diff --git a/master/.buildinfo b/master/.buildinfo index fd50118bc..ece896686 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 9f5a70b2a4379d6de889811dc6b36133 +config: f88f7c566ae1cd182e4d434608355dfc tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 8a1813b0f..93bdf1944 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index b825ce7ee..7a1b4c8d9 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 3bb4a5a3c..b12b09390 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 9d1209a0e..faeab0cb7 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 281f56293..e58ae052c 100644 Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index b9a0b023d..ad83842b7 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index a5295e9df..a3e5fc77c 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index d77f92f8f..c7333af93 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 15cda4d3b..cf94a16fa 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 84684c832..da2481882 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 278b3bc49..0c69dfb33 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 71d695259..e056aa3f9 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/table.doctree and b/master/.doctrees/cleanlab/datalab/guide/table.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 5ca3530d6..2c66cec54 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index e52712a2a..6614df31d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 460692077..f73717754 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 5a45dbc16..be038bd61 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 463e63757..f11566337 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index fb11da43f..4d30f0cf8 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index a6f6de5c8..5bcc6541d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 4d31d1fd6..9856fab71 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 22df258f3..32f4935bf 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index a717406eb..2fd1ef72e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 219e5d01f..e30e726ba 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 03d83738a..b0cbcd36e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 3632e4998..27ca03d50 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 08f3735a3..a901c0b3d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index bef67b531..356826588 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 35ff40e9c..4137f2627 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index fdde2c62f..bf0137099 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 1e7f7981d..2b0de15e9 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index c5acb8dfe..0a487b459 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index b69ac0364..dde318df1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index c7599653c..fa79cd57a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 08592a4ec..c6927a9c2 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 1e72bd662..2d828a71c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index 7bcbbc7f5..be59b70b3 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 3a104901d..aa2ee0d19 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index cbf9b0f58..68b865db7 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 92fa24045..b5b5429ba 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index a4abbcbe2..77a2e5ed2 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index df2c3defb..e0f560144 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index a8d4aff5d..f24c7e357 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 8e1c41c41..cb1adf705 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index c8f2c79b3..f948c4e2a 100644 Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 5a53ae389..18654fab8 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 5b4fa1bae..50f9ee200 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index e444f0dcc..433d63a13 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 326613652..a0fb65aab 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index c6b960c72..95be350da 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index a94621ad2..48e51288c 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 4c3db3301..fd08f4f41 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index c794a3492..2a7b435d3 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/index.doctree and b/master/.doctrees/cleanlab/internal/neighbor/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index e935ad6da..1e62d13b7 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree and b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index ac114b34e..cafbb1c22 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree and b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 27c295622..06dcdb4e2 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/search.doctree and b/master/.doctrees/cleanlab/internal/neighbor/search.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 7e6bc59bc..a35db5f97 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index e20d18427..956e5ac4a 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 9a61d2c99..46a43d3bd 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 82d75b5c1..1583d867d 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 724a4e87b..db77b1cf8 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index bdb769929..b61cf77d3 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 230239579..e15a32363 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 6eee59df6..2dfc29470 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 30faf0167..cf80c6e76 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 6a90b8f4d..d41aea481 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index eb67fff90..911273f6c 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 6fe5f0786..b5de209c2 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 71942a450..98871ac4d 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 9d394a583..b0d70258e 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 31bc5415a..12e5e8093 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 23b56e340..dd2c6af7d 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index a6b6688d1..be21abad2 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 97322cc8d..9e5500b96 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 016c71efa..f86cf34ce 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 21fd199a4..7bc42e086 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 3de05243f..504424416 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index bb1792f01..8d836875b 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index e636543a8..145a4abd4 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index b5ae12243..be999a02b 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index d1fb8b5b6..8e6e1ab39 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index c15c0693d..fbafed6d1 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 951b33e95..a4003b367 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 83dc1c5bb..4b5f191e0 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index d7b7fde3f..e6738df0f 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index eb0f026fb..9a3aebce5 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 01b6ae344..fb0d88c54 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index c0c98bed8..ac1eecb0d 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 827fac13e..cc8956d28 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:29.273547Z", - "iopub.status.busy": "2024-06-25T15:57:29.273057Z", - "iopub.status.idle": "2024-06-25T15:57:30.518447Z", - "shell.execute_reply": "2024-06-25T15:57:30.517893Z" + "iopub.execute_input": "2024-06-25T19:31:27.766466Z", + "iopub.status.busy": "2024-06-25T19:31:27.766073Z", + "iopub.status.idle": "2024-06-25T19:31:28.950995Z", + "shell.execute_reply": "2024-06-25T19:31:28.950453Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:30.520903Z", - "iopub.status.busy": "2024-06-25T15:57:30.520603Z", - "iopub.status.idle": "2024-06-25T15:57:30.539170Z", - "shell.execute_reply": "2024-06-25T15:57:30.538541Z" + "iopub.execute_input": "2024-06-25T19:31:28.953618Z", + "iopub.status.busy": "2024-06-25T19:31:28.953345Z", + "iopub.status.idle": "2024-06-25T19:31:28.970797Z", + "shell.execute_reply": "2024-06-25T19:31:28.970252Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:30.541860Z", - "iopub.status.busy": "2024-06-25T15:57:30.541524Z", - "iopub.status.idle": "2024-06-25T15:57:30.657228Z", - "shell.execute_reply": "2024-06-25T15:57:30.656649Z" + "iopub.execute_input": "2024-06-25T19:31:28.973223Z", + "iopub.status.busy": "2024-06-25T19:31:28.972835Z", + "iopub.status.idle": "2024-06-25T19:31:29.167625Z", + "shell.execute_reply": "2024-06-25T19:31:29.167053Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:30.688369Z", - "iopub.status.busy": "2024-06-25T15:57:30.687895Z", - "iopub.status.idle": "2024-06-25T15:57:30.691893Z", - "shell.execute_reply": "2024-06-25T15:57:30.691334Z" + "iopub.execute_input": "2024-06-25T19:31:29.197486Z", + "iopub.status.busy": "2024-06-25T19:31:29.197079Z", + "iopub.status.idle": "2024-06-25T19:31:29.200622Z", + "shell.execute_reply": "2024-06-25T19:31:29.200145Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:30.694075Z", - "iopub.status.busy": "2024-06-25T15:57:30.693736Z", - "iopub.status.idle": "2024-06-25T15:57:30.702125Z", - "shell.execute_reply": "2024-06-25T15:57:30.701714Z" + "iopub.execute_input": "2024-06-25T19:31:29.202620Z", + "iopub.status.busy": "2024-06-25T19:31:29.202441Z", + "iopub.status.idle": "2024-06-25T19:31:29.210646Z", + "shell.execute_reply": "2024-06-25T19:31:29.210233Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:30.704216Z", - "iopub.status.busy": "2024-06-25T15:57:30.703917Z", - "iopub.status.idle": "2024-06-25T15:57:30.706562Z", - "shell.execute_reply": "2024-06-25T15:57:30.706046Z" + "iopub.execute_input": "2024-06-25T19:31:29.212637Z", + "iopub.status.busy": "2024-06-25T19:31:29.212443Z", + "iopub.status.idle": "2024-06-25T19:31:29.214911Z", + "shell.execute_reply": "2024-06-25T19:31:29.214495Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:30.708564Z", - "iopub.status.busy": "2024-06-25T15:57:30.708280Z", - "iopub.status.idle": "2024-06-25T15:57:31.236208Z", - "shell.execute_reply": "2024-06-25T15:57:31.235674Z" + "iopub.execute_input": "2024-06-25T19:31:29.216761Z", + "iopub.status.busy": "2024-06-25T19:31:29.216593Z", + "iopub.status.idle": "2024-06-25T19:31:29.731597Z", + "shell.execute_reply": "2024-06-25T19:31:29.730952Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:31.238847Z", - "iopub.status.busy": "2024-06-25T15:57:31.238353Z", - "iopub.status.idle": "2024-06-25T15:57:33.199688Z", - "shell.execute_reply": "2024-06-25T15:57:33.199050Z" + "iopub.execute_input": "2024-06-25T19:31:29.733935Z", + "iopub.status.busy": "2024-06-25T19:31:29.733740Z", + "iopub.status.idle": "2024-06-25T19:31:31.552423Z", + "shell.execute_reply": "2024-06-25T19:31:31.551801Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:33.202577Z", - "iopub.status.busy": "2024-06-25T15:57:33.201887Z", - "iopub.status.idle": "2024-06-25T15:57:33.212398Z", - "shell.execute_reply": "2024-06-25T15:57:33.211922Z" + "iopub.execute_input": "2024-06-25T19:31:31.554814Z", + "iopub.status.busy": "2024-06-25T19:31:31.554296Z", + "iopub.status.idle": "2024-06-25T19:31:31.564323Z", + "shell.execute_reply": "2024-06-25T19:31:31.563854Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:33.214665Z", - "iopub.status.busy": "2024-06-25T15:57:33.214259Z", - "iopub.status.idle": "2024-06-25T15:57:33.218309Z", - "shell.execute_reply": "2024-06-25T15:57:33.217865Z" + "iopub.execute_input": "2024-06-25T19:31:31.566389Z", + "iopub.status.busy": "2024-06-25T19:31:31.566065Z", + "iopub.status.idle": "2024-06-25T19:31:31.570002Z", + "shell.execute_reply": "2024-06-25T19:31:31.569569Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:33.220272Z", - "iopub.status.busy": "2024-06-25T15:57:33.219956Z", - "iopub.status.idle": "2024-06-25T15:57:33.227426Z", - "shell.execute_reply": "2024-06-25T15:57:33.226966Z" + "iopub.execute_input": "2024-06-25T19:31:31.572029Z", + "iopub.status.busy": "2024-06-25T19:31:31.571709Z", + "iopub.status.idle": "2024-06-25T19:31:31.579030Z", + "shell.execute_reply": "2024-06-25T19:31:31.578475Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:33.229497Z", - "iopub.status.busy": "2024-06-25T15:57:33.229164Z", - "iopub.status.idle": "2024-06-25T15:57:33.342561Z", - "shell.execute_reply": "2024-06-25T15:57:33.341996Z" + "iopub.execute_input": "2024-06-25T19:31:31.581187Z", + "iopub.status.busy": "2024-06-25T19:31:31.580887Z", + "iopub.status.idle": "2024-06-25T19:31:31.691824Z", + "shell.execute_reply": "2024-06-25T19:31:31.691204Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:33.344781Z", - "iopub.status.busy": "2024-06-25T15:57:33.344414Z", - "iopub.status.idle": "2024-06-25T15:57:33.347398Z", - "shell.execute_reply": "2024-06-25T15:57:33.346835Z" + "iopub.execute_input": "2024-06-25T19:31:31.694170Z", + "iopub.status.busy": "2024-06-25T19:31:31.693686Z", + "iopub.status.idle": "2024-06-25T19:31:31.696628Z", + "shell.execute_reply": "2024-06-25T19:31:31.696102Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:33.349504Z", - "iopub.status.busy": "2024-06-25T15:57:33.349196Z", - "iopub.status.idle": "2024-06-25T15:57:35.395970Z", - "shell.execute_reply": "2024-06-25T15:57:35.395346Z" + "iopub.execute_input": "2024-06-25T19:31:31.698847Z", + "iopub.status.busy": "2024-06-25T19:31:31.698415Z", + "iopub.status.idle": "2024-06-25T19:31:33.679358Z", + "shell.execute_reply": "2024-06-25T19:31:33.678623Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:35.399024Z", - "iopub.status.busy": "2024-06-25T15:57:35.398268Z", - "iopub.status.idle": "2024-06-25T15:57:35.410293Z", - "shell.execute_reply": "2024-06-25T15:57:35.409709Z" + "iopub.execute_input": "2024-06-25T19:31:33.682516Z", + "iopub.status.busy": "2024-06-25T19:31:33.681890Z", + "iopub.status.idle": "2024-06-25T19:31:33.693245Z", + "shell.execute_reply": "2024-06-25T19:31:33.692694Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:35.412649Z", - "iopub.status.busy": "2024-06-25T15:57:35.412293Z", - "iopub.status.idle": "2024-06-25T15:57:35.434146Z", - "shell.execute_reply": "2024-06-25T15:57:35.433694Z" + "iopub.execute_input": "2024-06-25T19:31:33.695397Z", + "iopub.status.busy": "2024-06-25T19:31:33.695096Z", + "iopub.status.idle": "2024-06-25T19:31:33.841440Z", + "shell.execute_reply": "2024-06-25T19:31:33.840949Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index e6fcf34d6..a83013185 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:38.612010Z", - "iopub.status.busy": "2024-06-25T15:57:38.611854Z", - "iopub.status.idle": "2024-06-25T15:57:41.717638Z", - "shell.execute_reply": "2024-06-25T15:57:41.716988Z" + "iopub.execute_input": "2024-06-25T19:31:37.218802Z", + "iopub.status.busy": "2024-06-25T19:31:37.218626Z", + "iopub.status.idle": "2024-06-25T19:31:40.132819Z", + "shell.execute_reply": "2024-06-25T19:31:40.132198Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.720617Z", - "iopub.status.busy": "2024-06-25T15:57:41.720113Z", - "iopub.status.idle": "2024-06-25T15:57:41.723540Z", - "shell.execute_reply": "2024-06-25T15:57:41.723091Z" + "iopub.execute_input": "2024-06-25T19:31:40.135382Z", + "iopub.status.busy": "2024-06-25T19:31:40.135098Z", + "iopub.status.idle": "2024-06-25T19:31:40.138344Z", + "shell.execute_reply": "2024-06-25T19:31:40.137917Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.725767Z", - "iopub.status.busy": "2024-06-25T15:57:41.725363Z", - "iopub.status.idle": "2024-06-25T15:57:41.728588Z", - "shell.execute_reply": "2024-06-25T15:57:41.728027Z" + "iopub.execute_input": "2024-06-25T19:31:40.140291Z", + "iopub.status.busy": "2024-06-25T19:31:40.139985Z", + "iopub.status.idle": "2024-06-25T19:31:40.143618Z", + "shell.execute_reply": "2024-06-25T19:31:40.143162Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.730623Z", - "iopub.status.busy": "2024-06-25T15:57:41.730444Z", - "iopub.status.idle": "2024-06-25T15:57:41.758587Z", - "shell.execute_reply": "2024-06-25T15:57:41.758018Z" + "iopub.execute_input": "2024-06-25T19:31:40.145468Z", + "iopub.status.busy": "2024-06-25T19:31:40.145298Z", + "iopub.status.idle": "2024-06-25T19:31:40.303499Z", + "shell.execute_reply": "2024-06-25T19:31:40.302894Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.760799Z", - "iopub.status.busy": "2024-06-25T15:57:41.760451Z", - "iopub.status.idle": "2024-06-25T15:57:41.763958Z", - "shell.execute_reply": "2024-06-25T15:57:41.763524Z" + "iopub.execute_input": "2024-06-25T19:31:40.305557Z", + "iopub.status.busy": "2024-06-25T19:31:40.305379Z", + "iopub.status.idle": "2024-06-25T19:31:40.309091Z", + "shell.execute_reply": "2024-06-25T19:31:40.308646Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.765895Z", - "iopub.status.busy": "2024-06-25T15:57:41.765581Z", - "iopub.status.idle": "2024-06-25T15:57:41.768821Z", - "shell.execute_reply": "2024-06-25T15:57:41.768299Z" + "iopub.execute_input": "2024-06-25T19:31:40.311111Z", + "iopub.status.busy": "2024-06-25T19:31:40.310718Z", + "iopub.status.idle": "2024-06-25T19:31:40.314252Z", + "shell.execute_reply": "2024-06-25T19:31:40.313796Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'cancel_transfer', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'supported_cards_and_currencies', 'change_pin'}\n" + "Classes: {'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.770809Z", - "iopub.status.busy": "2024-06-25T15:57:41.770487Z", - "iopub.status.idle": "2024-06-25T15:57:41.773535Z", - "shell.execute_reply": "2024-06-25T15:57:41.772995Z" + "iopub.execute_input": "2024-06-25T19:31:40.316289Z", + "iopub.status.busy": "2024-06-25T19:31:40.315953Z", + "iopub.status.idle": "2024-06-25T19:31:40.318817Z", + "shell.execute_reply": "2024-06-25T19:31:40.318324Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.775706Z", - "iopub.status.busy": "2024-06-25T15:57:41.775376Z", - "iopub.status.idle": "2024-06-25T15:57:41.778593Z", - "shell.execute_reply": "2024-06-25T15:57:41.778160Z" + "iopub.execute_input": "2024-06-25T19:31:40.320894Z", + "iopub.status.busy": "2024-06-25T19:31:40.320580Z", + "iopub.status.idle": "2024-06-25T19:31:40.323708Z", + "shell.execute_reply": "2024-06-25T19:31:40.323263Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.780622Z", - "iopub.status.busy": "2024-06-25T15:57:41.780321Z", - "iopub.status.idle": "2024-06-25T15:57:46.387144Z", - "shell.execute_reply": "2024-06-25T15:57:46.386492Z" + "iopub.execute_input": "2024-06-25T19:31:40.325657Z", + "iopub.status.busy": "2024-06-25T19:31:40.325357Z", + "iopub.status.idle": "2024-06-25T19:31:46.067731Z", + "shell.execute_reply": "2024-06-25T19:31:46.067125Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a855ca95b0ac40f294d886a8b276a283", + "model_id": "e9ebd3cab6ee4b38af6e19b1c2a2b7a0", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "560a9e164344416da57af0666a2c209d", + "model_id": "a8fe72969fe348a99c98be80dccd6c53", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "801de04277c14a49a527aa9494d1f95c", + "model_id": "2e5e14c62e1a4cf09b6fb8b0bb5ca451", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "43e0bfcf53ed4448b98e1dc0c1624d4f", + "model_id": "293b01a69e094447aeebb1e7e866fd51", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ffce619808c54c97ad0384263ffc66fe", + "model_id": "9bbf8e629233461d84330aac6c38bc36", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e63d81c42204b1ba3053df362c06f2d", + "model_id": "38046751c5324a119490bbe8a5ec326c", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "13b0c792f832478c828136237c3d9087", + "model_id": "7f84e049288f438cbb050b771815ee1a", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:46.390112Z", - "iopub.status.busy": "2024-06-25T15:57:46.389866Z", - "iopub.status.idle": "2024-06-25T15:57:46.392852Z", - "shell.execute_reply": "2024-06-25T15:57:46.392264Z" + "iopub.execute_input": "2024-06-25T19:31:46.070234Z", + "iopub.status.busy": "2024-06-25T19:31:46.070036Z", + "iopub.status.idle": "2024-06-25T19:31:46.072782Z", + "shell.execute_reply": "2024-06-25T19:31:46.072301Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:46.395088Z", - "iopub.status.busy": "2024-06-25T15:57:46.394762Z", - "iopub.status.idle": "2024-06-25T15:57:46.397545Z", - "shell.execute_reply": "2024-06-25T15:57:46.397074Z" + "iopub.execute_input": "2024-06-25T19:31:46.074901Z", + "iopub.status.busy": "2024-06-25T19:31:46.074488Z", + "iopub.status.idle": "2024-06-25T19:31:46.077148Z", + "shell.execute_reply": "2024-06-25T19:31:46.076714Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:46.399468Z", - "iopub.status.busy": "2024-06-25T15:57:46.399294Z", - "iopub.status.idle": "2024-06-25T15:57:49.197066Z", - "shell.execute_reply": "2024-06-25T15:57:49.196395Z" + "iopub.execute_input": "2024-06-25T19:31:46.078970Z", + "iopub.status.busy": "2024-06-25T19:31:46.078798Z", + "iopub.status.idle": "2024-06-25T19:31:48.698188Z", + "shell.execute_reply": "2024-06-25T19:31:48.697474Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.200076Z", - "iopub.status.busy": "2024-06-25T15:57:49.199338Z", - "iopub.status.idle": "2024-06-25T15:57:49.207029Z", - "shell.execute_reply": "2024-06-25T15:57:49.206557Z" + "iopub.execute_input": "2024-06-25T19:31:48.701194Z", + "iopub.status.busy": "2024-06-25T19:31:48.700490Z", + "iopub.status.idle": "2024-06-25T19:31:48.707774Z", + "shell.execute_reply": "2024-06-25T19:31:48.707224Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.209172Z", - "iopub.status.busy": "2024-06-25T15:57:49.208911Z", - "iopub.status.idle": "2024-06-25T15:57:49.212955Z", - "shell.execute_reply": "2024-06-25T15:57:49.212309Z" + "iopub.execute_input": "2024-06-25T19:31:48.709878Z", + "iopub.status.busy": "2024-06-25T19:31:48.709556Z", + "iopub.status.idle": "2024-06-25T19:31:48.713210Z", + "shell.execute_reply": "2024-06-25T19:31:48.712781Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.214942Z", - "iopub.status.busy": "2024-06-25T15:57:49.214612Z", - "iopub.status.idle": "2024-06-25T15:57:49.218042Z", - "shell.execute_reply": "2024-06-25T15:57:49.217560Z" + "iopub.execute_input": "2024-06-25T19:31:48.715198Z", + "iopub.status.busy": "2024-06-25T19:31:48.714884Z", + "iopub.status.idle": "2024-06-25T19:31:48.717917Z", + "shell.execute_reply": "2024-06-25T19:31:48.717397Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.220076Z", - "iopub.status.busy": "2024-06-25T15:57:49.219747Z", - "iopub.status.idle": "2024-06-25T15:57:49.222894Z", - "shell.execute_reply": "2024-06-25T15:57:49.222323Z" + "iopub.execute_input": "2024-06-25T19:31:48.719920Z", + "iopub.status.busy": "2024-06-25T19:31:48.719615Z", + "iopub.status.idle": "2024-06-25T19:31:48.722447Z", + "shell.execute_reply": "2024-06-25T19:31:48.722011Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.224732Z", - "iopub.status.busy": "2024-06-25T15:57:49.224541Z", - "iopub.status.idle": "2024-06-25T15:57:49.231894Z", - "shell.execute_reply": "2024-06-25T15:57:49.231356Z" + "iopub.execute_input": "2024-06-25T19:31:48.724470Z", + "iopub.status.busy": "2024-06-25T19:31:48.724080Z", + "iopub.status.idle": "2024-06-25T19:31:48.730838Z", + "shell.execute_reply": "2024-06-25T19:31:48.730303Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.234156Z", - "iopub.status.busy": "2024-06-25T15:57:49.233715Z", - "iopub.status.idle": "2024-06-25T15:57:49.457623Z", - "shell.execute_reply": "2024-06-25T15:57:49.457024Z" + "iopub.execute_input": "2024-06-25T19:31:48.733056Z", + "iopub.status.busy": "2024-06-25T19:31:48.732753Z", + "iopub.status.idle": "2024-06-25T19:31:48.956488Z", + "shell.execute_reply": "2024-06-25T19:31:48.955930Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.460064Z", - "iopub.status.busy": "2024-06-25T15:57:49.459706Z", - "iopub.status.idle": "2024-06-25T15:57:49.633341Z", - "shell.execute_reply": "2024-06-25T15:57:49.632754Z" + "iopub.execute_input": "2024-06-25T19:31:48.958874Z", + "iopub.status.busy": "2024-06-25T19:31:48.958385Z", + "iopub.status.idle": "2024-06-25T19:31:49.133338Z", + "shell.execute_reply": "2024-06-25T19:31:49.132807Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.635790Z", - "iopub.status.busy": "2024-06-25T15:57:49.635435Z", - "iopub.status.idle": "2024-06-25T15:57:49.639368Z", - "shell.execute_reply": "2024-06-25T15:57:49.638875Z" + "iopub.execute_input": "2024-06-25T19:31:49.135767Z", + "iopub.status.busy": "2024-06-25T19:31:49.135370Z", + "iopub.status.idle": "2024-06-25T19:31:49.139272Z", + "shell.execute_reply": "2024-06-25T19:31:49.138786Z" }, "nbsphinx": "hidden" }, @@ -1113,43 +1113,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "035a14e868204cca8ed6f3352086a5b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "042a87e1990243fa9d051d9992209d0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0595e5de777840e0a10e422f3e0eb11a": { + "007989e5e6cd44a5ada30dda1923d065": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1164,15 +1128,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7774ade2d9bf4148a2f2583590d2bcf6", + "layout": "IPY_MODEL_8b998a37935c4d30856e95a2cd3f1439", "placeholder": "​", - "style": "IPY_MODEL_aa0a394de37843f98d361d796516775d", + "style": "IPY_MODEL_200586c52a4549678a949ca57213c920", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": " 665/665 [00:00<00:00, 121kB/s]" } }, - "0e2f832a978646369568be4202882bda": { + "054e6f2fd5d14973972b7db9b5e4ed03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1188,54 +1152,23 @@ "description_width": "" } }, - "0e63d81c42204b1ba3053df362c06f2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e442f4804045479f80a427124ed55f67", - "IPY_MODEL_72509eeb786d4cb9a2005d7d2bebdb9c", - "IPY_MODEL_774280b308d44d048d31f512bb8ff4b7" - ], - "layout": "IPY_MODEL_722e0ca378d3417baec91fcf509306b2", - "tabbable": null, - "tooltip": null - } - }, - "0f50dbb67a7c47839d29cab4d422fb2b": { + "0bd860a7540947f98823d4a40bdafb86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ced14e5dffb44dd95e5c285b6fcc515", - "placeholder": "​", - "style": "IPY_MODEL_4a343912fcb04df6a32db71304c563bb", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "12387ea6c70a48ca9bc8c46ca9ca1df9": { + "1047a464f8ad4f08a9c39e32ef88f77b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1288,31 +1221,7 @@ "width": null } }, - "13b0c792f832478c828136237c3d9087": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3a223bc2688c47d3b601649fc1494b40", - "IPY_MODEL_c0de7b20814f4f43bf0e96420385ba54", - "IPY_MODEL_c4aaa7d417b747e3a453503d6263f246" - ], - "layout": "IPY_MODEL_430384779054434495a3d4f8e82a751a", - "tabbable": null, - "tooltip": null - } - }, - "14d909e4afa049e8ad418efd5826dfe5": { + "200586c52a4549678a949ca57213c920": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1330,62 +1239,67 @@ "text_color": null } }, - "1c63c2fdcf684affb193e16a662a4ac1": { + "226f358553304154b872be466bcda2cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e9110c6feffe426db219b1e596faf5b8", - "placeholder": "​", - "style": "IPY_MODEL_042a87e1990243fa9d051d9992209d0f", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 23.1MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2bb734e1e71e429081257786a0dffe4b": { + "2606990b2b654e949895c6ea13bace1b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2dd46a3e411445cc97f6cb02f31ed2fa": { + "293b01a69e094447aeebb1e7e866fd51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f9e7d310eb764ed9abf54e3695e98058", + "IPY_MODEL_acd50c68e1bb474ca7e642fdbecd2231", + "IPY_MODEL_a4ea888fe4004256885e50c60385b700" + ], + "layout": "IPY_MODEL_91bc4e78a8934597a32b965150f632af", + "tabbable": null, + "tooltip": null } }, - "3a223bc2688c47d3b601649fc1494b40": { + "2db6e61311574d2799f341e0f2b280db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1400,15 +1314,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_643675523d544b33aedb40418be3c1ba", + "layout": "IPY_MODEL_e95f58118fca41f79754cf64dc768e55", "placeholder": "​", - "style": "IPY_MODEL_035a14e868204cca8ed6f3352086a5b3", + "style": "IPY_MODEL_5d0e81a247724335969fb0549b56194b", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": "README.md: 100%" + } + }, + "2e5e14c62e1a4cf09b6fb8b0bb5ca451": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ccb993dd72c4674bf4c5129e4e19f7b", + "IPY_MODEL_4105d4a519b74c618417f38830a92826", + "IPY_MODEL_007989e5e6cd44a5ada30dda1923d065" + ], + "layout": "IPY_MODEL_811eb3464f8b4658af7b92cb22fd5db1", + "tabbable": null, + "tooltip": null } }, - "430384779054434495a3d4f8e82a751a": { + "2ed7ba0d1cb94817b121646f00c5a089": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1461,67 +1399,33 @@ "width": null } }, - "43e0bfcf53ed4448b98e1dc0c1624d4f": { + "3156c56a2d1e46779554f6e680768b77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0595e5de777840e0a10e422f3e0eb11a", - "IPY_MODEL_f79723dd5fd6425c90a74fbc78ee00d0", - "IPY_MODEL_e5008caaa3cb48f781c0e6794bca59dd" - ], - "layout": "IPY_MODEL_a0be5cbe173f48c28add2f6ebade362a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6da0de8fbedc40cca53799f8e45cf74b", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b0f309cd65ee48e4902fba4c141424a9", "tabbable": null, - "tooltip": null - } - }, - "4721eac8e74e4b22bfe944f16211c28a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4a343912fcb04df6a32db71304c563bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 466062.0 } }, - "4c9d96d605c246fda834c284137cfe04": { + "371271d754f04722b9ba2102ec6453b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1574,7 +1478,31 @@ "width": null } }, - "4df366ed410748f0a53c4b219452457c": { + "38046751c5324a119490bbe8a5ec326c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_684d44672b7e4f3e87afb7ff19a14a7d", + "IPY_MODEL_703a1805a6e14459bff5e7bc196e2924", + "IPY_MODEL_9678a77b61324383a27e704a34123184" + ], + "layout": "IPY_MODEL_7f83efe5fa43477c83b7dd0eab30b115", + "tabbable": null, + "tooltip": null + } + }, + "3b3726b7d15f4242bbe2a0e0323f5edd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1627,7 +1555,7 @@ "width": null } }, - "52294f1edab24d5291e2f929c717427e": { + "3c288e9049ba4814a9020bbda1512944": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1645,7 +1573,7 @@ "text_color": null } }, - "54941ba215b345a9880858bf560d791c": { + "3e906d417956421a978812281c844e7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1660,39 +1588,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_efbf1faad7614190bb20629fa0c633b6", + "layout": "IPY_MODEL_4c673f7ac4ec44149b7f219298381ca5", "placeholder": "​", - "style": "IPY_MODEL_d173d1d6391e4596bd84ae3f3192819c", + "style": "IPY_MODEL_e3282f6972624465bd15f84c183446ed", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" - } - }, - "560a9e164344416da57af0666a2c209d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54941ba215b345a9880858bf560d791c", - "IPY_MODEL_ecfa214af0f548778d99571e41579d56", - "IPY_MODEL_6626686cdac14643a91a30409cff0ae5" - ], - "layout": "IPY_MODEL_bd4d6e3c583f4ddd9642cf1b42ce63c9", - "tabbable": null, - "tooltip": null + "value": " 391/391 [00:00<00:00, 64.5kB/s]" } }, - "611f1c9c454f4ead97346ff9e0339821": { + "4105d4a519b74c618417f38830a92826": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1708,70 +1612,51 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4df366ed410748f0a53c4b219452457c", + "layout": "IPY_MODEL_a7fc4b58838f4350b7cce239e6cf7c4d", "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_bf139ea48e764a2da6fd089cc052bf26", + "style": "IPY_MODEL_a7755505c8604626b66bd90ac49165ab", "tabbable": null, "tooltip": null, "value": 665.0 } }, - "643675523d544b33aedb40418be3c1ba": { - "model_module": "@jupyter-widgets/base", + "43e54781cf104522a0a7479b4684f176": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "47c94c5344ac480795afc89535d19275": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6626686cdac14643a91a30409cff0ae5": { + "4c280f6c890c468db24cfa085162f8eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1786,15 +1671,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8d1532e9188a4eea98d66217ad9a9370", + "layout": "IPY_MODEL_d98e8d3d73134c40b8256b723de4c9ba", "placeholder": "​", - "style": "IPY_MODEL_52294f1edab24d5291e2f929c717427e", + "style": "IPY_MODEL_55cc185655a64110894ebe751347ee97", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 391kB/s]" + "value": " 2.21k/2.21k [00:00<00:00, 422kB/s]" } }, - "674ce41159e543e6ac7308b8eef9752b": { + "4c673f7ac4ec44149b7f219298381ca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1847,7 +1732,7 @@ "width": null } }, - "6d5d4cbc18884b0c898373a1478bb228": { + "52f1b4fab3d74ad180e90f63881f6b32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1900,7 +1785,25 @@ "width": null } }, - "722e0ca378d3417baec91fcf509306b2": { + "55cc185655a64110894ebe751347ee97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5c2455143c7b4c9d8179735a17395106": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1953,33 +1856,48 @@ "width": null } }, - "72509eeb786d4cb9a2005d7d2bebdb9c": { + "5ccb993dd72c4674bf4c5129e4e19f7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d83f677526f446eb8a3bfdb029a8d058", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0e2f832a978646369568be4202882bda", + "layout": "IPY_MODEL_c693822d0e9f45a5a0c3d5598c8464f4", + "placeholder": "​", + "style": "IPY_MODEL_6c14e14271b4450f89db48de72dffebe", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": "config.json: 100%" + } + }, + "5d0e81a247724335969fb0549b56194b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "76b2a8f7a7214b32a7e2b84148f803a5": { + "5e1fb144070e4665b06631fd83e8a769": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1994,15 +1912,61 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_674ce41159e543e6ac7308b8eef9752b", + "layout": "IPY_MODEL_2ed7ba0d1cb94817b121646f00c5a089", "placeholder": "​", - "style": "IPY_MODEL_93eece0ce2ce421ca530b00999ff1ac3", + "style": "IPY_MODEL_e45f1523c8d6445cacf72f4752609a80", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 466k/466k [00:00<00:00, 3.42MB/s]" + } + }, + "65fb96fdd89c4a7aa6863a61cd8c8281": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a2f3a938880745e29369216068f395dc", + "placeholder": "​", + "style": "IPY_MODEL_79bb28d92fc14400815dc3c2c98b31e6", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "684d44672b7e4f3e87afb7ff19a14a7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_69f6ccf772ad48fa86cea5e7b57f6c92", + "placeholder": "​", + "style": "IPY_MODEL_2606990b2b654e949895c6ea13bace1b", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "774280b308d44d048d31f512bb8ff4b7": { + "6854a7c0f0b846a99e2cc07332f5e2ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2017,15 +1981,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6d5d4cbc18884b0c898373a1478bb228", + "layout": "IPY_MODEL_1047a464f8ad4f08a9c39e32ef88f77b", "placeholder": "​", - "style": "IPY_MODEL_4721eac8e74e4b22bfe944f16211c28a", + "style": "IPY_MODEL_d22816db94ed4b3aa623fb9f9eb42646", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.51kB/s]" + "value": "vocab.txt: 100%" } }, - "7774ade2d9bf4148a2f2583590d2bcf6": { + "68caf9f94f8b49e29f2522245cfc1967": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,7 +2042,7 @@ "width": null } }, - "7e5c8e696e7448208b7fbffd09571de0": { + "68d5eef2d9154625b81ca5a98ad95302": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2131,31 +2095,7 @@ "width": null } }, - "801de04277c14a49a527aa9494d1f95c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_76b2a8f7a7214b32a7e2b84148f803a5", - "IPY_MODEL_611f1c9c454f4ead97346ff9e0339821", - "IPY_MODEL_a5f8ed569cdd4346ad3f60782d109f30" - ], - "layout": "IPY_MODEL_7e5c8e696e7448208b7fbffd09571de0", - "tabbable": null, - "tooltip": null - } - }, - "80b07bff49e644ba8d9c9166ea8dd027": { + "69f6ccf772ad48fa86cea5e7b57f6c92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2208,7 +2148,25 @@ "width": null } }, - "81decc1a33dc43dc96ed51151d87c469": { + "6c14e14271b4450f89db48de72dffebe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6d917afdd1bf47ea943ba43a44498f21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2261,7 +2219,7 @@ "width": null } }, - "8b94cec0813646478fdb67407c774a15": { + "6da0de8fbedc40cca53799f8e45cf74b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2314,7 +2272,69 @@ "width": null } }, - "8ced14e5dffb44dd95e5c285b6fcc515": { + "703a1805a6e14459bff5e7bc196e2924": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c467bba142d440348c677b9b88920801", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9e515a523986480cbbe1094ca437f513", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "72118120122f4623822582e300065947": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "76977b7a679849439d4159579b51c480": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "77399e1417a148bbaaf8c99c6e4b2bb5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2367,7 +2387,7 @@ "width": null } }, - "8d1532e9188a4eea98d66217ad9a9370": { + "7930ae36275240238ba62db1afd25ce2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2420,24 +2440,42 @@ "width": null } }, - "92b279d7aac74ab7aa6816798780a1b3": { - "model_module": "@jupyter-widgets/base", + "79bb28d92fc14400815dc3c2c98b31e6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7f83efe5fa43477c83b7dd0eab30b115": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, "border_top": null, "bottom": null, "display": null, @@ -2473,64 +2511,31 @@ "width": null } }, - "93eece0ce2ce421ca530b00999ff1ac3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "96d71a5e9a504bc781536b34136540f2": { + "7f84e049288f438cbb050b771815ee1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_12387ea6c70a48ca9bc8c46ca9ca1df9", - "placeholder": "​", - "style": "IPY_MODEL_d54909a09ede4b9ebeb2145f4328dd8e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6854a7c0f0b846a99e2cc07332f5e2ad", + "IPY_MODEL_f674728a058e4ebc9cda63400ca9a97a", + "IPY_MODEL_b780cdac15fd4ff5bf0b64d9369ef63b" + ], + "layout": "IPY_MODEL_52f1b4fab3d74ad180e90f63881f6b32", "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "97f58eb6211444b59b851ce9be1d198b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "9c0bc89c50cc4f44a6d28f4b9009566b": { + "811eb3464f8b4658af7b92cb22fd5db1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2583,7 +2588,7 @@ "width": null } }, - "9cf21e2a631b45cab7fb9b3b5ce9bb06": { + "8b998a37935c4d30856e95a2cd3f1439": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2636,51 +2641,23 @@ "width": null } }, - "9df7cd442f6f475bbdf78235b388ea94": { + "8f663dc8059d42e4a1c16507affd40e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9f018c4a5a9144b180522d0a65104179": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_81decc1a33dc43dc96ed51151d87c469", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de7ff0b63d2a43a2aef6d27809ab1b49", - "tabbable": null, - "tooltip": null, - "value": 391.0 + "bar_color": null, + "description_width": "" } }, - "a0be5cbe173f48c28add2f6ebade362a": { + "91bc4e78a8934597a32b965150f632af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2733,7 +2710,7 @@ "width": null } }, - "a5f8ed569cdd4346ad3f60782d109f30": { + "9678a77b61324383a27e704a34123184": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2748,15 +2725,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_80b07bff49e644ba8d9c9166ea8dd027", + "layout": "IPY_MODEL_7930ae36275240238ba62db1afd25ce2", "placeholder": "​", - "style": "IPY_MODEL_e1181d04ac7a4550a00ea0ac3c6ed476", + "style": "IPY_MODEL_226f358553304154b872be466bcda2cc", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 121kB/s]" + "value": " 48.0/48.0 [00:00<00:00, 9.10kB/s]" } }, - "a855ca95b0ac40f294d886a8b276a283": { + "9bbf8e629233461d84330aac6c38bc36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2771,52 +2748,124 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_96d71a5e9a504bc781536b34136540f2", - "IPY_MODEL_9f018c4a5a9144b180522d0a65104179", - "IPY_MODEL_c0ab79e23f724dafa2d53bcd765e2639" + "IPY_MODEL_65fb96fdd89c4a7aa6863a61cd8c8281", + "IPY_MODEL_3156c56a2d1e46779554f6e680768b77", + "IPY_MODEL_5e1fb144070e4665b06631fd83e8a769" ], - "layout": "IPY_MODEL_eaca2c1660e34914ac6457c9f643ec42", + "layout": "IPY_MODEL_5c2455143c7b4c9d8179735a17395106", "tabbable": null, "tooltip": null } }, - "aa0a394de37843f98d361d796516775d": { + "9e515a523986480cbbe1094ca437f513": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "a2f3a938880745e29369216068f395dc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b6d8027685494713bd9901ebe3e40dfb": { + "a4ea888fe4004256885e50c60385b700": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_371271d754f04722b9ba2102ec6453b3", + "placeholder": "​", + "style": "IPY_MODEL_72118120122f4623822582e300065947", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 137MB/s]" + } + }, + "a7755505c8604626b66bd90ac49165ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "bd4d6e3c583f4ddd9642cf1b42ce63c9": { + "a7fc4b58838f4350b7cce239e6cf7c4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2869,72 +2918,96 @@ "width": null } }, - "bf139ea48e764a2da6fd089cc052bf26": { + "a8fe72969fe348a99c98be80dccd6c53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2db6e61311574d2799f341e0f2b280db", + "IPY_MODEL_c768456d220342ec8cc60cc2528c3732", + "IPY_MODEL_4c280f6c890c468db24cfa085162f8eb" + ], + "layout": "IPY_MODEL_dd1d6b6bcb61451a9984bb2bddd1826e", + "tabbable": null, + "tooltip": null } }, - "c0ab79e23f724dafa2d53bcd765e2639": { + "acd50c68e1bb474ca7e642fdbecd2231": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_db42e7db2eee4c218bbd00d238347b36", - "placeholder": "​", - "style": "IPY_MODEL_14d909e4afa049e8ad418efd5826dfe5", + "layout": "IPY_MODEL_68caf9f94f8b49e29f2522245cfc1967", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0bd860a7540947f98823d4a40bdafb86", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 61.4kB/s]" + "value": 54245363.0 } }, - "c0de7b20814f4f43bf0e96420385ba54": { + "b0f309cd65ee48e4902fba4c141424a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b780cdac15fd4ff5bf0b64d9369ef63b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9c0bc89c50cc4f44a6d28f4b9009566b", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e40ad6c05d7a4b4eb5acf7e34dcaaf11", + "layout": "IPY_MODEL_d76c41fd805e466081dfeb1d93477c92", + "placeholder": "​", + "style": "IPY_MODEL_76977b7a679849439d4159579b51c480", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": " 232k/232k [00:00<00:00, 3.55MB/s]" } }, - "c4aaa7d417b747e3a453503d6263f246": { + "baa0ee8552c34f9f808dc9985cb43d88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2949,15 +3022,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f584ae2be3aa476da3d5adcc46a1695e", + "layout": "IPY_MODEL_77399e1417a148bbaaf8c99c6e4b2bb5", "placeholder": "​", - "style": "IPY_MODEL_e82622a76f134ca18602403395205c4c", + "style": "IPY_MODEL_3c288e9049ba4814a9020bbda1512944", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 30.0MB/s]" + "value": ".gitattributes: 100%" } }, - "c6292a56858f4c98a0cfeb1cd8e5705a": { + "c467bba142d440348c677b9b88920801": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3010,7 +3083,7 @@ "width": null } }, - "c6b18d86f35a4977a4e23288eeb3fa16": { + "c693822d0e9f45a5a0c3d5598c8464f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3063,25 +3136,59 @@ "width": null } }, - "d173d1d6391e4596bd84ae3f3192819c": { + "c768456d220342ec8cc60cc2528c3732": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3b3726b7d15f4242bbe2a0e0323f5edd", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_054e6f2fd5d14973972b7db9b5e4ed03", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "d54909a09ede4b9ebeb2145f4328dd8e": { + "ca2793614f594cf4a384748bfd36b073": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff59fb88d4aa46d481bfabbfb12c3c08", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8f663dc8059d42e4a1c16507affd40e3", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "d22816db94ed4b3aa623fb9f9eb42646": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3099,7 +3206,7 @@ "text_color": null } }, - "d83f677526f446eb8a3bfdb029a8d058": { + "d76c41fd805e466081dfeb1d93477c92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3152,7 +3259,7 @@ "width": null } }, - "db42e7db2eee4c218bbd00d238347b36": { + "d8c1ad41f4fe4cf0a3f44d363086f32b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3205,121 +3312,7 @@ "width": null } }, - "de7ff0b63d2a43a2aef6d27809ab1b49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e1181d04ac7a4550a00ea0ac3c6ed476": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e40ad6c05d7a4b4eb5acf7e34dcaaf11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e442f4804045479f80a427124ed55f67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_92b279d7aac74ab7aa6816798780a1b3", - "placeholder": "​", - "style": "IPY_MODEL_b6d8027685494713bd9901ebe3e40dfb", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "e5008caaa3cb48f781c0e6794bca59dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b94cec0813646478fdb67407c774a15", - "placeholder": "​", - "style": "IPY_MODEL_9df7cd442f6f475bbdf78235b388ea94", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 284MB/s]" - } - }, - "e82622a76f134ca18602403395205c4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e9110c6feffe426db219b1e596faf5b8": { + "d98e8d3d73134c40b8256b723de4c9ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3372,7 +3365,7 @@ "width": null } }, - "eaca2c1660e34914ac6457c9f643ec42": { + "dd1d6b6bcb61451a9984bb2bddd1826e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3425,59 +3418,43 @@ "width": null } }, - "ecb37387715246b5b9f1aaf52c4e0542": { + "e3282f6972624465bd15f84c183446ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cf21e2a631b45cab7fb9b3b5ce9bb06", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_97f58eb6211444b59b851ce9be1d198b", - "tabbable": null, - "tooltip": null, - "value": 466062.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ecfa214af0f548778d99571e41579d56": { + "e45f1523c8d6445cacf72f4752609a80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c6292a56858f4c98a0cfeb1cd8e5705a", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2dd46a3e411445cc97f6cb02f31ed2fa", - "tabbable": null, - "tooltip": null, - "value": 2211.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "efbf1faad7614190bb20629fa0c633b6": { + "e95f58118fca41f79754cf64dc768e55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3530,7 +3507,80 @@ "width": null } }, - "f584ae2be3aa476da3d5adcc46a1695e": { + "e9ebd3cab6ee4b38af6e19b1c2a2b7a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_baa0ee8552c34f9f808dc9985cb43d88", + "IPY_MODEL_ca2793614f594cf4a384748bfd36b073", + "IPY_MODEL_3e906d417956421a978812281c844e7e" + ], + "layout": "IPY_MODEL_68d5eef2d9154625b81ca5a98ad95302", + "tabbable": null, + "tooltip": null + } + }, + "f674728a058e4ebc9cda63400ca9a97a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d8c1ad41f4fe4cf0a3f44d363086f32b", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_43e54781cf104522a0a7479b4684f176", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "f9e7d310eb764ed9abf54e3695e98058": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d917afdd1bf47ea943ba43a44498f21", + "placeholder": "​", + "style": "IPY_MODEL_47c94c5344ac480795afc89535d19275", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "ff59fb88d4aa46d481bfabbfb12c3c08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3582,56 +3632,6 @@ "visibility": null, "width": null } - }, - "f79723dd5fd6425c90a74fbc78ee00d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4c9d96d605c246fda834c284137cfe04", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2bb734e1e71e429081257786a0dffe4b", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "ffce619808c54c97ad0384263ffc66fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0f50dbb67a7c47839d29cab4d422fb2b", - "IPY_MODEL_ecb37387715246b5b9f1aaf52c4e0542", - "IPY_MODEL_1c63c2fdcf684affb193e16a662a4ac1" - ], - "layout": "IPY_MODEL_c6b18d86f35a4977a4e23288eeb3fa16", - "tabbable": null, - "tooltip": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 61356dbf7..411158583 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:53.574986Z", - "iopub.status.busy": "2024-06-25T15:57:53.574636Z", - "iopub.status.idle": "2024-06-25T15:57:58.878661Z", - "shell.execute_reply": "2024-06-25T15:57:58.878016Z" + "iopub.execute_input": "2024-06-25T19:31:53.133508Z", + "iopub.status.busy": "2024-06-25T19:31:53.133336Z", + "iopub.status.idle": "2024-06-25T19:31:58.248746Z", + "shell.execute_reply": "2024-06-25T19:31:58.248110Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:58.881414Z", - "iopub.status.busy": "2024-06-25T15:57:58.881062Z", - "iopub.status.idle": "2024-06-25T15:57:58.884692Z", - "shell.execute_reply": "2024-06-25T15:57:58.884193Z" + "iopub.execute_input": "2024-06-25T19:31:58.251604Z", + "iopub.status.busy": "2024-06-25T19:31:58.251034Z", + "iopub.status.idle": "2024-06-25T19:31:58.254389Z", + "shell.execute_reply": "2024-06-25T19:31:58.253843Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:58.886667Z", - "iopub.status.busy": "2024-06-25T15:57:58.886484Z", - "iopub.status.idle": "2024-06-25T15:57:58.891096Z", - "shell.execute_reply": "2024-06-25T15:57:58.890667Z" + "iopub.execute_input": "2024-06-25T19:31:58.256549Z", + "iopub.status.busy": "2024-06-25T19:31:58.256239Z", + "iopub.status.idle": "2024-06-25T19:31:58.260899Z", + "shell.execute_reply": "2024-06-25T19:31:58.260338Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T15:57:58.893216Z", - "iopub.status.busy": "2024-06-25T15:57:58.892795Z", - "iopub.status.idle": "2024-06-25T15:58:00.458023Z", - "shell.execute_reply": "2024-06-25T15:58:00.457361Z" + "iopub.execute_input": "2024-06-25T19:31:58.263210Z", + "iopub.status.busy": "2024-06-25T19:31:58.262770Z", + "iopub.status.idle": "2024-06-25T19:32:00.256796Z", + "shell.execute_reply": "2024-06-25T19:32:00.256144Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:00.460829Z", - "iopub.status.busy": "2024-06-25T15:58:00.460597Z", - "iopub.status.idle": "2024-06-25T15:58:00.471006Z", - "shell.execute_reply": "2024-06-25T15:58:00.470503Z" + "iopub.execute_input": "2024-06-25T19:32:00.259356Z", + "iopub.status.busy": "2024-06-25T19:32:00.259045Z", + "iopub.status.idle": "2024-06-25T19:32:00.269498Z", + "shell.execute_reply": "2024-06-25T19:32:00.269022Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:00.473086Z", - "iopub.status.busy": "2024-06-25T15:58:00.472895Z", - "iopub.status.idle": "2024-06-25T15:58:00.478477Z", - "shell.execute_reply": "2024-06-25T15:58:00.477902Z" + "iopub.execute_input": "2024-06-25T19:32:00.271550Z", + "iopub.status.busy": "2024-06-25T19:32:00.271221Z", + "iopub.status.idle": "2024-06-25T19:32:00.276417Z", + "shell.execute_reply": "2024-06-25T19:32:00.275932Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:00.480665Z", - "iopub.status.busy": "2024-06-25T15:58:00.480338Z", - "iopub.status.idle": "2024-06-25T15:58:00.954220Z", - "shell.execute_reply": "2024-06-25T15:58:00.953712Z" + "iopub.execute_input": "2024-06-25T19:32:00.278484Z", + "iopub.status.busy": "2024-06-25T19:32:00.278163Z", + "iopub.status.idle": "2024-06-25T19:32:00.762955Z", + "shell.execute_reply": "2024-06-25T19:32:00.762362Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:00.956614Z", - "iopub.status.busy": "2024-06-25T15:58:00.956173Z", - "iopub.status.idle": "2024-06-25T15:58:01.438982Z", - "shell.execute_reply": "2024-06-25T15:58:01.438478Z" + "iopub.execute_input": "2024-06-25T19:32:00.765136Z", + "iopub.status.busy": "2024-06-25T19:32:00.764811Z", + "iopub.status.idle": "2024-06-25T19:32:03.050183Z", + "shell.execute_reply": "2024-06-25T19:32:03.049698Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:01.441315Z", - "iopub.status.busy": "2024-06-25T15:58:01.441128Z", - "iopub.status.idle": "2024-06-25T15:58:01.459552Z", - "shell.execute_reply": "2024-06-25T15:58:01.459081Z" + "iopub.execute_input": "2024-06-25T19:32:03.052760Z", + "iopub.status.busy": "2024-06-25T19:32:03.052414Z", + "iopub.status.idle": "2024-06-25T19:32:03.070136Z", + "shell.execute_reply": "2024-06-25T19:32:03.069620Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:01.461549Z", - "iopub.status.busy": "2024-06-25T15:58:01.461369Z", - "iopub.status.idle": "2024-06-25T15:58:01.464689Z", - "shell.execute_reply": "2024-06-25T15:58:01.464225Z" + "iopub.execute_input": "2024-06-25T19:32:03.072148Z", + "iopub.status.busy": "2024-06-25T19:32:03.071949Z", + "iopub.status.idle": "2024-06-25T19:32:03.075039Z", + "shell.execute_reply": "2024-06-25T19:32:03.074605Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:01.466733Z", - "iopub.status.busy": "2024-06-25T15:58:01.466330Z", - "iopub.status.idle": "2024-06-25T15:58:16.569337Z", - "shell.execute_reply": "2024-06-25T15:58:16.568728Z" + "iopub.execute_input": "2024-06-25T19:32:03.077054Z", + "iopub.status.busy": "2024-06-25T19:32:03.076730Z", + "iopub.status.idle": "2024-06-25T19:32:17.091941Z", + "shell.execute_reply": "2024-06-25T19:32:17.091336Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:16.572028Z", - "iopub.status.busy": "2024-06-25T15:58:16.571713Z", - "iopub.status.idle": "2024-06-25T15:58:16.575428Z", - "shell.execute_reply": "2024-06-25T15:58:16.574887Z" + "iopub.execute_input": "2024-06-25T19:32:17.094601Z", + "iopub.status.busy": "2024-06-25T19:32:17.094212Z", + "iopub.status.idle": "2024-06-25T19:32:17.098282Z", + "shell.execute_reply": "2024-06-25T19:32:17.097813Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:16.577578Z", - "iopub.status.busy": "2024-06-25T15:58:16.577366Z", - "iopub.status.idle": "2024-06-25T15:58:17.286022Z", - "shell.execute_reply": "2024-06-25T15:58:17.285427Z" + "iopub.execute_input": "2024-06-25T19:32:17.100415Z", + "iopub.status.busy": "2024-06-25T19:32:17.100030Z", + "iopub.status.idle": "2024-06-25T19:32:17.781950Z", + "shell.execute_reply": "2024-06-25T19:32:17.781387Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.288949Z", - "iopub.status.busy": "2024-06-25T15:58:17.288536Z", - "iopub.status.idle": "2024-06-25T15:58:17.293352Z", - "shell.execute_reply": "2024-06-25T15:58:17.292862Z" + "iopub.execute_input": "2024-06-25T19:32:17.785604Z", + "iopub.status.busy": "2024-06-25T19:32:17.784675Z", + "iopub.status.idle": "2024-06-25T19:32:17.791417Z", + "shell.execute_reply": "2024-06-25T19:32:17.790891Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.295834Z", - "iopub.status.busy": "2024-06-25T15:58:17.295506Z", - "iopub.status.idle": "2024-06-25T15:58:17.421027Z", - "shell.execute_reply": "2024-06-25T15:58:17.420350Z" + "iopub.execute_input": "2024-06-25T19:32:17.794921Z", + "iopub.status.busy": "2024-06-25T19:32:17.794005Z", + "iopub.status.idle": "2024-06-25T19:32:17.890859Z", + "shell.execute_reply": "2024-06-25T19:32:17.890238Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.423465Z", - "iopub.status.busy": "2024-06-25T15:58:17.422989Z", - "iopub.status.idle": "2024-06-25T15:58:17.435208Z", - "shell.execute_reply": "2024-06-25T15:58:17.434745Z" + "iopub.execute_input": "2024-06-25T19:32:17.893215Z", + "iopub.status.busy": "2024-06-25T19:32:17.892852Z", + "iopub.status.idle": "2024-06-25T19:32:17.904591Z", + "shell.execute_reply": "2024-06-25T19:32:17.904119Z" }, "scrolled": true }, @@ -880,10 +880,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.437377Z", - "iopub.status.busy": "2024-06-25T15:58:17.436984Z", - "iopub.status.idle": "2024-06-25T15:58:17.446255Z", - "shell.execute_reply": "2024-06-25T15:58:17.445506Z" + "iopub.execute_input": "2024-06-25T19:32:17.906706Z", + "iopub.status.busy": "2024-06-25T19:32:17.906385Z", + "iopub.status.idle": "2024-06-25T19:32:17.914138Z", + "shell.execute_reply": "2024-06-25T19:32:17.913686Z" } }, "outputs": [ @@ -987,10 +987,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.449005Z", - "iopub.status.busy": "2024-06-25T15:58:17.448791Z", - "iopub.status.idle": "2024-06-25T15:58:17.454019Z", - "shell.execute_reply": "2024-06-25T15:58:17.453459Z" + "iopub.execute_input": "2024-06-25T19:32:17.916135Z", + "iopub.status.busy": "2024-06-25T19:32:17.915799Z", + "iopub.status.idle": "2024-06-25T19:32:17.919765Z", + "shell.execute_reply": "2024-06-25T19:32:17.919222Z" } }, "outputs": [ @@ -1028,10 +1028,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.456225Z", - "iopub.status.busy": "2024-06-25T15:58:17.455886Z", - "iopub.status.idle": "2024-06-25T15:58:17.461981Z", - "shell.execute_reply": "2024-06-25T15:58:17.461536Z" + "iopub.execute_input": "2024-06-25T19:32:17.921837Z", + "iopub.status.busy": "2024-06-25T19:32:17.921500Z", + "iopub.status.idle": "2024-06-25T19:32:17.926898Z", + "shell.execute_reply": "2024-06-25T19:32:17.926399Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1158,10 +1158,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.463997Z", - "iopub.status.busy": "2024-06-25T15:58:17.463674Z", - "iopub.status.idle": "2024-06-25T15:58:17.576233Z", - "shell.execute_reply": "2024-06-25T15:58:17.575741Z" + "iopub.execute_input": "2024-06-25T19:32:17.929118Z", + "iopub.status.busy": "2024-06-25T19:32:17.928697Z", + "iopub.status.idle": "2024-06-25T19:32:18.039116Z", + "shell.execute_reply": "2024-06-25T19:32:18.038547Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1215,10 +1215,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.578257Z", - "iopub.status.busy": "2024-06-25T15:58:17.578065Z", - "iopub.status.idle": "2024-06-25T15:58:17.685180Z", - "shell.execute_reply": "2024-06-25T15:58:17.684558Z" + "iopub.execute_input": "2024-06-25T19:32:18.041334Z", + "iopub.status.busy": "2024-06-25T19:32:18.040985Z", + "iopub.status.idle": "2024-06-25T19:32:18.143028Z", + "shell.execute_reply": "2024-06-25T19:32:18.142549Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1263,10 +1263,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.687562Z", - "iopub.status.busy": "2024-06-25T15:58:17.687202Z", - "iopub.status.idle": "2024-06-25T15:58:17.799152Z", - "shell.execute_reply": "2024-06-25T15:58:17.798579Z" + "iopub.execute_input": "2024-06-25T19:32:18.145023Z", + "iopub.status.busy": "2024-06-25T19:32:18.144735Z", + "iopub.status.idle": "2024-06-25T19:32:18.245208Z", + "shell.execute_reply": "2024-06-25T19:32:18.244749Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1307,10 +1307,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.801479Z", - "iopub.status.busy": "2024-06-25T15:58:17.801009Z", - "iopub.status.idle": "2024-06-25T15:58:17.905775Z", - "shell.execute_reply": "2024-06-25T15:58:17.905244Z" + "iopub.execute_input": "2024-06-25T19:32:18.247314Z", + "iopub.status.busy": "2024-06-25T19:32:18.246984Z", + "iopub.status.idle": "2024-06-25T19:32:18.345698Z", + "shell.execute_reply": "2024-06-25T19:32:18.345236Z" } }, "outputs": [ @@ -1358,10 +1358,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.907932Z", - "iopub.status.busy": "2024-06-25T15:58:17.907716Z", - "iopub.status.idle": "2024-06-25T15:58:17.910988Z", - "shell.execute_reply": "2024-06-25T15:58:17.910455Z" + "iopub.execute_input": "2024-06-25T19:32:18.347691Z", + "iopub.status.busy": "2024-06-25T19:32:18.347361Z", + "iopub.status.idle": "2024-06-25T19:32:18.350505Z", + "shell.execute_reply": "2024-06-25T19:32:18.349977Z" }, "nbsphinx": "hidden" }, @@ -1402,7 +1402,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04c1460997a64fbcb37cb6c69b9ffe41": { + "0160f38ecac34b8a9a6e60b79941cb42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6c2f4eab88df4fcfbf60ea1461b407fb", + "placeholder": "​", + "style": "IPY_MODEL_47f71961c8254da1a0cb8fe2f90ef9f5", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "09e511f313fe4deaa3db651dc2ad1f38": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1455,7 +1478,7 @@ "width": null } }, - "04c88654d3f543ab85529d4aeec77fbd": { + "0f81bdbdfded4d61a103fbc884fdb8b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,41 +1531,7 @@ "width": null } }, - "05c6abdadb1346afaa01d27f04090824": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "068abc1331354ca990bc36cb91da9823": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "090589ff9f39498ca1f99ff60ab1c976": { + "13b1cd45cfea4f85bfb6caa46af5a63a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1595,78 +1584,30 @@ "width": null } }, - "244f2e03519647ef80fd5b9ec2f4a07c": { + "1965785719184160b13d07134d9c01cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "253ecc11f6e14b0fbcf1ef8f9a102b76": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9be1debd539947d495510d3e71e91a33", + "placeholder": "​", + "style": "IPY_MODEL_9593182600264e2aa5c5035fced2937b", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" } }, - "2aff0e0f157f4f1c9ee5c658ea400e97": { + "1aea1d112c054eec950bd686a0ca1d14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1719,25 +1660,30 @@ "width": null } }, - "2b9bd57e493742ea94d21fa872209bac": { + "1b43dce850cb49019716fe7f052cd3f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b142eabfac84901b7edb8e5cf1db87e", + "placeholder": "​", + "style": "IPY_MODEL_751e8bbb861243c0b292b81647f5a7c8", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 32.9MB/s]" } }, - "3118c2347b4149968d7fc429e1e05424": { + "1c18c2753518415ea3cf39b985a054ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,83 +1736,65 @@ "width": null } }, - "3e141e4d74bd4968878f2d73ed082233": { + "295a0df817014d6fbb6377dcc33be2b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b739994f6f094e8fb31a7f30c92e0e78", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b6a9a250f3af4bb8a78b9fffb50238d2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bfc1a00c4e8f4270af1f947f378411f7", + "IPY_MODEL_dcd54291f5a341bb9379d41671c00d95", + "IPY_MODEL_bec49e231d374b619cca6a3dbb6c9b4f" + ], + "layout": "IPY_MODEL_5375b29786b24fc182c5b06dc46c21f5", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "429d226ffba44e43961b6a8aaef654a7": { + "386b0038b80f44249027e46144d33c35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4fca547438d343959e3f3ef409073e93", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cdac77ebf7e94e3d8507aaaba9a233e1", - "tabbable": null, - "tooltip": null, - "value": 3201.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4372ea2d98334b4eb94562a7cbb24f31": { + "47f71961c8254da1a0cb8fe2f90ef9f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eef2ecb4e514450f8e2172c513bd4460", - "IPY_MODEL_53100b03d918413aaa9d7401dcd4d750", - "IPY_MODEL_eefeedbabeb84cb8bd9df712f4385c3b" - ], - "layout": "IPY_MODEL_090589ff9f39498ca1f99ff60ab1c976", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "47cafb795e7f4c488c16de46ced2f28d": { + "48203e358e5e4c599815faec66f84717": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1881,42 +1809,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_93e648c6842a4874b8fc33308b1abd4c", - "IPY_MODEL_429d226ffba44e43961b6a8aaef654a7", - "IPY_MODEL_b50a835dbc8c4a6e8ab6bb49a7084ed7" + "IPY_MODEL_0160f38ecac34b8a9a6e60b79941cb42", + "IPY_MODEL_cfb6db0858744f68a8074c3433dec014", + "IPY_MODEL_1b43dce850cb49019716fe7f052cd3f9" ], - "layout": "IPY_MODEL_8cebdc1b91f3439d863ced6237642006", + "layout": "IPY_MODEL_5f9ac971b36144c99f166c6afca8b98c", "tabbable": null, "tooltip": null } }, - "4c6a98bfb2254522851b0861f1a4f68c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2aff0e0f157f4f1c9ee5c658ea400e97", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e7530698066d46efb1bfcd51a16e2b33", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "4d1da1846cd64ad696f3d624044fa65d": { + "5375b29786b24fc182c5b06dc46c21f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1969,25 +1871,7 @@ "width": null } }, - "4d8b7c4ba48e4288942c77b5f89ae9be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4fca547438d343959e3f3ef409073e93": { + "5a7fcc571ae3417ca7f32e5ac2e0f7ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2040,34 +1924,55 @@ "width": null } }, - "53100b03d918413aaa9d7401dcd4d750": { + "5b63774c214c467f836bfdcb44bf9b9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6df13d23e18d4a4dbdeaf7bb238a82e5", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_068abc1331354ca990bc36cb91da9823", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b1eae32f9cd4561b35edcb6a450623c", + "IPY_MODEL_e4e0fafef42746d1a3f83998a48e68fb", + "IPY_MODEL_b61aaac35e2a498c8712ccc1a79e72b4" + ], + "layout": "IPY_MODEL_13b1cd45cfea4f85bfb6caa46af5a63a", "tabbable": null, - "tooltip": null, - "value": 2041.0 + "tooltip": null } }, - "5483865a4d45454ea2090e4e334d77c4": { - "model_module": "@jupyter-widgets/base", + "5de7ce2185e149b199420cef3937b004": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d05aa5c2f7ed4f049aeb55cefb06f57f", + "placeholder": "​", + "style": "IPY_MODEL_df36694caa324dc08d075a690e55fed5", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 860kB/s]" + } + }, + "5f9ac971b36144c99f166c6afca8b98c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -2119,49 +2024,23 @@ "width": null } }, - "67b526edd8ef48bbb5f57aeb9586d6cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc2dd42caba34a1d9b5f3db96c603673", - "IPY_MODEL_4c6a98bfb2254522851b0861f1a4f68c", - "IPY_MODEL_cda6a31a7a4f4bef9da3b78221365fbe" - ], - "layout": "IPY_MODEL_795cc1742b54461e846f7b824afdcdd2", - "tabbable": null, - "tooltip": null - } - }, - "6a5c5a7cb7754e32b6b63ce195b7dc8f": { + "67c2bbd993f544be9aaa55f1059ee0c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6df13d23e18d4a4dbdeaf7bb238a82e5": { + "6c2f4eab88df4fcfbf60ea1461b407fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2214,30 +2093,7 @@ "width": null } }, - "6f1223d90e564d2383e580c8691ba606": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3118c2347b4149968d7fc429e1e05424", - "placeholder": "​", - "style": "IPY_MODEL_244f2e03519647ef80fd5b9ec2f4a07c", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 14.4MB/s]" - } - }, - "6f9996dacebd4eda816d13ebbbb39009": { + "751e8bbb861243c0b292b81647f5a7c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2255,7 +2111,7 @@ "text_color": null } }, - "728aab2243bd42bb8f1fae0328b5853a": { + "7b142eabfac84901b7edb8e5cf1db87e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2308,25 +2164,30 @@ "width": null } }, - "760e67177d7549f7abee17ec6867b7f2": { + "7b1eae32f9cd4561b35edcb6a450623c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8a3fcca569d54278b1f243ca468eb2e8", + "placeholder": "​", + "style": "IPY_MODEL_e8bef6ec94b841649328908a1e03f796", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" } }, - "795cc1742b54461e846f7b824afdcdd2": { + "7c6fa0df6a7a4993ae1942f5e66eb942": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2379,7 +2240,7 @@ "width": null } }, - "8cebdc1b91f3439d863ced6237642006": { + "8a3fcca569d54278b1f243ca468eb2e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2432,7 +2293,7 @@ "width": null } }, - "91680264013d4cbfa7cb9bcc772aa8cc": { + "8d0cc257082a482b8a9c20f2623d1dd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2447,39 +2308,131 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dccc684188d04cefbb15bf0d76497a39", - "IPY_MODEL_ff7eefd88abd49e78dbc896bd09a4eb9", - "IPY_MODEL_6f1223d90e564d2383e580c8691ba606" + "IPY_MODEL_d3aabef313ae48b184adb3612e11f7c0", + "IPY_MODEL_9926def0468e4ef78a40becf734e408b", + "IPY_MODEL_5de7ce2185e149b199420cef3937b004" ], - "layout": "IPY_MODEL_fc7e413be3774270b305078d2f871996", + "layout": "IPY_MODEL_cad71209689044bf95c6a56cd4254c5d", "tabbable": null, "tooltip": null } }, - "93e648c6842a4874b8fc33308b1abd4c": { + "9593182600264e2aa5c5035fced2937b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "95a7d374743e47b785481b53802557f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9926def0468e4ef78a40becf734e408b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_728aab2243bd42bb8f1fae0328b5853a", - "placeholder": "​", - "style": "IPY_MODEL_aa208fea6f58477fbb9d21f24c1bc0d5", + "layout": "IPY_MODEL_feef464c625b4ce98e733ec61ac7047a", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67c2bbd993f544be9aaa55f1059ee0c5", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": 3201.0 + } + }, + "9be1debd539947d495510d3e71e91a33": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a23a1b5568824f76983446fb0c8084db": { + "b61aaac35e2a498c8712ccc1a79e72b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2494,57 +2447,54 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4671694170e4224a23eb39f1195a740", + "layout": "IPY_MODEL_f8e6a2a4f4ac44968d7ab7e8b41cd9e5", "placeholder": "​", - "style": "IPY_MODEL_cb1f3251d0bd4b1289c165ed61e34cd6", + "style": "IPY_MODEL_fd7987d5664246479c5c48a19962bcff", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": " 16.9M/16.9M [00:00<00:00, 33.4MB/s]" } }, - "aa208fea6f58477fbb9d21f24c1bc0d5": { + "bc925d23337a4990bcbb6ad1d3ba0714": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b0d51f044d634fb999c79b3d4f80669d": { + "bec49e231d374b619cca6a3dbb6c9b4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a23a1b5568824f76983446fb0c8084db", - "IPY_MODEL_3e141e4d74bd4968878f2d73ed082233", - "IPY_MODEL_d5d78932f8ca49ecbcd6c05778f48f6d" - ], - "layout": "IPY_MODEL_b619d8eff71b47828e0ac9823f65da9d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cec08439b11541149be6a96ed609992c", + "placeholder": "​", + "style": "IPY_MODEL_95a7d374743e47b785481b53802557f9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 514kB/s]" } }, - "b50a835dbc8c4a6e8ab6bb49a7084ed7": { + "bfc1a00c4e8f4270af1f947f378411f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2559,15 +2509,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5483865a4d45454ea2090e4e334d77c4", + "layout": "IPY_MODEL_0f81bdbdfded4d61a103fbc884fdb8b7", "placeholder": "​", - "style": "IPY_MODEL_6a5c5a7cb7754e32b6b63ce195b7dc8f", + "style": "IPY_MODEL_d7ac88820da9447ebde38eee5408d525", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 776kB/s]" + "value": "hyperparams.yaml: 100%" } }, - "b619d8eff71b47828e0ac9823f65da9d": { + "cad71209689044bf95c6a56cd4254c5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2620,23 +2570,7 @@ "width": null } }, - "b6a9a250f3af4bb8a78b9fffb50238d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b739994f6f094e8fb31a7f30c92e0e78": { + "cec08439b11541149be6a96ed609992c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2689,7 +2623,33 @@ "width": null } }, - "c0be3c413fa84165bf2ea1832e22614e": { + "cfb6db0858744f68a8074c3433dec014": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1c18c2753518415ea3cf39b985a054ad", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc925d23337a4990bcbb6ad1d3ba0714", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "d05aa5c2f7ed4f049aeb55cefb06f57f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2742,16 +2702,39 @@ "width": null } }, - "cb1f3251d0bd4b1289c165ed61e34cd6": { + "d3aabef313ae48b184adb3612e11f7c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_efde3254ff184e58b1e14968ab98b2eb", + "placeholder": "​", + "style": "IPY_MODEL_e51bddc0c26e45c28f6280a03fa6c570", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "d7ac88820da9447ebde38eee5408d525": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, @@ -2760,7 +2743,7 @@ "text_color": null } }, - "cda6a31a7a4f4bef9da3b78221365fbe": { + "dc42c71988f64ceba56aa56cc9c662d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2775,15 +2758,103 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d13977631c874482b109d9f437c6237d", + "layout": "IPY_MODEL_7c6fa0df6a7a4993ae1942f5e66eb942", "placeholder": "​", - "style": "IPY_MODEL_05c6abdadb1346afaa01d27f04090824", + "style": "IPY_MODEL_fe2e22def9dd4fb9b35244ac0e211f6d", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 7.29MB/s]" + } + }, + "dcd54291f5a341bb9379d41671c00d95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1aea1d112c054eec950bd686a0ca1d14", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e83b02ee750444739a17f78b4d3f184f", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 320MB/s]" + "value": 2041.0 + } + }, + "df36694caa324dc08d075a690e55fed5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cdac77ebf7e94e3d8507aaaba9a233e1": { + "e4e0fafef42746d1a3f83998a48e68fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_09e511f313fe4deaa3db651dc2ad1f38", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ff0fbdda3a2745cab371f835eea2071a", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "e51bddc0c26e45c28f6280a03fa6c570": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e83b02ee750444739a17f78b4d3f184f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2799,7 +2870,51 @@ "description_width": "" } }, - "cde43d54c9754fef94a61e5245b5633f": { + "e8bef6ec94b841649328908a1e03f796": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ec7119530ac242a8bf5cd0417e5460c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_edb975a882cd4029ab886291208a5a5c", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_386b0038b80f44249027e46144d33c35", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "edb975a882cd4029ab886291208a5a5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2852,7 +2967,7 @@ "width": null } }, - "d13977631c874482b109d9f437c6237d": { + "efde3254ff184e58b1e14968ab98b2eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2905,7 +3020,31 @@ "width": null } }, - "d4671694170e4224a23eb39f1195a740": { + "f26aa1a5503c462e89477a33079f160a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1965785719184160b13d07134d9c01cd", + "IPY_MODEL_ec7119530ac242a8bf5cd0417e5460c5", + "IPY_MODEL_dc42c71988f64ceba56aa56cc9c662d3" + ], + "layout": "IPY_MODEL_5a7fcc571ae3417ca7f32e5ac2e0f7ed", + "tabbable": null, + "tooltip": null + } + }, + "f8e6a2a4f4ac44968d7ab7e8b41cd9e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2958,131 +3097,25 @@ "width": null } }, - "d5d78932f8ca49ecbcd6c05778f48f6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cde43d54c9754fef94a61e5245b5633f", - "placeholder": "​", - "style": "IPY_MODEL_6f9996dacebd4eda816d13ebbbb39009", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 267MB/s]" - } - }, - "dccc684188d04cefbb15bf0d76497a39": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_253ecc11f6e14b0fbcf1ef8f9a102b76", - "placeholder": "​", - "style": "IPY_MODEL_4d8b7c4ba48e4288942c77b5f89ae9be", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "e082552719ed41c19243b32ac7f26ae5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e7530698066d46efb1bfcd51a16e2b33": { + "fd7987d5664246479c5c48a19962bcff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "eef2ecb4e514450f8e2172c513bd4460": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4d1da1846cd64ad696f3d624044fa65d", - "placeholder": "​", - "style": "IPY_MODEL_760e67177d7549f7abee17ec6867b7f2", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "eefeedbabeb84cb8bd9df712f4385c3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_04c88654d3f543ab85529d4aeec77fbd", - "placeholder": "​", - "style": "IPY_MODEL_2b9bd57e493742ea94d21fa872209bac", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 466kB/s]" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fa1a8a15a1a243d9a38ab1b16d362816": { + "fe2e22def9dd4fb9b35244ac0e211f6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3100,30 +3133,7 @@ "text_color": null } }, - "fc2dd42caba34a1d9b5f3db96c603673": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_04c1460997a64fbcb37cb6c69b9ffe41", - "placeholder": "​", - "style": "IPY_MODEL_fa1a8a15a1a243d9a38ab1b16d362816", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "fc7e413be3774270b305078d2f871996": { + "feef464c625b4ce98e733ec61ac7047a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3176,30 +3186,20 @@ "width": null } }, - "ff7eefd88abd49e78dbc896bd09a4eb9": { + "ff0fbdda3a2745cab371f835eea2071a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c0be3c413fa84165bf2ea1832e22614e", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e082552719ed41c19243b32ac7f26ae5", - "tabbable": null, - "tooltip": null, - "value": 128619.