @@ "width": null } }, - "fa8ee62999bf48be85571066708c3a70": { + "f669341590db4e77b2110a49a3fa808c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8570,33 +8591,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_895c5faa034242eeb651e5c6bf3b1a51", + "layout": "IPY_MODEL_8ce5df9efdba4fd1bad996ee729dec94", "placeholder": "​", - "style": "IPY_MODEL_9c72cef284e84cdaa2856f28c3593985", + "style": "IPY_MODEL_a3d6f09afbca4e6482b56fd6d71d9b25", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 61.8MB/s]" - } - }, - "fe0a6190f0794548839615a5f024d71f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/60000 [00:10<00:00, 5815.53 examples/s]" } }, - "fe37a821e1f04c6f9903e3722f9ab4c2": { + "f8852f488ece4717923d24f0f949869a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8649,33 +8652,30 @@ "width": null } }, - "fe9dd2d447a247b29fd9568449e4c772": { + "f99e5e0dbb254dd0a57ef096794a0277": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_112a5fd388db49e4b8a0f9dffab06426", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bb0480efe0bc4bd3801a7f7315323cf5", + "layout": "IPY_MODEL_176f4fe537ab44709eed5f4771e5a748", + "placeholder": "​", + "style": "IPY_MODEL_b45281dbfb444428b286e76808d4a658", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "ff64e02006ba4b3b90e1f252f3c58e25": { + "fb9b135b97bd45978b3759750aac7be4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index d470496b0..7f5df08d9 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:36.731110Z", - "iopub.status.busy": "2024-06-25T19:35:36.730936Z", - "iopub.status.idle": "2024-06-25T19:35:37.834580Z", - "shell.execute_reply": "2024-06-25T19:35:37.833954Z" + "iopub.execute_input": "2024-06-25T23:17:19.488251Z", + "iopub.status.busy": "2024-06-25T23:17:19.488091Z", + "iopub.status.idle": "2024-06-25T23:17:20.586301Z", + "shell.execute_reply": "2024-06-25T23:17:20.585756Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.837363Z", - "iopub.status.busy": "2024-06-25T19:35:37.837076Z", - "iopub.status.idle": "2024-06-25T19:35:37.855298Z", - "shell.execute_reply": "2024-06-25T19:35:37.854810Z" + "iopub.execute_input": "2024-06-25T23:17:20.589007Z", + "iopub.status.busy": "2024-06-25T23:17:20.588566Z", + "iopub.status.idle": "2024-06-25T23:17:20.607142Z", + "shell.execute_reply": "2024-06-25T23:17:20.606704Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.857546Z", - "iopub.status.busy": "2024-06-25T19:35:37.857301Z", - "iopub.status.idle": "2024-06-25T19:35:37.902804Z", - "shell.execute_reply": "2024-06-25T19:35:37.902282Z" + "iopub.execute_input": "2024-06-25T23:17:20.609262Z", + "iopub.status.busy": "2024-06-25T23:17:20.608896Z", + "iopub.status.idle": "2024-06-25T23:17:20.630509Z", + "shell.execute_reply": "2024-06-25T23:17:20.630057Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.904835Z", - "iopub.status.busy": "2024-06-25T19:35:37.904541Z", - "iopub.status.idle": "2024-06-25T19:35:37.907889Z", - "shell.execute_reply": "2024-06-25T19:35:37.907366Z" + "iopub.execute_input": "2024-06-25T23:17:20.632342Z", + "iopub.status.busy": "2024-06-25T23:17:20.632168Z", + "iopub.status.idle": "2024-06-25T23:17:20.635695Z", + "shell.execute_reply": "2024-06-25T23:17:20.635234Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.909808Z", - "iopub.status.busy": "2024-06-25T19:35:37.909561Z", - "iopub.status.idle": "2024-06-25T19:35:37.917137Z", - "shell.execute_reply": "2024-06-25T19:35:37.916719Z" + "iopub.execute_input": "2024-06-25T23:17:20.637844Z", + "iopub.status.busy": "2024-06-25T23:17:20.637544Z", + "iopub.status.idle": "2024-06-25T23:17:20.644982Z", + "shell.execute_reply": "2024-06-25T23:17:20.644551Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.919119Z", - "iopub.status.busy": "2024-06-25T19:35:37.918944Z", - "iopub.status.idle": "2024-06-25T19:35:37.921447Z", - "shell.execute_reply": "2024-06-25T19:35:37.921009Z" + "iopub.execute_input": "2024-06-25T23:17:20.646840Z", + "iopub.status.busy": "2024-06-25T23:17:20.646673Z", + "iopub.status.idle": "2024-06-25T23:17:20.649384Z", + "shell.execute_reply": "2024-06-25T23:17:20.648911Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:37.923229Z", - "iopub.status.busy": "2024-06-25T19:35:37.923058Z", - "iopub.status.idle": "2024-06-25T19:35:40.863311Z", - "shell.execute_reply": "2024-06-25T19:35:40.862782Z" + "iopub.execute_input": "2024-06-25T23:17:20.651376Z", + "iopub.status.busy": "2024-06-25T23:17:20.651062Z", + "iopub.status.idle": "2024-06-25T23:17:23.603750Z", + "shell.execute_reply": "2024-06-25T23:17:23.603132Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:40.866333Z", - "iopub.status.busy": "2024-06-25T19:35:40.865865Z", - "iopub.status.idle": "2024-06-25T19:35:40.875269Z", - "shell.execute_reply": "2024-06-25T19:35:40.874719Z" + "iopub.execute_input": "2024-06-25T23:17:23.606640Z", + "iopub.status.busy": "2024-06-25T23:17:23.606173Z", + "iopub.status.idle": "2024-06-25T23:17:23.615532Z", + "shell.execute_reply": "2024-06-25T23:17:23.614991Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:40.877815Z", - "iopub.status.busy": "2024-06-25T19:35:40.877412Z", - "iopub.status.idle": "2024-06-25T19:35:42.759452Z", - "shell.execute_reply": "2024-06-25T19:35:42.758773Z" + "iopub.execute_input": "2024-06-25T23:17:23.617787Z", + "iopub.status.busy": "2024-06-25T23:17:23.617408Z", + "iopub.status.idle": "2024-06-25T23:17:25.503397Z", + "shell.execute_reply": "2024-06-25T23:17:25.502726Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.761931Z", - "iopub.status.busy": "2024-06-25T19:35:42.761498Z", - "iopub.status.idle": "2024-06-25T19:35:42.780225Z", - "shell.execute_reply": "2024-06-25T19:35:42.779777Z" + "iopub.execute_input": "2024-06-25T23:17:25.506132Z", + "iopub.status.busy": "2024-06-25T23:17:25.505476Z", + "iopub.status.idle": "2024-06-25T23:17:25.524117Z", + "shell.execute_reply": "2024-06-25T23:17:25.523676Z" }, "scrolled": true }, @@ -617,10 +617,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.782418Z", - "iopub.status.busy": "2024-06-25T19:35:42.782011Z", - "iopub.status.idle": "2024-06-25T19:35:42.789930Z", - "shell.execute_reply": "2024-06-25T19:35:42.789485Z" + "iopub.execute_input": "2024-06-25T23:17:25.526096Z", + "iopub.status.busy": "2024-06-25T23:17:25.525830Z", + "iopub.status.idle": "2024-06-25T23:17:25.533770Z", + "shell.execute_reply": "2024-06-25T23:17:25.533230Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.791897Z", - "iopub.status.busy": "2024-06-25T19:35:42.791568Z", - "iopub.status.idle": "2024-06-25T19:35:42.800098Z", - "shell.execute_reply": "2024-06-25T19:35:42.799646Z" + "iopub.execute_input": "2024-06-25T23:17:25.535755Z", + "iopub.status.busy": "2024-06-25T23:17:25.535435Z", + "iopub.status.idle": "2024-06-25T23:17:25.544816Z", + "shell.execute_reply": "2024-06-25T23:17:25.544397Z" } }, "outputs": [ @@ -856,10 +856,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.802085Z", - "iopub.status.busy": "2024-06-25T19:35:42.801908Z", - "iopub.status.idle": "2024-06-25T19:35:42.809958Z", - "shell.execute_reply": "2024-06-25T19:35:42.809510Z" + "iopub.execute_input": "2024-06-25T23:17:25.546828Z", + "iopub.status.busy": "2024-06-25T23:17:25.546524Z", + "iopub.status.idle": "2024-06-25T23:17:25.554523Z", + "shell.execute_reply": "2024-06-25T23:17:25.554077Z" } }, "outputs": [ @@ -973,10 +973,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.811794Z", - "iopub.status.busy": "2024-06-25T19:35:42.811623Z", - "iopub.status.idle": "2024-06-25T19:35:42.820374Z", - "shell.execute_reply": "2024-06-25T19:35:42.819927Z" + "iopub.execute_input": "2024-06-25T23:17:25.556497Z", + "iopub.status.busy": "2024-06-25T23:17:25.556176Z", + "iopub.status.idle": "2024-06-25T23:17:25.564618Z", + "shell.execute_reply": "2024-06-25T23:17:25.564170Z" } }, "outputs": [ @@ -1087,10 +1087,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.822187Z", - "iopub.status.busy": "2024-06-25T19:35:42.822017Z", - "iopub.status.idle": "2024-06-25T19:35:42.829544Z", - "shell.execute_reply": "2024-06-25T19:35:42.829102Z" + "iopub.execute_input": "2024-06-25T23:17:25.566583Z", + "iopub.status.busy": "2024-06-25T23:17:25.566262Z", + "iopub.status.idle": "2024-06-25T23:17:25.573703Z", + "shell.execute_reply": "2024-06-25T23:17:25.573162Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.831790Z", - "iopub.status.busy": "2024-06-25T19:35:42.831383Z", - "iopub.status.idle": "2024-06-25T19:35:42.838578Z", - "shell.execute_reply": "2024-06-25T19:35:42.838124Z" + "iopub.execute_input": "2024-06-25T23:17:25.575840Z", + "iopub.status.busy": "2024-06-25T23:17:25.575524Z", + "iopub.status.idle": "2024-06-25T23:17:25.582660Z", + "shell.execute_reply": "2024-06-25T23:17:25.582224Z" } }, "outputs": [ @@ -1308,10 +1308,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:42.840523Z", - "iopub.status.busy": "2024-06-25T19:35:42.840354Z", - "iopub.status.idle": "2024-06-25T19:35:42.848877Z", - "shell.execute_reply": "2024-06-25T19:35:42.848311Z" + "iopub.execute_input": "2024-06-25T23:17:25.584694Z", + "iopub.status.busy": "2024-06-25T23:17:25.584373Z", + "iopub.status.idle": "2024-06-25T23:17:25.592350Z", + "shell.execute_reply": "2024-06-25T23:17:25.591901Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 82cfdab78..1b14ea34d 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies'}
+Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'getting_spare_card', 'change_pin', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'cancel_transfer'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 5e2df2074..47d0847e3 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:45.390789Z", - "iopub.status.busy": "2024-06-25T19:35:45.390619Z", - "iopub.status.idle": "2024-06-25T19:35:48.008658Z", - "shell.execute_reply": "2024-06-25T19:35:48.008097Z" + "iopub.execute_input": "2024-06-25T23:17:28.279893Z", + "iopub.status.busy": "2024-06-25T23:17:28.279723Z", + "iopub.status.idle": "2024-06-25T23:17:30.902204Z", + "shell.execute_reply": "2024-06-25T23:17:30.901649Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.011088Z", - "iopub.status.busy": "2024-06-25T19:35:48.010783Z", - "iopub.status.idle": "2024-06-25T19:35:48.014230Z", - "shell.execute_reply": "2024-06-25T19:35:48.013782Z" + "iopub.execute_input": "2024-06-25T23:17:30.904858Z", + "iopub.status.busy": "2024-06-25T23:17:30.904404Z", + "iopub.status.idle": "2024-06-25T23:17:30.907555Z", + "shell.execute_reply": "2024-06-25T23:17:30.907124Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.016267Z", - "iopub.status.busy": "2024-06-25T19:35:48.015916Z", - "iopub.status.idle": "2024-06-25T19:35:48.019094Z", - "shell.execute_reply": "2024-06-25T19:35:48.018529Z" + "iopub.execute_input": "2024-06-25T23:17:30.909531Z", + "iopub.status.busy": "2024-06-25T23:17:30.909235Z", + "iopub.status.idle": "2024-06-25T23:17:30.912305Z", + "shell.execute_reply": "2024-06-25T23:17:30.911777Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.021232Z", - "iopub.status.busy": "2024-06-25T19:35:48.020813Z", - "iopub.status.idle": "2024-06-25T19:35:48.073023Z", - "shell.execute_reply": "2024-06-25T19:35:48.072456Z" + "iopub.execute_input": "2024-06-25T23:17:30.914377Z", + "iopub.status.busy": "2024-06-25T23:17:30.913988Z", + "iopub.status.idle": "2024-06-25T23:17:30.934290Z", + "shell.execute_reply": "2024-06-25T23:17:30.933773Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.075330Z", - "iopub.status.busy": "2024-06-25T19:35:48.074995Z", - "iopub.status.idle": "2024-06-25T19:35:48.078963Z", - "shell.execute_reply": "2024-06-25T19:35:48.078513Z" + "iopub.execute_input": "2024-06-25T23:17:30.936266Z", + "iopub.status.busy": "2024-06-25T23:17:30.935961Z", + "iopub.status.idle": "2024-06-25T23:17:30.939627Z", + "shell.execute_reply": "2024-06-25T23:17:30.939095Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies'}\n" + "Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'getting_spare_card', 'change_pin', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'cancel_transfer'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.080913Z", - "iopub.status.busy": "2024-06-25T19:35:48.080733Z", - "iopub.status.idle": "2024-06-25T19:35:48.083997Z", - "shell.execute_reply": "2024-06-25T19:35:48.083535Z" + "iopub.execute_input": "2024-06-25T23:17:30.941560Z", + "iopub.status.busy": "2024-06-25T23:17:30.941250Z", + "iopub.status.idle": "2024-06-25T23:17:30.944331Z", + "shell.execute_reply": "2024-06-25T23:17:30.943818Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:48.086043Z", - "iopub.status.busy": "2024-06-25T19:35:48.085869Z", - "iopub.status.idle": "2024-06-25T19:35:52.539336Z", - "shell.execute_reply": "2024-06-25T19:35:52.538772Z" + "iopub.execute_input": "2024-06-25T23:17:30.946381Z", + "iopub.status.busy": "2024-06-25T23:17:30.946063Z", + "iopub.status.idle": "2024-06-25T23:17:34.606408Z", + "shell.execute_reply": "2024-06-25T23:17:34.605752Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:52.541851Z", - "iopub.status.busy": "2024-06-25T19:35:52.541641Z", - "iopub.status.idle": "2024-06-25T19:35:53.417381Z", - "shell.execute_reply": "2024-06-25T19:35:53.416793Z" + "iopub.execute_input": "2024-06-25T23:17:34.609229Z", + "iopub.status.busy": "2024-06-25T23:17:34.608851Z", + "iopub.status.idle": "2024-06-25T23:17:35.466411Z", + "shell.execute_reply": "2024-06-25T23:17:35.465834Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:53.420304Z", - "iopub.status.busy": "2024-06-25T19:35:53.419913Z", - "iopub.status.idle": "2024-06-25T19:35:53.422789Z", - "shell.execute_reply": "2024-06-25T19:35:53.422303Z" + "iopub.execute_input": "2024-06-25T23:17:35.469450Z", + "iopub.status.busy": "2024-06-25T23:17:35.469026Z", + "iopub.status.idle": "2024-06-25T23:17:35.471951Z", + "shell.execute_reply": "2024-06-25T23:17:35.471467Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:53.425167Z", - "iopub.status.busy": "2024-06-25T19:35:53.424776Z", - "iopub.status.idle": "2024-06-25T19:35:55.333188Z", - "shell.execute_reply": "2024-06-25T19:35:55.332528Z" + "iopub.execute_input": "2024-06-25T23:17:35.474346Z", + "iopub.status.busy": "2024-06-25T23:17:35.473954Z", + "iopub.status.idle": "2024-06-25T23:17:37.379211Z", + "shell.execute_reply": "2024-06-25T23:17:37.378561Z" }, "scrolled": true }, @@ -537,10 +537,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.336733Z", - "iopub.status.busy": "2024-06-25T19:35:55.336306Z", - "iopub.status.idle": "2024-06-25T19:35:55.363099Z", - "shell.execute_reply": "2024-06-25T19:35:55.362613Z" + "iopub.execute_input": "2024-06-25T23:17:37.383383Z", + "iopub.status.busy": "2024-06-25T23:17:37.382233Z", + "iopub.status.idle": "2024-06-25T23:17:37.408704Z", + "shell.execute_reply": "2024-06-25T23:17:37.408212Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.366640Z", - "iopub.status.busy": "2024-06-25T19:35:55.365705Z", - "iopub.status.idle": "2024-06-25T19:35:55.376030Z", - "shell.execute_reply": "2024-06-25T19:35:55.375622Z" + "iopub.execute_input": "2024-06-25T23:17:37.412193Z", + "iopub.status.busy": "2024-06-25T23:17:37.411277Z", + "iopub.status.idle": "2024-06-25T23:17:37.421651Z", + "shell.execute_reply": "2024-06-25T23:17:37.421256Z" }, "scrolled": true }, @@ -783,10 +783,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.378837Z", - "iopub.status.busy": "2024-06-25T19:35:55.378517Z", - "iopub.status.idle": "2024-06-25T19:35:55.382599Z", - "shell.execute_reply": "2024-06-25T19:35:55.382206Z" + "iopub.execute_input": "2024-06-25T23:17:37.424437Z", + "iopub.status.busy": "2024-06-25T23:17:37.423704Z", + "iopub.status.idle": "2024-06-25T23:17:37.428917Z", + "shell.execute_reply": "2024-06-25T23:17:37.428520Z" } }, "outputs": [ @@ -824,10 +824,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.384693Z", - "iopub.status.busy": "2024-06-25T19:35:55.384439Z", - "iopub.status.idle": "2024-06-25T19:35:55.390208Z", - "shell.execute_reply": "2024-06-25T19:35:55.389819Z" + "iopub.execute_input": "2024-06-25T23:17:37.430883Z", + "iopub.status.busy": "2024-06-25T23:17:37.430707Z", + "iopub.status.idle": "2024-06-25T23:17:37.438445Z", + "shell.execute_reply": "2024-06-25T23:17:37.437883Z" } }, "outputs": [ @@ -944,10 +944,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.392385Z", - "iopub.status.busy": "2024-06-25T19:35:55.392130Z", - "iopub.status.idle": "2024-06-25T19:35:55.398230Z", - "shell.execute_reply": "2024-06-25T19:35:55.397669Z" + "iopub.execute_input": "2024-06-25T23:17:37.440387Z", + "iopub.status.busy": "2024-06-25T23:17:37.440214Z", + "iopub.status.idle": "2024-06-25T23:17:37.446599Z", + "shell.execute_reply": "2024-06-25T23:17:37.446157Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.400097Z", - "iopub.status.busy": "2024-06-25T19:35:55.399777Z", - "iopub.status.idle": "2024-06-25T19:35:55.405709Z", - "shell.execute_reply": "2024-06-25T19:35:55.405249Z" + "iopub.execute_input": "2024-06-25T23:17:37.448520Z", + "iopub.status.busy": "2024-06-25T23:17:37.448196Z", + "iopub.status.idle": "2024-06-25T23:17:37.454046Z", + "shell.execute_reply": "2024-06-25T23:17:37.453485Z" } }, "outputs": [ @@ -1141,10 +1141,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.407786Z", - "iopub.status.busy": "2024-06-25T19:35:55.407389Z", - "iopub.status.idle": "2024-06-25T19:35:55.415929Z", - "shell.execute_reply": "2024-06-25T19:35:55.415484Z" + "iopub.execute_input": "2024-06-25T23:17:37.456157Z", + "iopub.status.busy": "2024-06-25T23:17:37.455839Z", + "iopub.status.idle": "2024-06-25T23:17:37.464219Z", + "shell.execute_reply": "2024-06-25T23:17:37.463796Z" } }, "outputs": [ @@ -1255,10 +1255,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.417871Z", - "iopub.status.busy": "2024-06-25T19:35:55.417696Z", - "iopub.status.idle": "2024-06-25T19:35:55.422924Z", - "shell.execute_reply": "2024-06-25T19:35:55.422488Z" + "iopub.execute_input": "2024-06-25T23:17:37.466195Z", + "iopub.status.busy": "2024-06-25T23:17:37.465883Z", + "iopub.status.idle": "2024-06-25T23:17:37.471233Z", + "shell.execute_reply": "2024-06-25T23:17:37.470679Z" } }, "outputs": [ @@ -1326,10 +1326,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.424972Z", - "iopub.status.busy": "2024-06-25T19:35:55.424657Z", - "iopub.status.idle": "2024-06-25T19:35:55.429929Z", - "shell.execute_reply": "2024-06-25T19:35:55.429503Z" + "iopub.execute_input": "2024-06-25T23:17:37.473304Z", + "iopub.status.busy": "2024-06-25T23:17:37.472970Z", + "iopub.status.idle": "2024-06-25T23:17:37.478474Z", + "shell.execute_reply": "2024-06-25T23:17:37.478028Z" } }, "outputs": [ @@ -1408,10 +1408,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.431977Z", - "iopub.status.busy": "2024-06-25T19:35:55.431649Z", - "iopub.status.idle": "2024-06-25T19:35:55.435259Z", - "shell.execute_reply": "2024-06-25T19:35:55.434820Z" + "iopub.execute_input": "2024-06-25T23:17:37.480531Z", + "iopub.status.busy": "2024-06-25T23:17:37.480222Z", + "iopub.status.idle": "2024-06-25T23:17:37.483860Z", + "shell.execute_reply": "2024-06-25T23:17:37.483411Z" } }, "outputs": [ @@ -1459,10 +1459,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:55.437276Z", - "iopub.status.busy": "2024-06-25T19:35:55.436956Z", - "iopub.status.idle": "2024-06-25T19:35:55.441824Z", - "shell.execute_reply": "2024-06-25T19:35:55.441386Z" + "iopub.execute_input": "2024-06-25T23:17:37.485748Z", + "iopub.status.busy": "2024-06-25T23:17:37.485580Z", + "iopub.status.idle": "2024-06-25T23:17:37.490849Z", + "shell.execute_reply": "2024-06-25T23:17:37.490382Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 370aa25d4..965f5ea9c 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -3158,224 +3158,224 @@