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 81aa80744..33af481ea 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:21.508654Z", - "iopub.status.busy": "2024-06-25T15:58:21.508466Z", - "iopub.status.idle": "2024-06-25T15:58:22.732116Z", - "shell.execute_reply": "2024-06-25T15:58:22.731553Z" + "iopub.execute_input": "2024-06-25T19:32:21.525415Z", + "iopub.status.busy": "2024-06-25T19:32:21.525221Z", + "iopub.status.idle": "2024-06-25T19:32:22.681975Z", + "shell.execute_reply": "2024-06-25T19:32:22.681418Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:22.734467Z", - "iopub.status.busy": "2024-06-25T15:58:22.734178Z", - "iopub.status.idle": "2024-06-25T15:58:22.737360Z", - "shell.execute_reply": "2024-06-25T15:58:22.736793Z" + "iopub.execute_input": "2024-06-25T19:32:22.684626Z", + "iopub.status.busy": "2024-06-25T19:32:22.684217Z", + "iopub.status.idle": "2024-06-25T19:32:22.687052Z", + "shell.execute_reply": "2024-06-25T19:32:22.686634Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:22.739769Z", - "iopub.status.busy": "2024-06-25T15:58:22.739360Z", - "iopub.status.idle": "2024-06-25T15:58:22.748054Z", - "shell.execute_reply": "2024-06-25T15:58:22.747511Z" + "iopub.execute_input": "2024-06-25T19:32:22.689175Z", + "iopub.status.busy": "2024-06-25T19:32:22.688918Z", + "iopub.status.idle": "2024-06-25T19:32:22.697425Z", + "shell.execute_reply": "2024-06-25T19:32:22.696900Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:22.750448Z", - "iopub.status.busy": "2024-06-25T15:58:22.749977Z", - "iopub.status.idle": "2024-06-25T15:58:22.754907Z", - "shell.execute_reply": "2024-06-25T15:58:22.754372Z" + "iopub.execute_input": "2024-06-25T19:32:22.699485Z", + "iopub.status.busy": "2024-06-25T19:32:22.699153Z", + "iopub.status.idle": "2024-06-25T19:32:22.703881Z", + "shell.execute_reply": "2024-06-25T19:32:22.703445Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:22.757227Z", - "iopub.status.busy": "2024-06-25T15:58:22.756898Z", - "iopub.status.idle": "2024-06-25T15:58:22.946862Z", - "shell.execute_reply": "2024-06-25T15:58:22.946231Z" + "iopub.execute_input": "2024-06-25T19:32:22.706034Z", + "iopub.status.busy": "2024-06-25T19:32:22.705704Z", + "iopub.status.idle": "2024-06-25T19:32:22.888024Z", + "shell.execute_reply": "2024-06-25T19:32:22.887415Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:22.949395Z", - "iopub.status.busy": "2024-06-25T15:58:22.949076Z", - "iopub.status.idle": "2024-06-25T15:58:23.325053Z", - "shell.execute_reply": "2024-06-25T15:58:23.324436Z" + "iopub.execute_input": "2024-06-25T19:32:22.890902Z", + "iopub.status.busy": "2024-06-25T19:32:22.890533Z", + "iopub.status.idle": "2024-06-25T19:32:23.256766Z", + "shell.execute_reply": "2024-06-25T19:32:23.256201Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:23.327443Z", - "iopub.status.busy": "2024-06-25T15:58:23.327020Z", - "iopub.status.idle": "2024-06-25T15:58:23.350615Z", - "shell.execute_reply": "2024-06-25T15:58:23.350014Z" + "iopub.execute_input": "2024-06-25T19:32:23.259088Z", + "iopub.status.busy": "2024-06-25T19:32:23.258748Z", + "iopub.status.idle": "2024-06-25T19:32:23.281774Z", + "shell.execute_reply": "2024-06-25T19:32:23.281210Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:23.353033Z", - "iopub.status.busy": "2024-06-25T15:58:23.352490Z", - "iopub.status.idle": "2024-06-25T15:58:23.363837Z", - "shell.execute_reply": "2024-06-25T15:58:23.363374Z" + "iopub.execute_input": "2024-06-25T19:32:23.284159Z", + "iopub.status.busy": "2024-06-25T19:32:23.283828Z", + "iopub.status.idle": "2024-06-25T19:32:23.294542Z", + "shell.execute_reply": "2024-06-25T19:32:23.294124Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:23.365835Z", - "iopub.status.busy": "2024-06-25T15:58:23.365657Z", - "iopub.status.idle": "2024-06-25T15:58:25.496706Z", - "shell.execute_reply": "2024-06-25T15:58:25.496141Z" + "iopub.execute_input": "2024-06-25T19:32:23.296628Z", + "iopub.status.busy": "2024-06-25T19:32:23.296301Z", + "iopub.status.idle": "2024-06-25T19:32:25.256890Z", + "shell.execute_reply": "2024-06-25T19:32:25.256295Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.499198Z", - "iopub.status.busy": "2024-06-25T15:58:25.498626Z", - "iopub.status.idle": "2024-06-25T15:58:25.519930Z", - "shell.execute_reply": "2024-06-25T15:58:25.519364Z" + "iopub.execute_input": "2024-06-25T19:32:25.259406Z", + "iopub.status.busy": "2024-06-25T19:32:25.258951Z", + "iopub.status.idle": "2024-06-25T19:32:25.279987Z", + "shell.execute_reply": "2024-06-25T19:32:25.279554Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.522243Z", - "iopub.status.busy": "2024-06-25T15:58:25.521968Z", - "iopub.status.idle": "2024-06-25T15:58:25.542822Z", - "shell.execute_reply": "2024-06-25T15:58:25.542093Z" + "iopub.execute_input": "2024-06-25T19:32:25.281917Z", + "iopub.status.busy": "2024-06-25T19:32:25.281742Z", + "iopub.status.idle": "2024-06-25T19:32:25.300001Z", + "shell.execute_reply": "2024-06-25T19:32:25.299441Z" } }, "outputs": [ @@ -923,7 +923,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -949,10 +949,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.545798Z", - "iopub.status.busy": "2024-06-25T15:58:25.545363Z", - "iopub.status.idle": "2024-06-25T15:58:25.559769Z", - "shell.execute_reply": "2024-06-25T15:58:25.559300Z" + "iopub.execute_input": "2024-06-25T19:32:25.302199Z", + "iopub.status.busy": "2024-06-25T19:32:25.301790Z", + "iopub.status.idle": "2024-06-25T19:32:25.315854Z", + "shell.execute_reply": "2024-06-25T19:32:25.315290Z" } }, "outputs": [ @@ -1087,17 +1087,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.561703Z", - "iopub.status.busy": "2024-06-25T15:58:25.561527Z", - "iopub.status.idle": "2024-06-25T15:58:25.584449Z", - "shell.execute_reply": "2024-06-25T15:58:25.583907Z" + "iopub.execute_input": "2024-06-25T19:32:25.317886Z", + "iopub.status.busy": "2024-06-25T19:32:25.317705Z", + "iopub.status.idle": "2024-06-25T19:32:25.337431Z", + "shell.execute_reply": "2024-06-25T19:32:25.336840Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c9ec6fabbe6c4abea1031a6070168164", + "model_id": "9160678898ef4935b4c5e9badf645887", "version_major": 2, "version_minor": 0 }, @@ -1133,10 +1133,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.586631Z", - "iopub.status.busy": "2024-06-25T15:58:25.586313Z", - "iopub.status.idle": "2024-06-25T15:58:25.601835Z", - "shell.execute_reply": "2024-06-25T15:58:25.601267Z" + "iopub.execute_input": "2024-06-25T19:32:25.339545Z", + "iopub.status.busy": "2024-06-25T19:32:25.339254Z", + "iopub.status.idle": "2024-06-25T19:32:25.353979Z", + "shell.execute_reply": "2024-06-25T19:32:25.353546Z" } }, "outputs": [ @@ -1259,10 +1259,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.603960Z", - "iopub.status.busy": "2024-06-25T15:58:25.603656Z", - "iopub.status.idle": "2024-06-25T15:58:25.609543Z", - "shell.execute_reply": "2024-06-25T15:58:25.609084Z" + "iopub.execute_input": "2024-06-25T19:32:25.355891Z", + "iopub.status.busy": "2024-06-25T19:32:25.355714Z", + "iopub.status.idle": "2024-06-25T19:32:25.361530Z", + "shell.execute_reply": "2024-06-25T19:32:25.360999Z" } }, "outputs": [], @@ -1319,10 +1319,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.611424Z", - "iopub.status.busy": "2024-06-25T15:58:25.611233Z", - "iopub.status.idle": "2024-06-25T15:58:25.631170Z", - "shell.execute_reply": "2024-06-25T15:58:25.630583Z" + "iopub.execute_input": "2024-06-25T19:32:25.363640Z", + "iopub.status.busy": "2024-06-25T19:32:25.363214Z", + "iopub.status.idle": "2024-06-25T19:32:25.380614Z", + "shell.execute_reply": "2024-06-25T19:32:25.380174Z" } }, "outputs": [ @@ -1459,7 +1459,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "5aa8efc7b1e844fe91de611ebbee3c05": { + "066581bfe5e048229e24f4456c525a9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1512,7 +1512,25 @@ "width": null } }, - "750684e0bfa74ecea63a2bdeb44f2798": { + "1c1065c6e3be428aa1ed6d3ef05adb52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "31beebcbb1ed40e98e72f51b7111d288": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1565,25 +1583,69 @@ "width": null } }, - "85a98cab40374fcb90e65c35a91c02cc": { + "495eb3b3071f43e1bf30631ee18ec38f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "514a0c7d656e41c7a0ef7156f7db70a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_066581bfe5e048229e24f4456c525a9f", + "placeholder": "​", + "style": "IPY_MODEL_e9790c7defa446cc93cb40beb3946950", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "5b75a7f5ee634ecbb513ceba0cf27697": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_74ffd90dc17c436bb5ca21cab1e64b31", + "placeholder": "​", + "style": "IPY_MODEL_1c1065c6e3be428aa1ed6d3ef05adb52", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12588.35 examples/s]" } }, - "8d520dc52351467b9236ddaadf73964a": { + "74ffd90dc17c436bb5ca21cab1e64b31": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1636,51 +1698,7 @@ "width": null } }, - "9aa274aba43248e9aa8d4016df7991d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_750684e0bfa74ecea63a2bdeb44f2798", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ec7216196af648b5ac0a8eeda2747a1f", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "c68ac25651a84e288cca27828647822f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c9ec6fabbe6c4abea1031a6070168164": { + "9160678898ef4935b4c5e9badf645887": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1695,16 +1713,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fe98e75c68304a7a8aca3848e7064603", - "IPY_MODEL_9aa274aba43248e9aa8d4016df7991d1", - "IPY_MODEL_f2fb02baf6c44691955b457208474072" + "IPY_MODEL_514a0c7d656e41c7a0ef7156f7db70a4", + "IPY_MODEL_e905864ed9704e29b5c76d93504b2f9f", + "IPY_MODEL_5b75a7f5ee634ecbb513ceba0cf27697" ], - "layout": "IPY_MODEL_5aa8efc7b1e844fe91de611ebbee3c05", + "layout": "IPY_MODEL_e0f1e9f09fb84534aee2fa9a795b3c91", "tabbable": null, "tooltip": null } }, - "ce0acf5cc60c49ab9a2cd5d40c22e10f": { + "e0f1e9f09fb84534aee2fa9a795b3c91": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1757,66 +1775,48 @@ "width": null } }, - "ec7216196af648b5ac0a8eeda2747a1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f2fb02baf6c44691955b457208474072": { + "e905864ed9704e29b5c76d93504b2f9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8d520dc52351467b9236ddaadf73964a", - "placeholder": "​", - "style": "IPY_MODEL_c68ac25651a84e288cca27828647822f", + "layout": "IPY_MODEL_31beebcbb1ed40e98e72f51b7111d288", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_495eb3b3071f43e1bf30631ee18ec38f", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 9943.93 examples/s]" + "value": 132.0 } }, - "fe98e75c68304a7a8aca3848e7064603": { + "e9790c7defa446cc93cb40beb3946950": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce0acf5cc60c49ab9a2cd5d40c22e10f", - "placeholder": "​", - "style": "IPY_MODEL_85a98cab40374fcb90e65c35a91c02cc", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index d08884c96..701b2fb18 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:28.545905Z", - "iopub.status.busy": "2024-06-25T15:58:28.545421Z", - "iopub.status.idle": "2024-06-25T15:58:29.730748Z", - "shell.execute_reply": "2024-06-25T15:58:29.730204Z" + "iopub.execute_input": "2024-06-25T19:32:28.076768Z", + "iopub.status.busy": "2024-06-25T19:32:28.076417Z", + "iopub.status.idle": "2024-06-25T19:32:29.230065Z", + "shell.execute_reply": "2024-06-25T19:32:29.229522Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:29.733394Z", - "iopub.status.busy": "2024-06-25T15:58:29.733006Z", - "iopub.status.idle": "2024-06-25T15:58:29.735901Z", - "shell.execute_reply": "2024-06-25T15:58:29.735479Z" + "iopub.execute_input": "2024-06-25T19:32:29.232655Z", + "iopub.status.busy": "2024-06-25T19:32:29.232386Z", + "iopub.status.idle": "2024-06-25T19:32:29.235452Z", + "shell.execute_reply": "2024-06-25T19:32:29.234935Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:29.738306Z", - "iopub.status.busy": "2024-06-25T15:58:29.737842Z", - "iopub.status.idle": "2024-06-25T15:58:29.747905Z", - "shell.execute_reply": "2024-06-25T15:58:29.747435Z" + "iopub.execute_input": "2024-06-25T19:32:29.237717Z", + "iopub.status.busy": "2024-06-25T19:32:29.237325Z", + "iopub.status.idle": "2024-06-25T19:32:29.246331Z", + "shell.execute_reply": "2024-06-25T19:32:29.245844Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:29.749940Z", - "iopub.status.busy": "2024-06-25T15:58:29.749608Z", - "iopub.status.idle": "2024-06-25T15:58:29.754119Z", - "shell.execute_reply": "2024-06-25T15:58:29.753687Z" + "iopub.execute_input": "2024-06-25T19:32:29.248332Z", + "iopub.status.busy": "2024-06-25T19:32:29.248005Z", + "iopub.status.idle": "2024-06-25T19:32:29.252728Z", + "shell.execute_reply": "2024-06-25T19:32:29.252172Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:29.756253Z", - "iopub.status.busy": "2024-06-25T15:58:29.755847Z", - "iopub.status.idle": "2024-06-25T15:58:29.946935Z", - "shell.execute_reply": "2024-06-25T15:58:29.946315Z" + "iopub.execute_input": "2024-06-25T19:32:29.254880Z", + "iopub.status.busy": "2024-06-25T19:32:29.254709Z", + "iopub.status.idle": "2024-06-25T19:32:29.437885Z", + "shell.execute_reply": "2024-06-25T19:32:29.437386Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:29.949665Z", - "iopub.status.busy": "2024-06-25T15:58:29.949199Z", - "iopub.status.idle": "2024-06-25T15:58:30.272495Z", - "shell.execute_reply": "2024-06-25T15:58:30.271909Z" + "iopub.execute_input": "2024-06-25T19:32:29.440194Z", + "iopub.status.busy": "2024-06-25T19:32:29.440000Z", + "iopub.status.idle": "2024-06-25T19:32:29.811011Z", + "shell.execute_reply": "2024-06-25T19:32:29.810430Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:30.274807Z", - "iopub.status.busy": "2024-06-25T15:58:30.274392Z", - "iopub.status.idle": "2024-06-25T15:58:30.277288Z", - "shell.execute_reply": "2024-06-25T15:58:30.276737Z" + "iopub.execute_input": "2024-06-25T19:32:29.813249Z", + "iopub.status.busy": "2024-06-25T19:32:29.812907Z", + "iopub.status.idle": "2024-06-25T19:32:29.815709Z", + "shell.execute_reply": "2024-06-25T19:32:29.815239Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:30.279356Z", - "iopub.status.busy": "2024-06-25T15:58:30.279049Z", - "iopub.status.idle": "2024-06-25T15:58:30.315618Z", - "shell.execute_reply": "2024-06-25T15:58:30.315016Z" + "iopub.execute_input": "2024-06-25T19:32:29.817838Z", + "iopub.status.busy": "2024-06-25T19:32:29.817412Z", + "iopub.status.idle": "2024-06-25T19:32:29.852590Z", + "shell.execute_reply": "2024-06-25T19:32:29.852033Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:30.318109Z", - "iopub.status.busy": "2024-06-25T15:58:30.317891Z", - "iopub.status.idle": "2024-06-25T15:58:32.454250Z", - "shell.execute_reply": "2024-06-25T15:58:32.453553Z" + "iopub.execute_input": "2024-06-25T19:32:29.854728Z", + "iopub.status.busy": "2024-06-25T19:32:29.854340Z", + "iopub.status.idle": "2024-06-25T19:32:31.848165Z", + "shell.execute_reply": "2024-06-25T19:32:31.847549Z" } }, "outputs": [ @@ -710,10 +710,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:32.456931Z", - "iopub.status.busy": "2024-06-25T15:58:32.456345Z", - "iopub.status.idle": "2024-06-25T15:58:32.475510Z", - "shell.execute_reply": "2024-06-25T15:58:32.474968Z" + "iopub.execute_input": "2024-06-25T19:32:31.850423Z", + "iopub.status.busy": "2024-06-25T19:32:31.850093Z", + "iopub.status.idle": "2024-06-25T19:32:31.868614Z", + "shell.execute_reply": "2024-06-25T19:32:31.868087Z" } }, "outputs": [ @@ -846,10 +846,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:32.477868Z", - "iopub.status.busy": "2024-06-25T15:58:32.477513Z", - "iopub.status.idle": "2024-06-25T15:58:32.484874Z", - "shell.execute_reply": "2024-06-25T15:58:32.484280Z" + "iopub.execute_input": "2024-06-25T19:32:31.870858Z", + "iopub.status.busy": "2024-06-25T19:32:31.870547Z", + "iopub.status.idle": "2024-06-25T19:32:31.877139Z", + "shell.execute_reply": "2024-06-25T19:32:31.876698Z" } }, "outputs": [ @@ -960,10 +960,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:32.486996Z", - "iopub.status.busy": "2024-06-25T15:58:32.486725Z", - "iopub.status.idle": "2024-06-25T15:58:32.493195Z", - "shell.execute_reply": "2024-06-25T15:58:32.492565Z" + "iopub.execute_input": "2024-06-25T19:32:31.879087Z", + "iopub.status.busy": "2024-06-25T19:32:31.878912Z", + "iopub.status.idle": "2024-06-25T19:32:31.884810Z", + "shell.execute_reply": "2024-06-25T19:32:31.884314Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:32.495957Z", - "iopub.status.busy": "2024-06-25T15:58:32.495546Z", - "iopub.status.idle": "2024-06-25T15:58:32.509108Z", - "shell.execute_reply": "2024-06-25T15:58:32.508502Z" + "iopub.execute_input": "2024-06-25T19:32:31.886777Z", + "iopub.status.busy": "2024-06-25T19:32:31.886603Z", + "iopub.status.idle": "2024-06-25T19:32:31.897515Z", + "shell.execute_reply": "2024-06-25T19:32:31.897079Z" } }, "outputs": [ @@ -1225,10 +1225,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:32.511380Z", - "iopub.status.busy": "2024-06-25T15:58:32.511033Z", - "iopub.status.idle": "2024-06-25T15:58:32.520946Z", - "shell.execute_reply": "2024-06-25T15:58:32.520440Z" + "iopub.execute_input": "2024-06-25T19:32:31.899532Z", + "iopub.status.busy": "2024-06-25T19:32:31.899178Z", + "iopub.status.idle": "2024-06-25T19:32:31.908000Z", + "shell.execute_reply": "2024-06-25T19:32:31.907553Z" } }, "outputs": [ @@ -1344,10 +1344,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:32.523011Z", - "iopub.status.busy": "2024-06-25T15:58:32.522824Z", - "iopub.status.idle": "2024-06-25T15:58:32.530181Z", - "shell.execute_reply": "2024-06-25T15:58:32.529693Z" + "iopub.execute_input": "2024-06-25T19:32:31.910005Z", + "iopub.status.busy": "2024-06-25T19:32:31.909678Z", + "iopub.status.idle": "2024-06-25T19:32:31.916574Z", + "shell.execute_reply": "2024-06-25T19:32:31.916117Z" }, "scrolled": true }, @@ -1472,10 +1472,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:32.532107Z", - "iopub.status.busy": "2024-06-25T15:58:32.531928Z", - "iopub.status.idle": "2024-06-25T15:58:32.542006Z", - "shell.execute_reply": "2024-06-25T15:58:32.541519Z" + "iopub.execute_input": "2024-06-25T19:32:31.918557Z", + "iopub.status.busy": "2024-06-25T19:32:31.918225Z", + "iopub.status.idle": "2024-06-25T19:32:31.927581Z", + "shell.execute_reply": "2024-06-25T19:32:31.927120Z" } }, "outputs": [ @@ -1578,10 +1578,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:32.544041Z", - "iopub.status.busy": "2024-06-25T15:58:32.543854Z", - "iopub.status.idle": "2024-06-25T15:58:32.556978Z", - "shell.execute_reply": "2024-06-25T15:58:32.556506Z" + "iopub.execute_input": "2024-06-25T19:32:31.929562Z", + "iopub.status.busy": "2024-06-25T19:32:31.929235Z", + "iopub.status.idle": "2024-06-25T19:32:31.940775Z", + "shell.execute_reply": "2024-06-25T19:32:31.940218Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 7a8ae4b02..a549a7040 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:35.616250Z", - "iopub.status.busy": "2024-06-25T15:58:35.616067Z", - "iopub.status.idle": "2024-06-25T15:58:38.616042Z", - "shell.execute_reply": "2024-06-25T15:58:38.615480Z" + "iopub.execute_input": "2024-06-25T19:32:34.714453Z", + "iopub.status.busy": "2024-06-25T19:32:34.714061Z", + "iopub.status.idle": "2024-06-25T19:32:37.483269Z", + "shell.execute_reply": "2024-06-25T19:32:37.482729Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:38.618556Z", - "iopub.status.busy": "2024-06-25T15:58:38.618228Z", - "iopub.status.idle": "2024-06-25T15:58:38.621927Z", - "shell.execute_reply": "2024-06-25T15:58:38.621443Z" + "iopub.execute_input": "2024-06-25T19:32:37.485856Z", + "iopub.status.busy": "2024-06-25T19:32:37.485436Z", + "iopub.status.idle": "2024-06-25T19:32:37.489039Z", + "shell.execute_reply": "2024-06-25T19:32:37.488503Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:38.623967Z", - "iopub.status.busy": "2024-06-25T15:58:38.623637Z", - "iopub.status.idle": "2024-06-25T15:58:49.436149Z", - "shell.execute_reply": "2024-06-25T15:58:49.435592Z" + "iopub.execute_input": "2024-06-25T19:32:37.491139Z", + "iopub.status.busy": "2024-06-25T19:32:37.490837Z", + "iopub.status.idle": "2024-06-25T19:32:52.986261Z", + "shell.execute_reply": "2024-06-25T19:32:52.985738Z" } }, "outputs": [ @@ -172,7 +172,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5986f7447dd049ac8f699026e1d57966", + "model_id": "e85af83531bc4182b052d4cfe7f1020e", "version_major": 2, "version_minor": 0 }, @@ -186,7 +186,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b35a892076d14a83a2ed40c58cffc8c7", + "model_id": "9abe31b01bc04cc89ff967d26e368fdf", "version_major": 2, "version_minor": 0 }, @@ -200,7 +200,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d6765a83a38e4fbb8540a45549a45441", + "model_id": "1585cf2dc2e448068ac19676773a2a4b", "version_major": 2, "version_minor": 0 }, @@ -214,7 +214,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "95ee3d7fb42843caa13a676150c30adf", + "model_id": "a9c34fb99987402ba4f521a988475574", "version_major": 2, "version_minor": 0 }, @@ -228,7 +228,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9ef5a7bb45b49ea98ba7ef7d46f7327", + "model_id": "815effa183cf4ca4a7160696d4e9eb83", "version_major": 2, "version_minor": 0 }, @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9252f5a0149408fb3c337bdab26e38c", + "model_id": "79a15df271d14bfa8e4ed6dbe1c37a8a", "version_major": 2, "version_minor": 0 }, @@ -256,7 +256,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a207c35dbb984e0c862d63f5ddc5638a", + "model_id": "4d2025fc902f41b2b7c3474d4e9cd2fb", "version_major": 2, "version_minor": 0 }, @@ -270,7 +270,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88aa98714ddc46339b22c75ae045aaeb", + "model_id": "bdbb1b6b96824b1ba8715b85852886fe", "version_major": 2, "version_minor": 0 }, @@ -312,10 +312,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:49.438494Z", - "iopub.status.busy": "2024-06-25T15:58:49.438053Z", - "iopub.status.idle": "2024-06-25T15:58:49.441856Z", - "shell.execute_reply": "2024-06-25T15:58:49.441343Z" + "iopub.execute_input": "2024-06-25T19:32:52.988486Z", + "iopub.status.busy": "2024-06-25T19:32:52.988150Z", + "iopub.status.idle": "2024-06-25T19:32:52.992110Z", + "shell.execute_reply": "2024-06-25T19:32:52.991660Z" } }, "outputs": [ @@ -340,17 +340,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:49.443796Z", - "iopub.status.busy": "2024-06-25T15:58:49.443533Z", - "iopub.status.idle": "2024-06-25T15:59:00.559397Z", - "shell.execute_reply": "2024-06-25T15:59:00.558855Z" + "iopub.execute_input": "2024-06-25T19:32:52.994131Z", + "iopub.status.busy": "2024-06-25T19:32:52.993820Z", + "iopub.status.idle": "2024-06-25T19:33:03.871847Z", + "shell.execute_reply": "2024-06-25T19:33:03.871235Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3ab4beadd43d455babf74169c56f96c3", + "model_id": "f2d29dc28e7140b792fc1ee3fcb857cb", "version_major": 2, "version_minor": 0 }, @@ -388,10 +388,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:00.562175Z", - "iopub.status.busy": "2024-06-25T15:59:00.561883Z", - "iopub.status.idle": "2024-06-25T15:59:19.416385Z", - "shell.execute_reply": "2024-06-25T15:59:19.415769Z" + "iopub.execute_input": "2024-06-25T19:33:03.874363Z", + "iopub.status.busy": "2024-06-25T19:33:03.874071Z", + "iopub.status.idle": "2024-06-25T19:33:22.807154Z", + "shell.execute_reply": "2024-06-25T19:33:22.806523Z" } }, "outputs": [], @@ -424,10 +424,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:19.419092Z", - "iopub.status.busy": "2024-06-25T15:59:19.418718Z", - "iopub.status.idle": "2024-06-25T15:59:19.424442Z", - "shell.execute_reply": "2024-06-25T15:59:19.424005Z" + "iopub.execute_input": "2024-06-25T19:33:22.809827Z", + "iopub.status.busy": "2024-06-25T19:33:22.809607Z", + "iopub.status.idle": "2024-06-25T19:33:22.814504Z", + "shell.execute_reply": "2024-06-25T19:33:22.813958Z" } }, "outputs": [], @@ -465,10 +465,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:19.426434Z", - "iopub.status.busy": "2024-06-25T15:59:19.426099Z", - "iopub.status.idle": "2024-06-25T15:59:19.429986Z", - "shell.execute_reply": "2024-06-25T15:59:19.429576Z" + "iopub.execute_input": "2024-06-25T19:33:22.816419Z", + "iopub.status.busy": "2024-06-25T19:33:22.816239Z", + "iopub.status.idle": "2024-06-25T19:33:22.820245Z", + "shell.execute_reply": "2024-06-25T19:33:22.819819Z" }, "nbsphinx": "hidden" }, @@ -605,10 +605,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:19.431922Z", - "iopub.status.busy": "2024-06-25T15:59:19.431665Z", - "iopub.status.idle": "2024-06-25T15:59:19.440497Z", - "shell.execute_reply": "2024-06-25T15:59:19.440049Z" + "iopub.execute_input": "2024-06-25T19:33:22.822196Z", + "iopub.status.busy": "2024-06-25T19:33:22.822022Z", + "iopub.status.idle": "2024-06-25T19:33:22.831142Z", + "shell.execute_reply": "2024-06-25T19:33:22.830697Z" }, "nbsphinx": "hidden" }, @@ -733,10 +733,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:19.442408Z", - "iopub.status.busy": "2024-06-25T15:59:19.442147Z", - "iopub.status.idle": "2024-06-25T15:59:19.471256Z", - "shell.execute_reply": "2024-06-25T15:59:19.470777Z" + "iopub.execute_input": "2024-06-25T19:33:22.833164Z", + "iopub.status.busy": "2024-06-25T19:33:22.832846Z", + "iopub.status.idle": "2024-06-25T19:33:22.860883Z", + "shell.execute_reply": "2024-06-25T19:33:22.860460Z" } }, "outputs": [], @@ -773,10 +773,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:19.473647Z", - "iopub.status.busy": "2024-06-25T15:59:19.473224Z", - "iopub.status.idle": "2024-06-25T15:59:53.630889Z", - "shell.execute_reply": "2024-06-25T15:59:53.630274Z" + "iopub.execute_input": "2024-06-25T19:33:22.862805Z", + "iopub.status.busy": "2024-06-25T19:33:22.862633Z", + "iopub.status.idle": "2024-06-25T19:33:54.927685Z", + "shell.execute_reply": "2024-06-25T19:33:54.927065Z" } }, "outputs": [ @@ -792,21 +792,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.152\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.704\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.996\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.525\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "32d607be832e4a87b4d29b25908be79d", + "model_id": "b56125fc059b47e3b228dc3ed3b629c0", "version_major": 2, "version_minor": 0 }, @@ -827,7 +827,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "87333c993d264d4481aba459cf6e8ff5", + "model_id": "5c565e132b5a46d398435caf4df461d4", "version_major": 2, "version_minor": 0 }, @@ -850,21 +850,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.210\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.714\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.688\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.460\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "59321af79ae240afbb2d2bb44da084e7", + "model_id": "63e4117109d44d79bcece5146781039a", "version_major": 2, "version_minor": 0 }, @@ -885,7 +885,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "77ae27eb0a8144f99eb62c3768dbe735", + "model_id": "09c8fb8f5f2945a4948b758b41efb311", "version_major": 2, "version_minor": 0 }, @@ -908,21 +908,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.915\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.742\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.775\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.468\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fd6e7deac3fc4c7d91dd1737f449dd14", + "model_id": "85c627e125a94180abe254acf928a1fc", "version_major": 2, "version_minor": 0 }, @@ -943,7 +943,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "59ff8b60607a478c8df614b2f177106c", + "model_id": "85af3d53abef4aa8a6046017943dc826", "version_major": 2, "version_minor": 0 }, @@ -1022,10 +1022,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:53.633305Z", - "iopub.status.busy": "2024-06-25T15:59:53.633008Z", - "iopub.status.idle": "2024-06-25T15:59:53.648132Z", - "shell.execute_reply": "2024-06-25T15:59:53.647680Z" + "iopub.execute_input": "2024-06-25T19:33:54.930258Z", + "iopub.status.busy": "2024-06-25T19:33:54.929870Z", + "iopub.status.idle": "2024-06-25T19:33:54.943872Z", + "shell.execute_reply": "2024-06-25T19:33:54.943339Z" } }, "outputs": [], @@ -1050,10 +1050,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:53.650392Z", - "iopub.status.busy": "2024-06-25T15:59:53.650090Z", - "iopub.status.idle": "2024-06-25T15:59:54.136653Z", - "shell.execute_reply": "2024-06-25T15:59:54.136006Z" + "iopub.execute_input": "2024-06-25T19:33:54.946038Z", + "iopub.status.busy": "2024-06-25T19:33:54.945618Z", + "iopub.status.idle": "2024-06-25T19:33:55.403627Z", + "shell.execute_reply": "2024-06-25T19:33:55.402981Z" } }, "outputs": [], @@ -1073,10 +1073,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:54.139214Z", - "iopub.status.busy": "2024-06-25T15:59:54.139017Z", - "iopub.status.idle": "2024-06-25T16:01:33.037683Z", - "shell.execute_reply": "2024-06-25T16:01:33.037091Z" + "iopub.execute_input": "2024-06-25T19:33:55.406220Z", + "iopub.status.busy": "2024-06-25T19:33:55.406041Z", + "iopub.status.idle": "2024-06-25T19:35:30.535430Z", + "shell.execute_reply": "2024-06-25T19:35:30.534808Z" } }, "outputs": [ @@ -1123,7 +1123,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "87e54fc2a5a049c6a320ecf5e3f96b0f", + "model_id": "d65cb8246aa14189b49a0eeae6f3bad0", "version_major": 2, "version_minor": 0 }, @@ -1162,10 +1162,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:33.040118Z", - "iopub.status.busy": "2024-06-25T16:01:33.039683Z", - "iopub.status.idle": "2024-06-25T16:01:33.512027Z", - "shell.execute_reply": "2024-06-25T16:01:33.511469Z" + "iopub.execute_input": "2024-06-25T19:35:30.537781Z", + "iopub.status.busy": "2024-06-25T19:35:30.537412Z", + "iopub.status.idle": "2024-06-25T19:35:30.983712Z", + "shell.execute_reply": "2024-06-25T19:35:30.983121Z" } }, "outputs": [ @@ -1311,10 +1311,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:33.514282Z", - "iopub.status.busy": "2024-06-25T16:01:33.513977Z", - "iopub.status.idle": "2024-06-25T16:01:33.577771Z", - "shell.execute_reply": "2024-06-25T16:01:33.577182Z" + "iopub.execute_input": "2024-06-25T19:35:30.986665Z", + "iopub.status.busy": "2024-06-25T19:35:30.986208Z", + "iopub.status.idle": "2024-06-25T19:35:31.048426Z", + "shell.execute_reply": "2024-06-25T19:35:31.047866Z" } }, "outputs": [ @@ -1418,10 +1418,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:33.580053Z", - "iopub.status.busy": "2024-06-25T16:01:33.579708Z", - "iopub.status.idle": "2024-06-25T16:01:33.588598Z", - "shell.execute_reply": "2024-06-25T16:01:33.588129Z" + "iopub.execute_input": "2024-06-25T19:35:31.050749Z", + "iopub.status.busy": "2024-06-25T19:35:31.050363Z", + "iopub.status.idle": "2024-06-25T19:35:31.060546Z", + "shell.execute_reply": "2024-06-25T19:35:31.060026Z" } }, "outputs": [ @@ -1551,10 +1551,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:33.590752Z", - "iopub.status.busy": "2024-06-25T16:01:33.590420Z", - "iopub.status.idle": "2024-06-25T16:01:33.594920Z", - "shell.execute_reply": "2024-06-25T16:01:33.594492Z" + "iopub.execute_input": "2024-06-25T19:35:31.062742Z", + "iopub.status.busy": "2024-06-25T19:35:31.062469Z", + "iopub.status.idle": "2024-06-25T19:35:31.068251Z", + "shell.execute_reply": "2024-06-25T19:35:31.067801Z" }, "nbsphinx": "hidden" }, @@ -1600,10 +1600,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:33.596980Z", - "iopub.status.busy": "2024-06-25T16:01:33.596660Z", - "iopub.status.idle": "2024-06-25T16:01:34.381403Z", - "shell.execute_reply": "2024-06-25T16:01:34.380842Z" + "iopub.execute_input": "2024-06-25T19:35:31.070241Z", + "iopub.status.busy": "2024-06-25T19:35:31.069928Z", + "iopub.status.idle": "2024-06-25T19:35:31.828844Z", + "shell.execute_reply": "2024-06-25T19:35:31.828271Z" } }, "outputs": [ @@ -1638,10 +1638,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.383808Z", - "iopub.status.busy": "2024-06-25T16:01:34.383372Z", - "iopub.status.idle": "2024-06-25T16:01:34.392034Z", - "shell.execute_reply": "2024-06-25T16:01:34.391496Z" + "iopub.execute_input": "2024-06-25T19:35:31.831222Z", + "iopub.status.busy": "2024-06-25T19:35:31.830895Z", + "iopub.status.idle": "2024-06-25T19:35:31.839311Z", + "shell.execute_reply": "2024-06-25T19:35:31.838857Z" } }, "outputs": [ @@ -1808,10 +1808,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.394025Z", - "iopub.status.busy": "2024-06-25T16:01:34.393851Z", - "iopub.status.idle": "2024-06-25T16:01:34.401149Z", - "shell.execute_reply": "2024-06-25T16:01:34.400699Z" + "iopub.execute_input": "2024-06-25T19:35:31.841482Z", + "iopub.status.busy": "2024-06-25T19:35:31.841163Z", + "iopub.status.idle": "2024-06-25T19:35:31.848176Z", + "shell.execute_reply": "2024-06-25T19:35:31.847749Z" }, "nbsphinx": "hidden" }, @@ -1887,10 +1887,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.403215Z", - "iopub.status.busy": "2024-06-25T16:01:34.402791Z", - "iopub.status.idle": "2024-06-25T16:01:34.861899Z", - "shell.execute_reply": "2024-06-25T16:01:34.861408Z" + "iopub.execute_input": "2024-06-25T19:35:31.850195Z", + "iopub.status.busy": "2024-06-25T19:35:31.849881Z", + "iopub.status.idle": "2024-06-25T19:35:32.292692Z", + "shell.execute_reply": "2024-06-25T19:35:32.292043Z" } }, "outputs": [ @@ -1927,10 +1927,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.864180Z", - "iopub.status.busy": "2024-06-25T16:01:34.863943Z", - "iopub.status.idle": "2024-06-25T16:01:34.881498Z", - "shell.execute_reply": "2024-06-25T16:01:34.880946Z" + "iopub.execute_input": "2024-06-25T19:35:32.295116Z", + "iopub.status.busy": "2024-06-25T19:35:32.294759Z", + "iopub.status.idle": "2024-06-25T19:35:32.310913Z", + "shell.execute_reply": "2024-06-25T19:35:32.310451Z" } }, "outputs": [ @@ -2087,10 +2087,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.883593Z", - "iopub.status.busy": "2024-06-25T16:01:34.883414Z", - "iopub.status.idle": "2024-06-25T16:01:34.889203Z", - "shell.execute_reply": "2024-06-25T16:01:34.888658Z" + "iopub.execute_input": "2024-06-25T19:35:32.313089Z", + "iopub.status.busy": "2024-06-25T19:35:32.312752Z", + "iopub.status.idle": "2024-06-25T19:35:32.318396Z", + "shell.execute_reply": "2024-06-25T19:35:32.317860Z" }, "nbsphinx": "hidden" }, @@ -2135,10 +2135,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.891291Z", - "iopub.status.busy": "2024-06-25T16:01:34.890980Z", - "iopub.status.idle": "2024-06-25T16:01:35.381738Z", - "shell.execute_reply": "2024-06-25T16:01:35.381176Z" + "iopub.execute_input": "2024-06-25T19:35:32.320370Z", + "iopub.status.busy": "2024-06-25T19:35:32.320196Z", + "iopub.status.idle": "2024-06-25T19:35:32.779377Z", + "shell.execute_reply": "2024-06-25T19:35:32.778856Z" } }, "outputs": [ @@ -2220,10 +2220,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.384320Z", - "iopub.status.busy": "2024-06-25T16:01:35.384117Z", - "iopub.status.idle": "2024-06-25T16:01:35.393515Z", - "shell.execute_reply": "2024-06-25T16:01:35.392948Z" + "iopub.execute_input": "2024-06-25T19:35:32.782553Z", + "iopub.status.busy": "2024-06-25T19:35:32.782090Z", + "iopub.status.idle": "2024-06-25T19:35:32.791666Z", + "shell.execute_reply": "2024-06-25T19:35:32.790923Z" } }, "outputs": [ @@ -2351,10 +2351,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.396099Z", - "iopub.status.busy": "2024-06-25T16:01:35.395894Z", - "iopub.status.idle": "2024-06-25T16:01:35.402126Z", - "shell.execute_reply": "2024-06-25T16:01:35.401548Z" + "iopub.execute_input": "2024-06-25T19:35:32.794003Z", + "iopub.status.busy": "2024-06-25T19:35:32.793805Z", + "iopub.status.idle": "2024-06-25T19:35:32.799849Z", + "shell.execute_reply": "2024-06-25T19:35:32.799106Z" }, "nbsphinx": "hidden" }, @@ -2391,10 +2391,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.404738Z", - "iopub.status.busy": "2024-06-25T16:01:35.404204Z", - "iopub.status.idle": "2024-06-25T16:01:35.612273Z", - "shell.execute_reply": "2024-06-25T16:01:35.611806Z" + "iopub.execute_input": "2024-06-25T19:35:32.802393Z", + "iopub.status.busy": "2024-06-25T19:35:32.802198Z", + "iopub.status.idle": "2024-06-25T19:35:33.003653Z", + "shell.execute_reply": "2024-06-25T19:35:33.003206Z" } }, "outputs": [ @@ -2436,10 +2436,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.614504Z", - "iopub.status.busy": "2024-06-25T16:01:35.614159Z", - "iopub.status.idle": "2024-06-25T16:01:35.622328Z", - "shell.execute_reply": "2024-06-25T16:01:35.621874Z" + "iopub.execute_input": "2024-06-25T19:35:33.005778Z", + "iopub.status.busy": "2024-06-25T19:35:33.005613Z", + "iopub.status.idle": "2024-06-25T19:35:33.013113Z", + "shell.execute_reply": "2024-06-25T19:35:33.012647Z" } }, "outputs": [ @@ -2464,47 +2464,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2525,10 +2525,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.624307Z", - "iopub.status.busy": "2024-06-25T16:01:35.623980Z", - "iopub.status.idle": "2024-06-25T16:01:35.825329Z", - "shell.execute_reply": "2024-06-25T16:01:35.824752Z" + "iopub.execute_input": "2024-06-25T19:35:33.015062Z", + "iopub.status.busy": "2024-06-25T19:35:33.014721Z", + "iopub.status.idle": "2024-06-25T19:35:33.209360Z", + "shell.execute_reply": "2024-06-25T19:35:33.208767Z" } }, "outputs": [ @@ -2568,10 +2568,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.827543Z", - "iopub.status.busy": "2024-06-25T16:01:35.827195Z", - "iopub.status.idle": "2024-06-25T16:01:35.831492Z", - "shell.execute_reply": "2024-06-25T16:01:35.831059Z" + "iopub.execute_input": "2024-06-25T19:35:33.211913Z", + "iopub.status.busy": "2024-06-25T19:35:33.211538Z", + "iopub.status.idle": "2024-06-25T19:35:33.216052Z", + "shell.execute_reply": "2024-06-25T19:35:33.215616Z" }, "nbsphinx": "hidden" }, @@ -2608,7 +2608,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00a2bca24eec4f0c9b88cb2fc92f0882": { + "0011fb26fc5d4baa896547da4133122f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2661,60 +2661,25 @@ "width": null } }, - "00fc5c7c28e446d7a8ebdee16a321dd2": { - "model_module": "@jupyter-widgets/base", + "00644b1a57b2451e9cdebb4eb7250f78": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0276af0d79c34842b3872fe19afd8ad5": { + "007876448c144ee39084540ed6eb06b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2729,68 +2694,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d436ae4174324c3ba2ae924751737b13", + "layout": "IPY_MODEL_5745328a69db48878efba6c4bdb99305", "placeholder": "​", - "style": "IPY_MODEL_e50417a341d9423e9e55b901aace207c", + "style": "IPY_MODEL_b54eac280dff4e5dbe0c1d2b48743535", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 97.7MB/s]" + "value": " 8.85k/8.85k [00:00<00:00, 1.45MB/s]" } }, - "030ef5a247784fa1ac0bfcfeeb9ed984": { - "model_module": "@jupyter-widgets/base", + "0120148eaefd42fd9a38edc77bc35ac7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "08b48e25c9ff4f2f881c497ecd3b4212": { + "0261398aaa894092b6eca7f630c39440": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2843,7 +2773,7 @@ "width": null } }, - "0f1145c7f4e3457396f8e82ff166f651": { + "031211ba610a4802b4a54cdf1bba56a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2858,15 +2788,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d640257718124ae98f83b58abaa3f67e", + "layout": "IPY_MODEL_b9a030c7a18e43e0a9ade7e2489ba818", "placeholder": "​", - "style": "IPY_MODEL_68750cf82f204bafb07ab8cbc24c1cad", + "style": "IPY_MODEL_7824f895073b4989aabcc1118fe1e570", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "03ab3894bf4242d8999349575ac3ab13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "03b60960744f469c8562f78a5948c4a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_46f3bc1415b94874ba19257d22e4bfed", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44210013b27e41639717a483f6daeb8c", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.93it/s]" + "value": 10000.0 } }, - "1234fe3d56f740ae82ce97871dfec345": { + "0419dce41e82427eba5f201dcd3224ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2881,15 +2855,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_469a0fafd5634c77883dc5d2fcfb419e", + "layout": "IPY_MODEL_fe37a821e1f04c6f9903e3722f9ab4c2", "placeholder": "​", - "style": "IPY_MODEL_52da613929304814a59f022bcf84114d", + "style": "IPY_MODEL_7f8b4b75f0c545ac966463807f510230", "tabbable": null, "tooltip": null, "value": "100%" } }, - "16616d64040a48d989a6ddad3acd38ea": { + "05b056eafe984430926b52278f208393": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0637c05b667541e782a074923de85b45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2904,15 +2894,96 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6697b9561b2f46c895840213f8eef49a", + "layout": "IPY_MODEL_74f4d829ffbb4508957bfb49f70fe734", "placeholder": "​", - "style": "IPY_MODEL_2a03532e682b4efba09b47e67240c2e3", + "style": "IPY_MODEL_13a871b41cce4be6bd9b0c8fb1116aec", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 40/40 [00:00<00:00, 62.59it/s]" + } + }, + "09c8fb8f5f2945a4948b758b41efb311": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_031211ba610a4802b4a54cdf1bba56a7", + "IPY_MODEL_42fc637a41cf41029345fe4e9b68d6c9", + "IPY_MODEL_c1899c2c83a146b4b5eccb8d3c0892ae" + ], + "layout": "IPY_MODEL_44661251f61148bab2d1f3993f625718", + "tabbable": null, + "tooltip": null + } + }, + "0b157a2c7cf7434fbc4448eaf5ad92d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0d79223cae9246eaaa4f673e81a780a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0f7c857000414450bdc92196b4466489": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_88408a65c5eb4eb48911a14aadbc74cf", + "placeholder": "​", + "style": "IPY_MODEL_26f5985a24fd4b3cb9fb40bc0c1b22a2", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "1996e90614d24cc1af265c027da04c3d": { + "112a5fd388db49e4b8a0f9dffab06426": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2965,7 +3036,7 @@ "width": null } }, - "20ac768b63e544bd914e78a260b4c15e": { + "12693e79b18144d2be2b4b4399f4789e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2981,35 +3052,75 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9204dcb6c2b64a10932cce95531b36cd", - "max": 40.0, + "layout": "IPY_MODEL_bf14a805f3944138b263cb978e9fcf8b", + "max": 29515.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c621f50e72154a5694661c03089f1a74", + "style": "IPY_MODEL_51c208e957a24da184c9f20ebc42f546", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 29515.0 } }, - "2a03532e682b4efba09b47e67240c2e3": { + "12da0c3d2bd5449dbb811de7fd8b2093": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", + "bar_color": null, + "description_width": "" + } + }, + "13a871b41cce4be6bd9b0c8fb1116aec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", "font_size": null, "text_color": null } }, - "2b3c51631c09401fa0802305f9fae979": { + "1585cf2dc2e448068ac19676773a2a4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_744802ca32e849ab9fea4e8e3861b154", + "IPY_MODEL_2cca5f207862410483ac41718382a443", + "IPY_MODEL_5b650c7c7114407ca633a6f913edbef2" + ], + "layout": "IPY_MODEL_90c7589ac13b443eb422dd2f647490a3", + "tabbable": null, + "tooltip": null + } + }, + "175a6c09ad6c4cbfbdd9543952ef9ffc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3062,56 +3173,7 @@ "width": null } }, - "2ee558f827044b0487f63237565ef4d6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57ca537e65e241058999edf098c0cc12", - "placeholder": "​", - "style": "IPY_MODEL_83603f01c08541bfb8c21be62911d8c4", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "3036fb05af594dd797b328844a0e22fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_732b0630d01f411e9dd38c14e31d45ec", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c759dcbe812443628454741837feb20b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "30c0163d819147c4826b9cea0ff60ee8": { + "1a2d0d43f24f4a179401f7bde3fcbf11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3126,15 +3188,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2bee95424134caaa2c1a289a8aef189", + "layout": "IPY_MODEL_ec23491fb0024cb8a1b7dfd205775551", "placeholder": "​", - "style": "IPY_MODEL_6d8e2f043e06430e8da7fda4e26fa0e7", + "style": "IPY_MODEL_8946f270b2954b22801e92ce10bf7c63", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.16it/s]" + "value": "Downloading readme: 100%" } }, - "327b8f9cd53f4f2ea6711b54f862f8f9": { + "1b72621c613b4da3999f4f434c596d23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3187,83 +3249,33 @@ "width": null } }, - "32d607be832e4a87b4d29b25908be79d": { + "1bb8a6dd435048b28340d4eac6730019": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fd248e0cd1c04dc79322ff7aca18b7ce", - "IPY_MODEL_d50b9bfc8a7440a18611b6040f36e0ef", - "IPY_MODEL_c23c262f69a24c14bfd3abad512115cd" - ], - "layout": "IPY_MODEL_e3619929bfe04a2089d48aed9ab43c36", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1f07c0e6cb7453cb234322863c6974b", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_494b87319f8d45ab8596d3cc2028f7f6", "tabbable": null, - "tooltip": null - } - }, - "3541f6ae1be549d682132f52a5cfd6a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3697d658bca04873a1d2b9a0ede8a8c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "36b2a22362f541489d4f76ed8cc16222": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": 60000.0 } }, - "36dfba7c674e43599ea995af7c735b25": { + "1c96211615924c808f262fae38d4ab01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3279,17 +3291,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0363073ec7b4c22bc18151ee855022b", - "max": 10000.0, + "layout": "IPY_MODEL_1b72621c613b4da3999f4f434c596d23", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_74ae66917b754a099f4798e99734f6ce", + "style": "IPY_MODEL_b461446aa899462d865a83e0c727b5c5", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": 40.0 } }, - "372cb0443d0b44afb0cb8f8a9a2b2678": { + "1d5a9e2ed91b479f9781063cdce66b7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3304,38 +3316,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2ddb2aff76e461dbf3ab68008017ec2", + "layout": "IPY_MODEL_4266637c8f4c47fbb4c9e7bd9cc2cabf", "placeholder": "​", - "style": "IPY_MODEL_d01acd8edce5413085bf6d1c1598d181", + "style": "IPY_MODEL_2047417b76614aad92d50e9d57fa28a2", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 60000/60000 [00:06<00:00, 8928.67 examples/s]" } }, - "382a00815dc943dc9e25f647bca6e91d": { - "model_module": "@jupyter-widgets/controls", + "1f1d67e48a1c45258572b6fbf8ebe4e2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7a402a8d6954e09bae52f5c03372a8d", - "placeholder": "​", - "style": "IPY_MODEL_88177db161de43f5901feca03fd41999", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3a45bc1f3ab94339a13ccda608ee5cde": { + "1fbec845f4cf42bb8efb9b83163e0b9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3388,31 +3430,25 @@ "width": null } }, - "3ab4beadd43d455babf74169c56f96c3": { + "2047417b76614aad92d50e9d57fa28a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2ee558f827044b0487f63237565ef4d6", - "IPY_MODEL_a00975dc4271400da26f2b2c6730f147", - "IPY_MODEL_418bdb191a5346b5a21008e354f0e949" - ], - "layout": "IPY_MODEL_edb1c73c77f440a38f7ec9a4dbc63f56", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3be55120079a4ee7bee9f27e087d8e9a": { + "2426b36b4bcd4538a7a1a6c6f443b609": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3465,74 +3501,67 @@ "width": null } }, - "3c88d25d7dc64be9bb75545303d3788e": { + "26f5985a24fd4b3cb9fb40bc0c1b22a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8aaaef0517e4c3bafa1637a9be4729e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0c48a1573284fcfa81203a934408db8", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3e8d6a20ee354d0e8bdce9b5fa613544": { + "2854eeec578a4c3e9a9828ec08c1652c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_834961f148264e3087b8fb67a2c4d752", - "placeholder": "​", - "style": "IPY_MODEL_9a89b0e4795143e39beebbf9429bdb5b", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "40bec62c746240f5805cc962d241a3dc": { + "2a37f3b6e2e64eda9d5aad4e57bb6475": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f1d67e48a1c45258572b6fbf8ebe4e2", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9b58b8eff8e745eb9e937354fedb1807", + "tabbable": null, + "tooltip": null, + "value": 5148.0 } }, - "418bdb191a5346b5a21008e354f0e949": { + "2c916b2e66ff458bae959988d3edfc7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3547,15 +3576,57 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eb2cffb3da7d40f89f90e569f598abf1", + "layout": "IPY_MODEL_0011fb26fc5d4baa896547da4133122f", "placeholder": "​", - "style": "IPY_MODEL_cb5a3044573a4dd4bbc95d0e8f95af8c", + "style": "IPY_MODEL_9d3b7c0890814f2c9985eb79f97a04ac", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "2cca5f207862410483ac41718382a443": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ecde01d38be144db9d996498b953e5b4", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_555d30c920d344059abb5d85084268de", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7343.06 examples/s]" + "value": 26421880.0 + } + }, + "2f9e9f6f7ebe42afa59802bdf7306ccb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4299fbc28eb04c0989e4c8d0841588e1": { + "30a335f232c04fe7b668ed6a418d27b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3573,33 +3644,30 @@ "text_color": null } }, - "4410ca16f95e4c04b54f8ffa70cd0c93": { + "3253c6b3e3464da88809a4ce236555f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8152d82479b846d49e30f516970c57ab", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_98888a17e4554b7ba756b9a6b65d2316", + "layout": "IPY_MODEL_495d2ed12e8446bc80ad465a9f89a896", + "placeholder": "​", + "style": "IPY_MODEL_00644b1a57b2451e9cdebb4eb7250f78", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 63.41it/s]" } }, - "4551701275ee4bceb60bd9b95b24c7fc": { + "32b6d99a486e461eacd6e063c5420eff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3652,7 +3720,7 @@ "width": null } }, - "46417180fb4f456eacfba82f9c7df65d": { + "38eb030b83c64212b25df93cfe516570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3667,15 +3735,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f9846a5955244385b468847a2dde1330", + "layout": "IPY_MODEL_77b7d71484644232938d588a6fbcc4ed", "placeholder": "​", - "style": "IPY_MODEL_dd4452cd48954e85aa825a567e0e144b", + "style": "IPY_MODEL_cd436773aeeb4e5f811c805cd47f7071", "tabbable": null, "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 125MB/s]" + "value": "100%" + } + }, + "39314c631f444d01903b4f50ccfc66df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "469a0fafd5634c77883dc5d2fcfb419e": { + "420adb2a809a4b7693bda83cb040e60c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3728,43 +3814,86 @@ "width": null } }, - "46ea9e7ca18b4b4b853571e05fb84b52": { - "model_module": "@jupyter-widgets/controls", + "4266637c8f4c47fbb4c9e7bd9cc2cabf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4a890dea600a485bb747099c68a2658c": { + "4268b194fef1470096c0d165c23da82f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b218eb25d1544b2198406c8d0daa0439", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53d0e7a8e50247a88566f4b59b14d553", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "4bc0bbfd7526490794a6614391b370db": { + "42c998dc50734d8c93d723bb78939244": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3817,25 +3946,7 @@ "width": null } }, - "4cd99a333a8d42548c852d9e15c540ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4eb0cfe3ce8f4af08cd5a3de61349208": { + "42e73c1ad6b74b238d722d1c7ee516b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3851,7 +3962,7 @@ "description_width": "" } }, - "4ec33725118344c896e009c3ac37fa87": { + "42fc637a41cf41029345fe4e9b68d6c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3867,40 +3978,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_030ef5a247784fa1ac0bfcfeeb9ed984", + "layout": "IPY_MODEL_175a6c09ad6c4cbfbdd9543952ef9ffc", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e41de8aea5c14ba0b708761783524953", + "style": "IPY_MODEL_0b157a2c7cf7434fbc4448eaf5ad92d7", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "51901ce48b20427e853e7995188b3ab3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d814baa5dce4ba38fbffc542a3f695a", - "placeholder": "​", - "style": "IPY_MODEL_b37d4106b08b4191ba1c544b289fa956", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 601kB/s]" - } - }, - "527b5c1effbd4985960cf22bbd3be2a1": { + "434f1175a8614296b63392ddd951670e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3918,48 +4006,49 @@ "text_color": null } }, - "52da613929304814a59f022bcf84114d": { + "44210013b27e41639717a483f6daeb8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "5355b0c6436149178245c21e7b7066a3": { + "4439d6c4067d42b2bc7b5b49e651de05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bbe9c32cdd244c178b1ce0b03ea6b432", - "placeholder": "​", - "style": "IPY_MODEL_f17d354c86284d35ae20ef47bd44fb2b", + "layout": "IPY_MODEL_70c9b3de67694dc4a8c38a542842ae3c", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2854eeec578a4c3e9a9828ec08c1652c", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 4.0 } }, - "57ca537e65e241058999edf098c0cc12": { + "44661251f61148bab2d1f3993f625718": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4012,157 +4101,16 @@ "width": null } }, - "592071f9c0924aaea6ff161b8c62cdc5": { - "model_module": "@jupyter-widgets/controls", + "46692e2429834f6b8ad6d2e3bd669ac5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6142950e7acf4834a065514ed79991ea", - "placeholder": "​", - "style": "IPY_MODEL_527b5c1effbd4985960cf22bbd3be2a1", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1167.11it/s]" - } - }, - "59321af79ae240afbb2d2bb44da084e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3e8d6a20ee354d0e8bdce9b5fa613544", - "IPY_MODEL_7385a478cceb41c39d8d369bb7eb2bdd", - "IPY_MODEL_f89e573249f44029b93df296debc6c88" - ], - "layout": "IPY_MODEL_00fc5c7c28e446d7a8ebdee16a321dd2", - "tabbable": null, - "tooltip": null - } - }, - "5986f7447dd049ac8f699026e1d57966": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_382a00815dc943dc9e25f647bca6e91d", - "IPY_MODEL_e24a06fd0bcd4f10874ebd6ab0809f46", - "IPY_MODEL_51901ce48b20427e853e7995188b3ab3" - ], - "layout": "IPY_MODEL_ad33374fddb342d49454384c9e9e46ee", - "tabbable": null, - "tooltip": null - } - }, - "59ff8b60607a478c8df614b2f177106c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1234fe3d56f740ae82ce97871dfec345", - "IPY_MODEL_3036fb05af594dd797b328844a0e22fe", - "IPY_MODEL_30c0163d819147c4826b9cea0ff60ee8" - ], - "layout": "IPY_MODEL_dee80679427a4dbcb84dcd808a848939", - "tabbable": null, - "tooltip": null - } - }, - "5bbcfc5e1ea9459ca3d2fc7a9692b707": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_00a2bca24eec4f0c9b88cb2fc92f0882", - "placeholder": "​", - "style": "IPY_MODEL_a54194e0181f412b8e8c351dbbfe38ec", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5fdf3acb1fda4063bb0263421fc1a2ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b3a58baa3e0443f7bd4002def4164b21", - "placeholder": "​", - "style": "IPY_MODEL_46ea9e7ca18b4b4b853571e05fb84b52", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8608.71 examples/s]" - } - }, - "6142950e7acf4834a065514ed79991ea": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -4206,7 +4154,7 @@ "width": null } }, - "619cc7d28520406990256faecf1de57d": { + "46f3bc1415b94874ba19257d22e4bfed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4259,56 +4207,7 @@ "width": null } }, - "6235df9f91674033b0a8b6fc2b623de9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ec9bf577a6ab487cadf62ae18b0711bb", - "placeholder": "​", - "style": "IPY_MODEL_c283f9c9d13c4497b62be4281b083324", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:38<00:00, 1693.77it/s]" - } - }, - "6472d7919c1b43b3be715407ab592946": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cbf5d8234045435498d4ce7858ef501b", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a942b2f5acc64ce6b6a1dbd75df5788f", - "tabbable": null, - "tooltip": null, - "value": 4.0 - } - }, - "6697b9561b2f46c895840213f8eef49a": { + "470cbbcbb3d44bb493031e8387fe6adc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4361,48 +4260,23 @@ "width": null } }, - "68750cf82f204bafb07ab8cbc24c1cad": { + "494b87319f8d45ab8596d3cc2028f7f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6953a1f2481345a1b5d853d364d44c72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3d5c9f93a9c4875bcf62afa3cac7b53", - "placeholder": "​", - "style": "IPY_MODEL_b9607badf8e04adfa894d208310e8bae", - "tabbable": null, - "tooltip": null, - "value": "100%" + "bar_color": null, + "description_width": "" } }, - "69ec1a246f3f46ebad8612692988b6f3": { + "495d2ed12e8446bc80ad465a9f89a896": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4455,30 +4329,7 @@ "width": null } }, - "6bde698673824ecb985f413298f460e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8286c7f8409f4eff864c5504eee57c54", - "placeholder": "​", - "style": "IPY_MODEL_3541f6ae1be549d682132f52a5cfd6a2", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6cca320c798b4f549211d73974e1e857": { + "4b1c1c0a8eb2477b91cae9a52c47e58c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4531,7 +4382,7 @@ "width": null } }, - "6d814baa5dce4ba38fbffc542a3f695a": { + "4b9e51775e974654a075cfdb1d1b699c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4584,7 +4435,7 @@ "width": null } }, - "6d8e2f043e06430e8da7fda4e26fa0e7": { + "4cfef00083ee41c18334522b0aaafbf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4602,7 +4453,54 @@ "text_color": null } }, - "7016002eb1994182ad6ec7dcc2ede322": { + "4d2025fc902f41b2b7c3474d4e9cd2fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2c916b2e66ff458bae959988d3edfc7f", + "IPY_MODEL_f3a3a4eba3674c53882dfe2a1c081653", + "IPY_MODEL_1d5a9e2ed91b479f9781063cdce66b7e" + ], + "layout": "IPY_MODEL_e7dae7ac77284ca7a938a5140aea14ba", + "tabbable": null, + "tooltip": null + } + }, + "4f814c4fdc474d7e8305f032c2caaf1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7437bf57da394059a3d162f5d7a1a77a", + "placeholder": "​", + "style": "IPY_MODEL_434f1175a8614296b63392ddd951670e", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "51c208e957a24da184c9f20ebc42f546": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4618,7 +4516,7 @@ "description_width": "" } }, - "707beb9b70c24441aea27e97140a0d46": { + "53d0e7a8e50247a88566f4b59b14d553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4634,33 +4532,44 @@ "description_width": "" } }, - "72e3112932344056a775875c949b3943": { + "555d30c920d344059abb5d85084268de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c67c2da0384b44e69de81367a8784a0e", - "placeholder": "​", - "style": "IPY_MODEL_40bec62c746240f5805cc962d241a3dc", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "732b0630d01f411e9dd38c14e31d45ec": { - "model_module": "@jupyter-widgets/base", + "569d3453747c444a9c2661732c8b1fb5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5745328a69db48878efba6c4bdb99305": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -4710,33 +4619,7 @@ "width": null } }, - "7385a478cceb41c39d8d369bb7eb2bdd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a08c3b1de5e947fab64fd26266bfd3d3", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de35c9abf64849df94aeb925d828b6c7", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "73c2b683cbc24611aa52ff7e451e549a": { + "594f571cc61a464d8934a2a6ebaff1ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4789,7 +4672,7 @@ "width": null } }, - "74942a7e319d4370a08764ec92c0db64": { + "5a36ed53de5c4a9c8637a7b4013dfb54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4842,23 +4725,30 @@ "width": null } }, - "74ae66917b754a099f4798e99734f6ce": { + "5b650c7c7114407ca633a6f913edbef2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d6b409257aab47b888b2954d7b04073e", + "placeholder": "​", + "style": "IPY_MODEL_d067169b2a1745bd893cbaa56705df57", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 124MB/s]" } }, - "77ae27eb0a8144f99eb62c3768dbe735": { + "5c565e132b5a46d398435caf4df461d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4873,57 +4763,48 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5bbcfc5e1ea9459ca3d2fc7a9692b707", - "IPY_MODEL_4410ca16f95e4c04b54f8ffa70cd0c93", - "IPY_MODEL_0f1145c7f4e3457396f8e82ff166f651" + "IPY_MODEL_4f814c4fdc474d7e8305f032c2caaf1d", + "IPY_MODEL_bb91a65b9f7c4bcbae0545c6e0c0c603", + "IPY_MODEL_e39cdb7fe88f4310bfd8b1dcd8ac5ae2" ], - "layout": "IPY_MODEL_6cca320c798b4f549211d73974e1e857", + "layout": "IPY_MODEL_a7668c39f7324f3abf6dee2fb270336f", "tabbable": null, "tooltip": null } }, - "78fe76b833f9495aaf25e408be1d5b05": { + "5c5b477c793d4588a25705aece5a2a2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_82c6ef770eed485b90c6eb668f2e6c09", - "placeholder": "​", - "style": "IPY_MODEL_d5cb1a291b51410aa093a37acf7edf22", - "tabbable": null, - "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 3.85MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7a0ff8b1dbc04d4f800b71da7bee8dd6": { + "5d69e819f44b493a8d07e58cb39a6a69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7ca27630d14e493fabb3da74f24490f7": { + "5efe1df058ed48ae9674a8448d855c64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4976,7 +4857,31 @@ "width": null } }, - "8152d82479b846d49e30f516970c57ab": { + "63e4117109d44d79bcece5146781039a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eb56ed8bd1a74a87a2a7cf25c0992594", + "IPY_MODEL_ee448c322caa4ddbae258419893e01e8", + "IPY_MODEL_3253c6b3e3464da88809a4ce236555f1" + ], + "layout": "IPY_MODEL_659e46eb96e64415a9a947aea4256de6", + "tabbable": null, + "tooltip": null + } + }, + "6566ace6c0aa4a21abbf6d708cb457b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5029,7 +4934,7 @@ "width": null } }, - "8286c7f8409f4eff864c5504eee57c54": { + "659e46eb96e64415a9a947aea4256de6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5082,7 +4987,7 @@ "width": null } }, - "82c6ef770eed485b90c6eb668f2e6c09": { + "670532c752594999bbc5db2f86da0bfa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5135,7 +5040,51 @@ "width": null } }, - "834961f148264e3087b8fb67a2c4d752": { + "67bb2dfe0bed499ea09cbd03e6cf7fd1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_470cbbcbb3d44bb493031e8387fe6adc", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_42e73c1ad6b74b238d722d1c7ee516b1", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "6b4971a3c52247978439a6e52e61bca9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6bf38f634a0d459bbfabdc8331eb6e3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5188,25 +5137,60 @@ "width": null } }, - "83603f01c08541bfb8c21be62911d8c4": { - "model_module": "@jupyter-widgets/controls", + "70c9b3de67694dc4a8c38a542842ae3c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "85a2c07c6cc646928eead9fb48843201": { + "71c3b5aba9c94572b460be6639753985": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5259,57 +5243,7 @@ "width": null } }, - "8669425c063a4576aa34a631160d8bc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7180bb48e7640c8b49a60fca8c2f72f", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_acdfa08b56864bfbab6558910a74ca83", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "87333c993d264d4481aba459cf6e8ff5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6bde698673824ecb985f413298f460e5", - "IPY_MODEL_20ac768b63e544bd914e78a260b4c15e", - "IPY_MODEL_cb56ac6d7b184180a50ee0439943f6f2" - ], - "layout": "IPY_MODEL_3be55120079a4ee7bee9f27e087d8e9a", - "tabbable": null, - "tooltip": null - } - }, - "87e290ca19eb4c4489913dab76bc45ec": { + "720932772aa64aba973045693c189137": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5362,123 +5296,106 @@ "width": null } }, - "87e54fc2a5a049c6a320ecf5e3f96b0f": { - "model_module": "@jupyter-widgets/controls", + "7437bf57da394059a3d162f5d7a1a77a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e8b27e00323148d68063c360049905a3", - "IPY_MODEL_899b0406983a444bacdf147768015099", - "IPY_MODEL_6235df9f91674033b0a8b6fc2b623de9" - ], - "layout": "IPY_MODEL_4551701275ee4bceb60bd9b95b24c7fc", - "tabbable": null, - "tooltip": null - } - }, - "88177db161de43f5901feca03fd41999": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "88aa98714ddc46339b22c75ae045aaeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16616d64040a48d989a6ddad3acd38ea", - "IPY_MODEL_36dfba7c674e43599ea995af7c735b25", - "IPY_MODEL_e829822bf3dd43b59fe63b15f7cbf820" - ], - "layout": "IPY_MODEL_73c2b683cbc24611aa52ff7e451e549a", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "899b0406983a444bacdf147768015099": { + "744802ca32e849ab9fea4e8e3861b154": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_619cc7d28520406990256faecf1de57d", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_707beb9b70c24441aea27e97140a0d46", + "layout": "IPY_MODEL_f19d1922e1974c3fa19988e4d4701f69", + "placeholder": "​", + "style": "IPY_MODEL_f924af4748c740ce948540ad741071d9", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Downloading data: 100%" } }, - "8bb1671be5a443c5a5465deb59b4f77e": { + "74a2396570a8494a948c33421fd20593": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a7210f49848649f7ad7f80bfe51b7525", - "IPY_MODEL_6472d7919c1b43b3be715407ab592946", - "IPY_MODEL_592071f9c0924aaea6ff161b8c62cdc5" - ], - "layout": "IPY_MODEL_b32bead769f446b9a11d89f7515bc76e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32b6d99a486e461eacd6e063c5420eff", + "placeholder": "​", + "style": "IPY_MODEL_8ec14b76495d43b599a2c06778d3e9c7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 60000/60000 [00:35<00:00, 1632.10it/s]" } }, - "8ce40155a5f94fff8f1f2743f6740c03": { + "74f4d829ffbb4508957bfb49f70fe734": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5531,7 +5448,7 @@ "width": null } }, - "9204dcb6c2b64a10932cce95531b36cd": { + "757e89f53d174fc6b18a1a8380eb5700": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5584,31 +5501,7 @@ "width": null } }, - "95ee3d7fb42843caa13a676150c30adf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72e3112932344056a775875c949b3943", - "IPY_MODEL_a70a4583dbc94064b6f372928c7fa0bb", - "IPY_MODEL_78fe76b833f9495aaf25e408be1d5b05" - ], - "layout": "IPY_MODEL_98d7008f25ab48968b2c006d31f01c21", - "tabbable": null, - "tooltip": null - } - }, - "98888a17e4554b7ba756b9a6b65d2316": { + "778338997ef84774b5fc1b3e363f63c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5624,7 +5517,7 @@ "description_width": "" } }, - "98d7008f25ab48968b2c006d31f01c21": { + "77b7d71484644232938d588a6fbcc4ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5677,41 +5570,7 @@ "width": null } }, - "9a89b0e4795143e39beebbf9429bdb5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9a90aa714495418680d0f9dfe89fb9be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9aa48a21fb9346b6987f737ee56ef26f": { + "7824f895073b4989aabcc1118fe1e570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5729,7 +5588,7 @@ "text_color": null } }, - "9b8d2dba55714cc185aaa996079d0676": { + "789ca2ff29a44242935c400b234b1969": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5782,7 +5641,31 @@ "width": null } }, - "9cf1c466395348f18828c5b1a91338e1": { + "79a15df271d14bfa8e4ed6dbe1c37a8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f7c857000414450bdc92196b4466489", + "IPY_MODEL_2a37f3b6e2e64eda9d5aad4e57bb6475", + "IPY_MODEL_beba078ac8d64eb893f533808fb9cfdd" + ], + "layout": "IPY_MODEL_1fbec845f4cf42bb8efb9b83163e0b9b", + "tabbable": null, + "tooltip": null + } + }, + "7a1637c606824542971bdd53178cb547": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5800,7 +5683,7 @@ "text_color": null } }, - "9cf1fcd4b1864894bc090bc4870b6c13": { + "7ea218ed3bac4e3fb0038d64392dab79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5853,91 +5736,181 @@ "width": null } }, - "9d2c44952ff24656b7ba05c38b4a164c": { - "model_module": "@jupyter-widgets/base", + "7f8b4b75f0c545ac966463807f510230": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9d4381cd48b14d489a32a374e45c5b64": { + "815effa183cf4ca4a7160696d4e9eb83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a36a0824e2bc4b84adf3d6f24bae08e7", + "IPY_MODEL_f05de778ce8641daad6aaad095cd0a12", + "IPY_MODEL_fa8ee62999bf48be85571066708c3a70" + ], + "layout": "IPY_MODEL_c22ca0c1ac314ae3b7526a4ab19f5d59", + "tabbable": null, + "tooltip": null } }, - "9faeeee70c6f4c57a09a07d6c2fae428": { - "model_module": "@jupyter-widgets/base", + "826306b901dc424696b95e114b1441ca": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5efe1df058ed48ae9674a8448d855c64", + "placeholder": "​", + "style": "IPY_MODEL_569d3453747c444a9c2661732c8b1fb5", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.61MB/s]" + } + }, + "8310ed48648242c0a8109e15f13f0f84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bf1140bdc30747b7875150c89a9b56d2", + "placeholder": "​", + "style": "IPY_MODEL_c9d9f8c0348541bc93ce2df33d9b1138", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1391.72it/s]" + } + }, + "85af3d53abef4aa8a6046017943dc826": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f293407e061d47a9b2a576f458cfc91a", + "IPY_MODEL_67bb2dfe0bed499ea09cbd03e6cf7fd1", + "IPY_MODEL_0637c05b667541e782a074923de85b45" + ], + "layout": "IPY_MODEL_db5a222bfbda444ca14ba447f3de1c6b", + "tabbable": null, + "tooltip": null + } + }, + "85c627e125a94180abe254acf928a1fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0419dce41e82427eba5f201dcd3224ce", + "IPY_MODEL_fe9dd2d447a247b29fd9568449e4c772", + "IPY_MODEL_f1b29538d40a44f88d457938817aa9ca" + ], + "layout": "IPY_MODEL_ddf398ca235a4371928fa707d2edfab3", + "tabbable": null, + "tooltip": null + } + }, + "877f435c18c84cdb9acff7996168eee1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff64e02006ba4b3b90e1f252f3c58e25", + "placeholder": "​", + "style": "IPY_MODEL_8dcbfb9f172b4a8296952470fd844435", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "88408a65c5eb4eb48911a14aadbc74cf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, @@ -5975,33 +5948,25 @@ "width": null } }, - "a00975dc4271400da26f2b2c6730f147": { + "8946f270b2954b22801e92ce10bf7c63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_69ec1a246f3f46ebad8612692988b6f3", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36b2a22362f541489d4f76ed8cc16222", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a08c3b1de5e947fab64fd26266bfd3d3": { + "895c5faa034242eeb651e5c6bf3b1a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6054,49 +6019,7 @@ "width": null } }, - "a207c35dbb984e0c862d63f5ddc5638a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cf9ddc57dd524523a1b063251bf1ed52", - "IPY_MODEL_3c88d25d7dc64be9bb75545303d3788e", - "IPY_MODEL_5fdf3acb1fda4063bb0263421fc1a2ef" - ], - "layout": "IPY_MODEL_ca1a9b23845f44b78b4443a944efeed7", - "tabbable": null, - "tooltip": null - } - }, - "a54194e0181f412b8e8c351dbbfe38ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a63b4a8a581846abb26e47939364a898": { + "8a47898db9234aa796ec7fb93a91d6e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6149,114 +6072,25 @@ "width": null } }, - "a70a4583dbc94064b6f372928c7fa0bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a63b4a8a581846abb26e47939364a898", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7016002eb1994182ad6ec7dcc2ede322", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "a7210f49848649f7ad7f80bfe51b7525": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_87e290ca19eb4c4489913dab76bc45ec", - "placeholder": "​", - "style": "IPY_MODEL_9aa48a21fb9346b6987f737ee56ef26f", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "a81a9c47eee74d608e63cd93038d0af0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d2c44952ff24656b7ba05c38b4a164c", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd786ad88c274d8fbf66f177bebce25d", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "a942b2f5acc64ce6b6a1dbd75df5788f": { + "8dcbfb9f172b4a8296952470fd844435": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "acdfa08b56864bfbab6558910a74ca83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ad32ac7bf85d4e76b401ad89a60d4dad": { + "8ec14b76495d43b599a2c06778d3e9c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6274,7 +6108,7 @@ "text_color": null } }, - "ad33374fddb342d49454384c9e9e46ee": { + "90c7589ac13b443eb422dd2f647490a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6327,33 +6161,30 @@ "width": null } }, - "af7e04db3dd84570a12df63801a8ba21": { + "965ba01b14474336b39a9ed4b2b5dcb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_74942a7e319d4370a08764ec92c0db64", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4eb0cfe3ce8f4af08cd5a3de61349208", + "layout": "IPY_MODEL_f984f1911a3a4d3d97fb914d1b6abbce", + "placeholder": "​", + "style": "IPY_MODEL_03ab3894bf4242d8999349575ac3ab13", "tabbable": null, "tooltip": null, - "value": 26421880.0 + "value": " 10000/10000 [00:01<00:00, 8813.96 examples/s]" } }, - "b0aa6e45faa1451abc1a6238706d15b3": { + "96d31dd7865d4b63adc5a9c556d6d472": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6406,23 +6237,7 @@ "width": null } }, - "b28291f3cbc5454c8f76da1de8215176": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b286f4c78e7c41bcac42e1109bd74f20": { + "9a2bf66dd6c64060b9a09eaba40a26a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6475,7 +6290,47 @@ "width": null } }, - "b2d32db6df15471c88c15a465bc284b6": { + "9abe31b01bc04cc89ff967d26e368fdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1a2d0d43f24f4a179401f7bde3fcbf11", + "IPY_MODEL_e87b060be03d4626b55c248e0abe4a42", + "IPY_MODEL_007876448c144ee39084540ed6eb06b9" + ], + "layout": "IPY_MODEL_9a2bf66dd6c64060b9a09eaba40a26a8", + "tabbable": null, + "tooltip": null + } + }, + "9b58b8eff8e745eb9e937354fedb1807": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9bb5412853cd41ffb7c03f1615108a7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6490,15 +6345,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b939fd966f764ffc992ddfb5654218b0", + "layout": "IPY_MODEL_d69fd7a89a8640babdbb4265c990aff2", "placeholder": "​", - "style": "IPY_MODEL_e12d7984cada4b0d84daae9e5104b174", + "style": "IPY_MODEL_a40425de9d3b4923a12d5dfc419b6cf3", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.42MB/s]" + "value": "Map (num_proc=4): 100%" + } + }, + "9c72cef284e84cdaa2856f28c3593985": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9d3b7c0890814f2c9985eb79f97a04ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b32bead769f446b9a11d89f7515bc76e": { + "9dd47964eda34050b58a0ab2b3415ef0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6551,31 +6442,48 @@ "width": null } }, - "b35a892076d14a83a2ed40c58cffc8c7": { + "9fb3ff4fed8c462793870fe1a08d713c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a36a0824e2bc4b84adf3d6f24bae08e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e2b7bd621c5149328f0f28435da0b60e", - "IPY_MODEL_8669425c063a4576aa34a631160d8bc6", - "IPY_MODEL_b2d32db6df15471c88c15a465bc284b6" - ], - "layout": "IPY_MODEL_9cf1fcd4b1864894bc090bc4870b6c13", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_46692e2429834f6b8ad6d2e3bd669ac5", + "placeholder": "​", + "style": "IPY_MODEL_0120148eaefd42fd9a38edc77bc35ac7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "b37d4106b08b4191ba1c544b289fa956": { + "a40425de9d3b4923a12d5dfc419b6cf3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6593,7 +6501,7 @@ "text_color": null } }, - "b3a58baa3e0443f7bd4002def4164b21": { + "a67a308439454f8eb0f02917f9c68472": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6646,7 +6554,25 @@ "width": null } }, - "b939fd966f764ffc992ddfb5654218b0": { + "a75ebf7ef9174d5e9cc59c872badcf44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a7668c39f7324f3abf6dee2fb270336f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6699,48 +6625,55 @@ "width": null } }, - "b9607badf8e04adfa894d208310e8bae": { + "a9c34fb99987402ba4f521a988475574": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d76da02ff0a84d74ad2c21a60fdbf6a8", + "IPY_MODEL_12693e79b18144d2be2b4b4399f4789e", + "IPY_MODEL_826306b901dc424696b95e114b1441ca" + ], + "layout": "IPY_MODEL_594f571cc61a464d8934a2a6ebaff1ed", + "tabbable": null, + "tooltip": null } }, - "bb9a42e0d8a245199f46263bf91a3c19": { + "abcdd0c8b869449f849ce66d0123d168": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_327b8f9cd53f4f2ea6711b54f862f8f9", - "placeholder": "​", - "style": "IPY_MODEL_4299fbc28eb04c0989e4c8d0841588e1", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c336f45d284843d786cfce257d33793c", + "IPY_MODEL_4439d6c4067d42b2bc7b5b49e651de05", + "IPY_MODEL_8310ed48648242c0a8109e15f13f0f84" + ], + "layout": "IPY_MODEL_cb33ab7c5bf847199febe8a7955b0a6b", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.72it/s]" + "tooltip": null } }, - "bbe9c32cdd244c178b1ce0b03ea6b432": { + "af23bba915a74358b250ef2bb1a7d577": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6793,25 +6726,7 @@ "width": null } }, - "bc498e67cff24de6a19be95ac7294058": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c0363073ec7b4c22bc18151ee855022b": { + "b218eb25d1544b2198406c8d0daa0439": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6864,7 +6779,7 @@ "width": null } }, - "c0c48a1573284fcfa81203a934408db8": { + "b461446aa899462d865a83e0c727b5c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6880,7 +6795,72 @@ "description_width": "" } }, - "c0c9cf4e322045c2b1ab002a50b9d2ab": { + "b496abba866a4243bc5d3e643a27bfaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5a36ed53de5c4a9c8637a7b4013dfb54", + "placeholder": "​", + "style": "IPY_MODEL_c5dd4307fb0e435f9e6eecf7eba58ea3", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 604kB/s]" + } + }, + "b54eac280dff4e5dbe0c1d2b48743535": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b56125fc059b47e3b228dc3ed3b629c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_38eb030b83c64212b25df93cfe516570", + "IPY_MODEL_1c96211615924c808f262fae38d4ab01", + "IPY_MODEL_bed8037a62494179a7e38b4603feef04" + ], + "layout": "IPY_MODEL_8a47898db9234aa796ec7fb93a91d6e9", + "tabbable": null, + "tooltip": null + } + }, + "b9a030c7a18e43e0a9ade7e2489ba818": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6933,48 +6913,119 @@ "width": null } }, - "c23c262f69a24c14bfd3abad512115cd": { + "bb0480efe0bc4bd3801a7f7315323cf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9b8d2dba55714cc185aaa996079d0676", - "placeholder": "​", - "style": "IPY_MODEL_ad32ac7bf85d4e76b401ad89a60d4dad", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.07it/s]" - } + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - "c283f9c9d13c4497b62be4281b083324": { + "bb91a65b9f7c4bcbae0545c6e0c0c603": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_757e89f53d174fc6b18a1a8380eb5700", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_05b056eafe984430926b52278f208393", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "bdbb1b6b96824b1ba8715b85852886fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_877f435c18c84cdb9acff7996168eee1", + "IPY_MODEL_03b60960744f469c8562f78a5948c4a9", + "IPY_MODEL_965ba01b14474336b39a9ed4b2b5dcb5" + ], + "layout": "IPY_MODEL_4b1c1c0a8eb2477b91cae9a52c47e58c", + "tabbable": null, + "tooltip": null + } + }, + "beba078ac8d64eb893f533808fb9cfdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_789ca2ff29a44242935c400b234b1969", + "placeholder": "​", + "style": "IPY_MODEL_0d79223cae9246eaaa4f673e81a780a8", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 823kB/s]" } }, - "c3267e936d15433e8e1570c4da7391c8": { + "bed8037a62494179a7e38b4603feef04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_af23bba915a74358b250ef2bb1a7d577", + "placeholder": "​", + "style": "IPY_MODEL_4cfef00083ee41c18334522b0aaafbf6", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.66it/s]" + } + }, + "bf1140bdc30747b7875150c89a9b56d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7027,23 +7078,7 @@ "width": null } }, - "c621f50e72154a5694661c03089f1a74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c67c2da0384b44e69de81367a8784a0e": { + "bf14a805f3944138b263cb978e9fcf8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7096,7 +7131,7 @@ "width": null } }, - "c6e865ef350d4e6d8b938b25e09c83f5": { + "c1899c2c83a146b4b5eccb8d3c0892ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7111,49 +7146,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0aa6e45faa1451abc1a6238706d15b3", + "layout": "IPY_MODEL_9dd47964eda34050b58a0ab2b3415ef0", "placeholder": "​", - "style": "IPY_MODEL_c782438aef24416bb029f3593cc349fc", + "style": "IPY_MODEL_da7255e4a0a1407392cd379cdb23eb3c", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 893kB/s]" - } - }, - "c759dcbe812443628454741837feb20b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c782438aef24416bb029f3593cc349fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 61.06it/s]" } }, - "c8aaaef0517e4c3bafa1637a9be4729e": { + "c1f07c0e6cb7453cb234322863c6974b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7206,7 +7207,7 @@ "width": null } }, - "ca1a9b23845f44b78b4443a944efeed7": { + "c22ca0c1ac314ae3b7526a4ab19f5d59": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7259,7 +7260,7 @@ "width": null } }, - "cb56ac6d7b184180a50ee0439943f6f2": { + "c336f45d284843d786cfce257d33793c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7274,15 +7275,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4bc0bbfd7526490794a6614391b370db", + "layout": "IPY_MODEL_670532c752594999bbc5db2f86da0bfa", "placeholder": "​", - "style": "IPY_MODEL_4cd99a333a8d42548c852d9e15c540ef", + "style": "IPY_MODEL_9fb3ff4fed8c462793870fe1a08d713c", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.35it/s]" + "value": "Computing checksums: 100%" } }, - "cb5a3044573a4dd4bbc95d0e8f95af8c": { + "c5dd4307fb0e435f9e6eecf7eba58ea3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7300,7 +7301,30 @@ "text_color": null } }, - "cbf5d8234045435498d4ce7858ef501b": { + "c63bcc18843a48cd9b4c1b91951a299e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71c3b5aba9c94572b460be6639753985", + "placeholder": "​", + "style": "IPY_MODEL_7a1637c606824542971bdd53178cb547", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" + } + }, + "c6b17708d8404f668a926cfeef0a478f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7353,7 +7377,7 @@ "width": null } }, - "cc805ca1a19a4a51b6f221fdf93940e9": { + "c8922b8978bf4fc58458e70640f1b5c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7371,30 +7395,7 @@ "text_color": null } }, - "cf9ddc57dd524523a1b063251bf1ed52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ce40155a5f94fff8f1f2743f6740c03", - "placeholder": "​", - "style": "IPY_MODEL_f0404686cde642a6b1c02549bbeaadf2", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "d01acd8edce5413085bf6d1c1598d181": { + "c9d9f8c0348541bc93ce2df33d9b1138": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7412,7 +7413,7 @@ "text_color": null } }, - "d2476c0eba3c4c8bbb35810763b8091d": { + "cb33ab7c5bf847199febe8a7955b0a6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7465,7 +7466,43 @@ "width": null } }, - "d436ae4174324c3ba2ae924751737b13": { + "cd436773aeeb4e5f811c805cd47f7071": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d067169b2a1745bd893cbaa56705df57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d10a94f6f1994a14b0ce8071ec84d170": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7518,51 +7555,7 @@ "width": null } }, - "d50b9bfc8a7440a18611b6040f36e0ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c3267e936d15433e8e1570c4da7391c8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d4381cd48b14d489a32a374e45c5b64", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "d5cb1a291b51410aa093a37acf7edf22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d640257718124ae98f83b58abaa3f67e": { + "d50d3c5c4ecd49cfbbcb44e787a993ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7615,7 +7608,7 @@ "width": null } }, - "d6765a83a38e4fbb8540a45549a45441": { + "d65cb8246aa14189b49a0eeae6f3bad0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7630,98 +7623,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_372cb0443d0b44afb0cb8f8a9a2b2678", - "IPY_MODEL_af7e04db3dd84570a12df63801a8ba21", - "IPY_MODEL_46417180fb4f456eacfba82f9c7df65d" + "IPY_MODEL_ee7c6e7d3d1b43138e41e0146c75cd98", + "IPY_MODEL_4268b194fef1470096c0d165c23da82f", + "IPY_MODEL_74a2396570a8494a948c33421fd20593" ], - "layout": "IPY_MODEL_1996e90614d24cc1af265c027da04c3d", + "layout": "IPY_MODEL_d10a94f6f1994a14b0ce8071ec84d170", "tabbable": null, "tooltip": null } }, - "d9252f5a0149408fb3c337bdab26e38c": { - "model_module": "@jupyter-widgets/controls", + "d69fd7a89a8640babdbb4265c990aff2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5355b0c6436149178245c21e7b7066a3", - "IPY_MODEL_a81a9c47eee74d608e63cd93038d0af0", - "IPY_MODEL_c6e865ef350d4e6d8b938b25e09c83f5" - ], - "layout": "IPY_MODEL_3a45bc1f3ab94339a13ccda608ee5cde", - "tabbable": null, - "tooltip": null - } - }, - "d9ef5a7bb45b49ea98ba7ef7d46f7327": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ff656de4c6e0473796b460c9249b736d", - "IPY_MODEL_e0125e60b03541d291708f69063efc43", - "IPY_MODEL_0276af0d79c34842b3872fe19afd8ad5" - ], - "layout": "IPY_MODEL_b286f4c78e7c41bcac42e1109bd74f20", - "tabbable": null, - "tooltip": null - } - }, - "dd4452cd48954e85aa825a567e0e144b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de35c9abf64849df94aeb925d828b6c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "dee80679427a4dbcb84dcd808a848939": { + "d6b409257aab47b888b2954d7b04073e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7774,33 +7738,30 @@ "width": null } }, - "e0125e60b03541d291708f69063efc43": { + "d76da02ff0a84d74ad2c21a60fdbf6a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ca27630d14e493fabb3da74f24490f7", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b28291f3cbc5454c8f76da1de8215176", + "layout": "IPY_MODEL_2426b36b4bcd4538a7a1a6c6f443b609", + "placeholder": "​", + "style": "IPY_MODEL_c8922b8978bf4fc58458e70640f1b5c5", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": "Downloading data: 100%" } }, - "e12d7984cada4b0d84daae9e5104b174": { + "da7255e4a0a1407392cd379cdb23eb3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7818,56 +7779,7 @@ "text_color": null } }, - "e24a06fd0bcd4f10874ebd6ab0809f46": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f83aa3ce7a90431693df7df3281b49f4", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9a90aa714495418680d0f9dfe89fb9be", - "tabbable": null, - "tooltip": null, - "value": 4833.0 - } - }, - "e2b7bd621c5149328f0f28435da0b60e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7c6267108274d95b69daef50543a529", - "placeholder": "​", - "style": "IPY_MODEL_4a890dea600a485bb747099c68a2658c", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "e2bee95424134caaa2c1a289a8aef189": { + "db5a222bfbda444ca14ba447f3de1c6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7920,7 +7832,7 @@ "width": null } }, - "e3619929bfe04a2089d48aed9ab43c36": { + "ddf398ca235a4371928fa707d2edfab3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7973,64 +7885,7 @@ "width": null } }, - "e41de8aea5c14ba0b708761783524953": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e50417a341d9423e9e55b901aace207c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e829822bf3dd43b59fe63b15f7cbf820": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b3c51631c09401fa0802305f9fae979", - "placeholder": "​", - "style": "IPY_MODEL_cc805ca1a19a4a51b6f221fdf93940e9", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8584.41 examples/s]" - } - }, - "e8b27e00323148d68063c360049905a3": { + "e0619bd42a814114974327c4c92cbc96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8045,15 +7900,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_08b48e25c9ff4f2f881c497ecd3b4212", + "layout": "IPY_MODEL_6566ace6c0aa4a21abbf6d708cb457b0", "placeholder": "​", - "style": "IPY_MODEL_3697d658bca04873a1d2b9a0ede8a8c1", + "style": "IPY_MODEL_e45644a5a73d43e8a12aaa8ea0e71934", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 60000/60000 [00:10<00:00, 7472.24 examples/s]" } }, - "eb2cffb3da7d40f89f90e569f598abf1": { + "e2caa9efa27847b7b3dd441f4a803cb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8106,7 +7961,48 @@ "width": null } }, - "ec9bf577a6ab487cadf62ae18b0711bb": { + "e39cdb7fe88f4310bfd8b1dcd8ac5ae2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_720932772aa64aba973045693c189137", + "placeholder": "​", + "style": "IPY_MODEL_39314c631f444d01903b4f50ccfc66df", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.47it/s]" + } + }, + "e45644a5a73d43e8a12aaa8ea0e71934": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e7dae7ac77284ca7a938a5140aea14ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8159,96 +8055,80 @@ "width": null } }, - "edb1c73c77f440a38f7ec9a4dbc63f56": { - "model_module": "@jupyter-widgets/base", + "e85af83531bc4182b052d4cfe7f1020e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c63bcc18843a48cd9b4c1b91951a299e", + "IPY_MODEL_f0a66657e7724cf4a18612d673b0df8e", + "IPY_MODEL_b496abba866a4243bc5d3e643a27bfaa" + ], + "layout": "IPY_MODEL_420adb2a809a4b7693bda83cb040e60c", + "tabbable": null, + "tooltip": null } }, - "f0404686cde642a6b1c02549bbeaadf2": { + "e87b060be03d4626b55c248e0abe4a42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0261398aaa894092b6eca7f630c39440", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d69e819f44b493a8d07e58cb39a6a69", + "tabbable": null, + "tooltip": null, + "value": 8845.0 } }, - "f17d354c86284d35ae20ef47bd44fb2b": { + "eb56ed8bd1a74a87a2a7cf25c0992594": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4b9e51775e974654a075cfdb1d1b699c", + "placeholder": "​", + "style": "IPY_MODEL_a75ebf7ef9174d5e9cc59c872badcf44", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "f2ddb2aff76e461dbf3ab68008017ec2": { + "ec23491fb0024cb8a1b7dfd205775551": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8301,7 +8181,7 @@ "width": null } }, - "f3d5c9f93a9c4875bcf62afa3cac7b53": { + "ecde01d38be144db9d996498b953e5b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8354,7 +8234,108 @@ "width": null } }, - "f7180bb48e7640c8b49a60fca8c2f72f": { + "ee448c322caa4ddbae258419893e01e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c6b17708d8404f668a926cfeef0a478f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_778338997ef84774b5fc1b3e363f63c9", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "ee7c6e7d3d1b43138e41e0146c75cd98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_96d31dd7865d4b63adc5a9c556d6d472", + "placeholder": "​", + "style": "IPY_MODEL_6b4971a3c52247978439a6e52e61bca9", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f05de778ce8641daad6aaad095cd0a12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2caa9efa27847b7b3dd441f4a803cb2", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_12da0c3d2bd5449dbb811de7fd8b2093", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 + } + }, + "f0a66657e7724cf4a18612d673b0df8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6bf38f634a0d459bbfabdc8331eb6e3b", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c5b477c793d4588a25705aece5a2a2e", + "tabbable": null, + "tooltip": null, + "value": 4833.0 + } + }, + "f19d1922e1974c3fa19988e4d4701f69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8407,60 +8388,121 @@ "width": null } }, - "f7a402a8d6954e09bae52f5c03372a8d": { - "model_module": "@jupyter-widgets/base", + "f1b29538d40a44f88d457938817aa9ca": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d50d3c5c4ecd49cfbbcb44e787a993ba", + "placeholder": "​", + "style": "IPY_MODEL_fe0a6190f0794548839615a5f024d71f", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.94it/s]" + } + }, + "f293407e061d47a9b2a576f458cfc91a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42c998dc50734d8c93d723bb78939244", + "placeholder": "​", + "style": "IPY_MODEL_30a335f232c04fe7b668ed6a418d27b2", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f2d29dc28e7140b792fc1ee3fcb857cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9bb5412853cd41ffb7c03f1615108a7c", + "IPY_MODEL_1bb8a6dd435048b28340d4eac6730019", + "IPY_MODEL_e0619bd42a814114974327c4c92cbc96" + ], + "layout": "IPY_MODEL_7ea218ed3bac4e3fb0038d64392dab79", + "tabbable": null, + "tooltip": null + } + }, + "f3a3a4eba3674c53882dfe2a1c081653": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a67a308439454f8eb0f02917f9c68472", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2f9e9f6f7ebe42afa59802bdf7306ccb", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "f924af4748c740ce948540ad741071d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f7c6267108274d95b69daef50543a529": { + "f984f1911a3a4d3d97fb914d1b6abbce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8513,7 +8555,48 @@ "width": null } }, - "f83aa3ce7a90431693df7df3281b49f4": { + "fa8ee62999bf48be85571066708c3a70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_895c5faa034242eeb651e5c6bf3b1a51", + "placeholder": "​", + "style": "IPY_MODEL_9c72cef284e84cdaa2856f28c3593985", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 61.8MB/s]" + } + }, + "fe0a6190f0794548839615a5f024d71f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fe37a821e1f04c6f9903e3722f9ab4c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8566,30 +8649,33 @@ "width": null } }, - "f89e573249f44029b93df296debc6c88": { + "fe9dd2d447a247b29fd9568449e4c772": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0c9cf4e322045c2b1ab002a50b9d2ab", - "placeholder": "​", - "style": "IPY_MODEL_7a0ff8b1dbc04d4f800b71da7bee8dd6", + "layout": "IPY_MODEL_112a5fd388db49e4b8a0f9dffab06426", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bb0480efe0bc4bd3801a7f7315323cf5", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.74it/s]" + "value": 40.0 } }, - "f9846a5955244385b468847a2dde1330": { + "ff64e02006ba4b3b90e1f252f3c58e25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8641,92 +8727,6 @@ "visibility": null, "width": null } - }, - "fd248e0cd1c04dc79322ff7aca18b7ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9faeeee70c6f4c57a09a07d6c2fae428", - "placeholder": "​", - "style": "IPY_MODEL_bc498e67cff24de6a19be95ac7294058", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "fd6e7deac3fc4c7d91dd1737f449dd14": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6953a1f2481345a1b5d853d364d44c72", - "IPY_MODEL_4ec33725118344c896e009c3ac37fa87", - "IPY_MODEL_bb9a42e0d8a245199f46263bf91a3c19" - ], - "layout": "IPY_MODEL_d2476c0eba3c4c8bbb35810763b8091d", - "tabbable": null, - "tooltip": null - } - }, - "fd786ad88c274d8fbf66f177bebce25d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ff656de4c6e0473796b460c9249b736d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85a2c07c6cc646928eead9fb48843201", - "placeholder": "​", - "style": "IPY_MODEL_9cf1c466395348f18828c5b1a91338e1", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index d018ad0f4..d470496b0 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:39.670080Z", - "iopub.status.busy": "2024-06-25T16:01:39.669901Z", - "iopub.status.idle": "2024-06-25T16:01:40.863945Z", - "shell.execute_reply": "2024-06-25T16:01:40.863250Z" + "iopub.execute_input": "2024-06-25T19:35:36.731110Z", + "iopub.status.busy": "2024-06-25T19:35:36.730936Z", + "iopub.status.idle": "2024-06-25T19:35:37.834580Z", + "shell.execute_reply": "2024-06-25T19:35:37.833954Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:40.866874Z", - "iopub.status.busy": "2024-06-25T16:01:40.866314Z", - "iopub.status.idle": "2024-06-25T16:01:40.886900Z", - "shell.execute_reply": "2024-06-25T16:01:40.886404Z" + "iopub.execute_input": "2024-06-25T19:35:37.837363Z", + "iopub.status.busy": "2024-06-25T19:35:37.837076Z", + "iopub.status.idle": "2024-06-25T19:35:37.855298Z", + "shell.execute_reply": "2024-06-25T19:35:37.854810Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:40.889560Z", - "iopub.status.busy": "2024-06-25T16:01:40.889261Z", - "iopub.status.idle": "2024-06-25T16:01:40.922409Z", - "shell.execute_reply": "2024-06-25T16:01:40.921892Z" + "iopub.execute_input": "2024-06-25T19:35:37.857546Z", + "iopub.status.busy": "2024-06-25T19:35:37.857301Z", + "iopub.status.idle": "2024-06-25T19:35:37.902804Z", + "shell.execute_reply": "2024-06-25T19:35:37.902282Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:40.924681Z", - "iopub.status.busy": "2024-06-25T16:01:40.924312Z", - "iopub.status.idle": "2024-06-25T16:01:40.927988Z", - "shell.execute_reply": "2024-06-25T16:01:40.927543Z" + "iopub.execute_input": "2024-06-25T19:35:37.904835Z", + "iopub.status.busy": "2024-06-25T19:35:37.904541Z", + "iopub.status.idle": "2024-06-25T19:35:37.907889Z", + "shell.execute_reply": "2024-06-25T19:35:37.907366Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:40.930108Z", - "iopub.status.busy": "2024-06-25T16:01:40.929767Z", - "iopub.status.idle": "2024-06-25T16:01:40.938088Z", - "shell.execute_reply": "2024-06-25T16:01:40.937632Z" + "iopub.execute_input": "2024-06-25T19:35:37.909808Z", + "iopub.status.busy": "2024-06-25T19:35:37.909561Z", + "iopub.status.idle": "2024-06-25T19:35:37.917137Z", + "shell.execute_reply": "2024-06-25T19:35:37.916719Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:40.940711Z", - "iopub.status.busy": "2024-06-25T16:01:40.940301Z", - "iopub.status.idle": "2024-06-25T16:01:40.943183Z", - "shell.execute_reply": "2024-06-25T16:01:40.942671Z" + "iopub.execute_input": "2024-06-25T19:35:37.919119Z", + "iopub.status.busy": "2024-06-25T19:35:37.918944Z", + "iopub.status.idle": "2024-06-25T19:35:37.921447Z", + "shell.execute_reply": "2024-06-25T19:35:37.921009Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:40.945475Z", - "iopub.status.busy": "2024-06-25T16:01:40.945057Z", - "iopub.status.idle": "2024-06-25T16:01:43.970784Z", - "shell.execute_reply": "2024-06-25T16:01:43.970132Z" + "iopub.execute_input": "2024-06-25T19:35:37.923229Z", + "iopub.status.busy": "2024-06-25T19:35:37.923058Z", + "iopub.status.idle": "2024-06-25T19:35:40.863311Z", + "shell.execute_reply": "2024-06-25T19:35:40.862782Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:43.973696Z", - "iopub.status.busy": "2024-06-25T16:01:43.973243Z", - "iopub.status.idle": "2024-06-25T16:01:43.982712Z", - "shell.execute_reply": "2024-06-25T16:01:43.982163Z" + "iopub.execute_input": "2024-06-25T19:35:40.866333Z", + "iopub.status.busy": "2024-06-25T19:35:40.865865Z", + "iopub.status.idle": "2024-06-25T19:35:40.875269Z", + "shell.execute_reply": "2024-06-25T19:35:40.874719Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:43.984936Z", - "iopub.status.busy": "2024-06-25T16:01:43.984621Z", - "iopub.status.idle": "2024-06-25T16:01:46.020904Z", - "shell.execute_reply": "2024-06-25T16:01:46.020180Z" + "iopub.execute_input": "2024-06-25T19:35:40.877815Z", + "iopub.status.busy": "2024-06-25T19:35:40.877412Z", + "iopub.status.idle": "2024-06-25T19:35:42.759452Z", + "shell.execute_reply": "2024-06-25T19:35:42.758773Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:46.023944Z", - "iopub.status.busy": "2024-06-25T16:01:46.023252Z", - "iopub.status.idle": "2024-06-25T16:01:46.044713Z", - "shell.execute_reply": "2024-06-25T16:01:46.044132Z" + "iopub.execute_input": "2024-06-25T19:35:42.761931Z", + "iopub.status.busy": "2024-06-25T19:35:42.761498Z", + "iopub.status.idle": "2024-06-25T19:35:42.780225Z", + "shell.execute_reply": "2024-06-25T19:35:42.779777Z" }, "scrolled": true }, @@ -617,10 +617,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:46.046999Z", - "iopub.status.busy": "2024-06-25T16:01:46.046551Z", - "iopub.status.idle": "2024-06-25T16:01:46.054695Z", - "shell.execute_reply": "2024-06-25T16:01:46.054238Z" + "iopub.execute_input": "2024-06-25T19:35:42.782418Z", + "iopub.status.busy": "2024-06-25T19:35:42.782011Z", + "iopub.status.idle": "2024-06-25T19:35:42.789930Z", + "shell.execute_reply": "2024-06-25T19:35:42.789485Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:46.056749Z", - "iopub.status.busy": "2024-06-25T16:01:46.056335Z", - "iopub.status.idle": "2024-06-25T16:01:46.065313Z", - "shell.execute_reply": "2024-06-25T16:01:46.064844Z" + "iopub.execute_input": "2024-06-25T19:35:42.791897Z", + "iopub.status.busy": "2024-06-25T19:35:42.791568Z", + "iopub.status.idle": "2024-06-25T19:35:42.800098Z", + "shell.execute_reply": "2024-06-25T19:35:42.799646Z" } }, "outputs": [ @@ -856,10 +856,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:46.067393Z", - "iopub.status.busy": "2024-06-25T16:01:46.067010Z", - "iopub.status.idle": "2024-06-25T16:01:46.075090Z", - "shell.execute_reply": "2024-06-25T16:01:46.074640Z" + "iopub.execute_input": "2024-06-25T19:35:42.802085Z", + "iopub.status.busy": "2024-06-25T19:35:42.801908Z", + "iopub.status.idle": "2024-06-25T19:35:42.809958Z", + "shell.execute_reply": "2024-06-25T19:35:42.809510Z" } }, "outputs": [ @@ -973,10 +973,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:46.076959Z", - "iopub.status.busy": "2024-06-25T16:01:46.076789Z", - "iopub.status.idle": "2024-06-25T16:01:46.085272Z", - "shell.execute_reply": "2024-06-25T16:01:46.084709Z" + "iopub.execute_input": "2024-06-25T19:35:42.811794Z", + "iopub.status.busy": "2024-06-25T19:35:42.811623Z", + "iopub.status.idle": "2024-06-25T19:35:42.820374Z", + "shell.execute_reply": "2024-06-25T19:35:42.819927Z" } }, "outputs": [ @@ -1087,10 +1087,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:46.087253Z", - "iopub.status.busy": "2024-06-25T16:01:46.087082Z", - "iopub.status.idle": "2024-06-25T16:01:46.094606Z", - "shell.execute_reply": "2024-06-25T16:01:46.094154Z" + "iopub.execute_input": "2024-06-25T19:35:42.822187Z", + "iopub.status.busy": "2024-06-25T19:35:42.822017Z", + "iopub.status.idle": "2024-06-25T19:35:42.829544Z", + "shell.execute_reply": "2024-06-25T19:35:42.829102Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:46.096448Z", - "iopub.status.busy": "2024-06-25T16:01:46.096279Z", - "iopub.status.idle": "2024-06-25T16:01:46.103680Z", - "shell.execute_reply": "2024-06-25T16:01:46.103253Z" + "iopub.execute_input": "2024-06-25T19:35:42.831790Z", + "iopub.status.busy": "2024-06-25T19:35:42.831383Z", + "iopub.status.idle": "2024-06-25T19:35:42.838578Z", + "shell.execute_reply": "2024-06-25T19:35:42.838124Z" } }, "outputs": [ @@ -1308,10 +1308,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:46.105721Z", - "iopub.status.busy": "2024-06-25T16:01:46.105550Z", - "iopub.status.idle": "2024-06-25T16:01:46.113743Z", - "shell.execute_reply": "2024-06-25T16:01:46.113307Z" + "iopub.execute_input": "2024-06-25T19:35:42.840523Z", + "iopub.status.busy": "2024-06-25T19:35:42.840354Z", + "iopub.status.idle": "2024-06-25T19:35:42.848877Z", + "shell.execute_reply": "2024-06-25T19:35:42.848311Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 570f8fa58..5e2df2074 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:49.080606Z", - "iopub.status.busy": "2024-06-25T16:01:49.080431Z", - "iopub.status.idle": "2024-06-25T16:01:51.868569Z", - "shell.execute_reply": "2024-06-25T16:01:51.868008Z" + "iopub.execute_input": "2024-06-25T19:35:45.390789Z", + "iopub.status.busy": "2024-06-25T19:35:45.390619Z", + "iopub.status.idle": "2024-06-25T19:35:48.008658Z", + "shell.execute_reply": "2024-06-25T19:35:48.008097Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.871269Z", - "iopub.status.busy": "2024-06-25T16:01:51.870744Z", - "iopub.status.idle": "2024-06-25T16:01:51.874137Z", - "shell.execute_reply": "2024-06-25T16:01:51.873685Z" + "iopub.execute_input": "2024-06-25T19:35:48.011088Z", + "iopub.status.busy": "2024-06-25T19:35:48.010783Z", + "iopub.status.idle": "2024-06-25T19:35:48.014230Z", + "shell.execute_reply": "2024-06-25T19:35:48.013782Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.876275Z", - "iopub.status.busy": "2024-06-25T16:01:51.875837Z", - "iopub.status.idle": "2024-06-25T16:01:51.878967Z", - "shell.execute_reply": "2024-06-25T16:01:51.878524Z" + "iopub.execute_input": "2024-06-25T19:35:48.016267Z", + "iopub.status.busy": "2024-06-25T19:35:48.015916Z", + "iopub.status.idle": "2024-06-25T19:35:48.019094Z", + "shell.execute_reply": "2024-06-25T19:35:48.018529Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.881057Z", - "iopub.status.busy": "2024-06-25T16:01:51.880603Z", - "iopub.status.idle": "2024-06-25T16:01:51.910717Z", - "shell.execute_reply": "2024-06-25T16:01:51.910165Z" + "iopub.execute_input": "2024-06-25T19:35:48.021232Z", + "iopub.status.busy": "2024-06-25T19:35:48.020813Z", + "iopub.status.idle": "2024-06-25T19:35:48.073023Z", + "shell.execute_reply": "2024-06-25T19:35:48.072456Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.912918Z", - "iopub.status.busy": "2024-06-25T16:01:51.912554Z", - "iopub.status.idle": "2024-06-25T16:01:51.916418Z", - "shell.execute_reply": "2024-06-25T16:01:51.915973Z" + "iopub.execute_input": "2024-06-25T19:35:48.075330Z", + "iopub.status.busy": "2024-06-25T19:35:48.074995Z", + "iopub.status.idle": "2024-06-25T19:35:48.078963Z", + "shell.execute_reply": "2024-06-25T19:35:48.078513Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'lost_or_stolen_phone', 'getting_spare_card', 'apple_pay_or_google_pay', 'change_pin', 'visa_or_mastercard', 'supported_cards_and_currencies', 'cancel_transfer', 'beneficiary_not_allowed', 'card_about_to_expire'}\n" + "Classes: {'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.918533Z", - "iopub.status.busy": "2024-06-25T16:01:51.918103Z", - "iopub.status.idle": "2024-06-25T16:01:51.921336Z", - "shell.execute_reply": "2024-06-25T16:01:51.920794Z" + "iopub.execute_input": "2024-06-25T19:35:48.080913Z", + "iopub.status.busy": "2024-06-25T19:35:48.080733Z", + "iopub.status.idle": "2024-06-25T19:35:48.083997Z", + "shell.execute_reply": "2024-06-25T19:35:48.083535Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.923429Z", - "iopub.status.busy": "2024-06-25T16:01:51.923050Z", - "iopub.status.idle": "2024-06-25T16:01:55.870267Z", - "shell.execute_reply": "2024-06-25T16:01:55.869625Z" + "iopub.execute_input": "2024-06-25T19:35:48.086043Z", + "iopub.status.busy": "2024-06-25T19:35:48.085869Z", + "iopub.status.idle": "2024-06-25T19:35:52.539336Z", + "shell.execute_reply": "2024-06-25T19:35:52.538772Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:55.873234Z", - "iopub.status.busy": "2024-06-25T16:01:55.872784Z", - "iopub.status.idle": "2024-06-25T16:01:56.785446Z", - "shell.execute_reply": "2024-06-25T16:01:56.784870Z" + "iopub.execute_input": "2024-06-25T19:35:52.541851Z", + "iopub.status.busy": "2024-06-25T19:35:52.541641Z", + "iopub.status.idle": "2024-06-25T19:35:53.417381Z", + "shell.execute_reply": "2024-06-25T19:35:53.416793Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:56.788374Z", - "iopub.status.busy": "2024-06-25T16:01:56.788033Z", - "iopub.status.idle": "2024-06-25T16:01:56.790866Z", - "shell.execute_reply": "2024-06-25T16:01:56.790359Z" + "iopub.execute_input": "2024-06-25T19:35:53.420304Z", + "iopub.status.busy": "2024-06-25T19:35:53.419913Z", + "iopub.status.idle": "2024-06-25T19:35:53.422789Z", + "shell.execute_reply": "2024-06-25T19:35:53.422303Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:56.793259Z", - "iopub.status.busy": "2024-06-25T16:01:56.792882Z", - "iopub.status.idle": "2024-06-25T16:01:58.878619Z", - "shell.execute_reply": "2024-06-25T16:01:58.877823Z" + "iopub.execute_input": "2024-06-25T19:35:53.425167Z", + "iopub.status.busy": "2024-06-25T19:35:53.424776Z", + "iopub.status.idle": "2024-06-25T19:35:55.333188Z", + "shell.execute_reply": "2024-06-25T19:35:55.332528Z" }, "scrolled": true }, @@ -537,10 +537,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.881919Z", - "iopub.status.busy": "2024-06-25T16:01:58.881071Z", - "iopub.status.idle": "2024-06-25T16:01:58.906603Z", - "shell.execute_reply": "2024-06-25T16:01:58.906027Z" + "iopub.execute_input": "2024-06-25T19:35:55.336733Z", + "iopub.status.busy": "2024-06-25T19:35:55.336306Z", + "iopub.status.idle": "2024-06-25T19:35:55.363099Z", + "shell.execute_reply": "2024-06-25T19:35:55.362613Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.910119Z", - "iopub.status.busy": "2024-06-25T16:01:58.909047Z", - "iopub.status.idle": "2024-06-25T16:01:58.920232Z", - "shell.execute_reply": "2024-06-25T16:01:58.919795Z" + "iopub.execute_input": "2024-06-25T19:35:55.366640Z", + "iopub.status.busy": "2024-06-25T19:35:55.365705Z", + "iopub.status.idle": "2024-06-25T19:35:55.376030Z", + "shell.execute_reply": "2024-06-25T19:35:55.375622Z" }, "scrolled": true }, @@ -783,10 +783,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.922435Z", - "iopub.status.busy": "2024-06-25T16:01:58.922243Z", - "iopub.status.idle": "2024-06-25T16:01:58.926688Z", - "shell.execute_reply": "2024-06-25T16:01:58.926119Z" + "iopub.execute_input": "2024-06-25T19:35:55.378837Z", + "iopub.status.busy": "2024-06-25T19:35:55.378517Z", + "iopub.status.idle": "2024-06-25T19:35:55.382599Z", + "shell.execute_reply": "2024-06-25T19:35:55.382206Z" } }, "outputs": [ @@ -824,10 +824,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.928833Z", - "iopub.status.busy": "2024-06-25T16:01:58.928500Z", - "iopub.status.idle": "2024-06-25T16:01:58.935114Z", - "shell.execute_reply": "2024-06-25T16:01:58.934556Z" + "iopub.execute_input": "2024-06-25T19:35:55.384693Z", + "iopub.status.busy": "2024-06-25T19:35:55.384439Z", + "iopub.status.idle": "2024-06-25T19:35:55.390208Z", + "shell.execute_reply": "2024-06-25T19:35:55.389819Z" } }, "outputs": [ @@ -944,10 +944,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.937224Z", - "iopub.status.busy": "2024-06-25T16:01:58.937035Z", - "iopub.status.idle": "2024-06-25T16:01:58.943802Z", - "shell.execute_reply": "2024-06-25T16:01:58.943339Z" + "iopub.execute_input": "2024-06-25T19:35:55.392385Z", + "iopub.status.busy": "2024-06-25T19:35:55.392130Z", + "iopub.status.idle": "2024-06-25T19:35:55.398230Z", + "shell.execute_reply": "2024-06-25T19:35:55.397669Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.945885Z", - "iopub.status.busy": "2024-06-25T16:01:58.945697Z", - "iopub.status.idle": "2024-06-25T16:01:58.951879Z", - "shell.execute_reply": "2024-06-25T16:01:58.951313Z" + "iopub.execute_input": "2024-06-25T19:35:55.400097Z", + "iopub.status.busy": "2024-06-25T19:35:55.399777Z", + "iopub.status.idle": "2024-06-25T19:35:55.405709Z", + "shell.execute_reply": "2024-06-25T19:35:55.405249Z" } }, "outputs": [ @@ -1141,10 +1141,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.953941Z", - "iopub.status.busy": "2024-06-25T16:01:58.953760Z", - "iopub.status.idle": "2024-06-25T16:01:58.962347Z", - "shell.execute_reply": "2024-06-25T16:01:58.961851Z" + "iopub.execute_input": "2024-06-25T19:35:55.407786Z", + "iopub.status.busy": "2024-06-25T19:35:55.407389Z", + "iopub.status.idle": "2024-06-25T19:35:55.415929Z", + "shell.execute_reply": "2024-06-25T19:35:55.415484Z" } }, "outputs": [ @@ -1255,10 +1255,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.964445Z", - "iopub.status.busy": "2024-06-25T16:01:58.964252Z", - "iopub.status.idle": "2024-06-25T16:01:58.969992Z", - "shell.execute_reply": "2024-06-25T16:01:58.969465Z" + "iopub.execute_input": "2024-06-25T19:35:55.417871Z", + "iopub.status.busy": "2024-06-25T19:35:55.417696Z", + "iopub.status.idle": "2024-06-25T19:35:55.422924Z", + "shell.execute_reply": "2024-06-25T19:35:55.422488Z" } }, "outputs": [ @@ -1326,10 +1326,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.971896Z", - "iopub.status.busy": "2024-06-25T16:01:58.971717Z", - "iopub.status.idle": "2024-06-25T16:01:58.977572Z", - "shell.execute_reply": "2024-06-25T16:01:58.977014Z" + "iopub.execute_input": "2024-06-25T19:35:55.424972Z", + "iopub.status.busy": "2024-06-25T19:35:55.424657Z", + "iopub.status.idle": "2024-06-25T19:35:55.429929Z", + "shell.execute_reply": "2024-06-25T19:35:55.429503Z" } }, "outputs": [ @@ -1408,10 +1408,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.980310Z", - "iopub.status.busy": "2024-06-25T16:01:58.979740Z", - "iopub.status.idle": "2024-06-25T16:01:58.983886Z", - "shell.execute_reply": "2024-06-25T16:01:58.983415Z" + "iopub.execute_input": "2024-06-25T19:35:55.431977Z", + "iopub.status.busy": "2024-06-25T19:35:55.431649Z", + "iopub.status.idle": "2024-06-25T19:35:55.435259Z", + "shell.execute_reply": "2024-06-25T19:35:55.434820Z" } }, "outputs": [ @@ -1459,10 +1459,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.986424Z", - "iopub.status.busy": "2024-06-25T16:01:58.985891Z", - "iopub.status.idle": "2024-06-25T16:01:58.991554Z", - "shell.execute_reply": "2024-06-25T16:01:58.991111Z" + "iopub.execute_input": "2024-06-25T19:35:55.437276Z", + "iopub.status.busy": "2024-06-25T19:35:55.436956Z", + "iopub.status.idle": "2024-06-25T19:35:55.441824Z", + "shell.execute_reply": "2024-06-25T19:35:55.441386Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index c5b93e0b1..073e233c2 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:03.278476Z", - "iopub.status.busy": "2024-06-25T16:02:03.278250Z", - "iopub.status.idle": "2024-06-25T16:02:03.738248Z", - "shell.execute_reply": "2024-06-25T16:02:03.737620Z" + "iopub.execute_input": "2024-06-25T19:35:59.467250Z", + "iopub.status.busy": "2024-06-25T19:35:59.467073Z", + "iopub.status.idle": "2024-06-25T19:35:59.885710Z", + "shell.execute_reply": "2024-06-25T19:35:59.885107Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:03.740991Z", - "iopub.status.busy": "2024-06-25T16:02:03.740456Z", - "iopub.status.idle": "2024-06-25T16:02:03.870272Z", - "shell.execute_reply": "2024-06-25T16:02:03.869699Z" + "iopub.execute_input": "2024-06-25T19:35:59.888637Z", + "iopub.status.busy": "2024-06-25T19:35:59.888151Z", + "iopub.status.idle": "2024-06-25T19:36:00.014649Z", + "shell.execute_reply": "2024-06-25T19:36:00.014148Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:03.872521Z", - "iopub.status.busy": "2024-06-25T16:02:03.872274Z", - "iopub.status.idle": "2024-06-25T16:02:03.895571Z", - "shell.execute_reply": "2024-06-25T16:02:03.895004Z" + "iopub.execute_input": "2024-06-25T19:36:00.016873Z", + "iopub.status.busy": "2024-06-25T19:36:00.016623Z", + "iopub.status.idle": "2024-06-25T19:36:00.039876Z", + "shell.execute_reply": "2024-06-25T19:36:00.039305Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:03.898323Z", - "iopub.status.busy": "2024-06-25T16:02:03.898050Z", - "iopub.status.idle": "2024-06-25T16:02:06.877864Z", - "shell.execute_reply": "2024-06-25T16:02:06.877213Z" + "iopub.execute_input": "2024-06-25T19:36:00.042285Z", + "iopub.status.busy": "2024-06-25T19:36:00.041898Z", + "iopub.status.idle": "2024-06-25T19:36:02.696869Z", + "shell.execute_reply": "2024-06-25T19:36:02.696318Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:06.880622Z", - "iopub.status.busy": "2024-06-25T16:02:06.880154Z", - "iopub.status.idle": "2024-06-25T16:02:14.828345Z", - "shell.execute_reply": "2024-06-25T16:02:14.827773Z" + "iopub.execute_input": "2024-06-25T19:36:02.699546Z", + "iopub.status.busy": "2024-06-25T19:36:02.698988Z", + "iopub.status.idle": "2024-06-25T19:36:11.210546Z", + "shell.execute_reply": "2024-06-25T19:36:11.209947Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:14.830402Z", - "iopub.status.busy": "2024-06-25T16:02:14.830211Z", - "iopub.status.idle": "2024-06-25T16:02:14.992524Z", - "shell.execute_reply": "2024-06-25T16:02:14.992007Z" + "iopub.execute_input": "2024-06-25T19:36:11.212912Z", + "iopub.status.busy": "2024-06-25T19:36:11.212489Z", + "iopub.status.idle": "2024-06-25T19:36:11.354224Z", + "shell.execute_reply": "2024-06-25T19:36:11.353605Z" } }, "outputs": [], @@ -854,10 +854,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:14.995052Z", - "iopub.status.busy": "2024-06-25T16:02:14.994828Z", - "iopub.status.idle": "2024-06-25T16:02:16.343274Z", - "shell.execute_reply": "2024-06-25T16:02:16.342777Z" + "iopub.execute_input": "2024-06-25T19:36:11.356684Z", + "iopub.status.busy": "2024-06-25T19:36:11.356497Z", + "iopub.status.idle": "2024-06-25T19:36:12.692416Z", + "shell.execute_reply": "2024-06-25T19:36:12.691867Z" } }, "outputs": [ @@ -1016,10 +1016,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:16.345457Z", - "iopub.status.busy": "2024-06-25T16:02:16.345102Z", - "iopub.status.idle": "2024-06-25T16:02:16.795402Z", - "shell.execute_reply": "2024-06-25T16:02:16.794807Z" + "iopub.execute_input": "2024-06-25T19:36:12.694507Z", + "iopub.status.busy": "2024-06-25T19:36:12.694321Z", + "iopub.status.idle": "2024-06-25T19:36:13.110943Z", + "shell.execute_reply": "2024-06-25T19:36:13.110403Z" } }, "outputs": [ @@ -1098,10 +1098,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:16.797906Z", - "iopub.status.busy": "2024-06-25T16:02:16.797348Z", - "iopub.status.idle": "2024-06-25T16:02:16.806905Z", - "shell.execute_reply": "2024-06-25T16:02:16.806435Z" + "iopub.execute_input": "2024-06-25T19:36:13.113354Z", + "iopub.status.busy": "2024-06-25T19:36:13.112876Z", + "iopub.status.idle": "2024-06-25T19:36:13.121876Z", + "shell.execute_reply": "2024-06-25T19:36:13.121426Z" } }, "outputs": [], @@ -1131,10 +1131,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:16.809218Z", - "iopub.status.busy": "2024-06-25T16:02:16.808867Z", - "iopub.status.idle": "2024-06-25T16:02:16.830549Z", - "shell.execute_reply": "2024-06-25T16:02:16.830060Z" + "iopub.execute_input": "2024-06-25T19:36:13.123927Z", + "iopub.status.busy": "2024-06-25T19:36:13.123749Z", + "iopub.status.idle": "2024-06-25T19:36:13.143234Z", + "shell.execute_reply": "2024-06-25T19:36:13.142805Z" } }, "outputs": [], @@ -1162,10 +1162,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:16.833159Z", - "iopub.status.busy": "2024-06-25T16:02:16.832781Z", - "iopub.status.idle": "2024-06-25T16:02:17.053532Z", - "shell.execute_reply": "2024-06-25T16:02:17.052990Z" + "iopub.execute_input": "2024-06-25T19:36:13.145167Z", + "iopub.status.busy": "2024-06-25T19:36:13.144993Z", + "iopub.status.idle": "2024-06-25T19:36:13.369942Z", + "shell.execute_reply": "2024-06-25T19:36:13.369417Z" } }, "outputs": [], @@ -1205,10 +1205,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.056191Z", - "iopub.status.busy": "2024-06-25T16:02:17.055798Z", - "iopub.status.idle": "2024-06-25T16:02:17.076017Z", - "shell.execute_reply": "2024-06-25T16:02:17.075526Z" + "iopub.execute_input": "2024-06-25T19:36:13.372709Z", + "iopub.status.busy": "2024-06-25T19:36:13.372266Z", + "iopub.status.idle": "2024-06-25T19:36:13.391271Z", + "shell.execute_reply": "2024-06-25T19:36:13.390786Z" } }, "outputs": [ @@ -1406,10 +1406,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.078246Z", - "iopub.status.busy": "2024-06-25T16:02:17.077880Z", - "iopub.status.idle": "2024-06-25T16:02:17.224988Z", - "shell.execute_reply": "2024-06-25T16:02:17.224353Z" + "iopub.execute_input": "2024-06-25T19:36:13.393275Z", + "iopub.status.busy": "2024-06-25T19:36:13.392955Z", + "iopub.status.idle": "2024-06-25T19:36:13.562067Z", + "shell.execute_reply": "2024-06-25T19:36:13.561518Z" } }, "outputs": [ @@ -1476,10 +1476,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.227348Z", - "iopub.status.busy": "2024-06-25T16:02:17.226988Z", - "iopub.status.idle": "2024-06-25T16:02:17.237752Z", - "shell.execute_reply": "2024-06-25T16:02:17.237274Z" + "iopub.execute_input": "2024-06-25T19:36:13.564551Z", + "iopub.status.busy": "2024-06-25T19:36:13.564210Z", + "iopub.status.idle": "2024-06-25T19:36:13.574249Z", + "shell.execute_reply": "2024-06-25T19:36:13.573705Z" } }, "outputs": [ @@ -1745,10 +1745,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.239946Z", - "iopub.status.busy": "2024-06-25T16:02:17.239599Z", - "iopub.status.idle": "2024-06-25T16:02:17.249303Z", - "shell.execute_reply": "2024-06-25T16:02:17.248766Z" + "iopub.execute_input": "2024-06-25T19:36:13.576275Z", + "iopub.status.busy": "2024-06-25T19:36:13.575975Z", + "iopub.status.idle": "2024-06-25T19:36:13.585430Z", + "shell.execute_reply": "2024-06-25T19:36:13.584885Z" } }, "outputs": [ @@ -1935,10 +1935,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.251573Z", - "iopub.status.busy": "2024-06-25T16:02:17.251165Z", - "iopub.status.idle": "2024-06-25T16:02:17.282613Z", - "shell.execute_reply": "2024-06-25T16:02:17.282124Z" + "iopub.execute_input": "2024-06-25T19:36:13.587370Z", + "iopub.status.busy": "2024-06-25T19:36:13.587068Z", + "iopub.status.idle": "2024-06-25T19:36:13.629038Z", + "shell.execute_reply": "2024-06-25T19:36:13.628478Z" } }, "outputs": [], @@ -1972,10 +1972,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.285176Z", - "iopub.status.busy": "2024-06-25T16:02:17.284816Z", - "iopub.status.idle": "2024-06-25T16:02:17.287691Z", - "shell.execute_reply": "2024-06-25T16:02:17.287229Z" + "iopub.execute_input": "2024-06-25T19:36:13.631050Z", + "iopub.status.busy": "2024-06-25T19:36:13.630746Z", + "iopub.status.idle": "2024-06-25T19:36:13.633461Z", + "shell.execute_reply": "2024-06-25T19:36:13.632931Z" } }, "outputs": [], @@ -1997,10 +1997,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.289975Z", - "iopub.status.busy": "2024-06-25T16:02:17.289556Z", - "iopub.status.idle": "2024-06-25T16:02:17.310040Z", - "shell.execute_reply": "2024-06-25T16:02:17.309443Z" + "iopub.execute_input": "2024-06-25T19:36:13.635387Z", + "iopub.status.busy": "2024-06-25T19:36:13.635196Z", + "iopub.status.idle": "2024-06-25T19:36:13.655022Z", + "shell.execute_reply": "2024-06-25T19:36:13.654546Z" } }, "outputs": [ @@ -2158,10 +2158,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.312269Z", - "iopub.status.busy": "2024-06-25T16:02:17.311957Z", - "iopub.status.idle": "2024-06-25T16:02:17.316335Z", - "shell.execute_reply": "2024-06-25T16:02:17.315795Z" + "iopub.execute_input": "2024-06-25T19:36:13.657280Z", + "iopub.status.busy": "2024-06-25T19:36:13.656950Z", + "iopub.status.idle": "2024-06-25T19:36:13.661121Z", + "shell.execute_reply": "2024-06-25T19:36:13.660700Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.318468Z", - "iopub.status.busy": "2024-06-25T16:02:17.318124Z", - "iopub.status.idle": "2024-06-25T16:02:17.347731Z", - "shell.execute_reply": "2024-06-25T16:02:17.347189Z" + "iopub.execute_input": "2024-06-25T19:36:13.663070Z", + "iopub.status.busy": "2024-06-25T19:36:13.662753Z", + "iopub.status.idle": "2024-06-25T19:36:13.690582Z", + "shell.execute_reply": "2024-06-25T19:36:13.690034Z" } }, "outputs": [ @@ -2343,10 +2343,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.350381Z", - "iopub.status.busy": "2024-06-25T16:02:17.349956Z", - "iopub.status.idle": "2024-06-25T16:02:17.734520Z", - "shell.execute_reply": "2024-06-25T16:02:17.733881Z" + "iopub.execute_input": "2024-06-25T19:36:13.692558Z", + "iopub.status.busy": "2024-06-25T19:36:13.692385Z", + "iopub.status.idle": "2024-06-25T19:36:14.062207Z", + "shell.execute_reply": "2024-06-25T19:36:14.061647Z" } }, "outputs": [ @@ -2413,10 +2413,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.736852Z", - "iopub.status.busy": "2024-06-25T16:02:17.736654Z", - "iopub.status.idle": "2024-06-25T16:02:17.739943Z", - "shell.execute_reply": "2024-06-25T16:02:17.739436Z" + "iopub.execute_input": "2024-06-25T19:36:14.064536Z", + "iopub.status.busy": "2024-06-25T19:36:14.064346Z", + "iopub.status.idle": "2024-06-25T19:36:14.067724Z", + "shell.execute_reply": "2024-06-25T19:36:14.067250Z" } }, "outputs": [ @@ -2467,10 +2467,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.742226Z", - "iopub.status.busy": "2024-06-25T16:02:17.741819Z", - "iopub.status.idle": "2024-06-25T16:02:17.755783Z", - "shell.execute_reply": "2024-06-25T16:02:17.755164Z" + "iopub.execute_input": "2024-06-25T19:36:14.069713Z", + "iopub.status.busy": "2024-06-25T19:36:14.069543Z", + "iopub.status.idle": "2024-06-25T19:36:14.082545Z", + "shell.execute_reply": "2024-06-25T19:36:14.082110Z" } }, "outputs": [ @@ -2749,10 +2749,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.758619Z", - "iopub.status.busy": "2024-06-25T16:02:17.758165Z", - "iopub.status.idle": "2024-06-25T16:02:17.772511Z", - "shell.execute_reply": "2024-06-25T16:02:17.772006Z" + "iopub.execute_input": "2024-06-25T19:36:14.084372Z", + "iopub.status.busy": "2024-06-25T19:36:14.084199Z", + "iopub.status.idle": "2024-06-25T19:36:14.097558Z", + "shell.execute_reply": "2024-06-25T19:36:14.097135Z" } }, "outputs": [ @@ -3019,10 +3019,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.774729Z", - "iopub.status.busy": "2024-06-25T16:02:17.774383Z", - "iopub.status.idle": "2024-06-25T16:02:17.784834Z", - "shell.execute_reply": "2024-06-25T16:02:17.784356Z" + "iopub.execute_input": "2024-06-25T19:36:14.099340Z", + "iopub.status.busy": "2024-06-25T19:36:14.099173Z", + "iopub.status.idle": "2024-06-25T19:36:14.108741Z", + "shell.execute_reply": "2024-06-25T19:36:14.108314Z" } }, "outputs": [], @@ -3047,10 +3047,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.787288Z", - "iopub.status.busy": "2024-06-25T16:02:17.786941Z", - "iopub.status.idle": "2024-06-25T16:02:17.796989Z", - "shell.execute_reply": "2024-06-25T16:02:17.796391Z" + "iopub.execute_input": "2024-06-25T19:36:14.110562Z", + "iopub.status.busy": "2024-06-25T19:36:14.110394Z", + "iopub.status.idle": "2024-06-25T19:36:14.119786Z", + "shell.execute_reply": "2024-06-25T19:36:14.119280Z" } }, "outputs": [ @@ -3222,10 +3222,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.799296Z", - "iopub.status.busy": "2024-06-25T16:02:17.798963Z", - "iopub.status.idle": "2024-06-25T16:02:17.803120Z", - "shell.execute_reply": "2024-06-25T16:02:17.802532Z" + "iopub.execute_input": "2024-06-25T19:36:14.121705Z", + "iopub.status.busy": "2024-06-25T19:36:14.121535Z", + "iopub.status.idle": "2024-06-25T19:36:14.125253Z", + "shell.execute_reply": "2024-06-25T19:36:14.124849Z" } }, "outputs": [], @@ -3257,10 +3257,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.805397Z", - "iopub.status.busy": "2024-06-25T16:02:17.804958Z", - "iopub.status.idle": "2024-06-25T16:02:17.859460Z", - "shell.execute_reply": "2024-06-25T16:02:17.858895Z" + "iopub.execute_input": "2024-06-25T19:36:14.127233Z", + "iopub.status.busy": "2024-06-25T19:36:14.126914Z", + "iopub.status.idle": "2024-06-25T19:36:14.177262Z", + "shell.execute_reply": "2024-06-25T19:36:14.176812Z" } }, "outputs": [ @@ -3268,230 +3268,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3567,10 +3567,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.861887Z", - "iopub.status.busy": "2024-06-25T16:02:17.861391Z", - "iopub.status.idle": "2024-06-25T16:02:17.867312Z", - "shell.execute_reply": "2024-06-25T16:02:17.866753Z" + "iopub.execute_input": "2024-06-25T19:36:14.179445Z", + "iopub.status.busy": "2024-06-25T19:36:14.179018Z", + "iopub.status.idle": "2024-06-25T19:36:14.184786Z", + "shell.execute_reply": "2024-06-25T19:36:14.184224Z" } }, "outputs": [], @@ -3609,10 +3609,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.869315Z", - "iopub.status.busy": "2024-06-25T16:02:17.869000Z", - "iopub.status.idle": "2024-06-25T16:02:17.880761Z", - "shell.execute_reply": "2024-06-25T16:02:17.880169Z" + "iopub.execute_input": "2024-06-25T19:36:14.186887Z", + "iopub.status.busy": "2024-06-25T19:36:14.186471Z", + "iopub.status.idle": "2024-06-25T19:36:14.196806Z", + "shell.execute_reply": "2024-06-25T19:36:14.196244Z" } }, "outputs": [ @@ -3648,10 +3648,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.883066Z", - "iopub.status.busy": "2024-06-25T16:02:17.882616Z", - "iopub.status.idle": "2024-06-25T16:02:18.106274Z", - "shell.execute_reply": "2024-06-25T16:02:18.105691Z" + "iopub.execute_input": "2024-06-25T19:36:14.198752Z", + "iopub.status.busy": "2024-06-25T19:36:14.198440Z", + "iopub.status.idle": "2024-06-25T19:36:14.412825Z", + "shell.execute_reply": "2024-06-25T19:36:14.412259Z" } }, "outputs": [ @@ -3703,10 +3703,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:18.108615Z", - "iopub.status.busy": "2024-06-25T16:02:18.108164Z", - "iopub.status.idle": "2024-06-25T16:02:18.116186Z", - "shell.execute_reply": "2024-06-25T16:02:18.115708Z" + "iopub.execute_input": "2024-06-25T19:36:14.414958Z", + "iopub.status.busy": "2024-06-25T19:36:14.414688Z", + "iopub.status.idle": "2024-06-25T19:36:14.422114Z", + "shell.execute_reply": "2024-06-25T19:36:14.421663Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 2b283a3e9..6a954c6b0 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:21.580164Z", - "iopub.status.busy": "2024-06-25T16:02:21.579985Z", - "iopub.status.idle": "2024-06-25T16:02:22.763255Z", - "shell.execute_reply": "2024-06-25T16:02:22.762705Z" + "iopub.execute_input": "2024-06-25T19:36:17.536909Z", + "iopub.status.busy": "2024-06-25T19:36:17.536739Z", + "iopub.status.idle": "2024-06-25T19:36:18.659278Z", + "shell.execute_reply": "2024-06-25T19:36:18.658730Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:22.765949Z", - "iopub.status.busy": "2024-06-25T16:02:22.765396Z", - "iopub.status.idle": "2024-06-25T16:02:22.768318Z", - "shell.execute_reply": "2024-06-25T16:02:22.767866Z" + "iopub.execute_input": "2024-06-25T19:36:18.661733Z", + "iopub.status.busy": "2024-06-25T19:36:18.661422Z", + "iopub.status.idle": "2024-06-25T19:36:18.664275Z", + "shell.execute_reply": "2024-06-25T19:36:18.663748Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:22.770655Z", - "iopub.status.busy": "2024-06-25T16:02:22.770476Z", - "iopub.status.idle": "2024-06-25T16:02:22.783781Z", - "shell.execute_reply": "2024-06-25T16:02:22.783292Z" + "iopub.execute_input": "2024-06-25T19:36:18.666336Z", + "iopub.status.busy": "2024-06-25T19:36:18.666027Z", + "iopub.status.idle": "2024-06-25T19:36:18.678092Z", + "shell.execute_reply": "2024-06-25T19:36:18.677567Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:22.785989Z", - "iopub.status.busy": "2024-06-25T16:02:22.785704Z", - "iopub.status.idle": "2024-06-25T16:02:26.605815Z", - "shell.execute_reply": "2024-06-25T16:02:26.605337Z" + "iopub.execute_input": "2024-06-25T19:36:18.680164Z", + "iopub.status.busy": "2024-06-25T19:36:18.679860Z", + "iopub.status.idle": "2024-06-25T19:36:28.874863Z", + "shell.execute_reply": "2024-06-25T19:36:28.874371Z" }, "id": "dhTHOg8Pyv5G" }, @@ -694,7 +694,13 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index cf0213fe0..649612439 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:29.093911Z", - "iopub.status.busy": "2024-06-25T16:02:29.093556Z", - "iopub.status.idle": "2024-06-25T16:02:30.271993Z", - "shell.execute_reply": "2024-06-25T16:02:30.271440Z" + "iopub.execute_input": "2024-06-25T19:36:31.054579Z", + "iopub.status.busy": "2024-06-25T19:36:31.054404Z", + "iopub.status.idle": "2024-06-25T19:36:32.183683Z", + "shell.execute_reply": "2024-06-25T19:36:32.183056Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:30.275199Z", - "iopub.status.busy": "2024-06-25T16:02:30.274597Z", - "iopub.status.idle": "2024-06-25T16:02:30.278598Z", - "shell.execute_reply": "2024-06-25T16:02:30.278052Z" + "iopub.execute_input": "2024-06-25T19:36:32.186495Z", + "iopub.status.busy": "2024-06-25T19:36:32.186073Z", + "iopub.status.idle": "2024-06-25T19:36:32.189610Z", + "shell.execute_reply": "2024-06-25T19:36:32.189148Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:30.280929Z", - "iopub.status.busy": "2024-06-25T16:02:30.280543Z", - "iopub.status.idle": "2024-06-25T16:02:33.664200Z", - "shell.execute_reply": "2024-06-25T16:02:33.663468Z" + "iopub.execute_input": "2024-06-25T19:36:32.191776Z", + "iopub.status.busy": "2024-06-25T19:36:32.191309Z", + "iopub.status.idle": "2024-06-25T19:36:35.412500Z", + "shell.execute_reply": "2024-06-25T19:36:35.411739Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.667568Z", - "iopub.status.busy": "2024-06-25T16:02:33.666753Z", - "iopub.status.idle": "2024-06-25T16:02:33.706553Z", - "shell.execute_reply": "2024-06-25T16:02:33.705839Z" + "iopub.execute_input": "2024-06-25T19:36:35.415868Z", + "iopub.status.busy": "2024-06-25T19:36:35.414996Z", + "iopub.status.idle": "2024-06-25T19:36:35.452492Z", + "shell.execute_reply": "2024-06-25T19:36:35.451863Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.709552Z", - "iopub.status.busy": "2024-06-25T16:02:33.709080Z", - "iopub.status.idle": "2024-06-25T16:02:33.747295Z", - "shell.execute_reply": "2024-06-25T16:02:33.746692Z" + "iopub.execute_input": "2024-06-25T19:36:35.455265Z", + "iopub.status.busy": "2024-06-25T19:36:35.454795Z", + "iopub.status.idle": "2024-06-25T19:36:35.489174Z", + "shell.execute_reply": "2024-06-25T19:36:35.488560Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.750054Z", - "iopub.status.busy": "2024-06-25T16:02:33.749633Z", - "iopub.status.idle": "2024-06-25T16:02:33.752782Z", - "shell.execute_reply": "2024-06-25T16:02:33.752208Z" + "iopub.execute_input": "2024-06-25T19:36:35.491931Z", + "iopub.status.busy": "2024-06-25T19:36:35.491449Z", + "iopub.status.idle": "2024-06-25T19:36:35.494631Z", + "shell.execute_reply": "2024-06-25T19:36:35.494157Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.754793Z", - "iopub.status.busy": "2024-06-25T16:02:33.754393Z", - "iopub.status.idle": "2024-06-25T16:02:33.757184Z", - "shell.execute_reply": "2024-06-25T16:02:33.756618Z" + "iopub.execute_input": "2024-06-25T19:36:35.496822Z", + "iopub.status.busy": "2024-06-25T19:36:35.496395Z", + "iopub.status.idle": "2024-06-25T19:36:35.499017Z", + "shell.execute_reply": "2024-06-25T19:36:35.498537Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.759344Z", - "iopub.status.busy": "2024-06-25T16:02:33.759015Z", - "iopub.status.idle": "2024-06-25T16:02:33.784607Z", - "shell.execute_reply": "2024-06-25T16:02:33.783988Z" + "iopub.execute_input": "2024-06-25T19:36:35.501249Z", + "iopub.status.busy": "2024-06-25T19:36:35.500816Z", + "iopub.status.idle": "2024-06-25T19:36:35.525422Z", + "shell.execute_reply": "2024-06-25T19:36:35.524821Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c6a877036d2484099e04e3a1a4f477a", + "model_id": "d8af54b634f1457680edc574c7fcb110", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3dcecf61b1ea493891d9c418f6d478c9", + "model_id": "84b64175499142ae9cf770d1e88b80ac", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.791372Z", - "iopub.status.busy": "2024-06-25T16:02:33.790898Z", - "iopub.status.idle": "2024-06-25T16:02:33.798187Z", - "shell.execute_reply": "2024-06-25T16:02:33.797608Z" + "iopub.execute_input": "2024-06-25T19:36:35.532028Z", + "iopub.status.busy": "2024-06-25T19:36:35.531847Z", + "iopub.status.idle": "2024-06-25T19:36:35.538645Z", + "shell.execute_reply": "2024-06-25T19:36:35.538198Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.800382Z", - "iopub.status.busy": "2024-06-25T16:02:33.800203Z", - "iopub.status.idle": "2024-06-25T16:02:33.803758Z", - "shell.execute_reply": "2024-06-25T16:02:33.803335Z" + "iopub.execute_input": "2024-06-25T19:36:35.540612Z", + "iopub.status.busy": "2024-06-25T19:36:35.540437Z", + "iopub.status.idle": "2024-06-25T19:36:35.543848Z", + "shell.execute_reply": "2024-06-25T19:36:35.543410Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.805911Z", - "iopub.status.busy": "2024-06-25T16:02:33.805578Z", - "iopub.status.idle": "2024-06-25T16:02:33.811761Z", - "shell.execute_reply": "2024-06-25T16:02:33.811312Z" + "iopub.execute_input": "2024-06-25T19:36:35.545806Z", + "iopub.status.busy": "2024-06-25T19:36:35.545508Z", + "iopub.status.idle": "2024-06-25T19:36:35.551703Z", + "shell.execute_reply": "2024-06-25T19:36:35.551260Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.813716Z", - "iopub.status.busy": "2024-06-25T16:02:33.813419Z", - "iopub.status.idle": "2024-06-25T16:02:33.850139Z", - "shell.execute_reply": "2024-06-25T16:02:33.849563Z" + "iopub.execute_input": "2024-06-25T19:36:35.553602Z", + "iopub.status.busy": "2024-06-25T19:36:35.553415Z", + "iopub.status.idle": "2024-06-25T19:36:35.589414Z", + "shell.execute_reply": "2024-06-25T19:36:35.588805Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.852668Z", - "iopub.status.busy": "2024-06-25T16:02:33.852353Z", - "iopub.status.idle": "2024-06-25T16:02:33.887227Z", - "shell.execute_reply": "2024-06-25T16:02:33.886643Z" + "iopub.execute_input": "2024-06-25T19:36:35.592001Z", + "iopub.status.busy": "2024-06-25T19:36:35.591752Z", + "iopub.status.idle": "2024-06-25T19:36:35.628128Z", + "shell.execute_reply": "2024-06-25T19:36:35.627508Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.889899Z", - "iopub.status.busy": "2024-06-25T16:02:33.889587Z", - "iopub.status.idle": "2024-06-25T16:02:34.020226Z", - "shell.execute_reply": "2024-06-25T16:02:34.019640Z" + "iopub.execute_input": "2024-06-25T19:36:35.630864Z", + "iopub.status.busy": "2024-06-25T19:36:35.630509Z", + "iopub.status.idle": "2024-06-25T19:36:35.751028Z", + "shell.execute_reply": "2024-06-25T19:36:35.750367Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:34.022853Z", - "iopub.status.busy": "2024-06-25T16:02:34.022310Z", - "iopub.status.idle": "2024-06-25T16:02:37.124984Z", - "shell.execute_reply": "2024-06-25T16:02:37.124295Z" + "iopub.execute_input": "2024-06-25T19:36:35.753981Z", + "iopub.status.busy": "2024-06-25T19:36:35.753115Z", + "iopub.status.idle": "2024-06-25T19:36:38.820276Z", + "shell.execute_reply": "2024-06-25T19:36:38.819614Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:37.127549Z", - "iopub.status.busy": "2024-06-25T16:02:37.127178Z", - "iopub.status.idle": "2024-06-25T16:02:37.190571Z", - "shell.execute_reply": "2024-06-25T16:02:37.189933Z" + "iopub.execute_input": "2024-06-25T19:36:38.822817Z", + "iopub.status.busy": "2024-06-25T19:36:38.822359Z", + "iopub.status.idle": "2024-06-25T19:36:38.881135Z", + "shell.execute_reply": "2024-06-25T19:36:38.880677Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:37.192895Z", - "iopub.status.busy": "2024-06-25T16:02:37.192539Z", - "iopub.status.idle": "2024-06-25T16:02:37.236637Z", - "shell.execute_reply": "2024-06-25T16:02:37.235957Z" + "iopub.execute_input": "2024-06-25T19:36:38.883155Z", + "iopub.status.busy": "2024-06-25T19:36:38.882856Z", + "iopub.status.idle": "2024-06-25T19:36:38.922999Z", + "shell.execute_reply": "2024-06-25T19:36:38.922558Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "89239277", + "id": "91d13c0b", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "ac0629ed", + "id": "838b0e29", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "24692753", + "id": "72c82160", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "9a0a402a", + "id": "c8ef0e49", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:37.239147Z", - "iopub.status.busy": "2024-06-25T16:02:37.238875Z", - "iopub.status.idle": "2024-06-25T16:02:37.247577Z", - "shell.execute_reply": "2024-06-25T16:02:37.246901Z" + "iopub.execute_input": "2024-06-25T19:36:38.925175Z", + "iopub.status.busy": "2024-06-25T19:36:38.924869Z", + "iopub.status.idle": "2024-06-25T19:36:38.933100Z", + "shell.execute_reply": "2024-06-25T19:36:38.932519Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "ea91a64c", + "id": "bfd8eea7", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "ced0d3fc", + "id": "7515c699", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:37.250161Z", - "iopub.status.busy": "2024-06-25T16:02:37.249739Z", - "iopub.status.idle": "2024-06-25T16:02:37.272485Z", - "shell.execute_reply": "2024-06-25T16:02:37.271873Z" + "iopub.execute_input": "2024-06-25T19:36:38.935170Z", + "iopub.status.busy": "2024-06-25T19:36:38.934961Z", + "iopub.status.idle": "2024-06-25T19:36:38.958819Z", + "shell.execute_reply": "2024-06-25T19:36:38.958261Z" } }, "outputs": [ @@ -1495,7 +1495,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7641/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7655/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1529,13 +1529,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "55af4542", + "id": "0be681e4", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:37.275141Z", - "iopub.status.busy": "2024-06-25T16:02:37.274751Z", - "iopub.status.idle": "2024-06-25T16:02:37.278487Z", - "shell.execute_reply": "2024-06-25T16:02:37.277886Z" + "iopub.execute_input": "2024-06-25T19:36:38.960846Z", + "iopub.status.busy": "2024-06-25T19:36:38.960529Z", + "iopub.status.idle": "2024-06-25T19:36:38.963912Z", + "shell.execute_reply": "2024-06-25T19:36:38.963342Z" } }, "outputs": [ @@ -1630,7 +1630,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08a80543c96c4c38a6982a0f41c36750": { + "1ac8a486230942529a1f92b9b04d7e25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1683,84 +1683,7 @@ "width": null } }, - "1b93ed5e4dd548078869118a0b22e7e1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2c6a877036d2484099e04e3a1a4f477a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8be0fc5b54764ea9820badef4cebd3da", - "IPY_MODEL_47f32190573c41afaccce4d766d1f6d5", - "IPY_MODEL_da200aa4ab9647a1a0458010a34d05ed" - ], - "layout": "IPY_MODEL_b1669677c220423bae10d787c58cf862", - "tabbable": null, - "tooltip": null - } - }, - "3bcdaa2696af411490fea143c024fdb4": { + "1e692354f23845bf94b6ee7d9d7b2637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1778,83 +1701,7 @@ "text_color": null } }, - "3dcecf61b1ea493891d9c418f6d478c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ee4a98e1f6b34e82b215c981b977b406", - "IPY_MODEL_4350e96f713649bface4533a2db2205d", - "IPY_MODEL_95968ea26b4049e38d5b504c5cbe8c80" - ], - "layout": "IPY_MODEL_08a80543c96c4c38a6982a0f41c36750", - "tabbable": null, - "tooltip": null - } - }, - "4350e96f713649bface4533a2db2205d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d128773ccdaa44d1a69a770e5b0f330a", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e6ecb3f3ed9b426ab76c814c9abef1af", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "47f32190573c41afaccce4d766d1f6d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c726e5b7cd6f48cd85a020eb02a66db2", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9a577d18d92846c195df80e480e2414a", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "4c1633c8b3ad41b4b6043b1052cc2464": { + "27e85dda33254222a2c4e9d42bf88ff4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1872,7 +1719,7 @@ "text_color": null } }, - "4d5211dd68e841b283f7e75b0cce3600": { + "2f598ca1115244399eac8ba3ae5fcba3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1925,7 +1772,7 @@ "width": null } }, - "6458034c095740819698e38d034b409a": { + "3e18aac5a76f4d2f8ce8f5acb53421d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1978,7 +1825,49 @@ "width": null } }, - "6c5bcd0bb835465ea478e8e9ce6fb829": { + "45a1fa5ae2f84e1b9e7c58b238c02698": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "58d31513ffc848d98369cbd1a5fadbf4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2f598ca1115244399eac8ba3ae5fcba3", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_45a1fa5ae2f84e1b9e7c58b238c02698", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "83e8730e8f4b4919bc838506ae45e9f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2031,30 +1920,31 @@ "width": null } }, - "8be0fc5b54764ea9820badef4cebd3da": { + "84b64175499142ae9cf770d1e88b80ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1b93ed5e4dd548078869118a0b22e7e1", - "placeholder": "​", - "style": "IPY_MODEL_3bcdaa2696af411490fea143c024fdb4", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_89f81d1899184862ad07ccb4185e5559", + "IPY_MODEL_58d31513ffc848d98369cbd1a5fadbf4", + "IPY_MODEL_f724bd9057e2403697996412c3965090" + ], + "layout": "IPY_MODEL_1ac8a486230942529a1f92b9b04d7e25", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "tooltip": null } }, - "95968ea26b4049e38d5b504c5cbe8c80": { + "89f81d1899184862ad07ccb4185e5559": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2069,49 +1959,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c5bcd0bb835465ea478e8e9ce6fb829", + "layout": "IPY_MODEL_bd49361ee585455e9e0ea110e22cd11e", "placeholder": "​", - "style": "IPY_MODEL_fb1cf02f236241ffacfd6d2220068210", + "style": "IPY_MODEL_1e692354f23845bf94b6ee7d9d7b2637", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1583832.04it/s]" + "value": "number of examples processed for checking labels: " } }, - "9a577d18d92846c195df80e480e2414a": { + "9e433498da854beaad7447e349a6c08e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e18aac5a76f4d2f8ce8f5acb53421d0", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dcebb06a360d4208903b16c601b8b9f0", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "9f0eefc4ef404d8885f9dd0a67762b60": { + "a4ce410049214dbe89d19e4dbe853b25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bbe8dc417f9d43f1ae6a2da9fe46bcfd", + "placeholder": "​", + "style": "IPY_MODEL_c0572681372e40379a108207eae59244", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " } }, - "b1669677c220423bae10d787c58cf862": { + "b2b8153149be48568be2b6c09e02fa2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2164,7 +2069,30 @@ "width": null } }, - "c726e5b7cd6f48cd85a020eb02a66db2": { + "ba90ec735ab140eda8d3905b17d24bf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b2b8153149be48568be2b6c09e02fa2f", + "placeholder": "​", + "style": "IPY_MODEL_27e85dda33254222a2c4e9d42bf88ff4", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1015594.57it/s]" + } + }, + "bbe8dc417f9d43f1ae6a2da9fe46bcfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2217,7 +2145,7 @@ "width": null } }, - "d128773ccdaa44d1a69a770e5b0f330a": { + "bd49361ee585455e9e0ea110e22cd11e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2270,30 +2198,49 @@ "width": null } }, - "da200aa4ab9647a1a0458010a34d05ed": { + "c0572681372e40379a108207eae59244": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d8af54b634f1457680edc574c7fcb110": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4d5211dd68e841b283f7e75b0cce3600", - "placeholder": "​", - "style": "IPY_MODEL_4c1633c8b3ad41b4b6043b1052cc2464", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4ce410049214dbe89d19e4dbe853b25", + "IPY_MODEL_9e433498da854beaad7447e349a6c08e", + "IPY_MODEL_ba90ec735ab140eda8d3905b17d24bf0" + ], + "layout": "IPY_MODEL_83e8730e8f4b4919bc838506ae45e9f1", "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 965806.39it/s]" + "tooltip": null } }, - "e6ecb3f3ed9b426ab76c814c9abef1af": { + "dcebb06a360d4208903b16c601b8b9f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2309,7 +2256,60 @@ "description_width": "" } }, - "ee4a98e1f6b34e82b215c981b977b406": { + "ef7c6e423a9041328b6cffec28d2d266": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f724bd9057e2403697996412c3965090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2324,15 +2324,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6458034c095740819698e38d034b409a", + "layout": "IPY_MODEL_ef7c6e423a9041328b6cffec28d2d266", "placeholder": "​", - "style": "IPY_MODEL_9f0eefc4ef404d8885f9dd0a67762b60", + "style": "IPY_MODEL_f9185cf0646b4409bb846af3b144c5a1", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": " 10000/? [00:00<00:00, 1581801.18it/s]" } }, - "fb1cf02f236241ffacfd6d2220068210": { + "f9185cf0646b4409bb846af3b144c5a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 57020397c..3a6310e80 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:40.748490Z", - "iopub.status.busy": "2024-06-25T16:02:40.748316Z", - "iopub.status.idle": "2024-06-25T16:02:41.974056Z", - "shell.execute_reply": "2024-06-25T16:02:41.973504Z" + "iopub.execute_input": "2024-06-25T19:36:41.976010Z", + "iopub.status.busy": "2024-06-25T19:36:41.975837Z", + "iopub.status.idle": "2024-06-25T19:36:43.122752Z", + "shell.execute_reply": "2024-06-25T19:36:43.122216Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:41.976534Z", - "iopub.status.busy": "2024-06-25T16:02:41.976223Z", - "iopub.status.idle": "2024-06-25T16:02:42.163274Z", - "shell.execute_reply": "2024-06-25T16:02:42.162705Z" + "iopub.execute_input": "2024-06-25T19:36:43.125429Z", + "iopub.status.busy": "2024-06-25T19:36:43.124947Z", + "iopub.status.idle": "2024-06-25T19:36:43.300656Z", + "shell.execute_reply": "2024-06-25T19:36:43.300064Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:42.165845Z", - "iopub.status.busy": "2024-06-25T16:02:42.165488Z", - "iopub.status.idle": "2024-06-25T16:02:42.177101Z", - "shell.execute_reply": "2024-06-25T16:02:42.176671Z" + "iopub.execute_input": "2024-06-25T19:36:43.303142Z", + "iopub.status.busy": "2024-06-25T19:36:43.302695Z", + "iopub.status.idle": "2024-06-25T19:36:43.314281Z", + "shell.execute_reply": "2024-06-25T19:36:43.313721Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:42.179255Z", - "iopub.status.busy": "2024-06-25T16:02:42.178922Z", - "iopub.status.idle": "2024-06-25T16:02:42.418705Z", - "shell.execute_reply": "2024-06-25T16:02:42.418006Z" + "iopub.execute_input": "2024-06-25T19:36:43.316604Z", + "iopub.status.busy": "2024-06-25T19:36:43.316167Z", + "iopub.status.idle": "2024-06-25T19:36:43.522010Z", + "shell.execute_reply": "2024-06-25T19:36:43.521428Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:42.421378Z", - "iopub.status.busy": "2024-06-25T16:02:42.421040Z", - "iopub.status.idle": "2024-06-25T16:02:42.448559Z", - "shell.execute_reply": "2024-06-25T16:02:42.448053Z" + "iopub.execute_input": "2024-06-25T19:36:43.524390Z", + "iopub.status.busy": "2024-06-25T19:36:43.524031Z", + "iopub.status.idle": "2024-06-25T19:36:43.550098Z", + "shell.execute_reply": "2024-06-25T19:36:43.549668Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:42.451069Z", - "iopub.status.busy": "2024-06-25T16:02:42.450741Z", - "iopub.status.idle": "2024-06-25T16:02:44.662327Z", - "shell.execute_reply": "2024-06-25T16:02:44.661506Z" + "iopub.execute_input": "2024-06-25T19:36:43.552184Z", + "iopub.status.busy": "2024-06-25T19:36:43.551843Z", + "iopub.status.idle": "2024-06-25T19:36:45.543682Z", + "shell.execute_reply": "2024-06-25T19:36:45.542976Z" } }, "outputs": [ @@ -482,10 +482,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:44.665568Z", - "iopub.status.busy": "2024-06-25T16:02:44.664832Z", - "iopub.status.idle": "2024-06-25T16:02:44.683647Z", - "shell.execute_reply": "2024-06-25T16:02:44.683185Z" + "iopub.execute_input": "2024-06-25T19:36:45.546502Z", + "iopub.status.busy": "2024-06-25T19:36:45.545811Z", + "iopub.status.idle": "2024-06-25T19:36:45.563579Z", + "shell.execute_reply": "2024-06-25T19:36:45.563096Z" }, "scrolled": true }, @@ -615,10 +615,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:44.685702Z", - "iopub.status.busy": "2024-06-25T16:02:44.685519Z", - "iopub.status.idle": "2024-06-25T16:02:46.212272Z", - "shell.execute_reply": "2024-06-25T16:02:46.211682Z" + "iopub.execute_input": "2024-06-25T19:36:45.565656Z", + "iopub.status.busy": "2024-06-25T19:36:45.565330Z", + "iopub.status.idle": "2024-06-25T19:36:46.995317Z", + "shell.execute_reply": "2024-06-25T19:36:46.994691Z" }, "id": "AaHC5MRKjruT" }, @@ -737,10 +737,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.215063Z", - "iopub.status.busy": "2024-06-25T16:02:46.214331Z", - "iopub.status.idle": "2024-06-25T16:02:46.228245Z", - "shell.execute_reply": "2024-06-25T16:02:46.227804Z" + "iopub.execute_input": "2024-06-25T19:36:46.998304Z", + "iopub.status.busy": "2024-06-25T19:36:46.997491Z", + "iopub.status.idle": "2024-06-25T19:36:47.010764Z", + "shell.execute_reply": "2024-06-25T19:36:47.010231Z" }, "id": "Wy27rvyhjruU" }, @@ -789,10 +789,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.230352Z", - "iopub.status.busy": "2024-06-25T16:02:46.229965Z", - "iopub.status.idle": "2024-06-25T16:02:46.307856Z", - "shell.execute_reply": "2024-06-25T16:02:46.307209Z" + "iopub.execute_input": "2024-06-25T19:36:47.012994Z", + "iopub.status.busy": "2024-06-25T19:36:47.012685Z", + "iopub.status.idle": "2024-06-25T19:36:47.092028Z", + "shell.execute_reply": "2024-06-25T19:36:47.091384Z" }, "id": "Db8YHnyVjruU" }, @@ -899,10 +899,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.310219Z", - "iopub.status.busy": "2024-06-25T16:02:46.309930Z", - "iopub.status.idle": "2024-06-25T16:02:46.521781Z", - "shell.execute_reply": "2024-06-25T16:02:46.521273Z" + "iopub.execute_input": "2024-06-25T19:36:47.094203Z", + "iopub.status.busy": "2024-06-25T19:36:47.093979Z", + "iopub.status.idle": "2024-06-25T19:36:47.306398Z", + "shell.execute_reply": "2024-06-25T19:36:47.305822Z" }, "id": "iJqAHuS2jruV" }, @@ -939,10 +939,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.523818Z", - "iopub.status.busy": "2024-06-25T16:02:46.523632Z", - "iopub.status.idle": "2024-06-25T16:02:46.540904Z", - "shell.execute_reply": "2024-06-25T16:02:46.540408Z" + "iopub.execute_input": "2024-06-25T19:36:47.308648Z", + "iopub.status.busy": "2024-06-25T19:36:47.308280Z", + "iopub.status.idle": "2024-06-25T19:36:47.324852Z", + "shell.execute_reply": "2024-06-25T19:36:47.324401Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1408,10 +1408,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.542886Z", - "iopub.status.busy": "2024-06-25T16:02:46.542709Z", - "iopub.status.idle": "2024-06-25T16:02:46.552349Z", - "shell.execute_reply": "2024-06-25T16:02:46.551866Z" + "iopub.execute_input": "2024-06-25T19:36:47.326839Z", + "iopub.status.busy": "2024-06-25T19:36:47.326575Z", + "iopub.status.idle": "2024-06-25T19:36:47.335814Z", + "shell.execute_reply": "2024-06-25T19:36:47.335352Z" }, "id": "0lonvOYvjruV" }, @@ -1558,10 +1558,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.554425Z", - "iopub.status.busy": "2024-06-25T16:02:46.554099Z", - "iopub.status.idle": "2024-06-25T16:02:46.642003Z", - "shell.execute_reply": "2024-06-25T16:02:46.641381Z" + "iopub.execute_input": "2024-06-25T19:36:47.337943Z", + "iopub.status.busy": "2024-06-25T19:36:47.337629Z", + "iopub.status.idle": "2024-06-25T19:36:47.419127Z", + "shell.execute_reply": "2024-06-25T19:36:47.418522Z" }, "id": "MfqTCa3kjruV" }, @@ -1642,10 +1642,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.644213Z", - "iopub.status.busy": "2024-06-25T16:02:46.643993Z", - "iopub.status.idle": "2024-06-25T16:02:46.776918Z", - "shell.execute_reply": "2024-06-25T16:02:46.776280Z" + "iopub.execute_input": "2024-06-25T19:36:47.421368Z", + "iopub.status.busy": "2024-06-25T19:36:47.421141Z", + "iopub.status.idle": "2024-06-25T19:36:47.538207Z", + "shell.execute_reply": "2024-06-25T19:36:47.537601Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1705,10 +1705,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.779323Z", - "iopub.status.busy": "2024-06-25T16:02:46.779037Z", - "iopub.status.idle": "2024-06-25T16:02:46.782978Z", - "shell.execute_reply": "2024-06-25T16:02:46.782433Z" + "iopub.execute_input": "2024-06-25T19:36:47.540745Z", + "iopub.status.busy": "2024-06-25T19:36:47.540377Z", + "iopub.status.idle": "2024-06-25T19:36:47.544346Z", + "shell.execute_reply": "2024-06-25T19:36:47.543812Z" }, "id": "0rXP3ZPWjruW" }, @@ -1746,10 +1746,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.785064Z", - "iopub.status.busy": "2024-06-25T16:02:46.784749Z", - "iopub.status.idle": "2024-06-25T16:02:46.788357Z", - "shell.execute_reply": "2024-06-25T16:02:46.787829Z" + "iopub.execute_input": "2024-06-25T19:36:47.546251Z", + "iopub.status.busy": "2024-06-25T19:36:47.546076Z", + "iopub.status.idle": "2024-06-25T19:36:47.549903Z", + "shell.execute_reply": "2024-06-25T19:36:47.549356Z" }, "id": "-iRPe8KXjruW" }, @@ -1804,10 +1804,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.790422Z", - "iopub.status.busy": "2024-06-25T16:02:46.790100Z", - "iopub.status.idle": "2024-06-25T16:02:46.827289Z", - "shell.execute_reply": "2024-06-25T16:02:46.826716Z" + "iopub.execute_input": "2024-06-25T19:36:47.552020Z", + "iopub.status.busy": "2024-06-25T19:36:47.551608Z", + "iopub.status.idle": "2024-06-25T19:36:47.587995Z", + "shell.execute_reply": "2024-06-25T19:36:47.587566Z" }, "id": "ZpipUliyjruW" }, @@ -1858,10 +1858,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.829504Z", - "iopub.status.busy": "2024-06-25T16:02:46.829095Z", - "iopub.status.idle": "2024-06-25T16:02:46.878532Z", - "shell.execute_reply": "2024-06-25T16:02:46.877972Z" + "iopub.execute_input": "2024-06-25T19:36:47.589852Z", + "iopub.status.busy": "2024-06-25T19:36:47.589680Z", + "iopub.status.idle": "2024-06-25T19:36:47.630699Z", + "shell.execute_reply": "2024-06-25T19:36:47.630137Z" }, "id": "SLq-3q4xjruX" }, @@ -1930,10 +1930,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.880783Z", - "iopub.status.busy": "2024-06-25T16:02:46.880433Z", - "iopub.status.idle": "2024-06-25T16:02:46.975622Z", - "shell.execute_reply": "2024-06-25T16:02:46.974905Z" + "iopub.execute_input": "2024-06-25T19:36:47.632515Z", + "iopub.status.busy": "2024-06-25T19:36:47.632349Z", + "iopub.status.idle": "2024-06-25T19:36:47.720647Z", + "shell.execute_reply": "2024-06-25T19:36:47.719956Z" }, "id": "g5LHhhuqFbXK" }, @@ -1965,10 +1965,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:46.978515Z", - "iopub.status.busy": "2024-06-25T16:02:46.978118Z", - "iopub.status.idle": "2024-06-25T16:02:47.089541Z", - "shell.execute_reply": "2024-06-25T16:02:47.088981Z" + "iopub.execute_input": "2024-06-25T19:36:47.723084Z", + "iopub.status.busy": "2024-06-25T19:36:47.722899Z", + "iopub.status.idle": "2024-06-25T19:36:47.802159Z", + "shell.execute_reply": "2024-06-25T19:36:47.801549Z" }, "id": "p7w8F8ezBcet" }, @@ -2025,10 +2025,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:47.091888Z", - "iopub.status.busy": "2024-06-25T16:02:47.091527Z", - "iopub.status.idle": "2024-06-25T16:02:47.305391Z", - "shell.execute_reply": "2024-06-25T16:02:47.304800Z" + "iopub.execute_input": "2024-06-25T19:36:47.804647Z", + "iopub.status.busy": "2024-06-25T19:36:47.804175Z", + "iopub.status.idle": "2024-06-25T19:36:48.012610Z", + "shell.execute_reply": "2024-06-25T19:36:48.012009Z" }, "id": "WETRL74tE_sU" }, @@ -2063,10 +2063,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:47.307620Z", - "iopub.status.busy": "2024-06-25T16:02:47.307275Z", - "iopub.status.idle": "2024-06-25T16:02:47.502695Z", - "shell.execute_reply": "2024-06-25T16:02:47.502110Z" + "iopub.execute_input": "2024-06-25T19:36:48.014974Z", + "iopub.status.busy": "2024-06-25T19:36:48.014733Z", + "iopub.status.idle": "2024-06-25T19:36:48.197734Z", + "shell.execute_reply": "2024-06-25T19:36:48.197109Z" }, "id": "kCfdx2gOLmXS" }, @@ -2228,10 +2228,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:47.505113Z", - "iopub.status.busy": "2024-06-25T16:02:47.504814Z", - "iopub.status.idle": "2024-06-25T16:02:47.511937Z", - "shell.execute_reply": "2024-06-25T16:02:47.511338Z" + "iopub.execute_input": "2024-06-25T19:36:48.200133Z", + "iopub.status.busy": "2024-06-25T19:36:48.199890Z", + "iopub.status.idle": "2024-06-25T19:36:48.206211Z", + "shell.execute_reply": "2024-06-25T19:36:48.205745Z" }, "id": "-uogYRWFYnuu" }, @@ -2285,10 +2285,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:47.514466Z", - "iopub.status.busy": "2024-06-25T16:02:47.514118Z", - "iopub.status.idle": "2024-06-25T16:02:47.733867Z", - "shell.execute_reply": "2024-06-25T16:02:47.733276Z" + "iopub.execute_input": "2024-06-25T19:36:48.208373Z", + "iopub.status.busy": "2024-06-25T19:36:48.207949Z", + "iopub.status.idle": "2024-06-25T19:36:48.423251Z", + "shell.execute_reply": "2024-06-25T19:36:48.422679Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2335,10 +2335,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:47.735943Z", - "iopub.status.busy": "2024-06-25T16:02:47.735761Z", - "iopub.status.idle": "2024-06-25T16:02:48.814003Z", - "shell.execute_reply": "2024-06-25T16:02:48.813380Z" + "iopub.execute_input": "2024-06-25T19:36:48.425569Z", + "iopub.status.busy": "2024-06-25T19:36:48.425133Z", + "iopub.status.idle": "2024-06-25T19:36:49.482076Z", + "shell.execute_reply": "2024-06-25T19:36:49.481529Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 26efb45d7..906c55fbe 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:53.130891Z", - "iopub.status.busy": "2024-06-25T16:02:53.130715Z", - "iopub.status.idle": "2024-06-25T16:02:54.305156Z", - "shell.execute_reply": "2024-06-25T16:02:54.304563Z" + "iopub.execute_input": "2024-06-25T19:36:52.983005Z", + "iopub.status.busy": "2024-06-25T19:36:52.982831Z", + "iopub.status.idle": "2024-06-25T19:36:54.092198Z", + "shell.execute_reply": "2024-06-25T19:36:54.091645Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:54.308106Z", - "iopub.status.busy": "2024-06-25T16:02:54.307481Z", - "iopub.status.idle": "2024-06-25T16:02:54.310824Z", - "shell.execute_reply": "2024-06-25T16:02:54.310289Z" + "iopub.execute_input": "2024-06-25T19:36:54.094787Z", + "iopub.status.busy": "2024-06-25T19:36:54.094431Z", + "iopub.status.idle": "2024-06-25T19:36:54.097617Z", + "shell.execute_reply": "2024-06-25T19:36:54.097173Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:54.313010Z", - "iopub.status.busy": "2024-06-25T16:02:54.312692Z", - "iopub.status.idle": "2024-06-25T16:02:54.321327Z", - "shell.execute_reply": "2024-06-25T16:02:54.320765Z" + "iopub.execute_input": "2024-06-25T19:36:54.099720Z", + "iopub.status.busy": "2024-06-25T19:36:54.099372Z", + "iopub.status.idle": "2024-06-25T19:36:54.107610Z", + "shell.execute_reply": "2024-06-25T19:36:54.107140Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:54.323419Z", - "iopub.status.busy": "2024-06-25T16:02:54.323092Z", - "iopub.status.idle": "2024-06-25T16:02:54.372385Z", - "shell.execute_reply": "2024-06-25T16:02:54.371847Z" + "iopub.execute_input": "2024-06-25T19:36:54.109674Z", + "iopub.status.busy": "2024-06-25T19:36:54.109247Z", + "iopub.status.idle": "2024-06-25T19:36:54.157412Z", + "shell.execute_reply": "2024-06-25T19:36:54.156840Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:54.375070Z", - "iopub.status.busy": "2024-06-25T16:02:54.374642Z", - "iopub.status.idle": "2024-06-25T16:02:54.393435Z", - "shell.execute_reply": "2024-06-25T16:02:54.392940Z" + "iopub.execute_input": "2024-06-25T19:36:54.159654Z", + "iopub.status.busy": "2024-06-25T19:36:54.159472Z", + "iopub.status.idle": "2024-06-25T19:36:54.177229Z", + "shell.execute_reply": "2024-06-25T19:36:54.176762Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:54.395635Z", - "iopub.status.busy": "2024-06-25T16:02:54.395296Z", - "iopub.status.idle": "2024-06-25T16:02:54.399316Z", - "shell.execute_reply": "2024-06-25T16:02:54.398875Z" + "iopub.execute_input": "2024-06-25T19:36:54.179344Z", + "iopub.status.busy": "2024-06-25T19:36:54.179010Z", + "iopub.status.idle": "2024-06-25T19:36:54.182993Z", + "shell.execute_reply": "2024-06-25T19:36:54.182561Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:54.401276Z", - "iopub.status.busy": "2024-06-25T16:02:54.401014Z", - "iopub.status.idle": "2024-06-25T16:02:54.416591Z", - "shell.execute_reply": "2024-06-25T16:02:54.416179Z" + "iopub.execute_input": "2024-06-25T19:36:54.185097Z", + "iopub.status.busy": "2024-06-25T19:36:54.184777Z", + "iopub.status.idle": "2024-06-25T19:36:54.198824Z", + "shell.execute_reply": "2024-06-25T19:36:54.198358Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:54.418396Z", - "iopub.status.busy": "2024-06-25T16:02:54.418219Z", - "iopub.status.idle": "2024-06-25T16:02:54.445301Z", - "shell.execute_reply": "2024-06-25T16:02:54.444811Z" + "iopub.execute_input": "2024-06-25T19:36:54.200845Z", + "iopub.status.busy": "2024-06-25T19:36:54.200664Z", + "iopub.status.idle": "2024-06-25T19:36:54.227151Z", + "shell.execute_reply": "2024-06-25T19:36:54.226585Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:54.447597Z", - "iopub.status.busy": "2024-06-25T16:02:54.447422Z", - "iopub.status.idle": "2024-06-25T16:02:56.432194Z", - "shell.execute_reply": "2024-06-25T16:02:56.431615Z" + "iopub.execute_input": "2024-06-25T19:36:54.229370Z", + "iopub.status.busy": "2024-06-25T19:36:54.228984Z", + "iopub.status.idle": "2024-06-25T19:36:56.088954Z", + "shell.execute_reply": "2024-06-25T19:36:56.088321Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:56.435124Z", - "iopub.status.busy": "2024-06-25T16:02:56.434375Z", - "iopub.status.idle": "2024-06-25T16:02:56.441579Z", - "shell.execute_reply": "2024-06-25T16:02:56.441127Z" + "iopub.execute_input": "2024-06-25T19:36:56.091797Z", + "iopub.status.busy": "2024-06-25T19:36:56.091365Z", + "iopub.status.idle": "2024-06-25T19:36:56.098121Z", + "shell.execute_reply": "2024-06-25T19:36:56.097667Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:56.443631Z", - "iopub.status.busy": "2024-06-25T16:02:56.443317Z", - "iopub.status.idle": "2024-06-25T16:02:56.455959Z", - "shell.execute_reply": "2024-06-25T16:02:56.455509Z" + "iopub.execute_input": "2024-06-25T19:36:56.100176Z", + "iopub.status.busy": "2024-06-25T19:36:56.099747Z", + "iopub.status.idle": "2024-06-25T19:36:56.112314Z", + "shell.execute_reply": "2024-06-25T19:36:56.111779Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:56.458164Z", - "iopub.status.busy": "2024-06-25T16:02:56.457716Z", - "iopub.status.idle": "2024-06-25T16:02:56.464156Z", - "shell.execute_reply": "2024-06-25T16:02:56.463633Z" + "iopub.execute_input": "2024-06-25T19:36:56.114307Z", + "iopub.status.busy": "2024-06-25T19:36:56.113989Z", + "iopub.status.idle": "2024-06-25T19:36:56.120308Z", + "shell.execute_reply": "2024-06-25T19:36:56.119759Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:56.466323Z", - "iopub.status.busy": "2024-06-25T16:02:56.466004Z", - "iopub.status.idle": "2024-06-25T16:02:56.468521Z", - "shell.execute_reply": "2024-06-25T16:02:56.468097Z" + "iopub.execute_input": "2024-06-25T19:36:56.122321Z", + "iopub.status.busy": "2024-06-25T19:36:56.122009Z", + "iopub.status.idle": "2024-06-25T19:36:56.124766Z", + "shell.execute_reply": "2024-06-25T19:36:56.124216Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:56.470402Z", - "iopub.status.busy": "2024-06-25T16:02:56.470111Z", - "iopub.status.idle": "2024-06-25T16:02:56.473462Z", - "shell.execute_reply": "2024-06-25T16:02:56.472984Z" + "iopub.execute_input": "2024-06-25T19:36:56.126666Z", + "iopub.status.busy": "2024-06-25T19:36:56.126364Z", + "iopub.status.idle": "2024-06-25T19:36:56.129930Z", + "shell.execute_reply": "2024-06-25T19:36:56.129387Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:56.475444Z", - "iopub.status.busy": "2024-06-25T16:02:56.475147Z", - "iopub.status.idle": "2024-06-25T16:02:56.477810Z", - "shell.execute_reply": "2024-06-25T16:02:56.477269Z" + "iopub.execute_input": "2024-06-25T19:36:56.132039Z", + "iopub.status.busy": "2024-06-25T19:36:56.131738Z", + "iopub.status.idle": "2024-06-25T19:36:56.134411Z", + "shell.execute_reply": "2024-06-25T19:36:56.133864Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:56.479686Z", - "iopub.status.busy": "2024-06-25T16:02:56.479395Z", - "iopub.status.idle": "2024-06-25T16:02:56.483532Z", - "shell.execute_reply": "2024-06-25T16:02:56.482988Z" + "iopub.execute_input": "2024-06-25T19:36:56.136459Z", + "iopub.status.busy": "2024-06-25T19:36:56.136150Z", + "iopub.status.idle": "2024-06-25T19:36:56.140438Z", + "shell.execute_reply": "2024-06-25T19:36:56.139976Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:56.485687Z", - "iopub.status.busy": "2024-06-25T16:02:56.485297Z", - "iopub.status.idle": "2024-06-25T16:02:56.514610Z", - "shell.execute_reply": "2024-06-25T16:02:56.514006Z" + "iopub.execute_input": "2024-06-25T19:36:56.142440Z", + "iopub.status.busy": "2024-06-25T19:36:56.142121Z", + "iopub.status.idle": "2024-06-25T19:36:56.170976Z", + "shell.execute_reply": "2024-06-25T19:36:56.170425Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:56.516802Z", - "iopub.status.busy": "2024-06-25T16:02:56.516469Z", - "iopub.status.idle": "2024-06-25T16:02:56.521584Z", - "shell.execute_reply": "2024-06-25T16:02:56.521158Z" + "iopub.execute_input": "2024-06-25T19:36:56.173162Z", + "iopub.status.busy": "2024-06-25T19:36:56.172858Z", + "iopub.status.idle": "2024-06-25T19:36:56.177426Z", + "shell.execute_reply": "2024-06-25T19:36:56.176864Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index df28f7e02..9e634f2f3 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:59.414501Z", - "iopub.status.busy": "2024-06-25T16:02:59.414064Z", - "iopub.status.idle": "2024-06-25T16:03:00.636346Z", - "shell.execute_reply": "2024-06-25T16:03:00.635780Z" + "iopub.execute_input": "2024-06-25T19:36:58.919980Z", + "iopub.status.busy": "2024-06-25T19:36:58.919807Z", + "iopub.status.idle": "2024-06-25T19:37:00.071287Z", + "shell.execute_reply": "2024-06-25T19:37:00.070749Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:00.639002Z", - "iopub.status.busy": "2024-06-25T16:03:00.638538Z", - "iopub.status.idle": "2024-06-25T16:03:00.841947Z", - "shell.execute_reply": "2024-06-25T16:03:00.841389Z" + "iopub.execute_input": "2024-06-25T19:37:00.073825Z", + "iopub.status.busy": "2024-06-25T19:37:00.073418Z", + "iopub.status.idle": "2024-06-25T19:37:00.265456Z", + "shell.execute_reply": "2024-06-25T19:37:00.264849Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:00.844664Z", - "iopub.status.busy": "2024-06-25T16:03:00.844115Z", - "iopub.status.idle": "2024-06-25T16:03:00.857495Z", - "shell.execute_reply": "2024-06-25T16:03:00.856922Z" + "iopub.execute_input": "2024-06-25T19:37:00.268256Z", + "iopub.status.busy": "2024-06-25T19:37:00.267860Z", + "iopub.status.idle": "2024-06-25T19:37:00.281177Z", + "shell.execute_reply": "2024-06-25T19:37:00.280743Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:00.859967Z", - "iopub.status.busy": "2024-06-25T16:03:00.859446Z", - "iopub.status.idle": "2024-06-25T16:03:03.563815Z", - "shell.execute_reply": "2024-06-25T16:03:03.563275Z" + "iopub.execute_input": "2024-06-25T19:37:00.283272Z", + "iopub.status.busy": "2024-06-25T19:37:00.282948Z", + "iopub.status.idle": "2024-06-25T19:37:02.915319Z", + "shell.execute_reply": "2024-06-25T19:37:02.914720Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:03.566363Z", - "iopub.status.busy": "2024-06-25T16:03:03.565825Z", - "iopub.status.idle": "2024-06-25T16:03:04.931484Z", - "shell.execute_reply": "2024-06-25T16:03:04.930842Z" + "iopub.execute_input": "2024-06-25T19:37:02.917655Z", + "iopub.status.busy": "2024-06-25T19:37:02.917303Z", + "iopub.status.idle": "2024-06-25T19:37:04.262113Z", + "shell.execute_reply": "2024-06-25T19:37:04.261389Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:04.934103Z", - "iopub.status.busy": "2024-06-25T16:03:04.933906Z", - "iopub.status.idle": "2024-06-25T16:03:04.937701Z", - "shell.execute_reply": "2024-06-25T16:03:04.937197Z" + "iopub.execute_input": "2024-06-25T19:37:04.264665Z", + "iopub.status.busy": "2024-06-25T19:37:04.264273Z", + "iopub.status.idle": "2024-06-25T19:37:04.268776Z", + "shell.execute_reply": "2024-06-25T19:37:04.268171Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:04.939781Z", - "iopub.status.busy": "2024-06-25T16:03:04.939486Z", - "iopub.status.idle": "2024-06-25T16:03:07.030228Z", - "shell.execute_reply": "2024-06-25T16:03:07.029555Z" + "iopub.execute_input": "2024-06-25T19:37:04.271017Z", + "iopub.status.busy": "2024-06-25T19:37:04.270694Z", + "iopub.status.idle": "2024-06-25T19:37:06.209152Z", + "shell.execute_reply": "2024-06-25T19:37:06.208542Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:07.032587Z", - "iopub.status.busy": "2024-06-25T16:03:07.032175Z", - "iopub.status.idle": "2024-06-25T16:03:07.040290Z", - "shell.execute_reply": "2024-06-25T16:03:07.039729Z" + "iopub.execute_input": "2024-06-25T19:37:06.211688Z", + "iopub.status.busy": "2024-06-25T19:37:06.211198Z", + "iopub.status.idle": "2024-06-25T19:37:06.218564Z", + "shell.execute_reply": "2024-06-25T19:37:06.218036Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:07.042262Z", - "iopub.status.busy": "2024-06-25T16:03:07.041952Z", - "iopub.status.idle": "2024-06-25T16:03:09.659875Z", - "shell.execute_reply": "2024-06-25T16:03:09.659261Z" + "iopub.execute_input": "2024-06-25T19:37:06.220591Z", + "iopub.status.busy": "2024-06-25T19:37:06.220264Z", + "iopub.status.idle": "2024-06-25T19:37:08.793564Z", + "shell.execute_reply": "2024-06-25T19:37:08.792970Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:09.662397Z", - "iopub.status.busy": "2024-06-25T16:03:09.661971Z", - "iopub.status.idle": "2024-06-25T16:03:09.665641Z", - "shell.execute_reply": "2024-06-25T16:03:09.665128Z" + "iopub.execute_input": "2024-06-25T19:37:08.795901Z", + "iopub.status.busy": "2024-06-25T19:37:08.795549Z", + "iopub.status.idle": "2024-06-25T19:37:08.798884Z", + "shell.execute_reply": "2024-06-25T19:37:08.798350Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:09.667835Z", - "iopub.status.busy": "2024-06-25T16:03:09.667530Z", - "iopub.status.idle": "2024-06-25T16:03:09.671491Z", - "shell.execute_reply": "2024-06-25T16:03:09.670936Z" + "iopub.execute_input": "2024-06-25T19:37:08.800984Z", + "iopub.status.busy": "2024-06-25T19:37:08.800677Z", + "iopub.status.idle": "2024-06-25T19:37:08.804151Z", + "shell.execute_reply": "2024-06-25T19:37:08.803635Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:09.673741Z", - "iopub.status.busy": "2024-06-25T16:03:09.673312Z", - "iopub.status.idle": "2024-06-25T16:03:09.676591Z", - "shell.execute_reply": "2024-06-25T16:03:09.676142Z" + "iopub.execute_input": "2024-06-25T19:37:08.806163Z", + "iopub.status.busy": "2024-06-25T19:37:08.805988Z", + "iopub.status.idle": "2024-06-25T19:37:08.809167Z", + "shell.execute_reply": "2024-06-25T19:37:08.808609Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 7d2ad159a..aebe787bb 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:12.410569Z", - "iopub.status.busy": "2024-06-25T16:03:12.410083Z", - "iopub.status.idle": "2024-06-25T16:03:13.647607Z", - "shell.execute_reply": "2024-06-25T16:03:13.647113Z" + "iopub.execute_input": "2024-06-25T19:37:11.308794Z", + "iopub.status.busy": "2024-06-25T19:37:11.308627Z", + "iopub.status.idle": "2024-06-25T19:37:12.452711Z", + "shell.execute_reply": "2024-06-25T19:37:12.452159Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:13.650138Z", - "iopub.status.busy": "2024-06-25T16:03:13.649686Z", - "iopub.status.idle": "2024-06-25T16:03:14.680510Z", - "shell.execute_reply": "2024-06-25T16:03:14.679737Z" + "iopub.execute_input": "2024-06-25T19:37:12.455258Z", + "iopub.status.busy": "2024-06-25T19:37:12.454827Z", + "iopub.status.idle": "2024-06-25T19:37:14.890620Z", + "shell.execute_reply": "2024-06-25T19:37:14.889969Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:14.683282Z", - "iopub.status.busy": "2024-06-25T16:03:14.683075Z", - "iopub.status.idle": "2024-06-25T16:03:14.686559Z", - "shell.execute_reply": "2024-06-25T16:03:14.686010Z" + "iopub.execute_input": "2024-06-25T19:37:14.893309Z", + "iopub.status.busy": "2024-06-25T19:37:14.892942Z", + "iopub.status.idle": "2024-06-25T19:37:14.896049Z", + "shell.execute_reply": "2024-06-25T19:37:14.895624Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:14.688758Z", - "iopub.status.busy": "2024-06-25T16:03:14.688409Z", - "iopub.status.idle": "2024-06-25T16:03:14.694466Z", - "shell.execute_reply": "2024-06-25T16:03:14.694042Z" + "iopub.execute_input": "2024-06-25T19:37:14.898040Z", + "iopub.status.busy": "2024-06-25T19:37:14.897713Z", + "iopub.status.idle": "2024-06-25T19:37:14.903653Z", + "shell.execute_reply": "2024-06-25T19:37:14.903185Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:14.696653Z", - "iopub.status.busy": "2024-06-25T16:03:14.696196Z", - "iopub.status.idle": "2024-06-25T16:03:15.192910Z", - "shell.execute_reply": "2024-06-25T16:03:15.192221Z" + "iopub.execute_input": "2024-06-25T19:37:14.905688Z", + "iopub.status.busy": "2024-06-25T19:37:14.905360Z", + "iopub.status.idle": "2024-06-25T19:37:15.391751Z", + "shell.execute_reply": "2024-06-25T19:37:15.391128Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:15.195650Z", - "iopub.status.busy": "2024-06-25T16:03:15.195283Z", - "iopub.status.idle": "2024-06-25T16:03:15.201692Z", - "shell.execute_reply": "2024-06-25T16:03:15.200995Z" + "iopub.execute_input": "2024-06-25T19:37:15.394507Z", + "iopub.status.busy": "2024-06-25T19:37:15.394142Z", + "iopub.status.idle": "2024-06-25T19:37:15.399398Z", + "shell.execute_reply": "2024-06-25T19:37:15.398860Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:15.204599Z", - "iopub.status.busy": "2024-06-25T16:03:15.204087Z", - "iopub.status.idle": "2024-06-25T16:03:15.209021Z", - "shell.execute_reply": "2024-06-25T16:03:15.208413Z" + "iopub.execute_input": "2024-06-25T19:37:15.401545Z", + "iopub.status.busy": "2024-06-25T19:37:15.401225Z", + "iopub.status.idle": "2024-06-25T19:37:15.404995Z", + "shell.execute_reply": "2024-06-25T19:37:15.404569Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:15.211428Z", - "iopub.status.busy": "2024-06-25T16:03:15.210980Z", - "iopub.status.idle": "2024-06-25T16:03:16.126313Z", - "shell.execute_reply": "2024-06-25T16:03:16.125723Z" + "iopub.execute_input": "2024-06-25T19:37:15.407039Z", + "iopub.status.busy": "2024-06-25T19:37:15.406711Z", + "iopub.status.idle": "2024-06-25T19:37:16.295944Z", + "shell.execute_reply": "2024-06-25T19:37:16.295383Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:16.128644Z", - "iopub.status.busy": "2024-06-25T16:03:16.128441Z", - "iopub.status.idle": "2024-06-25T16:03:16.332017Z", - "shell.execute_reply": "2024-06-25T16:03:16.331436Z" + "iopub.execute_input": "2024-06-25T19:37:16.298196Z", + "iopub.status.busy": "2024-06-25T19:37:16.297999Z", + "iopub.status.idle": "2024-06-25T19:37:16.525061Z", + "shell.execute_reply": "2024-06-25T19:37:16.524590Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:16.334321Z", - "iopub.status.busy": "2024-06-25T16:03:16.333873Z", - "iopub.status.idle": "2024-06-25T16:03:16.338153Z", - "shell.execute_reply": "2024-06-25T16:03:16.337742Z" + "iopub.execute_input": "2024-06-25T19:37:16.527288Z", + "iopub.status.busy": "2024-06-25T19:37:16.526859Z", + "iopub.status.idle": "2024-06-25T19:37:16.531244Z", + "shell.execute_reply": "2024-06-25T19:37:16.530747Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:16.340198Z", - "iopub.status.busy": "2024-06-25T16:03:16.339765Z", - "iopub.status.idle": "2024-06-25T16:03:16.801350Z", - "shell.execute_reply": "2024-06-25T16:03:16.800773Z" + "iopub.execute_input": "2024-06-25T19:37:16.533265Z", + "iopub.status.busy": "2024-06-25T19:37:16.533088Z", + "iopub.status.idle": "2024-06-25T19:37:16.979069Z", + "shell.execute_reply": "2024-06-25T19:37:16.978477Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:16.804336Z", - "iopub.status.busy": "2024-06-25T16:03:16.803971Z", - "iopub.status.idle": "2024-06-25T16:03:17.140729Z", - "shell.execute_reply": "2024-06-25T16:03:17.140160Z" + "iopub.execute_input": "2024-06-25T19:37:16.981738Z", + "iopub.status.busy": "2024-06-25T19:37:16.981547Z", + "iopub.status.idle": "2024-06-25T19:37:17.310927Z", + "shell.execute_reply": "2024-06-25T19:37:17.310336Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:17.143514Z", - "iopub.status.busy": "2024-06-25T16:03:17.143158Z", - "iopub.status.idle": "2024-06-25T16:03:17.488592Z", - "shell.execute_reply": "2024-06-25T16:03:17.487943Z" + "iopub.execute_input": "2024-06-25T19:37:17.313292Z", + "iopub.status.busy": "2024-06-25T19:37:17.312887Z", + "iopub.status.idle": "2024-06-25T19:37:17.645849Z", + "shell.execute_reply": "2024-06-25T19:37:17.645269Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:17.491990Z", - "iopub.status.busy": "2024-06-25T16:03:17.491768Z", - "iopub.status.idle": "2024-06-25T16:03:17.937675Z", - "shell.execute_reply": "2024-06-25T16:03:17.937078Z" + "iopub.execute_input": "2024-06-25T19:37:17.649071Z", + "iopub.status.busy": "2024-06-25T19:37:17.648711Z", + "iopub.status.idle": "2024-06-25T19:37:18.056258Z", + "shell.execute_reply": "2024-06-25T19:37:18.055723Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:17.942126Z", - "iopub.status.busy": "2024-06-25T16:03:17.941664Z", - "iopub.status.idle": "2024-06-25T16:03:18.397129Z", - "shell.execute_reply": "2024-06-25T16:03:18.396513Z" + "iopub.execute_input": "2024-06-25T19:37:18.060462Z", + "iopub.status.busy": "2024-06-25T19:37:18.060093Z", + "iopub.status.idle": "2024-06-25T19:37:18.505775Z", + "shell.execute_reply": "2024-06-25T19:37:18.505169Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:18.400047Z", - "iopub.status.busy": "2024-06-25T16:03:18.399852Z", - "iopub.status.idle": "2024-06-25T16:03:18.621213Z", - "shell.execute_reply": "2024-06-25T16:03:18.620579Z" + "iopub.execute_input": "2024-06-25T19:37:18.508548Z", + "iopub.status.busy": "2024-06-25T19:37:18.508203Z", + "iopub.status.idle": "2024-06-25T19:37:18.698418Z", + "shell.execute_reply": "2024-06-25T19:37:18.697831Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:18.623299Z", - "iopub.status.busy": "2024-06-25T16:03:18.623115Z", - "iopub.status.idle": "2024-06-25T16:03:18.822587Z", - "shell.execute_reply": "2024-06-25T16:03:18.822043Z" + "iopub.execute_input": "2024-06-25T19:37:18.700790Z", + "iopub.status.busy": "2024-06-25T19:37:18.700610Z", + "iopub.status.idle": "2024-06-25T19:37:18.880703Z", + "shell.execute_reply": "2024-06-25T19:37:18.880186Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:18.825139Z", - "iopub.status.busy": "2024-06-25T16:03:18.824759Z", - "iopub.status.idle": "2024-06-25T16:03:18.828183Z", - "shell.execute_reply": "2024-06-25T16:03:18.827773Z" + "iopub.execute_input": "2024-06-25T19:37:18.882941Z", + "iopub.status.busy": "2024-06-25T19:37:18.882765Z", + "iopub.status.idle": "2024-06-25T19:37:18.885792Z", + "shell.execute_reply": "2024-06-25T19:37:18.885246Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:18.830178Z", - "iopub.status.busy": "2024-06-25T16:03:18.829850Z", - "iopub.status.idle": "2024-06-25T16:03:19.814414Z", - "shell.execute_reply": "2024-06-25T16:03:19.813843Z" + "iopub.execute_input": "2024-06-25T19:37:18.887722Z", + "iopub.status.busy": "2024-06-25T19:37:18.887391Z", + "iopub.status.idle": "2024-06-25T19:37:19.791276Z", + "shell.execute_reply": "2024-06-25T19:37:19.790730Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:19.817232Z", - "iopub.status.busy": "2024-06-25T16:03:19.817057Z", - "iopub.status.idle": "2024-06-25T16:03:19.938603Z", - "shell.execute_reply": "2024-06-25T16:03:19.938105Z" + "iopub.execute_input": "2024-06-25T19:37:19.793943Z", + "iopub.status.busy": "2024-06-25T19:37:19.793573Z", + "iopub.status.idle": "2024-06-25T19:37:19.935555Z", + "shell.execute_reply": "2024-06-25T19:37:19.935101Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:19.940741Z", - "iopub.status.busy": "2024-06-25T16:03:19.940505Z", - "iopub.status.idle": "2024-06-25T16:03:20.108236Z", - "shell.execute_reply": "2024-06-25T16:03:20.107578Z" + "iopub.execute_input": "2024-06-25T19:37:19.937552Z", + "iopub.status.busy": "2024-06-25T19:37:19.937378Z", + "iopub.status.idle": "2024-06-25T19:37:20.088397Z", + "shell.execute_reply": "2024-06-25T19:37:20.087796Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:20.110623Z", - "iopub.status.busy": "2024-06-25T16:03:20.110185Z", - "iopub.status.idle": "2024-06-25T16:03:20.822467Z", - "shell.execute_reply": "2024-06-25T16:03:20.821883Z" + "iopub.execute_input": "2024-06-25T19:37:20.090556Z", + "iopub.status.busy": "2024-06-25T19:37:20.090235Z", + "iopub.status.idle": "2024-06-25T19:37:20.751985Z", + "shell.execute_reply": "2024-06-25T19:37:20.751385Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:20.824770Z", - "iopub.status.busy": "2024-06-25T16:03:20.824569Z", - "iopub.status.idle": "2024-06-25T16:03:20.828323Z", - "shell.execute_reply": "2024-06-25T16:03:20.827876Z" + "iopub.execute_input": "2024-06-25T19:37:20.754413Z", + "iopub.status.busy": "2024-06-25T19:37:20.753942Z", + "iopub.status.idle": "2024-06-25T19:37:20.757882Z", + "shell.execute_reply": "2024-06-25T19:37:20.757342Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 2dea51c7e..3359ecfd0 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:23.195795Z", - "iopub.status.busy": "2024-06-25T16:03:23.195602Z", - "iopub.status.idle": "2024-06-25T16:03:26.091061Z", - "shell.execute_reply": "2024-06-25T16:03:26.090423Z" + "iopub.execute_input": "2024-06-25T19:37:22.937714Z", + "iopub.status.busy": "2024-06-25T19:37:22.937546Z", + "iopub.status.idle": "2024-06-25T19:37:25.620183Z", + "shell.execute_reply": "2024-06-25T19:37:25.619593Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:26.094331Z", - "iopub.status.busy": "2024-06-25T16:03:26.093744Z", - "iopub.status.idle": "2024-06-25T16:03:26.454459Z", - "shell.execute_reply": "2024-06-25T16:03:26.453903Z" + "iopub.execute_input": "2024-06-25T19:37:25.622737Z", + "iopub.status.busy": "2024-06-25T19:37:25.622414Z", + "iopub.status.idle": "2024-06-25T19:37:25.936079Z", + "shell.execute_reply": "2024-06-25T19:37:25.935452Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:26.457002Z", - "iopub.status.busy": "2024-06-25T16:03:26.456560Z", - "iopub.status.idle": "2024-06-25T16:03:26.460809Z", - "shell.execute_reply": "2024-06-25T16:03:26.460238Z" + "iopub.execute_input": "2024-06-25T19:37:25.938723Z", + "iopub.status.busy": "2024-06-25T19:37:25.938422Z", + "iopub.status.idle": "2024-06-25T19:37:25.942622Z", + "shell.execute_reply": "2024-06-25T19:37:25.942185Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:26.462889Z", - "iopub.status.busy": "2024-06-25T16:03:26.462580Z", - "iopub.status.idle": "2024-06-25T16:03:30.759832Z", - "shell.execute_reply": "2024-06-25T16:03:30.759210Z" + "iopub.execute_input": "2024-06-25T19:37:25.944514Z", + "iopub.status.busy": "2024-06-25T19:37:25.944341Z", + "iopub.status.idle": "2024-06-25T19:37:33.410224Z", + "shell.execute_reply": "2024-06-25T19:37:33.409701Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1802240/170498071 [00:00<00:09, 17649465.30it/s]" + " 0%| | 32768/170498071 [00:00<10:33, 269061.34it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 12779520/170498071 [00:00<00:02, 71353034.12it/s]" + " 0%| | 229376/170498071 [00:00<02:43, 1044330.69it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 23756800/170498071 [00:00<00:01, 88730770.74it/s]" + " 1%| | 884736/170498071 [00:00<00:56, 2986468.56it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 34635776/170498071 [00:00<00:01, 96614715.40it/s]" + " 2%|▏ | 3506176/170498071 [00:00<00:15, 10508236.75it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 45580288/170498071 [00:00<00:01, 101195245.43it/s]" + " 5%|▌ | 8552448/170498071 [00:00<00:06, 23273913.94it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 56360960/170498071 [00:00<00:01, 103315287.66it/s]" + " 8%|▊ | 12877824/170498071 [00:00<00:05, 29531831.70it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 67436544/170498071 [00:00<00:00, 105682081.60it/s]" + " 10%|█ | 17661952/170498071 [00:00<00:04, 34683944.45it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 78381056/170498071 [00:00<00:00, 106846021.95it/s]" + " 13%|█▎ | 22478848/170498071 [00:00<00:03, 38419021.56it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 89260032/170498071 [00:00<00:00, 107449884.19it/s]" + " 16%|█▌ | 27590656/170498071 [00:00<00:03, 42218756.72it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 100171776/170498071 [00:01<00:00, 107946197.36it/s]" + " 19%|█▉ | 32145408/170498071 [00:01<00:03, 42979378.57it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 111050752/170498071 [00:01<00:00, 108170834.68it/s]" + " 22%|██▏ | 37552128/170498071 [00:01<00:02, 46248329.44it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 122191872/170498071 [00:01<00:00, 109110942.95it/s]" + " 25%|██▍ | 42237952/170498071 [00:01<00:02, 45894868.35it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 133136384/170498071 [00:01<00:00, 109086561.45it/s]" + " 28%|██▊ | 47546368/170498071 [00:01<00:02, 47987784.85it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 144080896/170498071 [00:01<00:00, 109130312.95it/s]" + " 31%|███ | 52396032/170498071 [00:01<00:02, 47660760.18it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 155025408/170498071 [00:01<00:00, 108924921.38it/s]" + " 34%|███▎ | 57212928/170498071 [00:01<00:02, 46221672.73it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 166035456/170498071 [00:01<00:00, 109194560.59it/s]" + " 37%|███▋ | 62259200/170498071 [00:01<00:02, 47420663.64it/s]" ] }, { @@ -380,7 +380,175 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 103569824.35it/s]" + " 39%|███▉ | 67043328/170498071 [00:01<00:02, 46870615.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 42%|████▏ | 72187904/170498071 [00:01<00:02, 48207181.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 45%|████▌ | 77037568/170498071 [00:02<00:01, 47426096.98it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 48%|████▊ | 82477056/170498071 [00:02<00:01, 48903231.41it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 51%|█████▏ | 87392256/170498071 [00:02<00:01, 48876811.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 54%|█████▍ | 92307456/170498071 [00:02<00:01, 46456343.45it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 57%|█████▋ | 97714176/170498071 [00:02<00:01, 48622672.55it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 60%|██████ | 102629376/170498071 [00:02<00:01, 47303583.33it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 63%|██████▎ | 107839488/170498071 [00:02<00:01, 48660290.70it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 66%|██████▌ | 112754688/170498071 [00:02<00:01, 48170138.42it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▉ | 117604352/170498071 [00:02<00:01, 48147632.32it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 122552320/170498071 [00:02<00:01, 47622185.83it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 75%|███████▍ | 127336448/170498071 [00:03<00:00, 46393005.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 78%|███████▊ | 133300224/170498071 [00:03<00:00, 50178503.28it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████ | 138346496/170498071 [00:03<00:00, 48020765.51it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 143196160/170498071 [00:03<00:00, 46334061.22it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 149061632/170498071 [00:03<00:00, 49353288.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|█████████ | 154042368/170498071 [00:03<00:00, 48340337.16it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 93%|█████████▎| 158924800/170498071 [00:03<00:00, 46140400.23it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 164921344/170498071 [00:03<00:00, 49140811.61it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 169869312/170498071 [00:03<00:00, 48444737.50it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:03<00:00, 43010872.29it/s]" ] }, { @@ -498,10 +666,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:30.762200Z", - "iopub.status.busy": "2024-06-25T16:03:30.761769Z", - "iopub.status.idle": "2024-06-25T16:03:30.766643Z", - "shell.execute_reply": "2024-06-25T16:03:30.766112Z" + "iopub.execute_input": "2024-06-25T19:37:33.412458Z", + "iopub.status.busy": "2024-06-25T19:37:33.412129Z", + "iopub.status.idle": "2024-06-25T19:37:33.416824Z", + "shell.execute_reply": "2024-06-25T19:37:33.416305Z" }, "nbsphinx": "hidden" }, @@ -552,10 +720,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:30.768712Z", - "iopub.status.busy": "2024-06-25T16:03:30.768398Z", - "iopub.status.idle": "2024-06-25T16:03:31.325263Z", - "shell.execute_reply": "2024-06-25T16:03:31.324699Z" + "iopub.execute_input": "2024-06-25T19:37:33.418809Z", + "iopub.status.busy": "2024-06-25T19:37:33.418495Z", + "iopub.status.idle": "2024-06-25T19:37:33.960026Z", + "shell.execute_reply": "2024-06-25T19:37:33.959496Z" } }, "outputs": [ @@ -588,10 +756,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:31.327654Z", - "iopub.status.busy": "2024-06-25T16:03:31.327253Z", - "iopub.status.idle": "2024-06-25T16:03:31.863327Z", - "shell.execute_reply": "2024-06-25T16:03:31.862748Z" + "iopub.execute_input": "2024-06-25T19:37:33.962172Z", + "iopub.status.busy": "2024-06-25T19:37:33.961834Z", + "iopub.status.idle": "2024-06-25T19:37:34.466908Z", + "shell.execute_reply": "2024-06-25T19:37:34.466308Z" } }, "outputs": [ @@ -629,10 +797,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:31.865655Z", - "iopub.status.busy": "2024-06-25T16:03:31.865227Z", - "iopub.status.idle": "2024-06-25T16:03:31.868935Z", - "shell.execute_reply": "2024-06-25T16:03:31.868378Z" + "iopub.execute_input": "2024-06-25T19:37:34.469197Z", + "iopub.status.busy": "2024-06-25T19:37:34.468825Z", + "iopub.status.idle": "2024-06-25T19:37:34.472416Z", + "shell.execute_reply": "2024-06-25T19:37:34.471962Z" } }, "outputs": [], @@ -655,17 +823,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:31.871124Z", - "iopub.status.busy": "2024-06-25T16:03:31.870707Z", - "iopub.status.idle": "2024-06-25T16:03:45.646921Z", - "shell.execute_reply": "2024-06-25T16:03:45.646296Z" + "iopub.execute_input": "2024-06-25T19:37:34.474255Z", + "iopub.status.busy": "2024-06-25T19:37:34.474084Z", + "iopub.status.idle": "2024-06-25T19:37:46.991980Z", + "shell.execute_reply": "2024-06-25T19:37:46.991418Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "28d0d7b5bab24921acc304c33b071421", + "model_id": "3a6eebd9a9694b07864d194c78cdb317", "version_major": 2, "version_minor": 0 }, @@ -724,10 +892,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:45.649462Z", - "iopub.status.busy": "2024-06-25T16:03:45.649114Z", - "iopub.status.idle": "2024-06-25T16:03:47.703796Z", - "shell.execute_reply": "2024-06-25T16:03:47.703274Z" + "iopub.execute_input": "2024-06-25T19:37:46.994340Z", + "iopub.status.busy": "2024-06-25T19:37:46.994149Z", + "iopub.status.idle": "2024-06-25T19:37:49.075191Z", + "shell.execute_reply": "2024-06-25T19:37:49.074609Z" } }, "outputs": [ @@ -771,10 +939,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:47.705994Z", - "iopub.status.busy": "2024-06-25T16:03:47.705670Z", - "iopub.status.idle": "2024-06-25T16:03:47.936227Z", - "shell.execute_reply": "2024-06-25T16:03:47.935552Z" + "iopub.execute_input": "2024-06-25T19:37:49.077233Z", + "iopub.status.busy": "2024-06-25T19:37:49.077055Z", + "iopub.status.idle": "2024-06-25T19:37:49.302913Z", + "shell.execute_reply": "2024-06-25T19:37:49.302334Z" } }, "outputs": [ @@ -810,10 +978,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:47.938936Z", - "iopub.status.busy": "2024-06-25T16:03:47.938600Z", - "iopub.status.idle": "2024-06-25T16:03:48.584520Z", - "shell.execute_reply": "2024-06-25T16:03:48.583905Z" + "iopub.execute_input": "2024-06-25T19:37:49.305112Z", + "iopub.status.busy": "2024-06-25T19:37:49.304932Z", + "iopub.status.idle": "2024-06-25T19:37:49.943529Z", + "shell.execute_reply": "2024-06-25T19:37:49.942935Z" } }, "outputs": [ @@ -863,10 +1031,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:48.587219Z", - "iopub.status.busy": "2024-06-25T16:03:48.586719Z", - "iopub.status.idle": "2024-06-25T16:03:48.876256Z", - "shell.execute_reply": "2024-06-25T16:03:48.875610Z" + "iopub.execute_input": "2024-06-25T19:37:49.945968Z", + "iopub.status.busy": "2024-06-25T19:37:49.945641Z", + "iopub.status.idle": "2024-06-25T19:37:50.264955Z", + "shell.execute_reply": "2024-06-25T19:37:50.264439Z" } }, "outputs": [ @@ -914,10 +1082,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:48.878510Z", - "iopub.status.busy": "2024-06-25T16:03:48.878183Z", - "iopub.status.idle": "2024-06-25T16:03:49.109967Z", - "shell.execute_reply": "2024-06-25T16:03:49.109281Z" + "iopub.execute_input": "2024-06-25T19:37:50.267076Z", + "iopub.status.busy": "2024-06-25T19:37:50.266888Z", + "iopub.status.idle": "2024-06-25T19:37:50.495188Z", + "shell.execute_reply": "2024-06-25T19:37:50.494600Z" } }, "outputs": [ @@ -973,10 +1141,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:49.112544Z", - "iopub.status.busy": "2024-06-25T16:03:49.112226Z", - "iopub.status.idle": "2024-06-25T16:03:49.192821Z", - "shell.execute_reply": "2024-06-25T16:03:49.192178Z" + "iopub.execute_input": "2024-06-25T19:37:50.497736Z", + "iopub.status.busy": "2024-06-25T19:37:50.497230Z", + "iopub.status.idle": "2024-06-25T19:37:50.573192Z", + "shell.execute_reply": "2024-06-25T19:37:50.572575Z" } }, "outputs": [], @@ -997,10 +1165,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:49.195415Z", - "iopub.status.busy": "2024-06-25T16:03:49.194986Z", - "iopub.status.idle": "2024-06-25T16:03:59.651057Z", - "shell.execute_reply": "2024-06-25T16:03:59.650371Z" + "iopub.execute_input": "2024-06-25T19:37:50.575685Z", + "iopub.status.busy": "2024-06-25T19:37:50.575502Z", + "iopub.status.idle": "2024-06-25T19:38:00.831598Z", + "shell.execute_reply": "2024-06-25T19:38:00.830941Z" } }, "outputs": [ @@ -1037,10 +1205,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:59.653445Z", - "iopub.status.busy": "2024-06-25T16:03:59.653198Z", - "iopub.status.idle": "2024-06-25T16:04:01.915157Z", - "shell.execute_reply": "2024-06-25T16:04:01.914552Z" + "iopub.execute_input": "2024-06-25T19:38:00.834016Z", + "iopub.status.busy": "2024-06-25T19:38:00.833627Z", + "iopub.status.idle": "2024-06-25T19:38:02.973271Z", + "shell.execute_reply": "2024-06-25T19:38:02.972713Z" } }, "outputs": [ @@ -1071,10 +1239,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:01.917857Z", - "iopub.status.busy": "2024-06-25T16:04:01.917299Z", - "iopub.status.idle": "2024-06-25T16:04:02.113558Z", - "shell.execute_reply": "2024-06-25T16:04:02.113049Z" + "iopub.execute_input": "2024-06-25T19:38:02.975964Z", + "iopub.status.busy": "2024-06-25T19:38:02.975476Z", + "iopub.status.idle": "2024-06-25T19:38:03.180118Z", + "shell.execute_reply": "2024-06-25T19:38:03.179626Z" } }, "outputs": [], @@ -1088,10 +1256,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:02.115919Z", - "iopub.status.busy": "2024-06-25T16:04:02.115572Z", - "iopub.status.idle": "2024-06-25T16:04:02.118666Z", - "shell.execute_reply": "2024-06-25T16:04:02.118221Z" + "iopub.execute_input": "2024-06-25T19:38:03.182510Z", + "iopub.status.busy": "2024-06-25T19:38:03.182166Z", + "iopub.status.idle": "2024-06-25T19:38:03.185175Z", + "shell.execute_reply": "2024-06-25T19:38:03.184750Z" } }, "outputs": [], @@ -1113,10 +1281,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:02.120691Z", - "iopub.status.busy": "2024-06-25T16:04:02.120347Z", - "iopub.status.idle": "2024-06-25T16:04:02.129059Z", - "shell.execute_reply": "2024-06-25T16:04:02.128479Z" + "iopub.execute_input": "2024-06-25T19:38:03.187201Z", + "iopub.status.busy": "2024-06-25T19:38:03.186922Z", + "iopub.status.idle": "2024-06-25T19:38:03.194967Z", + "shell.execute_reply": "2024-06-25T19:38:03.194449Z" }, "nbsphinx": "hidden" }, @@ -1161,23 +1329,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0b937618327843d2bf966a23390fb711": { + "3a6eebd9a9694b07864d194c78cdb317": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d314e5a0eb894d12bc8321b569f74cd0", + "IPY_MODEL_932ee016f6a74520b9da6cc833f044b5", + "IPY_MODEL_de1dfc7949d842468505de0b2a43b4f7" + ], + "layout": "IPY_MODEL_8876ddc2f4f248ff81bbe8f98f0e2826", + "tabbable": null, + "tooltip": null } }, - "10a4e89474e54662b7165ff29385bc67": { + "8876ddc2f4f248ff81bbe8f98f0e2826": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1230,54 +1406,49 @@ "width": null } }, - "28d0d7b5bab24921acc304c33b071421": { + "9117500d199d44088b40d306a6001f86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_aac9b93602e04d0dafce5cb64ba3f304", - "IPY_MODEL_89b7f171cd2a4e5eb7c7a4f7762e90fa", - "IPY_MODEL_4c000720af3c4ec9a8ec1aa272f5d907" - ], - "layout": "IPY_MODEL_60ca8b96f6b14eb9bc39d63462385b39", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4c000720af3c4ec9a8ec1aa272f5d907": { + "932ee016f6a74520b9da6cc833f044b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_68089751fa2f44b5bcf3262b28eca5c9", - "placeholder": "​", - "style": "IPY_MODEL_d37fdb352b8d4b6daf0eb44b1f04489f", + "layout": "IPY_MODEL_be482c428a914ad9bc5accbfcda59810", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9117500d199d44088b40d306a6001f86", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:01<00:00, 71.4MB/s]" + "value": 102469840.0 } }, - "60ca8b96f6b14eb9bc39d63462385b39": { + "9345c22a7d26444e94e7dc281c6f7083": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1330,7 +1501,7 @@ "width": null } }, - "68089751fa2f44b5bcf3262b28eca5c9": { + "a0c0e9532ae04b61941f4f996fe124d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1383,74 +1554,7 @@ "width": null } }, - "6cb76de3bd3440aba29e7eed8f626c20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "89b7f171cd2a4e5eb7c7a4f7762e90fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c08dc6f6ce09426d98ab2220c32db7d0", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0b937618327843d2bf966a23390fb711", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "aac9b93602e04d0dafce5cb64ba3f304": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_10a4e89474e54662b7165ff29385bc67", - "placeholder": "​", - "style": "IPY_MODEL_6cb76de3bd3440aba29e7eed8f626c20", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "c08dc6f6ce09426d98ab2220c32db7d0": { + "be482c428a914ad9bc5accbfcda59810": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1503,7 +1607,71 @@ "width": null } }, - "d37fdb352b8d4b6daf0eb44b1f04489f": { + "d314e5a0eb894d12bc8321b569f74cd0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9345c22a7d26444e94e7dc281c6f7083", + "placeholder": "​", + "style": "IPY_MODEL_ed999755dbfa4b068fb1bc1851f1d2ea", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "d8c964fe861d44eeb4663c74d1331470": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "de1dfc7949d842468505de0b2a43b4f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a0c0e9532ae04b61941f4f996fe124d2", + "placeholder": "​", + "style": "IPY_MODEL_d8c964fe861d44eeb4663c74d1331470", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 265MB/s]" + } + }, + "ed999755dbfa4b068fb1bc1851f1d2ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 88f740b68..1e51dfcdc 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:06.298865Z", - "iopub.status.busy": "2024-06-25T16:04:06.298674Z", - "iopub.status.idle": "2024-06-25T16:04:07.522429Z", - "shell.execute_reply": "2024-06-25T16:04:07.521859Z" + "iopub.execute_input": "2024-06-25T19:38:07.555838Z", + "iopub.status.busy": "2024-06-25T19:38:07.555668Z", + "iopub.status.idle": "2024-06-25T19:38:08.722369Z", + "shell.execute_reply": "2024-06-25T19:38:08.721811Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:07.525173Z", - "iopub.status.busy": "2024-06-25T16:04:07.524606Z", - "iopub.status.idle": "2024-06-25T16:04:07.543090Z", - "shell.execute_reply": "2024-06-25T16:04:07.542435Z" + "iopub.execute_input": "2024-06-25T19:38:08.724901Z", + "iopub.status.busy": "2024-06-25T19:38:08.724626Z", + "iopub.status.idle": "2024-06-25T19:38:08.741782Z", + "shell.execute_reply": "2024-06-25T19:38:08.741233Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:07.545913Z", - "iopub.status.busy": "2024-06-25T16:04:07.545447Z", - "iopub.status.idle": "2024-06-25T16:04:07.548804Z", - "shell.execute_reply": "2024-06-25T16:04:07.548231Z" + "iopub.execute_input": "2024-06-25T19:38:08.744094Z", + "iopub.status.busy": "2024-06-25T19:38:08.743687Z", + "iopub.status.idle": "2024-06-25T19:38:08.746763Z", + "shell.execute_reply": "2024-06-25T19:38:08.746228Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:07.551225Z", - "iopub.status.busy": "2024-06-25T16:04:07.550777Z", - "iopub.status.idle": "2024-06-25T16:04:07.587145Z", - "shell.execute_reply": "2024-06-25T16:04:07.586567Z" + "iopub.execute_input": "2024-06-25T19:38:08.748783Z", + "iopub.status.busy": "2024-06-25T19:38:08.748471Z", + "iopub.status.idle": "2024-06-25T19:38:09.023742Z", + "shell.execute_reply": "2024-06-25T19:38:09.023127Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:07.589476Z", - "iopub.status.busy": "2024-06-25T16:04:07.589161Z", - "iopub.status.idle": "2024-06-25T16:04:07.779592Z", - "shell.execute_reply": "2024-06-25T16:04:07.778963Z" + "iopub.execute_input": "2024-06-25T19:38:09.025867Z", + "iopub.status.busy": "2024-06-25T19:38:09.025685Z", + "iopub.status.idle": "2024-06-25T19:38:09.204489Z", + "shell.execute_reply": "2024-06-25T19:38:09.203970Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:07.782183Z", - "iopub.status.busy": "2024-06-25T16:04:07.781971Z", - "iopub.status.idle": "2024-06-25T16:04:08.032776Z", - "shell.execute_reply": "2024-06-25T16:04:08.032112Z" + "iopub.execute_input": "2024-06-25T19:38:09.206625Z", + "iopub.status.busy": "2024-06-25T19:38:09.206444Z", + "iopub.status.idle": "2024-06-25T19:38:09.445281Z", + "shell.execute_reply": "2024-06-25T19:38:09.444670Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:08.035255Z", - "iopub.status.busy": "2024-06-25T16:04:08.034764Z", - "iopub.status.idle": "2024-06-25T16:04:08.039814Z", - "shell.execute_reply": "2024-06-25T16:04:08.039224Z" + "iopub.execute_input": "2024-06-25T19:38:09.447540Z", + "iopub.status.busy": "2024-06-25T19:38:09.447186Z", + "iopub.status.idle": "2024-06-25T19:38:09.451599Z", + "shell.execute_reply": "2024-06-25T19:38:09.451044Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:08.042148Z", - "iopub.status.busy": "2024-06-25T16:04:08.041692Z", - "iopub.status.idle": "2024-06-25T16:04:08.049678Z", - "shell.execute_reply": "2024-06-25T16:04:08.049039Z" + "iopub.execute_input": "2024-06-25T19:38:09.453555Z", + "iopub.status.busy": "2024-06-25T19:38:09.453375Z", + "iopub.status.idle": "2024-06-25T19:38:09.460592Z", + "shell.execute_reply": "2024-06-25T19:38:09.460157Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:08.052267Z", - "iopub.status.busy": "2024-06-25T16:04:08.051893Z", - "iopub.status.idle": "2024-06-25T16:04:08.054873Z", - "shell.execute_reply": "2024-06-25T16:04:08.054306Z" + "iopub.execute_input": "2024-06-25T19:38:09.462899Z", + "iopub.status.busy": "2024-06-25T19:38:09.462366Z", + "iopub.status.idle": "2024-06-25T19:38:09.465304Z", + "shell.execute_reply": "2024-06-25T19:38:09.464836Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:08.057067Z", - "iopub.status.busy": "2024-06-25T16:04:08.056616Z", - "iopub.status.idle": "2024-06-25T16:04:16.878679Z", - "shell.execute_reply": "2024-06-25T16:04:16.878144Z" + "iopub.execute_input": "2024-06-25T19:38:09.467150Z", + "iopub.status.busy": "2024-06-25T19:38:09.466976Z", + "iopub.status.idle": "2024-06-25T19:38:18.068771Z", + "shell.execute_reply": "2024-06-25T19:38:18.068131Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.881611Z", - "iopub.status.busy": "2024-06-25T16:04:16.880992Z", - "iopub.status.idle": "2024-06-25T16:04:16.888328Z", - "shell.execute_reply": "2024-06-25T16:04:16.887857Z" + "iopub.execute_input": "2024-06-25T19:38:18.071591Z", + "iopub.status.busy": "2024-06-25T19:38:18.071196Z", + "iopub.status.idle": "2024-06-25T19:38:18.078371Z", + "shell.execute_reply": "2024-06-25T19:38:18.077824Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.890380Z", - "iopub.status.busy": "2024-06-25T16:04:16.890056Z", - "iopub.status.idle": "2024-06-25T16:04:16.893550Z", - "shell.execute_reply": "2024-06-25T16:04:16.893134Z" + "iopub.execute_input": "2024-06-25T19:38:18.080333Z", + "iopub.status.busy": "2024-06-25T19:38:18.080152Z", + "iopub.status.idle": "2024-06-25T19:38:18.083810Z", + "shell.execute_reply": "2024-06-25T19:38:18.083366Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.895458Z", - "iopub.status.busy": "2024-06-25T16:04:16.895142Z", - "iopub.status.idle": "2024-06-25T16:04:16.898097Z", - "shell.execute_reply": "2024-06-25T16:04:16.897586Z" + "iopub.execute_input": "2024-06-25T19:38:18.085821Z", + "iopub.status.busy": "2024-06-25T19:38:18.085497Z", + "iopub.status.idle": "2024-06-25T19:38:18.088621Z", + "shell.execute_reply": "2024-06-25T19:38:18.088109Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.899989Z", - "iopub.status.busy": "2024-06-25T16:04:16.899818Z", - "iopub.status.idle": "2024-06-25T16:04:16.902910Z", - "shell.execute_reply": "2024-06-25T16:04:16.902462Z" + "iopub.execute_input": "2024-06-25T19:38:18.090576Z", + "iopub.status.busy": "2024-06-25T19:38:18.090262Z", + "iopub.status.idle": "2024-06-25T19:38:18.093389Z", + "shell.execute_reply": "2024-06-25T19:38:18.092821Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.904872Z", - "iopub.status.busy": "2024-06-25T16:04:16.904469Z", - "iopub.status.idle": "2024-06-25T16:04:16.912279Z", - "shell.execute_reply": "2024-06-25T16:04:16.911760Z" + "iopub.execute_input": "2024-06-25T19:38:18.095470Z", + "iopub.status.busy": "2024-06-25T19:38:18.095154Z", + "iopub.status.idle": "2024-06-25T19:38:18.103228Z", + "shell.execute_reply": "2024-06-25T19:38:18.102775Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.914347Z", - "iopub.status.busy": "2024-06-25T16:04:16.914011Z", - "iopub.status.idle": "2024-06-25T16:04:16.916453Z", - "shell.execute_reply": "2024-06-25T16:04:16.916028Z" + "iopub.execute_input": "2024-06-25T19:38:18.105003Z", + "iopub.status.busy": "2024-06-25T19:38:18.104832Z", + "iopub.status.idle": "2024-06-25T19:38:18.107625Z", + "shell.execute_reply": "2024-06-25T19:38:18.107128Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.918455Z", - "iopub.status.busy": "2024-06-25T16:04:16.918103Z", - "iopub.status.idle": "2024-06-25T16:04:17.041099Z", - "shell.execute_reply": "2024-06-25T16:04:17.040461Z" + "iopub.execute_input": "2024-06-25T19:38:18.109671Z", + "iopub.status.busy": "2024-06-25T19:38:18.109367Z", + "iopub.status.idle": "2024-06-25T19:38:18.236233Z", + "shell.execute_reply": "2024-06-25T19:38:18.235732Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.043794Z", - "iopub.status.busy": "2024-06-25T16:04:17.043242Z", - "iopub.status.idle": "2024-06-25T16:04:17.148399Z", - "shell.execute_reply": "2024-06-25T16:04:17.147842Z" + "iopub.execute_input": "2024-06-25T19:38:18.238299Z", + "iopub.status.busy": "2024-06-25T19:38:18.237942Z", + "iopub.status.idle": "2024-06-25T19:38:18.347132Z", + "shell.execute_reply": "2024-06-25T19:38:18.346641Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.150850Z", - "iopub.status.busy": "2024-06-25T16:04:17.150479Z", - "iopub.status.idle": "2024-06-25T16:04:17.645229Z", - "shell.execute_reply": "2024-06-25T16:04:17.644591Z" + "iopub.execute_input": "2024-06-25T19:38:18.349402Z", + "iopub.status.busy": "2024-06-25T19:38:18.349044Z", + "iopub.status.idle": "2024-06-25T19:38:18.839672Z", + "shell.execute_reply": "2024-06-25T19:38:18.839073Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.647808Z", - "iopub.status.busy": "2024-06-25T16:04:17.647578Z", - "iopub.status.idle": "2024-06-25T16:04:17.732922Z", - "shell.execute_reply": "2024-06-25T16:04:17.732288Z" + "iopub.execute_input": "2024-06-25T19:38:18.841931Z", + "iopub.status.busy": "2024-06-25T19:38:18.841755Z", + "iopub.status.idle": "2024-06-25T19:38:18.912662Z", + "shell.execute_reply": "2024-06-25T19:38:18.912091Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.735171Z", - "iopub.status.busy": "2024-06-25T16:04:17.734985Z", - "iopub.status.idle": "2024-06-25T16:04:17.744244Z", - "shell.execute_reply": "2024-06-25T16:04:17.743814Z" + "iopub.execute_input": "2024-06-25T19:38:18.915065Z", + "iopub.status.busy": "2024-06-25T19:38:18.914579Z", + "iopub.status.idle": "2024-06-25T19:38:18.923159Z", + "shell.execute_reply": "2024-06-25T19:38:18.922730Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.746326Z", - "iopub.status.busy": "2024-06-25T16:04:17.746024Z", - "iopub.status.idle": "2024-06-25T16:04:17.748768Z", - "shell.execute_reply": "2024-06-25T16:04:17.748295Z" + "iopub.execute_input": "2024-06-25T19:38:18.925120Z", + "iopub.status.busy": "2024-06-25T19:38:18.924947Z", + "iopub.status.idle": "2024-06-25T19:38:18.927502Z", + "shell.execute_reply": "2024-06-25T19:38:18.927067Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.750556Z", - "iopub.status.busy": "2024-06-25T16:04:17.750380Z", - "iopub.status.idle": "2024-06-25T16:04:23.180932Z", - "shell.execute_reply": "2024-06-25T16:04:23.180316Z" + "iopub.execute_input": "2024-06-25T19:38:18.929453Z", + "iopub.status.busy": "2024-06-25T19:38:18.929127Z", + "iopub.status.idle": "2024-06-25T19:38:24.397527Z", + "shell.execute_reply": "2024-06-25T19:38:24.396937Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:23.183436Z", - "iopub.status.busy": "2024-06-25T16:04:23.182980Z", - "iopub.status.idle": "2024-06-25T16:04:23.191635Z", - "shell.execute_reply": "2024-06-25T16:04:23.191098Z" + "iopub.execute_input": "2024-06-25T19:38:24.400077Z", + "iopub.status.busy": "2024-06-25T19:38:24.399563Z", + "iopub.status.idle": "2024-06-25T19:38:24.408142Z", + "shell.execute_reply": "2024-06-25T19:38:24.407603Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:23.193732Z", - "iopub.status.busy": "2024-06-25T16:04:23.193357Z", - "iopub.status.idle": "2024-06-25T16:04:23.257489Z", - "shell.execute_reply": "2024-06-25T16:04:23.256902Z" + "iopub.execute_input": "2024-06-25T19:38:24.410281Z", + "iopub.status.busy": "2024-06-25T19:38:24.409820Z", + "iopub.status.idle": "2024-06-25T19:38:24.473861Z", + "shell.execute_reply": "2024-06-25T19:38:24.473281Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index cbb5060c6..253b92cf5 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:26.297786Z", - "iopub.status.busy": "2024-06-25T16:04:26.297315Z", - "iopub.status.idle": "2024-06-25T16:04:27.887896Z", - "shell.execute_reply": "2024-06-25T16:04:27.887195Z" + "iopub.execute_input": "2024-06-25T19:38:27.445776Z", + "iopub.status.busy": "2024-06-25T19:38:27.445616Z", + "iopub.status.idle": "2024-06-25T19:38:29.357688Z", + "shell.execute_reply": "2024-06-25T19:38:29.356961Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:27.890914Z", - "iopub.status.busy": "2024-06-25T16:04:27.890427Z", - "iopub.status.idle": "2024-06-25T16:05:25.256867Z", - "shell.execute_reply": "2024-06-25T16:05:25.256120Z" + "iopub.execute_input": "2024-06-25T19:38:29.360485Z", + "iopub.status.busy": "2024-06-25T19:38:29.360106Z", + "iopub.status.idle": "2024-06-25T19:39:24.167594Z", + "shell.execute_reply": "2024-06-25T19:39:24.166933Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:25.259565Z", - "iopub.status.busy": "2024-06-25T16:05:25.259365Z", - "iopub.status.idle": "2024-06-25T16:05:26.415816Z", - "shell.execute_reply": "2024-06-25T16:05:26.415246Z" + "iopub.execute_input": "2024-06-25T19:39:24.170328Z", + "iopub.status.busy": "2024-06-25T19:39:24.169968Z", + "iopub.status.idle": "2024-06-25T19:39:25.274825Z", + "shell.execute_reply": "2024-06-25T19:39:25.274283Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:26.418735Z", - "iopub.status.busy": "2024-06-25T16:05:26.418225Z", - "iopub.status.idle": "2024-06-25T16:05:26.421695Z", - "shell.execute_reply": "2024-06-25T16:05:26.421227Z" + "iopub.execute_input": "2024-06-25T19:39:25.277334Z", + "iopub.status.busy": "2024-06-25T19:39:25.276961Z", + "iopub.status.idle": "2024-06-25T19:39:25.280274Z", + "shell.execute_reply": "2024-06-25T19:39:25.279814Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:26.423574Z", - "iopub.status.busy": "2024-06-25T16:05:26.423393Z", - "iopub.status.idle": "2024-06-25T16:05:26.427320Z", - "shell.execute_reply": "2024-06-25T16:05:26.426786Z" + "iopub.execute_input": "2024-06-25T19:39:25.282318Z", + "iopub.status.busy": "2024-06-25T19:39:25.282060Z", + "iopub.status.idle": "2024-06-25T19:39:25.285902Z", + "shell.execute_reply": "2024-06-25T19:39:25.285458Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:26.429441Z", - "iopub.status.busy": "2024-06-25T16:05:26.429045Z", - "iopub.status.idle": "2024-06-25T16:05:26.432756Z", - "shell.execute_reply": "2024-06-25T16:05:26.432275Z" + "iopub.execute_input": "2024-06-25T19:39:25.287764Z", + "iopub.status.busy": "2024-06-25T19:39:25.287595Z", + "iopub.status.idle": "2024-06-25T19:39:25.291186Z", + "shell.execute_reply": "2024-06-25T19:39:25.290735Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:26.434942Z", - "iopub.status.busy": "2024-06-25T16:05:26.434398Z", - "iopub.status.idle": "2024-06-25T16:05:26.437440Z", - "shell.execute_reply": "2024-06-25T16:05:26.437002Z" + "iopub.execute_input": "2024-06-25T19:39:25.293004Z", + "iopub.status.busy": "2024-06-25T19:39:25.292834Z", + "iopub.status.idle": "2024-06-25T19:39:25.296491Z", + "shell.execute_reply": "2024-06-25T19:39:25.296049Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:26.439523Z", - "iopub.status.busy": "2024-06-25T16:05:26.439086Z", - "iopub.status.idle": "2024-06-25T16:06:01.882759Z", - "shell.execute_reply": "2024-06-25T16:06:01.882179Z" + "iopub.execute_input": "2024-06-25T19:39:25.298372Z", + "iopub.status.busy": "2024-06-25T19:39:25.298196Z", + "iopub.status.idle": "2024-06-25T19:39:58.536591Z", + "shell.execute_reply": "2024-06-25T19:39:58.535983Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2af2403d62f9417892013c46d8d0308c", + "model_id": "944591b9a0384c6388bc6a076330ac62", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "96760fcea90d4e7e9092c7269a9c7289", + "model_id": "456e1a39f8a0484d84df60d119f7d9b3", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:01.885484Z", - "iopub.status.busy": "2024-06-25T16:06:01.885229Z", - "iopub.status.idle": "2024-06-25T16:06:02.567992Z", - "shell.execute_reply": "2024-06-25T16:06:02.567379Z" + "iopub.execute_input": "2024-06-25T19:39:58.539357Z", + "iopub.status.busy": "2024-06-25T19:39:58.538990Z", + "iopub.status.idle": "2024-06-25T19:39:59.206448Z", + "shell.execute_reply": "2024-06-25T19:39:59.205970Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:02.570524Z", - "iopub.status.busy": "2024-06-25T16:06:02.569978Z", - "iopub.status.idle": "2024-06-25T16:06:05.322080Z", - "shell.execute_reply": "2024-06-25T16:06:05.321553Z" + "iopub.execute_input": "2024-06-25T19:39:59.208781Z", + "iopub.status.busy": "2024-06-25T19:39:59.208330Z", + "iopub.status.idle": "2024-06-25T19:40:01.948266Z", + "shell.execute_reply": "2024-06-25T19:40:01.947672Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:05.324426Z", - "iopub.status.busy": "2024-06-25T16:06:05.324099Z", - "iopub.status.idle": "2024-06-25T16:06:37.863014Z", - "shell.execute_reply": "2024-06-25T16:06:37.862543Z" + "iopub.execute_input": "2024-06-25T19:40:01.950510Z", + "iopub.status.busy": "2024-06-25T19:40:01.950173Z", + "iopub.status.idle": "2024-06-25T19:40:34.744210Z", + "shell.execute_reply": "2024-06-25T19:40:34.743718Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9af11f647b2949819c1f5a1edb762736", + "model_id": "f91d1545f3254e83bb88ef07ebe6e9fe", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:37.865265Z", - "iopub.status.busy": "2024-06-25T16:06:37.864952Z", - "iopub.status.idle": "2024-06-25T16:06:52.437700Z", - "shell.execute_reply": "2024-06-25T16:06:52.437137Z" + "iopub.execute_input": "2024-06-25T19:40:34.746367Z", + "iopub.status.busy": "2024-06-25T19:40:34.746041Z", + "iopub.status.idle": "2024-06-25T19:40:49.559228Z", + "shell.execute_reply": "2024-06-25T19:40:49.558651Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:52.440243Z", - "iopub.status.busy": "2024-06-25T16:06:52.439857Z", - "iopub.status.idle": "2024-06-25T16:06:56.319044Z", - "shell.execute_reply": "2024-06-25T16:06:56.318418Z" + "iopub.execute_input": "2024-06-25T19:40:49.561671Z", + "iopub.status.busy": "2024-06-25T19:40:49.561368Z", + "iopub.status.idle": "2024-06-25T19:40:53.237064Z", + "shell.execute_reply": "2024-06-25T19:40:53.236459Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:56.321362Z", - "iopub.status.busy": "2024-06-25T16:06:56.321158Z", - "iopub.status.idle": "2024-06-25T16:06:57.835620Z", - "shell.execute_reply": "2024-06-25T16:06:57.835031Z" + "iopub.execute_input": "2024-06-25T19:40:53.239303Z", + "iopub.status.busy": "2024-06-25T19:40:53.238898Z", + "iopub.status.idle": "2024-06-25T19:40:54.630349Z", + "shell.execute_reply": "2024-06-25T19:40:54.629762Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "786f2d55589d44e8b977e731bfd737d4", + "model_id": "c3ec5543994844ccbea4230fb9d7b4eb", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:57.838471Z", - "iopub.status.busy": "2024-06-25T16:06:57.838060Z", - "iopub.status.idle": "2024-06-25T16:06:57.871338Z", - "shell.execute_reply": "2024-06-25T16:06:57.870761Z" + "iopub.execute_input": "2024-06-25T19:40:54.632662Z", + "iopub.status.busy": "2024-06-25T19:40:54.632244Z", + "iopub.status.idle": "2024-06-25T19:40:54.661012Z", + "shell.execute_reply": "2024-06-25T19:40:54.660347Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:57.873874Z", - "iopub.status.busy": "2024-06-25T16:06:57.873489Z", - "iopub.status.idle": "2024-06-25T16:07:04.145930Z", - "shell.execute_reply": "2024-06-25T16:07:04.145303Z" + "iopub.execute_input": "2024-06-25T19:40:54.663568Z", + "iopub.status.busy": "2024-06-25T19:40:54.663357Z", + "iopub.status.idle": "2024-06-25T19:41:00.730286Z", + "shell.execute_reply": "2024-06-25T19:41:00.729759Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:04.148435Z", - "iopub.status.busy": "2024-06-25T16:07:04.148068Z", - "iopub.status.idle": "2024-06-25T16:07:04.204925Z", - "shell.execute_reply": "2024-06-25T16:07:04.204361Z" + "iopub.execute_input": "2024-06-25T19:41:00.732454Z", + "iopub.status.busy": "2024-06-25T19:41:00.732273Z", + "iopub.status.idle": "2024-06-25T19:41:00.787546Z", + "shell.execute_reply": "2024-06-25T19:41:00.786977Z" }, "nbsphinx": "hidden" }, @@ -1038,137 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04d1f4ec633c453791534547a5162ade": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0c6f2c8df4da49c98d07e7aaf8a22bcb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc6a14816890451bbcbaa406260ec37a", - "placeholder": "​", - "style": "IPY_MODEL_c9f65d1cc528477ba2702a735480b910", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 19.94it/s]" - } - }, - "15978f3017384bdcaafcd530c33a2868": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2af2403d62f9417892013c46d8d0308c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_50840cb64f674b6eb21068fe7a49f5f0", - "IPY_MODEL_6b51203517114dbcb792111da56ffd3c", - "IPY_MODEL_f6cae9edade64213ba68a8dded99ce56" - ], - "layout": "IPY_MODEL_85fd2638b160478598b53438d4b8875f", - "tabbable": null, - "tooltip": null - } - }, - "3a7a1d3c7abf4959a0697fc8cce5dbd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d68c66785c3c49c1afdb5648ec008530", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aa0f2b8b33b24cb0acac29b78b2d01ac", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "3bfed17a44044d9b9298d0465514102b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7877cde823c340dd8e5587bf5b1394f4", - "placeholder": "​", - "style": "IPY_MODEL_6643db54b11542209144918905998ce0", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.29it/s]" - } - }, - "3c08b85141b043988e8a6d1f23c660de": { + "0413905ec4a1476eab10c5ca853497d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1221,7 +1091,7 @@ "width": null } }, - "3c3654b303634b85b35d0650f73cb7fb": { + "04229ad3351b4f7aaf0a891a50bc135d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1274,7 +1144,48 @@ "width": null } }, - "3dd7ed67f6df4ac9bab9ad09c20df517": { + "07201424d87b4671ac4b1cfa673d7986": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a832d5b427714b918a469d3e99a8e9ff", + "placeholder": "​", + "style": "IPY_MODEL_0965a0f7f5304df18ccd851b34fef9fb", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.44it/s]" + } + }, + "0965a0f7f5304df18ccd851b34fef9fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0b658cb143704dbbb7f0ac48f95429f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1290,7 +1201,7 @@ "description_width": "" } }, - "3f383a9ca2df4a4eb00824d2d157581d": { + "13d8b2f426d2467cbc47898751b6f6dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1308,7 +1219,49 @@ "text_color": null } }, - "471abcf8ee444a008bc8ded81a28b15a": { + "15f5d288daf5495ba283ee4fad4d58fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "215c528b84a347b1a955651a8792356a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8d3f186b66e646faa88abf0438b28125", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_476d964c770641a799b799e08d88ea6e", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "2184a8202604452c862d764c590163a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1323,15 +1276,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2f1530a512445c98872e21e270d5abc", + "layout": "IPY_MODEL_e251eadf4c0d45e99ed477a752be3d71", "placeholder": "​", - "style": "IPY_MODEL_a2f4c4b023694de48afef7f6974b3345", + "style": "IPY_MODEL_9238a3aeb6694a54a16d5276afd69748", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 4997683/4997683 [00:32<00:00, 154374.13it/s]" } }, - "49f5146f94a34bbbbb0e37bac31a6976": { + "2a9e65f5f4ec40d496f43ad1adfd040a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1384,48 +1337,7 @@ "width": null } }, - "50840cb64f674b6eb21068fe7a49f5f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_684b95295e1a4f498e006b65c063e604", - "placeholder": "​", - "style": "IPY_MODEL_15978f3017384bdcaafcd530c33a2868", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "6643db54b11542209144918905998ce0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "684b95295e1a4f498e006b65c063e604": { + "2f266a82a0cd46529aa761f6c67f7700": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1478,7 +1390,7 @@ "width": null } }, - "6b51203517114dbcb792111da56ffd3c": { + "38cf33a9b7b9481cb9a58609d734b80f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1494,67 +1406,93 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4513f6464504320bab1656c3878acab", - "max": 30.0, + "layout": "IPY_MODEL_2f266a82a0cd46529aa761f6c67f7700", + "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3dd7ed67f6df4ac9bab9ad09c20df517", + "style": "IPY_MODEL_8978b1bc574944349ad8045c8d081583", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": 4997683.0 } }, - "725c7b5e265f454881a2ae2bd7237c7f": { + "456e1a39f8a0484d84df60d119f7d9b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49f5146f94a34bbbbb0e37bac31a6976", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fa3c4ea5ca804e57976fbca8046f75f3", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a858829ede1a452ba7407428df24b4fa", + "IPY_MODEL_8aaa8a35422241b2a265233527fbf1e7", + "IPY_MODEL_07201424d87b4671ac4b1cfa673d7986" + ], + "layout": "IPY_MODEL_cb515331da754c33a0c68f56fd6918b5", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "786f2d55589d44e8b977e731bfd737d4": { + "476d964c770641a799b799e08d88ea6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_471abcf8ee444a008bc8ded81a28b15a", - "IPY_MODEL_725c7b5e265f454881a2ae2bd7237c7f", - "IPY_MODEL_0c6f2c8df4da49c98d07e7aaf8a22bcb" - ], - "layout": "IPY_MODEL_8b71529b8eb64e00985356d07eb3571c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4e6a4c23dd054908be889d0f3d83ee3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "531002ec92784d8c8567de9c2f6b2001": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7877cde823c340dd8e5587bf5b1394f4": { + "5868ffb252c44ac4aa39f70440bc622f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1607,7 +1545,30 @@ "width": null } }, - "85fd2638b160478598b53438d4b8875f": { + "61c316c9d6e6417db8e8f67c88ca16b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab2778b3faa74fc58eae618ac7ad06b7", + "placeholder": "​", + "style": "IPY_MODEL_d9e435b2b0064cb389b0eba2fdb3ae58", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 756.08it/s]" + } + }, + "6a036f411aba4cdc9fa68388d47ac9c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1660,7 +1621,25 @@ "width": null } }, - "8b71529b8eb64e00985356d07eb3571c": { + "6c8bceb12179495a84b898f7d7fb9df2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6dabf219795b408dabf8afe1ed3b2ba9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1713,78 +1692,7 @@ "width": null } }, - "96760fcea90d4e7e9092c7269a9c7289": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a02ef5c60fee482d845728e739af7a62", - "IPY_MODEL_3a7a1d3c7abf4959a0697fc8cce5dbd2", - "IPY_MODEL_3bfed17a44044d9b9298d0465514102b" - ], - "layout": "IPY_MODEL_dc87c34425f949259352e0892c283120", - "tabbable": null, - "tooltip": null - } - }, - "9af11f647b2949819c1f5a1edb762736": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e44925003e0344efb8a7144847bdcf1c", - "IPY_MODEL_c6317991cbd3479e9150b638d3379bb1", - "IPY_MODEL_b3ce4905b1304582b4611ed16487c466" - ], - "layout": "IPY_MODEL_f5f03d640b2e471589e8fcd4ffb526a3", - "tabbable": null, - "tooltip": null - } - }, - "a02ef5c60fee482d845728e739af7a62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3c08b85141b043988e8a6d1f23c660de", - "placeholder": "​", - "style": "IPY_MODEL_d68644ee6e144193bdceb1286c0945d1", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "a240d0f0928143e6a6d945c579ed0005": { + "74b719a4753841d48ddef0f60728929c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1837,25 +1745,7 @@ "width": null } }, - "a2f4c4b023694de48afef7f6974b3345": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aa0f2b8b33b24cb0acac29b78b2d01ac": { + "8978b1bc574944349ad8045c8d081583": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1871,30 +1761,33 @@ "description_width": "" } }, - "b3ce4905b1304582b4611ed16487c466": { + "8aaa8a35422241b2a265233527fbf1e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3c3654b303634b85b35d0650f73cb7fb", - "placeholder": "​", - "style": "IPY_MODEL_f89de8d64d2d481f9b7bfd6dde761e73", + "layout": "IPY_MODEL_5868ffb252c44ac4aa39f70440bc622f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_15f5d288daf5495ba283ee4fad4d58fd", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154808.52it/s]" + "value": 30.0 } }, - "c2f1530a512445c98872e21e270d5abc": { + "8d3f186b66e646faa88abf0438b28125": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1947,51 +1840,49 @@ "width": null } }, - "c6317991cbd3479e9150b638d3379bb1": { + "9238a3aeb6694a54a16d5276afd69748": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f9066a49a3ea4d4db6c10797e5960503", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04d1f4ec633c453791534547a5162ade", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c9f65d1cc528477ba2702a735480b910": { + "944591b9a0384c6388bc6a076330ac62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3e1e81a9a074a9699b1c756208a42d1", + "IPY_MODEL_c2abb97f3c0f47e89640d65ea0507ceb", + "IPY_MODEL_61c316c9d6e6417db8e8f67c88ca16b3" + ], + "layout": "IPY_MODEL_f0c67deadadc41a681e33253811fe3c3", + "tabbable": null, + "tooltip": null } }, - "d4513f6464504320bab1656c3878acab": { + "a10c8b997a924841b67b483401b9d8c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2044,7 +1935,7 @@ "width": null } }, - "d68644ee6e144193bdceb1286c0945d1": { + "a61e682d08cd4b079011fff3976213c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2062,7 +1953,7 @@ "text_color": null } }, - "d68c66785c3c49c1afdb5648ec008530": { + "a832d5b427714b918a469d3e99a8e9ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2115,25 +2006,30 @@ "width": null } }, - "d727143295cd44c1ab42a816423c74b0": { + "a858829ede1a452ba7407428df24b4fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a10c8b997a924841b67b483401b9d8c3", + "placeholder": "​", + "style": "IPY_MODEL_4e6a4c23dd054908be889d0f3d83ee3b", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "dc87c34425f949259352e0892c283120": { + "ab2778b3faa74fc58eae618ac7ad06b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,7 +2082,7 @@ "width": null } }, - "e44925003e0344efb8a7144847bdcf1c": { + "b05c6a6bdf664a62a6cbd8f66104b29f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2201,15 +2097,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a240d0f0928143e6a6d945c579ed0005", + "layout": "IPY_MODEL_74b719a4753841d48ddef0f60728929c", "placeholder": "​", - "style": "IPY_MODEL_3f383a9ca2df4a4eb00824d2d157581d", + "style": "IPY_MODEL_531002ec92784d8c8567de9c2f6b2001", "tabbable": null, "tooltip": null, "value": "100%" } }, - "f45446c0d3474daba31f964d054cbde0": { + "c1f546fd71c24d498d05b3908214bd7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2262,7 +2158,57 @@ "width": null } }, - "f5f03d640b2e471589e8fcd4ffb526a3": { + "c2abb97f3c0f47e89640d65ea0507ceb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1f546fd71c24d498d05b3908214bd7d", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0b658cb143704dbbb7f0ac48f95429f2", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "c3ec5543994844ccbea4230fb9d7b4eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f1b83d31de91416b8454f54a7486c222", + "IPY_MODEL_215c528b84a347b1a955651a8792356a", + "IPY_MODEL_cc71964c79fb4cc48ccbc1e58b722da3" + ], + "layout": "IPY_MODEL_6a036f411aba4cdc9fa68388d47ac9c0", + "tabbable": null, + "tooltip": null + } + }, + "cb515331da754c33a0c68f56fd6918b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2315,7 +2261,7 @@ "width": null } }, - "f6cae9edade64213ba68a8dded99ce56": { + "cc71964c79fb4cc48ccbc1e58b722da3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2330,15 +2276,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f45446c0d3474daba31f964d054cbde0", + "layout": "IPY_MODEL_0413905ec4a1476eab10c5ca853497d3", "placeholder": "​", - "style": "IPY_MODEL_d727143295cd44c1ab42a816423c74b0", + "style": "IPY_MODEL_6c8bceb12179495a84b898f7d7fb9df2", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 754.29it/s]" + "value": " 30/30 [00:01<00:00, 21.71it/s]" } }, - "f89de8d64d2d481f9b7bfd6dde761e73": { + "d9e435b2b0064cb389b0eba2fdb3ae58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2356,7 +2302,7 @@ "text_color": null } }, - "f9066a49a3ea4d4db6c10797e5960503": { + "e251eadf4c0d45e99ed477a752be3d71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2409,23 +2355,30 @@ "width": null } }, - "fa3c4ea5ca804e57976fbca8046f75f3": { + "e3e1e81a9a074a9699b1c756208a42d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6dabf219795b408dabf8afe1ed3b2ba9", + "placeholder": "​", + "style": "IPY_MODEL_a61e682d08cd4b079011fff3976213c6", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "fc6a14816890451bbcbaa406260ec37a": { + "f0c67deadadc41a681e33253811fe3c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2477,6 +2430,53 @@ "visibility": null, "width": null } + }, + "f1b83d31de91416b8454f54a7486c222": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a9e65f5f4ec40d496f43ad1adfd040a", + "placeholder": "​", + "style": "IPY_MODEL_13d8b2f426d2467cbc47898751b6f6dd", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "f91d1545f3254e83bb88ef07ebe6e9fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b05c6a6bdf664a62a6cbd8f66104b29f", + "IPY_MODEL_38cf33a9b7b9481cb9a58609d734b80f", + "IPY_MODEL_2184a8202604452c862d764c590163a7" + ], + "layout": "IPY_MODEL_04229ad3351b4f7aaf0a891a50bc135d", + "tabbable": null, + "tooltip": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index d39bc02fe..c6bf67460 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:06.547023Z", - "iopub.status.busy": "2024-06-25T16:07:06.546845Z", - "iopub.status.idle": "2024-06-25T16:07:07.828490Z", - "shell.execute_reply": "2024-06-25T16:07:07.827856Z" + "iopub.execute_input": "2024-06-25T19:41:02.971504Z", + "iopub.status.busy": "2024-06-25T19:41:02.971078Z", + "iopub.status.idle": "2024-06-25T19:41:04.919925Z", + "shell.execute_reply": "2024-06-25T19:41:04.919315Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-25 16:07:06-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-06-25 19:41:02-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,23 +94,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.97, 2400:52e0:1a00::894:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... connected.\r\n" + "169.150.249.162, 2400:52e0:1a01::984:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.249.162|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", + "Length: 982975 (960K) [application/zip]\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", - "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", "\r", @@ -124,7 +117,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-06-25 16:07:07 (7.72 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-06-25 19:41:03 (8.03 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,9 +137,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-25 16:07:07-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.66.57, 52.217.229.33, 54.231.194.233, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.66.57|:443... connected.\r\n", + "--2024-06-25 19:41:03-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.196.49, 52.216.88.99, 3.5.9.136, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.196.49|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -167,9 +173,25 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", + "pred_probs.npz 1%[ ] 296.53K 1.27MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 30%[=====> ] 4.94M 10.8MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 100%[===================>] 16.26M 25.4MB/s in 0.6s \r\n", "\r\n", - "2024-06-25 16:07:07 (122 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-06-25 19:41:04 (25.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +208,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:07.831341Z", - "iopub.status.busy": "2024-06-25T16:07:07.830840Z", - "iopub.status.idle": "2024-06-25T16:07:09.117960Z", - "shell.execute_reply": "2024-06-25T16:07:09.117319Z" + "iopub.execute_input": "2024-06-25T19:41:04.922457Z", + "iopub.status.busy": "2024-06-25T19:41:04.922075Z", + "iopub.status.idle": "2024-06-25T19:41:06.198016Z", + "shell.execute_reply": "2024-06-25T19:41:06.197533Z" }, "nbsphinx": "hidden" }, @@ -200,7 +222,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +248,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:09.120950Z", - "iopub.status.busy": "2024-06-25T16:07:09.120556Z", - "iopub.status.idle": "2024-06-25T16:07:09.125476Z", - "shell.execute_reply": "2024-06-25T16:07:09.124877Z" + "iopub.execute_input": "2024-06-25T19:41:06.200733Z", + "iopub.status.busy": "2024-06-25T19:41:06.200196Z", + "iopub.status.idle": "2024-06-25T19:41:06.203668Z", + "shell.execute_reply": "2024-06-25T19:41:06.203192Z" } }, "outputs": [], @@ -279,10 +301,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:09.128226Z", - "iopub.status.busy": "2024-06-25T16:07:09.127849Z", - "iopub.status.idle": "2024-06-25T16:07:09.131400Z", - "shell.execute_reply": "2024-06-25T16:07:09.130888Z" + "iopub.execute_input": "2024-06-25T19:41:06.205901Z", + "iopub.status.busy": "2024-06-25T19:41:06.205502Z", + "iopub.status.idle": "2024-06-25T19:41:06.208636Z", + "shell.execute_reply": "2024-06-25T19:41:06.208180Z" }, "nbsphinx": "hidden" }, @@ -300,10 +322,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:09.133756Z", - "iopub.status.busy": "2024-06-25T16:07:09.133276Z", - "iopub.status.idle": "2024-06-25T16:07:18.048912Z", - "shell.execute_reply": "2024-06-25T16:07:18.048398Z" + "iopub.execute_input": "2024-06-25T19:41:06.210610Z", + "iopub.status.busy": "2024-06-25T19:41:06.210285Z", + "iopub.status.idle": "2024-06-25T19:41:15.082955Z", + "shell.execute_reply": "2024-06-25T19:41:15.082336Z" } }, "outputs": [], @@ -377,10 +399,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:18.051705Z", - "iopub.status.busy": "2024-06-25T16:07:18.051294Z", - "iopub.status.idle": "2024-06-25T16:07:18.057098Z", - "shell.execute_reply": "2024-06-25T16:07:18.056598Z" + "iopub.execute_input": "2024-06-25T19:41:15.085860Z", + "iopub.status.busy": "2024-06-25T19:41:15.085425Z", + "iopub.status.idle": "2024-06-25T19:41:15.091166Z", + "shell.execute_reply": "2024-06-25T19:41:15.090711Z" }, "nbsphinx": "hidden" }, @@ -420,10 +442,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:18.059216Z", - "iopub.status.busy": "2024-06-25T16:07:18.058934Z", - "iopub.status.idle": "2024-06-25T16:07:18.414507Z", - "shell.execute_reply": "2024-06-25T16:07:18.413940Z" + "iopub.execute_input": "2024-06-25T19:41:15.093228Z", + "iopub.status.busy": "2024-06-25T19:41:15.092906Z", + "iopub.status.idle": "2024-06-25T19:41:15.428454Z", + "shell.execute_reply": "2024-06-25T19:41:15.427900Z" } }, "outputs": [], @@ -460,10 +482,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:18.417180Z", - "iopub.status.busy": "2024-06-25T16:07:18.416802Z", - "iopub.status.idle": "2024-06-25T16:07:18.421011Z", - "shell.execute_reply": "2024-06-25T16:07:18.420474Z" + "iopub.execute_input": "2024-06-25T19:41:15.430886Z", + "iopub.status.busy": "2024-06-25T19:41:15.430536Z", + "iopub.status.idle": "2024-06-25T19:41:15.435028Z", + "shell.execute_reply": "2024-06-25T19:41:15.434547Z" } }, "outputs": [ @@ -535,10 +557,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:18.423062Z", - "iopub.status.busy": "2024-06-25T16:07:18.422741Z", - "iopub.status.idle": "2024-06-25T16:07:21.086360Z", - "shell.execute_reply": "2024-06-25T16:07:21.085580Z" + "iopub.execute_input": "2024-06-25T19:41:15.437005Z", + "iopub.status.busy": "2024-06-25T19:41:15.436676Z", + "iopub.status.idle": "2024-06-25T19:41:17.963765Z", + "shell.execute_reply": "2024-06-25T19:41:17.963047Z" } }, "outputs": [], @@ -560,10 +582,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:21.089602Z", - "iopub.status.busy": "2024-06-25T16:07:21.088970Z", - "iopub.status.idle": "2024-06-25T16:07:21.093137Z", - "shell.execute_reply": "2024-06-25T16:07:21.092590Z" + "iopub.execute_input": "2024-06-25T19:41:17.966718Z", + "iopub.status.busy": "2024-06-25T19:41:17.966151Z", + "iopub.status.idle": "2024-06-25T19:41:17.970271Z", + "shell.execute_reply": "2024-06-25T19:41:17.969727Z" } }, "outputs": [ @@ -599,10 +621,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:21.095265Z", - "iopub.status.busy": "2024-06-25T16:07:21.094931Z", - "iopub.status.idle": "2024-06-25T16:07:21.100217Z", - "shell.execute_reply": "2024-06-25T16:07:21.099684Z" + "iopub.execute_input": "2024-06-25T19:41:17.972401Z", + "iopub.status.busy": "2024-06-25T19:41:17.971969Z", + "iopub.status.idle": "2024-06-25T19:41:17.977900Z", + "shell.execute_reply": "2024-06-25T19:41:17.977348Z" } }, "outputs": [ @@ -780,10 +802,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:21.102376Z", - "iopub.status.busy": "2024-06-25T16:07:21.102037Z", - "iopub.status.idle": "2024-06-25T16:07:21.128897Z", - "shell.execute_reply": "2024-06-25T16:07:21.128341Z" + "iopub.execute_input": "2024-06-25T19:41:17.979833Z", + "iopub.status.busy": "2024-06-25T19:41:17.979657Z", + "iopub.status.idle": "2024-06-25T19:41:18.005794Z", + "shell.execute_reply": "2024-06-25T19:41:18.005228Z" } }, "outputs": [ @@ -885,10 +907,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:21.131210Z", - "iopub.status.busy": "2024-06-25T16:07:21.130875Z", - "iopub.status.idle": "2024-06-25T16:07:21.135376Z", - "shell.execute_reply": "2024-06-25T16:07:21.134835Z" + "iopub.execute_input": "2024-06-25T19:41:18.007758Z", + "iopub.status.busy": "2024-06-25T19:41:18.007580Z", + "iopub.status.idle": "2024-06-25T19:41:18.011709Z", + "shell.execute_reply": "2024-06-25T19:41:18.011185Z" } }, "outputs": [ @@ -962,10 +984,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:21.137450Z", - "iopub.status.busy": "2024-06-25T16:07:21.137116Z", - "iopub.status.idle": "2024-06-25T16:07:22.574784Z", - "shell.execute_reply": "2024-06-25T16:07:22.574179Z" + "iopub.execute_input": "2024-06-25T19:41:18.013608Z", + "iopub.status.busy": "2024-06-25T19:41:18.013435Z", + "iopub.status.idle": "2024-06-25T19:41:19.410422Z", + "shell.execute_reply": "2024-06-25T19:41:19.409926Z" } }, "outputs": [ @@ -1137,10 +1159,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:22.577145Z", - "iopub.status.busy": "2024-06-25T16:07:22.576905Z", - "iopub.status.idle": "2024-06-25T16:07:22.581281Z", - "shell.execute_reply": "2024-06-25T16:07:22.580709Z" + "iopub.execute_input": "2024-06-25T19:41:19.412440Z", + "iopub.status.busy": "2024-06-25T19:41:19.412255Z", + "iopub.status.idle": "2024-06-25T19:41:19.416447Z", + "shell.execute_reply": "2024-06-25T19:41:19.415988Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index f07634388..9bd33b173 100644 Binary files a/master/.doctrees/tutorials/clean_learning/index.doctree and b/master/.doctrees/tutorials/clean_learning/index.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index fd1a7c36a..391f5d390 100644 Binary files a/master/.doctrees/tutorials/clean_learning/tabular.doctree and b/master/.doctrees/tutorials/clean_learning/tabular.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index 05087afce..9cecc5941 100644 Binary files a/master/.doctrees/tutorials/clean_learning/text.doctree and b/master/.doctrees/tutorials/clean_learning/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index ece44deb2..b43c79676 100644 Binary files a/master/.doctrees/tutorials/datalab/audio.doctree and b/master/.doctrees/tutorials/datalab/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 643e8b88a..778a47711 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index e3a5197ab..9e5b4b1d0 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index 25fb80775..8b1e6eba1 100644 Binary files a/master/.doctrees/tutorials/datalab/image.doctree and b/master/.doctrees/tutorials/datalab/image.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 7e4becee1..049a3c95d 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 5b3e91c53..6a20fbf2c 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 4458795f7..0937a93f4 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index 52bc705ce..14733790e 100644 Binary files a/master/.doctrees/tutorials/datalab/workflows.doctree and b/master/.doctrees/tutorials/datalab/workflows.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 2b610c133..5a1aa5abe 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 6e205ce40..1075bcc60 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index c74dcf1db..574d6fd30 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 8e24fffbf..e409d84b4 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index f1cbf571a..7f161161c 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 84551c309..7893d247c 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index f6f690fcb..4df54c003 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 6f2ef500c..f785496e8 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 49202b0e0..24e263159 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 5e2ef7584..657dee698 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 03790a2c2..963a5a4a3 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index a23f755f0..e7f4618df 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_modules/cleanlab/benchmarking/noise_generation.html b/master/_modules/cleanlab/benchmarking/noise_generation.html index 337fbc128..5dc1eea0c 100644 --- a/master/_modules/cleanlab/benchmarking/noise_generation.html +++ b/master/_modules/cleanlab/benchmarking/noise_generation.html @@ -374,6 +374,15 @@ > +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • =3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 77d61e881..13d038510 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 315745f67..9f5e5caa9 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/benchmarking/index.html b/master/cleanlab/benchmarking/index.html index a0f5d5f3b..4d3858ece 100644 --- a/master/cleanlab/benchmarking/index.html +++ b/master/cleanlab/benchmarking/index.html @@ -383,6 +383,15 @@ >