6. (Optional) Visualize the Results - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 073e233c2..05570c79a 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:59.467250Z", - "iopub.status.busy": "2024-06-25T19:35:59.467073Z", - "iopub.status.idle": "2024-06-25T19:35:59.885710Z", - "shell.execute_reply": "2024-06-25T19:35:59.885107Z" + "iopub.execute_input": "2024-06-25T23:17:40.853361Z", + "iopub.status.busy": "2024-06-25T23:17:40.852930Z", + "iopub.status.idle": "2024-06-25T23:17:41.272322Z", + "shell.execute_reply": "2024-06-25T23:17:41.271713Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:35:59.888637Z", - "iopub.status.busy": "2024-06-25T19:35:59.888151Z", - "iopub.status.idle": "2024-06-25T19:36:00.014649Z", - "shell.execute_reply": "2024-06-25T19:36:00.014148Z" + "iopub.execute_input": "2024-06-25T23:17:41.275299Z", + "iopub.status.busy": "2024-06-25T23:17:41.274749Z", + "iopub.status.idle": "2024-06-25T23:17:41.403175Z", + "shell.execute_reply": "2024-06-25T23:17:41.402663Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:00.016873Z", - "iopub.status.busy": "2024-06-25T19:36:00.016623Z", - "iopub.status.idle": "2024-06-25T19:36:00.039876Z", - "shell.execute_reply": "2024-06-25T19:36:00.039305Z" + "iopub.execute_input": "2024-06-25T23:17:41.405438Z", + "iopub.status.busy": "2024-06-25T23:17:41.405028Z", + "iopub.status.idle": "2024-06-25T23:17:41.427834Z", + "shell.execute_reply": "2024-06-25T23:17:41.427281Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:00.042285Z", - "iopub.status.busy": "2024-06-25T19:36:00.041898Z", - "iopub.status.idle": "2024-06-25T19:36:02.696869Z", - "shell.execute_reply": "2024-06-25T19:36:02.696318Z" + "iopub.execute_input": "2024-06-25T23:17:41.430652Z", + "iopub.status.busy": "2024-06-25T23:17:41.430206Z", + "iopub.status.idle": "2024-06-25T23:17:44.079438Z", + "shell.execute_reply": "2024-06-25T23:17:44.078785Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:02.699546Z", - "iopub.status.busy": "2024-06-25T19:36:02.698988Z", - "iopub.status.idle": "2024-06-25T19:36:11.210546Z", - "shell.execute_reply": "2024-06-25T19:36:11.209947Z" + "iopub.execute_input": "2024-06-25T23:17:44.082102Z", + "iopub.status.busy": "2024-06-25T23:17:44.081500Z", + "iopub.status.idle": "2024-06-25T23:17:51.711133Z", + "shell.execute_reply": "2024-06-25T23:17:51.710550Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:11.212912Z", - "iopub.status.busy": "2024-06-25T19:36:11.212489Z", - "iopub.status.idle": "2024-06-25T19:36:11.354224Z", - "shell.execute_reply": "2024-06-25T19:36:11.353605Z" + "iopub.execute_input": "2024-06-25T23:17:51.713313Z", + "iopub.status.busy": "2024-06-25T23:17:51.713127Z", + "iopub.status.idle": "2024-06-25T23:17:51.857400Z", + "shell.execute_reply": "2024-06-25T23:17:51.856753Z" } }, "outputs": [], @@ -854,10 +854,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:11.356684Z", - "iopub.status.busy": "2024-06-25T19:36:11.356497Z", - "iopub.status.idle": "2024-06-25T19:36:12.692416Z", - "shell.execute_reply": "2024-06-25T19:36:12.691867Z" + "iopub.execute_input": "2024-06-25T23:17:51.860009Z", + "iopub.status.busy": "2024-06-25T23:17:51.859627Z", + "iopub.status.idle": "2024-06-25T23:17:53.181642Z", + "shell.execute_reply": "2024-06-25T23:17:53.181004Z" } }, "outputs": [ @@ -1016,10 +1016,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:12.694507Z", - "iopub.status.busy": "2024-06-25T19:36:12.694321Z", - "iopub.status.idle": "2024-06-25T19:36:13.110943Z", - "shell.execute_reply": "2024-06-25T19:36:13.110403Z" + "iopub.execute_input": "2024-06-25T23:17:53.183695Z", + "iopub.status.busy": "2024-06-25T23:17:53.183507Z", + "iopub.status.idle": "2024-06-25T23:17:53.614506Z", + "shell.execute_reply": "2024-06-25T23:17:53.613154Z" } }, "outputs": [ @@ -1098,10 +1098,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.113354Z", - "iopub.status.busy": "2024-06-25T19:36:13.112876Z", - "iopub.status.idle": "2024-06-25T19:36:13.121876Z", - "shell.execute_reply": "2024-06-25T19:36:13.121426Z" + "iopub.execute_input": "2024-06-25T23:17:53.617165Z", + "iopub.status.busy": "2024-06-25T23:17:53.616488Z", + "iopub.status.idle": "2024-06-25T23:17:53.625569Z", + "shell.execute_reply": "2024-06-25T23:17:53.625088Z" } }, "outputs": [], @@ -1131,10 +1131,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.123927Z", - "iopub.status.busy": "2024-06-25T19:36:13.123749Z", - "iopub.status.idle": "2024-06-25T19:36:13.143234Z", - "shell.execute_reply": "2024-06-25T19:36:13.142805Z" + "iopub.execute_input": "2024-06-25T23:17:53.627646Z", + "iopub.status.busy": "2024-06-25T23:17:53.627333Z", + "iopub.status.idle": "2024-06-25T23:17:53.647292Z", + "shell.execute_reply": "2024-06-25T23:17:53.646870Z" } }, "outputs": [], @@ -1162,10 +1162,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.145167Z", - "iopub.status.busy": "2024-06-25T19:36:13.144993Z", - "iopub.status.idle": "2024-06-25T19:36:13.369942Z", - "shell.execute_reply": "2024-06-25T19:36:13.369417Z" + "iopub.execute_input": "2024-06-25T23:17:53.649278Z", + "iopub.status.busy": "2024-06-25T23:17:53.648956Z", + "iopub.status.idle": "2024-06-25T23:17:53.876935Z", + "shell.execute_reply": "2024-06-25T23:17:53.876376Z" } }, "outputs": [], @@ -1205,10 +1205,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.372709Z", - "iopub.status.busy": "2024-06-25T19:36:13.372266Z", - "iopub.status.idle": "2024-06-25T19:36:13.391271Z", - "shell.execute_reply": "2024-06-25T19:36:13.390786Z" + "iopub.execute_input": "2024-06-25T23:17:53.879777Z", + "iopub.status.busy": "2024-06-25T23:17:53.879575Z", + "iopub.status.idle": "2024-06-25T23:17:53.898417Z", + "shell.execute_reply": "2024-06-25T23:17:53.897956Z" } }, "outputs": [ @@ -1406,10 +1406,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.393275Z", - "iopub.status.busy": "2024-06-25T19:36:13.392955Z", - "iopub.status.idle": "2024-06-25T19:36:13.562067Z", - "shell.execute_reply": "2024-06-25T19:36:13.561518Z" + "iopub.execute_input": "2024-06-25T23:17:53.900637Z", + "iopub.status.busy": "2024-06-25T23:17:53.900291Z", + "iopub.status.idle": "2024-06-25T23:17:54.067010Z", + "shell.execute_reply": "2024-06-25T23:17:54.066325Z" } }, "outputs": [ @@ -1476,10 +1476,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.564551Z", - "iopub.status.busy": "2024-06-25T19:36:13.564210Z", - "iopub.status.idle": "2024-06-25T19:36:13.574249Z", - "shell.execute_reply": "2024-06-25T19:36:13.573705Z" + "iopub.execute_input": "2024-06-25T23:17:54.069491Z", + "iopub.status.busy": "2024-06-25T23:17:54.069138Z", + "iopub.status.idle": "2024-06-25T23:17:54.080042Z", + "shell.execute_reply": "2024-06-25T23:17:54.079594Z" } }, "outputs": [ @@ -1745,10 +1745,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.576275Z", - "iopub.status.busy": "2024-06-25T19:36:13.575975Z", - "iopub.status.idle": "2024-06-25T19:36:13.585430Z", - "shell.execute_reply": "2024-06-25T19:36:13.584885Z" + "iopub.execute_input": "2024-06-25T23:17:54.083209Z", + "iopub.status.busy": "2024-06-25T23:17:54.082726Z", + "iopub.status.idle": "2024-06-25T23:17:54.092500Z", + "shell.execute_reply": "2024-06-25T23:17:54.092040Z" } }, "outputs": [ @@ -1935,10 +1935,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.587370Z", - "iopub.status.busy": "2024-06-25T19:36:13.587068Z", - "iopub.status.idle": "2024-06-25T19:36:13.629038Z", - "shell.execute_reply": "2024-06-25T19:36:13.628478Z" + "iopub.execute_input": "2024-06-25T23:17:54.094651Z", + "iopub.status.busy": "2024-06-25T23:17:54.094321Z", + "iopub.status.idle": "2024-06-25T23:17:54.125818Z", + "shell.execute_reply": "2024-06-25T23:17:54.122177Z" } }, "outputs": [], @@ -1972,10 +1972,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.631050Z", - "iopub.status.busy": "2024-06-25T19:36:13.630746Z", - "iopub.status.idle": "2024-06-25T19:36:13.633461Z", - "shell.execute_reply": "2024-06-25T19:36:13.632931Z" + "iopub.execute_input": "2024-06-25T23:17:54.128194Z", + "iopub.status.busy": "2024-06-25T23:17:54.127850Z", + "iopub.status.idle": "2024-06-25T23:17:54.130729Z", + "shell.execute_reply": "2024-06-25T23:17:54.130269Z" } }, "outputs": [], @@ -1997,10 +1997,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.635387Z", - "iopub.status.busy": "2024-06-25T19:36:13.635196Z", - "iopub.status.idle": "2024-06-25T19:36:13.655022Z", - "shell.execute_reply": "2024-06-25T19:36:13.654546Z" + "iopub.execute_input": "2024-06-25T23:17:54.132753Z", + "iopub.status.busy": "2024-06-25T23:17:54.132426Z", + "iopub.status.idle": "2024-06-25T23:17:54.151669Z", + "shell.execute_reply": "2024-06-25T23:17:54.151107Z" } }, "outputs": [ @@ -2158,10 +2158,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.657280Z", - "iopub.status.busy": "2024-06-25T19:36:13.656950Z", - "iopub.status.idle": "2024-06-25T19:36:13.661121Z", - "shell.execute_reply": "2024-06-25T19:36:13.660700Z" + "iopub.execute_input": "2024-06-25T23:17:54.153875Z", + "iopub.status.busy": "2024-06-25T23:17:54.153542Z", + "iopub.status.idle": "2024-06-25T23:17:54.157885Z", + "shell.execute_reply": "2024-06-25T23:17:54.157427Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.663070Z", - "iopub.status.busy": "2024-06-25T19:36:13.662753Z", - "iopub.status.idle": "2024-06-25T19:36:13.690582Z", - "shell.execute_reply": "2024-06-25T19:36:13.690034Z" + "iopub.execute_input": "2024-06-25T23:17:54.159942Z", + "iopub.status.busy": "2024-06-25T23:17:54.159537Z", + "iopub.status.idle": "2024-06-25T23:17:54.187254Z", + "shell.execute_reply": "2024-06-25T23:17:54.186748Z" } }, "outputs": [ @@ -2343,10 +2343,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:13.692558Z", - "iopub.status.busy": "2024-06-25T19:36:13.692385Z", - "iopub.status.idle": "2024-06-25T19:36:14.062207Z", - "shell.execute_reply": "2024-06-25T19:36:14.061647Z" + "iopub.execute_input": "2024-06-25T23:17:54.189370Z", + "iopub.status.busy": "2024-06-25T23:17:54.189020Z", + "iopub.status.idle": "2024-06-25T23:17:54.563581Z", + "shell.execute_reply": "2024-06-25T23:17:54.563004Z" } }, "outputs": [ @@ -2413,10 +2413,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.064536Z", - "iopub.status.busy": "2024-06-25T19:36:14.064346Z", - "iopub.status.idle": "2024-06-25T19:36:14.067724Z", - "shell.execute_reply": "2024-06-25T19:36:14.067250Z" + "iopub.execute_input": "2024-06-25T23:17:54.566043Z", + "iopub.status.busy": "2024-06-25T23:17:54.565580Z", + "iopub.status.idle": "2024-06-25T23:17:54.568905Z", + "shell.execute_reply": "2024-06-25T23:17:54.568452Z" } }, "outputs": [ @@ -2467,10 +2467,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.069713Z", - "iopub.status.busy": "2024-06-25T19:36:14.069543Z", - "iopub.status.idle": "2024-06-25T19:36:14.082545Z", - "shell.execute_reply": "2024-06-25T19:36:14.082110Z" + "iopub.execute_input": "2024-06-25T23:17:54.570928Z", + "iopub.status.busy": "2024-06-25T23:17:54.570747Z", + "iopub.status.idle": "2024-06-25T23:17:54.584558Z", + "shell.execute_reply": "2024-06-25T23:17:54.584061Z" } }, "outputs": [ @@ -2749,10 +2749,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.084372Z", - "iopub.status.busy": "2024-06-25T19:36:14.084199Z", - "iopub.status.idle": "2024-06-25T19:36:14.097558Z", - "shell.execute_reply": "2024-06-25T19:36:14.097135Z" + "iopub.execute_input": "2024-06-25T23:17:54.586622Z", + "iopub.status.busy": "2024-06-25T23:17:54.586423Z", + "iopub.status.idle": "2024-06-25T23:17:54.600724Z", + "shell.execute_reply": "2024-06-25T23:17:54.600241Z" } }, "outputs": [ @@ -3019,10 +3019,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.099340Z", - "iopub.status.busy": "2024-06-25T19:36:14.099173Z", - "iopub.status.idle": "2024-06-25T19:36:14.108741Z", - "shell.execute_reply": "2024-06-25T19:36:14.108314Z" + "iopub.execute_input": "2024-06-25T23:17:54.602957Z", + "iopub.status.busy": "2024-06-25T23:17:54.602518Z", + "iopub.status.idle": "2024-06-25T23:17:54.612377Z", + "shell.execute_reply": "2024-06-25T23:17:54.611952Z" } }, "outputs": [], @@ -3047,10 +3047,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.110562Z", - "iopub.status.busy": "2024-06-25T19:36:14.110394Z", - "iopub.status.idle": "2024-06-25T19:36:14.119786Z", - "shell.execute_reply": "2024-06-25T19:36:14.119280Z" + "iopub.execute_input": "2024-06-25T23:17:54.614486Z", + "iopub.status.busy": "2024-06-25T23:17:54.614156Z", + "iopub.status.idle": "2024-06-25T23:17:54.623497Z", + "shell.execute_reply": "2024-06-25T23:17:54.622945Z" } }, "outputs": [ @@ -3222,10 +3222,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.121705Z", - "iopub.status.busy": "2024-06-25T19:36:14.121535Z", - "iopub.status.idle": "2024-06-25T19:36:14.125253Z", - "shell.execute_reply": "2024-06-25T19:36:14.124849Z" + "iopub.execute_input": "2024-06-25T23:17:54.625637Z", + "iopub.status.busy": "2024-06-25T23:17:54.625295Z", + "iopub.status.idle": "2024-06-25T23:17:54.630830Z", + "shell.execute_reply": "2024-06-25T23:17:54.629019Z" } }, "outputs": [], @@ -3257,10 +3257,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.127233Z", - "iopub.status.busy": "2024-06-25T19:36:14.126914Z", - "iopub.status.idle": "2024-06-25T19:36:14.177262Z", - "shell.execute_reply": "2024-06-25T19:36:14.176812Z" + "iopub.execute_input": "2024-06-25T23:17:54.633124Z", + "iopub.status.busy": "2024-06-25T23:17:54.632790Z", + "iopub.status.idle": "2024-06-25T23:17:54.684363Z", + "shell.execute_reply": "2024-06-25T23:17:54.683802Z" } }, "outputs": [ @@ -3268,230 +3268,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3567,10 +3567,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.179445Z", - "iopub.status.busy": "2024-06-25T19:36:14.179018Z", - "iopub.status.idle": "2024-06-25T19:36:14.184786Z", - "shell.execute_reply": "2024-06-25T19:36:14.184224Z" + "iopub.execute_input": "2024-06-25T23:17:54.686913Z", + "iopub.status.busy": "2024-06-25T23:17:54.686475Z", + "iopub.status.idle": "2024-06-25T23:17:54.692178Z", + "shell.execute_reply": "2024-06-25T23:17:54.691645Z" } }, "outputs": [], @@ -3609,10 +3609,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.186887Z", - "iopub.status.busy": "2024-06-25T19:36:14.186471Z", - "iopub.status.idle": "2024-06-25T19:36:14.196806Z", - "shell.execute_reply": "2024-06-25T19:36:14.196244Z" + "iopub.execute_input": "2024-06-25T23:17:54.694316Z", + "iopub.status.busy": "2024-06-25T23:17:54.693981Z", + "iopub.status.idle": "2024-06-25T23:17:54.705261Z", + "shell.execute_reply": "2024-06-25T23:17:54.704802Z" } }, "outputs": [ @@ -3648,10 +3648,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.198752Z", - "iopub.status.busy": "2024-06-25T19:36:14.198440Z", - "iopub.status.idle": "2024-06-25T19:36:14.412825Z", - "shell.execute_reply": "2024-06-25T19:36:14.412259Z" + "iopub.execute_input": "2024-06-25T23:17:54.707234Z", + "iopub.status.busy": "2024-06-25T23:17:54.707059Z", + "iopub.status.idle": "2024-06-25T23:17:54.923905Z", + "shell.execute_reply": "2024-06-25T23:17:54.923350Z" } }, "outputs": [ @@ -3703,10 +3703,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:14.414958Z", - "iopub.status.busy": "2024-06-25T19:36:14.414688Z", - "iopub.status.idle": "2024-06-25T19:36:14.422114Z", - "shell.execute_reply": "2024-06-25T19:36:14.421663Z" + "iopub.execute_input": "2024-06-25T23:17:54.926218Z", + "iopub.status.busy": "2024-06-25T23:17:54.925878Z", + "iopub.status.idle": "2024-06-25T23:17:54.933331Z", + "shell.execute_reply": "2024-06-25T23:17:54.932869Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 6a954c6b0..d462fdaea 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:17.536909Z", - "iopub.status.busy": "2024-06-25T19:36:17.536739Z", - "iopub.status.idle": "2024-06-25T19:36:18.659278Z", - "shell.execute_reply": "2024-06-25T19:36:18.658730Z" + "iopub.execute_input": "2024-06-25T23:17:58.501344Z", + "iopub.status.busy": "2024-06-25T23:17:58.500004Z", + "iopub.status.idle": "2024-06-25T23:17:59.801482Z", + "shell.execute_reply": "2024-06-25T23:17:59.800950Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:18.661733Z", - "iopub.status.busy": "2024-06-25T19:36:18.661422Z", - "iopub.status.idle": "2024-06-25T19:36:18.664275Z", - "shell.execute_reply": "2024-06-25T19:36:18.663748Z" + "iopub.execute_input": "2024-06-25T23:17:59.804004Z", + "iopub.status.busy": "2024-06-25T23:17:59.803708Z", + "iopub.status.idle": "2024-06-25T23:17:59.806736Z", + "shell.execute_reply": "2024-06-25T23:17:59.806281Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:18.666336Z", - "iopub.status.busy": "2024-06-25T19:36:18.666027Z", - "iopub.status.idle": "2024-06-25T19:36:18.678092Z", - "shell.execute_reply": "2024-06-25T19:36:18.677567Z" + "iopub.execute_input": "2024-06-25T23:17:59.808933Z", + "iopub.status.busy": "2024-06-25T23:17:59.808705Z", + "iopub.status.idle": "2024-06-25T23:17:59.821999Z", + "shell.execute_reply": "2024-06-25T23:17:59.821381Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:18.680164Z", - "iopub.status.busy": "2024-06-25T19:36:18.679860Z", - "iopub.status.idle": "2024-06-25T19:36:28.874863Z", - "shell.execute_reply": "2024-06-25T19:36:28.874371Z" + "iopub.execute_input": "2024-06-25T23:17:59.824481Z", + "iopub.status.busy": "2024-06-25T23:17:59.824047Z", + "iopub.status.idle": "2024-06-25T23:18:03.535596Z", + "shell.execute_reply": "2024-06-25T23:18:03.535061Z" }, "id": "dhTHOg8Pyv5G" }, @@ -694,13 +694,7 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", @@ -2565,7 +2559,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " * Overall, about 18% (1,846 of the 10,000) labels in your dataset have potential issues.\n", " ** The overall label health score for this dataset is: 0.82.\n", "\n", diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 5a286f7d2..acbd3933c 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1711,7 +1711,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 649612439..713861397 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:31.054579Z", - "iopub.status.busy": "2024-06-25T19:36:31.054404Z", - "iopub.status.idle": "2024-06-25T19:36:32.183683Z", - "shell.execute_reply": "2024-06-25T19:36:32.183056Z" + "iopub.execute_input": "2024-06-25T23:18:05.926443Z", + "iopub.status.busy": "2024-06-25T23:18:05.926263Z", + "iopub.status.idle": "2024-06-25T23:18:07.103304Z", + "shell.execute_reply": "2024-06-25T23:18:07.102799Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:32.186495Z", - "iopub.status.busy": "2024-06-25T19:36:32.186073Z", - "iopub.status.idle": "2024-06-25T19:36:32.189610Z", - "shell.execute_reply": "2024-06-25T19:36:32.189148Z" + "iopub.execute_input": "2024-06-25T23:18:07.106148Z", + "iopub.status.busy": "2024-06-25T23:18:07.105603Z", + "iopub.status.idle": "2024-06-25T23:18:07.109155Z", + "shell.execute_reply": "2024-06-25T23:18:07.108679Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:32.191776Z", - "iopub.status.busy": "2024-06-25T19:36:32.191309Z", - "iopub.status.idle": "2024-06-25T19:36:35.412500Z", - "shell.execute_reply": "2024-06-25T19:36:35.411739Z" + "iopub.execute_input": "2024-06-25T23:18:07.111219Z", + "iopub.status.busy": "2024-06-25T23:18:07.110877Z", + "iopub.status.idle": "2024-06-25T23:18:10.366450Z", + "shell.execute_reply": "2024-06-25T23:18:10.365818Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.415868Z", - "iopub.status.busy": "2024-06-25T19:36:35.414996Z", - "iopub.status.idle": "2024-06-25T19:36:35.452492Z", - "shell.execute_reply": "2024-06-25T19:36:35.451863Z" + "iopub.execute_input": "2024-06-25T23:18:10.369846Z", + "iopub.status.busy": "2024-06-25T23:18:10.369009Z", + "iopub.status.idle": "2024-06-25T23:18:10.408435Z", + "shell.execute_reply": "2024-06-25T23:18:10.407723Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.455265Z", - "iopub.status.busy": "2024-06-25T19:36:35.454795Z", - "iopub.status.idle": "2024-06-25T19:36:35.489174Z", - "shell.execute_reply": "2024-06-25T19:36:35.488560Z" + "iopub.execute_input": "2024-06-25T23:18:10.411187Z", + "iopub.status.busy": "2024-06-25T23:18:10.410945Z", + "iopub.status.idle": "2024-06-25T23:18:10.447524Z", + "shell.execute_reply": "2024-06-25T23:18:10.446786Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.491931Z", - "iopub.status.busy": "2024-06-25T19:36:35.491449Z", - "iopub.status.idle": "2024-06-25T19:36:35.494631Z", - "shell.execute_reply": "2024-06-25T19:36:35.494157Z" + "iopub.execute_input": "2024-06-25T23:18:10.450344Z", + "iopub.status.busy": "2024-06-25T23:18:10.450101Z", + "iopub.status.idle": "2024-06-25T23:18:10.453289Z", + "shell.execute_reply": "2024-06-25T23:18:10.452762Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.496822Z", - "iopub.status.busy": "2024-06-25T19:36:35.496395Z", - "iopub.status.idle": "2024-06-25T19:36:35.499017Z", - "shell.execute_reply": "2024-06-25T19:36:35.498537Z" + "iopub.execute_input": "2024-06-25T23:18:10.455428Z", + "iopub.status.busy": "2024-06-25T23:18:10.455099Z", + "iopub.status.idle": "2024-06-25T23:18:10.457834Z", + "shell.execute_reply": "2024-06-25T23:18:10.457357Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.501249Z", - "iopub.status.busy": "2024-06-25T19:36:35.500816Z", - "iopub.status.idle": "2024-06-25T19:36:35.525422Z", - "shell.execute_reply": "2024-06-25T19:36:35.524821Z" + "iopub.execute_input": "2024-06-25T23:18:10.459894Z", + "iopub.status.busy": "2024-06-25T23:18:10.459627Z", + "iopub.status.idle": "2024-06-25T23:18:10.483748Z", + "shell.execute_reply": "2024-06-25T23:18:10.483202Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d8af54b634f1457680edc574c7fcb110", + "model_id": "558d7887a3b248ccbc78e41ae8f6a2ad", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84b64175499142ae9cf770d1e88b80ac", + "model_id": "633ecf7c235f443883ad78f8a1d748cd", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.532028Z", - "iopub.status.busy": "2024-06-25T19:36:35.531847Z", - "iopub.status.idle": "2024-06-25T19:36:35.538645Z", - "shell.execute_reply": "2024-06-25T19:36:35.538198Z" + "iopub.execute_input": "2024-06-25T23:18:10.488896Z", + "iopub.status.busy": "2024-06-25T23:18:10.488605Z", + "iopub.status.idle": "2024-06-25T23:18:10.495342Z", + "shell.execute_reply": "2024-06-25T23:18:10.494804Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.540612Z", - "iopub.status.busy": "2024-06-25T19:36:35.540437Z", - "iopub.status.idle": "2024-06-25T19:36:35.543848Z", - "shell.execute_reply": "2024-06-25T19:36:35.543410Z" + "iopub.execute_input": "2024-06-25T23:18:10.497491Z", + "iopub.status.busy": "2024-06-25T23:18:10.497223Z", + "iopub.status.idle": "2024-06-25T23:18:10.500578Z", + "shell.execute_reply": "2024-06-25T23:18:10.500143Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.545806Z", - "iopub.status.busy": "2024-06-25T19:36:35.545508Z", - "iopub.status.idle": "2024-06-25T19:36:35.551703Z", - "shell.execute_reply": "2024-06-25T19:36:35.551260Z" + "iopub.execute_input": "2024-06-25T23:18:10.502533Z", + "iopub.status.busy": "2024-06-25T23:18:10.502242Z", + "iopub.status.idle": "2024-06-25T23:18:10.508483Z", + "shell.execute_reply": "2024-06-25T23:18:10.507959Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.553602Z", - "iopub.status.busy": "2024-06-25T19:36:35.553415Z", - "iopub.status.idle": "2024-06-25T19:36:35.589414Z", - "shell.execute_reply": "2024-06-25T19:36:35.588805Z" + "iopub.execute_input": "2024-06-25T23:18:10.510615Z", + "iopub.status.busy": "2024-06-25T23:18:10.510302Z", + "iopub.status.idle": "2024-06-25T23:18:10.546530Z", + "shell.execute_reply": "2024-06-25T23:18:10.545827Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.592001Z", - "iopub.status.busy": "2024-06-25T19:36:35.591752Z", - "iopub.status.idle": "2024-06-25T19:36:35.628128Z", - "shell.execute_reply": "2024-06-25T19:36:35.627508Z" + "iopub.execute_input": "2024-06-25T23:18:10.548998Z", + "iopub.status.busy": "2024-06-25T23:18:10.548767Z", + "iopub.status.idle": "2024-06-25T23:18:10.582483Z", + "shell.execute_reply": "2024-06-25T23:18:10.581909Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.630864Z", - "iopub.status.busy": "2024-06-25T19:36:35.630509Z", - "iopub.status.idle": "2024-06-25T19:36:35.751028Z", - "shell.execute_reply": "2024-06-25T19:36:35.750367Z" + "iopub.execute_input": "2024-06-25T23:18:10.585385Z", + "iopub.status.busy": "2024-06-25T23:18:10.584868Z", + "iopub.status.idle": "2024-06-25T23:18:10.710386Z", + "shell.execute_reply": "2024-06-25T23:18:10.709794Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:35.753981Z", - "iopub.status.busy": "2024-06-25T19:36:35.753115Z", - "iopub.status.idle": "2024-06-25T19:36:38.820276Z", - "shell.execute_reply": "2024-06-25T19:36:38.819614Z" + "iopub.execute_input": "2024-06-25T23:18:10.713077Z", + "iopub.status.busy": "2024-06-25T23:18:10.712538Z", + "iopub.status.idle": "2024-06-25T23:18:13.846109Z", + "shell.execute_reply": "2024-06-25T23:18:13.845478Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:38.822817Z", - "iopub.status.busy": "2024-06-25T19:36:38.822359Z", - "iopub.status.idle": "2024-06-25T19:36:38.881135Z", - "shell.execute_reply": "2024-06-25T19:36:38.880677Z" + "iopub.execute_input": "2024-06-25T23:18:13.848642Z", + "iopub.status.busy": "2024-06-25T23:18:13.848179Z", + "iopub.status.idle": "2024-06-25T23:18:13.910214Z", + "shell.execute_reply": "2024-06-25T23:18:13.909621Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:38.883155Z", - "iopub.status.busy": "2024-06-25T19:36:38.882856Z", - "iopub.status.idle": "2024-06-25T19:36:38.922999Z", - "shell.execute_reply": "2024-06-25T19:36:38.922558Z" + "iopub.execute_input": "2024-06-25T23:18:13.912512Z", + "iopub.status.busy": "2024-06-25T23:18:13.912056Z", + "iopub.status.idle": "2024-06-25T23:18:13.955394Z", + "shell.execute_reply": "2024-06-25T23:18:13.954784Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "91d13c0b", + "id": "411cb3b4", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "838b0e29", + "id": "c0fc51ac", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "72c82160", + "id": "31d0af7b", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "c8ef0e49", + "id": "ddefd054", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:38.925175Z", - "iopub.status.busy": "2024-06-25T19:36:38.924869Z", - "iopub.status.idle": "2024-06-25T19:36:38.933100Z", - "shell.execute_reply": "2024-06-25T19:36:38.932519Z" + "iopub.execute_input": "2024-06-25T23:18:13.957642Z", + "iopub.status.busy": "2024-06-25T23:18:13.957445Z", + "iopub.status.idle": "2024-06-25T23:18:13.965853Z", + "shell.execute_reply": "2024-06-25T23:18:13.965258Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "bfd8eea7", + "id": "96a1ec22", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "7515c699", + "id": "d478ad17", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:38.935170Z", - "iopub.status.busy": "2024-06-25T19:36:38.934961Z", - "iopub.status.idle": "2024-06-25T19:36:38.958819Z", - "shell.execute_reply": "2024-06-25T19:36:38.958261Z" + "iopub.execute_input": "2024-06-25T23:18:13.968394Z", + "iopub.status.busy": "2024-06-25T23:18:13.968108Z", + "iopub.status.idle": "2024-06-25T23:18:13.989832Z", + "shell.execute_reply": "2024-06-25T23:18:13.989245Z" } }, "outputs": [ @@ -1495,7 +1495,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7655/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7878/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1529,13 +1529,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "0be681e4", + "id": "ff936017", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:38.960846Z", - "iopub.status.busy": "2024-06-25T19:36:38.960529Z", - "iopub.status.idle": "2024-06-25T19:36:38.963912Z", - "shell.execute_reply": "2024-06-25T19:36:38.963342Z" + "iopub.execute_input": "2024-06-25T23:18:13.992065Z", + "iopub.status.busy": "2024-06-25T23:18:13.991705Z", + "iopub.status.idle": "2024-06-25T23:18:13.994946Z", + "shell.execute_reply": "2024-06-25T23:18:13.994403Z" } }, "outputs": [ @@ -1630,7 +1630,75 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1ac8a486230942529a1f92b9b04d7e25": { + "01de1302b1ac41a68c4d605171741bc4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "05b22c53719c4c21a23fad4a52106f28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0e5d155060264c219bd191119ba7e533": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0f44c68a58214c4e8e72391024cc96e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "20b4f1fb000f40e69908d463dce3c07d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1683,7 +1751,7 @@ "width": null } }, - "1e692354f23845bf94b6ee7d9d7b2637": { + "21bd4c1e909b435f96eccf76ffa92cec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1701,7 +1769,7 @@ "text_color": null } }, - "27e85dda33254222a2c4e9d42bf88ff4": { + "2414d070f8b94c0488b54d3ad24457fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1719,7 +1787,31 @@ "text_color": null } }, - "2f598ca1115244399eac8ba3ae5fcba3": { + "558d7887a3b248ccbc78e41ae8f6a2ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_95142643f01f48508a522fc8ef8c8553", + "IPY_MODEL_e962ea686d414b5ca4d9f4f904cd468f", + "IPY_MODEL_db994fd696e94ac29224215d7f867ee2" + ], + "layout": "IPY_MODEL_5eb199074cca45eebcd2fae654f3d219", + "tabbable": null, + "tooltip": null + } + }, + "5baa096c30154543accc624858291e39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1772,7 +1864,7 @@ "width": null } }, - "3e18aac5a76f4d2f8ce8f5acb53421d0": { + "5eb199074cca45eebcd2fae654f3d219": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1825,49 +1917,31 @@ "width": null } }, - "45a1fa5ae2f84e1b9e7c58b238c02698": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "58d31513ffc848d98369cbd1a5fadbf4": { + "633ecf7c235f443883ad78f8a1d748cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f598ca1115244399eac8ba3ae5fcba3", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_45a1fa5ae2f84e1b9e7c58b238c02698", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a6fc608ec49049b99b50be3158f92470", + "IPY_MODEL_b5ef166a707247e98779b17c09955c28", + "IPY_MODEL_9218df49202c42f186276c2b0c86c0ef" + ], + "layout": "IPY_MODEL_81ac2032ca0b474aba6329ab92b63efd", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "83e8730e8f4b4919bc838506ae45e9f1": { + "80ffedccfbbc46d0bd395580acfaf87f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1920,31 +1994,60 @@ "width": null } }, - "84b64175499142ae9cf770d1e88b80ac": { - "model_module": "@jupyter-widgets/controls", + "81ac2032ca0b474aba6329ab92b63efd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_89f81d1899184862ad07ccb4185e5559", - "IPY_MODEL_58d31513ffc848d98369cbd1a5fadbf4", - "IPY_MODEL_f724bd9057e2403697996412c3965090" - ], - "layout": "IPY_MODEL_1ac8a486230942529a1f92b9b04d7e25", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "89f81d1899184862ad07ccb4185e5559": { + "9218df49202c42f186276c2b0c86c0ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1959,41 +2062,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd49361ee585455e9e0ea110e22cd11e", + "layout": "IPY_MODEL_5baa096c30154543accc624858291e39", "placeholder": "​", - "style": "IPY_MODEL_1e692354f23845bf94b6ee7d9d7b2637", + "style": "IPY_MODEL_05b22c53719c4c21a23fad4a52106f28", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": " 10000/? [00:00<00:00, 1516982.17it/s]" } }, - "9e433498da854beaad7447e349a6c08e": { + "95142643f01f48508a522fc8ef8c8553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3e18aac5a76f4d2f8ce8f5acb53421d0", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dcebb06a360d4208903b16c601b8b9f0", + "layout": "IPY_MODEL_c84021d7d3264151a5fb14b29eaf1cee", + "placeholder": "​", + "style": "IPY_MODEL_21bd4c1e909b435f96eccf76ffa92cec", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": "number of examples processed for estimating thresholds: " } }, - "a4ce410049214dbe89d19e4dbe853b25": { + "a6fc608ec49049b99b50be3158f92470": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2008,91 +2108,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bbe8dc417f9d43f1ae6a2da9fe46bcfd", + "layout": "IPY_MODEL_efd5cc9a580b4925b2b71b81f5bd69d9", "placeholder": "​", - "style": "IPY_MODEL_c0572681372e40379a108207eae59244", + "style": "IPY_MODEL_01de1302b1ac41a68c4d605171741bc4", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "b2b8153149be48568be2b6c09e02fa2f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": "number of examples processed for checking labels: " } }, - "ba90ec735ab140eda8d3905b17d24bf0": { + "b5ef166a707247e98779b17c09955c28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b2b8153149be48568be2b6c09e02fa2f", - "placeholder": "​", - "style": "IPY_MODEL_27e85dda33254222a2c4e9d42bf88ff4", + "layout": "IPY_MODEL_c4f061a7d9044c3cbc2d5dc4162c65ef", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0f44c68a58214c4e8e72391024cc96e8", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1015594.57it/s]" + "value": 50.0 } }, - "bbe8dc417f9d43f1ae6a2da9fe46bcfd": { + "c4f061a7d9044c3cbc2d5dc4162c65ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2145,7 +2195,7 @@ "width": null } }, - "bd49361ee585455e9e0ea110e22cd11e": { + "c84021d7d3264151a5fb14b29eaf1cee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2198,65 +2248,56 @@ "width": null } }, - "c0572681372e40379a108207eae59244": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d8af54b634f1457680edc574c7fcb110": { + "db994fd696e94ac29224215d7f867ee2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4ce410049214dbe89d19e4dbe853b25", - "IPY_MODEL_9e433498da854beaad7447e349a6c08e", - "IPY_MODEL_ba90ec735ab140eda8d3905b17d24bf0" - ], - "layout": "IPY_MODEL_83e8730e8f4b4919bc838506ae45e9f1", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_20b4f1fb000f40e69908d463dce3c07d", + "placeholder": "​", + "style": "IPY_MODEL_2414d070f8b94c0488b54d3ad24457fb", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1059381.69it/s]" } }, - "dcebb06a360d4208903b16c601b8b9f0": { + "e962ea686d414b5ca4d9f4f904cd468f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_80ffedccfbbc46d0bd395580acfaf87f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0e5d155060264c219bd191119ba7e533", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "ef7c6e423a9041328b6cffec28d2d266": { + "efd5cc9a580b4925b2b71b81f5bd69d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2308,47 +2349,6 @@ "visibility": null, "width": null } - }, - "f724bd9057e2403697996412c3965090": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ef7c6e423a9041328b6cffec28d2d266", - "placeholder": "​", - "style": "IPY_MODEL_f9185cf0646b4409bb846af3b144c5a1", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1581801.18it/s]" - } - }, - "f9185cf0646b4409bb846af3b144c5a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 3a6310e80..902b836cf 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:41.976010Z", - "iopub.status.busy": "2024-06-25T19:36:41.975837Z", - "iopub.status.idle": "2024-06-25T19:36:43.122752Z", - "shell.execute_reply": "2024-06-25T19:36:43.122216Z" + "iopub.execute_input": "2024-06-25T23:18:17.256748Z", + "iopub.status.busy": "2024-06-25T23:18:17.256569Z", + "iopub.status.idle": "2024-06-25T23:18:18.418999Z", + "shell.execute_reply": "2024-06-25T23:18:18.418397Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:43.125429Z", - "iopub.status.busy": "2024-06-25T19:36:43.124947Z", - "iopub.status.idle": "2024-06-25T19:36:43.300656Z", - "shell.execute_reply": "2024-06-25T19:36:43.300064Z" + "iopub.execute_input": "2024-06-25T23:18:18.421550Z", + "iopub.status.busy": "2024-06-25T23:18:18.421304Z", + "iopub.status.idle": "2024-06-25T23:18:18.599266Z", + "shell.execute_reply": "2024-06-25T23:18:18.598641Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:43.303142Z", - "iopub.status.busy": "2024-06-25T19:36:43.302695Z", - "iopub.status.idle": "2024-06-25T19:36:43.314281Z", - "shell.execute_reply": "2024-06-25T19:36:43.313721Z" + "iopub.execute_input": "2024-06-25T23:18:18.601825Z", + "iopub.status.busy": "2024-06-25T23:18:18.601625Z", + "iopub.status.idle": "2024-06-25T23:18:18.613136Z", + "shell.execute_reply": "2024-06-25T23:18:18.612703Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:43.316604Z", - "iopub.status.busy": "2024-06-25T19:36:43.316167Z", - "iopub.status.idle": "2024-06-25T19:36:43.522010Z", - "shell.execute_reply": "2024-06-25T19:36:43.521428Z" + "iopub.execute_input": "2024-06-25T23:18:18.615067Z", + "iopub.status.busy": "2024-06-25T23:18:18.614888Z", + "iopub.status.idle": "2024-06-25T23:18:18.849624Z", + "shell.execute_reply": "2024-06-25T23:18:18.849023Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:43.524390Z", - "iopub.status.busy": "2024-06-25T19:36:43.524031Z", - "iopub.status.idle": "2024-06-25T19:36:43.550098Z", - "shell.execute_reply": "2024-06-25T19:36:43.549668Z" + "iopub.execute_input": "2024-06-25T23:18:18.851953Z", + "iopub.status.busy": "2024-06-25T23:18:18.851541Z", + "iopub.status.idle": "2024-06-25T23:18:18.877468Z", + "shell.execute_reply": "2024-06-25T23:18:18.877017Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:43.552184Z", - "iopub.status.busy": "2024-06-25T19:36:43.551843Z", - "iopub.status.idle": "2024-06-25T19:36:45.543682Z", - "shell.execute_reply": "2024-06-25T19:36:45.542976Z" + "iopub.execute_input": "2024-06-25T23:18:18.879561Z", + "iopub.status.busy": "2024-06-25T23:18:18.879211Z", + "iopub.status.idle": "2024-06-25T23:18:20.899666Z", + "shell.execute_reply": "2024-06-25T23:18:20.898976Z" } }, "outputs": [ @@ -482,10 +482,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:45.546502Z", - "iopub.status.busy": "2024-06-25T19:36:45.545811Z", - "iopub.status.idle": "2024-06-25T19:36:45.563579Z", - "shell.execute_reply": "2024-06-25T19:36:45.563096Z" + "iopub.execute_input": "2024-06-25T23:18:20.901960Z", + "iopub.status.busy": "2024-06-25T23:18:20.901648Z", + "iopub.status.idle": "2024-06-25T23:18:20.919398Z", + "shell.execute_reply": "2024-06-25T23:18:20.918920Z" }, "scrolled": true }, @@ -615,10 +615,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:45.565656Z", - "iopub.status.busy": "2024-06-25T19:36:45.565330Z", - "iopub.status.idle": "2024-06-25T19:36:46.995317Z", - "shell.execute_reply": "2024-06-25T19:36:46.994691Z" + "iopub.execute_input": "2024-06-25T23:18:20.921440Z", + "iopub.status.busy": "2024-06-25T23:18:20.921079Z", + "iopub.status.idle": "2024-06-25T23:18:22.361092Z", + "shell.execute_reply": "2024-06-25T23:18:22.360462Z" }, "id": "AaHC5MRKjruT" }, @@ -737,10 +737,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:46.998304Z", - "iopub.status.busy": "2024-06-25T19:36:46.997491Z", - "iopub.status.idle": "2024-06-25T19:36:47.010764Z", - "shell.execute_reply": "2024-06-25T19:36:47.010231Z" + "iopub.execute_input": "2024-06-25T23:18:22.363669Z", + "iopub.status.busy": "2024-06-25T23:18:22.363060Z", + "iopub.status.idle": "2024-06-25T23:18:22.376718Z", + "shell.execute_reply": "2024-06-25T23:18:22.376170Z" }, "id": "Wy27rvyhjruU" }, @@ -789,10 +789,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.012994Z", - "iopub.status.busy": "2024-06-25T19:36:47.012685Z", - "iopub.status.idle": "2024-06-25T19:36:47.092028Z", - "shell.execute_reply": "2024-06-25T19:36:47.091384Z" + "iopub.execute_input": "2024-06-25T23:18:22.378792Z", + "iopub.status.busy": "2024-06-25T23:18:22.378469Z", + "iopub.status.idle": "2024-06-25T23:18:22.452119Z", + "shell.execute_reply": "2024-06-25T23:18:22.451527Z" }, "id": "Db8YHnyVjruU" }, @@ -899,10 +899,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.094203Z", - "iopub.status.busy": "2024-06-25T19:36:47.093979Z", - "iopub.status.idle": "2024-06-25T19:36:47.306398Z", - "shell.execute_reply": "2024-06-25T19:36:47.305822Z" + "iopub.execute_input": "2024-06-25T23:18:22.454608Z", + "iopub.status.busy": "2024-06-25T23:18:22.454246Z", + "iopub.status.idle": "2024-06-25T23:18:22.662363Z", + "shell.execute_reply": "2024-06-25T23:18:22.661824Z" }, "id": "iJqAHuS2jruV" }, @@ -939,10 +939,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.308648Z", - "iopub.status.busy": "2024-06-25T19:36:47.308280Z", - "iopub.status.idle": "2024-06-25T19:36:47.324852Z", - "shell.execute_reply": "2024-06-25T19:36:47.324401Z" + "iopub.execute_input": "2024-06-25T23:18:22.664593Z", + "iopub.status.busy": "2024-06-25T23:18:22.664244Z", + "iopub.status.idle": "2024-06-25T23:18:22.681198Z", + "shell.execute_reply": "2024-06-25T23:18:22.680722Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1408,10 +1408,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.326839Z", - "iopub.status.busy": "2024-06-25T19:36:47.326575Z", - "iopub.status.idle": "2024-06-25T19:36:47.335814Z", - "shell.execute_reply": "2024-06-25T19:36:47.335352Z" + "iopub.execute_input": "2024-06-25T23:18:22.683372Z", + "iopub.status.busy": "2024-06-25T23:18:22.682962Z", + "iopub.status.idle": "2024-06-25T23:18:22.692419Z", + "shell.execute_reply": "2024-06-25T23:18:22.691897Z" }, "id": "0lonvOYvjruV" }, @@ -1558,10 +1558,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.337943Z", - "iopub.status.busy": "2024-06-25T19:36:47.337629Z", - "iopub.status.idle": "2024-06-25T19:36:47.419127Z", - "shell.execute_reply": "2024-06-25T19:36:47.418522Z" + "iopub.execute_input": "2024-06-25T23:18:22.694507Z", + "iopub.status.busy": "2024-06-25T23:18:22.694073Z", + "iopub.status.idle": "2024-06-25T23:18:22.776192Z", + "shell.execute_reply": "2024-06-25T23:18:22.775639Z" }, "id": "MfqTCa3kjruV" }, @@ -1642,10 +1642,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.421368Z", - "iopub.status.busy": "2024-06-25T19:36:47.421141Z", - "iopub.status.idle": "2024-06-25T19:36:47.538207Z", - "shell.execute_reply": "2024-06-25T19:36:47.537601Z" + "iopub.execute_input": "2024-06-25T23:18:22.778586Z", + "iopub.status.busy": "2024-06-25T23:18:22.778226Z", + "iopub.status.idle": "2024-06-25T23:18:22.894081Z", + "shell.execute_reply": "2024-06-25T23:18:22.893472Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1705,10 +1705,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.540745Z", - "iopub.status.busy": "2024-06-25T19:36:47.540377Z", - "iopub.status.idle": "2024-06-25T19:36:47.544346Z", - "shell.execute_reply": "2024-06-25T19:36:47.543812Z" + "iopub.execute_input": "2024-06-25T23:18:22.896294Z", + "iopub.status.busy": "2024-06-25T23:18:22.896067Z", + "iopub.status.idle": "2024-06-25T23:18:22.899817Z", + "shell.execute_reply": "2024-06-25T23:18:22.899290Z" }, "id": "0rXP3ZPWjruW" }, @@ -1746,10 +1746,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.546251Z", - "iopub.status.busy": "2024-06-25T19:36:47.546076Z", - "iopub.status.idle": "2024-06-25T19:36:47.549903Z", - "shell.execute_reply": "2024-06-25T19:36:47.549356Z" + "iopub.execute_input": "2024-06-25T23:18:22.901918Z", + "iopub.status.busy": "2024-06-25T23:18:22.901602Z", + "iopub.status.idle": "2024-06-25T23:18:22.905366Z", + "shell.execute_reply": "2024-06-25T23:18:22.904793Z" }, "id": "-iRPe8KXjruW" }, @@ -1804,10 +1804,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.552020Z", - "iopub.status.busy": "2024-06-25T19:36:47.551608Z", - "iopub.status.idle": "2024-06-25T19:36:47.587995Z", - "shell.execute_reply": "2024-06-25T19:36:47.587566Z" + "iopub.execute_input": "2024-06-25T23:18:22.907395Z", + "iopub.status.busy": "2024-06-25T23:18:22.907096Z", + "iopub.status.idle": "2024-06-25T23:18:22.943768Z", + "shell.execute_reply": "2024-06-25T23:18:22.943295Z" }, "id": "ZpipUliyjruW" }, @@ -1858,10 +1858,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.589852Z", - "iopub.status.busy": "2024-06-25T19:36:47.589680Z", - "iopub.status.idle": "2024-06-25T19:36:47.630699Z", - "shell.execute_reply": "2024-06-25T19:36:47.630137Z" + "iopub.execute_input": "2024-06-25T23:18:22.945705Z", + "iopub.status.busy": "2024-06-25T23:18:22.945390Z", + "iopub.status.idle": "2024-06-25T23:18:22.987000Z", + "shell.execute_reply": "2024-06-25T23:18:22.986556Z" }, "id": "SLq-3q4xjruX" }, @@ -1930,10 +1930,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.632515Z", - "iopub.status.busy": "2024-06-25T19:36:47.632349Z", - "iopub.status.idle": "2024-06-25T19:36:47.720647Z", - "shell.execute_reply": "2024-06-25T19:36:47.719956Z" + "iopub.execute_input": "2024-06-25T23:18:22.989099Z", + "iopub.status.busy": "2024-06-25T23:18:22.988778Z", + "iopub.status.idle": "2024-06-25T23:18:23.079367Z", + "shell.execute_reply": "2024-06-25T23:18:23.078808Z" }, "id": "g5LHhhuqFbXK" }, @@ -1965,10 +1965,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.723084Z", - "iopub.status.busy": "2024-06-25T19:36:47.722899Z", - "iopub.status.idle": "2024-06-25T19:36:47.802159Z", - "shell.execute_reply": "2024-06-25T19:36:47.801549Z" + "iopub.execute_input": "2024-06-25T23:18:23.081992Z", + "iopub.status.busy": "2024-06-25T23:18:23.081632Z", + "iopub.status.idle": "2024-06-25T23:18:23.163660Z", + "shell.execute_reply": "2024-06-25T23:18:23.163108Z" }, "id": "p7w8F8ezBcet" }, @@ -2025,10 +2025,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:47.804647Z", - "iopub.status.busy": "2024-06-25T19:36:47.804175Z", - "iopub.status.idle": "2024-06-25T19:36:48.012610Z", - "shell.execute_reply": "2024-06-25T19:36:48.012009Z" + "iopub.execute_input": "2024-06-25T23:18:23.166170Z", + "iopub.status.busy": "2024-06-25T23:18:23.165696Z", + "iopub.status.idle": "2024-06-25T23:18:23.373652Z", + "shell.execute_reply": "2024-06-25T23:18:23.373076Z" }, "id": "WETRL74tE_sU" }, @@ -2063,10 +2063,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:48.014974Z", - "iopub.status.busy": "2024-06-25T19:36:48.014733Z", - "iopub.status.idle": "2024-06-25T19:36:48.197734Z", - "shell.execute_reply": "2024-06-25T19:36:48.197109Z" + "iopub.execute_input": "2024-06-25T23:18:23.375920Z", + "iopub.status.busy": "2024-06-25T23:18:23.375563Z", + "iopub.status.idle": "2024-06-25T23:18:23.542133Z", + "shell.execute_reply": "2024-06-25T23:18:23.541601Z" }, "id": "kCfdx2gOLmXS" }, @@ -2228,10 +2228,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:48.200133Z", - "iopub.status.busy": "2024-06-25T19:36:48.199890Z", - "iopub.status.idle": "2024-06-25T19:36:48.206211Z", - "shell.execute_reply": "2024-06-25T19:36:48.205745Z" + "iopub.execute_input": "2024-06-25T23:18:23.544310Z", + "iopub.status.busy": "2024-06-25T23:18:23.544080Z", + "iopub.status.idle": "2024-06-25T23:18:23.550244Z", + "shell.execute_reply": "2024-06-25T23:18:23.549696Z" }, "id": "-uogYRWFYnuu" }, @@ -2285,10 +2285,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:48.208373Z", - "iopub.status.busy": "2024-06-25T19:36:48.207949Z", - "iopub.status.idle": "2024-06-25T19:36:48.423251Z", - "shell.execute_reply": "2024-06-25T19:36:48.422679Z" + "iopub.execute_input": "2024-06-25T23:18:23.552552Z", + "iopub.status.busy": "2024-06-25T23:18:23.552102Z", + "iopub.status.idle": "2024-06-25T23:18:23.765551Z", + "shell.execute_reply": "2024-06-25T23:18:23.764971Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2335,10 +2335,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:48.425569Z", - "iopub.status.busy": "2024-06-25T19:36:48.425133Z", - "iopub.status.idle": "2024-06-25T19:36:49.482076Z", - "shell.execute_reply": "2024-06-25T19:36:49.481529Z" + "iopub.execute_input": "2024-06-25T23:18:23.767794Z", + "iopub.status.busy": "2024-06-25T23:18:23.767426Z", + "iopub.status.idle": "2024-06-25T23:18:24.838654Z", + "shell.execute_reply": "2024-06-25T23:18:24.838036Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 906c55fbe..b4c4a33f9 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:52.983005Z", - "iopub.status.busy": "2024-06-25T19:36:52.982831Z", - "iopub.status.idle": "2024-06-25T19:36:54.092198Z", - "shell.execute_reply": "2024-06-25T19:36:54.091645Z" + "iopub.execute_input": "2024-06-25T23:18:28.410867Z", + "iopub.status.busy": "2024-06-25T23:18:28.410704Z", + "iopub.status.idle": "2024-06-25T23:18:29.523341Z", + "shell.execute_reply": "2024-06-25T23:18:29.522804Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.094787Z", - "iopub.status.busy": "2024-06-25T19:36:54.094431Z", - "iopub.status.idle": "2024-06-25T19:36:54.097617Z", - "shell.execute_reply": "2024-06-25T19:36:54.097173Z" + "iopub.execute_input": "2024-06-25T23:18:29.525967Z", + "iopub.status.busy": "2024-06-25T23:18:29.525510Z", + "iopub.status.idle": "2024-06-25T23:18:29.528645Z", + "shell.execute_reply": "2024-06-25T23:18:29.528187Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.099720Z", - "iopub.status.busy": "2024-06-25T19:36:54.099372Z", - "iopub.status.idle": "2024-06-25T19:36:54.107610Z", - "shell.execute_reply": "2024-06-25T19:36:54.107140Z" + "iopub.execute_input": "2024-06-25T23:18:29.530912Z", + "iopub.status.busy": "2024-06-25T23:18:29.530502Z", + "iopub.status.idle": "2024-06-25T23:18:29.538778Z", + "shell.execute_reply": "2024-06-25T23:18:29.538338Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.109674Z", - "iopub.status.busy": "2024-06-25T19:36:54.109247Z", - "iopub.status.idle": "2024-06-25T19:36:54.157412Z", - "shell.execute_reply": "2024-06-25T19:36:54.156840Z" + "iopub.execute_input": "2024-06-25T23:18:29.540895Z", + "iopub.status.busy": "2024-06-25T23:18:29.540489Z", + "iopub.status.idle": "2024-06-25T23:18:29.587259Z", + "shell.execute_reply": "2024-06-25T23:18:29.586733Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.159654Z", - "iopub.status.busy": "2024-06-25T19:36:54.159472Z", - "iopub.status.idle": "2024-06-25T19:36:54.177229Z", - "shell.execute_reply": "2024-06-25T19:36:54.176762Z" + "iopub.execute_input": "2024-06-25T23:18:29.589466Z", + "iopub.status.busy": "2024-06-25T23:18:29.589277Z", + "iopub.status.idle": "2024-06-25T23:18:29.606524Z", + "shell.execute_reply": "2024-06-25T23:18:29.606095Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.179344Z", - "iopub.status.busy": "2024-06-25T19:36:54.179010Z", - "iopub.status.idle": "2024-06-25T19:36:54.182993Z", - "shell.execute_reply": "2024-06-25T19:36:54.182561Z" + "iopub.execute_input": "2024-06-25T23:18:29.608443Z", + "iopub.status.busy": "2024-06-25T23:18:29.608267Z", + "iopub.status.idle": "2024-06-25T23:18:29.612218Z", + "shell.execute_reply": "2024-06-25T23:18:29.611771Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.185097Z", - "iopub.status.busy": "2024-06-25T19:36:54.184777Z", - "iopub.status.idle": "2024-06-25T19:36:54.198824Z", - "shell.execute_reply": "2024-06-25T19:36:54.198358Z" + "iopub.execute_input": "2024-06-25T23:18:29.614226Z", + "iopub.status.busy": "2024-06-25T23:18:29.614054Z", + "iopub.status.idle": "2024-06-25T23:18:29.631367Z", + "shell.execute_reply": "2024-06-25T23:18:29.630956Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.200845Z", - "iopub.status.busy": "2024-06-25T19:36:54.200664Z", - "iopub.status.idle": "2024-06-25T19:36:54.227151Z", - "shell.execute_reply": "2024-06-25T19:36:54.226585Z" + "iopub.execute_input": "2024-06-25T23:18:29.633306Z", + "iopub.status.busy": "2024-06-25T23:18:29.632964Z", + "iopub.status.idle": "2024-06-25T23:18:29.658440Z", + "shell.execute_reply": "2024-06-25T23:18:29.658012Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:54.229370Z", - "iopub.status.busy": "2024-06-25T19:36:54.228984Z", - "iopub.status.idle": "2024-06-25T19:36:56.088954Z", - "shell.execute_reply": "2024-06-25T19:36:56.088321Z" + "iopub.execute_input": "2024-06-25T23:18:29.660435Z", + "iopub.status.busy": "2024-06-25T23:18:29.660092Z", + "iopub.status.idle": "2024-06-25T23:18:31.561212Z", + "shell.execute_reply": "2024-06-25T23:18:31.560640Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.091797Z", - "iopub.status.busy": "2024-06-25T19:36:56.091365Z", - "iopub.status.idle": "2024-06-25T19:36:56.098121Z", - "shell.execute_reply": "2024-06-25T19:36:56.097667Z" + "iopub.execute_input": "2024-06-25T23:18:31.563955Z", + "iopub.status.busy": "2024-06-25T23:18:31.563327Z", + "iopub.status.idle": "2024-06-25T23:18:31.570324Z", + "shell.execute_reply": "2024-06-25T23:18:31.569880Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.100176Z", - "iopub.status.busy": "2024-06-25T19:36:56.099747Z", - "iopub.status.idle": "2024-06-25T19:36:56.112314Z", - "shell.execute_reply": "2024-06-25T19:36:56.111779Z" + "iopub.execute_input": "2024-06-25T23:18:31.572276Z", + "iopub.status.busy": "2024-06-25T23:18:31.571950Z", + "iopub.status.idle": "2024-06-25T23:18:31.584255Z", + "shell.execute_reply": "2024-06-25T23:18:31.583817Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.114307Z", - "iopub.status.busy": "2024-06-25T19:36:56.113989Z", - "iopub.status.idle": "2024-06-25T19:36:56.120308Z", - "shell.execute_reply": "2024-06-25T19:36:56.119759Z" + "iopub.execute_input": "2024-06-25T23:18:31.586203Z", + "iopub.status.busy": "2024-06-25T23:18:31.585878Z", + "iopub.status.idle": "2024-06-25T23:18:31.591999Z", + "shell.execute_reply": "2024-06-25T23:18:31.591576Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.122321Z", - "iopub.status.busy": "2024-06-25T19:36:56.122009Z", - "iopub.status.idle": "2024-06-25T19:36:56.124766Z", - "shell.execute_reply": "2024-06-25T19:36:56.124216Z" + "iopub.execute_input": "2024-06-25T23:18:31.594128Z", + "iopub.status.busy": "2024-06-25T23:18:31.593809Z", + "iopub.status.idle": "2024-06-25T23:18:31.596328Z", + "shell.execute_reply": "2024-06-25T23:18:31.595895Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.126666Z", - "iopub.status.busy": "2024-06-25T19:36:56.126364Z", - "iopub.status.idle": "2024-06-25T19:36:56.129930Z", - "shell.execute_reply": "2024-06-25T19:36:56.129387Z" + "iopub.execute_input": "2024-06-25T23:18:31.598281Z", + "iopub.status.busy": "2024-06-25T23:18:31.597974Z", + "iopub.status.idle": "2024-06-25T23:18:31.601541Z", + "shell.execute_reply": "2024-06-25T23:18:31.600983Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.132039Z", - "iopub.status.busy": "2024-06-25T19:36:56.131738Z", - "iopub.status.idle": "2024-06-25T19:36:56.134411Z", - "shell.execute_reply": "2024-06-25T19:36:56.133864Z" + "iopub.execute_input": "2024-06-25T23:18:31.603595Z", + "iopub.status.busy": "2024-06-25T23:18:31.603264Z", + "iopub.status.idle": "2024-06-25T23:18:31.605889Z", + "shell.execute_reply": "2024-06-25T23:18:31.605456Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.136459Z", - "iopub.status.busy": "2024-06-25T19:36:56.136150Z", - "iopub.status.idle": "2024-06-25T19:36:56.140438Z", - "shell.execute_reply": "2024-06-25T19:36:56.139976Z" + "iopub.execute_input": "2024-06-25T23:18:31.607856Z", + "iopub.status.busy": "2024-06-25T23:18:31.607558Z", + "iopub.status.idle": "2024-06-25T23:18:31.611501Z", + "shell.execute_reply": "2024-06-25T23:18:31.611048Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.142440Z", - "iopub.status.busy": "2024-06-25T19:36:56.142121Z", - "iopub.status.idle": "2024-06-25T19:36:56.170976Z", - "shell.execute_reply": "2024-06-25T19:36:56.170425Z" + "iopub.execute_input": "2024-06-25T23:18:31.613408Z", + "iopub.status.busy": "2024-06-25T23:18:31.613238Z", + "iopub.status.idle": "2024-06-25T23:18:31.641822Z", + "shell.execute_reply": "2024-06-25T23:18:31.641266Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:56.173162Z", - "iopub.status.busy": "2024-06-25T19:36:56.172858Z", - "iopub.status.idle": "2024-06-25T19:36:56.177426Z", - "shell.execute_reply": "2024-06-25T19:36:56.176864Z" + "iopub.execute_input": "2024-06-25T23:18:31.644000Z", + "iopub.status.busy": "2024-06-25T23:18:31.643674Z", + "iopub.status.idle": "2024-06-25T23:18:31.648272Z", + "shell.execute_reply": "2024-06-25T23:18:31.647708Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 9e634f2f3..9593cdb90 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:36:58.919980Z", - "iopub.status.busy": "2024-06-25T19:36:58.919807Z", - "iopub.status.idle": "2024-06-25T19:37:00.071287Z", - "shell.execute_reply": "2024-06-25T19:37:00.070749Z" + "iopub.execute_input": "2024-06-25T23:18:34.388005Z", + "iopub.status.busy": "2024-06-25T23:18:34.387509Z", + "iopub.status.idle": "2024-06-25T23:18:35.555688Z", + "shell.execute_reply": "2024-06-25T23:18:35.555141Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:00.073825Z", - "iopub.status.busy": "2024-06-25T19:37:00.073418Z", - "iopub.status.idle": "2024-06-25T19:37:00.265456Z", - "shell.execute_reply": "2024-06-25T19:37:00.264849Z" + "iopub.execute_input": "2024-06-25T23:18:35.558285Z", + "iopub.status.busy": "2024-06-25T23:18:35.557842Z", + "iopub.status.idle": "2024-06-25T23:18:35.751397Z", + "shell.execute_reply": "2024-06-25T23:18:35.750860Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:00.268256Z", - "iopub.status.busy": "2024-06-25T19:37:00.267860Z", - "iopub.status.idle": "2024-06-25T19:37:00.281177Z", - "shell.execute_reply": "2024-06-25T19:37:00.280743Z" + "iopub.execute_input": "2024-06-25T23:18:35.754209Z", + "iopub.status.busy": "2024-06-25T23:18:35.753733Z", + "iopub.status.idle": "2024-06-25T23:18:35.767096Z", + "shell.execute_reply": "2024-06-25T23:18:35.766635Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:00.283272Z", - "iopub.status.busy": "2024-06-25T19:37:00.282948Z", - "iopub.status.idle": "2024-06-25T19:37:02.915319Z", - "shell.execute_reply": "2024-06-25T19:37:02.914720Z" + "iopub.execute_input": "2024-06-25T23:18:35.769292Z", + "iopub.status.busy": "2024-06-25T23:18:35.768939Z", + "iopub.status.idle": "2024-06-25T23:18:38.460798Z", + "shell.execute_reply": "2024-06-25T23:18:38.460293Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:02.917655Z", - "iopub.status.busy": "2024-06-25T19:37:02.917303Z", - "iopub.status.idle": "2024-06-25T19:37:04.262113Z", - "shell.execute_reply": "2024-06-25T19:37:04.261389Z" + "iopub.execute_input": "2024-06-25T23:18:38.463138Z", + "iopub.status.busy": "2024-06-25T23:18:38.462688Z", + "iopub.status.idle": "2024-06-25T23:18:39.817391Z", + "shell.execute_reply": "2024-06-25T23:18:39.816843Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:04.264665Z", - "iopub.status.busy": "2024-06-25T19:37:04.264273Z", - "iopub.status.idle": "2024-06-25T19:37:04.268776Z", - "shell.execute_reply": "2024-06-25T19:37:04.268171Z" + "iopub.execute_input": "2024-06-25T23:18:39.819916Z", + "iopub.status.busy": "2024-06-25T23:18:39.819475Z", + "iopub.status.idle": "2024-06-25T23:18:39.823477Z", + "shell.execute_reply": "2024-06-25T23:18:39.822931Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:04.271017Z", - "iopub.status.busy": "2024-06-25T19:37:04.270694Z", - "iopub.status.idle": "2024-06-25T19:37:06.209152Z", - "shell.execute_reply": "2024-06-25T19:37:06.208542Z" + "iopub.execute_input": "2024-06-25T23:18:39.825523Z", + "iopub.status.busy": "2024-06-25T23:18:39.825189Z", + "iopub.status.idle": "2024-06-25T23:18:41.816360Z", + "shell.execute_reply": "2024-06-25T23:18:41.815747Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:06.211688Z", - "iopub.status.busy": "2024-06-25T19:37:06.211198Z", - "iopub.status.idle": "2024-06-25T19:37:06.218564Z", - "shell.execute_reply": "2024-06-25T19:37:06.218036Z" + "iopub.execute_input": "2024-06-25T23:18:41.818930Z", + "iopub.status.busy": "2024-06-25T23:18:41.818429Z", + "iopub.status.idle": "2024-06-25T23:18:41.826321Z", + "shell.execute_reply": "2024-06-25T23:18:41.825851Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:06.220591Z", - "iopub.status.busy": "2024-06-25T19:37:06.220264Z", - "iopub.status.idle": "2024-06-25T19:37:08.793564Z", - "shell.execute_reply": "2024-06-25T19:37:08.792970Z" + "iopub.execute_input": "2024-06-25T23:18:41.828406Z", + "iopub.status.busy": "2024-06-25T23:18:41.828097Z", + "iopub.status.idle": "2024-06-25T23:18:44.431218Z", + "shell.execute_reply": "2024-06-25T23:18:44.430687Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:08.795901Z", - "iopub.status.busy": "2024-06-25T19:37:08.795549Z", - "iopub.status.idle": "2024-06-25T19:37:08.798884Z", - "shell.execute_reply": "2024-06-25T19:37:08.798350Z" + "iopub.execute_input": "2024-06-25T23:18:44.433395Z", + "iopub.status.busy": "2024-06-25T23:18:44.433032Z", + "iopub.status.idle": "2024-06-25T23:18:44.436462Z", + "shell.execute_reply": "2024-06-25T23:18:44.435934Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:08.800984Z", - "iopub.status.busy": "2024-06-25T19:37:08.800677Z", - "iopub.status.idle": "2024-06-25T19:37:08.804151Z", - "shell.execute_reply": "2024-06-25T19:37:08.803635Z" + "iopub.execute_input": "2024-06-25T23:18:44.438430Z", + "iopub.status.busy": "2024-06-25T23:18:44.438123Z", + "iopub.status.idle": "2024-06-25T23:18:44.441587Z", + "shell.execute_reply": "2024-06-25T23:18:44.441125Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:08.806163Z", - "iopub.status.busy": "2024-06-25T19:37:08.805988Z", - "iopub.status.idle": "2024-06-25T19:37:08.809167Z", - "shell.execute_reply": "2024-06-25T19:37:08.808609Z" + "iopub.execute_input": "2024-06-25T23:18:44.443586Z", + "iopub.status.busy": "2024-06-25T23:18:44.443248Z", + "iopub.status.idle": "2024-06-25T23:18:44.446272Z", + "shell.execute_reply": "2024-06-25T23:18:44.445845Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index aebe787bb..ceb7220d6 