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • = 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[96, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[96, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[96, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[96, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[96, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[96, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[96, "Explanation:"]], "Data Valuation": [[96, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[96, "1.-Load-and-Prepare-the-Dataset"], [96, "id2"], [96, "id5"]], "2. Vectorize the Text Data": [[96, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[96, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[96, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[96, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[96, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[96, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [96, "id3"]], "3. (Optional) Cluster the Data": [[96, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[96, "4.-Identify-Underperforming-Groups-with-Datalab"], [96, "id4"]], "5. (Optional) Visualize the Results": [[96, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[96, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[96, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[96, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[96, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[96, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[96, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[96, "1.-Load-the-Dataset"]], "2: Encode Categorical Values": [[96, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[96, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[96, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[96, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[96, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[96, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[96, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[96, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[96, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[98, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 92, 96, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 90, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 96, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 96, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 90, 96, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 96, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 90, 94, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 92, 94, 95, 96, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 92, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 91, 96, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 94, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 94, 96, 103, 104], "trace": [1, 90, 91, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 91, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 90, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 94, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 96, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 91, 94, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 94, 96, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 90, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 95, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 96, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 96, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 92, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 94, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 94, 95, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 90, 91, 92, 94, 95, 99], "yield": [1, 38, 42], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 92, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 90, 94, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 90, 91, 92, 94, 95, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 96], "python": [1, 2, 42, 61, 74, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 95, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 95, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 94, 96, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 96, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 90, 92, 96, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 92, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 96, 97, 98], "choic": [1, 8, 44, 53, 55, 92, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 95, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 94, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 96, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 94, 96, 97, 99, 101, 102], "max_it": [1, 88, 89, 95, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 92, 94, 95, 96, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 94, 95, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 90, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90, 92, 96, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 96], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 91, 95, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 91, 92, 95, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 94, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 96, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 95, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 90, 92, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 90, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 92, 94, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 91, 95, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 90, 91, 92, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 92, 95, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 91, 92, 96, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 95, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 90, 91, 92, 94, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 92, 96, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 91, 92, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 96, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 94, 95, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 94, 95, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 96, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 89, 90, 91, 94, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 94, 96, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 92, 93, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 94, 95, 96, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 95, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 90, 92, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 92, 94, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 94, 95, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 95], "loss": [2, 39, 61, 72, 74, 92], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 92, 96, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 96, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 92, 94, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 90, 91, 92, 96, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 92, 95, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 89, 90, 96, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 90, 91, 92, 94, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 96, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 92, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 95, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 92], "independ": [2, 3, 10, 63, 74, 95, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 96, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 92, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 92, 95, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 91, 92, 94, 95, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 95, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 90, 95, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 92, 94, 95, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 92, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 91, 92, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 94, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 94, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 93, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 90, 91, 92, 96, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 90, 91, 94, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 90, 91, 92, 94, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 90, 91, 95, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 92, 95, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 90, 91, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 88, 90, 92, 95, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 90, 91, 92, 94, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 90, 92, 94, 95, 96, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 92, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 90, 91, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 90, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 88, 90, 91, 92, 95, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 96, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 95], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 90, 91, 96, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 90, 91, 92, 94, 95, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 92, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 91, 95, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 90, 94, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 94, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 90, 95, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 96, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 91, 97, 98], "robust": [2, 47, 52, 74, 91, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 90, 91, 95, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 94, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 96, 98, 104], "dimens": [2, 57, 76, 79, 92, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 92, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 94, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 90, 96, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 90, 91, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 96, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 91, 95, 96], "close": [2, 3, 10, 41, 47, 71, 89, 90, 91, 92, 94, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 96, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 90], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 95, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 91, 98, 99], "impact": [2, 4, 10, 90, 91, 92, 96], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 92, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 96, 98, 101, 105], "caus": [2, 44, 49, 90, 91, 96, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 90, 91, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 90, 91, 96, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 96, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 90, 92, 95, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 96, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 90, 96, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 92, 95, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 92, 94, 95, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 94, 96, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 92, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71, 96], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 91, 92, 94, 95, 96, 99], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 96], "torch": [2, 38, 39, 42, 88, 89, 92, 95, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 90, 91, 92, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 91, 92, 94, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 89, 90, 91, 92, 94, 96, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 92, 95, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 92, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 95, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 90, 91, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 94, 96, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 91, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 90, 96, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 92, 94, 96, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 91, 93, 96, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 91, 92, 95, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 92, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 91, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 92, 96, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 92, 94, 95, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 91, 96, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 91, 92, 95, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 92, 96, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 98], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 92, 94, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 92, 94, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 96, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 92, 96, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 90, 94, 95, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 90, 92, 94, 96, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 91, 94, 96, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 89, 92, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 92, 95, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 91, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 96, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 90, 94, 102, 103], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 90, 92, 94, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 92, 96, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 88, 91, 92, 95, 97, 102], "hyperparamet": [2, 66, 71, 92], "purpos": [2, 52, 90, 91, 96, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 92, 95, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74, 98], "yourself": [2, 5, 41, 91, 96], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 92, 94, 95, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 92, 94, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 90, 91, 95, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 90, 92, 95, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 90, 96], "label_issues_df": [2, 74, 92], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 94, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 90, 91], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 94, 96, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 92, 96, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 91, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 90, 96, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 96, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 94, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 95, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 91, 92, 94, 95, 96, 97, 98, 99, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 90, 91, 92, 95, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 92, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 93, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 94, 95, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 90, 91, 92, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 90, 91, 94, 95, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 91, 92, 94, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 95], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 90, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 90, 92, 96, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 96, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 95, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 95, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 90, 91, 96, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 96, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 91, 92, 94, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 90, 94, 96, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 91, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 96, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 94], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 91, 92, 94, 95, 96, 97, 99], "clear": [2, 38, 42, 54, 74, 88, 95, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 92, 94, 96, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 92, 94, 95, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 92, 94, 95, 98], "care": [2, 10, 38, 42, 52, 74, 95, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 90, 91, 94, 95, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 94, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 92, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 90, 91, 98], "metadata": [2, 10, 42, 74, 92, 94, 95, 108], "through": [2, 5, 7, 42, 74, 88, 89, 91, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 91, 95, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 92, 96, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 99], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 92, 94, 96], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 89, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 90, 95, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 95, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 92], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 94, 95, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 90, 91, 92, 94, 95, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 94, 96, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 91, 92, 94, 96, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 91, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 91, 96, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 91, 92, 94, 95, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 92, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 96, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 91, 92, 94, 96, 97, 98, 99, 104, 106], "As": [3, 7, 84, 90, 91, 95, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 95, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 94, 96, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 91, 92, 95, 96, 99, 106], "know": [3, 10, 90, 91, 92, 94, 95, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 91, 96, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 94, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 94, 95, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 94, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 90, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 94, 95, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 96, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 92, 96, 98, 107], "practic": [3, 87, 88, 91, 92, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 91, 96, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 92, 96, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 96, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 96, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 96, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 96], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87, 96], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 90, 94, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 94, 96], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 90, 91, 92, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 92, 94, 95, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 94, 95, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 90, 92, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 95, 96, 98, 99, 101, 103], "littl": [3, 41, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 92, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 96, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 90, 94, 95, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 94, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 90, 92, 94, 96, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 96, 103], "contribut": [4, 10, 19, 96, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 94, 96], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 92, 94, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 91, 95, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 90, 91, 92, 94, 95, 96, 98, 99, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 71, 94, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 92, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 91, 95, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 91, 92, 94, 96, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 96, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 90, 91, 94, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 90, 91, 92, 95, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 96, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 94, 95, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 94, 96, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 96], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 94, 104], "cosin": [4, 10, 52, 53, 55, 71, 96, 104], "dim": [4, 71, 92, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 94], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 94, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 96, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 94, 95, 99], "exce": [4, 52, 92, 96], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 91, 92, 95, 96, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 90, 91, 92, 94, 95, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 96, 99], "closer": [4, 10, 69, 103], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 96, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 90, 91, 96, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 92, 95, 97, 98], "55": [4, 56, 96, 97, 103, 106], "525": [4, 92], "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 92, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 96, 97], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 96], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 90, 95, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 97, 98, 99], "intermedi": [5, 9, 91], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 91, 94, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 92], "face": [5, 10, 13, 17, 92, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 95, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 94, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 90, 91, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 90, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 90, 91, 93, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 94, 95, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 95, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 90, 91, 93, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 96, 106], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 91, 92, 98, 100, 102, 107], "load_dataset": [5, 13, 92], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 91, 96, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 91, 93, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "world": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "interact": [5, 17, 95, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 94, 95, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 94, 95, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 94, 95, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52, 96], "evenli": 5, "omit": [5, 69, 70, 92, 96, 103], "itself": [5, 33, 38, 42, 52, 96, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 94, 97, 99, 101, 105, 106, 107, 108], "indptr": [5, 96], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 95, 102, 103, 108], "ascend": [5, 37, 63, 92, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 94, 95, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 94], "illustr": [5, 96], "todens": 5, "second": [5, 49, 57, 70, 72, 90, 94, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 96, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 96, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 95, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 96, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 92, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 96], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 96], "toarrai": [5, 52, 96], "NOT": [5, 41, 95], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 91], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 94, 96, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 90, 96, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 94, 95, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 91, 92, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 96, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 98, 99, 102, 103], "familiar": [5, 96], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 90, 91, 94, 96, 99, 103], "issue_summari": [5, 7, 10, 14, 90, 96], "With": [5, 9, 10, 41, 88, 95, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 92, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 94, 95, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 96], "wherea": [5, 10, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 90, 91, 96, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 91, 92, 94, 95, 96, 99], "hypothesi": [5, 96], "iid": [5, 7, 9, 27, 94, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 90, 91, 92, 94, 95, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 94, 95, 99], "focu": [5, 10, 14, 95, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 92, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 90, 91, 92, 94, 95, 96, 99], "get_issue_summari": [5, 10, 14, 91, 96], "get_info": [5, 14, 91, 95, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 90], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 90, 92], "load": [5, 13, 41, 70, 92, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 88, 89, 90, 92, 95, 98], "overwrit": [5, 90], "separ": [5, 37, 49, 66, 90, 91, 92, 96, 98, 103, 105], "static": 5, "rememb": [5, 95, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 90, 96, 97, 107, 108], "ident": [5, 10, 23, 57, 95, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 90, 98], "pre": [7, 8, 10, 38, 42, 90, 91, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 92, 98], "issue_manager_factori": [7, 15, 90], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 96, 99, 106], "next": [7, 62, 84, 87, 88, 89, 92, 94, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 96], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 91, 99], "rand": [7, 49, 52, 90, 91, 96], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "whole": [7, 10, 27, 38, 42, 91, 96], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "popul": [7, 91, 95], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 96, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 90, 98, 104], "sin_filt": 7, "sin": 7, "arang": [7, 96], "kernel": [7, 96], "affect": [7, 10, 38, 42, 53, 76, 82, 95, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 91, 94, 95, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 96, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 94, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 91, 92, 94, 95, 98, 99, 107], "won": [7, 38, 42, 90, 91, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 90], "instanti": [7, 17, 41, 61, 71, 88, 89, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 94, 95, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 90, 91, 94, 95, 98, 99, 102, 106], "sensit": [8, 10, 55, 96], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 96], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 96], "cluster_id": [8, 10, 11, 32, 96], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 91, 92, 94, 95, 96, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 96, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 91], "null": [9, 11, 15, 22, 91, 92, 95, 99], "togeth": [9, 10, 47, 88, 90, 91, 92, 94, 95, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 94, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 92, 94, 95, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 94, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 92, 94, 95, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 95, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 92, 95, 98, 106], "power": [9, 10, 92, 94, 95, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 92, 94, 95, 107], "foundat": [9, 10, 84, 96], "improv": [9, 10, 62, 87, 88, 91, 92, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 95, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 91, 97, 98, 106], "free": [9, 10, 84, 89, 91, 92, 94, 95, 98, 99], "page": [10, 91, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 95], "matter": [10, 37, 63, 88, 95], "didn": [10, 96], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 94, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 91, 92, 94, 95, 96, 99], "data_valu": [10, 11, 15, 22, 96], "No": [10, 11, 87, 88, 95, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 90, 91, 92, 94, 95, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 90, 91, 94, 95, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89], "expertis": 10, "interpret": [10, 97, 98, 99, 102, 106], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 94, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 94, 95, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 91, 92, 94, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 91, 96, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 92, 97], "analyt": [10, 84, 96, 98, 101], "lead": [10, 69, 72, 92, 96, 103], "draw": [10, 90, 91], "conclus": [10, 95], "let": [10, 38, 42, 71, 72, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 91, 96, 97, 99, 103], "680894": 10, "41": [10, 96, 97, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 97, 98, 106], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 92, 96, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 94, 95, 98, 99], "anomal": [10, 72, 90, 91, 92, 94, 95, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 95], "consequ": 10, "inspect": [10, 88, 89, 91, 92, 99, 103, 106], "011562": 10, "62": [10, 96, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 92, 96, 97, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 95, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 102, 103], "extrem": [10, 90, 91, 92, 94, 95, 96, 98, 99], "record": [10, 38, 42, 89, 94, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 90, 91, 93, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 94, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 91, 92, 94, 95], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 96, 97, 108], "066009": 10, "80": [10, 39, 87, 94, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 94, 96, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 96, 97, 99, 102, 106], "signific": [10, 94, 95, 99], "violat": [10, 94, 95, 96, 99], "assumpt": [10, 94, 95, 96, 99], "changepoint": [10, 94, 95, 99], "shift": [10, 52, 54, 94, 95, 99], "drift": [10, 91, 94, 96, 99], "autocorrel": [10, 94, 95, 99], "almost": [10, 94, 95, 99], "adjac": [10, 52, 94, 95, 99], "tend": [10, 37, 47, 94, 95, 99, 107, 108], "sequenti": [10, 38, 42, 61, 92], "pai": [10, 95], "attent": [10, 96], "realli": [10, 88, 95, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 94, 96, 107], "necessarili": [10, 62, 70, 95, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 95, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 94, 99, 105, 106], "similarli": [10, 38, 42, 90, 92, 94, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 92, 95, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91], "underli": [10, 43, 54, 71, 80, 82, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 90], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 92, 94, 95], "problem": [10, 33, 41, 49, 79, 84, 90, 91, 92, 95, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 94, 95, 99, 105, 108], "diagnos": [10, 91, 98], "24": [10, 89, 96, 97, 99, 101, 103, 106], "681458": 10, "37": [10, 90, 96, 97], "804582": 10, "64": [10, 42, 87, 92, 94, 96, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 94, 97, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 98], "rarest": [10, 91], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 92, 95, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 96, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 96, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 92], "dark": [10, 107], "bright": [10, 108], "blurri": [10, 92], "lack": [10, 61, 96], "unusu": [10, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 84, 91, 92, 94, 95, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 96, 106, 107], "tabular": [10, 84, 86, 90, 91, 93, 96, 98, 101], "categor": [10, 71, 86, 87, 90, 91, 93, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 94, 95, 98, 106, 107], "71": [10, 96, 97, 99, 103, 106], "70": [10, 82, 94, 96], "69": [10, 99, 106], "subgroup": [10, 96], "wors": [10, 96, 101], "ratio": 10, "miss": [10, 28, 38, 42, 57, 67, 69, 98, 103, 106], "pattern": [10, 96], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 90, 92, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 90, 96, 97, 101, 103], "valuabl": [10, 19, 96], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 94, 95, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29, 90], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 92, 94, 95, 96, 101, 105, 107], "mandatori": [10, 92], "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 92, 97, 103, 107], "29": [10, 92, 96, 97, 101, 102, 103, 107, 108], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 90, 96, 97, 101, 102, 103], "odd_siz": [10, 92], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 94, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 94, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 90, 91, 92, 94, 95, 98, 99], "is_non_iid_issu": [11, 91, 94, 95, 96, 99], "non_iid_scor": [11, 27, 91, 94, 95, 96, 99], "is_class_imbalance_issu": [11, 91, 96], "class_imbalance_scor": [11, 21, 91, 96], "is_underperforming_group_issu": [11, 91, 96], "underperforming_group_scor": [11, 32, 91, 96], "is_null_issu": [11, 91, 96], "null_scor": [11, 28, 91, 96], "is_data_valuation_issu": [11, 96], "data_valuation_scor": [11, 19, 96], "studio": [12, 84, 91, 92, 94, 95, 98], "data_issu": [12, 16, 17, 34, 90], "issue_find": [12, 16, 96], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 92], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": [14, 92], "strategi": [14, 49, 96, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 92, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 90], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 96, 99, 103, 107, 108], "creation": [17, 42, 96], "execut": [17, 38, 42, 90, 92, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 92, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 91, 92, 96, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 95, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 84, 87, 89, 90, 92, 96, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 94, 96, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 92, 96, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 90, 104, 106], "prompt": 28, "address": [28, 88, 90, 91, 95, 98], "enabl": [28, 42, 54], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 96, 98, 99, 101, 103, 104, 106], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 90, 92, 96, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 91, 98], "datset": 34, "exclud": [34, 43, 79, 83, 90, 98, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91], "continu": [35, 61, 87, 88, 92, 95, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 90, 91], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 91, 92, 94, 95, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 98, 99], "rank_classes_by_label_qu": [37, 91], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 94, 96, 99, 101], "df": [37, 57, 83, 89, 96, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 92, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72, 96], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63], "car": [37, 97, 103, 107], "frequent": [37, 62, 96, 98, 106], "characterist": 37, "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39, 92], "noisy_label": [37, 90, 91, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 91], "cnn": [38, 40, 42, 92], "cifar": [38, 39, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 96], "master": [38, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 92, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 94], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 92], "init": [38, 42, 99], "no_grad": [38, 42, 92, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 92, 95], "fill_": [38, 42], "net": [38, 42, 89, 92, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 92], "tensor": [38, 39, 42, 88, 89, 92, 95, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 92], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 92], "devic": [38, 42, 89, 92], "gpu": [38, 42, 88, 89, 95], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 94, 96, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 92, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 90, 96, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 96, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 95], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 92, 96, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 92], "break": [38, 42, 92, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 92], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 91, 92, 96, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 96, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 90, 92, 96, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46, 88, 89, 95, 98], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 94], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 90, 91], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 92, 94, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 95], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 89, 92, 98], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 92], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42, 89], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 95, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42, 88, 95], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 92], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 92], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 92, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 96, 98], "250": [39, 90, 91, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 92, 95, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 92, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 96, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 92, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 92], "loader": [40, 42, 92], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 95], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 91, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 92, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 90, 98, 103, 104], "store_result": 41, "becom": [41, 96, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 96, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 95, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 92], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 96, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 95], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 95, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 91, 92, 98, 103], "thread": [44, 64], "window": [44, 89, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 96], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 96], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 90, 96, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 94, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 89, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 96, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 96, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 94, 95, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 92, 94, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 92, 99, 103], "underflow": 49, "nan": [49, 62, 87, 94, 96, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 96], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 92], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 92, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 94, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 95, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 96, 101, 106], "701": 52, "900": [52, 87, 94, 106], "436": 52, "000": [52, 88, 92, 95, 97, 108], "idea": [52, 72, 103], "dens": [52, 61, 96], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 91], "exact_duplicate_set": 52, "main": [52, 62], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 94, 96], "slower": 53, "decid": [53, 62, 88, 95, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 94, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 71, 72, 90], "dt": 55, "right": [55, 67, 70, 88, 95, 102, 103, 104], "strength": [55, 70, 96], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 90, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 94, 96, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 94, 96, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 96, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 94, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 92, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 95, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 96, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 94, 95, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 92, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 96, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 94, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 91, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 95, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 97, 101], "chosen": [62, 72, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 92, 94, 95, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 94, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 90, 92, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": [62, 90, 91, 92, 94, 95, 96, 98, 99], "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 90, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 94], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 96], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 92, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 96, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 96, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 91], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 94, 95, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 91, 96, 108], "abnorm": [70, 92, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 96, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 96, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 96, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 96, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 92], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": [70, 96], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 94, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 92], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 95, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 90, 91, 94, 95, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 92, 95, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 95], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 95], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 90, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 95, 104], "grain": 74, "grid": 74, "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 91, 92, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 92, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 90], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 92, 96, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 96, 102, 103, 106, 107], "colormap": 79, "background": [79, 96], "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 95, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 92], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": [82, 96], "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 90, 91, 96, 99, 103, 108], "03": [82, 94, 96, 97, 99, 103, 104, 108], "04": [82, 94, 96, 103, 108], "08": [82, 96, 99, 103, 106, 108], "commonli": [83, 85, 90, 91, 102, 108], "But": [83, 95, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 96, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 92, 94, 95, 100], "minut": [84, 87, 88, 89, 94, 95, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 92, 98], "your_dataset": [84, 89, 90, 91, 92, 94, 95, 98], "column_name_of_label": [84, 89, 90, 91, 92, 94, 95], "plagu": [84, 91], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 91], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 99, 102, 104, 106], "deal": [84, 91, 96], "tutori": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 91, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 92, 94, 95, 98], "edit": [84, 98], "easier": [84, 96, 99], "unreli": [84, 87, 89, 94, 95], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 94], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 94, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 94], "databas": [87, 94], "excel": [87, 94], "parquet": [87, 94], "student": [87, 94, 106, 108], "grade": [87, 94, 106], "exam": [87, 94, 106], "letter": [87, 94, 108], "hundr": [87, 94], "mistak": [87, 88, 92, 94, 95], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 91, 94, 96, 104, 106], "standardscal": [87, 94, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 104], "accuracy_scor": [87, 88, 89, 95, 99], "grades_data": [87, 94], "read_csv": [87, 88, 94, 95, 96, 106], "demo": [87, 91, 94, 102], "stud_id": [87, 94], "exam_1": [87, 94, 106], "exam_2": [87, 94, 106], "exam_3": [87, 94, 106], "letter_grad": [87, 94], "f48f73": [87, 94], "53": [87, 90, 91, 94, 96, 97, 102, 103], "00": [87, 90, 91, 94, 96, 97, 104], "77": [87, 90, 91, 94, 103], "0bd4e7": [87, 94], "81": [87, 94, 95, 103, 106, 108], "great": [87, 94, 97], "particip": [87, 94], "cb9d7a": [87, 94], "61": [87, 94, 96, 99, 103, 106], "94": [87, 94, 97, 99, 103, 106], "9acca4": [87, 94], "48": [87, 94, 96, 97, 99, 103], "x_raw": [87, 94], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 94], "get_dummi": [87, 94, 106], "drop_first": [87, 94], "numeric_featur": [87, 94], "scaler": [87, 94, 104], "x_process": [87, 94], "fit_transform": [87, 94, 96], "bring": [87, 88, 92, 94, 95, 101, 106], "byod": [87, 88, 92, 94, 95, 101, 106], "tress": 87, "held": [87, 89, 94, 95, 97, 103, 104, 105], "straightforward": [87, 89, 94], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 94, 101], "tabl": [87, 94, 97, 101], "212": [87, 99], "review": [87, 88, 91, 94, 95, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 94, 95, 106], "92": [87, 90, 99, 103], "93": [87, 97, 103, 106], "827": 87, "99": [87, 96, 97, 99, 108], "86": [87, 91, 92, 94, 99, 103, 106], "74": [87, 96, 103, 106], "637": [87, 94], "79": [87, 97, 103], "65": [87, 90, 96, 103], "cheat": 87, "0pt": 87, "120": [87, 90, 91], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 99, 102, 103, 106], "suspici": [87, 94], "carefulli": [87, 92, 94, 95], "examin": [87, 90, 91, 94, 96, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 95], "servic": [88, 95, 98], "onlin": [88, 95], "bank": [88, 95, 97], "banking77": [88, 95], "oo": [88, 95], "categori": [88, 92, 95, 96], "shortlist": [88, 95, 106], "scope": [88, 95], "logist": [88, 90, 91, 95, 101, 104], "probabilit": [88, 89], "drop": [88, 94, 96, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 95], "sentencetransform": [88, 95], "payment": [88, 95], "cancel_transf": [88, 95], "transfer": [88, 95], "fund": [88, 95], "cancel": [88, 95], "transact": [88, 95], "my": [88, 95], "revert": [88, 95], "morn": [88, 95], "realis": [88, 95], "yesterdai": [88, 95], "rent": [88, 95], "tomorrow": [88, 95], "raw_text": [88, 95], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "beneficiary_not_allow": [88, 95], "card_about_to_expir": [88, 95], "getting_spare_card": [88, 95], "supported_cards_and_curr": [88, 95], "card_payment_fee_charg": [88, 95], "change_pin": [88, 95], "apple_pay_or_google_pai": [88, 95], "lost_or_stolen_phon": [88, 95], "visa_or_mastercard": [88, 95], "card": [88, 95, 97], "utter": [88, 95], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 95, 96, 97, 98], "electra": [88, 95], "discrimin": [88, 95], "googl": [88, 95], "train_text": 88, "test_text": 88, "home": [88, 90, 91, 95, 96, 97], "runner": [88, 90, 91, 95, 96], "google_electra": [88, 95], "pool": [88, 95, 98, 104], "opt": [88, 89, 91, 92, 94, 95, 96, 99], "hostedtoolcach": [88, 89, 91, 92, 94, 95, 96, 99], "x64": [88, 89, 91, 92, 94, 95, 96, 99], "lib": [88, 89, 91, 92, 94, 95, 96, 99], "python3": [88, 89, 91, 92, 94, 95, 96, 99], "site": [88, 89, 91, 92, 94, 95, 96, 99], "_util": [88, 95], "831": [88, 95], "userwarn": [88, 89, 90, 91, 95, 96], "typedstorag": [88, 95], "untypedstorag": [88, 95], "untyped_storag": [88, 95], "fget": [88, 95], "__get__": [88, 95], "owner": [88, 95], "leverag": [88, 89, 95, 98, 99, 101], "computation": [88, 89, 95], "intens": [88, 89, 95], "400": [88, 95], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 95, 99, 106], "to_numpi": [88, 95, 96, 106], "44": [88, 96, 97, 102, 103], "646": 88, "390": 88, "628": 88, "121": [88, 99], "702": 88, "863": [88, 89], "135": 88, "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 95], "cash": [88, 95], "holidai": [88, 95], "sent": [88, 95, 108], "mine": [88, 95], "expir": [88, 95], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 95, 96], "whoever": [88, 95], "consum": [88, 106], "18": [88, 89, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [88, 106], "87": [88, 91, 92, 103, 106], "acceler": [88, 106], "19": [88, 89, 92, 95, 96, 97, 98, 99, 103, 104, 106, 107, 108], "89": [88, 90, 94, 103, 106], "spoken": 89, "500": [89, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 90, 91, 92, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 94, 95], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 94, 96, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 104], "gz": [89, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 92, 96, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": 89, "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 96], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 92], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 92], "embeddings_arrai": 89, "650": 89, "stft": 89, "return_complex": 89, "view_as_r": 89, "recov": 89, "trigger": 89, "aten": 89, "src": 89, "nativ": 89, "spectralop": 89, "cpp": 89, "_vf": 89, "n_fft": 89, "hop_length": 89, "win_length": 89, "attr": 89, "512": [89, 92], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 96, 97, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 92, 96, 97, 99, 103, 106], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 98], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 94, 95, 99], "lt": [89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 104], "gt": [89, 90, 91, 92, 94, 95, 96, 99, 101, 108], "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 95], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "underneath": 90, "hood": [90, 96, 98], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "toi": [90, 91, 92, 96, 97, 99, 101], "inf": [90, 91], "mid": [90, 91], "bins_map": [90, 91], "create_data": [90, 91], "y_bin": [90, 91], "y_i": [90, 91], "y_bin_idx": [90, 91], "y_train": [90, 91, 99, 106], "y_test": [90, 91, 99, 106], "y_train_idx": [90, 91], "y_test_idx": [90, 91], "slide": [90, 91, 97], "frame": [90, 91], "x_out": [90, 91], "tini": [90, 91], "concaten": [90, 91, 105], "y_out": [90, 91], "y_out_bin": [90, 91], "y_out_bin_idx": [90, 91], "exact_duplicate_idx": [90, 91], "x_duplic": [90, 91], "y_duplic": [90, 91], "y_duplicate_idx": [90, 91], "noisy_labels_idx": [90, 91, 102], "scatter": [90, 91, 96, 99, 102, 106], "black": [90, 91, 97, 106], "cyan": [90, 91], "plot_data": [90, 91, 96, 99, 102, 106], "fig": [90, 91, 92, 97, 104, 106], "ax": [90, 91, 92, 96, 104, 106], "subplot": [90, 91, 92, 104], "set_titl": [90, 91, 92, 104], "set_xlabel": [90, 91], "x_1": [90, 91], "fontsiz": [90, 91, 92, 96, 99, 102], "set_ylabel": [90, 91], "x_2": [90, 91], "set_xlim": [90, 91], "set_ylim": [90, 91], "linestyl": [90, 91, 96], "circl": [90, 91, 99, 102], "misclassifi": [90, 91], "zip": [90, 91, 92, 103, 108], "label_err": [90, 91], "180": [90, 91, 103], "marker": [90, 91], "facecolor": [90, 91, 96], "edgecolor": [90, 91, 96], "linewidth": [90, 91, 96, 104], "dup": [90, 91], "first_legend": [90, 91], "align": [90, 91], "title_fontproperti": [90, 91], "semibold": [90, 91], "second_legend": [90, 91], "45": [90, 91, 96, 97, 99, 103], "gca": [90, 91], "add_artist": [90, 91], "tight_layout": [90, 91, 96], "ideal": [90, 91], "remaind": 90, "modal": [90, 91, 98, 101], "132": [90, 91, 99, 103], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96, 97], "014828": 90, "107": [90, 91, 99, 102], "021241": 90, "026407": 90, "notic": [90, 99, 101, 103], "3558": [90, 91], "126": [90, 91, 99, 103], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "131": [90, 91, 107], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 96, 99, 103, 106], "51": [90, 91, 94, 96, 97, 99, 103], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 98, 102, 107, 108], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 97, 99, 101, 103, 108], "54": [90, 96, 97, 99, 103], "039122": 90, "044598": 90, "105": [90, 103], "105196": 90, "133654": 90, "43": [90, 96, 97, 99, 103], "168033": 90, "125": 90, "101107": 90, "183382": 90, "109": [90, 97, 103], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 97, 103, 108], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 103], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 97, 99, 103, 108], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 97, 99, 101, 103], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 99], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 96, 99], "246": [91, 92, 94, 95, 96, 99, 103], "efficiencywarn": [91, 92, 94, 95, 96, 99], "sort_graph_by_row_valu": [91, 92, 94, 95, 96, 99], "warn_when_not_sort": [91, 92, 94, 95, 96, 99], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 98], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 93, 108], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 97], "952381": 91, "666667": [91, 96], "portion": 91, "huge": [91, 99], "worri": [91, 95], "critic": 91, "60": [92, 96, 99, 106], "torchvis": [92, 104], "tensordataset": 92, "stratifiedkfold": [92, 102], "tqdm": 92, "autonotebook": 92, "math": 92, "fashion_mnist": 92, "1486": 92, "futurewarn": 92, "hf": 92, "messag": 92, "trust_remote_cod": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 97], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 102, 104], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 104], "energi": 92, "trainload": [92, 104], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 106], "acc": [92, 99], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 108], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "704": 92, "329": [92, 94, 103], "88": [92, 97, 98, 99, 102, 103, 106, 108], "195": 92, "493": 92, "060": 92, "714": 92, "330": [92, 103], "505": 92, "460": 92, "476": 92, "340": 92, "742": 92, "328": [92, 103], "310": 92, "468": 92, "reorder": 92, "hstack": [92, 98, 99, 101], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "166": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 99, 103, 108], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 97], "shirt": [92, 97], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 97, 104, 105], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 108], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 97], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 104], "nrow": [92, 104], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 104], "cmap": [92, 96, 106], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": [92, 96], "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 98], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 103, 107], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "difficult": 92, "disproportion": [92, 96], "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "workflow": [93, 98, 100, 106], "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 98, 101, 106], "xgboost": [94, 98, 106], "think": [94, 95, 98, 102, 107, 108], "nonzero": 94, "358": 94, "941": 94, "294": [94, 103], "46": [94, 96, 97, 99, 103], "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 97, 103], "187": [94, 97], "898": 94, "0000": [94, 95, 97, 99], "865": 94, "515002": 94, "837": 94, "556480": 94, "622": 94, "593068": 94, "593207": 94, "920": 94, "618041": 94, "4386345844794593e": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 97, 102, 103, 106], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 97, 106], "96": [94, 96, 97, 99, 102, 103, 106], "style": [94, 96, 107], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "lowest_scoring_dupl": 94, "idxmin": [94, 98], "indices_to_displai": 94, "tolist": [94, 98, 102], "perhap": [94, 99, 101], "second_lowest_scoring_dupl": 94, "next_indices_to_displai": 94, "wari": [94, 95, 98], "dive": [95, 96], "your_featur": 95, "text_embed": 95, "data_dict": [95, 99, 101], "85": [95, 103], "38": [95, 96, 97, 103], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 97], "000224": 95, "971": 95, "000507": 95, "980": [95, 97], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "160": [95, 106], "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "313": [95, 103], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 97, 99, 101, 103], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 97], "gone": 95, "samp": 95, "br": 95, "press": [95, 108], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "go": [95, 96, 97, 99], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "bigger": 96, "make_classif": 96, "5000": [96, 104], "n_featur": 96, "n_inform": 96, "n_redund": 96, "n_repeat": 96, "n_class": 96, "n_clusters_per_class": 96, "flip_i": 96, "class_sep": 96, "faiss": 96, "x_faiss": 96, "float32": [96, 103], "normalize_l2": 96, "index_factori": 96, "hnsw32": 96, "flat": [96, 97], "metric_inner_product": 96, "a_min": 96, "a_max": 96, "create_knn_graph": 96, "assert": 96, "indices_1d": 96, "ravel": 96, "distances_1d": 96, "50000": 96, "116": 96, "523": 96, "991400": 96, "356958": 96, "362": 96, "619565": 96, "108": [96, 103], "500000": 96, "651929": 96, "999827": 96, "031217": 96, "933716": 96, "627345": 96, "998540": 96, "530909": 96, "296974": 96, "646765": 96, "942721": 96, "332824": 96, "803246": 96, "625202": 96, "999816": 96, "474031": 96, "706253": 96, "655108": 96, "997703": 96, "131466": 96, "912389": 96, "639200": 96, "4995": 96, "998646": 96, "504755": 96, "746777": 96, "680033": 96, "4996": 96, "894230": 96, "340986": 96, "816472": 96, "640711": 96, "4997": 96, "999100": 96, "428545": 96, "592421": 96, "658949": 96, "4998": 96, "986792": 96, "273710": 96, "618033": 96, "4999": 96, "986776": 96, "273524": 96, "618084": 96, "instabl": 96, "proxim": 96, "analys": 96, "comfort": 96, "explor": [96, 103, 104], "third": 96, "parti": [96, 108], "newsgroup": 96, "alt": [96, 97], "atheism": [96, 97], "sci": [96, 97], "fetch_20newsgroup": 96, "newsgroups_train": 96, "header": 96, "footer": 96, "quot": 96, "df_text": 96, "target_nam": 96, "enlighten": 96, "omnipot": 96, "19apr199320262420": 96, "kelvin": 96, "jpl": 96, "nasa": 96, "gov": 96, "baa": 96, "nhenri": 96, "he": 96, "nno": 96, "ge": 96, "nlucki": 96, "babi": [96, 97], "tfidfvector": 96, "feature_extract": 96, "x_vector": 96, "data_valuation_issu": 96, "147": [96, 99, 103], "500047": 96, "500093": 96, "499953": 96, "1068": 96, "1069": 96, "1070": 96, "1071": 96, "1072": 96, "1073": 96, "concentr": 96, "seaborn": 96, "sn": 96, "distinguish": 96, "strip": 96, "stripplot": 96, "hue": [96, 106], "dodg": 96, "jitter": 96, "axvlin": [96, 104], "xlabel": 96, "ourselv": 96, "make_blob": 96, "center": [96, 97], "cluster_std": 96, "n_noisy_label": 96, "meaning": [96, 98, 104], "silhouette_scor": 96, "gridsearchcv": 96, "silhouett": 96, "cluster_label": 96, "fit_predict": 96, "param_grid": 96, "grid_search": 96, "best_kmean": 96, "best_estimator_": 96, "underperforming_group_issu": 96, "328308": 96, "tab10": 96, "domain": 96, "knowledg": [96, 99], "dataset_tsv": 96, "ag": [96, 106], "gender": 96, "educ": 96, "experi": 96, "highsalari": 96, "indiana": 96, "phd": 96, "male": 96, "bachelor": 96, "femal": 96, "kansa": 96, "school": [96, 97], "ohio": 96, "57": [96, 97, 99], "california": 96, "59": [96, 97, 103], "63": [96, 99, 103, 106], "47": [96, 97, 103], "stringio": 96, "sep": [96, 108], "simplic": [96, 102], "ordinalencod": 96, "columns_to_encod": 96, "encoded_df": 96, "salari": 96, "573681": 96, "underpin": 96, "caught": 96, "whenev": 96, "generate_data_depend": 96, "num_sampl": 96, "a1": 96, "a2": 96, "a3": 96, "375": 96, "975": 96, "non_iid_issu": 96, "796474": 96, "842432": 96, "922562": 96, "820759": 96, "873136": 96, "887373": 96, "825101": 96, "855875": 96, "751795": 96, "835796": 96, "ylabel": [96, 104], "coolwarm": 96, "colorbar": [96, 106], "strong": 96, "evid": 96, "inter": 96, "mitig": 96, "risk": 96, "deeper": 96, "tsv": 96, "tab": 96, "pars": 96, "annual_spend": 96, "number_of_transact": 96, "last_purchase_d": 96, "rural": 96, "4099": 96, "2024": [96, 108], "6421": 96, "nat": 96, "suburban": 96, "5436": 96, "4046": 96, "66": [96, 97], "3467": 96, "67": [96, 97, 103, 106], "4757": 96, "4199": 96, "4991": 96, "4655": 96, "82": [96, 97, 99, 103, 106], "5584": 96, "urban": 96, "3102": 96, "6637": 96, "9167": 96, "6790": 96, "5327": 96, "parse_d": 96, "lose": 96, "intact": 96, "encode_categorical_column": 96, "placehold": 96, "dropna": [96, 101], "category_to_numb": 96, "_encod": 96, "gender_encod": 96, "location_encod": 96, "focus": [96, 99, 101, 102, 106], "null_issu": 96, "833333": 96, "sorted_indic": [96, 103], "sorted_df": 96, "nice": 96, "styler": 96, "combined_df": 96, "concat": [96, 106], "highlight_null_valu": 96, "val": [96, 99], "yellow": [96, 97], "highlight_datalab_column": 96, "lightblu": 96, "highlight_is_null_issu": 96, "orang": [96, 97], "styled_df": 96, "nbsp": [96, 98, 99], "160000": 96, "820000": 96, "460000": 96, "470000": 96, "960000": 96, "620000": 96, "550000": 96, "660000": 96, "670000": [96, 97], "370000": 96, "530000": 96, "710000": 96, "020000": 96, "320000": 96, "990000": 96, "rarer": 96, "fairer": 96, "randomli": [96, 99], "class_imbalance_issu": 96, "countplot": 96, "xtick": 96, "rotat": 96, "ytick": 96, "filtered_df": 96, "xy": 96, "va": 96, "textual": 96, "get_ytick": 96, "nbar": 96, "nimbal": 96, "get_legend_handles_label": 96, "title_fonts": 96, "refin": 97, "instruct": [97, 98], "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "fly": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "monitor": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "sleep": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "websit": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "bytesio": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "ve": [97, 98, 99, 101, 103], "capit": 97, "29780": 97, "256": [97, 98, 103], "780": 97, "medic": [97, 108], "doctor": 97, "254": [97, 103], "359223": 97, "640777": 97, "184": [97, 99], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "251": [97, 103], "167": [97, 99, 103], "252": 97, "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "002216": 97, "000974": 97, "000873": 97, "000739": 97, "32635": 97, "32636": 97, "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "035": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": [97, 108], "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0014": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "seamless": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "from_dict": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "feed": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "tmp": 98, "ipykernel_7655": 98, "1995098996": 98, "deprecationwarn": 98, "dataframegroupbi": 98, "include_group": 98, "silenc": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "alter": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103, 108], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "enhanc": [99, 101, 103], "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103, 108], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "117": [99, 106], "206": [99, 103], "115": [99, 103], "193": 99, "194": 99, "201": [99, 103], "174": 99, "163": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106], "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "143": [102, 103], "216": [102, 103, 108], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "295": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "327": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "153": 103, "149": 103, "140": 103, "124": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": [103, 108], "145": 103, "173": 103, "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "320": 103, "314": 103, "199": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "anomali": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "root": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "43010872": 104, "29it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "img": [104, 106], "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "162": 108, "2400": 108, "52e0": 108, "1a01": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "kb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "4mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 92, 94, 95, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102], "creat": [7, 90, 91, 99, 101], "your": [7, 84, 90, 91, 95, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": [7, 96], "intermedi": 7, "advanc": [7, 90], "us": [7, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 96], "cluster": [8, 96, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 90], "cleanlab": [9, 10, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 92, 94, 95], "mode": [9, 10, 84, 92, 94, 95], "can": [10, 91, 97, 98, 99, 101], "detect": [10, 89, 91, 92, 94, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 92, 94, 95, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 91, 92, 94, 95], "duplic": [10, 20, 91, 92, 94, 95, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 95, 96], "iid": [10, 95, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 96, 99, 107], "imbal": [10, 21, 96], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 92, 104], "specif": [10, 22, 107], "underperform": [10, 96, 98], "group": [10, 96, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 96], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 96], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 96], "paramet": [10, 99], "get": [12, 90, 91, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 92], "dataset": [37, 63, 84, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 90], "token_classification_util": 56, "util": 57, "valid": [58, 92, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 91, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 92, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 96, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 91, 92, 94, 96, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 99, 106], "pre": [85, 89, 96, 98, 104], "function": [85, 90], "name": 85, "chang": 85, "modul": [85, 99], "new": 85, "remov": 85, "argument": [85, 90], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 93, 97, 100], "structur": 87, "tabular": [87, 94], "requir": [87, 88, 90, 91, 92, 94, 95, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 94, 95, 96, 106], "process": [87, 94, 104, 106], "select": [87, 94], "comput": [87, 89, 92, 94, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 94, 95, 101, 105], "sampl": [87, 89, 90, 91, 92, 94, 95, 101, 105], "predict": [87, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 94, 95, 96, 101, 105], "more": [87, 88, 91, 99, 106], "text": [88, 95, 96, 108], "format": [88, 95, 98, 102, 103], "defin": [88, 92, 95, 96, 106], "potenti": [88, 101, 106], "an": [89, 92, 98], "audio": 89, "import": [89, 90, 91, 92, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 92, 104], "fit": 89, "linear": 89, "workflow": [90, 96, 99], "audit": [90, 91], "classifi": [90, 91, 96], "instanti": 90, "object": [90, 103], "increment": 90, "specifi": [90, 98], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 99], "kind": [91, 103], "skip": [91, 97, 99, 101], "detail": [91, 97, 99, 101], "about": 91, "addit": 91, "inform": [91, 92], "fetch": [92, 97], "normal": 92, "fashion": 92, "mnist": 92, "prepar": [92, 96], "k": [92, 94, 105], "fold": [92, 105], "cross": [92, 105], "embed": [92, 104], "7": [92, 99], "view": 92, "most": [92, 108], "like": 92, "exampl": [92, 98, 99, 104], "sever": 92, "set": [92, 99], "dark": 92, "top": [92, 107], "low": 92, "numer": 94, "categor": [94, 96], "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": [94, 96], "drift": [95, 102], "miscellan": 96, "acceler": 96, "knn": 96, "obtain": 96, "identifi": [96, 98, 103], "explan": 96, "vector": 96, "perform": 96, "visual": [96, 99, 103, 104, 107], "score": [96, 99, 101, 102, 103, 107, 108], "synthet": 96, "result": 96, "predefin": 96, "slice": [96, 98], "i": [96, 98, 99, 105], "catch": 96, "valu": 96, "encod": 96, "initi": [96, 101], "sort": 96, "6": [96, 99], "understand": 97, "evalu": 97, "health": [97, 99], "8": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "when": [98, 99], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "better": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[96, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[96, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[96, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[96, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[96, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[96, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[96, "Explanation:"]], "Data Valuation": [[96, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[96, "1.-Load-and-Prepare-the-Dataset"], [96, "id2"], [96, "id5"]], "2. Vectorize the Text Data": [[96, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[96, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[96, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[96, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[96, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[96, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [96, "id3"]], "3. (Optional) Cluster the Data": [[96, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[96, "4.-Identify-Underperforming-Groups-with-Datalab"], [96, "id4"]], "5. (Optional) Visualize the Results": [[96, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[96, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[96, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[96, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[96, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[96, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[96, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[96, "1.-Load-the-Dataset"]], "2: Encode Categorical Values": [[96, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[96, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[96, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[96, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[96, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[96, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[96, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[96, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[96, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[98, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/index.html b/master/tutorials/clean_learning/index.html index 7336e32e7..c75404ad6 100644 --- a/master/tutorials/clean_learning/index.html +++ b/master/tutorials/clean_learning/index.html @@ -383,6 +383,15 @@ >
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • 2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'card_payment_fee_charged', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'cancel_transfer', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'supported_cards_and_currencies', 'change_pin'}
    +Classes: {'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard'}
     

    Let’s print the first example in the train set.