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:11.308794Z", - "iopub.status.busy": "2024-06-25T19:37:11.308627Z", - "iopub.status.idle": "2024-06-25T19:37:12.452711Z", - "shell.execute_reply": "2024-06-25T19:37:12.452159Z" + "iopub.execute_input": "2024-06-25T23:18:46.821534Z", + "iopub.status.busy": "2024-06-25T23:18:46.821356Z", + "iopub.status.idle": "2024-06-25T23:18:47.991566Z", + "shell.execute_reply": "2024-06-25T23:18:47.991020Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:12.455258Z", - "iopub.status.busy": "2024-06-25T19:37:12.454827Z", - "iopub.status.idle": "2024-06-25T19:37:14.890620Z", - "shell.execute_reply": "2024-06-25T19:37:14.889969Z" + "iopub.execute_input": "2024-06-25T23:18:47.994044Z", + "iopub.status.busy": "2024-06-25T23:18:47.993746Z", + "iopub.status.idle": "2024-06-25T23:18:49.077383Z", + "shell.execute_reply": "2024-06-25T23:18:49.076740Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:14.893309Z", - "iopub.status.busy": "2024-06-25T19:37:14.892942Z", - "iopub.status.idle": "2024-06-25T19:37:14.896049Z", - "shell.execute_reply": "2024-06-25T19:37:14.895624Z" + "iopub.execute_input": "2024-06-25T23:18:49.079931Z", + "iopub.status.busy": "2024-06-25T23:18:49.079715Z", + "iopub.status.idle": "2024-06-25T23:18:49.083128Z", + "shell.execute_reply": "2024-06-25T23:18:49.082576Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:14.898040Z", - "iopub.status.busy": "2024-06-25T19:37:14.897713Z", - "iopub.status.idle": "2024-06-25T19:37:14.903653Z", - "shell.execute_reply": "2024-06-25T19:37:14.903185Z" + "iopub.execute_input": "2024-06-25T23:18:49.085315Z", + "iopub.status.busy": "2024-06-25T23:18:49.084875Z", + "iopub.status.idle": "2024-06-25T23:18:49.090995Z", + "shell.execute_reply": "2024-06-25T23:18:49.090565Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:14.905688Z", - "iopub.status.busy": "2024-06-25T19:37:14.905360Z", - "iopub.status.idle": "2024-06-25T19:37:15.391751Z", - "shell.execute_reply": "2024-06-25T19:37:15.391128Z" + "iopub.execute_input": "2024-06-25T23:18:49.092987Z", + "iopub.status.busy": "2024-06-25T23:18:49.092664Z", + "iopub.status.idle": "2024-06-25T23:18:49.578049Z", + "shell.execute_reply": "2024-06-25T23:18:49.577480Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:15.394507Z", - "iopub.status.busy": "2024-06-25T19:37:15.394142Z", - "iopub.status.idle": "2024-06-25T19:37:15.399398Z", - "shell.execute_reply": "2024-06-25T19:37:15.398860Z" + "iopub.execute_input": "2024-06-25T23:18:49.581141Z", + "iopub.status.busy": "2024-06-25T23:18:49.580804Z", + "iopub.status.idle": "2024-06-25T23:18:49.586187Z", + "shell.execute_reply": "2024-06-25T23:18:49.585728Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:15.401545Z", - "iopub.status.busy": "2024-06-25T19:37:15.401225Z", - "iopub.status.idle": "2024-06-25T19:37:15.404995Z", - "shell.execute_reply": "2024-06-25T19:37:15.404569Z" + "iopub.execute_input": "2024-06-25T23:18:49.588207Z", + "iopub.status.busy": "2024-06-25T23:18:49.587912Z", + "iopub.status.idle": "2024-06-25T23:18:49.592364Z", + "shell.execute_reply": "2024-06-25T23:18:49.591919Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:15.407039Z", - "iopub.status.busy": "2024-06-25T19:37:15.406711Z", - "iopub.status.idle": "2024-06-25T19:37:16.295944Z", - "shell.execute_reply": "2024-06-25T19:37:16.295383Z" + "iopub.execute_input": "2024-06-25T23:18:49.594287Z", + "iopub.status.busy": "2024-06-25T23:18:49.594112Z", + "iopub.status.idle": "2024-06-25T23:18:50.586165Z", + "shell.execute_reply": "2024-06-25T23:18:50.585507Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:16.298196Z", - "iopub.status.busy": "2024-06-25T19:37:16.297999Z", - "iopub.status.idle": "2024-06-25T19:37:16.525061Z", - "shell.execute_reply": "2024-06-25T19:37:16.524590Z" + "iopub.execute_input": "2024-06-25T23:18:50.588520Z", + "iopub.status.busy": "2024-06-25T23:18:50.588324Z", + "iopub.status.idle": "2024-06-25T23:18:50.808698Z", + "shell.execute_reply": "2024-06-25T23:18:50.808228Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:16.527288Z", - "iopub.status.busy": "2024-06-25T19:37:16.526859Z", - "iopub.status.idle": "2024-06-25T19:37:16.531244Z", - "shell.execute_reply": "2024-06-25T19:37:16.530747Z" + "iopub.execute_input": "2024-06-25T23:18:50.810921Z", + "iopub.status.busy": "2024-06-25T23:18:50.810585Z", + "iopub.status.idle": "2024-06-25T23:18:50.815013Z", + "shell.execute_reply": "2024-06-25T23:18:50.814577Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:16.533265Z", - "iopub.status.busy": "2024-06-25T19:37:16.533088Z", - "iopub.status.idle": "2024-06-25T19:37:16.979069Z", - "shell.execute_reply": "2024-06-25T19:37:16.978477Z" + "iopub.execute_input": "2024-06-25T23:18:50.816841Z", + "iopub.status.busy": "2024-06-25T23:18:50.816666Z", + "iopub.status.idle": "2024-06-25T23:18:51.264514Z", + "shell.execute_reply": "2024-06-25T23:18:51.263937Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:16.981738Z", - "iopub.status.busy": "2024-06-25T19:37:16.981547Z", - "iopub.status.idle": "2024-06-25T19:37:17.310927Z", - "shell.execute_reply": "2024-06-25T19:37:17.310336Z" + "iopub.execute_input": "2024-06-25T23:18:51.267205Z", + "iopub.status.busy": "2024-06-25T23:18:51.266984Z", + "iopub.status.idle": "2024-06-25T23:18:51.597569Z", + "shell.execute_reply": "2024-06-25T23:18:51.596965Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:17.313292Z", - "iopub.status.busy": "2024-06-25T19:37:17.312887Z", - "iopub.status.idle": "2024-06-25T19:37:17.645849Z", - "shell.execute_reply": "2024-06-25T19:37:17.645269Z" + "iopub.execute_input": "2024-06-25T23:18:51.599806Z", + "iopub.status.busy": "2024-06-25T23:18:51.599595Z", + "iopub.status.idle": "2024-06-25T23:18:51.933374Z", + "shell.execute_reply": "2024-06-25T23:18:51.932766Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:17.649071Z", - "iopub.status.busy": "2024-06-25T19:37:17.648711Z", - "iopub.status.idle": "2024-06-25T19:37:18.056258Z", - "shell.execute_reply": "2024-06-25T19:37:18.055723Z" + "iopub.execute_input": "2024-06-25T23:18:51.936579Z", + "iopub.status.busy": "2024-06-25T23:18:51.936094Z", + "iopub.status.idle": "2024-06-25T23:18:52.348181Z", + "shell.execute_reply": "2024-06-25T23:18:52.347588Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:18.060462Z", - "iopub.status.busy": "2024-06-25T19:37:18.060093Z", - "iopub.status.idle": "2024-06-25T19:37:18.505775Z", - "shell.execute_reply": "2024-06-25T19:37:18.505169Z" + "iopub.execute_input": "2024-06-25T23:18:52.352428Z", + "iopub.status.busy": "2024-06-25T23:18:52.351994Z", + "iopub.status.idle": "2024-06-25T23:18:52.773521Z", + "shell.execute_reply": "2024-06-25T23:18:52.772929Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:18.508548Z", - "iopub.status.busy": "2024-06-25T19:37:18.508203Z", - "iopub.status.idle": "2024-06-25T19:37:18.698418Z", - "shell.execute_reply": "2024-06-25T19:37:18.697831Z" + "iopub.execute_input": "2024-06-25T23:18:52.776870Z", + "iopub.status.busy": "2024-06-25T23:18:52.776447Z", + "iopub.status.idle": "2024-06-25T23:18:52.965633Z", + "shell.execute_reply": "2024-06-25T23:18:52.965014Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:18.700790Z", - "iopub.status.busy": "2024-06-25T19:37:18.700610Z", - "iopub.status.idle": "2024-06-25T19:37:18.880703Z", - "shell.execute_reply": "2024-06-25T19:37:18.880186Z" + "iopub.execute_input": "2024-06-25T23:18:52.968518Z", + "iopub.status.busy": "2024-06-25T23:18:52.968035Z", + "iopub.status.idle": "2024-06-25T23:18:53.169696Z", + "shell.execute_reply": "2024-06-25T23:18:53.169139Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:18.882941Z", - "iopub.status.busy": "2024-06-25T19:37:18.882765Z", - "iopub.status.idle": "2024-06-25T19:37:18.885792Z", - "shell.execute_reply": "2024-06-25T19:37:18.885246Z" + "iopub.execute_input": "2024-06-25T23:18:53.171908Z", + "iopub.status.busy": "2024-06-25T23:18:53.171701Z", + "iopub.status.idle": "2024-06-25T23:18:53.174679Z", + "shell.execute_reply": "2024-06-25T23:18:53.174135Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:18.887722Z", - "iopub.status.busy": "2024-06-25T19:37:18.887391Z", - "iopub.status.idle": "2024-06-25T19:37:19.791276Z", - "shell.execute_reply": "2024-06-25T19:37:19.790730Z" + "iopub.execute_input": "2024-06-25T23:18:53.176658Z", + "iopub.status.busy": "2024-06-25T23:18:53.176332Z", + "iopub.status.idle": "2024-06-25T23:18:54.151841Z", + "shell.execute_reply": "2024-06-25T23:18:54.151257Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:19.793943Z", - "iopub.status.busy": "2024-06-25T19:37:19.793573Z", - "iopub.status.idle": "2024-06-25T19:37:19.935555Z", - "shell.execute_reply": "2024-06-25T19:37:19.935101Z" + "iopub.execute_input": "2024-06-25T23:18:54.153970Z", + "iopub.status.busy": "2024-06-25T23:18:54.153788Z", + "iopub.status.idle": "2024-06-25T23:18:54.367334Z", + "shell.execute_reply": "2024-06-25T23:18:54.366782Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:19.937552Z", - "iopub.status.busy": "2024-06-25T19:37:19.937378Z", - "iopub.status.idle": "2024-06-25T19:37:20.088397Z", - "shell.execute_reply": "2024-06-25T19:37:20.087796Z" + "iopub.execute_input": "2024-06-25T23:18:54.369532Z", + "iopub.status.busy": "2024-06-25T23:18:54.369222Z", + "iopub.status.idle": "2024-06-25T23:18:54.583472Z", + "shell.execute_reply": "2024-06-25T23:18:54.582875Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:20.090556Z", - "iopub.status.busy": "2024-06-25T19:37:20.090235Z", - "iopub.status.idle": "2024-06-25T19:37:20.751985Z", - "shell.execute_reply": "2024-06-25T19:37:20.751385Z" + "iopub.execute_input": "2024-06-25T23:18:54.585760Z", + "iopub.status.busy": "2024-06-25T23:18:54.585359Z", + "iopub.status.idle": "2024-06-25T23:18:55.323353Z", + "shell.execute_reply": "2024-06-25T23:18:55.322814Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:20.754413Z", - "iopub.status.busy": "2024-06-25T19:37:20.753942Z", - "iopub.status.idle": "2024-06-25T19:37:20.757882Z", - "shell.execute_reply": "2024-06-25T19:37:20.757342Z" + "iopub.execute_input": "2024-06-25T23:18:55.325548Z", + "iopub.status.busy": "2024-06-25T23:18:55.325207Z", + "iopub.status.idle": "2024-06-25T23:18:55.329284Z", + "shell.execute_reply": "2024-06-25T23:18:55.328852Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index afc8ab86a..c663c5ea2 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:03<00:00, 43010872.29it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 107997102.42it/s]
 
-
+
@@ -1124,7 +1124,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 3359ecfd0..4aeee095a 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:22.937714Z", - "iopub.status.busy": "2024-06-25T19:37:22.937546Z", - "iopub.status.idle": "2024-06-25T19:37:25.620183Z", - "shell.execute_reply": "2024-06-25T19:37:25.619593Z" + "iopub.execute_input": "2024-06-25T23:18:57.455185Z", + "iopub.status.busy": "2024-06-25T23:18:57.455007Z", + "iopub.status.idle": "2024-06-25T23:19:00.140522Z", + "shell.execute_reply": "2024-06-25T23:19:00.139964Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:25.622737Z", - "iopub.status.busy": "2024-06-25T19:37:25.622414Z", - "iopub.status.idle": "2024-06-25T19:37:25.936079Z", - "shell.execute_reply": "2024-06-25T19:37:25.935452Z" + "iopub.execute_input": "2024-06-25T23:19:00.143299Z", + "iopub.status.busy": "2024-06-25T23:19:00.142777Z", + "iopub.status.idle": "2024-06-25T23:19:00.459330Z", + "shell.execute_reply": "2024-06-25T23:19:00.458710Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:25.938723Z", - "iopub.status.busy": "2024-06-25T19:37:25.938422Z", - "iopub.status.idle": "2024-06-25T19:37:25.942622Z", - "shell.execute_reply": "2024-06-25T19:37:25.942185Z" + "iopub.execute_input": "2024-06-25T23:19:00.461903Z", + "iopub.status.busy": "2024-06-25T23:19:00.461603Z", + "iopub.status.idle": "2024-06-25T23:19:00.465997Z", + "shell.execute_reply": "2024-06-25T23:19:00.465462Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:25.944514Z", - "iopub.status.busy": "2024-06-25T19:37:25.944341Z", - "iopub.status.idle": "2024-06-25T19:37:33.410224Z", - "shell.execute_reply": "2024-06-25T19:37:33.409701Z" + "iopub.execute_input": "2024-06-25T23:19:00.468073Z", + "iopub.status.busy": "2024-06-25T23:19:00.467652Z", + "iopub.status.idle": "2024-06-25T23:19:04.713802Z", + "shell.execute_reply": "2024-06-25T23:19:04.713212Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<10:33, 269061.34it/s]" + " 1%| | 1867776/170498071 [00:00<00:09, 18674661.14it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<02:43, 1044330.69it/s]" + " 8%|▊ | 13533184/170498071 [00:00<00:02, 76238255.65it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:56, 2986468.56it/s]" + " 15%|█▍ | 25133056/170498071 [00:00<00:01, 94330786.80it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3506176/170498071 [00:00<00:15, 10508236.75it/s]" + " 22%|██▏ | 36732928/170498071 [00:00<00:01, 102749472.78it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 8552448/170498071 [00:00<00:06, 23273913.94it/s]" + " 28%|██▊ | 48431104/170498071 [00:00<00:01, 107856210.55it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 12877824/170498071 [00:00<00:05, 29531831.70it/s]" + " 35%|███▍ | 59244544/170498071 [00:00<00:01, 104969542.54it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17661952/170498071 [00:00<00:04, 34683944.45it/s]" + " 41%|████▏ | 70385664/170498071 [00:00<00:00, 106967167.13it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22478848/170498071 [00:00<00:03, 38419021.56it/s]" + " 48%|████▊ | 82051072/170498071 [00:00<00:00, 109967427.14it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 27590656/170498071 [00:00<00:03, 42218756.72it/s]" + " 55%|█████▍ | 93618176/170498071 [00:00<00:00, 111587704.91it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32145408/170498071 [00:01<00:03, 42979378.57it/s]" + " 62%|██████▏ | 105381888/170498071 [00:01<00:00, 113341455.44it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37552128/170498071 [00:01<00:02, 46248329.44it/s]" + " 69%|██████▊ | 116850688/170498071 [00:01<00:00, 113640126.52it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 42237952/170498071 [00:01<00:02, 45894868.35it/s]" + " 75%|███████▌ | 128221184/170498071 [00:01<00:00, 112577089.48it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 47546368/170498071 [00:01<00:02, 47987784.85it/s]" + " 82%|████████▏ | 139886592/170498071 [00:01<00:00, 113733636.99it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52396032/170498071 [00:01<00:02, 47660760.18it/s]" + " 89%|████████▉ | 151355392/170498071 [00:01<00:00, 113996738.39it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 57212928/170498071 [00:01<00:02, 46221672.73it/s]" + " 96%|█████████▌| 163020800/170498071 [00:01<00:00, 114693076.37it/s]" ] }, { @@ -372,183 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 62259200/170498071 [00:01<00:02, 47420663.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 39%|███▉ | 67043328/170498071 [00:01<00:02, 46870615.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 42%|████▏ | 72187904/170498071 [00:01<00:02, 48207181.06it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 45%|████▌ | 77037568/170498071 [00:02<00:01, 47426096.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 48%|████▊ | 82477056/170498071 [00:02<00:01, 48903231.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 51%|█████▏ | 87392256/170498071 [00:02<00:01, 48876811.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 54%|█████▍ | 92307456/170498071 [00:02<00:01, 46456343.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 97714176/170498071 [00:02<00:01, 48622672.55it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|██████ | 102629376/170498071 [00:02<00:01, 47303583.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 107839488/170498071 [00:02<00:01, 48660290.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 112754688/170498071 [00:02<00:01, 48170138.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 117604352/170498071 [00:02<00:01, 48147632.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 122552320/170498071 [00:02<00:01, 47622185.83it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▍ | 127336448/170498071 [00:03<00:00, 46393005.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 133300224/170498071 [00:03<00:00, 50178503.28it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 138346496/170498071 [00:03<00:00, 48020765.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 143196160/170498071 [00:03<00:00, 46334061.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 149061632/170498071 [00:03<00:00, 49353288.69it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 154042368/170498071 [00:03<00:00, 48340337.16it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 158924800/170498071 [00:03<00:00, 46140400.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 164921344/170498071 [00:03<00:00, 49140811.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 169869312/170498071 [00:03<00:00, 48444737.50it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 43010872.29it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 107997102.42it/s]" ] }, { @@ -666,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:33.412458Z", - "iopub.status.busy": "2024-06-25T19:37:33.412129Z", - "iopub.status.idle": "2024-06-25T19:37:33.416824Z", - "shell.execute_reply": "2024-06-25T19:37:33.416305Z" + "iopub.execute_input": "2024-06-25T23:19:04.715884Z", + "iopub.status.busy": "2024-06-25T23:19:04.715703Z", + "iopub.status.idle": "2024-06-25T23:19:04.720331Z", + "shell.execute_reply": "2024-06-25T23:19:04.719901Z" }, "nbsphinx": "hidden" }, @@ -720,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:33.418809Z", - "iopub.status.busy": "2024-06-25T19:37:33.418495Z", - "iopub.status.idle": "2024-06-25T19:37:33.960026Z", - "shell.execute_reply": "2024-06-25T19:37:33.959496Z" + "iopub.execute_input": "2024-06-25T23:19:04.722383Z", + "iopub.status.busy": "2024-06-25T23:19:04.722067Z", + "iopub.status.idle": "2024-06-25T23:19:05.264665Z", + "shell.execute_reply": "2024-06-25T23:19:05.264156Z" } }, "outputs": [ @@ -756,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:33.962172Z", - "iopub.status.busy": "2024-06-25T19:37:33.961834Z", - "iopub.status.idle": "2024-06-25T19:37:34.466908Z", - "shell.execute_reply": "2024-06-25T19:37:34.466308Z" + "iopub.execute_input": "2024-06-25T23:19:05.266862Z", + "iopub.status.busy": "2024-06-25T23:19:05.266533Z", + "iopub.status.idle": "2024-06-25T23:19:05.782683Z", + "shell.execute_reply": "2024-06-25T23:19:05.782187Z" } }, "outputs": [ @@ -797,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:34.469197Z", - "iopub.status.busy": "2024-06-25T19:37:34.468825Z", - "iopub.status.idle": "2024-06-25T19:37:34.472416Z", - "shell.execute_reply": "2024-06-25T19:37:34.471962Z" + "iopub.execute_input": "2024-06-25T23:19:05.784979Z", + "iopub.status.busy": "2024-06-25T23:19:05.784496Z", + "iopub.status.idle": "2024-06-25T23:19:05.788141Z", + "shell.execute_reply": "2024-06-25T23:19:05.787582Z" } }, "outputs": [], @@ -823,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:34.474255Z", - "iopub.status.busy": "2024-06-25T19:37:34.474084Z", - "iopub.status.idle": "2024-06-25T19:37:46.991980Z", - "shell.execute_reply": "2024-06-25T19:37:46.991418Z" + "iopub.execute_input": "2024-06-25T23:19:05.790197Z", + "iopub.status.busy": "2024-06-25T23:19:05.789889Z", + "iopub.status.idle": "2024-06-25T23:19:18.262418Z", + "shell.execute_reply": "2024-06-25T23:19:18.261753Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3a6eebd9a9694b07864d194c78cdb317", + "model_id": "c487c0c381e74a26a4f49ff121b50dc9", "version_major": 2, "version_minor": 0 }, @@ -892,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:46.994340Z", - "iopub.status.busy": "2024-06-25T19:37:46.994149Z", - "iopub.status.idle": "2024-06-25T19:37:49.075191Z", - "shell.execute_reply": "2024-06-25T19:37:49.074609Z" + "iopub.execute_input": "2024-06-25T23:19:18.264580Z", + "iopub.status.busy": "2024-06-25T23:19:18.264398Z", + "iopub.status.idle": "2024-06-25T23:19:20.351765Z", + "shell.execute_reply": "2024-06-25T23:19:20.351216Z" } }, "outputs": [ @@ -939,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:49.077233Z", - "iopub.status.busy": "2024-06-25T19:37:49.077055Z", - "iopub.status.idle": "2024-06-25T19:37:49.302913Z", - "shell.execute_reply": "2024-06-25T19:37:49.302334Z" + "iopub.execute_input": "2024-06-25T23:19:20.354001Z", + "iopub.status.busy": "2024-06-25T23:19:20.353823Z", + "iopub.status.idle": "2024-06-25T23:19:20.594457Z", + "shell.execute_reply": "2024-06-25T23:19:20.593862Z" } }, "outputs": [ @@ -978,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:49.305112Z", - "iopub.status.busy": "2024-06-25T19:37:49.304932Z", - "iopub.status.idle": "2024-06-25T19:37:49.943529Z", - "shell.execute_reply": "2024-06-25T19:37:49.942935Z" + "iopub.execute_input": "2024-06-25T23:19:20.597502Z", + "iopub.status.busy": "2024-06-25T23:19:20.596997Z", + "iopub.status.idle": "2024-06-25T23:19:21.266452Z", + "shell.execute_reply": "2024-06-25T23:19:21.265865Z" } }, "outputs": [ @@ -1031,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:49.945968Z", - "iopub.status.busy": "2024-06-25T19:37:49.945641Z", - "iopub.status.idle": "2024-06-25T19:37:50.264955Z", - "shell.execute_reply": "2024-06-25T19:37:50.264439Z" + "iopub.execute_input": "2024-06-25T23:19:21.269364Z", + "iopub.status.busy": "2024-06-25T23:19:21.269161Z", + "iopub.status.idle": "2024-06-25T23:19:21.610132Z", + "shell.execute_reply": "2024-06-25T23:19:21.609580Z" } }, "outputs": [ @@ -1082,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:50.267076Z", - "iopub.status.busy": "2024-06-25T19:37:50.266888Z", - "iopub.status.idle": "2024-06-25T19:37:50.495188Z", - "shell.execute_reply": "2024-06-25T19:37:50.494600Z" + "iopub.execute_input": "2024-06-25T23:19:21.612438Z", + "iopub.status.busy": "2024-06-25T23:19:21.612030Z", + "iopub.status.idle": "2024-06-25T23:19:21.854392Z", + "shell.execute_reply": "2024-06-25T23:19:21.853886Z" } }, "outputs": [ @@ -1141,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:50.497736Z", - "iopub.status.busy": "2024-06-25T19:37:50.497230Z", - "iopub.status.idle": "2024-06-25T19:37:50.573192Z", - "shell.execute_reply": "2024-06-25T19:37:50.572575Z" + "iopub.execute_input": "2024-06-25T23:19:21.857100Z", + "iopub.status.busy": "2024-06-25T23:19:21.856718Z", + "iopub.status.idle": "2024-06-25T23:19:21.949451Z", + "shell.execute_reply": "2024-06-25T23:19:21.948923Z" } }, "outputs": [], @@ -1165,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:37:50.575685Z", - "iopub.status.busy": "2024-06-25T19:37:50.575502Z", - "iopub.status.idle": "2024-06-25T19:38:00.831598Z", - "shell.execute_reply": "2024-06-25T19:38:00.830941Z" + "iopub.execute_input": "2024-06-25T23:19:21.951971Z", + "iopub.status.busy": "2024-06-25T23:19:21.951792Z", + "iopub.status.idle": "2024-06-25T23:19:32.299281Z", + "shell.execute_reply": "2024-06-25T23:19:32.298639Z" } }, "outputs": [ @@ -1205,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:00.834016Z", - "iopub.status.busy": "2024-06-25T19:38:00.833627Z", - "iopub.status.idle": "2024-06-25T19:38:02.973271Z", - "shell.execute_reply": "2024-06-25T19:38:02.972713Z" + "iopub.execute_input": "2024-06-25T23:19:32.301554Z", + "iopub.status.busy": "2024-06-25T23:19:32.301299Z", + "iopub.status.idle": "2024-06-25T23:19:34.462906Z", + "shell.execute_reply": "2024-06-25T23:19:34.462279Z" } }, "outputs": [ @@ -1239,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:02.975964Z", - "iopub.status.busy": "2024-06-25T19:38:02.975476Z", - "iopub.status.idle": "2024-06-25T19:38:03.180118Z", - "shell.execute_reply": "2024-06-25T19:38:03.179626Z" + "iopub.execute_input": "2024-06-25T23:19:34.465814Z", + "iopub.status.busy": "2024-06-25T23:19:34.465269Z", + "iopub.status.idle": "2024-06-25T23:19:34.668011Z", + "shell.execute_reply": "2024-06-25T23:19:34.667512Z" } }, "outputs": [], @@ -1256,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:03.182510Z", - "iopub.status.busy": "2024-06-25T19:38:03.182166Z", - "iopub.status.idle": "2024-06-25T19:38:03.185175Z", - "shell.execute_reply": "2024-06-25T19:38:03.184750Z" + "iopub.execute_input": "2024-06-25T23:19:34.670373Z", + "iopub.status.busy": "2024-06-25T23:19:34.670183Z", + "iopub.status.idle": "2024-06-25T23:19:34.673433Z", + "shell.execute_reply": "2024-06-25T23:19:34.672977Z" } }, "outputs": [], @@ -1281,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:03.187201Z", - "iopub.status.busy": "2024-06-25T19:38:03.186922Z", - "iopub.status.idle": "2024-06-25T19:38:03.194967Z", - "shell.execute_reply": "2024-06-25T19:38:03.194449Z" + "iopub.execute_input": "2024-06-25T23:19:34.675236Z", + "iopub.status.busy": "2024-06-25T23:19:34.675068Z", + "iopub.status.idle": "2024-06-25T23:19:34.683440Z", + "shell.execute_reply": "2024-06-25T23:19:34.682879Z" }, "nbsphinx": "hidden" }, @@ -1329,31 +1153,67 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "3a6eebd9a9694b07864d194c78cdb317": { + "2a6c0688ba264a97aee90eb6e37e9dc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2ed8f22a488e446d9dd09c9e760c1fb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3a433760fb114684b1ce550e725410f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d314e5a0eb894d12bc8321b569f74cd0", - "IPY_MODEL_932ee016f6a74520b9da6cc833f044b5", - "IPY_MODEL_de1dfc7949d842468505de0b2a43b4f7" - ], - "layout": "IPY_MODEL_8876ddc2f4f248ff81bbe8f98f0e2826", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cac77136c4f843fea7898f1735deb973", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2a6c0688ba264a97aee90eb6e37e9dc2", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 102469840.0 } }, - "8876ddc2f4f248ff81bbe8f98f0e2826": { + "55e4c9a3e7c7475b9b79a0916ea74432": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1406,49 +1266,48 @@ "width": null } }, - "9117500d199d44088b40d306a6001f86": { + "7b2c005a31c74359a9e6040ef88246ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55e4c9a3e7c7475b9b79a0916ea74432", + "placeholder": "​", + "style": "IPY_MODEL_2ed8f22a488e446d9dd09c9e760c1fb2", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" } }, - "932ee016f6a74520b9da6cc833f044b5": { + "acf4b18dbb8e42a391b0dfa7d26e3612": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be482c428a914ad9bc5accbfcda59810", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9117500d199d44088b40d306a6001f86", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9345c22a7d26444e94e7dc281c6f7083": { + "b8d3a0d6f70d45e596f645995e60a137": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1501,7 +1360,31 @@ "width": null } }, - "a0c0e9532ae04b61941f4f996fe124d2": { + "c487c0c381e74a26a4f49ff121b50dc9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b2c005a31c74359a9e6040ef88246ae", + "IPY_MODEL_3a433760fb114684b1ce550e725410f3", + "IPY_MODEL_d732fe2e90af4c978675ca6771e1718c" + ], + "layout": "IPY_MODEL_d9309721bf15440c9369f140e0453a0f", + "tabbable": null, + "tooltip": null + } + }, + "cac77136c4f843fea7898f1735deb973": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1554,7 +1437,30 @@ "width": null } }, - "be482c428a914ad9bc5accbfcda59810": { + "d732fe2e90af4c978675ca6771e1718c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b8d3a0d6f70d45e596f645995e60a137", + "placeholder": "​", + "style": "IPY_MODEL_acf4b18dbb8e42a391b0dfa7d26e3612", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 218MB/s]" + } + }, + "d9309721bf15440c9369f140e0453a0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1606,88 +1512,6 @@ "visibility": null, "width": null } - }, - "d314e5a0eb894d12bc8321b569f74cd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9345c22a7d26444e94e7dc281c6f7083", - "placeholder": "​", - "style": "IPY_MODEL_ed999755dbfa4b068fb1bc1851f1d2ea", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "d8c964fe861d44eeb4663c74d1331470": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de1dfc7949d842468505de0b2a43b4f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a0c0e9532ae04b61941f4f996fe124d2", - "placeholder": "​", - "style": "IPY_MODEL_d8c964fe861d44eeb4663c74d1331470", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 265MB/s]" - } - }, - "ed999755dbfa4b068fb1bc1851f1d2ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 1e51dfcdc..4dccd9a0a 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:07.555838Z", - "iopub.status.busy": "2024-06-25T19:38:07.555668Z", - "iopub.status.idle": "2024-06-25T19:38:08.722369Z", - "shell.execute_reply": "2024-06-25T19:38:08.721811Z" + "iopub.execute_input": "2024-06-25T23:19:38.796252Z", + "iopub.status.busy": "2024-06-25T23:19:38.796082Z", + "iopub.status.idle": "2024-06-25T23:19:39.953258Z", + "shell.execute_reply": "2024-06-25T23:19:39.952691Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:08.724901Z", - "iopub.status.busy": "2024-06-25T19:38:08.724626Z", - "iopub.status.idle": "2024-06-25T19:38:08.741782Z", - "shell.execute_reply": "2024-06-25T19:38:08.741233Z" + "iopub.execute_input": "2024-06-25T23:19:39.955862Z", + "iopub.status.busy": "2024-06-25T23:19:39.955512Z", + "iopub.status.idle": "2024-06-25T23:19:39.972881Z", + "shell.execute_reply": "2024-06-25T23:19:39.972463Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:08.744094Z", - "iopub.status.busy": "2024-06-25T19:38:08.743687Z", - "iopub.status.idle": "2024-06-25T19:38:08.746763Z", - "shell.execute_reply": "2024-06-25T19:38:08.746228Z" + "iopub.execute_input": "2024-06-25T23:19:39.975108Z", + "iopub.status.busy": "2024-06-25T23:19:39.974726Z", + "iopub.status.idle": "2024-06-25T23:19:39.977547Z", + "shell.execute_reply": "2024-06-25T23:19:39.977124Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:08.748783Z", - "iopub.status.busy": "2024-06-25T19:38:08.748471Z", - "iopub.status.idle": "2024-06-25T19:38:09.023742Z", - "shell.execute_reply": "2024-06-25T19:38:09.023127Z" + "iopub.execute_input": "2024-06-25T23:19:39.979571Z", + "iopub.status.busy": "2024-06-25T23:19:39.979249Z", + "iopub.status.idle": "2024-06-25T23:19:40.010006Z", + "shell.execute_reply": "2024-06-25T23:19:40.009548Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.025867Z", - "iopub.status.busy": "2024-06-25T19:38:09.025685Z", - "iopub.status.idle": "2024-06-25T19:38:09.204489Z", - "shell.execute_reply": "2024-06-25T19:38:09.203970Z" + "iopub.execute_input": "2024-06-25T23:19:40.012066Z", + "iopub.status.busy": "2024-06-25T23:19:40.011740Z", + "iopub.status.idle": "2024-06-25T23:19:40.191233Z", + "shell.execute_reply": "2024-06-25T23:19:40.190672Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.206625Z", - "iopub.status.busy": "2024-06-25T19:38:09.206444Z", - "iopub.status.idle": "2024-06-25T19:38:09.445281Z", - "shell.execute_reply": "2024-06-25T19:38:09.444670Z" + "iopub.execute_input": "2024-06-25T23:19:40.193662Z", + "iopub.status.busy": "2024-06-25T23:19:40.193313Z", + "iopub.status.idle": "2024-06-25T23:19:40.401417Z", + "shell.execute_reply": "2024-06-25T23:19:40.400809Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.447540Z", - "iopub.status.busy": "2024-06-25T19:38:09.447186Z", - "iopub.status.idle": "2024-06-25T19:38:09.451599Z", - "shell.execute_reply": "2024-06-25T19:38:09.451044Z" + "iopub.execute_input": "2024-06-25T23:19:40.403764Z", + "iopub.status.busy": "2024-06-25T23:19:40.403425Z", + "iopub.status.idle": "2024-06-25T23:19:40.407638Z", + "shell.execute_reply": "2024-06-25T23:19:40.407217Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.453555Z", - "iopub.status.busy": "2024-06-25T19:38:09.453375Z", - "iopub.status.idle": "2024-06-25T19:38:09.460592Z", - "shell.execute_reply": "2024-06-25T19:38:09.460157Z" + "iopub.execute_input": "2024-06-25T23:19:40.409677Z", + "iopub.status.busy": "2024-06-25T23:19:40.409360Z", + "iopub.status.idle": "2024-06-25T23:19:40.415770Z", + "shell.execute_reply": "2024-06-25T23:19:40.415356Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.462899Z", - "iopub.status.busy": "2024-06-25T19:38:09.462366Z", - "iopub.status.idle": "2024-06-25T19:38:09.465304Z", - "shell.execute_reply": "2024-06-25T19:38:09.464836Z" + "iopub.execute_input": "2024-06-25T23:19:40.417772Z", + "iopub.status.busy": "2024-06-25T23:19:40.417455Z", + "iopub.status.idle": "2024-06-25T23:19:40.420042Z", + "shell.execute_reply": "2024-06-25T23:19:40.419591Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:09.467150Z", - "iopub.status.busy": "2024-06-25T19:38:09.466976Z", - "iopub.status.idle": "2024-06-25T19:38:18.068771Z", - "shell.execute_reply": "2024-06-25T19:38:18.068131Z" + "iopub.execute_input": "2024-06-25T23:19:40.421960Z", + "iopub.status.busy": "2024-06-25T23:19:40.421649Z", + "iopub.status.idle": "2024-06-25T23:19:48.997759Z", + "shell.execute_reply": "2024-06-25T23:19:48.997063Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.071591Z", - "iopub.status.busy": "2024-06-25T19:38:18.071196Z", - "iopub.status.idle": "2024-06-25T19:38:18.078371Z", - "shell.execute_reply": "2024-06-25T19:38:18.077824Z" + "iopub.execute_input": "2024-06-25T23:19:49.000433Z", + "iopub.status.busy": "2024-06-25T23:19:49.000048Z", + "iopub.status.idle": "2024-06-25T23:19:49.007281Z", + "shell.execute_reply": "2024-06-25T23:19:49.006704Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.080333Z", - "iopub.status.busy": "2024-06-25T19:38:18.080152Z", - "iopub.status.idle": "2024-06-25T19:38:18.083810Z", - "shell.execute_reply": "2024-06-25T19:38:18.083366Z" + "iopub.execute_input": "2024-06-25T23:19:49.009612Z", + "iopub.status.busy": "2024-06-25T23:19:49.009171Z", + "iopub.status.idle": "2024-06-25T23:19:49.013898Z", + "shell.execute_reply": "2024-06-25T23:19:49.013343Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.085821Z", - "iopub.status.busy": "2024-06-25T19:38:18.085497Z", - "iopub.status.idle": "2024-06-25T19:38:18.088621Z", - "shell.execute_reply": "2024-06-25T19:38:18.088109Z" + "iopub.execute_input": "2024-06-25T23:19:49.016095Z", + "iopub.status.busy": "2024-06-25T23:19:49.015919Z", + "iopub.status.idle": "2024-06-25T23:19:49.019068Z", + "shell.execute_reply": "2024-06-25T23:19:49.018547Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.090576Z", - "iopub.status.busy": "2024-06-25T19:38:18.090262Z", - "iopub.status.idle": "2024-06-25T19:38:18.093389Z", - "shell.execute_reply": "2024-06-25T19:38:18.092821Z" + "iopub.execute_input": "2024-06-25T23:19:49.020914Z", + "iopub.status.busy": "2024-06-25T23:19:49.020745Z", + "iopub.status.idle": "2024-06-25T23:19:49.023808Z", + "shell.execute_reply": "2024-06-25T23:19:49.023350Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.095470Z", - "iopub.status.busy": "2024-06-25T19:38:18.095154Z", - "iopub.status.idle": "2024-06-25T19:38:18.103228Z", - "shell.execute_reply": "2024-06-25T19:38:18.102775Z" + "iopub.execute_input": "2024-06-25T23:19:49.025803Z", + "iopub.status.busy": "2024-06-25T23:19:49.025488Z", + "iopub.status.idle": "2024-06-25T23:19:49.033564Z", + "shell.execute_reply": "2024-06-25T23:19:49.033138Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.105003Z", - "iopub.status.busy": "2024-06-25T19:38:18.104832Z", - "iopub.status.idle": "2024-06-25T19:38:18.107625Z", - "shell.execute_reply": "2024-06-25T19:38:18.107128Z" + "iopub.execute_input": "2024-06-25T23:19:49.035573Z", + "iopub.status.busy": "2024-06-25T23:19:49.035256Z", + "iopub.status.idle": "2024-06-25T23:19:49.037707Z", + "shell.execute_reply": "2024-06-25T23:19:49.037270Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.109671Z", - "iopub.status.busy": "2024-06-25T19:38:18.109367Z", - "iopub.status.idle": "2024-06-25T19:38:18.236233Z", - "shell.execute_reply": "2024-06-25T19:38:18.235732Z" + "iopub.execute_input": "2024-06-25T23:19:49.039639Z", + "iopub.status.busy": "2024-06-25T23:19:49.039383Z", + "iopub.status.idle": "2024-06-25T23:19:49.162747Z", + "shell.execute_reply": "2024-06-25T23:19:49.162268Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.238299Z", - "iopub.status.busy": "2024-06-25T19:38:18.237942Z", - "iopub.status.idle": "2024-06-25T19:38:18.347132Z", - "shell.execute_reply": "2024-06-25T19:38:18.346641Z" + "iopub.execute_input": "2024-06-25T23:19:49.164799Z", + "iopub.status.busy": "2024-06-25T23:19:49.164444Z", + "iopub.status.idle": "2024-06-25T23:19:49.269361Z", + "shell.execute_reply": "2024-06-25T23:19:49.268836Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.349402Z", - "iopub.status.busy": "2024-06-25T19:38:18.349044Z", - "iopub.status.idle": "2024-06-25T19:38:18.839672Z", - "shell.execute_reply": "2024-06-25T19:38:18.839073Z" + "iopub.execute_input": "2024-06-25T23:19:49.271927Z", + "iopub.status.busy": "2024-06-25T23:19:49.271573Z", + "iopub.status.idle": "2024-06-25T23:19:49.761626Z", + "shell.execute_reply": "2024-06-25T23:19:49.760979Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.841931Z", - "iopub.status.busy": "2024-06-25T19:38:18.841755Z", - "iopub.status.idle": "2024-06-25T19:38:18.912662Z", - "shell.execute_reply": "2024-06-25T19:38:18.912091Z" + "iopub.execute_input": "2024-06-25T23:19:49.764216Z", + "iopub.status.busy": "2024-06-25T23:19:49.763834Z", + "iopub.status.idle": "2024-06-25T23:19:49.843367Z", + "shell.execute_reply": "2024-06-25T23:19:49.842743Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.915065Z", - "iopub.status.busy": "2024-06-25T19:38:18.914579Z", - "iopub.status.idle": "2024-06-25T19:38:18.923159Z", - "shell.execute_reply": "2024-06-25T19:38:18.922730Z" + "iopub.execute_input": "2024-06-25T23:19:49.845464Z", + "iopub.status.busy": "2024-06-25T23:19:49.845235Z", + "iopub.status.idle": "2024-06-25T23:19:49.853788Z", + "shell.execute_reply": "2024-06-25T23:19:49.853340Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.925120Z", - "iopub.status.busy": "2024-06-25T19:38:18.924947Z", - "iopub.status.idle": "2024-06-25T19:38:18.927502Z", - "shell.execute_reply": "2024-06-25T19:38:18.927067Z" + "iopub.execute_input": "2024-06-25T23:19:49.855684Z", + "iopub.status.busy": "2024-06-25T23:19:49.855513Z", + "iopub.status.idle": "2024-06-25T23:19:49.858498Z", + "shell.execute_reply": "2024-06-25T23:19:49.857932Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:18.929453Z", - "iopub.status.busy": "2024-06-25T19:38:18.929127Z", - "iopub.status.idle": "2024-06-25T19:38:24.397527Z", - "shell.execute_reply": "2024-06-25T19:38:24.396937Z" + "iopub.execute_input": "2024-06-25T23:19:49.860435Z", + "iopub.status.busy": "2024-06-25T23:19:49.860125Z", + "iopub.status.idle": "2024-06-25T23:19:55.315583Z", + "shell.execute_reply": "2024-06-25T23:19:55.315005Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:24.400077Z", - "iopub.status.busy": "2024-06-25T19:38:24.399563Z", - "iopub.status.idle": "2024-06-25T19:38:24.408142Z", - "shell.execute_reply": "2024-06-25T19:38:24.407603Z" + "iopub.execute_input": "2024-06-25T23:19:55.317789Z", + "iopub.status.busy": "2024-06-25T23:19:55.317611Z", + "iopub.status.idle": "2024-06-25T23:19:55.326379Z", + "shell.execute_reply": "2024-06-25T23:19:55.325834Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:24.410281Z", - "iopub.status.busy": "2024-06-25T19:38:24.409820Z", - "iopub.status.idle": "2024-06-25T19:38:24.473861Z", - "shell.execute_reply": "2024-06-25T19:38:24.473281Z" + "iopub.execute_input": "2024-06-25T23:19:55.328528Z", + "iopub.status.busy": "2024-06-25T23:19:55.328125Z", + "iopub.status.idle": "2024-06-25T23:19:55.396039Z", + "shell.execute_reply": "2024-06-25T23:19:55.395563Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index ea4121942..bfe1a0e8a 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1196,7 +1196,7 @@

Get label quality scores -{"state": {"c1f546fd71c24d498d05b3908214bd7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b658cb143704dbbb7f0ac48f95429f2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c2abb97f3c0f47e89640d65ea0507ceb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c1f546fd71c24d498d05b3908214bd7d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0b658cb143704dbbb7f0ac48f95429f2", "tabbable": null, "tooltip": null, "value": 30.0}}, "6dabf219795b408dabf8afe1ed3b2ba9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a61e682d08cd4b079011fff3976213c6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e3e1e81a9a074a9699b1c756208a42d1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6dabf219795b408dabf8afe1ed3b2ba9", "placeholder": "\u200b", "style": "IPY_MODEL_a61e682d08cd4b079011fff3976213c6", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "ab2778b3faa74fc58eae618ac7ad06b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9e435b2b0064cb389b0eba2fdb3ae58": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "61c316c9d6e6417db8e8f67c88ca16b3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab2778b3faa74fc58eae618ac7ad06b7", "placeholder": "\u200b", "style": "IPY_MODEL_d9e435b2b0064cb389b0eba2fdb3ae58", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007756.08it/s]"}}, "f0c67deadadc41a681e33253811fe3c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "944591b9a0384c6388bc6a076330ac62": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e3e1e81a9a074a9699b1c756208a42d1", "IPY_MODEL_c2abb97f3c0f47e89640d65ea0507ceb", "IPY_MODEL_61c316c9d6e6417db8e8f67c88ca16b3"], "layout": "IPY_MODEL_f0c67deadadc41a681e33253811fe3c3", "tabbable": null, "tooltip": null}}, "5868ffb252c44ac4aa39f70440bc622f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "15f5d288daf5495ba283ee4fad4d58fd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8aaa8a35422241b2a265233527fbf1e7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5868ffb252c44ac4aa39f70440bc622f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_15f5d288daf5495ba283ee4fad4d58fd", "tabbable": null, "tooltip": null, "value": 30.0}}, "a10c8b997a924841b67b483401b9d8c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e6a4c23dd054908be889d0f3d83ee3b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a858829ede1a452ba7407428df24b4fa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a10c8b997a924841b67b483401b9d8c3", "placeholder": "\u200b", "style": "IPY_MODEL_4e6a4c23dd054908be889d0f3d83ee3b", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "a832d5b427714b918a469d3e99a8e9ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0965a0f7f5304df18ccd851b34fef9fb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "07201424d87b4671ac4b1cfa673d7986": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a832d5b427714b918a469d3e99a8e9ff", "placeholder": "\u200b", "style": "IPY_MODEL_0965a0f7f5304df18ccd851b34fef9fb", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.44it/s]"}}, "cb515331da754c33a0c68f56fd6918b5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "456e1a39f8a0484d84df60d119f7d9b3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a858829ede1a452ba7407428df24b4fa", "IPY_MODEL_8aaa8a35422241b2a265233527fbf1e7", "IPY_MODEL_07201424d87b4671ac4b1cfa673d7986"], "layout": "IPY_MODEL_cb515331da754c33a0c68f56fd6918b5", "tabbable": null, "tooltip": null}}, "2f266a82a0cd46529aa761f6c67f7700": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8978b1bc574944349ad8045c8d081583": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "38cf33a9b7b9481cb9a58609d734b80f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2f266a82a0cd46529aa761f6c67f7700", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8978b1bc574944349ad8045c8d081583", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "74b719a4753841d48ddef0f60728929c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "531002ec92784d8c8567de9c2f6b2001": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b05c6a6bdf664a62a6cbd8f66104b29f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_74b719a4753841d48ddef0f60728929c", "placeholder": "\u200b", "style": "IPY_MODEL_531002ec92784d8c8567de9c2f6b2001", "tabbable": null, "tooltip": null, "value": "100%"}}, "e251eadf4c0d45e99ed477a752be3d71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9238a3aeb6694a54a16d5276afd69748": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2184a8202604452c862d764c590163a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e251eadf4c0d45e99ed477a752be3d71", "placeholder": "\u200b", "style": "IPY_MODEL_9238a3aeb6694a54a16d5276afd69748", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154374.13it/s]"}}, "04229ad3351b4f7aaf0a891a50bc135d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f91d1545f3254e83bb88ef07ebe6e9fe": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b05c6a6bdf664a62a6cbd8f66104b29f", "IPY_MODEL_38cf33a9b7b9481cb9a58609d734b80f", "IPY_MODEL_2184a8202604452c862d764c590163a7"], "layout": "IPY_MODEL_04229ad3351b4f7aaf0a891a50bc135d", "tabbable": null, "tooltip": null}}, "8d3f186b66e646faa88abf0438b28125": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "476d964c770641a799b799e08d88ea6e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "215c528b84a347b1a955651a8792356a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d3f186b66e646faa88abf0438b28125", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_476d964c770641a799b799e08d88ea6e", "tabbable": null, "tooltip": null, "value": 30.0}}, "2a9e65f5f4ec40d496f43ad1adfd040a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13d8b2f426d2467cbc47898751b6f6dd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f1b83d31de91416b8454f54a7486c222": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a9e65f5f4ec40d496f43ad1adfd040a", "placeholder": "\u200b", "style": "IPY_MODEL_13d8b2f426d2467cbc47898751b6f6dd", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "0413905ec4a1476eab10c5ca853497d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c8bceb12179495a84b898f7d7fb9df2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cc71964c79fb4cc48ccbc1e58b722da3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0413905ec4a1476eab10c5ca853497d3", "placeholder": "\u200b", "style": "IPY_MODEL_6c8bceb12179495a84b898f7d7fb9df2", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.71it/s]"}}, "6a036f411aba4cdc9fa68388d47ac9c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3ec5543994844ccbea4230fb9d7b4eb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f1b83d31de91416b8454f54a7486c222", "IPY_MODEL_215c528b84a347b1a955651a8792356a", "IPY_MODEL_cc71964c79fb4cc48ccbc1e58b722da3"], "layout": "IPY_MODEL_6a036f411aba4cdc9fa68388d47ac9c0", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"d8fb8c2405ca482185ac5e7c6f667650": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "42d0aa720c6e4a2ca9f245568eca8de9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5777ae56d3c54e35b67a204b112139e6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d8fb8c2405ca482185ac5e7c6f667650", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_42d0aa720c6e4a2ca9f245568eca8de9", "tabbable": null, "tooltip": null, "value": 30.0}}, "5fe269722f6a4605a143155dac3bcd01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "680f5ec724904dd1a968ede02eacb19b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a772478a0f704e3fa3325fbef037b4cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5fe269722f6a4605a143155dac3bcd01", "placeholder": "\u200b", "style": "IPY_MODEL_680f5ec724904dd1a968ede02eacb19b", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "e8e80dd483054ca091488456a8397301": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0220fd3c35e849c1a03e5c8abca06016": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3e183c14ae544e71b619db5e0b367992": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e8e80dd483054ca091488456a8397301", "placeholder": "\u200b", "style": "IPY_MODEL_0220fd3c35e849c1a03e5c8abca06016", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007758.41it/s]"}}, "c28b42730873450e95180653991778ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "198f978c68c04b42bb7f505400e75581": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a772478a0f704e3fa3325fbef037b4cd", "IPY_MODEL_5777ae56d3c54e35b67a204b112139e6", "IPY_MODEL_3e183c14ae544e71b619db5e0b367992"], "layout": "IPY_MODEL_c28b42730873450e95180653991778ed", "tabbable": null, "tooltip": null}}, "c9d9ec1dbde84cafb318173cee06bece": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3c898e2f5ff4cd480ab8c04bffe7dfb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4ff8dfedbd2949a5bb4270735a77c539": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c9d9ec1dbde84cafb318173cee06bece", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e3c898e2f5ff4cd480ab8c04bffe7dfb", "tabbable": null, "tooltip": null, "value": 30.0}}, "eb1f2e4f38da4c9190ae6c4d6714e087": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f47a2b8a8ebb4314850e6e3193fcd946": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8a43127ec4fc484eb12e55de443c3a15": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eb1f2e4f38da4c9190ae6c4d6714e087", "placeholder": "\u200b", "style": "IPY_MODEL_f47a2b8a8ebb4314850e6e3193fcd946", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "ca265e653b2b43779eb1e897adba0a8c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b05b13a08364b5d9d060ee36c605fd5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1b5e7f7edd7e41a48c9ee3f889c53756": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ca265e653b2b43779eb1e897adba0a8c", "placeholder": "\u200b", "style": "IPY_MODEL_4b05b13a08364b5d9d060ee36c605fd5", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.42it/s]"}}, "b3e446b4b0bf43d0806173baf332511b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b186141820047419c3ae004111754f6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8a43127ec4fc484eb12e55de443c3a15", "IPY_MODEL_4ff8dfedbd2949a5bb4270735a77c539", "IPY_MODEL_1b5e7f7edd7e41a48c9ee3f889c53756"], "layout": "IPY_MODEL_b3e446b4b0bf43d0806173baf332511b", "tabbable": null, "tooltip": null}}, "0d5018ed1be44175807c78ce0ab57606": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "367bfe277ffe4be9b8bae4bdaaa320ae": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8e863ef8f3304af0a1299abfe8ad02b8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0d5018ed1be44175807c78ce0ab57606", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_367bfe277ffe4be9b8bae4bdaaa320ae", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "fcba50827939420b83ea40b9e3507089": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "69f5479f692f4d43b82f5df028e467d7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "da3ca18af3434b998fd38fd9dc359605": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fcba50827939420b83ea40b9e3507089", "placeholder": "\u200b", "style": "IPY_MODEL_69f5479f692f4d43b82f5df028e467d7", "tabbable": null, "tooltip": null, "value": "100%"}}, "cf29f93a566f4e018c0e0d5c5ad96a05": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8b038c68d122401fbb4e96c1ad051c9f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f9315252473d439f95f4fd58000719ed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf29f93a566f4e018c0e0d5c5ad96a05", "placeholder": "\u200b", "style": "IPY_MODEL_8b038c68d122401fbb4e96c1ad051c9f", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:33<00:00,\u2007150147.59it/s]"}}, "cb251166fe62454094fce22ed9bd897a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "28a8baec191044f3831c5b052b050cba": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_da3ca18af3434b998fd38fd9dc359605", "IPY_MODEL_8e863ef8f3304af0a1299abfe8ad02b8", "IPY_MODEL_f9315252473d439f95f4fd58000719ed"], "layout": "IPY_MODEL_cb251166fe62454094fce22ed9bd897a", "tabbable": null, "tooltip": null}}, "f9477ce7cdc74a22959c387b134e9c01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96ab128e8fca4ba6874dc9eef5cf4ff3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a9a87800c31f4b0c8cd52338e21b3cc8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f9477ce7cdc74a22959c387b134e9c01", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_96ab128e8fca4ba6874dc9eef5cf4ff3", "tabbable": null, "tooltip": null, "value": 30.0}}, "85982aca8cc345109d878dbd7bbe9828": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c5e54c3a78384206bc828910a703fec0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9da954de4d5f49119869cd8370e5e154": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_85982aca8cc345109d878dbd7bbe9828", "placeholder": "\u200b", "style": "IPY_MODEL_c5e54c3a78384206bc828910a703fec0", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "d68c68f5e35245c4a160a0468811587d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf890124360a4567a82d5d03676272de": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "119e57b6fb1844baa93ee07fae718fb0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d68c68f5e35245c4a160a0468811587d", "placeholder": "\u200b", "style": "IPY_MODEL_bf890124360a4567a82d5d03676272de", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.82it/s]"}}, "4bb96c22484d421c85c644ab03e8eb56": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9e7048a47b3430f853de8ee7bd0cedf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9da954de4d5f49119869cd8370e5e154", "IPY_MODEL_a9a87800c31f4b0c8cd52338e21b3cc8", "IPY_MODEL_119e57b6fb1844baa93ee07fae718fb0"], "layout": "IPY_MODEL_4bb96c22484d421c85c644ab03e8eb56", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 253b92cf5..d70cfaf4e 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:27.445776Z", - "iopub.status.busy": "2024-06-25T19:38:27.445616Z", - "iopub.status.idle": "2024-06-25T19:38:29.357688Z", - "shell.execute_reply": "2024-06-25T19:38:29.356961Z" + "iopub.execute_input": "2024-06-25T23:19:58.399516Z", + "iopub.status.busy": "2024-06-25T23:19:58.399339Z", + "iopub.status.idle": "2024-06-25T23:19:59.729255Z", + "shell.execute_reply": "2024-06-25T23:19:59.728521Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:38:29.360485Z", - "iopub.status.busy": "2024-06-25T19:38:29.360106Z", - "iopub.status.idle": "2024-06-25T19:39:24.167594Z", - "shell.execute_reply": "2024-06-25T19:39:24.166933Z" + "iopub.execute_input": "2024-06-25T23:19:59.731986Z", + "iopub.status.busy": "2024-06-25T23:19:59.731605Z", + "iopub.status.idle": "2024-06-25T23:20:48.710370Z", + "shell.execute_reply": "2024-06-25T23:20:48.709721Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:24.170328Z", - "iopub.status.busy": "2024-06-25T19:39:24.169968Z", - "iopub.status.idle": "2024-06-25T19:39:25.274825Z", - "shell.execute_reply": "2024-06-25T19:39:25.274283Z" + "iopub.execute_input": "2024-06-25T23:20:48.712844Z", + "iopub.status.busy": "2024-06-25T23:20:48.712648Z", + "iopub.status.idle": "2024-06-25T23:20:49.819754Z", + "shell.execute_reply": "2024-06-25T23:20:49.819207Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:25.277334Z", - "iopub.status.busy": "2024-06-25T19:39:25.276961Z", - "iopub.status.idle": "2024-06-25T19:39:25.280274Z", - "shell.execute_reply": "2024-06-25T19:39:25.279814Z" + "iopub.execute_input": "2024-06-25T23:20:49.822551Z", + "iopub.status.busy": "2024-06-25T23:20:49.821983Z", + "iopub.status.idle": "2024-06-25T23:20:49.825360Z", + "shell.execute_reply": "2024-06-25T23:20:49.824898Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:25.282318Z", - "iopub.status.busy": "2024-06-25T19:39:25.282060Z", - "iopub.status.idle": "2024-06-25T19:39:25.285902Z", - "shell.execute_reply": "2024-06-25T19:39:25.285458Z" + "iopub.execute_input": "2024-06-25T23:20:49.827409Z", + "iopub.status.busy": "2024-06-25T23:20:49.827081Z", + "iopub.status.idle": "2024-06-25T23:20:49.830739Z", + "shell.execute_reply": "2024-06-25T23:20:49.830321Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:25.287764Z", - "iopub.status.busy": "2024-06-25T19:39:25.287595Z", - "iopub.status.idle": "2024-06-25T19:39:25.291186Z", - "shell.execute_reply": "2024-06-25T19:39:25.290735Z" + "iopub.execute_input": "2024-06-25T23:20:49.832814Z", + "iopub.status.busy": "2024-06-25T23:20:49.832481Z", + "iopub.status.idle": "2024-06-25T23:20:49.835986Z", + "shell.execute_reply": "2024-06-25T23:20:49.835546Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:25.293004Z", - "iopub.status.busy": "2024-06-25T19:39:25.292834Z", - "iopub.status.idle": "2024-06-25T19:39:25.296491Z", - "shell.execute_reply": "2024-06-25T19:39:25.296049Z" + "iopub.execute_input": "2024-06-25T23:20:49.837816Z", + "iopub.status.busy": "2024-06-25T23:20:49.837650Z", + "iopub.status.idle": "2024-06-25T23:20:49.841360Z", + "shell.execute_reply": "2024-06-25T23:20:49.840870Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:25.298372Z", - "iopub.status.busy": "2024-06-25T19:39:25.298196Z", - "iopub.status.idle": "2024-06-25T19:39:58.536591Z", - "shell.execute_reply": "2024-06-25T19:39:58.535983Z" + "iopub.execute_input": "2024-06-25T23:20:49.843348Z", + "iopub.status.busy": "2024-06-25T23:20:49.843045Z", + "iopub.status.idle": "2024-06-25T23:21:23.312097Z", + "shell.execute_reply": "2024-06-25T23:21:23.311395Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "944591b9a0384c6388bc6a076330ac62", + "model_id": "198f978c68c04b42bb7f505400e75581", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "456e1a39f8a0484d84df60d119f7d9b3", + "model_id": "4b186141820047419c3ae004111754f6", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:58.539357Z", - "iopub.status.busy": "2024-06-25T19:39:58.538990Z", - "iopub.status.idle": "2024-06-25T19:39:59.206448Z", - "shell.execute_reply": "2024-06-25T19:39:59.205970Z" + "iopub.execute_input": "2024-06-25T23:21:23.314740Z", + "iopub.status.busy": "2024-06-25T23:21:23.314519Z", + "iopub.status.idle": "2024-06-25T23:21:23.985247Z", + "shell.execute_reply": "2024-06-25T23:21:23.984646Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:39:59.208781Z", - "iopub.status.busy": "2024-06-25T19:39:59.208330Z", - "iopub.status.idle": "2024-06-25T19:40:01.948266Z", - "shell.execute_reply": "2024-06-25T19:40:01.947672Z" + "iopub.execute_input": "2024-06-25T23:21:23.987564Z", + "iopub.status.busy": "2024-06-25T23:21:23.987136Z", + "iopub.status.idle": "2024-06-25T23:21:26.705173Z", + "shell.execute_reply": "2024-06-25T23:21:26.704585Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:01.950510Z", - "iopub.status.busy": "2024-06-25T19:40:01.950173Z", - "iopub.status.idle": "2024-06-25T19:40:34.744210Z", - "shell.execute_reply": "2024-06-25T19:40:34.743718Z" + "iopub.execute_input": "2024-06-25T23:21:26.707473Z", + "iopub.status.busy": "2024-06-25T23:21:26.707134Z", + "iopub.status.idle": "2024-06-25T23:22:00.356055Z", + "shell.execute_reply": "2024-06-25T23:22:00.355524Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f91d1545f3254e83bb88ef07ebe6e9fe", + "model_id": "28a8baec191044f3831c5b052b050cba", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:34.746367Z", - "iopub.status.busy": "2024-06-25T19:40:34.746041Z", - "iopub.status.idle": "2024-06-25T19:40:49.559228Z", - "shell.execute_reply": "2024-06-25T19:40:49.558651Z" + "iopub.execute_input": "2024-06-25T23:22:00.358322Z", + "iopub.status.busy": "2024-06-25T23:22:00.357991Z", + "iopub.status.idle": "2024-06-25T23:22:14.992649Z", + "shell.execute_reply": "2024-06-25T23:22:14.992097Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:49.561671Z", - "iopub.status.busy": "2024-06-25T19:40:49.561368Z", - "iopub.status.idle": "2024-06-25T19:40:53.237064Z", - "shell.execute_reply": "2024-06-25T19:40:53.236459Z" + "iopub.execute_input": "2024-06-25T23:22:14.994920Z", + "iopub.status.busy": "2024-06-25T23:22:14.994721Z", + "iopub.status.idle": "2024-06-25T23:22:18.704345Z", + "shell.execute_reply": "2024-06-25T23:22:18.703738Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:53.239303Z", - "iopub.status.busy": "2024-06-25T19:40:53.238898Z", - "iopub.status.idle": "2024-06-25T19:40:54.630349Z", - "shell.execute_reply": "2024-06-25T19:40:54.629762Z" + "iopub.execute_input": "2024-06-25T23:22:18.706711Z", + "iopub.status.busy": "2024-06-25T23:22:18.706375Z", + "iopub.status.idle": "2024-06-25T23:22:20.102205Z", + "shell.execute_reply": "2024-06-25T23:22:20.101646Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c3ec5543994844ccbea4230fb9d7b4eb", + "model_id": "e9e7048a47b3430f853de8ee7bd0cedf", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:54.632662Z", - "iopub.status.busy": "2024-06-25T19:40:54.632244Z", - "iopub.status.idle": "2024-06-25T19:40:54.661012Z", - "shell.execute_reply": "2024-06-25T19:40:54.660347Z" + "iopub.execute_input": "2024-06-25T23:22:20.104725Z", + "iopub.status.busy": "2024-06-25T23:22:20.104340Z", + "iopub.status.idle": "2024-06-25T23:22:20.133203Z", + "shell.execute_reply": "2024-06-25T23:22:20.132635Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:40:54.663568Z", - "iopub.status.busy": "2024-06-25T19:40:54.663357Z", - "iopub.status.idle": "2024-06-25T19:41:00.730286Z", - "shell.execute_reply": "2024-06-25T19:41:00.729759Z" + "iopub.execute_input": "2024-06-25T23:22:20.135579Z", + "iopub.status.busy": "2024-06-25T23:22:20.135375Z", + "iopub.status.idle": "2024-06-25T23:22:26.135540Z", + "shell.execute_reply": "2024-06-25T23:22:26.134957Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:00.732454Z", - "iopub.status.busy": "2024-06-25T19:41:00.732273Z", - "iopub.status.idle": "2024-06-25T19:41:00.787546Z", - "shell.execute_reply": "2024-06-25T19:41:00.786977Z" + "iopub.execute_input": "2024-06-25T23:22:26.137624Z", + "iopub.status.busy": "2024-06-25T23:22:26.137444Z", + "iopub.status.idle": "2024-06-25T23:22:26.192958Z", + "shell.execute_reply": "2024-06-25T23:22:26.192454Z" }, "nbsphinx": "hidden" }, @@ -1038,60 +1038,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0413905ec4a1476eab10c5ca853497d3": { - "model_module": "@jupyter-widgets/base", + "0220fd3c35e849c1a03e5c8abca06016": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "04229ad3351b4f7aaf0a891a50bc135d": { + "0d5018ed1be44175807c78ce0ab57606": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1144,7 +1109,7 @@ "width": null } }, - "07201424d87b4671ac4b1cfa673d7986": { + "119e57b6fb1844baa93ee07fae718fb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1159,33 +1124,125 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a832d5b427714b918a469d3e99a8e9ff", + "layout": "IPY_MODEL_d68c68f5e35245c4a160a0468811587d", "placeholder": "​", - "style": "IPY_MODEL_0965a0f7f5304df18ccd851b34fef9fb", + "style": "IPY_MODEL_bf890124360a4567a82d5d03676272de", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.44it/s]" + "value": " 30/30 [00:01<00:00, 21.82it/s]" } }, - "0965a0f7f5304df18ccd851b34fef9fb": { + "198f978c68c04b42bb7f505400e75581": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a772478a0f704e3fa3325fbef037b4cd", + "IPY_MODEL_5777ae56d3c54e35b67a204b112139e6", + "IPY_MODEL_3e183c14ae544e71b619db5e0b367992" + ], + "layout": "IPY_MODEL_c28b42730873450e95180653991778ed", + "tabbable": null, + "tooltip": null + } + }, + "1b5e7f7edd7e41a48c9ee3f889c53756": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ca265e653b2b43779eb1e897adba0a8c", + "placeholder": "​", + "style": "IPY_MODEL_4b05b13a08364b5d9d060ee36c605fd5", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.42it/s]" + } + }, + "28a8baec191044f3831c5b052b050cba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_da3ca18af3434b998fd38fd9dc359605", + "IPY_MODEL_8e863ef8f3304af0a1299abfe8ad02b8", + "IPY_MODEL_f9315252473d439f95f4fd58000719ed" + ], + "layout": "IPY_MODEL_cb251166fe62454094fce22ed9bd897a", + "tabbable": null, + "tooltip": null + } + }, + "367bfe277ffe4be9b8bae4bdaaa320ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0b658cb143704dbbb7f0ac48f95429f2": { + "3e183c14ae544e71b619db5e0b367992": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8e80dd483054ca091488456a8397301", + "placeholder": "​", + "style": "IPY_MODEL_0220fd3c35e849c1a03e5c8abca06016", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 