    @@ -871,43 +880,43 @@

    2. Load and format the text dataset
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -1206,7 +1215,7 @@

    4. Train a more robust model from noisy labels -{"state": {"81decc1a33dc43dc96ed51151d87c469": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "de7ff0b63d2a43a2aef6d27809ab1b49": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9f018c4a5a9144b180522d0a65104179": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_81decc1a33dc43dc96ed51151d87c469", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_de7ff0b63d2a43a2aef6d27809ab1b49", "tabbable": null, "tooltip": null, "value": 391.0}}, "12387ea6c70a48ca9bc8c46ca9ca1df9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d54909a09ede4b9ebeb2145f4328dd8e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "96d71a5e9a504bc781536b34136540f2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_12387ea6c70a48ca9bc8c46ca9ca1df9", "placeholder": "\u200b", "style": "IPY_MODEL_d54909a09ede4b9ebeb2145f4328dd8e", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "db42e7db2eee4c218bbd00d238347b36": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "14d909e4afa049e8ad418efd5826dfe5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c0ab79e23f724dafa2d53bcd765e2639": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_db42e7db2eee4c218bbd00d238347b36", "placeholder": "\u200b", "style": "IPY_MODEL_14d909e4afa049e8ad418efd5826dfe5", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200761.4kB/s]"}}, "eaca2c1660e34914ac6457c9f643ec42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a855ca95b0ac40f294d886a8b276a283": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_96d71a5e9a504bc781536b34136540f2", "IPY_MODEL_9f018c4a5a9144b180522d0a65104179", "IPY_MODEL_c0ab79e23f724dafa2d53bcd765e2639"], "layout": "IPY_MODEL_eaca2c1660e34914ac6457c9f643ec42", "tabbable": null, "tooltip": null}}, "c6292a56858f4c98a0cfeb1cd8e5705a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2dd46a3e411445cc97f6cb02f31ed2fa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ecfa214af0f548778d99571e41579d56": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c6292a56858f4c98a0cfeb1cd8e5705a", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2dd46a3e411445cc97f6cb02f31ed2fa", "tabbable": null, "tooltip": null, "value": 2211.0}}, "efbf1faad7614190bb20629fa0c633b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d173d1d6391e4596bd84ae3f3192819c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "54941ba215b345a9880858bf560d791c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_efbf1faad7614190bb20629fa0c633b6", "placeholder": "\u200b", "style": "IPY_MODEL_d173d1d6391e4596bd84ae3f3192819c", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "8d1532e9188a4eea98d66217ad9a9370": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52294f1edab24d5291e2f929c717427e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6626686cdac14643a91a30409cff0ae5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d1532e9188a4eea98d66217ad9a9370", "placeholder": "\u200b", "style": "IPY_MODEL_52294f1edab24d5291e2f929c717427e", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007391kB/s]"}}, "bd4d6e3c583f4ddd9642cf1b42ce63c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "560a9e164344416da57af0666a2c209d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_54941ba215b345a9880858bf560d791c", "IPY_MODEL_ecfa214af0f548778d99571e41579d56", "IPY_MODEL_6626686cdac14643a91a30409cff0ae5"], "layout": "IPY_MODEL_bd4d6e3c583f4ddd9642cf1b42ce63c9", "tabbable": null, "tooltip": null}}, "4df366ed410748f0a53c4b219452457c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf139ea48e764a2da6fd089cc052bf26": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "611f1c9c454f4ead97346ff9e0339821": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4df366ed410748f0a53c4b219452457c", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bf139ea48e764a2da6fd089cc052bf26", "tabbable": null, "tooltip": null, "value": 665.0}}, "674ce41159e543e6ac7308b8eef9752b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "93eece0ce2ce421ca530b00999ff1ac3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "76b2a8f7a7214b32a7e2b84148f803a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_674ce41159e543e6ac7308b8eef9752b", "placeholder": "\u200b", "style": "IPY_MODEL_93eece0ce2ce421ca530b00999ff1ac3", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "80b07bff49e644ba8d9c9166ea8dd027": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e1181d04ac7a4550a00ea0ac3c6ed476": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a5f8ed569cdd4346ad3f60782d109f30": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_80b07bff49e644ba8d9c9166ea8dd027", "placeholder": "\u200b", "style": "IPY_MODEL_e1181d04ac7a4550a00ea0ac3c6ed476", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007121kB/s]"}}, "7e5c8e696e7448208b7fbffd09571de0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "801de04277c14a49a527aa9494d1f95c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_76b2a8f7a7214b32a7e2b84148f803a5", "IPY_MODEL_611f1c9c454f4ead97346ff9e0339821", "IPY_MODEL_a5f8ed569cdd4346ad3f60782d109f30"], "layout": "IPY_MODEL_7e5c8e696e7448208b7fbffd09571de0", "tabbable": null, "tooltip": null}}, "4c9d96d605c246fda834c284137cfe04": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2bb734e1e71e429081257786a0dffe4b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f79723dd5fd6425c90a74fbc78ee00d0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c9d96d605c246fda834c284137cfe04", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2bb734e1e71e429081257786a0dffe4b", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "7774ade2d9bf4148a2f2583590d2bcf6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa0a394de37843f98d361d796516775d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0595e5de777840e0a10e422f3e0eb11a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7774ade2d9bf4148a2f2583590d2bcf6", "placeholder": "\u200b", "style": "IPY_MODEL_aa0a394de37843f98d361d796516775d", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "8b94cec0813646478fdb67407c774a15": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9df7cd442f6f475bbdf78235b388ea94": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e5008caaa3cb48f781c0e6794bca59dd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b94cec0813646478fdb67407c774a15", "placeholder": "\u200b", "style": "IPY_MODEL_9df7cd442f6f475bbdf78235b388ea94", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007284MB/s]"}}, "a0be5cbe173f48c28add2f6ebade362a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "43e0bfcf53ed4448b98e1dc0c1624d4f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0595e5de777840e0a10e422f3e0eb11a", "IPY_MODEL_f79723dd5fd6425c90a74fbc78ee00d0", "IPY_MODEL_e5008caaa3cb48f781c0e6794bca59dd"], "layout": "IPY_MODEL_a0be5cbe173f48c28add2f6ebade362a", "tabbable": null, "tooltip": null}}, "9cf21e2a631b45cab7fb9b3b5ce9bb06": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97f58eb6211444b59b851ce9be1d198b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ecb37387715246b5b9f1aaf52c4e0542": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9cf21e2a631b45cab7fb9b3b5ce9bb06", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_97f58eb6211444b59b851ce9be1d198b", "tabbable": null, "tooltip": null, "value": 466062.0}}, "8ced14e5dffb44dd95e5c285b6fcc515": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a343912fcb04df6a32db71304c563bb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0f50dbb67a7c47839d29cab4d422fb2b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8ced14e5dffb44dd95e5c285b6fcc515", "placeholder": "\u200b", "style": "IPY_MODEL_4a343912fcb04df6a32db71304c563bb", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "e9110c6feffe426db219b1e596faf5b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "042a87e1990243fa9d051d9992209d0f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1c63c2fdcf684affb193e16a662a4ac1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e9110c6feffe426db219b1e596faf5b8", "placeholder": "\u200b", "style": "IPY_MODEL_042a87e1990243fa9d051d9992209d0f", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200723.1MB/s]"}}, "c6b18d86f35a4977a4e23288eeb3fa16": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ffce619808c54c97ad0384263ffc66fe": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0f50dbb67a7c47839d29cab4d422fb2b", "IPY_MODEL_ecb37387715246b5b9f1aaf52c4e0542", "IPY_MODEL_1c63c2fdcf684affb193e16a662a4ac1"], "layout": "IPY_MODEL_c6b18d86f35a4977a4e23288eeb3fa16", "tabbable": null, "tooltip": null}}, "d83f677526f446eb8a3bfdb029a8d058": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e2f832a978646369568be4202882bda": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "72509eeb786d4cb9a2005d7d2bebdb9c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d83f677526f446eb8a3bfdb029a8d058", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0e2f832a978646369568be4202882bda", "tabbable": null, "tooltip": null, "value": 48.0}}, "92b279d7aac74ab7aa6816798780a1b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b6d8027685494713bd9901ebe3e40dfb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e442f4804045479f80a427124ed55f67": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_92b279d7aac74ab7aa6816798780a1b3", "placeholder": "\u200b", "style": "IPY_MODEL_b6d8027685494713bd9901ebe3e40dfb", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "6d5d4cbc18884b0c898373a1478bb228": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4721eac8e74e4b22bfe944f16211c28a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "774280b308d44d048d31f512bb8ff4b7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6d5d4cbc18884b0c898373a1478bb228", "placeholder": "\u200b", "style": "IPY_MODEL_4721eac8e74e4b22bfe944f16211c28a", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.51kB/s]"}}, "722e0ca378d3417baec91fcf509306b2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e63d81c42204b1ba3053df362c06f2d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e442f4804045479f80a427124ed55f67", "IPY_MODEL_72509eeb786d4cb9a2005d7d2bebdb9c", "IPY_MODEL_774280b308d44d048d31f512bb8ff4b7"], "layout": "IPY_MODEL_722e0ca378d3417baec91fcf509306b2", "tabbable": null, "tooltip": null}}, "9c0bc89c50cc4f44a6d28f4b9009566b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e40ad6c05d7a4b4eb5acf7e34dcaaf11": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c0de7b20814f4f43bf0e96420385ba54": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9c0bc89c50cc4f44a6d28f4b9009566b", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e40ad6c05d7a4b4eb5acf7e34dcaaf11", "tabbable": null, "tooltip": null, "value": 231508.0}}, "643675523d544b33aedb40418be3c1ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "035a14e868204cca8ed6f3352086a5b3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3a223bc2688c47d3b601649fc1494b40": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_643675523d544b33aedb40418be3c1ba", "placeholder": "\u200b", "style": "IPY_MODEL_035a14e868204cca8ed6f3352086a5b3", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "f584ae2be3aa476da3d5adcc46a1695e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e82622a76f134ca18602403395205c4c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c4aaa7d417b747e3a453503d6263f246": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f584ae2be3aa476da3d5adcc46a1695e", "placeholder": "\u200b", "style": "IPY_MODEL_e82622a76f134ca18602403395205c4c", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200730.0MB/s]"}}, "430384779054434495a3d4f8e82a751a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13b0c792f832478c828136237c3d9087": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3a223bc2688c47d3b601649fc1494b40", "IPY_MODEL_c0de7b20814f4f43bf0e96420385ba54", "IPY_MODEL_c4aaa7d417b747e3a453503d6263f246"], "layout": "IPY_MODEL_430384779054434495a3d4f8e82a751a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"ff59fb88d4aa46d481bfabbfb12c3c08": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8f663dc8059d42e4a1c16507affd40e3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ca2793614f594cf4a384748bfd36b073": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ff59fb88d4aa46d481bfabbfb12c3c08", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8f663dc8059d42e4a1c16507affd40e3", "tabbable": null, "tooltip": null, "value": 391.0}}, "77399e1417a148bbaaf8c99c6e4b2bb5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c288e9049ba4814a9020bbda1512944": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "baa0ee8552c34f9f808dc9985cb43d88": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_77399e1417a148bbaaf8c99c6e4b2bb5", "placeholder": "\u200b", "style": "IPY_MODEL_3c288e9049ba4814a9020bbda1512944", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "4c673f7ac4ec44149b7f219298381ca5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3282f6972624465bd15f84c183446ed": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3e906d417956421a978812281c844e7e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c673f7ac4ec44149b7f219298381ca5", "placeholder": "\u200b", "style": "IPY_MODEL_e3282f6972624465bd15f84c183446ed", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200764.5kB/s]"}}, "68d5eef2d9154625b81ca5a98ad95302": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9ebd3cab6ee4b38af6e19b1c2a2b7a0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_baa0ee8552c34f9f808dc9985cb43d88", "IPY_MODEL_ca2793614f594cf4a384748bfd36b073", "IPY_MODEL_3e906d417956421a978812281c844e7e"], "layout": "IPY_MODEL_68d5eef2d9154625b81ca5a98ad95302", "tabbable": null, "tooltip": null}}, "3b3726b7d15f4242bbe2a0e0323f5edd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "054e6f2fd5d14973972b7db9b5e4ed03": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c768456d220342ec8cc60cc2528c3732": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3b3726b7d15f4242bbe2a0e0323f5edd", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_054e6f2fd5d14973972b7db9b5e4ed03", "tabbable": null, "tooltip": null, "value": 2211.0}}, "e95f58118fca41f79754cf64dc768e55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5d0e81a247724335969fb0549b56194b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2db6e61311574d2799f341e0f2b280db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e95f58118fca41f79754cf64dc768e55", "placeholder": "\u200b", "style": "IPY_MODEL_5d0e81a247724335969fb0549b56194b", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "d98e8d3d73134c40b8256b723de4c9ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55cc185655a64110894ebe751347ee97": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4c280f6c890c468db24cfa085162f8eb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d98e8d3d73134c40b8256b723de4c9ba", "placeholder": "\u200b", "style": "IPY_MODEL_55cc185655a64110894ebe751347ee97", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007422kB/s]"}}, "dd1d6b6bcb61451a9984bb2bddd1826e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a8fe72969fe348a99c98be80dccd6c53": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2db6e61311574d2799f341e0f2b280db", "IPY_MODEL_c768456d220342ec8cc60cc2528c3732", "IPY_MODEL_4c280f6c890c468db24cfa085162f8eb"], "layout": "IPY_MODEL_dd1d6b6bcb61451a9984bb2bddd1826e", "tabbable": null, "tooltip": null}}, "a7fc4b58838f4350b7cce239e6cf7c4d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a7755505c8604626b66bd90ac49165ab": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4105d4a519b74c618417f38830a92826": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a7fc4b58838f4350b7cce239e6cf7c4d", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a7755505c8604626b66bd90ac49165ab", "tabbable": null, "tooltip": null, "value": 665.0}}, "c693822d0e9f45a5a0c3d5598c8464f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c14e14271b4450f89db48de72dffebe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5ccb993dd72c4674bf4c5129e4e19f7b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c693822d0e9f45a5a0c3d5598c8464f4", "placeholder": "\u200b", "style": "IPY_MODEL_6c14e14271b4450f89db48de72dffebe", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "8b998a37935c4d30856e95a2cd3f1439": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "200586c52a4549678a949ca57213c920": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "007989e5e6cd44a5ada30dda1923d065": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b998a37935c4d30856e95a2cd3f1439", "placeholder": "\u200b", "style": "IPY_MODEL_200586c52a4549678a949ca57213c920", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007121kB/s]"}}, "811eb3464f8b4658af7b92cb22fd5db1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e5e14c62e1a4cf09b6fb8b0bb5ca451": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5ccb993dd72c4674bf4c5129e4e19f7b", "IPY_MODEL_4105d4a519b74c618417f38830a92826", "IPY_MODEL_007989e5e6cd44a5ada30dda1923d065"], "layout": "IPY_MODEL_811eb3464f8b4658af7b92cb22fd5db1", "tabbable": null, "tooltip": null}}, "68caf9f94f8b49e29f2522245cfc1967": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0bd860a7540947f98823d4a40bdafb86": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "acd50c68e1bb474ca7e642fdbecd2231": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_68caf9f94f8b49e29f2522245cfc1967", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0bd860a7540947f98823d4a40bdafb86", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "6d917afdd1bf47ea943ba43a44498f21": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47c94c5344ac480795afc89535d19275": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f9e7d310eb764ed9abf54e3695e98058": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6d917afdd1bf47ea943ba43a44498f21", "placeholder": "\u200b", "style": "IPY_MODEL_47c94c5344ac480795afc89535d19275", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "371271d754f04722b9ba2102ec6453b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72118120122f4623822582e300065947": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a4ea888fe4004256885e50c60385b700": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_371271d754f04722b9ba2102ec6453b3", "placeholder": "\u200b", "style": "IPY_MODEL_72118120122f4623822582e300065947", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007137MB/s]"}}, "91bc4e78a8934597a32b965150f632af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "293b01a69e094447aeebb1e7e866fd51": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f9e7d310eb764ed9abf54e3695e98058", "IPY_MODEL_acd50c68e1bb474ca7e642fdbecd2231", "IPY_MODEL_a4ea888fe4004256885e50c60385b700"], "layout": "IPY_MODEL_91bc4e78a8934597a32b965150f632af", "tabbable": null, "tooltip": null}}, "6da0de8fbedc40cca53799f8e45cf74b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0f309cd65ee48e4902fba4c141424a9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3156c56a2d1e46779554f6e680768b77": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6da0de8fbedc40cca53799f8e45cf74b", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b0f309cd65ee48e4902fba4c141424a9", "tabbable": null, "tooltip": null, "value": 466062.0}}, "a2f3a938880745e29369216068f395dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79bb28d92fc14400815dc3c2c98b31e6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "65fb96fdd89c4a7aa6863a61cd8c8281": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a2f3a938880745e29369216068f395dc", "placeholder": "\u200b", "style": "IPY_MODEL_79bb28d92fc14400815dc3c2c98b31e6", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "2ed7ba0d1cb94817b121646f00c5a089": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e45f1523c8d6445cacf72f4752609a80": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5e1fb144070e4665b06631fd83e8a769": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ed7ba0d1cb94817b121646f00c5a089", "placeholder": "\u200b", "style": "IPY_MODEL_e45f1523c8d6445cacf72f4752609a80", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20073.42MB/s]"}}, "5c2455143c7b4c9d8179735a17395106": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9bbf8e629233461d84330aac6c38bc36": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_65fb96fdd89c4a7aa6863a61cd8c8281", "IPY_MODEL_3156c56a2d1e46779554f6e680768b77", "IPY_MODEL_5e1fb144070e4665b06631fd83e8a769"], "layout": "IPY_MODEL_5c2455143c7b4c9d8179735a17395106", "tabbable": null, "tooltip": null}}, "c467bba142d440348c677b9b88920801": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e515a523986480cbbe1094ca437f513": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "703a1805a6e14459bff5e7bc196e2924": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c467bba142d440348c677b9b88920801", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9e515a523986480cbbe1094ca437f513", "tabbable": null, "tooltip": null, "value": 48.0}}, "69f6ccf772ad48fa86cea5e7b57f6c92": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2606990b2b654e949895c6ea13bace1b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "684d44672b7e4f3e87afb7ff19a14a7d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_69f6ccf772ad48fa86cea5e7b57f6c92", "placeholder": "\u200b", "style": "IPY_MODEL_2606990b2b654e949895c6ea13bace1b", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "7930ae36275240238ba62db1afd25ce2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "226f358553304154b872be466bcda2cc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9678a77b61324383a27e704a34123184": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7930ae36275240238ba62db1afd25ce2", "placeholder": "\u200b", "style": "IPY_MODEL_226f358553304154b872be466bcda2cc", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20079.10kB/s]"}}, "7f83efe5fa43477c83b7dd0eab30b115": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "38046751c5324a119490bbe8a5ec326c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_684d44672b7e4f3e87afb7ff19a14a7d", "IPY_MODEL_703a1805a6e14459bff5e7bc196e2924", "IPY_MODEL_9678a77b61324383a27e704a34123184"], "layout": "IPY_MODEL_7f83efe5fa43477c83b7dd0eab30b115", "tabbable": null, "tooltip": null}}, "d8c1ad41f4fe4cf0a3f44d363086f32b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "43e54781cf104522a0a7479b4684f176": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f674728a058e4ebc9cda63400ca9a97a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d8c1ad41f4fe4cf0a3f44d363086f32b", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_43e54781cf104522a0a7479b4684f176", "tabbable": null, "tooltip": null, "value": 231508.0}}, "1047a464f8ad4f08a9c39e32ef88f77b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d22816db94ed4b3aa623fb9f9eb42646": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6854a7c0f0b846a99e2cc07332f5e2ad": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1047a464f8ad4f08a9c39e32ef88f77b", "placeholder": "\u200b", "style": "IPY_MODEL_d22816db94ed4b3aa623fb9f9eb42646", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "d76c41fd805e466081dfeb1d93477c92": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "76977b7a679849439d4159579b51c480": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b780cdac15fd4ff5bf0b64d9369ef63b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d76c41fd805e466081dfeb1d93477c92", "placeholder": "\u200b", "style": "IPY_MODEL_76977b7a679849439d4159579b51c480", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u20073.55MB/s]"}}, "52f1b4fab3d74ad180e90f63881f6b32": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7f84e049288f438cbb050b771815ee1a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6854a7c0f0b846a99e2cc07332f5e2ad", "IPY_MODEL_f674728a058e4ebc9cda63400ca9a97a", "IPY_MODEL_b780cdac15fd4ff5bf0b64d9369ef63b"], "layout": "IPY_MODEL_52f1b4fab3d74ad180e90f63881f6b32", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index e6fcf34d6..a83013185 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:38.612010Z", - "iopub.status.busy": "2024-06-25T15:57:38.611854Z", - "iopub.status.idle": "2024-06-25T15:57:41.717638Z", - "shell.execute_reply": "2024-06-25T15:57:41.716988Z" + "iopub.execute_input": "2024-06-25T19:31:37.218802Z", + "iopub.status.busy": "2024-06-25T19:31:37.218626Z", + "iopub.status.idle": "2024-06-25T19:31:40.132819Z", + "shell.execute_reply": "2024-06-25T19:31:40.132198Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.720617Z", - "iopub.status.busy": "2024-06-25T15:57:41.720113Z", - "iopub.status.idle": "2024-06-25T15:57:41.723540Z", - "shell.execute_reply": "2024-06-25T15:57:41.723091Z" + "iopub.execute_input": "2024-06-25T19:31:40.135382Z", + "iopub.status.busy": "2024-06-25T19:31:40.135098Z", + "iopub.status.idle": "2024-06-25T19:31:40.138344Z", + "shell.execute_reply": "2024-06-25T19:31:40.137917Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.725767Z", - "iopub.status.busy": "2024-06-25T15:57:41.725363Z", - "iopub.status.idle": "2024-06-25T15:57:41.728588Z", - "shell.execute_reply": "2024-06-25T15:57:41.728027Z" + "iopub.execute_input": "2024-06-25T19:31:40.140291Z", + "iopub.status.busy": "2024-06-25T19:31:40.139985Z", + "iopub.status.idle": "2024-06-25T19:31:40.143618Z", + "shell.execute_reply": "2024-06-25T19:31:40.143162Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.730623Z", - "iopub.status.busy": "2024-06-25T15:57:41.730444Z", - "iopub.status.idle": "2024-06-25T15:57:41.758587Z", - "shell.execute_reply": "2024-06-25T15:57:41.758018Z" + "iopub.execute_input": "2024-06-25T19:31:40.145468Z", + "iopub.status.busy": "2024-06-25T19:31:40.145298Z", + "iopub.status.idle": "2024-06-25T19:31:40.303499Z", + "shell.execute_reply": "2024-06-25T19:31:40.302894Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.760799Z", - "iopub.status.busy": "2024-06-25T15:57:41.760451Z", - "iopub.status.idle": "2024-06-25T15:57:41.763958Z", - "shell.execute_reply": "2024-06-25T15:57:41.763524Z" + "iopub.execute_input": "2024-06-25T19:31:40.305557Z", + "iopub.status.busy": "2024-06-25T19:31:40.305379Z", + "iopub.status.idle": "2024-06-25T19:31:40.309091Z", + "shell.execute_reply": "2024-06-25T19:31:40.308646Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.765895Z", - "iopub.status.busy": "2024-06-25T15:57:41.765581Z", - "iopub.status.idle": "2024-06-25T15:57:41.768821Z", - "shell.execute_reply": "2024-06-25T15:57:41.768299Z" + "iopub.execute_input": "2024-06-25T19:31:40.311111Z", + "iopub.status.busy": "2024-06-25T19:31:40.310718Z", + "iopub.status.idle": "2024-06-25T19:31:40.314252Z", + "shell.execute_reply": "2024-06-25T19:31:40.313796Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'cancel_transfer', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'supported_cards_and_currencies', 'change_pin'}\n" + "Classes: {'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.770809Z", - "iopub.status.busy": "2024-06-25T15:57:41.770487Z", - "iopub.status.idle": "2024-06-25T15:57:41.773535Z", - "shell.execute_reply": "2024-06-25T15:57:41.772995Z" + "iopub.execute_input": "2024-06-25T19:31:40.316289Z", + "iopub.status.busy": "2024-06-25T19:31:40.315953Z", + "iopub.status.idle": "2024-06-25T19:31:40.318817Z", + "shell.execute_reply": "2024-06-25T19:31:40.318324Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.775706Z", - "iopub.status.busy": "2024-06-25T15:57:41.775376Z", - "iopub.status.idle": "2024-06-25T15:57:41.778593Z", - "shell.execute_reply": "2024-06-25T15:57:41.778160Z" + "iopub.execute_input": "2024-06-25T19:31:40.320894Z", + "iopub.status.busy": "2024-06-25T19:31:40.320580Z", + "iopub.status.idle": "2024-06-25T19:31:40.323708Z", + "shell.execute_reply": "2024-06-25T19:31:40.323263Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:41.780622Z", - "iopub.status.busy": "2024-06-25T15:57:41.780321Z", - "iopub.status.idle": "2024-06-25T15:57:46.387144Z", - "shell.execute_reply": "2024-06-25T15:57:46.386492Z" + "iopub.execute_input": "2024-06-25T19:31:40.325657Z", + "iopub.status.busy": "2024-06-25T19:31:40.325357Z", + "iopub.status.idle": "2024-06-25T19:31:46.067731Z", + "shell.execute_reply": "2024-06-25T19:31:46.067125Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a855ca95b0ac40f294d886a8b276a283", + "model_id": "e9ebd3cab6ee4b38af6e19b1c2a2b7a0", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "560a9e164344416da57af0666a2c209d", + "model_id": "a8fe72969fe348a99c98be80dccd6c53", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "801de04277c14a49a527aa9494d1f95c", + "model_id": "2e5e14c62e1a4cf09b6fb8b0bb5ca451", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "43e0bfcf53ed4448b98e1dc0c1624d4f", + "model_id": "293b01a69e094447aeebb1e7e866fd51", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ffce619808c54c97ad0384263ffc66fe", + "model_id": "9bbf8e629233461d84330aac6c38bc36", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e63d81c42204b1ba3053df362c06f2d", + "model_id": "38046751c5324a119490bbe8a5ec326c", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "13b0c792f832478c828136237c3d9087", + "model_id": "7f84e049288f438cbb050b771815ee1a", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:46.390112Z", - "iopub.status.busy": "2024-06-25T15:57:46.389866Z", - "iopub.status.idle": "2024-06-25T15:57:46.392852Z", - "shell.execute_reply": "2024-06-25T15:57:46.392264Z" + "iopub.execute_input": "2024-06-25T19:31:46.070234Z", + "iopub.status.busy": "2024-06-25T19:31:46.070036Z", + "iopub.status.idle": "2024-06-25T19:31:46.072782Z", + "shell.execute_reply": "2024-06-25T19:31:46.072301Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:46.395088Z", - "iopub.status.busy": "2024-06-25T15:57:46.394762Z", - "iopub.status.idle": "2024-06-25T15:57:46.397545Z", - "shell.execute_reply": "2024-06-25T15:57:46.397074Z" + "iopub.execute_input": "2024-06-25T19:31:46.074901Z", + "iopub.status.busy": "2024-06-25T19:31:46.074488Z", + "iopub.status.idle": "2024-06-25T19:31:46.077148Z", + "shell.execute_reply": "2024-06-25T19:31:46.076714Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:46.399468Z", - "iopub.status.busy": "2024-06-25T15:57:46.399294Z", - "iopub.status.idle": "2024-06-25T15:57:49.197066Z", - "shell.execute_reply": "2024-06-25T15:57:49.196395Z" + "iopub.execute_input": "2024-06-25T19:31:46.078970Z", + "iopub.status.busy": "2024-06-25T19:31:46.078798Z", + "iopub.status.idle": "2024-06-25T19:31:48.698188Z", + "shell.execute_reply": "2024-06-25T19:31:48.697474Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.200076Z", - "iopub.status.busy": "2024-06-25T15:57:49.199338Z", - "iopub.status.idle": "2024-06-25T15:57:49.207029Z", - "shell.execute_reply": "2024-06-25T15:57:49.206557Z" + "iopub.execute_input": "2024-06-25T19:31:48.701194Z", + "iopub.status.busy": "2024-06-25T19:31:48.700490Z", + "iopub.status.idle": "2024-06-25T19:31:48.707774Z", + "shell.execute_reply": "2024-06-25T19:31:48.707224Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.209172Z", - "iopub.status.busy": "2024-06-25T15:57:49.208911Z", - "iopub.status.idle": "2024-06-25T15:57:49.212955Z", - "shell.execute_reply": "2024-06-25T15:57:49.212309Z" + "iopub.execute_input": "2024-06-25T19:31:48.709878Z", + "iopub.status.busy": "2024-06-25T19:31:48.709556Z", + "iopub.status.idle": "2024-06-25T19:31:48.713210Z", + "shell.execute_reply": "2024-06-25T19:31:48.712781Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.214942Z", - "iopub.status.busy": "2024-06-25T15:57:49.214612Z", - "iopub.status.idle": "2024-06-25T15:57:49.218042Z", - "shell.execute_reply": "2024-06-25T15:57:49.217560Z" + "iopub.execute_input": "2024-06-25T19:31:48.715198Z", + "iopub.status.busy": "2024-06-25T19:31:48.714884Z", + "iopub.status.idle": "2024-06-25T19:31:48.717917Z", + "shell.execute_reply": "2024-06-25T19:31:48.717397Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.220076Z", - "iopub.status.busy": "2024-06-25T15:57:49.219747Z", - "iopub.status.idle": "2024-06-25T15:57:49.222894Z", - "shell.execute_reply": "2024-06-25T15:57:49.222323Z" + "iopub.execute_input": "2024-06-25T19:31:48.719920Z", + "iopub.status.busy": "2024-06-25T19:31:48.719615Z", + "iopub.status.idle": "2024-06-25T19:31:48.722447Z", + "shell.execute_reply": "2024-06-25T19:31:48.722011Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.224732Z", - "iopub.status.busy": "2024-06-25T15:57:49.224541Z", - "iopub.status.idle": "2024-06-25T15:57:49.231894Z", - "shell.execute_reply": "2024-06-25T15:57:49.231356Z" + "iopub.execute_input": "2024-06-25T19:31:48.724470Z", + "iopub.status.busy": "2024-06-25T19:31:48.724080Z", + "iopub.status.idle": "2024-06-25T19:31:48.730838Z", + "shell.execute_reply": "2024-06-25T19:31:48.730303Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.234156Z", - "iopub.status.busy": "2024-06-25T15:57:49.233715Z", - "iopub.status.idle": "2024-06-25T15:57:49.457623Z", - "shell.execute_reply": "2024-06-25T15:57:49.457024Z" + "iopub.execute_input": "2024-06-25T19:31:48.733056Z", + "iopub.status.busy": "2024-06-25T19:31:48.732753Z", + "iopub.status.idle": "2024-06-25T19:31:48.956488Z", + "shell.execute_reply": "2024-06-25T19:31:48.955930Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.460064Z", - "iopub.status.busy": "2024-06-25T15:57:49.459706Z", - "iopub.status.idle": "2024-06-25T15:57:49.633341Z", - "shell.execute_reply": "2024-06-25T15:57:49.632754Z" + "iopub.execute_input": "2024-06-25T19:31:48.958874Z", + "iopub.status.busy": "2024-06-25T19:31:48.958385Z", + "iopub.status.idle": "2024-06-25T19:31:49.133338Z", + "shell.execute_reply": "2024-06-25T19:31:49.132807Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:49.635790Z", - "iopub.status.busy": "2024-06-25T15:57:49.635435Z", - "iopub.status.idle": "2024-06-25T15:57:49.639368Z", - "shell.execute_reply": "2024-06-25T15:57:49.638875Z" + "iopub.execute_input": "2024-06-25T19:31:49.135767Z", + "iopub.status.busy": "2024-06-25T19:31:49.135370Z", + "iopub.status.idle": "2024-06-25T19:31:49.139272Z", + "shell.execute_reply": "2024-06-25T19:31:49.138786Z" }, "nbsphinx": "hidden" }, @@ -1113,43 +1113,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "035a14e868204cca8ed6f3352086a5b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "042a87e1990243fa9d051d9992209d0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0595e5de777840e0a10e422f3e0eb11a": { + "007989e5e6cd44a5ada30dda1923d065": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1164,15 +1128,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7774ade2d9bf4148a2f2583590d2bcf6", + "layout": "IPY_MODEL_8b998a37935c4d30856e95a2cd3f1439", "placeholder": "​", - "style": "IPY_MODEL_aa0a394de37843f98d361d796516775d", + "style": "IPY_MODEL_200586c52a4549678a949ca57213c920", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": " 665/665 [00:00<00:00, 121kB/s]" } }, - "0e2f832a978646369568be4202882bda": { + "054e6f2fd5d14973972b7db9b5e4ed03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1188,54 +1152,23 @@ "description_width": "" } }, - "0e63d81c42204b1ba3053df362c06f2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e442f4804045479f80a427124ed55f67", - "IPY_MODEL_72509eeb786d4cb9a2005d7d2bebdb9c", - "IPY_MODEL_774280b308d44d048d31f512bb8ff4b7" - ], - "layout": "IPY_MODEL_722e0ca378d3417baec91fcf509306b2", - "tabbable": null, - "tooltip": null - } - }, - "0f50dbb67a7c47839d29cab4d422fb2b": { + "0bd860a7540947f98823d4a40bdafb86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ced14e5dffb44dd95e5c285b6fcc515", - "placeholder": "​", - "style": "IPY_MODEL_4a343912fcb04df6a32db71304c563bb", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "12387ea6c70a48ca9bc8c46ca9ca1df9": { + "1047a464f8ad4f08a9c39e32ef88f77b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1288,31 +1221,7 @@ "width": null } }, - "13b0c792f832478c828136237c3d9087": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3a223bc2688c47d3b601649fc1494b40", - "IPY_MODEL_c0de7b20814f4f43bf0e96420385ba54", - "IPY_MODEL_c4aaa7d417b747e3a453503d6263f246" - ], - "layout": "IPY_MODEL_430384779054434495a3d4f8e82a751a", - "tabbable": null, - "tooltip": null - } - }, - "14d909e4afa049e8ad418efd5826dfe5": { + "200586c52a4549678a949ca57213c920": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1330,62 +1239,67 @@ "text_color": null } }, - "1c63c2fdcf684affb193e16a662a4ac1": { + "226f358553304154b872be466bcda2cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e9110c6feffe426db219b1e596faf5b8", - "placeholder": "​", - "style": "IPY_MODEL_042a87e1990243fa9d051d9992209d0f", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 23.1MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2bb734e1e71e429081257786a0dffe4b": { + "2606990b2b654e949895c6ea13bace1b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2dd46a3e411445cc97f6cb02f31ed2fa": { + "293b01a69e094447aeebb1e7e866fd51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f9e7d310eb764ed9abf54e3695e98058", + "IPY_MODEL_acd50c68e1bb474ca7e642fdbecd2231", + "IPY_MODEL_a4ea888fe4004256885e50c60385b700" + ], + "layout": "IPY_MODEL_91bc4e78a8934597a32b965150f632af", + "tabbable": null, + "tooltip": null } }, - "3a223bc2688c47d3b601649fc1494b40": { + "2db6e61311574d2799f341e0f2b280db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1400,15 +1314,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_643675523d544b33aedb40418be3c1ba", + "layout": "IPY_MODEL_e95f58118fca41f79754cf64dc768e55", "placeholder": "​", - "style": "IPY_MODEL_035a14e868204cca8ed6f3352086a5b3", + "style": "IPY_MODEL_5d0e81a247724335969fb0549b56194b", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": "README.md: 100%" + } + }, + "2e5e14c62e1a4cf09b6fb8b0bb5ca451": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ccb993dd72c4674bf4c5129e4e19f7b", + "IPY_MODEL_4105d4a519b74c618417f38830a92826", + "IPY_MODEL_007989e5e6cd44a5ada30dda1923d065" + ], + "layout": "IPY_MODEL_811eb3464f8b4658af7b92cb22fd5db1", + "tabbable": null, + "tooltip": null } }, - "430384779054434495a3d4f8e82a751a": { + "2ed7ba0d1cb94817b121646f00c5a089": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1461,67 +1399,33 @@ "width": null } }, - "43e0bfcf53ed4448b98e1dc0c1624d4f": { + "3156c56a2d1e46779554f6e680768b77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0595e5de777840e0a10e422f3e0eb11a", - "IPY_MODEL_f79723dd5fd6425c90a74fbc78ee00d0", - "IPY_MODEL_e5008caaa3cb48f781c0e6794bca59dd" - ], - "layout": "IPY_MODEL_a0be5cbe173f48c28add2f6ebade362a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6da0de8fbedc40cca53799f8e45cf74b", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b0f309cd65ee48e4902fba4c141424a9", "tabbable": null, - "tooltip": null - } - }, - "4721eac8e74e4b22bfe944f16211c28a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4a343912fcb04df6a32db71304c563bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 466062.0 } }, - "4c9d96d605c246fda834c284137cfe04": { + "371271d754f04722b9ba2102ec6453b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1574,7 +1478,31 @@ "width": null } }, - "4df366ed410748f0a53c4b219452457c": { + "38046751c5324a119490bbe8a5ec326c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_684d44672b7e4f3e87afb7ff19a14a7d", + "IPY_MODEL_703a1805a6e14459bff5e7bc196e2924", + "IPY_MODEL_9678a77b61324383a27e704a34123184" + ], + "layout": "IPY_MODEL_7f83efe5fa43477c83b7dd0eab30b115", + "tabbable": null, + "tooltip": null + } + }, + "3b3726b7d15f4242bbe2a0e0323f5edd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1627,7 +1555,7 @@ "width": null } }, - "52294f1edab24d5291e2f929c717427e": { + "3c288e9049ba4814a9020bbda1512944": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1645,7 +1573,7 @@ "text_color": null } }, - "54941ba215b345a9880858bf560d791c": { + "3e906d417956421a978812281c844e7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1660,39 +1588,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_efbf1faad7614190bb20629fa0c633b6", + "layout": "IPY_MODEL_4c673f7ac4ec44149b7f219298381ca5", "placeholder": "​", - "style": "IPY_MODEL_d173d1d6391e4596bd84ae3f3192819c", + "style": "IPY_MODEL_e3282f6972624465bd15f84c183446ed", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" - } - }, - "560a9e164344416da57af0666a2c209d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54941ba215b345a9880858bf560d791c", - "IPY_MODEL_ecfa214af0f548778d99571e41579d56", - "IPY_MODEL_6626686cdac14643a91a30409cff0ae5" - ], - "layout": "IPY_MODEL_bd4d6e3c583f4ddd9642cf1b42ce63c9", - "tabbable": null, - "tooltip": null + "value": " 391/391 [00:00<00:00, 64.5kB/s]" } }, - "611f1c9c454f4ead97346ff9e0339821": { + "4105d4a519b74c618417f38830a92826": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1708,70 +1612,51 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4df366ed410748f0a53c4b219452457c", + "layout": "IPY_MODEL_a7fc4b58838f4350b7cce239e6cf7c4d", "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_bf139ea48e764a2da6fd089cc052bf26", + "style": "IPY_MODEL_a7755505c8604626b66bd90ac49165ab", "tabbable": null, "tooltip": null, "value": 665.0 } }, - "643675523d544b33aedb40418be3c1ba": { - "model_module": "@jupyter-widgets/base", + "43e54781cf104522a0a7479b4684f176": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "47c94c5344ac480795afc89535d19275": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6626686cdac14643a91a30409cff0ae5": { + "4c280f6c890c468db24cfa085162f8eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1786,15 +1671,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8d1532e9188a4eea98d66217ad9a9370", + "layout": "IPY_MODEL_d98e8d3d73134c40b8256b723de4c9ba", "placeholder": "​", - "style": "IPY_MODEL_52294f1edab24d5291e2f929c717427e", + "style": "IPY_MODEL_55cc185655a64110894ebe751347ee97", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 391kB/s]" + "value": " 2.21k/2.21k [00:00<00:00, 422kB/s]" } }, - "674ce41159e543e6ac7308b8eef9752b": { + "4c673f7ac4ec44149b7f219298381ca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1847,7 +1732,7 @@ "width": null } }, - "6d5d4cbc18884b0c898373a1478bb228": { + "52f1b4fab3d74ad180e90f63881f6b32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1900,7 +1785,25 @@ "width": null } }, - "722e0ca378d3417baec91fcf509306b2": { + "55cc185655a64110894ebe751347ee97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5c2455143c7b4c9d8179735a17395106": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1953,33 +1856,48 @@ "width": null } }, - "72509eeb786d4cb9a2005d7d2bebdb9c": { + "5ccb993dd72c4674bf4c5129e4e19f7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d83f677526f446eb8a3bfdb029a8d058", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0e2f832a978646369568be4202882bda", + "layout": "IPY_MODEL_c693822d0e9f45a5a0c3d5598c8464f4", + "placeholder": "​", + "style": "IPY_MODEL_6c14e14271b4450f89db48de72dffebe", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": "config.json: 100%" + } + }, + "5d0e81a247724335969fb0549b56194b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "76b2a8f7a7214b32a7e2b84148f803a5": { + "5e1fb144070e4665b06631fd83e8a769": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1994,15 +1912,61 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_674ce41159e543e6ac7308b8eef9752b", + "layout": "IPY_MODEL_2ed7ba0d1cb94817b121646f00c5a089", "placeholder": "​", - "style": "IPY_MODEL_93eece0ce2ce421ca530b00999ff1ac3", + "style": "IPY_MODEL_e45f1523c8d6445cacf72f4752609a80", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 466k/466k [00:00<00:00, 3.42MB/s]" + } + }, + "65fb96fdd89c4a7aa6863a61cd8c8281": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a2f3a938880745e29369216068f395dc", + "placeholder": "​", + "style": "IPY_MODEL_79bb28d92fc14400815dc3c2c98b31e6", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "684d44672b7e4f3e87afb7ff19a14a7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_69f6ccf772ad48fa86cea5e7b57f6c92", + "placeholder": "​", + "style": "IPY_MODEL_2606990b2b654e949895c6ea13bace1b", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "774280b308d44d048d31f512bb8ff4b7": { + "6854a7c0f0b846a99e2cc07332f5e2ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2017,15 +1981,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6d5d4cbc18884b0c898373a1478bb228", + "layout": "IPY_MODEL_1047a464f8ad4f08a9c39e32ef88f77b", "placeholder": "​", - "style": "IPY_MODEL_4721eac8e74e4b22bfe944f16211c28a", + "style": "IPY_MODEL_d22816db94ed4b3aa623fb9f9eb42646", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.51kB/s]" + "value": "vocab.txt: 100%" } }, - "7774ade2d9bf4148a2f2583590d2bcf6": { + "68caf9f94f8b49e29f2522245cfc1967": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,7 +2042,7 @@ "width": null } }, - "7e5c8e696e7448208b7fbffd09571de0": { + "68d5eef2d9154625b81ca5a98ad95302": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2131,31 +2095,7 @@ "width": null } }, - "801de04277c14a49a527aa9494d1f95c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_76b2a8f7a7214b32a7e2b84148f803a5", - "IPY_MODEL_611f1c9c454f4ead97346ff9e0339821", - "IPY_MODEL_a5f8ed569cdd4346ad3f60782d109f30" - ], - "layout": "IPY_MODEL_7e5c8e696e7448208b7fbffd09571de0", - "tabbable": null, - "tooltip": null - } - }, - "80b07bff49e644ba8d9c9166ea8dd027": { + "69f6ccf772ad48fa86cea5e7b57f6c92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2208,7 +2148,25 @@ "width": null } }, - "81decc1a33dc43dc96ed51151d87c469": { + "6c14e14271b4450f89db48de72dffebe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6d917afdd1bf47ea943ba43a44498f21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2261,7 +2219,7 @@ "width": null } }, - "8b94cec0813646478fdb67407c774a15": { + "6da0de8fbedc40cca53799f8e45cf74b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2314,7 +2272,69 @@ "width": null } }, - "8ced14e5dffb44dd95e5c285b6fcc515": { + "703a1805a6e14459bff5e7bc196e2924": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c467bba142d440348c677b9b88920801", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9e515a523986480cbbe1094ca437f513", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "72118120122f4623822582e300065947": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "76977b7a679849439d4159579b51c480": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "77399e1417a148bbaaf8c99c6e4b2bb5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2367,7 +2387,7 @@ "width": null } }, - "8d1532e9188a4eea98d66217ad9a9370": { + "7930ae36275240238ba62db1afd25ce2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2420,24 +2440,42 @@ "width": null } }, - "92b279d7aac74ab7aa6816798780a1b3": { - "model_module": "@jupyter-widgets/base", + "79bb28d92fc14400815dc3c2c98b31e6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7f83efe5fa43477c83b7dd0eab30b115": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, "border_top": null, "bottom": null, "display": null, @@ -2473,64 +2511,31 @@ "width": null } }, - "93eece0ce2ce421ca530b00999ff1ac3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "96d71a5e9a504bc781536b34136540f2": { + "7f84e049288f438cbb050b771815ee1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_12387ea6c70a48ca9bc8c46ca9ca1df9", - "placeholder": "​", - "style": "IPY_MODEL_d54909a09ede4b9ebeb2145f4328dd8e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6854a7c0f0b846a99e2cc07332f5e2ad", + "IPY_MODEL_f674728a058e4ebc9cda63400ca9a97a", + "IPY_MODEL_b780cdac15fd4ff5bf0b64d9369ef63b" + ], + "layout": "IPY_MODEL_52f1b4fab3d74ad180e90f63881f6b32", "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "97f58eb6211444b59b851ce9be1d198b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "9c0bc89c50cc4f44a6d28f4b9009566b": { + "811eb3464f8b4658af7b92cb22fd5db1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2583,7 +2588,7 @@ "width": null } }, - "9cf21e2a631b45cab7fb9b3b5ce9bb06": { + "8b998a37935c4d30856e95a2cd3f1439": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2636,51 +2641,23 @@ "width": null } }, - "9df7cd442f6f475bbdf78235b388ea94": { + "8f663dc8059d42e4a1c16507affd40e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9f018c4a5a9144b180522d0a65104179": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_81decc1a33dc43dc96ed51151d87c469", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de7ff0b63d2a43a2aef6d27809ab1b49", - "tabbable": null, - "tooltip": null, - "value": 391.0 + "bar_color": null, + "description_width": "" } }, - "a0be5cbe173f48c28add2f6ebade362a": { + "91bc4e78a8934597a32b965150f632af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2733,7 +2710,7 @@ "width": null } }, - "a5f8ed569cdd4346ad3f60782d109f30": { + "9678a77b61324383a27e704a34123184": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2748,15 +2725,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_80b07bff49e644ba8d9c9166ea8dd027", + "layout": "IPY_MODEL_7930ae36275240238ba62db1afd25ce2", "placeholder": "​", - "style": "IPY_MODEL_e1181d04ac7a4550a00ea0ac3c6ed476", + "style": "IPY_MODEL_226f358553304154b872be466bcda2cc", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 121kB/s]" + "value": " 48.0/48.0 [00:00<00:00, 9.10kB/s]" } }, - "a855ca95b0ac40f294d886a8b276a283": { + "9bbf8e629233461d84330aac6c38bc36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2771,52 +2748,124 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_96d71a5e9a504bc781536b34136540f2", - "IPY_MODEL_9f018c4a5a9144b180522d0a65104179", - "IPY_MODEL_c0ab79e23f724dafa2d53bcd765e2639" + "IPY_MODEL_65fb96fdd89c4a7aa6863a61cd8c8281", + "IPY_MODEL_3156c56a2d1e46779554f6e680768b77", + "IPY_MODEL_5e1fb144070e4665b06631fd83e8a769" ], - "layout": "IPY_MODEL_eaca2c1660e34914ac6457c9f643ec42", + "layout": "IPY_MODEL_5c2455143c7b4c9d8179735a17395106", "tabbable": null, "tooltip": null } }, - "aa0a394de37843f98d361d796516775d": { + "9e515a523986480cbbe1094ca437f513": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "a2f3a938880745e29369216068f395dc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b6d8027685494713bd9901ebe3e40dfb": { + "a4ea888fe4004256885e50c60385b700": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_371271d754f04722b9ba2102ec6453b3", + "placeholder": "​", + "style": "IPY_MODEL_72118120122f4623822582e300065947", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 137MB/s]" + } + }, + "a7755505c8604626b66bd90ac49165ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "bd4d6e3c583f4ddd9642cf1b42ce63c9": { + "a7fc4b58838f4350b7cce239e6cf7c4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2869,72 +2918,96 @@ "width": null } }, - "bf139ea48e764a2da6fd089cc052bf26": { + "a8fe72969fe348a99c98be80dccd6c53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2db6e61311574d2799f341e0f2b280db", + "IPY_MODEL_c768456d220342ec8cc60cc2528c3732", + "IPY_MODEL_4c280f6c890c468db24cfa085162f8eb" + ], + "layout": "IPY_MODEL_dd1d6b6bcb61451a9984bb2bddd1826e", + "tabbable": null, + "tooltip": null } }, - "c0ab79e23f724dafa2d53bcd765e2639": { + "acd50c68e1bb474ca7e642fdbecd2231": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_db42e7db2eee4c218bbd00d238347b36", - "placeholder": "​", - "style": "IPY_MODEL_14d909e4afa049e8ad418efd5826dfe5", + "layout": "IPY_MODEL_68caf9f94f8b49e29f2522245cfc1967", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0bd860a7540947f98823d4a40bdafb86", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 61.4kB/s]" + "value": 54245363.0 } }, - "c0de7b20814f4f43bf0e96420385ba54": { + "b0f309cd65ee48e4902fba4c141424a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b780cdac15fd4ff5bf0b64d9369ef63b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9c0bc89c50cc4f44a6d28f4b9009566b", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e40ad6c05d7a4b4eb5acf7e34dcaaf11", + "layout": "IPY_MODEL_d76c41fd805e466081dfeb1d93477c92", + "placeholder": "​", + "style": "IPY_MODEL_76977b7a679849439d4159579b51c480", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": " 232k/232k [00:00<00:00, 3.55MB/s]" } }, - "c4aaa7d417b747e3a453503d6263f246": { + "baa0ee8552c34f9f808dc9985cb43d88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2949,15 +3022,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f584ae2be3aa476da3d5adcc46a1695e", + "layout": "IPY_MODEL_77399e1417a148bbaaf8c99c6e4b2bb5", "placeholder": "​", - "style": "IPY_MODEL_e82622a76f134ca18602403395205c4c", + "style": "IPY_MODEL_3c288e9049ba4814a9020bbda1512944", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 30.0MB/s]" + "value": ".gitattributes: 100%" } }, - "c6292a56858f4c98a0cfeb1cd8e5705a": { + "c467bba142d440348c677b9b88920801": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3010,7 +3083,7 @@ "width": null } }, - "c6b18d86f35a4977a4e23288eeb3fa16": { + "c693822d0e9f45a5a0c3d5598c8464f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3063,25 +3136,59 @@ "width": null } }, - "d173d1d6391e4596bd84ae3f3192819c": { + "c768456d220342ec8cc60cc2528c3732": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3b3726b7d15f4242bbe2a0e0323f5edd", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_054e6f2fd5d14973972b7db9b5e4ed03", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "d54909a09ede4b9ebeb2145f4328dd8e": { + "ca2793614f594cf4a384748bfd36b073": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff59fb88d4aa46d481bfabbfb12c3c08", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8f663dc8059d42e4a1c16507affd40e3", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "d22816db94ed4b3aa623fb9f9eb42646": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3099,7 +3206,7 @@ "text_color": null } }, - "d83f677526f446eb8a3bfdb029a8d058": { + "d76c41fd805e466081dfeb1d93477c92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3152,7 +3259,7 @@ "width": null } }, - "db42e7db2eee4c218bbd00d238347b36": { + "d8c1ad41f4fe4cf0a3f44d363086f32b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3205,121 +3312,7 @@ "width": null } }, - "de7ff0b63d2a43a2aef6d27809ab1b49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e1181d04ac7a4550a00ea0ac3c6ed476": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e40ad6c05d7a4b4eb5acf7e34dcaaf11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e442f4804045479f80a427124ed55f67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_92b279d7aac74ab7aa6816798780a1b3", - "placeholder": "​", - "style": "IPY_MODEL_b6d8027685494713bd9901ebe3e40dfb", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "e5008caaa3cb48f781c0e6794bca59dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b94cec0813646478fdb67407c774a15", - "placeholder": "​", - "style": "IPY_MODEL_9df7cd442f6f475bbdf78235b388ea94", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 284MB/s]" - } - }, - "e82622a76f134ca18602403395205c4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e9110c6feffe426db219b1e596faf5b8": { + "d98e8d3d73134c40b8256b723de4c9ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3372,7 +3365,7 @@ "width": null } }, - "eaca2c1660e34914ac6457c9f643ec42": { + "dd1d6b6bcb61451a9984bb2bddd1826e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3425,59 +3418,43 @@ "width": null } }, - "ecb37387715246b5b9f1aaf52c4e0542": { + "e3282f6972624465bd15f84c183446ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cf21e2a631b45cab7fb9b3b5ce9bb06", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_97f58eb6211444b59b851ce9be1d198b", - "tabbable": null, - "tooltip": null, - "value": 466062.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ecfa214af0f548778d99571e41579d56": { + "e45f1523c8d6445cacf72f4752609a80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c6292a56858f4c98a0cfeb1cd8e5705a", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2dd46a3e411445cc97f6cb02f31ed2fa", - "tabbable": null, - "tooltip": null, - "value": 2211.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "efbf1faad7614190bb20629fa0c633b6": { + "e95f58118fca41f79754cf64dc768e55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3530,7 +3507,80 @@ "width": null } }, - "f584ae2be3aa476da3d5adcc46a1695e": { + "e9ebd3cab6ee4b38af6e19b1c2a2b7a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_baa0ee8552c34f9f808dc9985cb43d88", + "IPY_MODEL_ca2793614f594cf4a384748bfd36b073", + "IPY_MODEL_3e906d417956421a978812281c844e7e" + ], + "layout": "IPY_MODEL_68d5eef2d9154625b81ca5a98ad95302", + "tabbable": null, + "tooltip": null + } + }, + "f674728a058e4ebc9cda63400ca9a97a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d8c1ad41f4fe4cf0a3f44d363086f32b", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_43e54781cf104522a0a7479b4684f176", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "f9e7d310eb764ed9abf54e3695e98058": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d917afdd1bf47ea943ba43a44498f21", + "placeholder": "​", + "style": "IPY_MODEL_47c94c5344ac480795afc89535d19275", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "ff59fb88d4aa46d481bfabbfb12c3c08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3582,56 +3632,6 @@ "visibility": null, "width": null } - }, - "f79723dd5fd6425c90a74fbc78ee00d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4c9d96d605c246fda834c284137cfe04", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2bb734e1e71e429081257786a0dffe4b", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "ffce619808c54c97ad0384263ffc66fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0f50dbb67a7c47839d29cab4d422fb2b", - "IPY_MODEL_ecb37387715246b5b9f1aaf52c4e0542", - "IPY_MODEL_1c63c2fdcf684affb193e16a662a4ac1" - ], - "layout": "IPY_MODEL_c6b18d86f35a4977a4e23288eeb3fa16", - "tabbable": null, - "tooltip": null - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 03a623ef4..b4b5b5038 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -384,6 +384,15 @@ >

  • +
  • + v2.6.6 +
  • +
  • 5. Use cleanlab to find label issues -{"state": {"6df13d23e18d4a4dbdeaf7bb238a82e5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "068abc1331354ca990bc36cb91da9823": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "53100b03d918413aaa9d7401dcd4d750": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6df13d23e18d4a4dbdeaf7bb238a82e5", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_068abc1331354ca990bc36cb91da9823", "tabbable": null, "tooltip": null, "value": 2041.0}}, "4d1da1846cd64ad696f3d624044fa65d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "760e67177d7549f7abee17ec6867b7f2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eef2ecb4e514450f8e2172c513bd4460": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4d1da1846cd64ad696f3d624044fa65d", "placeholder": "\u200b", "style": "IPY_MODEL_760e67177d7549f7abee17ec6867b7f2", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "04c88654d3f543ab85529d4aeec77fbd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b9bd57e493742ea94d21fa872209bac": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eefeedbabeb84cb8bd9df712f4385c3b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_04c88654d3f543ab85529d4aeec77fbd", "placeholder": "\u200b", "style": "IPY_MODEL_2b9bd57e493742ea94d21fa872209bac", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007466kB/s]"}}, "090589ff9f39498ca1f99ff60ab1c976": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4372ea2d98334b4eb94562a7cbb24f31": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_eef2ecb4e514450f8e2172c513bd4460", "IPY_MODEL_53100b03d918413aaa9d7401dcd4d750", "IPY_MODEL_eefeedbabeb84cb8bd9df712f4385c3b"], "layout": "IPY_MODEL_090589ff9f39498ca1f99ff60ab1c976", "tabbable": null, "tooltip": null}}, "b739994f6f094e8fb31a7f30c92e0e78": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b6a9a250f3af4bb8a78b9fffb50238d2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3e141e4d74bd4968878f2d73ed082233": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b739994f6f094e8fb31a7f30c92e0e78", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b6a9a250f3af4bb8a78b9fffb50238d2", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "d4671694170e4224a23eb39f1195a740": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cb1f3251d0bd4b1289c165ed61e34cd6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a23a1b5568824f76983446fb0c8084db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d4671694170e4224a23eb39f1195a740", "placeholder": "\u200b", "style": "IPY_MODEL_cb1f3251d0bd4b1289c165ed61e34cd6", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "cde43d54c9754fef94a61e5245b5633f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f9996dacebd4eda816d13ebbbb39009": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d5d78932f8ca49ecbcd6c05778f48f6d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cde43d54c9754fef94a61e5245b5633f", "placeholder": "\u200b", "style": "IPY_MODEL_6f9996dacebd4eda816d13ebbbb39009", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007267MB/s]"}}, "b619d8eff71b47828e0ac9823f65da9d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0d51f044d634fb999c79b3d4f80669d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a23a1b5568824f76983446fb0c8084db", "IPY_MODEL_3e141e4d74bd4968878f2d73ed082233", "IPY_MODEL_d5d78932f8ca49ecbcd6c05778f48f6d"], "layout": "IPY_MODEL_b619d8eff71b47828e0ac9823f65da9d", "tabbable": null, "tooltip": null}}, "4fca547438d343959e3f3ef409073e93": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cdac77ebf7e94e3d8507aaaba9a233e1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "429d226ffba44e43961b6a8aaef654a7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4fca547438d343959e3f3ef409073e93", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cdac77ebf7e94e3d8507aaaba9a233e1", "tabbable": null, "tooltip": null, "value": 3201.0}}, "728aab2243bd42bb8f1fae0328b5853a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa208fea6f58477fbb9d21f24c1bc0d5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "93e648c6842a4874b8fc33308b1abd4c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_728aab2243bd42bb8f1fae0328b5853a", "placeholder": "\u200b", "style": "IPY_MODEL_aa208fea6f58477fbb9d21f24c1bc0d5", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "5483865a4d45454ea2090e4e334d77c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a5c5a7cb7754e32b6b63ce195b7dc8f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b50a835dbc8c4a6e8ab6bb49a7084ed7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5483865a4d45454ea2090e4e334d77c4", "placeholder": "\u200b", "style": "IPY_MODEL_6a5c5a7cb7754e32b6b63ce195b7dc8f", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007776kB/s]"}}, "8cebdc1b91f3439d863ced6237642006": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47cafb795e7f4c488c16de46ced2f28d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_93e648c6842a4874b8fc33308b1abd4c", "IPY_MODEL_429d226ffba44e43961b6a8aaef654a7", "IPY_MODEL_b50a835dbc8c4a6e8ab6bb49a7084ed7"], "layout": "IPY_MODEL_8cebdc1b91f3439d863ced6237642006", "tabbable": null, "tooltip": null}}, "2aff0e0f157f4f1c9ee5c658ea400e97": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7530698066d46efb1bfcd51a16e2b33": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4c6a98bfb2254522851b0861f1a4f68c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2aff0e0f157f4f1c9ee5c658ea400e97", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e7530698066d46efb1bfcd51a16e2b33", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "04c1460997a64fbcb37cb6c69b9ffe41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa1a8a15a1a243d9a38ab1b16d362816": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fc2dd42caba34a1d9b5f3db96c603673": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_04c1460997a64fbcb37cb6c69b9ffe41", "placeholder": "\u200b", "style": "IPY_MODEL_fa1a8a15a1a243d9a38ab1b16d362816", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "d13977631c874482b109d9f437c6237d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "05c6abdadb1346afaa01d27f04090824": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cda6a31a7a4f4bef9da3b78221365fbe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d13977631c874482b109d9f437c6237d", "placeholder": "\u200b", "style": "IPY_MODEL_05c6abdadb1346afaa01d27f04090824", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007320MB/s]"}}, "795cc1742b54461e846f7b824afdcdd2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "67b526edd8ef48bbb5f57aeb9586d6cc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fc2dd42caba34a1d9b5f3db96c603673", "IPY_MODEL_4c6a98bfb2254522851b0861f1a4f68c", "IPY_MODEL_cda6a31a7a4f4bef9da3b78221365fbe"], "layout": "IPY_MODEL_795cc1742b54461e846f7b824afdcdd2", "tabbable": null, "tooltip": null}}, "c0be3c413fa84165bf2ea1832e22614e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e082552719ed41c19243b32ac7f26ae5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ff7eefd88abd49e78dbc896bd09a4eb9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c0be3c413fa84165bf2ea1832e22614e", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e082552719ed41c19243b32ac7f26ae5", "tabbable": null, "tooltip": null, "value": 128619.0}}, "253ecc11f6e14b0fbcf1ef8f9a102b76": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d8b7c4ba48e4288942c77b5f89ae9be": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dccc684188d04cefbb15bf0d76497a39": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_253ecc11f6e14b0fbcf1ef8f9a102b76", "placeholder": "\u200b", "style": "IPY_MODEL_4d8b7c4ba48e4288942c77b5f89ae9be", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "3118c2347b4149968d7fc429e1e05424": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "244f2e03519647ef80fd5b9ec2f4a07c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6f1223d90e564d2383e580c8691ba606": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3118c2347b4149968d7fc429e1e05424", "placeholder": "\u200b", "style": "IPY_MODEL_244f2e03519647ef80fd5b9ec2f4a07c", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200714.4MB/s]"}}, "fc7e413be3774270b305078d2f871996": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91680264013d4cbfa7cb9bcc772aa8cc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dccc684188d04cefbb15bf0d76497a39", "IPY_MODEL_ff7eefd88abd49e78dbc896bd09a4eb9", "IPY_MODEL_6f1223d90e564d2383e580c8691ba606"], "layout": "IPY_MODEL_fc7e413be3774270b305078d2f871996", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"1aea1d112c054eec950bd686a0ca1d14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e83b02ee750444739a17f78b4d3f184f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "dcd54291f5a341bb9379d41671c00d95": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1aea1d112c054eec950bd686a0ca1d14", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e83b02ee750444739a17f78b4d3f184f", "tabbable": null, "tooltip": null, "value": 