758.41it/s]" + } + }, + "42d0aa720c6e4a2ca9f245568eca8de9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1201,7 +1258,7 @@ "description_width": "" } }, - "13d8b2f426d2467cbc47898751b6f6dd": { + "4b05b13a08364b5d9d060ee36c605fd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1219,23 +1276,84 @@ "text_color": null } }, - "15f5d288daf5495ba283ee4fad4d58fd": { + "4b186141820047419c3ae004111754f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a43127ec4fc484eb12e55de443c3a15", + "IPY_MODEL_4ff8dfedbd2949a5bb4270735a77c539", + "IPY_MODEL_1b5e7f7edd7e41a48c9ee3f889c53756" + ], + "layout": "IPY_MODEL_b3e446b4b0bf43d0806173baf332511b", + "tabbable": null, + "tooltip": null + } + }, + "4bb96c22484d421c85c644ab03e8eb56": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "215c528b84a347b1a955651a8792356a": { + "4ff8dfedbd2949a5bb4270735a77c539": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1251,40 +1369,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8d3f186b66e646faa88abf0438b28125", + "layout": "IPY_MODEL_c9d9ec1dbde84cafb318173cee06bece", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_476d964c770641a799b799e08d88ea6e", + "style": "IPY_MODEL_e3c898e2f5ff4cd480ab8c04bffe7dfb", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "2184a8202604452c862d764c590163a7": { + "5777ae56d3c54e35b67a204b112139e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e251eadf4c0d45e99ed477a752be3d71", - "placeholder": "​", - "style": "IPY_MODEL_9238a3aeb6694a54a16d5276afd69748", + "layout": "IPY_MODEL_d8fb8c2405ca482185ac5e7c6f667650", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_42d0aa720c6e4a2ca9f245568eca8de9", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154374.13it/s]" + "value": 30.0 } }, - "2a9e65f5f4ec40d496f43ad1adfd040a": { + "5fe269722f6a4605a143155dac3bcd01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1337,7 +1458,43 @@ "width": null } }, - "2f266a82a0cd46529aa761f6c67f7700": { + "680f5ec724904dd1a968ede02eacb19b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "69f5479f692f4d43b82f5df028e467d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "85982aca8cc345109d878dbd7bbe9828": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1390,57 +1547,74 @@ "width": null } }, - "38cf33a9b7b9481cb9a58609d734b80f": { + "8a43127ec4fc484eb12e55de443c3a15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f266a82a0cd46529aa761f6c67f7700", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8978b1bc574944349ad8045c8d081583", + "layout": "IPY_MODEL_eb1f2e4f38da4c9190ae6c4d6714e087", + "placeholder": "​", + "style": "IPY_MODEL_f47a2b8a8ebb4314850e6e3193fcd946", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": "number of examples processed for checking labels: 100%" } }, - "456e1a39f8a0484d84df60d119f7d9b3": { + "8b038c68d122401fbb4e96c1ad051c9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8e863ef8f3304af0a1299abfe8ad02b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a858829ede1a452ba7407428df24b4fa", - "IPY_MODEL_8aaa8a35422241b2a265233527fbf1e7", - "IPY_MODEL_07201424d87b4671ac4b1cfa673d7986" - ], - "layout": "IPY_MODEL_cb515331da754c33a0c68f56fd6918b5", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0d5018ed1be44175807c78ce0ab57606", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_367bfe277ffe4be9b8bae4bdaaa320ae", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 4997683.0 } }, - "476d964c770641a799b799e08d88ea6e": { + "96ab128e8fca4ba6874dc9eef5cf4ff3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1456,43 +1630,79 @@ "description_width": "" } }, - "4e6a4c23dd054908be889d0f3d83ee3b": { + "9da954de4d5f49119869cd8370e5e154": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_85982aca8cc345109d878dbd7bbe9828", + "placeholder": "​", + "style": "IPY_MODEL_c5e54c3a78384206bc828910a703fec0", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "531002ec92784d8c8567de9c2f6b2001": { + "a772478a0f704e3fa3325fbef037b4cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5fe269722f6a4605a143155dac3bcd01", + "placeholder": "​", + "style": "IPY_MODEL_680f5ec724904dd1a968ede02eacb19b", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "5868ffb252c44ac4aa39f70440bc622f": { + "a9a87800c31f4b0c8cd52338e21b3cc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f9477ce7cdc74a22959c387b134e9c01", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_96ab128e8fca4ba6874dc9eef5cf4ff3", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "b3e446b4b0bf43d0806173baf332511b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1545,30 +1755,25 @@ "width": null } }, - "61c316c9d6e6417db8e8f67c88ca16b3": { + "bf890124360a4567a82d5d03676272de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ab2778b3faa74fc58eae618ac7ad06b7", - "placeholder": "​", - "style": "IPY_MODEL_d9e435b2b0064cb389b0eba2fdb3ae58", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 756.08it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6a036f411aba4cdc9fa68388d47ac9c0": { + "c28b42730873450e95180653991778ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1621,7 +1826,7 @@ "width": null } }, - "6c8bceb12179495a84b898f7d7fb9df2": { + "c5e54c3a78384206bc828910a703fec0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1639,7 +1844,7 @@ "text_color": null } }, - "6dabf219795b408dabf8afe1ed3b2ba9": { + "c9d9ec1dbde84cafb318173cee06bece": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1692,7 +1897,7 @@ "width": null } }, - "74b719a4753841d48ddef0f60728929c": { + "ca265e653b2b43779eb1e897adba0a8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1745,49 +1950,7 @@ "width": null } }, - "8978b1bc574944349ad8045c8d081583": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8aaa8a35422241b2a265233527fbf1e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5868ffb252c44ac4aa39f70440bc622f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_15f5d288daf5495ba283ee4fad4d58fd", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "8d3f186b66e646faa88abf0438b28125": { + "cb251166fe62454094fce22ed9bd897a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1840,49 +2003,7 @@ "width": null } }, - "9238a3aeb6694a54a16d5276afd69748": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "944591b9a0384c6388bc6a076330ac62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e3e1e81a9a074a9699b1c756208a42d1", - "IPY_MODEL_c2abb97f3c0f47e89640d65ea0507ceb", - "IPY_MODEL_61c316c9d6e6417db8e8f67c88ca16b3" - ], - "layout": "IPY_MODEL_f0c67deadadc41a681e33253811fe3c3", - "tabbable": null, - "tooltip": null - } - }, - "a10c8b997a924841b67b483401b9d8c3": { + "cf29f93a566f4e018c0e0d5c5ad96a05": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1935,25 +2056,7 @@ "width": null } }, - "a61e682d08cd4b079011fff3976213c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a832d5b427714b918a469d3e99a8e9ff": { + "d68c68f5e35245c4a160a0468811587d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,30 +2109,7 @@ "width": null } }, - "a858829ede1a452ba7407428df24b4fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a10c8b997a924841b67b483401b9d8c3", - "placeholder": "​", - "style": "IPY_MODEL_4e6a4c23dd054908be889d0f3d83ee3b", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "ab2778b3faa74fc58eae618ac7ad06b7": { + "d8fb8c2405ca482185ac5e7c6f667650": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2082,7 +2162,7 @@ "width": null } }, - "b05c6a6bdf664a62a6cbd8f66104b29f": { + "da3ca18af3434b998fd38fd9dc359605": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2097,15 +2177,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_74b719a4753841d48ddef0f60728929c", + "layout": "IPY_MODEL_fcba50827939420b83ea40b9e3507089", "placeholder": "​", - "style": "IPY_MODEL_531002ec92784d8c8567de9c2f6b2001", + "style": "IPY_MODEL_69f5479f692f4d43b82f5df028e467d7", "tabbable": null, "tooltip": null, "value": "100%" } }, - "c1f546fd71c24d498d05b3908214bd7d": { + "e3c898e2f5ff4cd480ab8c04bffe7dfb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e8e80dd483054ca091488456a8397301": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2158,33 +2254,7 @@ "width": null } }, - "c2abb97f3c0f47e89640d65ea0507ceb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c1f546fd71c24d498d05b3908214bd7d", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0b658cb143704dbbb7f0ac48f95429f2", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "c3ec5543994844ccbea4230fb9d7b4eb": { + "e9e7048a47b3430f853de8ee7bd0cedf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2199,16 +2269,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f1b83d31de91416b8454f54a7486c222", - "IPY_MODEL_215c528b84a347b1a955651a8792356a", - "IPY_MODEL_cc71964c79fb4cc48ccbc1e58b722da3" + "IPY_MODEL_9da954de4d5f49119869cd8370e5e154", + "IPY_MODEL_a9a87800c31f4b0c8cd52338e21b3cc8", + "IPY_MODEL_119e57b6fb1844baa93ee07fae718fb0" ], - "layout": "IPY_MODEL_6a036f411aba4cdc9fa68388d47ac9c0", + "layout": "IPY_MODEL_4bb96c22484d421c85c644ab03e8eb56", "tabbable": null, "tooltip": null } }, - "cb515331da754c33a0c68f56fd6918b5": { + "eb1f2e4f38da4c9190ae6c4d6714e087": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2261,7 +2331,25 @@ "width": null } }, - "cc71964c79fb4cc48ccbc1e58b722da3": { + "f47a2b8a8ebb4314850e6e3193fcd946": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f9315252473d439f95f4fd58000719ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2276,33 +2364,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0413905ec4a1476eab10c5ca853497d3", + "layout": "IPY_MODEL_cf29f93a566f4e018c0e0d5c5ad96a05", "placeholder": "​", - "style": "IPY_MODEL_6c8bceb12179495a84b898f7d7fb9df2", + "style": "IPY_MODEL_8b038c68d122401fbb4e96c1ad051c9f", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.71it/s]" - } - }, - "d9e435b2b0064cb389b0eba2fdb3ae58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 4997683/4997683 [00:33<00:00, 150147.59it/s]" } }, - "e251eadf4c0d45e99ed477a752be3d71": { + "f9477ce7cdc74a22959c387b134e9c01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2355,30 +2425,7 @@ "width": null } }, - "e3e1e81a9a074a9699b1c756208a42d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6dabf219795b408dabf8afe1ed3b2ba9", - "placeholder": "​", - "style": "IPY_MODEL_a61e682d08cd4b079011fff3976213c6", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "f0c67deadadc41a681e33253811fe3c3": { + "fcba50827939420b83ea40b9e3507089": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2430,53 +2477,6 @@ "visibility": null, "width": null } - }, - "f1b83d31de91416b8454f54a7486c222": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a9e65f5f4ec40d496f43ad1adfd040a", - "placeholder": "​", - "style": "IPY_MODEL_13d8b2f426d2467cbc47898751b6f6dd", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "f91d1545f3254e83bb88ef07ebe6e9fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b05c6a6bdf664a62a6cbd8f66104b29f", - "IPY_MODEL_38cf33a9b7b9481cb9a58609d734b80f", - "IPY_MODEL_2184a8202604452c862d764c590163a7" - ], - "layout": "IPY_MODEL_04229ad3351b4f7aaf0a891a50bc135d", - "tabbable": null, - "tooltip": null - } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 525f1b13d..643260310 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index c6bf67460..28feac438 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:02.971504Z", - "iopub.status.busy": "2024-06-25T19:41:02.971078Z", - "iopub.status.idle": "2024-06-25T19:41:04.919925Z", - "shell.execute_reply": "2024-06-25T19:41:04.919315Z" + "iopub.execute_input": "2024-06-25T23:22:28.297877Z", + "iopub.status.busy": "2024-06-25T23:22:28.297692Z", + "iopub.status.idle": "2024-06-25T23:22:29.566144Z", + "shell.execute_reply": "2024-06-25T23:22:29.565466Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-25 19:41:02-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-06-25 23:22:28-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,16 +94,24 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.249.162, 2400:52e0:1a01::984:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.162|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", - "Length: 982975 (960K) [application/zip]\r\n" + "185.93.1.250, 2400:52e0:1a00::1068:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", + "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", "\r", @@ -117,7 +125,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-06-25 19:41:03 (8.03 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-06-25 23:22:28 (6.31 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -137,22 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-25 19:41:03-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.196.49, 52.216.88.99, 3.5.9.136, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.196.49|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-06-25 23:22:29-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.25.196, 54.231.139.49, 52.216.48.57, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.25.196|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -173,15 +168,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 1%[ ] 296.53K 1.27MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 30%[=====> ] 4.94M 10.8MB/s " + "pred_probs.npz 58%[==========> ] 9.47M 47.3MB/s " ] }, { @@ -189,9 +176,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 25.4MB/s in 0.6s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 55.6MB/s in 0.3s \r\n", "\r\n", - "2024-06-25 19:41:04 (25.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-06-25 23:22:29 (55.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -208,10 +195,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:04.922457Z", - "iopub.status.busy": "2024-06-25T19:41:04.922075Z", - "iopub.status.idle": "2024-06-25T19:41:06.198016Z", - "shell.execute_reply": "2024-06-25T19:41:06.197533Z" + "iopub.execute_input": "2024-06-25T23:22:29.568875Z", + "iopub.status.busy": "2024-06-25T23:22:29.568431Z", + "iopub.status.idle": "2024-06-25T23:22:30.789853Z", + "shell.execute_reply": "2024-06-25T23:22:30.789338Z" }, "nbsphinx": "hidden" }, @@ -222,7 +209,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -248,10 +235,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:06.200733Z", - "iopub.status.busy": "2024-06-25T19:41:06.200196Z", - "iopub.status.idle": "2024-06-25T19:41:06.203668Z", - "shell.execute_reply": "2024-06-25T19:41:06.203192Z" + "iopub.execute_input": "2024-06-25T23:22:30.792349Z", + "iopub.status.busy": "2024-06-25T23:22:30.792077Z", + "iopub.status.idle": "2024-06-25T23:22:30.795305Z", + "shell.execute_reply": "2024-06-25T23:22:30.794873Z" } }, "outputs": [], @@ -301,10 +288,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:06.205901Z", - "iopub.status.busy": "2024-06-25T19:41:06.205502Z", - "iopub.status.idle": "2024-06-25T19:41:06.208636Z", - "shell.execute_reply": "2024-06-25T19:41:06.208180Z" + "iopub.execute_input": "2024-06-25T23:22:30.797547Z", + "iopub.status.busy": "2024-06-25T23:22:30.797222Z", + "iopub.status.idle": "2024-06-25T23:22:30.800066Z", + "shell.execute_reply": "2024-06-25T23:22:30.799649Z" }, "nbsphinx": "hidden" }, @@ -322,10 +309,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:06.210610Z", - "iopub.status.busy": "2024-06-25T19:41:06.210285Z", - "iopub.status.idle": "2024-06-25T19:41:15.082955Z", - "shell.execute_reply": "2024-06-25T19:41:15.082336Z" + "iopub.execute_input": "2024-06-25T23:22:30.801968Z", + "iopub.status.busy": "2024-06-25T23:22:30.801793Z", + "iopub.status.idle": "2024-06-25T23:22:39.539487Z", + "shell.execute_reply": "2024-06-25T23:22:39.538935Z" } }, "outputs": [], @@ -399,10 +386,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:15.085860Z", - "iopub.status.busy": "2024-06-25T19:41:15.085425Z", - "iopub.status.idle": "2024-06-25T19:41:15.091166Z", - "shell.execute_reply": "2024-06-25T19:41:15.090711Z" + "iopub.execute_input": "2024-06-25T23:22:39.542320Z", + "iopub.status.busy": "2024-06-25T23:22:39.541861Z", + "iopub.status.idle": "2024-06-25T23:22:39.547429Z", + "shell.execute_reply": "2024-06-25T23:22:39.546974Z" }, "nbsphinx": "hidden" }, @@ -442,10 +429,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:15.093228Z", - "iopub.status.busy": "2024-06-25T19:41:15.092906Z", - "iopub.status.idle": "2024-06-25T19:41:15.428454Z", - "shell.execute_reply": "2024-06-25T19:41:15.427900Z" + "iopub.execute_input": "2024-06-25T23:22:39.549434Z", + "iopub.status.busy": "2024-06-25T23:22:39.549088Z", + "iopub.status.idle": "2024-06-25T23:22:39.886323Z", + "shell.execute_reply": "2024-06-25T23:22:39.885773Z" } }, "outputs": [], @@ -482,10 +469,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:15.430886Z", - "iopub.status.busy": "2024-06-25T19:41:15.430536Z", - "iopub.status.idle": "2024-06-25T19:41:15.435028Z", - "shell.execute_reply": "2024-06-25T19:41:15.434547Z" + "iopub.execute_input": "2024-06-25T23:22:39.888760Z", + "iopub.status.busy": "2024-06-25T23:22:39.888567Z", + "iopub.status.idle": "2024-06-25T23:22:39.892822Z", + "shell.execute_reply": "2024-06-25T23:22:39.892289Z" } }, "outputs": [ @@ -557,10 +544,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:15.437005Z", - "iopub.status.busy": "2024-06-25T19:41:15.436676Z", - "iopub.status.idle": "2024-06-25T19:41:17.963765Z", - "shell.execute_reply": "2024-06-25T19:41:17.963047Z" + "iopub.execute_input": "2024-06-25T23:22:39.894754Z", + "iopub.status.busy": "2024-06-25T23:22:39.894582Z", + "iopub.status.idle": "2024-06-25T23:22:42.439150Z", + "shell.execute_reply": "2024-06-25T23:22:42.438377Z" } }, "outputs": [], @@ -582,10 +569,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:17.966718Z", - "iopub.status.busy": "2024-06-25T19:41:17.966151Z", - "iopub.status.idle": "2024-06-25T19:41:17.970271Z", - "shell.execute_reply": "2024-06-25T19:41:17.969727Z" + "iopub.execute_input": "2024-06-25T23:22:42.442203Z", + "iopub.status.busy": "2024-06-25T23:22:42.441641Z", + "iopub.status.idle": "2024-06-25T23:22:42.445478Z", + "shell.execute_reply": "2024-06-25T23:22:42.444915Z" } }, "outputs": [ @@ -621,10 +608,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:17.972401Z", - "iopub.status.busy": "2024-06-25T19:41:17.971969Z", - "iopub.status.idle": "2024-06-25T19:41:17.977900Z", - "shell.execute_reply": "2024-06-25T19:41:17.977348Z" + "iopub.execute_input": "2024-06-25T23:22:42.447472Z", + "iopub.status.busy": "2024-06-25T23:22:42.447297Z", + "iopub.status.idle": "2024-06-25T23:22:42.452716Z", + "shell.execute_reply": "2024-06-25T23:22:42.452215Z" } }, "outputs": [ @@ -802,10 +789,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:17.979833Z", - "iopub.status.busy": "2024-06-25T19:41:17.979657Z", - "iopub.status.idle": "2024-06-25T19:41:18.005794Z", - "shell.execute_reply": "2024-06-25T19:41:18.005228Z" + "iopub.execute_input": "2024-06-25T23:22:42.454685Z", + "iopub.status.busy": "2024-06-25T23:22:42.454421Z", + "iopub.status.idle": "2024-06-25T23:22:42.480225Z", + "shell.execute_reply": "2024-06-25T23:22:42.479796Z" } }, "outputs": [ @@ -907,10 +894,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:18.007758Z", - "iopub.status.busy": "2024-06-25T19:41:18.007580Z", - "iopub.status.idle": "2024-06-25T19:41:18.011709Z", - "shell.execute_reply": "2024-06-25T19:41:18.011185Z" + "iopub.execute_input": "2024-06-25T23:22:42.482279Z", + "iopub.status.busy": "2024-06-25T23:22:42.481978Z", + "iopub.status.idle": "2024-06-25T23:22:42.486286Z", + "shell.execute_reply": "2024-06-25T23:22:42.485735Z" } }, "outputs": [ @@ -984,10 +971,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:18.013608Z", - "iopub.status.busy": "2024-06-25T19:41:18.013435Z", - "iopub.status.idle": "2024-06-25T19:41:19.410422Z", - "shell.execute_reply": "2024-06-25T19:41:19.409926Z" + "iopub.execute_input": "2024-06-25T23:22:42.488404Z", + "iopub.status.busy": "2024-06-25T23:22:42.487905Z", + "iopub.status.idle": "2024-06-25T23:22:43.900411Z", + "shell.execute_reply": "2024-06-25T23:22:43.899904Z" } }, "outputs": [ @@ -1159,10 +1146,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T19:41:19.412440Z", - "iopub.status.busy": "2024-06-25T19:41:19.412255Z", - "iopub.status.idle": "2024-06-25T19:41:19.416447Z", - "shell.execute_reply": "2024-06-25T19:41:19.415988Z" + "iopub.execute_input": "2024-06-25T23:22:43.902625Z", + "iopub.status.busy": "2024-06-25T23:22:43.902291Z", + "iopub.status.idle": "2024-06-25T23:22:43.906202Z", + "shell.execute_reply": "2024-06-25T23:22:43.905768Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index f34225120..f2c68c3f2 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "e604611b9bbdc89f91103c8112289faf56854619", + commit_hash: "bd550980fa8b7af85d37f375e0cc0e3ff9ced23e", }; \ No newline at end of file