2041.0}}, "0f81bdbdfded4d61a103fbc884fdb8b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d7ac88820da9447ebde38eee5408d525": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bfc1a00c4e8f4270af1f947f378411f7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0f81bdbdfded4d61a103fbc884fdb8b7", "placeholder": "\u200b", "style": "IPY_MODEL_d7ac88820da9447ebde38eee5408d525", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "cec08439b11541149be6a96ed609992c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95a7d374743e47b785481b53802557f9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bec49e231d374b619cca6a3dbb6c9b4f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cec08439b11541149be6a96ed609992c", "placeholder": "\u200b", "style": "IPY_MODEL_95a7d374743e47b785481b53802557f9", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007514kB/s]"}}, "5375b29786b24fc182c5b06dc46c21f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "295a0df817014d6fbb6377dcc33be2b3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bfc1a00c4e8f4270af1f947f378411f7", "IPY_MODEL_dcd54291f5a341bb9379d41671c00d95", "IPY_MODEL_bec49e231d374b619cca6a3dbb6c9b4f"], "layout": "IPY_MODEL_5375b29786b24fc182c5b06dc46c21f5", "tabbable": null, "tooltip": null}}, "09e511f313fe4deaa3db651dc2ad1f38": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff0fbdda3a2745cab371f835eea2071a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e4e0fafef42746d1a3f83998a48e68fb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_09e511f313fe4deaa3db651dc2ad1f38", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ff0fbdda3a2745cab371f835eea2071a", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "8a3fcca569d54278b1f243ca468eb2e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8bef6ec94b841649328908a1e03f796": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b1eae32f9cd4561b35edcb6a450623c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8a3fcca569d54278b1f243ca468eb2e8", "placeholder": "\u200b", "style": "IPY_MODEL_e8bef6ec94b841649328908a1e03f796", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "f8e6a2a4f4ac44968d7ab7e8b41cd9e5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd7987d5664246479c5c48a19962bcff": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b61aaac35e2a498c8712ccc1a79e72b4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f8e6a2a4f4ac44968d7ab7e8b41cd9e5", "placeholder": "\u200b", "style": "IPY_MODEL_fd7987d5664246479c5c48a19962bcff", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200733.4MB/s]"}}, "13b1cd45cfea4f85bfb6caa46af5a63a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b63774c214c467f836bfdcb44bf9b9f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7b1eae32f9cd4561b35edcb6a450623c", "IPY_MODEL_e4e0fafef42746d1a3f83998a48e68fb", "IPY_MODEL_b61aaac35e2a498c8712ccc1a79e72b4"], "layout": "IPY_MODEL_13b1cd45cfea4f85bfb6caa46af5a63a", "tabbable": null, "tooltip": null}}, "feef464c625b4ce98e733ec61ac7047a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "67c2bbd993f544be9aaa55f1059ee0c5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9926def0468e4ef78a40becf734e408b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_feef464c625b4ce98e733ec61ac7047a", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_67c2bbd993f544be9aaa55f1059ee0c5", "tabbable": null, "tooltip": null, "value": 3201.0}}, "efde3254ff184e58b1e14968ab98b2eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e51bddc0c26e45c28f6280a03fa6c570": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d3aabef313ae48b184adb3612e11f7c0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_efde3254ff184e58b1e14968ab98b2eb", "placeholder": "\u200b", "style": "IPY_MODEL_e51bddc0c26e45c28f6280a03fa6c570", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "d05aa5c2f7ed4f049aeb55cefb06f57f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df36694caa324dc08d075a690e55fed5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5de7ce2185e149b199420cef3937b004": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d05aa5c2f7ed4f049aeb55cefb06f57f", "placeholder": "\u200b", "style": "IPY_MODEL_df36694caa324dc08d075a690e55fed5", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007860kB/s]"}}, "cad71209689044bf95c6a56cd4254c5d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d0cc257082a482b8a9c20f2623d1dd0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d3aabef313ae48b184adb3612e11f7c0", "IPY_MODEL_9926def0468e4ef78a40becf734e408b", "IPY_MODEL_5de7ce2185e149b199420cef3937b004"], "layout": "IPY_MODEL_cad71209689044bf95c6a56cd4254c5d", "tabbable": null, "tooltip": null}}, "1c18c2753518415ea3cf39b985a054ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc925d23337a4990bcbb6ad1d3ba0714": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cfb6db0858744f68a8074c3433dec014": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c18c2753518415ea3cf39b985a054ad", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bc925d23337a4990bcbb6ad1d3ba0714", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "6c2f4eab88df4fcfbf60ea1461b407fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47f71961c8254da1a0cb8fe2f90ef9f5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0160f38ecac34b8a9a6e60b79941cb42": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6c2f4eab88df4fcfbf60ea1461b407fb", "placeholder": "\u200b", "style": "IPY_MODEL_47f71961c8254da1a0cb8fe2f90ef9f5", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "7b142eabfac84901b7edb8e5cf1db87e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "751e8bbb861243c0b292b81647f5a7c8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1b43dce850cb49019716fe7f052cd3f9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b142eabfac84901b7edb8e5cf1db87e", "placeholder": "\u200b", "style": "IPY_MODEL_751e8bbb861243c0b292b81647f5a7c8", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200732.9MB/s]"}}, "5f9ac971b36144c99f166c6afca8b98c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48203e358e5e4c599815faec66f84717": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0160f38ecac34b8a9a6e60b79941cb42", "IPY_MODEL_cfb6db0858744f68a8074c3433dec014", "IPY_MODEL_1b43dce850cb49019716fe7f052cd3f9"], "layout": "IPY_MODEL_5f9ac971b36144c99f166c6afca8b98c", "tabbable": null, "tooltip": null}}, "edb975a882cd4029ab886291208a5a5c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "386b0038b80f44249027e46144d33c35": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ec7119530ac242a8bf5cd0417e5460c5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_edb975a882cd4029ab886291208a5a5c", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_386b0038b80f44249027e46144d33c35", "tabbable": null, "tooltip": null, "value": 128619.0}}, "9be1debd539947d495510d3e71e91a33": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9593182600264e2aa5c5035fced2937b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1965785719184160b13d07134d9c01cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9be1debd539947d495510d3e71e91a33", "placeholder": "\u200b", "style": "IPY_MODEL_9593182600264e2aa5c5035fced2937b", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "7c6fa0df6a7a4993ae1942f5e66eb942": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe2e22def9dd4fb9b35244ac0e211f6d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dc42c71988f64ceba56aa56cc9c662d3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7c6fa0df6a7a4993ae1942f5e66eb942", "placeholder": "\u200b", "style": "IPY_MODEL_fe2e22def9dd4fb9b35244ac0e211f6d", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20077.29MB/s]"}}, "5a7fcc571ae3417ca7f32e5ac2e0f7ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f26aa1a5503c462e89477a33079f160a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1965785719184160b13d07134d9c01cd", "IPY_MODEL_ec7119530ac242a8bf5cd0417e5460c5", "IPY_MODEL_dc42c71988f64ceba56aa56cc9c662d3"], "layout": "IPY_MODEL_5a7fcc571ae3417ca7f32e5ac2e0f7ed", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 61356dbf7..411158583 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:53.574986Z", - "iopub.status.busy": "2024-06-25T15:57:53.574636Z", - "iopub.status.idle": "2024-06-25T15:57:58.878661Z", - "shell.execute_reply": "2024-06-25T15:57:58.878016Z" + "iopub.execute_input": "2024-06-25T19:31:53.133508Z", + "iopub.status.busy": "2024-06-25T19:31:53.133336Z", + "iopub.status.idle": "2024-06-25T19:31:58.248746Z", + "shell.execute_reply": "2024-06-25T19:31:58.248110Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:58.881414Z", - "iopub.status.busy": "2024-06-25T15:57:58.881062Z", - "iopub.status.idle": "2024-06-25T15:57:58.884692Z", - "shell.execute_reply": "2024-06-25T15:57:58.884193Z" + "iopub.execute_input": "2024-06-25T19:31:58.251604Z", + "iopub.status.busy": "2024-06-25T19:31:58.251034Z", + "iopub.status.idle": "2024-06-25T19:31:58.254389Z", + "shell.execute_reply": "2024-06-25T19:31:58.253843Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:57:58.886667Z", - "iopub.status.busy": "2024-06-25T15:57:58.886484Z", - "iopub.status.idle": "2024-06-25T15:57:58.891096Z", - "shell.execute_reply": "2024-06-25T15:57:58.890667Z" + "iopub.execute_input": "2024-06-25T19:31:58.256549Z", + "iopub.status.busy": "2024-06-25T19:31:58.256239Z", + "iopub.status.idle": "2024-06-25T19:31:58.260899Z", + "shell.execute_reply": "2024-06-25T19:31:58.260338Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T15:57:58.893216Z", - "iopub.status.busy": "2024-06-25T15:57:58.892795Z", - "iopub.status.idle": "2024-06-25T15:58:00.458023Z", - "shell.execute_reply": "2024-06-25T15:58:00.457361Z" + "iopub.execute_input": "2024-06-25T19:31:58.263210Z", + "iopub.status.busy": "2024-06-25T19:31:58.262770Z", + "iopub.status.idle": "2024-06-25T19:32:00.256796Z", + "shell.execute_reply": "2024-06-25T19:32:00.256144Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:00.460829Z", - "iopub.status.busy": "2024-06-25T15:58:00.460597Z", - "iopub.status.idle": "2024-06-25T15:58:00.471006Z", - "shell.execute_reply": "2024-06-25T15:58:00.470503Z" + "iopub.execute_input": "2024-06-25T19:32:00.259356Z", + "iopub.status.busy": "2024-06-25T19:32:00.259045Z", + "iopub.status.idle": "2024-06-25T19:32:00.269498Z", + "shell.execute_reply": "2024-06-25T19:32:00.269022Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:00.473086Z", - "iopub.status.busy": "2024-06-25T15:58:00.472895Z", - "iopub.status.idle": "2024-06-25T15:58:00.478477Z", - "shell.execute_reply": "2024-06-25T15:58:00.477902Z" + "iopub.execute_input": "2024-06-25T19:32:00.271550Z", + "iopub.status.busy": "2024-06-25T19:32:00.271221Z", + "iopub.status.idle": "2024-06-25T19:32:00.276417Z", + "shell.execute_reply": "2024-06-25T19:32:00.275932Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:00.480665Z", - "iopub.status.busy": "2024-06-25T15:58:00.480338Z", - "iopub.status.idle": "2024-06-25T15:58:00.954220Z", - "shell.execute_reply": "2024-06-25T15:58:00.953712Z" + "iopub.execute_input": "2024-06-25T19:32:00.278484Z", + "iopub.status.busy": "2024-06-25T19:32:00.278163Z", + "iopub.status.idle": "2024-06-25T19:32:00.762955Z", + "shell.execute_reply": "2024-06-25T19:32:00.762362Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:00.956614Z", - "iopub.status.busy": "2024-06-25T15:58:00.956173Z", - "iopub.status.idle": "2024-06-25T15:58:01.438982Z", - "shell.execute_reply": "2024-06-25T15:58:01.438478Z" + "iopub.execute_input": "2024-06-25T19:32:00.765136Z", + "iopub.status.busy": "2024-06-25T19:32:00.764811Z", + "iopub.status.idle": "2024-06-25T19:32:03.050183Z", + "shell.execute_reply": "2024-06-25T19:32:03.049698Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:01.441315Z", - "iopub.status.busy": "2024-06-25T15:58:01.441128Z", - "iopub.status.idle": "2024-06-25T15:58:01.459552Z", - "shell.execute_reply": "2024-06-25T15:58:01.459081Z" + "iopub.execute_input": "2024-06-25T19:32:03.052760Z", + "iopub.status.busy": "2024-06-25T19:32:03.052414Z", + "iopub.status.idle": "2024-06-25T19:32:03.070136Z", + "shell.execute_reply": "2024-06-25T19:32:03.069620Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:01.461549Z", - "iopub.status.busy": "2024-06-25T15:58:01.461369Z", - "iopub.status.idle": "2024-06-25T15:58:01.464689Z", - "shell.execute_reply": "2024-06-25T15:58:01.464225Z" + "iopub.execute_input": "2024-06-25T19:32:03.072148Z", + "iopub.status.busy": "2024-06-25T19:32:03.071949Z", + "iopub.status.idle": "2024-06-25T19:32:03.075039Z", + "shell.execute_reply": "2024-06-25T19:32:03.074605Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:01.466733Z", - "iopub.status.busy": "2024-06-25T15:58:01.466330Z", - "iopub.status.idle": "2024-06-25T15:58:16.569337Z", - "shell.execute_reply": "2024-06-25T15:58:16.568728Z" + "iopub.execute_input": "2024-06-25T19:32:03.077054Z", + "iopub.status.busy": "2024-06-25T19:32:03.076730Z", + "iopub.status.idle": "2024-06-25T19:32:17.091941Z", + "shell.execute_reply": "2024-06-25T19:32:17.091336Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:16.572028Z", - "iopub.status.busy": "2024-06-25T15:58:16.571713Z", - "iopub.status.idle": "2024-06-25T15:58:16.575428Z", - "shell.execute_reply": "2024-06-25T15:58:16.574887Z" + "iopub.execute_input": "2024-06-25T19:32:17.094601Z", + "iopub.status.busy": "2024-06-25T19:32:17.094212Z", + "iopub.status.idle": "2024-06-25T19:32:17.098282Z", + "shell.execute_reply": "2024-06-25T19:32:17.097813Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:16.577578Z", - "iopub.status.busy": "2024-06-25T15:58:16.577366Z", - "iopub.status.idle": "2024-06-25T15:58:17.286022Z", - "shell.execute_reply": "2024-06-25T15:58:17.285427Z" + "iopub.execute_input": "2024-06-25T19:32:17.100415Z", + "iopub.status.busy": "2024-06-25T19:32:17.100030Z", + "iopub.status.idle": "2024-06-25T19:32:17.781950Z", + "shell.execute_reply": "2024-06-25T19:32:17.781387Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.288949Z", - "iopub.status.busy": "2024-06-25T15:58:17.288536Z", - "iopub.status.idle": "2024-06-25T15:58:17.293352Z", - "shell.execute_reply": "2024-06-25T15:58:17.292862Z" + "iopub.execute_input": "2024-06-25T19:32:17.785604Z", + "iopub.status.busy": "2024-06-25T19:32:17.784675Z", + "iopub.status.idle": "2024-06-25T19:32:17.791417Z", + "shell.execute_reply": "2024-06-25T19:32:17.790891Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.295834Z", - "iopub.status.busy": "2024-06-25T15:58:17.295506Z", - "iopub.status.idle": "2024-06-25T15:58:17.421027Z", - "shell.execute_reply": "2024-06-25T15:58:17.420350Z" + "iopub.execute_input": "2024-06-25T19:32:17.794921Z", + "iopub.status.busy": "2024-06-25T19:32:17.794005Z", + "iopub.status.idle": "2024-06-25T19:32:17.890859Z", + "shell.execute_reply": "2024-06-25T19:32:17.890238Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.423465Z", - "iopub.status.busy": "2024-06-25T15:58:17.422989Z", - "iopub.status.idle": "2024-06-25T15:58:17.435208Z", - "shell.execute_reply": "2024-06-25T15:58:17.434745Z" + "iopub.execute_input": "2024-06-25T19:32:17.893215Z", + "iopub.status.busy": "2024-06-25T19:32:17.892852Z", + "iopub.status.idle": "2024-06-25T19:32:17.904591Z", + "shell.execute_reply": "2024-06-25T19:32:17.904119Z" }, "scrolled": true }, @@ -880,10 +880,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.437377Z", - "iopub.status.busy": "2024-06-25T15:58:17.436984Z", - "iopub.status.idle": "2024-06-25T15:58:17.446255Z", - "shell.execute_reply": "2024-06-25T15:58:17.445506Z" + "iopub.execute_input": "2024-06-25T19:32:17.906706Z", + "iopub.status.busy": "2024-06-25T19:32:17.906385Z", + "iopub.status.idle": "2024-06-25T19:32:17.914138Z", + "shell.execute_reply": "2024-06-25T19:32:17.913686Z" } }, "outputs": [ @@ -987,10 +987,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.449005Z", - "iopub.status.busy": "2024-06-25T15:58:17.448791Z", - "iopub.status.idle": "2024-06-25T15:58:17.454019Z", - "shell.execute_reply": "2024-06-25T15:58:17.453459Z" + "iopub.execute_input": "2024-06-25T19:32:17.916135Z", + "iopub.status.busy": "2024-06-25T19:32:17.915799Z", + "iopub.status.idle": "2024-06-25T19:32:17.919765Z", + "shell.execute_reply": "2024-06-25T19:32:17.919222Z" } }, "outputs": [ @@ -1028,10 +1028,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.456225Z", - "iopub.status.busy": "2024-06-25T15:58:17.455886Z", - "iopub.status.idle": "2024-06-25T15:58:17.461981Z", - "shell.execute_reply": "2024-06-25T15:58:17.461536Z" + "iopub.execute_input": "2024-06-25T19:32:17.921837Z", + "iopub.status.busy": "2024-06-25T19:32:17.921500Z", + "iopub.status.idle": "2024-06-25T19:32:17.926898Z", + "shell.execute_reply": "2024-06-25T19:32:17.926399Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1158,10 +1158,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.463997Z", - "iopub.status.busy": "2024-06-25T15:58:17.463674Z", - "iopub.status.idle": "2024-06-25T15:58:17.576233Z", - "shell.execute_reply": "2024-06-25T15:58:17.575741Z" + "iopub.execute_input": "2024-06-25T19:32:17.929118Z", + "iopub.status.busy": "2024-06-25T19:32:17.928697Z", + "iopub.status.idle": "2024-06-25T19:32:18.039116Z", + "shell.execute_reply": "2024-06-25T19:32:18.038547Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1215,10 +1215,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.578257Z", - "iopub.status.busy": "2024-06-25T15:58:17.578065Z", - "iopub.status.idle": "2024-06-25T15:58:17.685180Z", - "shell.execute_reply": "2024-06-25T15:58:17.684558Z" + "iopub.execute_input": "2024-06-25T19:32:18.041334Z", + "iopub.status.busy": "2024-06-25T19:32:18.040985Z", + "iopub.status.idle": "2024-06-25T19:32:18.143028Z", + "shell.execute_reply": "2024-06-25T19:32:18.142549Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1263,10 +1263,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.687562Z", - "iopub.status.busy": "2024-06-25T15:58:17.687202Z", - "iopub.status.idle": "2024-06-25T15:58:17.799152Z", - "shell.execute_reply": "2024-06-25T15:58:17.798579Z" + "iopub.execute_input": "2024-06-25T19:32:18.145023Z", + "iopub.status.busy": "2024-06-25T19:32:18.144735Z", + "iopub.status.idle": "2024-06-25T19:32:18.245208Z", + "shell.execute_reply": "2024-06-25T19:32:18.244749Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1307,10 +1307,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.801479Z", - "iopub.status.busy": "2024-06-25T15:58:17.801009Z", - "iopub.status.idle": "2024-06-25T15:58:17.905775Z", - "shell.execute_reply": "2024-06-25T15:58:17.905244Z" + "iopub.execute_input": "2024-06-25T19:32:18.247314Z", + "iopub.status.busy": "2024-06-25T19:32:18.246984Z", + "iopub.status.idle": "2024-06-25T19:32:18.345698Z", + "shell.execute_reply": "2024-06-25T19:32:18.345236Z" } }, "outputs": [ @@ -1358,10 +1358,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:17.907932Z", - "iopub.status.busy": "2024-06-25T15:58:17.907716Z", - "iopub.status.idle": "2024-06-25T15:58:17.910988Z", - "shell.execute_reply": "2024-06-25T15:58:17.910455Z" + "iopub.execute_input": "2024-06-25T19:32:18.347691Z", + "iopub.status.busy": "2024-06-25T19:32:18.347361Z", + "iopub.status.idle": "2024-06-25T19:32:18.350505Z", + "shell.execute_reply": "2024-06-25T19:32:18.349977Z" }, "nbsphinx": "hidden" }, @@ -1402,7 +1402,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04c1460997a64fbcb37cb6c69b9ffe41": { + "0160f38ecac34b8a9a6e60b79941cb42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6c2f4eab88df4fcfbf60ea1461b407fb", + "placeholder": "​", + "style": "IPY_MODEL_47f71961c8254da1a0cb8fe2f90ef9f5", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "09e511f313fe4deaa3db651dc2ad1f38": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1455,7 +1478,7 @@ "width": null } }, - "04c88654d3f543ab85529d4aeec77fbd": { + "0f81bdbdfded4d61a103fbc884fdb8b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,41 +1531,7 @@ "width": null } }, - "05c6abdadb1346afaa01d27f04090824": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "068abc1331354ca990bc36cb91da9823": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "090589ff9f39498ca1f99ff60ab1c976": { + "13b1cd45cfea4f85bfb6caa46af5a63a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1595,78 +1584,30 @@ "width": null } }, - "244f2e03519647ef80fd5b9ec2f4a07c": { + "1965785719184160b13d07134d9c01cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "253ecc11f6e14b0fbcf1ef8f9a102b76": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9be1debd539947d495510d3e71e91a33", + "placeholder": "​", + "style": "IPY_MODEL_9593182600264e2aa5c5035fced2937b", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" } }, - "2aff0e0f157f4f1c9ee5c658ea400e97": { + "1aea1d112c054eec950bd686a0ca1d14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1719,25 +1660,30 @@ "width": null } }, - "2b9bd57e493742ea94d21fa872209bac": { + "1b43dce850cb49019716fe7f052cd3f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b142eabfac84901b7edb8e5cf1db87e", + "placeholder": "​", + "style": "IPY_MODEL_751e8bbb861243c0b292b81647f5a7c8", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 32.9MB/s]" } }, - "3118c2347b4149968d7fc429e1e05424": { + "1c18c2753518415ea3cf39b985a054ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,83 +1736,65 @@ "width": null } }, - "3e141e4d74bd4968878f2d73ed082233": { + "295a0df817014d6fbb6377dcc33be2b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b739994f6f094e8fb31a7f30c92e0e78", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b6a9a250f3af4bb8a78b9fffb50238d2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bfc1a00c4e8f4270af1f947f378411f7", + "IPY_MODEL_dcd54291f5a341bb9379d41671c00d95", + "IPY_MODEL_bec49e231d374b619cca6a3dbb6c9b4f" + ], + "layout": "IPY_MODEL_5375b29786b24fc182c5b06dc46c21f5", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "429d226ffba44e43961b6a8aaef654a7": { + "386b0038b80f44249027e46144d33c35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4fca547438d343959e3f3ef409073e93", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cdac77ebf7e94e3d8507aaaba9a233e1", - "tabbable": null, - "tooltip": null, - "value": 3201.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4372ea2d98334b4eb94562a7cbb24f31": { + "47f71961c8254da1a0cb8fe2f90ef9f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eef2ecb4e514450f8e2172c513bd4460", - "IPY_MODEL_53100b03d918413aaa9d7401dcd4d750", - "IPY_MODEL_eefeedbabeb84cb8bd9df712f4385c3b" - ], - "layout": "IPY_MODEL_090589ff9f39498ca1f99ff60ab1c976", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "47cafb795e7f4c488c16de46ced2f28d": { + "48203e358e5e4c599815faec66f84717": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1881,42 +1809,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_93e648c6842a4874b8fc33308b1abd4c", - "IPY_MODEL_429d226ffba44e43961b6a8aaef654a7", - "IPY_MODEL_b50a835dbc8c4a6e8ab6bb49a7084ed7" + "IPY_MODEL_0160f38ecac34b8a9a6e60b79941cb42", + "IPY_MODEL_cfb6db0858744f68a8074c3433dec014", + "IPY_MODEL_1b43dce850cb49019716fe7f052cd3f9" ], - "layout": "IPY_MODEL_8cebdc1b91f3439d863ced6237642006", + "layout": "IPY_MODEL_5f9ac971b36144c99f166c6afca8b98c", "tabbable": null, "tooltip": null } }, - "4c6a98bfb2254522851b0861f1a4f68c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2aff0e0f157f4f1c9ee5c658ea400e97", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e7530698066d46efb1bfcd51a16e2b33", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "4d1da1846cd64ad696f3d624044fa65d": { + "5375b29786b24fc182c5b06dc46c21f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1969,25 +1871,7 @@ "width": null } }, - "4d8b7c4ba48e4288942c77b5f89ae9be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4fca547438d343959e3f3ef409073e93": { + "5a7fcc571ae3417ca7f32e5ac2e0f7ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2040,34 +1924,55 @@ "width": null } }, - "53100b03d918413aaa9d7401dcd4d750": { + "5b63774c214c467f836bfdcb44bf9b9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6df13d23e18d4a4dbdeaf7bb238a82e5", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_068abc1331354ca990bc36cb91da9823", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b1eae32f9cd4561b35edcb6a450623c", + "IPY_MODEL_e4e0fafef42746d1a3f83998a48e68fb", + "IPY_MODEL_b61aaac35e2a498c8712ccc1a79e72b4" + ], + "layout": "IPY_MODEL_13b1cd45cfea4f85bfb6caa46af5a63a", "tabbable": null, - "tooltip": null, - "value": 2041.0 + "tooltip": null } }, - "5483865a4d45454ea2090e4e334d77c4": { - "model_module": "@jupyter-widgets/base", + "5de7ce2185e149b199420cef3937b004": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d05aa5c2f7ed4f049aeb55cefb06f57f", + "placeholder": "​", + "style": "IPY_MODEL_df36694caa324dc08d075a690e55fed5", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 860kB/s]" + } + }, + "5f9ac971b36144c99f166c6afca8b98c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -2119,49 +2024,23 @@ "width": null } }, - "67b526edd8ef48bbb5f57aeb9586d6cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc2dd42caba34a1d9b5f3db96c603673", - "IPY_MODEL_4c6a98bfb2254522851b0861f1a4f68c", - "IPY_MODEL_cda6a31a7a4f4bef9da3b78221365fbe" - ], - "layout": "IPY_MODEL_795cc1742b54461e846f7b824afdcdd2", - "tabbable": null, - "tooltip": null - } - }, - "6a5c5a7cb7754e32b6b63ce195b7dc8f": { + "67c2bbd993f544be9aaa55f1059ee0c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6df13d23e18d4a4dbdeaf7bb238a82e5": { + "6c2f4eab88df4fcfbf60ea1461b407fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2214,30 +2093,7 @@ "width": null } }, - "6f1223d90e564d2383e580c8691ba606": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3118c2347b4149968d7fc429e1e05424", - "placeholder": "​", - "style": "IPY_MODEL_244f2e03519647ef80fd5b9ec2f4a07c", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 14.4MB/s]" - } - }, - "6f9996dacebd4eda816d13ebbbb39009": { + "751e8bbb861243c0b292b81647f5a7c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2255,7 +2111,7 @@ "text_color": null } }, - "728aab2243bd42bb8f1fae0328b5853a": { + "7b142eabfac84901b7edb8e5cf1db87e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2308,25 +2164,30 @@ "width": null } }, - "760e67177d7549f7abee17ec6867b7f2": { + "7b1eae32f9cd4561b35edcb6a450623c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8a3fcca569d54278b1f243ca468eb2e8", + "placeholder": "​", + "style": "IPY_MODEL_e8bef6ec94b841649328908a1e03f796", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" } }, - "795cc1742b54461e846f7b824afdcdd2": { + "7c6fa0df6a7a4993ae1942f5e66eb942": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2379,7 +2240,7 @@ "width": null } }, - "8cebdc1b91f3439d863ced6237642006": { + "8a3fcca569d54278b1f243ca468eb2e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2432,7 +2293,7 @@ "width": null } }, - "91680264013d4cbfa7cb9bcc772aa8cc": { + "8d0cc257082a482b8a9c20f2623d1dd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2447,39 +2308,131 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dccc684188d04cefbb15bf0d76497a39", - "IPY_MODEL_ff7eefd88abd49e78dbc896bd09a4eb9", - "IPY_MODEL_6f1223d90e564d2383e580c8691ba606" + "IPY_MODEL_d3aabef313ae48b184adb3612e11f7c0", + "IPY_MODEL_9926def0468e4ef78a40becf734e408b", + "IPY_MODEL_5de7ce2185e149b199420cef3937b004" ], - "layout": "IPY_MODEL_fc7e413be3774270b305078d2f871996", + "layout": "IPY_MODEL_cad71209689044bf95c6a56cd4254c5d", "tabbable": null, "tooltip": null } }, - "93e648c6842a4874b8fc33308b1abd4c": { + "9593182600264e2aa5c5035fced2937b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "95a7d374743e47b785481b53802557f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9926def0468e4ef78a40becf734e408b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_728aab2243bd42bb8f1fae0328b5853a", - "placeholder": "​", - "style": "IPY_MODEL_aa208fea6f58477fbb9d21f24c1bc0d5", + "layout": "IPY_MODEL_feef464c625b4ce98e733ec61ac7047a", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67c2bbd993f544be9aaa55f1059ee0c5", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": 3201.0 + } + }, + "9be1debd539947d495510d3e71e91a33": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a23a1b5568824f76983446fb0c8084db": { + "b61aaac35e2a498c8712ccc1a79e72b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2494,57 +2447,54 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4671694170e4224a23eb39f1195a740", + "layout": "IPY_MODEL_f8e6a2a4f4ac44968d7ab7e8b41cd9e5", "placeholder": "​", - "style": "IPY_MODEL_cb1f3251d0bd4b1289c165ed61e34cd6", + "style": "IPY_MODEL_fd7987d5664246479c5c48a19962bcff", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": " 16.9M/16.9M [00:00<00:00, 33.4MB/s]" } }, - "aa208fea6f58477fbb9d21f24c1bc0d5": { + "bc925d23337a4990bcbb6ad1d3ba0714": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b0d51f044d634fb999c79b3d4f80669d": { + "bec49e231d374b619cca6a3dbb6c9b4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a23a1b5568824f76983446fb0c8084db", - "IPY_MODEL_3e141e4d74bd4968878f2d73ed082233", - "IPY_MODEL_d5d78932f8ca49ecbcd6c05778f48f6d" - ], - "layout": "IPY_MODEL_b619d8eff71b47828e0ac9823f65da9d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cec08439b11541149be6a96ed609992c", + "placeholder": "​", + "style": "IPY_MODEL_95a7d374743e47b785481b53802557f9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 514kB/s]" } }, - "b50a835dbc8c4a6e8ab6bb49a7084ed7": { + "bfc1a00c4e8f4270af1f947f378411f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2559,15 +2509,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5483865a4d45454ea2090e4e334d77c4", + "layout": "IPY_MODEL_0f81bdbdfded4d61a103fbc884fdb8b7", "placeholder": "​", - "style": "IPY_MODEL_6a5c5a7cb7754e32b6b63ce195b7dc8f", + "style": "IPY_MODEL_d7ac88820da9447ebde38eee5408d525", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 776kB/s]" + "value": "hyperparams.yaml: 100%" } }, - "b619d8eff71b47828e0ac9823f65da9d": { + "cad71209689044bf95c6a56cd4254c5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2620,23 +2570,7 @@ "width": null } }, - "b6a9a250f3af4bb8a78b9fffb50238d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b739994f6f094e8fb31a7f30c92e0e78": { + "cec08439b11541149be6a96ed609992c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2689,7 +2623,33 @@ "width": null } }, - "c0be3c413fa84165bf2ea1832e22614e": { + "cfb6db0858744f68a8074c3433dec014": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1c18c2753518415ea3cf39b985a054ad", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc925d23337a4990bcbb6ad1d3ba0714", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "d05aa5c2f7ed4f049aeb55cefb06f57f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2742,16 +2702,39 @@ "width": null } }, - "cb1f3251d0bd4b1289c165ed61e34cd6": { + "d3aabef313ae48b184adb3612e11f7c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_efde3254ff184e58b1e14968ab98b2eb", + "placeholder": "​", + "style": "IPY_MODEL_e51bddc0c26e45c28f6280a03fa6c570", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "d7ac88820da9447ebde38eee5408d525": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, @@ -2760,7 +2743,7 @@ "text_color": null } }, - "cda6a31a7a4f4bef9da3b78221365fbe": { + "dc42c71988f64ceba56aa56cc9c662d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2775,15 +2758,103 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d13977631c874482b109d9f437c6237d", + "layout": "IPY_MODEL_7c6fa0df6a7a4993ae1942f5e66eb942", "placeholder": "​", - "style": "IPY_MODEL_05c6abdadb1346afaa01d27f04090824", + "style": "IPY_MODEL_fe2e22def9dd4fb9b35244ac0e211f6d", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 7.29MB/s]" + } + }, + "dcd54291f5a341bb9379d41671c00d95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1aea1d112c054eec950bd686a0ca1d14", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e83b02ee750444739a17f78b4d3f184f", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 320MB/s]" + "value": 2041.0 + } + }, + "df36694caa324dc08d075a690e55fed5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cdac77ebf7e94e3d8507aaaba9a233e1": { + "e4e0fafef42746d1a3f83998a48e68fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_09e511f313fe4deaa3db651dc2ad1f38", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ff0fbdda3a2745cab371f835eea2071a", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "e51bddc0c26e45c28f6280a03fa6c570": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e83b02ee750444739a17f78b4d3f184f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2799,7 +2870,51 @@ "description_width": "" } }, - "cde43d54c9754fef94a61e5245b5633f": { + "e8bef6ec94b841649328908a1e03f796": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ec7119530ac242a8bf5cd0417e5460c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_edb975a882cd4029ab886291208a5a5c", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_386b0038b80f44249027e46144d33c35", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "edb975a882cd4029ab886291208a5a5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2852,7 +2967,7 @@ "width": null } }, - "d13977631c874482b109d9f437c6237d": { + "efde3254ff184e58b1e14968ab98b2eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2905,7 +3020,31 @@ "width": null } }, - "d4671694170e4224a23eb39f1195a740": { + "f26aa1a5503c462e89477a33079f160a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1965785719184160b13d07134d9c01cd", + "IPY_MODEL_ec7119530ac242a8bf5cd0417e5460c5", + "IPY_MODEL_dc42c71988f64ceba56aa56cc9c662d3" + ], + "layout": "IPY_MODEL_5a7fcc571ae3417ca7f32e5ac2e0f7ed", + "tabbable": null, + "tooltip": null + } + }, + "f8e6a2a4f4ac44968d7ab7e8b41cd9e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2958,131 +3097,25 @@ "width": null } }, - "d5d78932f8ca49ecbcd6c05778f48f6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cde43d54c9754fef94a61e5245b5633f", - "placeholder": "​", - "style": "IPY_MODEL_6f9996dacebd4eda816d13ebbbb39009", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 267MB/s]" - } - }, - "dccc684188d04cefbb15bf0d76497a39": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_253ecc11f6e14b0fbcf1ef8f9a102b76", - "placeholder": "​", - "style": "IPY_MODEL_4d8b7c4ba48e4288942c77b5f89ae9be", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "e082552719ed41c19243b32ac7f26ae5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e7530698066d46efb1bfcd51a16e2b33": { + "fd7987d5664246479c5c48a19962bcff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "eef2ecb4e514450f8e2172c513bd4460": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4d1da1846cd64ad696f3d624044fa65d", - "placeholder": "​", - "style": "IPY_MODEL_760e67177d7549f7abee17ec6867b7f2", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "eefeedbabeb84cb8bd9df712f4385c3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_04c88654d3f543ab85529d4aeec77fbd", - "placeholder": "​", - "style": "IPY_MODEL_2b9bd57e493742ea94d21fa872209bac", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 466kB/s]" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fa1a8a15a1a243d9a38ab1b16d362816": { + "fe2e22def9dd4fb9b35244ac0e211f6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3100,30 +3133,7 @@ "text_color": null } }, - "fc2dd42caba34a1d9b5f3db96c603673": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_04c1460997a64fbcb37cb6c69b9ffe41", - "placeholder": "​", - "style": "IPY_MODEL_fa1a8a15a1a243d9a38ab1b16d362816", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "fc7e413be3774270b305078d2f871996": { + "feef464c625b4ce98e733ec61ac7047a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3176,30 +3186,20 @@ "width": null } }, - "ff7eefd88abd49e78dbc896bd09a4eb9": { + "ff0fbdda3a2745cab371f835eea2071a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c0be3c413fa84165bf2ea1832e22614e", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e082552719ed41c19243b32ac7f26ae5", - "tabbable": null, - "tooltip": null, - "value": 128619.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index c83629a89..e73adf499 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -384,6 +384,15 @@ >
  • +
  • + v2.6.6 +
  • +
  • Functionality 2: Specifying nondefault arguments
    -
    +
    @@ -1570,7 +1579,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"750684e0bfa74ecea63a2bdeb44f2798": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec7216196af648b5ac0a8eeda2747a1f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9aa274aba43248e9aa8d4016df7991d1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_750684e0bfa74ecea63a2bdeb44f2798", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ec7216196af648b5ac0a8eeda2747a1f", "tabbable": null, "tooltip": null, "value": 132.0}}, "ce0acf5cc60c49ab9a2cd5d40c22e10f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85a98cab40374fcb90e65c35a91c02cc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fe98e75c68304a7a8aca3848e7064603": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ce0acf5cc60c49ab9a2cd5d40c22e10f", "placeholder": "\u200b", "style": "IPY_MODEL_85a98cab40374fcb90e65c35a91c02cc", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "8d520dc52351467b9236ddaadf73964a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c68ac25651a84e288cca27828647822f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f2fb02baf6c44691955b457208474072": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d520dc52351467b9236ddaadf73964a", "placeholder": "\u200b", "style": "IPY_MODEL_c68ac25651a84e288cca27828647822f", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u20079943.93\u2007examples/s]"}}, "5aa8efc7b1e844fe91de611ebbee3c05": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c9ec6fabbe6c4abea1031a6070168164": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fe98e75c68304a7a8aca3848e7064603", "IPY_MODEL_9aa274aba43248e9aa8d4016df7991d1", "IPY_MODEL_f2fb02baf6c44691955b457208474072"], "layout": "IPY_MODEL_5aa8efc7b1e844fe91de611ebbee3c05", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"31beebcbb1ed40e98e72f51b7111d288": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "495eb3b3071f43e1bf30631ee18ec38f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e905864ed9704e29b5c76d93504b2f9f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31beebcbb1ed40e98e72f51b7111d288", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_495eb3b3071f43e1bf30631ee18ec38f", "tabbable": null, "tooltip": null, "value": 132.0}}, "066581bfe5e048229e24f4456c525a9f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9790c7defa446cc93cb40beb3946950": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "514a0c7d656e41c7a0ef7156f7db70a4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_066581bfe5e048229e24f4456c525a9f", "placeholder": "\u200b", "style": "IPY_MODEL_e9790c7defa446cc93cb40beb3946950", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "74ffd90dc17c436bb5ca21cab1e64b31": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c1065c6e3be428aa1ed6d3ef05adb52": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5b75a7f5ee634ecbb513ceba0cf27697": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_74ffd90dc17c436bb5ca21cab1e64b31", "placeholder": "\u200b", "style": "IPY_MODEL_1c1065c6e3be428aa1ed6d3ef05adb52", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712588.35\u2007examples/s]"}}, "e0f1e9f09fb84534aee2fa9a795b3c91": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9160678898ef4935b4c5e9badf645887": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_514a0c7d656e41c7a0ef7156f7db70a4", "IPY_MODEL_e905864ed9704e29b5c76d93504b2f9f", "IPY_MODEL_5b75a7f5ee634ecbb513ceba0cf27697"], "layout": "IPY_MODEL_e0f1e9f09fb84534aee2fa9a795b3c91", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 81aa80744..33af481ea 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:21.508654Z", - "iopub.status.busy": "2024-06-25T15:58:21.508466Z", - "iopub.status.idle": "2024-06-25T15:58:22.732116Z", - "shell.execute_reply": "2024-06-25T15:58:22.731553Z" + "iopub.execute_input": "2024-06-25T19:32:21.525415Z", + "iopub.status.busy": "2024-06-25T19:32:21.525221Z", + "iopub.status.idle": "2024-06-25T19:32:22.681975Z", + "shell.execute_reply": "2024-06-25T19:32:22.681418Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:22.734467Z", - "iopub.status.busy": "2024-06-25T15:58:22.734178Z", - "iopub.status.idle": "2024-06-25T15:58:22.737360Z", - "shell.execute_reply": "2024-06-25T15:58:22.736793Z" + "iopub.execute_input": "2024-06-25T19:32:22.684626Z", + "iopub.status.busy": "2024-06-25T19:32:22.684217Z", + "iopub.status.idle": "2024-06-25T19:32:22.687052Z", + "shell.execute_reply": "2024-06-25T19:32:22.686634Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:22.739769Z", - "iopub.status.busy": "2024-06-25T15:58:22.739360Z", - "iopub.status.idle": "2024-06-25T15:58:22.748054Z", - "shell.execute_reply": "2024-06-25T15:58:22.747511Z" + "iopub.execute_input": "2024-06-25T19:32:22.689175Z", + "iopub.status.busy": "2024-06-25T19:32:22.688918Z", + "iopub.status.idle": "2024-06-25T19:32:22.697425Z", + "shell.execute_reply": "2024-06-25T19:32:22.696900Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:22.750448Z", - "iopub.status.busy": "2024-06-25T15:58:22.749977Z", - "iopub.status.idle": "2024-06-25T15:58:22.754907Z", - "shell.execute_reply": "2024-06-25T15:58:22.754372Z" + "iopub.execute_input": "2024-06-25T19:32:22.699485Z", + "iopub.status.busy": "2024-06-25T19:32:22.699153Z", + "iopub.status.idle": "2024-06-25T19:32:22.703881Z", + "shell.execute_reply": "2024-06-25T19:32:22.703445Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:22.757227Z", - "iopub.status.busy": "2024-06-25T15:58:22.756898Z", - "iopub.status.idle": "2024-06-25T15:58:22.946862Z", - "shell.execute_reply": "2024-06-25T15:58:22.946231Z" + "iopub.execute_input": "2024-06-25T19:32:22.706034Z", + "iopub.status.busy": "2024-06-25T19:32:22.705704Z", + "iopub.status.idle": "2024-06-25T19:32:22.888024Z", + "shell.execute_reply": "2024-06-25T19:32:22.887415Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:22.949395Z", - "iopub.status.busy": "2024-06-25T15:58:22.949076Z", - "iopub.status.idle": "2024-06-25T15:58:23.325053Z", - "shell.execute_reply": "2024-06-25T15:58:23.324436Z" + "iopub.execute_input": "2024-06-25T19:32:22.890902Z", + "iopub.status.busy": "2024-06-25T19:32:22.890533Z", + "iopub.status.idle": "2024-06-25T19:32:23.256766Z", + "shell.execute_reply": "2024-06-25T19:32:23.256201Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:23.327443Z", - "iopub.status.busy": "2024-06-25T15:58:23.327020Z", - "iopub.status.idle": "2024-06-25T15:58:23.350615Z", - "shell.execute_reply": "2024-06-25T15:58:23.350014Z" + "iopub.execute_input": "2024-06-25T19:32:23.259088Z", + "iopub.status.busy": "2024-06-25T19:32:23.258748Z", + "iopub.status.idle": "2024-06-25T19:32:23.281774Z", + "shell.execute_reply": "2024-06-25T19:32:23.281210Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:23.353033Z", - "iopub.status.busy": "2024-06-25T15:58:23.352490Z", - "iopub.status.idle": "2024-06-25T15:58:23.363837Z", - "shell.execute_reply": "2024-06-25T15:58:23.363374Z" + "iopub.execute_input": "2024-06-25T19:32:23.284159Z", + "iopub.status.busy": "2024-06-25T19:32:23.283828Z", + "iopub.status.idle": "2024-06-25T19:32:23.294542Z", + "shell.execute_reply": "2024-06-25T19:32:23.294124Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:23.365835Z", - "iopub.status.busy": "2024-06-25T15:58:23.365657Z", - "iopub.status.idle": "2024-06-25T15:58:25.496706Z", - "shell.execute_reply": "2024-06-25T15:58:25.496141Z" + "iopub.execute_input": "2024-06-25T19:32:23.296628Z", + "iopub.status.busy": "2024-06-25T19:32:23.296301Z", + "iopub.status.idle": "2024-06-25T19:32:25.256890Z", + "shell.execute_reply": "2024-06-25T19:32:25.256295Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.499198Z", - "iopub.status.busy": "2024-06-25T15:58:25.498626Z", - "iopub.status.idle": "2024-06-25T15:58:25.519930Z", - "shell.execute_reply": "2024-06-25T15:58:25.519364Z" + "iopub.execute_input": "2024-06-25T19:32:25.259406Z", + "iopub.status.busy": "2024-06-25T19:32:25.258951Z", + "iopub.status.idle": "2024-06-25T19:32:25.279987Z", + "shell.execute_reply": "2024-06-25T19:32:25.279554Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.522243Z", - "iopub.status.busy": "2024-06-25T15:58:25.521968Z", - "iopub.status.idle": "2024-06-25T15:58:25.542822Z", - "shell.execute_reply": "2024-06-25T15:58:25.542093Z" + "iopub.execute_input": "2024-06-25T19:32:25.281917Z", + "iopub.status.busy": "2024-06-25T19:32:25.281742Z", + "iopub.status.idle": "2024-06-25T19:32:25.300001Z", + "shell.execute_reply": "2024-06-25T19:32:25.299441Z" } }, "outputs": [ @@ -923,7 +923,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -949,10 +949,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.545798Z", - "iopub.status.busy": "2024-06-25T15:58:25.545363Z", - "iopub.status.idle": "2024-06-25T15:58:25.559769Z", - "shell.execute_reply": "2024-06-25T15:58:25.559300Z" + "iopub.execute_input": "2024-06-25T19:32:25.302199Z", + "iopub.status.busy": "2024-06-25T19:32:25.301790Z", + "iopub.status.idle": "2024-06-25T19:32:25.315854Z", + "shell.execute_reply": "2024-06-25T19:32:25.315290Z" } }, "outputs": [ @@ -1087,17 +1087,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.561703Z", - "iopub.status.busy": "2024-06-25T15:58:25.561527Z", - "iopub.status.idle": "2024-06-25T15:58:25.584449Z", - "shell.execute_reply": "2024-06-25T15:58:25.583907Z" + "iopub.execute_input": "2024-06-25T19:32:25.317886Z", + "iopub.status.busy": "2024-06-25T19:32:25.317705Z", + "iopub.status.idle": "2024-06-25T19:32:25.337431Z", + "shell.execute_reply": "2024-06-25T19:32:25.336840Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c9ec6fabbe6c4abea1031a6070168164", + "model_id": "9160678898ef4935b4c5e9badf645887", "version_major": 2, "version_minor": 0 }, @@ -1133,10 +1133,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.586631Z", - "iopub.status.busy": "2024-06-25T15:58:25.586313Z", - "iopub.status.idle": "2024-06-25T15:58:25.601835Z", - "shell.execute_reply": "2024-06-25T15:58:25.601267Z" + "iopub.execute_input": "2024-06-25T19:32:25.339545Z", + "iopub.status.busy": "2024-06-25T19:32:25.339254Z", + "iopub.status.idle": "2024-06-25T19:32:25.353979Z", + "shell.execute_reply": "2024-06-25T19:32:25.353546Z" } }, "outputs": [ @@ -1259,10 +1259,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.603960Z", - "iopub.status.busy": "2024-06-25T15:58:25.603656Z", - "iopub.status.idle": "2024-06-25T15:58:25.609543Z", - "shell.execute_reply": "2024-06-25T15:58:25.609084Z" + "iopub.execute_input": "2024-06-25T19:32:25.355891Z", + "iopub.status.busy": "2024-06-25T19:32:25.355714Z", + "iopub.status.idle": "2024-06-25T19:32:25.361530Z", + "shell.execute_reply": "2024-06-25T19:32:25.360999Z" } }, "outputs": [], @@ -1319,10 +1319,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:25.611424Z", - "iopub.status.busy": "2024-06-25T15:58:25.611233Z", - "iopub.status.idle": "2024-06-25T15:58:25.631170Z", - "shell.execute_reply": "2024-06-25T15:58:25.630583Z" + "iopub.execute_input": "2024-06-25T19:32:25.363640Z", + "iopub.status.busy": "2024-06-25T19:32:25.363214Z", + "iopub.status.idle": "2024-06-25T19:32:25.380614Z", + "shell.execute_reply": "2024-06-25T19:32:25.380174Z" } }, "outputs": [ @@ -1459,7 +1459,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "5aa8efc7b1e844fe91de611ebbee3c05": { + "066581bfe5e048229e24f4456c525a9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1512,7 +1512,25 @@ "width": null } }, - "750684e0bfa74ecea63a2bdeb44f2798": { + "1c1065c6e3be428aa1ed6d3ef05adb52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "31beebcbb1ed40e98e72f51b7111d288": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1565,25 +1583,69 @@ "width": null } }, - "85a98cab40374fcb90e65c35a91c02cc": { + "495eb3b3071f43e1bf30631ee18ec38f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "514a0c7d656e41c7a0ef7156f7db70a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_066581bfe5e048229e24f4456c525a9f", + "placeholder": "​", + "style": "IPY_MODEL_e9790c7defa446cc93cb40beb3946950", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "5b75a7f5ee634ecbb513ceba0cf27697": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_74ffd90dc17c436bb5ca21cab1e64b31", + "placeholder": "​", + "style": "IPY_MODEL_1c1065c6e3be428aa1ed6d3ef05adb52", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12588.35 examples/s]" } }, - "8d520dc52351467b9236ddaadf73964a": { + "74ffd90dc17c436bb5ca21cab1e64b31": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1636,51 +1698,7 @@ "width": null } }, - "9aa274aba43248e9aa8d4016df7991d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_750684e0bfa74ecea63a2bdeb44f2798", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ec7216196af648b5ac0a8eeda2747a1f", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "c68ac25651a84e288cca27828647822f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c9ec6fabbe6c4abea1031a6070168164": { + "9160678898ef4935b4c5e9badf645887": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1695,16 +1713,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fe98e75c68304a7a8aca3848e7064603", - "IPY_MODEL_9aa274aba43248e9aa8d4016df7991d1", - "IPY_MODEL_f2fb02baf6c44691955b457208474072" + "IPY_MODEL_514a0c7d656e41c7a0ef7156f7db70a4", + "IPY_MODEL_e905864ed9704e29b5c76d93504b2f9f", + "IPY_MODEL_5b75a7f5ee634ecbb513ceba0cf27697" ], - "layout": "IPY_MODEL_5aa8efc7b1e844fe91de611ebbee3c05", + "layout": "IPY_MODEL_e0f1e9f09fb84534aee2fa9a795b3c91", "tabbable": null, "tooltip": null } }, - "ce0acf5cc60c49ab9a2cd5d40c22e10f": { + "e0f1e9f09fb84534aee2fa9a795b3c91": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1757,66 +1775,48 @@ "width": null } }, - "ec7216196af648b5ac0a8eeda2747a1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f2fb02baf6c44691955b457208474072": { + "e905864ed9704e29b5c76d93504b2f9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8d520dc52351467b9236ddaadf73964a", - "placeholder": "​", - "style": "IPY_MODEL_c68ac25651a84e288cca27828647822f", + "layout": "IPY_MODEL_31beebcbb1ed40e98e72f51b7111d288", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_495eb3b3071f43e1bf30631ee18ec38f", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 9943.93 examples/s]" + "value": 132.0 } }, - "fe98e75c68304a7a8aca3848e7064603": { + "e9790c7defa446cc93cb40beb3946950": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce0acf5cc60c49ab9a2cd5d40c22e10f", - "placeholder": "​", - "style": "IPY_MODEL_85a98cab40374fcb90e65c35a91c02cc", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.html b/master/tutorials/datalab/datalab_quickstart.html index f00df6bef..bd8387625 100644 --- a/master/tutorials/datalab/datalab_quickstart.html +++ b/master/tutorials/datalab/datalab_quickstart.html @@ -384,6 +384,15 @@ >

  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • 2. Fetch and normalize the Fashion-MNIST dataset
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1084,7 +1093,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1116,7 +1125,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1148,7 +1157,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -2070,35 +2079,35 @@

    Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -2126,7 +2135,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 7a8ae4b02..a549a7040 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:35.616250Z", - "iopub.status.busy": "2024-06-25T15:58:35.616067Z", - "iopub.status.idle": "2024-06-25T15:58:38.616042Z", - "shell.execute_reply": "2024-06-25T15:58:38.615480Z" + "iopub.execute_input": "2024-06-25T19:32:34.714453Z", + "iopub.status.busy": "2024-06-25T19:32:34.714061Z", + "iopub.status.idle": "2024-06-25T19:32:37.483269Z", + "shell.execute_reply": "2024-06-25T19:32:37.482729Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:38.618556Z", - "iopub.status.busy": "2024-06-25T15:58:38.618228Z", - "iopub.status.idle": "2024-06-25T15:58:38.621927Z", - "shell.execute_reply": "2024-06-25T15:58:38.621443Z" + "iopub.execute_input": "2024-06-25T19:32:37.485856Z", + "iopub.status.busy": "2024-06-25T19:32:37.485436Z", + "iopub.status.idle": "2024-06-25T19:32:37.489039Z", + "shell.execute_reply": "2024-06-25T19:32:37.488503Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:38.623967Z", - "iopub.status.busy": "2024-06-25T15:58:38.623637Z", - "iopub.status.idle": "2024-06-25T15:58:49.436149Z", - "shell.execute_reply": "2024-06-25T15:58:49.435592Z" + "iopub.execute_input": "2024-06-25T19:32:37.491139Z", + "iopub.status.busy": "2024-06-25T19:32:37.490837Z", + "iopub.status.idle": "2024-06-25T19:32:52.986261Z", + "shell.execute_reply": "2024-06-25T19:32:52.985738Z" } }, "outputs": [ @@ -172,7 +172,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5986f7447dd049ac8f699026e1d57966", + "model_id": "e85af83531bc4182b052d4cfe7f1020e", "version_major": 2, "version_minor": 0 }, @@ -186,7 +186,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b35a892076d14a83a2ed40c58cffc8c7", + "model_id": "9abe31b01bc04cc89ff967d26e368fdf", "version_major": 2, "version_minor": 0 }, @@ -200,7 +200,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d6765a83a38e4fbb8540a45549a45441", + "model_id": "1585cf2dc2e448068ac19676773a2a4b", "version_major": 2, "version_minor": 0 }, @@ -214,7 +214,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "95ee3d7fb42843caa13a676150c30adf", + "model_id": "a9c34fb99987402ba4f521a988475574", "version_major": 2, "version_minor": 0 }, @@ -228,7 +228,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9ef5a7bb45b49ea98ba7ef7d46f7327", + "model_id": "815effa183cf4ca4a7160696d4e9eb83", "version_major": 2, "version_minor": 0 }, @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9252f5a0149408fb3c337bdab26e38c", + "model_id": "79a15df271d14bfa8e4ed6dbe1c37a8a", "version_major": 2, "version_minor": 0 }, @@ -256,7 +256,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a207c35dbb984e0c862d63f5ddc5638a", + "model_id": "4d2025fc902f41b2b7c3474d4e9cd2fb", "version_major": 2, "version_minor": 0 }, @@ -270,7 +270,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88aa98714ddc46339b22c75ae045aaeb", + "model_id": "bdbb1b6b96824b1ba8715b85852886fe", "version_major": 2, "version_minor": 0 }, @@ -312,10 +312,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:49.438494Z", - "iopub.status.busy": "2024-06-25T15:58:49.438053Z", - "iopub.status.idle": "2024-06-25T15:58:49.441856Z", - "shell.execute_reply": "2024-06-25T15:58:49.441343Z" + "iopub.execute_input": "2024-06-25T19:32:52.988486Z", + "iopub.status.busy": "2024-06-25T19:32:52.988150Z", + "iopub.status.idle": "2024-06-25T19:32:52.992110Z", + "shell.execute_reply": "2024-06-25T19:32:52.991660Z" } }, "outputs": [ @@ -340,17 +340,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:58:49.443796Z", - "iopub.status.busy": "2024-06-25T15:58:49.443533Z", - "iopub.status.idle": "2024-06-25T15:59:00.559397Z", - "shell.execute_reply": "2024-06-25T15:59:00.558855Z" + "iopub.execute_input": "2024-06-25T19:32:52.994131Z", + "iopub.status.busy": "2024-06-25T19:32:52.993820Z", + "iopub.status.idle": "2024-06-25T19:33:03.871847Z", + "shell.execute_reply": "2024-06-25T19:33:03.871235Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3ab4beadd43d455babf74169c56f96c3", + "model_id": "f2d29dc28e7140b792fc1ee3fcb857cb", "version_major": 2, "version_minor": 0 }, @@ -388,10 +388,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:00.562175Z", - "iopub.status.busy": "2024-06-25T15:59:00.561883Z", - "iopub.status.idle": "2024-06-25T15:59:19.416385Z", - "shell.execute_reply": "2024-06-25T15:59:19.415769Z" + "iopub.execute_input": "2024-06-25T19:33:03.874363Z", + "iopub.status.busy": "2024-06-25T19:33:03.874071Z", + "iopub.status.idle": "2024-06-25T19:33:22.807154Z", + "shell.execute_reply": "2024-06-25T19:33:22.806523Z" } }, "outputs": [], @@ -424,10 +424,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:19.419092Z", - "iopub.status.busy": "2024-06-25T15:59:19.418718Z", - "iopub.status.idle": "2024-06-25T15:59:19.424442Z", - "shell.execute_reply": "2024-06-25T15:59:19.424005Z" + "iopub.execute_input": "2024-06-25T19:33:22.809827Z", + "iopub.status.busy": "2024-06-25T19:33:22.809607Z", + "iopub.status.idle": "2024-06-25T19:33:22.814504Z", + "shell.execute_reply": "2024-06-25T19:33:22.813958Z" } }, "outputs": [], @@ -465,10 +465,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:19.426434Z", - "iopub.status.busy": "2024-06-25T15:59:19.426099Z", - "iopub.status.idle": "2024-06-25T15:59:19.429986Z", - "shell.execute_reply": "2024-06-25T15:59:19.429576Z" + "iopub.execute_input": "2024-06-25T19:33:22.816419Z", + "iopub.status.busy": "2024-06-25T19:33:22.816239Z", + "iopub.status.idle": "2024-06-25T19:33:22.820245Z", + "shell.execute_reply": "2024-06-25T19:33:22.819819Z" }, "nbsphinx": "hidden" }, @@ -605,10 +605,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:19.431922Z", - "iopub.status.busy": "2024-06-25T15:59:19.431665Z", - "iopub.status.idle": "2024-06-25T15:59:19.440497Z", - "shell.execute_reply": "2024-06-25T15:59:19.440049Z" + "iopub.execute_input": "2024-06-25T19:33:22.822196Z", + "iopub.status.busy": "2024-06-25T19:33:22.822022Z", + "iopub.status.idle": "2024-06-25T19:33:22.831142Z", + "shell.execute_reply": "2024-06-25T19:33:22.830697Z" }, "nbsphinx": "hidden" }, @@ -733,10 +733,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:19.442408Z", - "iopub.status.busy": "2024-06-25T15:59:19.442147Z", - "iopub.status.idle": "2024-06-25T15:59:19.471256Z", - "shell.execute_reply": "2024-06-25T15:59:19.470777Z" + "iopub.execute_input": "2024-06-25T19:33:22.833164Z", + "iopub.status.busy": "2024-06-25T19:33:22.832846Z", + "iopub.status.idle": "2024-06-25T19:33:22.860883Z", + "shell.execute_reply": "2024-06-25T19:33:22.860460Z" } }, "outputs": [], @@ -773,10 +773,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:19.473647Z", - "iopub.status.busy": "2024-06-25T15:59:19.473224Z", - "iopub.status.idle": "2024-06-25T15:59:53.630889Z", - "shell.execute_reply": "2024-06-25T15:59:53.630274Z" + "iopub.execute_input": "2024-06-25T19:33:22.862805Z", + "iopub.status.busy": "2024-06-25T19:33:22.862633Z", + "iopub.status.idle": "2024-06-25T19:33:54.927685Z", + "shell.execute_reply": "2024-06-25T19:33:54.927065Z" } }, "outputs": [ @@ -792,21 +792,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.152\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.704\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.996\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.525\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "32d607be832e4a87b4d29b25908be79d", + "model_id": "b56125fc059b47e3b228dc3ed3b629c0", "version_major": 2, "version_minor": 0 }, @@ -827,7 +827,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "87333c993d264d4481aba459cf6e8ff5", + "model_id": "5c565e132b5a46d398435caf4df461d4", "version_major": 2, "version_minor": 0 }, @@ -850,21 +850,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.210\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.714\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.688\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.460\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "59321af79ae240afbb2d2bb44da084e7", + "model_id": "63e4117109d44d79bcece5146781039a", "version_major": 2, "version_minor": 0 }, @@ -885,7 +885,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "77ae27eb0a8144f99eb62c3768dbe735", + "model_id": "09c8fb8f5f2945a4948b758b41efb311", "version_major": 2, "version_minor": 0 }, @@ -908,21 +908,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.915\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.742\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.775\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.468\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fd6e7deac3fc4c7d91dd1737f449dd14", + "model_id": "85c627e125a94180abe254acf928a1fc", "version_major": 2, "version_minor": 0 }, @@ -943,7 +943,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "59ff8b60607a478c8df614b2f177106c", + "model_id": "85af3d53abef4aa8a6046017943dc826", "version_major": 2, "version_minor": 0 }, @@ -1022,10 +1022,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:53.633305Z", - "iopub.status.busy": "2024-06-25T15:59:53.633008Z", - "iopub.status.idle": "2024-06-25T15:59:53.648132Z", - "shell.execute_reply": "2024-06-25T15:59:53.647680Z" + "iopub.execute_input": "2024-06-25T19:33:54.930258Z", + "iopub.status.busy": "2024-06-25T19:33:54.929870Z", + "iopub.status.idle": "2024-06-25T19:33:54.943872Z", + "shell.execute_reply": "2024-06-25T19:33:54.943339Z" } }, "outputs": [], @@ -1050,10 +1050,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:53.650392Z", - "iopub.status.busy": "2024-06-25T15:59:53.650090Z", - "iopub.status.idle": "2024-06-25T15:59:54.136653Z", - "shell.execute_reply": "2024-06-25T15:59:54.136006Z" + "iopub.execute_input": "2024-06-25T19:33:54.946038Z", + "iopub.status.busy": "2024-06-25T19:33:54.945618Z", + "iopub.status.idle": "2024-06-25T19:33:55.403627Z", + "shell.execute_reply": "2024-06-25T19:33:55.402981Z" } }, "outputs": [], @@ -1073,10 +1073,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T15:59:54.139214Z", - "iopub.status.busy": "2024-06-25T15:59:54.139017Z", - "iopub.status.idle": "2024-06-25T16:01:33.037683Z", - "shell.execute_reply": "2024-06-25T16:01:33.037091Z" + "iopub.execute_input": "2024-06-25T19:33:55.406220Z", + "iopub.status.busy": "2024-06-25T19:33:55.406041Z", + "iopub.status.idle": "2024-06-25T19:35:30.535430Z", + "shell.execute_reply": "2024-06-25T19:35:30.534808Z" } }, "outputs": [ @@ -1123,7 +1123,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "87e54fc2a5a049c6a320ecf5e3f96b0f", + "model_id": "d65cb8246aa14189b49a0eeae6f3bad0", "version_major": 2, "version_minor": 0 }, @@ -1162,10 +1162,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:33.040118Z", - "iopub.status.busy": "2024-06-25T16:01:33.039683Z", - "iopub.status.idle": "2024-06-25T16:01:33.512027Z", - "shell.execute_reply": "2024-06-25T16:01:33.511469Z" + "iopub.execute_input": "2024-06-25T19:35:30.537781Z", + "iopub.status.busy": "2024-06-25T19:35:30.537412Z", + "iopub.status.idle": "2024-06-25T19:35:30.983712Z", + "shell.execute_reply": "2024-06-25T19:35:30.983121Z" } }, "outputs": [ @@ -1311,10 +1311,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:33.514282Z", - "iopub.status.busy": "2024-06-25T16:01:33.513977Z", - "iopub.status.idle": "2024-06-25T16:01:33.577771Z", - "shell.execute_reply": "2024-06-25T16:01:33.577182Z" + "iopub.execute_input": "2024-06-25T19:35:30.986665Z", + "iopub.status.busy": "2024-06-25T19:35:30.986208Z", + "iopub.status.idle": "2024-06-25T19:35:31.048426Z", + "shell.execute_reply": "2024-06-25T19:35:31.047866Z" } }, "outputs": [ @@ -1418,10 +1418,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:33.580053Z", - "iopub.status.busy": "2024-06-25T16:01:33.579708Z", - "iopub.status.idle": "2024-06-25T16:01:33.588598Z", - "shell.execute_reply": "2024-06-25T16:01:33.588129Z" + "iopub.execute_input": "2024-06-25T19:35:31.050749Z", + "iopub.status.busy": "2024-06-25T19:35:31.050363Z", + "iopub.status.idle": "2024-06-25T19:35:31.060546Z", + "shell.execute_reply": "2024-06-25T19:35:31.060026Z" } }, "outputs": [ @@ -1551,10 +1551,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:33.590752Z", - "iopub.status.busy": "2024-06-25T16:01:33.590420Z", - "iopub.status.idle": "2024-06-25T16:01:33.594920Z", - "shell.execute_reply": "2024-06-25T16:01:33.594492Z" + "iopub.execute_input": "2024-06-25T19:35:31.062742Z", + "iopub.status.busy": "2024-06-25T19:35:31.062469Z", + "iopub.status.idle": "2024-06-25T19:35:31.068251Z", + "shell.execute_reply": "2024-06-25T19:35:31.067801Z" }, "nbsphinx": "hidden" }, @@ -1600,10 +1600,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:33.596980Z", - "iopub.status.busy": "2024-06-25T16:01:33.596660Z", - "iopub.status.idle": "2024-06-25T16:01:34.381403Z", - "shell.execute_reply": "2024-06-25T16:01:34.380842Z" + "iopub.execute_input": "2024-06-25T19:35:31.070241Z", + "iopub.status.busy": "2024-06-25T19:35:31.069928Z", + "iopub.status.idle": "2024-06-25T19:35:31.828844Z", + "shell.execute_reply": "2024-06-25T19:35:31.828271Z" } }, "outputs": [ @@ -1638,10 +1638,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.383808Z", - "iopub.status.busy": "2024-06-25T16:01:34.383372Z", - "iopub.status.idle": "2024-06-25T16:01:34.392034Z", - "shell.execute_reply": "2024-06-25T16:01:34.391496Z" + "iopub.execute_input": "2024-06-25T19:35:31.831222Z", + "iopub.status.busy": "2024-06-25T19:35:31.830895Z", + "iopub.status.idle": "2024-06-25T19:35:31.839311Z", + "shell.execute_reply": "2024-06-25T19:35:31.838857Z" } }, "outputs": [ @@ -1808,10 +1808,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.394025Z", - "iopub.status.busy": "2024-06-25T16:01:34.393851Z", - "iopub.status.idle": "2024-06-25T16:01:34.401149Z", - "shell.execute_reply": "2024-06-25T16:01:34.400699Z" + "iopub.execute_input": "2024-06-25T19:35:31.841482Z", + "iopub.status.busy": "2024-06-25T19:35:31.841163Z", + "iopub.status.idle": "2024-06-25T19:35:31.848176Z", + "shell.execute_reply": "2024-06-25T19:35:31.847749Z" }, "nbsphinx": "hidden" }, @@ -1887,10 +1887,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.403215Z", - "iopub.status.busy": "2024-06-25T16:01:34.402791Z", - "iopub.status.idle": "2024-06-25T16:01:34.861899Z", - "shell.execute_reply": "2024-06-25T16:01:34.861408Z" + "iopub.execute_input": "2024-06-25T19:35:31.850195Z", + "iopub.status.busy": "2024-06-25T19:35:31.849881Z", + "iopub.status.idle": "2024-06-25T19:35:32.292692Z", + "shell.execute_reply": "2024-06-25T19:35:32.292043Z" } }, "outputs": [ @@ -1927,10 +1927,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.864180Z", - "iopub.status.busy": "2024-06-25T16:01:34.863943Z", - "iopub.status.idle": "2024-06-25T16:01:34.881498Z", - "shell.execute_reply": "2024-06-25T16:01:34.880946Z" + "iopub.execute_input": "2024-06-25T19:35:32.295116Z", + "iopub.status.busy": "2024-06-25T19:35:32.294759Z", + "iopub.status.idle": "2024-06-25T19:35:32.310913Z", + "shell.execute_reply": "2024-06-25T19:35:32.310451Z" } }, "outputs": [ @@ -2087,10 +2087,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.883593Z", - "iopub.status.busy": "2024-06-25T16:01:34.883414Z", - "iopub.status.idle": "2024-06-25T16:01:34.889203Z", - "shell.execute_reply": "2024-06-25T16:01:34.888658Z" + "iopub.execute_input": "2024-06-25T19:35:32.313089Z", + "iopub.status.busy": "2024-06-25T19:35:32.312752Z", + "iopub.status.idle": "2024-06-25T19:35:32.318396Z", + "shell.execute_reply": "2024-06-25T19:35:32.317860Z" }, "nbsphinx": "hidden" }, @@ -2135,10 +2135,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:34.891291Z", - "iopub.status.busy": "2024-06-25T16:01:34.890980Z", - "iopub.status.idle": "2024-06-25T16:01:35.381738Z", - "shell.execute_reply": "2024-06-25T16:01:35.381176Z" + "iopub.execute_input": "2024-06-25T19:35:32.320370Z", + "iopub.status.busy": "2024-06-25T19:35:32.320196Z", + "iopub.status.idle": "2024-06-25T19:35:32.779377Z", + "shell.execute_reply": "2024-06-25T19:35:32.778856Z" } }, "outputs": [ @@ -2220,10 +2220,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.384320Z", - "iopub.status.busy": "2024-06-25T16:01:35.384117Z", - "iopub.status.idle": "2024-06-25T16:01:35.393515Z", - "shell.execute_reply": "2024-06-25T16:01:35.392948Z" + "iopub.execute_input": "2024-06-25T19:35:32.782553Z", + "iopub.status.busy": "2024-06-25T19:35:32.782090Z", + "iopub.status.idle": "2024-06-25T19:35:32.791666Z", + "shell.execute_reply": "2024-06-25T19:35:32.790923Z" } }, "outputs": [ @@ -2351,10 +2351,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.396099Z", - "iopub.status.busy": "2024-06-25T16:01:35.395894Z", - "iopub.status.idle": "2024-06-25T16:01:35.402126Z", - "shell.execute_reply": "2024-06-25T16:01:35.401548Z" + "iopub.execute_input": "2024-06-25T19:35:32.794003Z", + "iopub.status.busy": "2024-06-25T19:35:32.793805Z", + "iopub.status.idle": "2024-06-25T19:35:32.799849Z", + "shell.execute_reply": "2024-06-25T19:35:32.799106Z" }, "nbsphinx": "hidden" }, @@ -2391,10 +2391,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.404738Z", - "iopub.status.busy": "2024-06-25T16:01:35.404204Z", - "iopub.status.idle": "2024-06-25T16:01:35.612273Z", - "shell.execute_reply": "2024-06-25T16:01:35.611806Z" + "iopub.execute_input": "2024-06-25T19:35:32.802393Z", + "iopub.status.busy": "2024-06-25T19:35:32.802198Z", + "iopub.status.idle": "2024-06-25T19:35:33.003653Z", + "shell.execute_reply": "2024-06-25T19:35:33.003206Z" } }, "outputs": [ @@ -2436,10 +2436,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.614504Z", - "iopub.status.busy": "2024-06-25T16:01:35.614159Z", - "iopub.status.idle": "2024-06-25T16:01:35.622328Z", - "shell.execute_reply": "2024-06-25T16:01:35.621874Z" + "iopub.execute_input": "2024-06-25T19:35:33.005778Z", + "iopub.status.busy": "2024-06-25T19:35:33.005613Z", + "iopub.status.idle": "2024-06-25T19:35:33.013113Z", + "shell.execute_reply": "2024-06-25T19:35:33.012647Z" } }, "outputs": [ @@ -2464,47 +2464,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2525,10 +2525,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.624307Z", - "iopub.status.busy": "2024-06-25T16:01:35.623980Z", - "iopub.status.idle": "2024-06-25T16:01:35.825329Z", - "shell.execute_reply": "2024-06-25T16:01:35.824752Z" + "iopub.execute_input": "2024-06-25T19:35:33.015062Z", + "iopub.status.busy": "2024-06-25T19:35:33.014721Z", + "iopub.status.idle": "2024-06-25T19:35:33.209360Z", + "shell.execute_reply": "2024-06-25T19:35:33.208767Z" } }, "outputs": [ @@ -2568,10 +2568,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:35.827543Z", - "iopub.status.busy": "2024-06-25T16:01:35.827195Z", - "iopub.status.idle": "2024-06-25T16:01:35.831492Z", - "shell.execute_reply": "2024-06-25T16:01:35.831059Z" + "iopub.execute_input": "2024-06-25T19:35:33.211913Z", + "iopub.status.busy": "2024-06-25T19:35:33.211538Z", + "iopub.status.idle": "2024-06-25T19:35:33.216052Z", + "shell.execute_reply": "2024-06-25T19:35:33.215616Z" }, "nbsphinx": "hidden" }, @@ -2608,7 +2608,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00a2bca24eec4f0c9b88cb2fc92f0882": { + "0011fb26fc5d4baa896547da4133122f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2661,60 +2661,25 @@ "width": null } }, - "00fc5c7c28e446d7a8ebdee16a321dd2": { - "model_module": "@jupyter-widgets/base", + "00644b1a57b2451e9cdebb4eb7250f78": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0276af0d79c34842b3872fe19afd8ad5": { + "007876448c144ee39084540ed6eb06b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2729,68 +2694,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d436ae4174324c3ba2ae924751737b13", + "layout": "IPY_MODEL_5745328a69db48878efba6c4bdb99305", "placeholder": "​", - "style": "IPY_MODEL_e50417a341d9423e9e55b901aace207c", + "style": "IPY_MODEL_b54eac280dff4e5dbe0c1d2b48743535", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 97.7MB/s]" + "value": " 8.85k/8.85k [00:00<00:00, 1.45MB/s]" } }, - "030ef5a247784fa1ac0bfcfeeb9ed984": { - "model_module": "@jupyter-widgets/base", + "0120148eaefd42fd9a38edc77bc35ac7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "08b48e25c9ff4f2f881c497ecd3b4212": { + "0261398aaa894092b6eca7f630c39440": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2843,7 +2773,7 @@ "width": null } }, - "0f1145c7f4e3457396f8e82ff166f651": { + "031211ba610a4802b4a54cdf1bba56a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2858,15 +2788,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d640257718124ae98f83b58abaa3f67e", + "layout": "IPY_MODEL_b9a030c7a18e43e0a9ade7e2489ba818", "placeholder": "​", - "style": "IPY_MODEL_68750cf82f204bafb07ab8cbc24c1cad", + "style": "IPY_MODEL_7824f895073b4989aabcc1118fe1e570", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "03ab3894bf4242d8999349575ac3ab13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "03b60960744f469c8562f78a5948c4a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_46f3bc1415b94874ba19257d22e4bfed", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44210013b27e41639717a483f6daeb8c", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.93it/s]" + "value": 10000.0 } }, - "1234fe3d56f740ae82ce97871dfec345": { + "0419dce41e82427eba5f201dcd3224ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2881,15 +2855,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_469a0fafd5634c77883dc5d2fcfb419e", + "layout": "IPY_MODEL_fe37a821e1f04c6f9903e3722f9ab4c2", "placeholder": "​", - "style": "IPY_MODEL_52da613929304814a59f022bcf84114d", + "style": "IPY_MODEL_7f8b4b75f0c545ac966463807f510230", "tabbable": null, "tooltip": null, "value": "100%" } }, - "16616d64040a48d989a6ddad3acd38ea": { + "05b056eafe984430926b52278f208393": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0637c05b667541e782a074923de85b45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2904,15 +2894,96 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6697b9561b2f46c895840213f8eef49a", + "layout": "IPY_MODEL_74f4d829ffbb4508957bfb49f70fe734", "placeholder": "​", - "style": "IPY_MODEL_2a03532e682b4efba09b47e67240c2e3", + "style": "IPY_MODEL_13a871b41cce4be6bd9b0c8fb1116aec", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 40/40 [00:00<00:00, 62.59it/s]" + } + }, + "09c8fb8f5f2945a4948b758b41efb311": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_031211ba610a4802b4a54cdf1bba56a7", + "IPY_MODEL_42fc637a41cf41029345fe4e9b68d6c9", + "IPY_MODEL_c1899c2c83a146b4b5eccb8d3c0892ae" + ], + "layout": "IPY_MODEL_44661251f61148bab2d1f3993f625718", + "tabbable": null, + "tooltip": null + } + }, + "0b157a2c7cf7434fbc4448eaf5ad92d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0d79223cae9246eaaa4f673e81a780a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0f7c857000414450bdc92196b4466489": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_88408a65c5eb4eb48911a14aadbc74cf", + "placeholder": "​", + "style": "IPY_MODEL_26f5985a24fd4b3cb9fb40bc0c1b22a2", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "1996e90614d24cc1af265c027da04c3d": { + "112a5fd388db49e4b8a0f9dffab06426": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2965,7 +3036,7 @@ "width": null } }, - "20ac768b63e544bd914e78a260b4c15e": { + "12693e79b18144d2be2b4b4399f4789e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2981,35 +3052,75 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9204dcb6c2b64a10932cce95531b36cd", - "max": 40.0, + "layout": "IPY_MODEL_bf14a805f3944138b263cb978e9fcf8b", + "max": 29515.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c621f50e72154a5694661c03089f1a74", + "style": "IPY_MODEL_51c208e957a24da184c9f20ebc42f546", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 29515.0 } }, - "2a03532e682b4efba09b47e67240c2e3": { + "12da0c3d2bd5449dbb811de7fd8b2093": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", + "bar_color": null, + "description_width": "" + } + }, + "13a871b41cce4be6bd9b0c8fb1116aec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", "font_size": null, "text_color": null } }, - "2b3c51631c09401fa0802305f9fae979": { + "1585cf2dc2e448068ac19676773a2a4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_744802ca32e849ab9fea4e8e3861b154", + "IPY_MODEL_2cca5f207862410483ac41718382a443", + "IPY_MODEL_5b650c7c7114407ca633a6f913edbef2" + ], + "layout": "IPY_MODEL_90c7589ac13b443eb422dd2f647490a3", + "tabbable": null, + "tooltip": null + } + }, + "175a6c09ad6c4cbfbdd9543952ef9ffc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3062,56 +3173,7 @@ "width": null } }, - "2ee558f827044b0487f63237565ef4d6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57ca537e65e241058999edf098c0cc12", - "placeholder": "​", - "style": "IPY_MODEL_83603f01c08541bfb8c21be62911d8c4", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "3036fb05af594dd797b328844a0e22fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_732b0630d01f411e9dd38c14e31d45ec", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c759dcbe812443628454741837feb20b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "30c0163d819147c4826b9cea0ff60ee8": { + "1a2d0d43f24f4a179401f7bde3fcbf11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3126,15 +3188,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2bee95424134caaa2c1a289a8aef189", + "layout": "IPY_MODEL_ec23491fb0024cb8a1b7dfd205775551", "placeholder": "​", - "style": "IPY_MODEL_6d8e2f043e06430e8da7fda4e26fa0e7", + "style": "IPY_MODEL_8946f270b2954b22801e92ce10bf7c63", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.16it/s]" + "value": "Downloading readme: 100%" } }, - "327b8f9cd53f4f2ea6711b54f862f8f9": { + "1b72621c613b4da3999f4f434c596d23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3187,83 +3249,33 @@ "width": null } }, - "32d607be832e4a87b4d29b25908be79d": { + "1bb8a6dd435048b28340d4eac6730019": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fd248e0cd1c04dc79322ff7aca18b7ce", - "IPY_MODEL_d50b9bfc8a7440a18611b6040f36e0ef", - "IPY_MODEL_c23c262f69a24c14bfd3abad512115cd" - ], - "layout": "IPY_MODEL_e3619929bfe04a2089d48aed9ab43c36", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1f07c0e6cb7453cb234322863c6974b", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_494b87319f8d45ab8596d3cc2028f7f6", "tabbable": null, - "tooltip": null - } - }, - "3541f6ae1be549d682132f52a5cfd6a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3697d658bca04873a1d2b9a0ede8a8c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "36b2a22362f541489d4f76ed8cc16222": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": 60000.0 } }, - "36dfba7c674e43599ea995af7c735b25": { + "1c96211615924c808f262fae38d4ab01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3279,17 +3291,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0363073ec7b4c22bc18151ee855022b", - "max": 10000.0, + "layout": "IPY_MODEL_1b72621c613b4da3999f4f434c596d23", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_74ae66917b754a099f4798e99734f6ce", + "style": "IPY_MODEL_b461446aa899462d865a83e0c727b5c5", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": 40.0 } }, - "372cb0443d0b44afb0cb8f8a9a2b2678": { + "1d5a9e2ed91b479f9781063cdce66b7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3304,38 +3316,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2ddb2aff76e461dbf3ab68008017ec2", + "layout": "IPY_MODEL_4266637c8f4c47fbb4c9e7bd9cc2cabf", "placeholder": "​", - "style": "IPY_MODEL_d01acd8edce5413085bf6d1c1598d181", + "style": "IPY_MODEL_2047417b76614aad92d50e9d57fa28a2", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 60000/60000 [00:06<00:00, 8928.67 examples/s]" } }, - "382a00815dc943dc9e25f647bca6e91d": { - "model_module": "@jupyter-widgets/controls", + "1f1d67e48a1c45258572b6fbf8ebe4e2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7a402a8d6954e09bae52f5c03372a8d", - "placeholder": "​", - "style": "IPY_MODEL_88177db161de43f5901feca03fd41999", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3a45bc1f3ab94339a13ccda608ee5cde": { + "1fbec845f4cf42bb8efb9b83163e0b9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3388,31 +3430,25 @@ "width": null } }, - "3ab4beadd43d455babf74169c56f96c3": { + "2047417b76614aad92d50e9d57fa28a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2ee558f827044b0487f63237565ef4d6", - "IPY_MODEL_a00975dc4271400da26f2b2c6730f147", - "IPY_MODEL_418bdb191a5346b5a21008e354f0e949" - ], - "layout": "IPY_MODEL_edb1c73c77f440a38f7ec9a4dbc63f56", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3be55120079a4ee7bee9f27e087d8e9a": { + "2426b36b4bcd4538a7a1a6c6f443b609": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3465,74 +3501,67 @@ "width": null } }, - "3c88d25d7dc64be9bb75545303d3788e": { + "26f5985a24fd4b3cb9fb40bc0c1b22a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8aaaef0517e4c3bafa1637a9be4729e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0c48a1573284fcfa81203a934408db8", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3e8d6a20ee354d0e8bdce9b5fa613544": { + "2854eeec578a4c3e9a9828ec08c1652c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_834961f148264e3087b8fb67a2c4d752", - "placeholder": "​", - "style": "IPY_MODEL_9a89b0e4795143e39beebbf9429bdb5b", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "40bec62c746240f5805cc962d241a3dc": { + "2a37f3b6e2e64eda9d5aad4e57bb6475": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f1d67e48a1c45258572b6fbf8ebe4e2", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9b58b8eff8e745eb9e937354fedb1807", + "tabbable": null, + "tooltip": null, + "value": 5148.0 } }, - "418bdb191a5346b5a21008e354f0e949": { + "2c916b2e66ff458bae959988d3edfc7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3547,15 +3576,57 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eb2cffb3da7d40f89f90e569f598abf1", + "layout": "IPY_MODEL_0011fb26fc5d4baa896547da4133122f", "placeholder": "​", - "style": "IPY_MODEL_cb5a3044573a4dd4bbc95d0e8f95af8c", + "style": "IPY_MODEL_9d3b7c0890814f2c9985eb79f97a04ac", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "2cca5f207862410483ac41718382a443": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ecde01d38be144db9d996498b953e5b4", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_555d30c920d344059abb5d85084268de", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7343.06 examples/s]" + "value": 26421880.0 + } + }, + "2f9e9f6f7ebe42afa59802bdf7306ccb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4299fbc28eb04c0989e4c8d0841588e1": { + "30a335f232c04fe7b668ed6a418d27b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3573,33 +3644,30 @@ "text_color": null } }, - "4410ca16f95e4c04b54f8ffa70cd0c93": { + "3253c6b3e3464da88809a4ce236555f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8152d82479b846d49e30f516970c57ab", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_98888a17e4554b7ba756b9a6b65d2316", + "layout": "IPY_MODEL_495d2ed12e8446bc80ad465a9f89a896", + "placeholder": "​", + "style": "IPY_MODEL_00644b1a57b2451e9cdebb4eb7250f78", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 63.41it/s]" } }, - "4551701275ee4bceb60bd9b95b24c7fc": { + "32b6d99a486e461eacd6e063c5420eff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3652,7 +3720,7 @@ "width": null } }, - "46417180fb4f456eacfba82f9c7df65d": { + "38eb030b83c64212b25df93cfe516570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3667,15 +3735,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f9846a5955244385b468847a2dde1330", + "layout": "IPY_MODEL_77b7d71484644232938d588a6fbcc4ed", "placeholder": "​", - "style": "IPY_MODEL_dd4452cd48954e85aa825a567e0e144b", + "style": "IPY_MODEL_cd436773aeeb4e5f811c805cd47f7071", "tabbable": null, "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 125MB/s]" + "value": "100%" + } + }, + "39314c631f444d01903b4f50ccfc66df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "469a0fafd5634c77883dc5d2fcfb419e": { + "420adb2a809a4b7693bda83cb040e60c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3728,43 +3814,86 @@ "width": null } }, - "46ea9e7ca18b4b4b853571e05fb84b52": { - "model_module": "@jupyter-widgets/controls", + "4266637c8f4c47fbb4c9e7bd9cc2cabf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4a890dea600a485bb747099c68a2658c": { + "4268b194fef1470096c0d165c23da82f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b218eb25d1544b2198406c8d0daa0439", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53d0e7a8e50247a88566f4b59b14d553", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "4bc0bbfd7526490794a6614391b370db": { + "42c998dc50734d8c93d723bb78939244": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3817,25 +3946,7 @@ "width": null } }, - "4cd99a333a8d42548c852d9e15c540ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4eb0cfe3ce8f4af08cd5a3de61349208": { + "42e73c1ad6b74b238d722d1c7ee516b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3851,7 +3962,7 @@ "description_width": "" } }, - "4ec33725118344c896e009c3ac37fa87": { + "42fc637a41cf41029345fe4e9b68d6c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3867,40 +3978,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_030ef5a247784fa1ac0bfcfeeb9ed984", + "layout": "IPY_MODEL_175a6c09ad6c4cbfbdd9543952ef9ffc", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e41de8aea5c14ba0b708761783524953", + "style": "IPY_MODEL_0b157a2c7cf7434fbc4448eaf5ad92d7", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "51901ce48b20427e853e7995188b3ab3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d814baa5dce4ba38fbffc542a3f695a", - "placeholder": "​", - "style": "IPY_MODEL_b37d4106b08b4191ba1c544b289fa956", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 601kB/s]" - } - }, - "527b5c1effbd4985960cf22bbd3be2a1": { + "434f1175a8614296b63392ddd951670e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3918,48 +4006,49 @@ "text_color": null } }, - "52da613929304814a59f022bcf84114d": { + "44210013b27e41639717a483f6daeb8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "5355b0c6436149178245c21e7b7066a3": { + "4439d6c4067d42b2bc7b5b49e651de05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bbe9c32cdd244c178b1ce0b03ea6b432", - "placeholder": "​", - "style": "IPY_MODEL_f17d354c86284d35ae20ef47bd44fb2b", + "layout": "IPY_MODEL_70c9b3de67694dc4a8c38a542842ae3c", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2854eeec578a4c3e9a9828ec08c1652c", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 4.0 } }, - "57ca537e65e241058999edf098c0cc12": { + "44661251f61148bab2d1f3993f625718": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4012,157 +4101,16 @@ "width": null } }, - "592071f9c0924aaea6ff161b8c62cdc5": { - "model_module": "@jupyter-widgets/controls", + "46692e2429834f6b8ad6d2e3bd669ac5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6142950e7acf4834a065514ed79991ea", - "placeholder": "​", - "style": "IPY_MODEL_527b5c1effbd4985960cf22bbd3be2a1", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1167.11it/s]" - } - }, - "59321af79ae240afbb2d2bb44da084e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3e8d6a20ee354d0e8bdce9b5fa613544", - "IPY_MODEL_7385a478cceb41c39d8d369bb7eb2bdd", - "IPY_MODEL_f89e573249f44029b93df296debc6c88" - ], - "layout": "IPY_MODEL_00fc5c7c28e446d7a8ebdee16a321dd2", - "tabbable": null, - "tooltip": null - } - }, - "5986f7447dd049ac8f699026e1d57966": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_382a00815dc943dc9e25f647bca6e91d", - "IPY_MODEL_e24a06fd0bcd4f10874ebd6ab0809f46", - "IPY_MODEL_51901ce48b20427e853e7995188b3ab3" - ], - "layout": "IPY_MODEL_ad33374fddb342d49454384c9e9e46ee", - "tabbable": null, - "tooltip": null - } - }, - "59ff8b60607a478c8df614b2f177106c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1234fe3d56f740ae82ce97871dfec345", - "IPY_MODEL_3036fb05af594dd797b328844a0e22fe", - "IPY_MODEL_30c0163d819147c4826b9cea0ff60ee8" - ], - "layout": "IPY_MODEL_dee80679427a4dbcb84dcd808a848939", - "tabbable": null, - "tooltip": null - } - }, - "5bbcfc5e1ea9459ca3d2fc7a9692b707": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_00a2bca24eec4f0c9b88cb2fc92f0882", - "placeholder": "​", - "style": "IPY_MODEL_a54194e0181f412b8e8c351dbbfe38ec", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5fdf3acb1fda4063bb0263421fc1a2ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b3a58baa3e0443f7bd4002def4164b21", - "placeholder": "​", - "style": "IPY_MODEL_46ea9e7ca18b4b4b853571e05fb84b52", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8608.71 examples/s]" - } - }, - "6142950e7acf4834a065514ed79991ea": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -4206,7 +4154,7 @@ "width": null } }, - "619cc7d28520406990256faecf1de57d": { + "46f3bc1415b94874ba19257d22e4bfed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4259,56 +4207,7 @@ "width": null } }, - "6235df9f91674033b0a8b6fc2b623de9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ec9bf577a6ab487cadf62ae18b0711bb", - "placeholder": "​", - "style": "IPY_MODEL_c283f9c9d13c4497b62be4281b083324", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:38<00:00, 1693.77it/s]" - } - }, - "6472d7919c1b43b3be715407ab592946": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cbf5d8234045435498d4ce7858ef501b", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a942b2f5acc64ce6b6a1dbd75df5788f", - "tabbable": null, - "tooltip": null, - "value": 4.0 - } - }, - "6697b9561b2f46c895840213f8eef49a": { + "470cbbcbb3d44bb493031e8387fe6adc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4361,48 +4260,23 @@ "width": null } }, - "68750cf82f204bafb07ab8cbc24c1cad": { + "494b87319f8d45ab8596d3cc2028f7f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6953a1f2481345a1b5d853d364d44c72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3d5c9f93a9c4875bcf62afa3cac7b53", - "placeholder": "​", - "style": "IPY_MODEL_b9607badf8e04adfa894d208310e8bae", - "tabbable": null, - "tooltip": null, - "value": "100%" + "bar_color": null, + "description_width": "" } }, - "69ec1a246f3f46ebad8612692988b6f3": { + "495d2ed12e8446bc80ad465a9f89a896": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4455,30 +4329,7 @@ "width": null } }, - "6bde698673824ecb985f413298f460e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8286c7f8409f4eff864c5504eee57c54", - "placeholder": "​", - "style": "IPY_MODEL_3541f6ae1be549d682132f52a5cfd6a2", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6cca320c798b4f549211d73974e1e857": { + "4b1c1c0a8eb2477b91cae9a52c47e58c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4531,7 +4382,7 @@ "width": null } }, - "6d814baa5dce4ba38fbffc542a3f695a": { + "4b9e51775e974654a075cfdb1d1b699c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4584,7 +4435,7 @@ "width": null } }, - "6d8e2f043e06430e8da7fda4e26fa0e7": { + "4cfef00083ee41c18334522b0aaafbf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4602,7 +4453,54 @@ "text_color": null } }, - "7016002eb1994182ad6ec7dcc2ede322": { + "4d2025fc902f41b2b7c3474d4e9cd2fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2c916b2e66ff458bae959988d3edfc7f", + "IPY_MODEL_f3a3a4eba3674c53882dfe2a1c081653", + "IPY_MODEL_1d5a9e2ed91b479f9781063cdce66b7e" + ], + "layout": "IPY_MODEL_e7dae7ac77284ca7a938a5140aea14ba", + "tabbable": null, + "tooltip": null + } + }, + "4f814c4fdc474d7e8305f032c2caaf1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7437bf57da394059a3d162f5d7a1a77a", + "placeholder": "​", + "style": "IPY_MODEL_434f1175a8614296b63392ddd951670e", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "51c208e957a24da184c9f20ebc42f546": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4618,7 +4516,7 @@ "description_width": "" } }, - "707beb9b70c24441aea27e97140a0d46": { + "53d0e7a8e50247a88566f4b59b14d553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4634,33 +4532,44 @@ "description_width": "" } }, - "72e3112932344056a775875c949b3943": { + "555d30c920d344059abb5d85084268de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c67c2da0384b44e69de81367a8784a0e", - "placeholder": "​", - "style": "IPY_MODEL_40bec62c746240f5805cc962d241a3dc", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "732b0630d01f411e9dd38c14e31d45ec": { - "model_module": "@jupyter-widgets/base", + "569d3453747c444a9c2661732c8b1fb5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5745328a69db48878efba6c4bdb99305": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -4710,33 +4619,7 @@ "width": null } }, - "7385a478cceb41c39d8d369bb7eb2bdd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a08c3b1de5e947fab64fd26266bfd3d3", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de35c9abf64849df94aeb925d828b6c7", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "73c2b683cbc24611aa52ff7e451e549a": { + "594f571cc61a464d8934a2a6ebaff1ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4789,7 +4672,7 @@ "width": null } }, - "74942a7e319d4370a08764ec92c0db64": { + "5a36ed53de5c4a9c8637a7b4013dfb54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4842,23 +4725,30 @@ "width": null } }, - "74ae66917b754a099f4798e99734f6ce": { + "5b650c7c7114407ca633a6f913edbef2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d6b409257aab47b888b2954d7b04073e", + "placeholder": "​", + "style": "IPY_MODEL_d067169b2a1745bd893cbaa56705df57", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 124MB/s]" } }, - "77ae27eb0a8144f99eb62c3768dbe735": { + "5c565e132b5a46d398435caf4df461d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4873,57 +4763,48 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5bbcfc5e1ea9459ca3d2fc7a9692b707", - "IPY_MODEL_4410ca16f95e4c04b54f8ffa70cd0c93", - "IPY_MODEL_0f1145c7f4e3457396f8e82ff166f651" + "IPY_MODEL_4f814c4fdc474d7e8305f032c2caaf1d", + "IPY_MODEL_bb91a65b9f7c4bcbae0545c6e0c0c603", + "IPY_MODEL_e39cdb7fe88f4310bfd8b1dcd8ac5ae2" ], - "layout": "IPY_MODEL_6cca320c798b4f549211d73974e1e857", + "layout": "IPY_MODEL_a7668c39f7324f3abf6dee2fb270336f", "tabbable": null, "tooltip": null } }, - "78fe76b833f9495aaf25e408be1d5b05": { + "5c5b477c793d4588a25705aece5a2a2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_82c6ef770eed485b90c6eb668f2e6c09", - "placeholder": "​", - "style": "IPY_MODEL_d5cb1a291b51410aa093a37acf7edf22", - "tabbable": null, - "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 3.85MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7a0ff8b1dbc04d4f800b71da7bee8dd6": { + "5d69e819f44b493a8d07e58cb39a6a69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7ca27630d14e493fabb3da74f24490f7": { + "5efe1df058ed48ae9674a8448d855c64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4976,7 +4857,31 @@ "width": null } }, - "8152d82479b846d49e30f516970c57ab": { + "63e4117109d44d79bcece5146781039a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eb56ed8bd1a74a87a2a7cf25c0992594", + "IPY_MODEL_ee448c322caa4ddbae258419893e01e8", + "IPY_MODEL_3253c6b3e3464da88809a4ce236555f1" + ], + "layout": "IPY_MODEL_659e46eb96e64415a9a947aea4256de6", + "tabbable": null, + "tooltip": null + } + }, + "6566ace6c0aa4a21abbf6d708cb457b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5029,7 +4934,7 @@ "width": null } }, - "8286c7f8409f4eff864c5504eee57c54": { + "659e46eb96e64415a9a947aea4256de6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5082,7 +4987,7 @@ "width": null } }, - "82c6ef770eed485b90c6eb668f2e6c09": { + "670532c752594999bbc5db2f86da0bfa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5135,7 +5040,51 @@ "width": null } }, - "834961f148264e3087b8fb67a2c4d752": { + "67bb2dfe0bed499ea09cbd03e6cf7fd1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_470cbbcbb3d44bb493031e8387fe6adc", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_42e73c1ad6b74b238d722d1c7ee516b1", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "6b4971a3c52247978439a6e52e61bca9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6bf38f634a0d459bbfabdc8331eb6e3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5188,25 +5137,60 @@ "width": null } }, - "83603f01c08541bfb8c21be62911d8c4": { - "model_module": "@jupyter-widgets/controls", + "70c9b3de67694dc4a8c38a542842ae3c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "85a2c07c6cc646928eead9fb48843201": { + "71c3b5aba9c94572b460be6639753985": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5259,57 +5243,7 @@ "width": null } }, - "8669425c063a4576aa34a631160d8bc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7180bb48e7640c8b49a60fca8c2f72f", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_acdfa08b56864bfbab6558910a74ca83", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "87333c993d264d4481aba459cf6e8ff5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6bde698673824ecb985f413298f460e5", - "IPY_MODEL_20ac768b63e544bd914e78a260b4c15e", - "IPY_MODEL_cb56ac6d7b184180a50ee0439943f6f2" - ], - "layout": "IPY_MODEL_3be55120079a4ee7bee9f27e087d8e9a", - "tabbable": null, - "tooltip": null - } - }, - "87e290ca19eb4c4489913dab76bc45ec": { + "720932772aa64aba973045693c189137": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5362,123 +5296,106 @@ "width": null } }, - "87e54fc2a5a049c6a320ecf5e3f96b0f": { - "model_module": "@jupyter-widgets/controls", + "7437bf57da394059a3d162f5d7a1a77a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e8b27e00323148d68063c360049905a3", - "IPY_MODEL_899b0406983a444bacdf147768015099", - "IPY_MODEL_6235df9f91674033b0a8b6fc2b623de9" - ], - "layout": "IPY_MODEL_4551701275ee4bceb60bd9b95b24c7fc", - "tabbable": null, - "tooltip": null - } - }, - "88177db161de43f5901feca03fd41999": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "88aa98714ddc46339b22c75ae045aaeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16616d64040a48d989a6ddad3acd38ea", - "IPY_MODEL_36dfba7c674e43599ea995af7c735b25", - "IPY_MODEL_e829822bf3dd43b59fe63b15f7cbf820" - ], - "layout": "IPY_MODEL_73c2b683cbc24611aa52ff7e451e549a", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "899b0406983a444bacdf147768015099": { + "744802ca32e849ab9fea4e8e3861b154": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_619cc7d28520406990256faecf1de57d", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_707beb9b70c24441aea27e97140a0d46", + "layout": "IPY_MODEL_f19d1922e1974c3fa19988e4d4701f69", + "placeholder": "​", + "style": "IPY_MODEL_f924af4748c740ce948540ad741071d9", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Downloading data: 100%" } }, - "8bb1671be5a443c5a5465deb59b4f77e": { + "74a2396570a8494a948c33421fd20593": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a7210f49848649f7ad7f80bfe51b7525", - "IPY_MODEL_6472d7919c1b43b3be715407ab592946", - "IPY_MODEL_592071f9c0924aaea6ff161b8c62cdc5" - ], - "layout": "IPY_MODEL_b32bead769f446b9a11d89f7515bc76e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32b6d99a486e461eacd6e063c5420eff", + "placeholder": "​", + "style": "IPY_MODEL_8ec14b76495d43b599a2c06778d3e9c7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 60000/60000 [00:35<00:00, 1632.10it/s]" } }, - "8ce40155a5f94fff8f1f2743f6740c03": { + "74f4d829ffbb4508957bfb49f70fe734": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5531,7 +5448,7 @@ "width": null } }, - "9204dcb6c2b64a10932cce95531b36cd": { + "757e89f53d174fc6b18a1a8380eb5700": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5584,31 +5501,7 @@ "width": null } }, - "95ee3d7fb42843caa13a676150c30adf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72e3112932344056a775875c949b3943", - "IPY_MODEL_a70a4583dbc94064b6f372928c7fa0bb", - "IPY_MODEL_78fe76b833f9495aaf25e408be1d5b05" - ], - "layout": "IPY_MODEL_98d7008f25ab48968b2c006d31f01c21", - "tabbable": null, - "tooltip": null - } - }, - "98888a17e4554b7ba756b9a6b65d2316": { + "778338997ef84774b5fc1b3e363f63c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5624,7 +5517,7 @@ "description_width": "" } }, - "98d7008f25ab48968b2c006d31f01c21": { + "77b7d71484644232938d588a6fbcc4ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5677,41 +5570,7 @@ "width": null } }, - "9a89b0e4795143e39beebbf9429bdb5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9a90aa714495418680d0f9dfe89fb9be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9aa48a21fb9346b6987f737ee56ef26f": { + "7824f895073b4989aabcc1118fe1e570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5729,7 +5588,7 @@ "text_color": null } }, - "9b8d2dba55714cc185aaa996079d0676": { + "789ca2ff29a44242935c400b234b1969": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5782,7 +5641,31 @@ "width": null } }, - "9cf1c466395348f18828c5b1a91338e1": { + "79a15df271d14bfa8e4ed6dbe1c37a8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f7c857000414450bdc92196b4466489", + "IPY_MODEL_2a37f3b6e2e64eda9d5aad4e57bb6475", + "IPY_MODEL_beba078ac8d64eb893f533808fb9cfdd" + ], + "layout": "IPY_MODEL_1fbec845f4cf42bb8efb9b83163e0b9b", + "tabbable": null, + "tooltip": null + } + }, + "7a1637c606824542971bdd53178cb547": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5800,7 +5683,7 @@ "text_color": null } }, - "9cf1fcd4b1864894bc090bc4870b6c13": { + "7ea218ed3bac4e3fb0038d64392dab79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5853,91 +5736,181 @@ "width": null } }, - "9d2c44952ff24656b7ba05c38b4a164c": { - "model_module": "@jupyter-widgets/base", + "7f8b4b75f0c545ac966463807f510230": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9d4381cd48b14d489a32a374e45c5b64": { + "815effa183cf4ca4a7160696d4e9eb83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a36a0824e2bc4b84adf3d6f24bae08e7", + "IPY_MODEL_f05de778ce8641daad6aaad095cd0a12", + "IPY_MODEL_fa8ee62999bf48be85571066708c3a70" + ], + "layout": "IPY_MODEL_c22ca0c1ac314ae3b7526a4ab19f5d59", + "tabbable": null, + "tooltip": null } }, - "9faeeee70c6f4c57a09a07d6c2fae428": { - "model_module": "@jupyter-widgets/base", + "826306b901dc424696b95e114b1441ca": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5efe1df058ed48ae9674a8448d855c64", + "placeholder": "​", + "style": "IPY_MODEL_569d3453747c444a9c2661732c8b1fb5", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.61MB/s]" + } + }, + "8310ed48648242c0a8109e15f13f0f84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bf1140bdc30747b7875150c89a9b56d2", + "placeholder": "​", + "style": "IPY_MODEL_c9d9f8c0348541bc93ce2df33d9b1138", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1391.72it/s]" + } + }, + "85af3d53abef4aa8a6046017943dc826": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f293407e061d47a9b2a576f458cfc91a", + "IPY_MODEL_67bb2dfe0bed499ea09cbd03e6cf7fd1", + "IPY_MODEL_0637c05b667541e782a074923de85b45" + ], + "layout": "IPY_MODEL_db5a222bfbda444ca14ba447f3de1c6b", + "tabbable": null, + "tooltip": null + } + }, + "85c627e125a94180abe254acf928a1fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0419dce41e82427eba5f201dcd3224ce", + "IPY_MODEL_fe9dd2d447a247b29fd9568449e4c772", + "IPY_MODEL_f1b29538d40a44f88d457938817aa9ca" + ], + "layout": "IPY_MODEL_ddf398ca235a4371928fa707d2edfab3", + "tabbable": null, + "tooltip": null + } + }, + "877f435c18c84cdb9acff7996168eee1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff64e02006ba4b3b90e1f252f3c58e25", + "placeholder": "​", + "style": "IPY_MODEL_8dcbfb9f172b4a8296952470fd844435", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "88408a65c5eb4eb48911a14aadbc74cf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, @@ -5975,33 +5948,25 @@ "width": null } }, - "a00975dc4271400da26f2b2c6730f147": { + "8946f270b2954b22801e92ce10bf7c63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_69ec1a246f3f46ebad8612692988b6f3", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36b2a22362f541489d4f76ed8cc16222", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a08c3b1de5e947fab64fd26266bfd3d3": { + "895c5faa034242eeb651e5c6bf3b1a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6054,49 +6019,7 @@ "width": null } }, - "a207c35dbb984e0c862d63f5ddc5638a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cf9ddc57dd524523a1b063251bf1ed52", - "IPY_MODEL_3c88d25d7dc64be9bb75545303d3788e", - "IPY_MODEL_5fdf3acb1fda4063bb0263421fc1a2ef" - ], - "layout": "IPY_MODEL_ca1a9b23845f44b78b4443a944efeed7", - "tabbable": null, - "tooltip": null - } - }, - "a54194e0181f412b8e8c351dbbfe38ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a63b4a8a581846abb26e47939364a898": { + "8a47898db9234aa796ec7fb93a91d6e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6149,114 +6072,25 @@ "width": null } }, - "a70a4583dbc94064b6f372928c7fa0bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a63b4a8a581846abb26e47939364a898", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7016002eb1994182ad6ec7dcc2ede322", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "a7210f49848649f7ad7f80bfe51b7525": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_87e290ca19eb4c4489913dab76bc45ec", - "placeholder": "​", - "style": "IPY_MODEL_9aa48a21fb9346b6987f737ee56ef26f", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "a81a9c47eee74d608e63cd93038d0af0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d2c44952ff24656b7ba05c38b4a164c", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd786ad88c274d8fbf66f177bebce25d", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "a942b2f5acc64ce6b6a1dbd75df5788f": { + "8dcbfb9f172b4a8296952470fd844435": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "acdfa08b56864bfbab6558910a74ca83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ad32ac7bf85d4e76b401ad89a60d4dad": { + "8ec14b76495d43b599a2c06778d3e9c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6274,7 +6108,7 @@ "text_color": null } }, - "ad33374fddb342d49454384c9e9e46ee": { + "90c7589ac13b443eb422dd2f647490a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6327,33 +6161,30 @@ "width": null } }, - "af7e04db3dd84570a12df63801a8ba21": { + "965ba01b14474336b39a9ed4b2b5dcb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_74942a7e319d4370a08764ec92c0db64", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4eb0cfe3ce8f4af08cd5a3de61349208", + "layout": "IPY_MODEL_f984f1911a3a4d3d97fb914d1b6abbce", + "placeholder": "​", + "style": "IPY_MODEL_03ab3894bf4242d8999349575ac3ab13", "tabbable": null, "tooltip": null, - "value": 26421880.0 + "value": " 10000/10000 [00:01<00:00, 8813.96 examples/s]" } }, - "b0aa6e45faa1451abc1a6238706d15b3": { + "96d31dd7865d4b63adc5a9c556d6d472": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6406,23 +6237,7 @@ "width": null } }, - "b28291f3cbc5454c8f76da1de8215176": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b286f4c78e7c41bcac42e1109bd74f20": { + "9a2bf66dd6c64060b9a09eaba40a26a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6475,7 +6290,47 @@ "width": null } }, - "b2d32db6df15471c88c15a465bc284b6": { + "9abe31b01bc04cc89ff967d26e368fdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1a2d0d43f24f4a179401f7bde3fcbf11", + "IPY_MODEL_e87b060be03d4626b55c248e0abe4a42", + "IPY_MODEL_007876448c144ee39084540ed6eb06b9" + ], + "layout": "IPY_MODEL_9a2bf66dd6c64060b9a09eaba40a26a8", + "tabbable": null, + "tooltip": null + } + }, + "9b58b8eff8e745eb9e937354fedb1807": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9bb5412853cd41ffb7c03f1615108a7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6490,15 +6345,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b939fd966f764ffc992ddfb5654218b0", + "layout": "IPY_MODEL_d69fd7a89a8640babdbb4265c990aff2", "placeholder": "​", - "style": "IPY_MODEL_e12d7984cada4b0d84daae9e5104b174", + "style": "IPY_MODEL_a40425de9d3b4923a12d5dfc419b6cf3", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.42MB/s]" + "value": "Map (num_proc=4): 100%" + } + }, + "9c72cef284e84cdaa2856f28c3593985": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9d3b7c0890814f2c9985eb79f97a04ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b32bead769f446b9a11d89f7515bc76e": { + "9dd47964eda34050b58a0ab2b3415ef0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6551,31 +6442,48 @@ "width": null } }, - "b35a892076d14a83a2ed40c58cffc8c7": { + "9fb3ff4fed8c462793870fe1a08d713c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a36a0824e2bc4b84adf3d6f24bae08e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e2b7bd621c5149328f0f28435da0b60e", - "IPY_MODEL_8669425c063a4576aa34a631160d8bc6", - "IPY_MODEL_b2d32db6df15471c88c15a465bc284b6" - ], - "layout": "IPY_MODEL_9cf1fcd4b1864894bc090bc4870b6c13", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_46692e2429834f6b8ad6d2e3bd669ac5", + "placeholder": "​", + "style": "IPY_MODEL_0120148eaefd42fd9a38edc77bc35ac7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "b37d4106b08b4191ba1c544b289fa956": { + "a40425de9d3b4923a12d5dfc419b6cf3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6593,7 +6501,7 @@ "text_color": null } }, - "b3a58baa3e0443f7bd4002def4164b21": { + "a67a308439454f8eb0f02917f9c68472": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6646,7 +6554,25 @@ "width": null } }, - "b939fd966f764ffc992ddfb5654218b0": { + "a75ebf7ef9174d5e9cc59c872badcf44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a7668c39f7324f3abf6dee2fb270336f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6699,48 +6625,55 @@ "width": null } }, - "b9607badf8e04adfa894d208310e8bae": { + "a9c34fb99987402ba4f521a988475574": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d76da02ff0a84d74ad2c21a60fdbf6a8", + "IPY_MODEL_12693e79b18144d2be2b4b4399f4789e", + "IPY_MODEL_826306b901dc424696b95e114b1441ca" + ], + "layout": "IPY_MODEL_594f571cc61a464d8934a2a6ebaff1ed", + "tabbable": null, + "tooltip": null } }, - "bb9a42e0d8a245199f46263bf91a3c19": { + "abcdd0c8b869449f849ce66d0123d168": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_327b8f9cd53f4f2ea6711b54f862f8f9", - "placeholder": "​", - "style": "IPY_MODEL_4299fbc28eb04c0989e4c8d0841588e1", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c336f45d284843d786cfce257d33793c", + "IPY_MODEL_4439d6c4067d42b2bc7b5b49e651de05", + "IPY_MODEL_8310ed48648242c0a8109e15f13f0f84" + ], + "layout": "IPY_MODEL_cb33ab7c5bf847199febe8a7955b0a6b", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.72it/s]" + "tooltip": null } }, - "bbe9c32cdd244c178b1ce0b03ea6b432": { + "af23bba915a74358b250ef2bb1a7d577": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6793,25 +6726,7 @@ "width": null } }, - "bc498e67cff24de6a19be95ac7294058": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c0363073ec7b4c22bc18151ee855022b": { + "b218eb25d1544b2198406c8d0daa0439": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6864,7 +6779,7 @@ "width": null } }, - "c0c48a1573284fcfa81203a934408db8": { + "b461446aa899462d865a83e0c727b5c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6880,7 +6795,72 @@ "description_width": "" } }, - "c0c9cf4e322045c2b1ab002a50b9d2ab": { + "b496abba866a4243bc5d3e643a27bfaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5a36ed53de5c4a9c8637a7b4013dfb54", + "placeholder": "​", + "style": "IPY_MODEL_c5dd4307fb0e435f9e6eecf7eba58ea3", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 604kB/s]" + } + }, + "b54eac280dff4e5dbe0c1d2b48743535": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b56125fc059b47e3b228dc3ed3b629c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_38eb030b83c64212b25df93cfe516570", + "IPY_MODEL_1c96211615924c808f262fae38d4ab01", + "IPY_MODEL_bed8037a62494179a7e38b4603feef04" + ], + "layout": "IPY_MODEL_8a47898db9234aa796ec7fb93a91d6e9", + "tabbable": null, + "tooltip": null + } + }, + "b9a030c7a18e43e0a9ade7e2489ba818": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6933,48 +6913,119 @@ "width": null } }, - "c23c262f69a24c14bfd3abad512115cd": { + "bb0480efe0bc4bd3801a7f7315323cf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9b8d2dba55714cc185aaa996079d0676", - "placeholder": "​", - "style": "IPY_MODEL_ad32ac7bf85d4e76b401ad89a60d4dad", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.07it/s]" - } + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - "c283f9c9d13c4497b62be4281b083324": { + "bb91a65b9f7c4bcbae0545c6e0c0c603": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_757e89f53d174fc6b18a1a8380eb5700", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_05b056eafe984430926b52278f208393", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "bdbb1b6b96824b1ba8715b85852886fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_877f435c18c84cdb9acff7996168eee1", + "IPY_MODEL_03b60960744f469c8562f78a5948c4a9", + "IPY_MODEL_965ba01b14474336b39a9ed4b2b5dcb5" + ], + "layout": "IPY_MODEL_4b1c1c0a8eb2477b91cae9a52c47e58c", + "tabbable": null, + "tooltip": null + } + }, + "beba078ac8d64eb893f533808fb9cfdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_789ca2ff29a44242935c400b234b1969", + "placeholder": "​", + "style": "IPY_MODEL_0d79223cae9246eaaa4f673e81a780a8", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 823kB/s]" } }, - "c3267e936d15433e8e1570c4da7391c8": { + "bed8037a62494179a7e38b4603feef04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_af23bba915a74358b250ef2bb1a7d577", + "placeholder": "​", + "style": "IPY_MODEL_4cfef00083ee41c18334522b0aaafbf6", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.66it/s]" + } + }, + "bf1140bdc30747b7875150c89a9b56d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7027,23 +7078,7 @@ "width": null } }, - "c621f50e72154a5694661c03089f1a74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c67c2da0384b44e69de81367a8784a0e": { + "bf14a805f3944138b263cb978e9fcf8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7096,7 +7131,7 @@ "width": null } }, - "c6e865ef350d4e6d8b938b25e09c83f5": { + "c1899c2c83a146b4b5eccb8d3c0892ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7111,49 +7146,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0aa6e45faa1451abc1a6238706d15b3", + "layout": "IPY_MODEL_9dd47964eda34050b58a0ab2b3415ef0", "placeholder": "​", - "style": "IPY_MODEL_c782438aef24416bb029f3593cc349fc", + "style": "IPY_MODEL_da7255e4a0a1407392cd379cdb23eb3c", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 893kB/s]" - } - }, - "c759dcbe812443628454741837feb20b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c782438aef24416bb029f3593cc349fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 61.06it/s]" } }, - "c8aaaef0517e4c3bafa1637a9be4729e": { + "c1f07c0e6cb7453cb234322863c6974b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7206,7 +7207,7 @@ "width": null } }, - "ca1a9b23845f44b78b4443a944efeed7": { + "c22ca0c1ac314ae3b7526a4ab19f5d59": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7259,7 +7260,7 @@ "width": null } }, - "cb56ac6d7b184180a50ee0439943f6f2": { + "c336f45d284843d786cfce257d33793c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7274,15 +7275,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4bc0bbfd7526490794a6614391b370db", + "layout": "IPY_MODEL_670532c752594999bbc5db2f86da0bfa", "placeholder": "​", - "style": "IPY_MODEL_4cd99a333a8d42548c852d9e15c540ef", + "style": "IPY_MODEL_9fb3ff4fed8c462793870fe1a08d713c", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.35it/s]" + "value": "Computing checksums: 100%" } }, - "cb5a3044573a4dd4bbc95d0e8f95af8c": { + "c5dd4307fb0e435f9e6eecf7eba58ea3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7300,7 +7301,30 @@ "text_color": null } }, - "cbf5d8234045435498d4ce7858ef501b": { + "c63bcc18843a48cd9b4c1b91951a299e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71c3b5aba9c94572b460be6639753985", + "placeholder": "​", + "style": "IPY_MODEL_7a1637c606824542971bdd53178cb547", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" + } + }, + "c6b17708d8404f668a926cfeef0a478f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7353,7 +7377,7 @@ "width": null } }, - "cc805ca1a19a4a51b6f221fdf93940e9": { + "c8922b8978bf4fc58458e70640f1b5c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7371,30 +7395,7 @@ "text_color": null } }, - "cf9ddc57dd524523a1b063251bf1ed52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ce40155a5f94fff8f1f2743f6740c03", - "placeholder": "​", - "style": "IPY_MODEL_f0404686cde642a6b1c02549bbeaadf2", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "d01acd8edce5413085bf6d1c1598d181": { + "c9d9f8c0348541bc93ce2df33d9b1138": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7412,7 +7413,7 @@ "text_color": null } }, - "d2476c0eba3c4c8bbb35810763b8091d": { + "cb33ab7c5bf847199febe8a7955b0a6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7465,7 +7466,43 @@ "width": null } }, - "d436ae4174324c3ba2ae924751737b13": { + "cd436773aeeb4e5f811c805cd47f7071": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d067169b2a1745bd893cbaa56705df57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d10a94f6f1994a14b0ce8071ec84d170": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7518,51 +7555,7 @@ "width": null } }, - "d50b9bfc8a7440a18611b6040f36e0ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c3267e936d15433e8e1570c4da7391c8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d4381cd48b14d489a32a374e45c5b64", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "d5cb1a291b51410aa093a37acf7edf22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d640257718124ae98f83b58abaa3f67e": { + "d50d3c5c4ecd49cfbbcb44e787a993ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7615,7 +7608,7 @@ "width": null } }, - "d6765a83a38e4fbb8540a45549a45441": { + "d65cb8246aa14189b49a0eeae6f3bad0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7630,98 +7623,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_372cb0443d0b44afb0cb8f8a9a2b2678", - "IPY_MODEL_af7e04db3dd84570a12df63801a8ba21", - "IPY_MODEL_46417180fb4f456eacfba82f9c7df65d" + "IPY_MODEL_ee7c6e7d3d1b43138e41e0146c75cd98", + "IPY_MODEL_4268b194fef1470096c0d165c23da82f", + "IPY_MODEL_74a2396570a8494a948c33421fd20593" ], - "layout": "IPY_MODEL_1996e90614d24cc1af265c027da04c3d", + "layout": "IPY_MODEL_d10a94f6f1994a14b0ce8071ec84d170", "tabbable": null, "tooltip": null } }, - "d9252f5a0149408fb3c337bdab26e38c": { - "model_module": "@jupyter-widgets/controls", + "d69fd7a89a8640babdbb4265c990aff2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5355b0c6436149178245c21e7b7066a3", - "IPY_MODEL_a81a9c47eee74d608e63cd93038d0af0", - "IPY_MODEL_c6e865ef350d4e6d8b938b25e09c83f5" - ], - "layout": "IPY_MODEL_3a45bc1f3ab94339a13ccda608ee5cde", - "tabbable": null, - "tooltip": null - } - }, - "d9ef5a7bb45b49ea98ba7ef7d46f7327": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ff656de4c6e0473796b460c9249b736d", - "IPY_MODEL_e0125e60b03541d291708f69063efc43", - "IPY_MODEL_0276af0d79c34842b3872fe19afd8ad5" - ], - "layout": "IPY_MODEL_b286f4c78e7c41bcac42e1109bd74f20", - "tabbable": null, - "tooltip": null - } - }, - "dd4452cd48954e85aa825a567e0e144b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de35c9abf64849df94aeb925d828b6c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "dee80679427a4dbcb84dcd808a848939": { + "d6b409257aab47b888b2954d7b04073e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7774,33 +7738,30 @@ "width": null } }, - "e0125e60b03541d291708f69063efc43": { + "d76da02ff0a84d74ad2c21a60fdbf6a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ca27630d14e493fabb3da74f24490f7", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b28291f3cbc5454c8f76da1de8215176", + "layout": "IPY_MODEL_2426b36b4bcd4538a7a1a6c6f443b609", + "placeholder": "​", + "style": "IPY_MODEL_c8922b8978bf4fc58458e70640f1b5c5", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": "Downloading data: 100%" } }, - "e12d7984cada4b0d84daae9e5104b174": { + "da7255e4a0a1407392cd379cdb23eb3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7818,56 +7779,7 @@ "text_color": null } }, - "e24a06fd0bcd4f10874ebd6ab0809f46": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f83aa3ce7a90431693df7df3281b49f4", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9a90aa714495418680d0f9dfe89fb9be", - "tabbable": null, - "tooltip": null, - "value": 4833.0 - } - }, - "e2b7bd621c5149328f0f28435da0b60e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7c6267108274d95b69daef50543a529", - "placeholder": "​", - "style": "IPY_MODEL_4a890dea600a485bb747099c68a2658c", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "e2bee95424134caaa2c1a289a8aef189": { + "db5a222bfbda444ca14ba447f3de1c6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7920,7 +7832,7 @@ "width": null } }, - "e3619929bfe04a2089d48aed9ab43c36": { + "ddf398ca235a4371928fa707d2edfab3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7973,64 +7885,7 @@ "width": null } }, - "e41de8aea5c14ba0b708761783524953": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e50417a341d9423e9e55b901aace207c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e829822bf3dd43b59fe63b15f7cbf820": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b3c51631c09401fa0802305f9fae979", - "placeholder": "​", - "style": "IPY_MODEL_cc805ca1a19a4a51b6f221fdf93940e9", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8584.41 examples/s]" - } - }, - "e8b27e00323148d68063c360049905a3": { + "e0619bd42a814114974327c4c92cbc96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8045,15 +7900,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_08b48e25c9ff4f2f881c497ecd3b4212", + "layout": "IPY_MODEL_6566ace6c0aa4a21abbf6d708cb457b0", "placeholder": "​", - "style": "IPY_MODEL_3697d658bca04873a1d2b9a0ede8a8c1", + "style": "IPY_MODEL_e45644a5a73d43e8a12aaa8ea0e71934", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 60000/60000 [00:10<00:00, 7472.24 examples/s]" } }, - "eb2cffb3da7d40f89f90e569f598abf1": { + "e2caa9efa27847b7b3dd441f4a803cb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8106,7 +7961,48 @@ "width": null } }, - "ec9bf577a6ab487cadf62ae18b0711bb": { + "e39cdb7fe88f4310bfd8b1dcd8ac5ae2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_720932772aa64aba973045693c189137", + "placeholder": "​", + "style": "IPY_MODEL_39314c631f444d01903b4f50ccfc66df", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.47it/s]" + } + }, + "e45644a5a73d43e8a12aaa8ea0e71934": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e7dae7ac77284ca7a938a5140aea14ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8159,96 +8055,80 @@ "width": null } }, - "edb1c73c77f440a38f7ec9a4dbc63f56": { - "model_module": "@jupyter-widgets/base", + "e85af83531bc4182b052d4cfe7f1020e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c63bcc18843a48cd9b4c1b91951a299e", + "IPY_MODEL_f0a66657e7724cf4a18612d673b0df8e", + "IPY_MODEL_b496abba866a4243bc5d3e643a27bfaa" + ], + "layout": "IPY_MODEL_420adb2a809a4b7693bda83cb040e60c", + "tabbable": null, + "tooltip": null } }, - "f0404686cde642a6b1c02549bbeaadf2": { + "e87b060be03d4626b55c248e0abe4a42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0261398aaa894092b6eca7f630c39440", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d69e819f44b493a8d07e58cb39a6a69", + "tabbable": null, + "tooltip": null, + "value": 8845.0 } }, - "f17d354c86284d35ae20ef47bd44fb2b": { + "eb56ed8bd1a74a87a2a7cf25c0992594": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4b9e51775e974654a075cfdb1d1b699c", + "placeholder": "​", + "style": "IPY_MODEL_a75ebf7ef9174d5e9cc59c872badcf44", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "f2ddb2aff76e461dbf3ab68008017ec2": { + "ec23491fb0024cb8a1b7dfd205775551": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8301,7 +8181,7 @@ "width": null } }, - "f3d5c9f93a9c4875bcf62afa3cac7b53": { + "ecde01d38be144db9d996498b953e5b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8354,7 +8234,108 @@ "width": null } }, - "f7180bb48e7640c8b49a60fca8c2f72f": { + "ee448c322caa4ddbae258419893e01e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c6b17708d8404f668a926cfeef0a478f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_778338997ef84774b5fc1b3e363f63c9", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "ee7c6e7d3d1b43138e41e0146c75cd98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_96d31dd7865d4b63adc5a9c556d6d472", + "placeholder": "​", + "style": "IPY_MODEL_6b4971a3c52247978439a6e52e61bca9", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f05de778ce8641daad6aaad095cd0a12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2caa9efa27847b7b3dd441f4a803cb2", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_12da0c3d2bd5449dbb811de7fd8b2093", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 + } + }, + "f0a66657e7724cf4a18612d673b0df8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6bf38f634a0d459bbfabdc8331eb6e3b", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c5b477c793d4588a25705aece5a2a2e", + "tabbable": null, + "tooltip": null, + "value": 4833.0 + } + }, + "f19d1922e1974c3fa19988e4d4701f69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8407,60 +8388,121 @@ "width": null } }, - "f7a402a8d6954e09bae52f5c03372a8d": { - "model_module": "@jupyter-widgets/base", + "f1b29538d40a44f88d457938817aa9ca": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d50d3c5c4ecd49cfbbcb44e787a993ba", + "placeholder": "​", + "style": "IPY_MODEL_fe0a6190f0794548839615a5f024d71f", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.94it/s]" + } + }, + "f293407e061d47a9b2a576f458cfc91a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42c998dc50734d8c93d723bb78939244", + "placeholder": "​", + "style": "IPY_MODEL_30a335f232c04fe7b668ed6a418d27b2", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f2d29dc28e7140b792fc1ee3fcb857cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9bb5412853cd41ffb7c03f1615108a7c", + "IPY_MODEL_1bb8a6dd435048b28340d4eac6730019", + "IPY_MODEL_e0619bd42a814114974327c4c92cbc96" + ], + "layout": "IPY_MODEL_7ea218ed3bac4e3fb0038d64392dab79", + "tabbable": null, + "tooltip": null + } + }, + "f3a3a4eba3674c53882dfe2a1c081653": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a67a308439454f8eb0f02917f9c68472", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2f9e9f6f7ebe42afa59802bdf7306ccb", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "f924af4748c740ce948540ad741071d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f7c6267108274d95b69daef50543a529": { + "f984f1911a3a4d3d97fb914d1b6abbce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8513,7 +8555,48 @@ "width": null } }, - "f83aa3ce7a90431693df7df3281b49f4": { + "fa8ee62999bf48be85571066708c3a70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_895c5faa034242eeb651e5c6bf3b1a51", + "placeholder": "​", + "style": "IPY_MODEL_9c72cef284e84cdaa2856f28c3593985", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 61.8MB/s]" + } + }, + "fe0a6190f0794548839615a5f024d71f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fe37a821e1f04c6f9903e3722f9ab4c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8566,30 +8649,33 @@ "width": null } }, - "f89e573249f44029b93df296debc6c88": { + "fe9dd2d447a247b29fd9568449e4c772": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0c9cf4e322045c2b1ab002a50b9d2ab", - "placeholder": "​", - "style": "IPY_MODEL_7a0ff8b1dbc04d4f800b71da7bee8dd6", + "layout": "IPY_MODEL_112a5fd388db49e4b8a0f9dffab06426", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bb0480efe0bc4bd3801a7f7315323cf5", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.74it/s]" + "value": 40.0 } }, - "f9846a5955244385b468847a2dde1330": { + "ff64e02006ba4b3b90e1f252f3c58e25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8641,92 +8727,6 @@ "visibility": null, "width": null } - }, - "fd248e0cd1c04dc79322ff7aca18b7ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9faeeee70c6f4c57a09a07d6c2fae428", - "placeholder": "​", - "style": "IPY_MODEL_bc498e67cff24de6a19be95ac7294058", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "fd6e7deac3fc4c7d91dd1737f449dd14": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6953a1f2481345a1b5d853d364d44c72", - "IPY_MODEL_4ec33725118344c896e009c3ac37fa87", - "IPY_MODEL_bb9a42e0d8a245199f46263bf91a3c19" - ], - "layout": "IPY_MODEL_d2476c0eba3c4c8bbb35810763b8091d", - "tabbable": null, - "tooltip": null - } - }, - "fd786ad88c274d8fbf66f177bebce25d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ff656de4c6e0473796b460c9249b736d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85a2c07c6cc646928eead9fb48843201", - "placeholder": "​", - "style": "IPY_MODEL_9cf1c466395348f18828c5b1a91338e1", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/index.html b/master/tutorials/datalab/index.html index 9989482e2..d0dd1e611 100644 --- a/master/tutorials/datalab/index.html +++ b/master/tutorials/datalab/index.html @@ -383,6 +383,15 @@ >

  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • 2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'card_payment_fee_charged', 'lost_or_stolen_phone', 'getting_spare_card', 'apple_pay_or_google_pay', 'change_pin', 'visa_or_mastercard', 'supported_cards_and_currencies', 'cancel_transfer', 'beneficiary_not_allowed', 'card_about_to_expire'}
    +Classes: {'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies'}
     

    Let’s view the i-th example in the dataset:

    diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 570f8fa58..5e2df2074 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:49.080606Z", - "iopub.status.busy": "2024-06-25T16:01:49.080431Z", - "iopub.status.idle": "2024-06-25T16:01:51.868569Z", - "shell.execute_reply": "2024-06-25T16:01:51.868008Z" + "iopub.execute_input": "2024-06-25T19:35:45.390789Z", + "iopub.status.busy": "2024-06-25T19:35:45.390619Z", + "iopub.status.idle": "2024-06-25T19:35:48.008658Z", + "shell.execute_reply": "2024-06-25T19:35:48.008097Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.871269Z", - "iopub.status.busy": "2024-06-25T16:01:51.870744Z", - "iopub.status.idle": "2024-06-25T16:01:51.874137Z", - "shell.execute_reply": "2024-06-25T16:01:51.873685Z" + "iopub.execute_input": "2024-06-25T19:35:48.011088Z", + "iopub.status.busy": "2024-06-25T19:35:48.010783Z", + "iopub.status.idle": "2024-06-25T19:35:48.014230Z", + "shell.execute_reply": "2024-06-25T19:35:48.013782Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.876275Z", - "iopub.status.busy": "2024-06-25T16:01:51.875837Z", - "iopub.status.idle": "2024-06-25T16:01:51.878967Z", - "shell.execute_reply": "2024-06-25T16:01:51.878524Z" + "iopub.execute_input": "2024-06-25T19:35:48.016267Z", + "iopub.status.busy": "2024-06-25T19:35:48.015916Z", + "iopub.status.idle": "2024-06-25T19:35:48.019094Z", + "shell.execute_reply": "2024-06-25T19:35:48.018529Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.881057Z", - "iopub.status.busy": "2024-06-25T16:01:51.880603Z", - "iopub.status.idle": "2024-06-25T16:01:51.910717Z", - "shell.execute_reply": "2024-06-25T16:01:51.910165Z" + "iopub.execute_input": "2024-06-25T19:35:48.021232Z", + "iopub.status.busy": "2024-06-25T19:35:48.020813Z", + "iopub.status.idle": "2024-06-25T19:35:48.073023Z", + "shell.execute_reply": "2024-06-25T19:35:48.072456Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.912918Z", - "iopub.status.busy": "2024-06-25T16:01:51.912554Z", - "iopub.status.idle": "2024-06-25T16:01:51.916418Z", - "shell.execute_reply": "2024-06-25T16:01:51.915973Z" + "iopub.execute_input": "2024-06-25T19:35:48.075330Z", + "iopub.status.busy": "2024-06-25T19:35:48.074995Z", + "iopub.status.idle": "2024-06-25T19:35:48.078963Z", + "shell.execute_reply": "2024-06-25T19:35:48.078513Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'lost_or_stolen_phone', 'getting_spare_card', 'apple_pay_or_google_pay', 'change_pin', 'visa_or_mastercard', 'supported_cards_and_currencies', 'cancel_transfer', 'beneficiary_not_allowed', 'card_about_to_expire'}\n" + "Classes: {'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.918533Z", - "iopub.status.busy": "2024-06-25T16:01:51.918103Z", - "iopub.status.idle": "2024-06-25T16:01:51.921336Z", - "shell.execute_reply": "2024-06-25T16:01:51.920794Z" + "iopub.execute_input": "2024-06-25T19:35:48.080913Z", + "iopub.status.busy": "2024-06-25T19:35:48.080733Z", + "iopub.status.idle": "2024-06-25T19:35:48.083997Z", + "shell.execute_reply": "2024-06-25T19:35:48.083535Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:51.923429Z", - "iopub.status.busy": "2024-06-25T16:01:51.923050Z", - "iopub.status.idle": "2024-06-25T16:01:55.870267Z", - "shell.execute_reply": "2024-06-25T16:01:55.869625Z" + "iopub.execute_input": "2024-06-25T19:35:48.086043Z", + "iopub.status.busy": "2024-06-25T19:35:48.085869Z", + "iopub.status.idle": "2024-06-25T19:35:52.539336Z", + "shell.execute_reply": "2024-06-25T19:35:52.538772Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:55.873234Z", - "iopub.status.busy": "2024-06-25T16:01:55.872784Z", - "iopub.status.idle": "2024-06-25T16:01:56.785446Z", - "shell.execute_reply": "2024-06-25T16:01:56.784870Z" + "iopub.execute_input": "2024-06-25T19:35:52.541851Z", + "iopub.status.busy": "2024-06-25T19:35:52.541641Z", + "iopub.status.idle": "2024-06-25T19:35:53.417381Z", + "shell.execute_reply": "2024-06-25T19:35:53.416793Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:56.788374Z", - "iopub.status.busy": "2024-06-25T16:01:56.788033Z", - "iopub.status.idle": "2024-06-25T16:01:56.790866Z", - "shell.execute_reply": "2024-06-25T16:01:56.790359Z" + "iopub.execute_input": "2024-06-25T19:35:53.420304Z", + "iopub.status.busy": "2024-06-25T19:35:53.419913Z", + "iopub.status.idle": "2024-06-25T19:35:53.422789Z", + "shell.execute_reply": "2024-06-25T19:35:53.422303Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:56.793259Z", - "iopub.status.busy": "2024-06-25T16:01:56.792882Z", - "iopub.status.idle": "2024-06-25T16:01:58.878619Z", - "shell.execute_reply": "2024-06-25T16:01:58.877823Z" + "iopub.execute_input": "2024-06-25T19:35:53.425167Z", + "iopub.status.busy": "2024-06-25T19:35:53.424776Z", + "iopub.status.idle": "2024-06-25T19:35:55.333188Z", + "shell.execute_reply": "2024-06-25T19:35:55.332528Z" }, "scrolled": true }, @@ -537,10 +537,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.881919Z", - "iopub.status.busy": "2024-06-25T16:01:58.881071Z", - "iopub.status.idle": "2024-06-25T16:01:58.906603Z", - "shell.execute_reply": "2024-06-25T16:01:58.906027Z" + "iopub.execute_input": "2024-06-25T19:35:55.336733Z", + "iopub.status.busy": "2024-06-25T19:35:55.336306Z", + "iopub.status.idle": "2024-06-25T19:35:55.363099Z", + "shell.execute_reply": "2024-06-25T19:35:55.362613Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.910119Z", - "iopub.status.busy": "2024-06-25T16:01:58.909047Z", - "iopub.status.idle": "2024-06-25T16:01:58.920232Z", - "shell.execute_reply": "2024-06-25T16:01:58.919795Z" + "iopub.execute_input": "2024-06-25T19:35:55.366640Z", + "iopub.status.busy": "2024-06-25T19:35:55.365705Z", + "iopub.status.idle": "2024-06-25T19:35:55.376030Z", + "shell.execute_reply": "2024-06-25T19:35:55.375622Z" }, "scrolled": true }, @@ -783,10 +783,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.922435Z", - "iopub.status.busy": "2024-06-25T16:01:58.922243Z", - "iopub.status.idle": "2024-06-25T16:01:58.926688Z", - "shell.execute_reply": "2024-06-25T16:01:58.926119Z" + "iopub.execute_input": "2024-06-25T19:35:55.378837Z", + "iopub.status.busy": "2024-06-25T19:35:55.378517Z", + "iopub.status.idle": "2024-06-25T19:35:55.382599Z", + "shell.execute_reply": "2024-06-25T19:35:55.382206Z" } }, "outputs": [ @@ -824,10 +824,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.928833Z", - "iopub.status.busy": "2024-06-25T16:01:58.928500Z", - "iopub.status.idle": "2024-06-25T16:01:58.935114Z", - "shell.execute_reply": "2024-06-25T16:01:58.934556Z" + "iopub.execute_input": "2024-06-25T19:35:55.384693Z", + "iopub.status.busy": "2024-06-25T19:35:55.384439Z", + "iopub.status.idle": "2024-06-25T19:35:55.390208Z", + "shell.execute_reply": "2024-06-25T19:35:55.389819Z" } }, "outputs": [ @@ -944,10 +944,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.937224Z", - "iopub.status.busy": "2024-06-25T16:01:58.937035Z", - "iopub.status.idle": "2024-06-25T16:01:58.943802Z", - "shell.execute_reply": "2024-06-25T16:01:58.943339Z" + "iopub.execute_input": "2024-06-25T19:35:55.392385Z", + "iopub.status.busy": "2024-06-25T19:35:55.392130Z", + "iopub.status.idle": "2024-06-25T19:35:55.398230Z", + "shell.execute_reply": "2024-06-25T19:35:55.397669Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.945885Z", - "iopub.status.busy": "2024-06-25T16:01:58.945697Z", - "iopub.status.idle": "2024-06-25T16:01:58.951879Z", - "shell.execute_reply": "2024-06-25T16:01:58.951313Z" + "iopub.execute_input": "2024-06-25T19:35:55.400097Z", + "iopub.status.busy": "2024-06-25T19:35:55.399777Z", + "iopub.status.idle": "2024-06-25T19:35:55.405709Z", + "shell.execute_reply": "2024-06-25T19:35:55.405249Z" } }, "outputs": [ @@ -1141,10 +1141,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.953941Z", - "iopub.status.busy": "2024-06-25T16:01:58.953760Z", - "iopub.status.idle": "2024-06-25T16:01:58.962347Z", - "shell.execute_reply": "2024-06-25T16:01:58.961851Z" + "iopub.execute_input": "2024-06-25T19:35:55.407786Z", + "iopub.status.busy": "2024-06-25T19:35:55.407389Z", + "iopub.status.idle": "2024-06-25T19:35:55.415929Z", + "shell.execute_reply": "2024-06-25T19:35:55.415484Z" } }, "outputs": [ @@ -1255,10 +1255,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.964445Z", - "iopub.status.busy": "2024-06-25T16:01:58.964252Z", - "iopub.status.idle": "2024-06-25T16:01:58.969992Z", - "shell.execute_reply": "2024-06-25T16:01:58.969465Z" + "iopub.execute_input": "2024-06-25T19:35:55.417871Z", + "iopub.status.busy": "2024-06-25T19:35:55.417696Z", + "iopub.status.idle": "2024-06-25T19:35:55.422924Z", + "shell.execute_reply": "2024-06-25T19:35:55.422488Z" } }, "outputs": [ @@ -1326,10 +1326,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.971896Z", - "iopub.status.busy": "2024-06-25T16:01:58.971717Z", - "iopub.status.idle": "2024-06-25T16:01:58.977572Z", - "shell.execute_reply": "2024-06-25T16:01:58.977014Z" + "iopub.execute_input": "2024-06-25T19:35:55.424972Z", + "iopub.status.busy": "2024-06-25T19:35:55.424657Z", + "iopub.status.idle": "2024-06-25T19:35:55.429929Z", + "shell.execute_reply": "2024-06-25T19:35:55.429503Z" } }, "outputs": [ @@ -1408,10 +1408,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.980310Z", - "iopub.status.busy": "2024-06-25T16:01:58.979740Z", - "iopub.status.idle": "2024-06-25T16:01:58.983886Z", - "shell.execute_reply": "2024-06-25T16:01:58.983415Z" + "iopub.execute_input": "2024-06-25T19:35:55.431977Z", + "iopub.status.busy": "2024-06-25T19:35:55.431649Z", + "iopub.status.idle": "2024-06-25T19:35:55.435259Z", + "shell.execute_reply": "2024-06-25T19:35:55.434820Z" } }, "outputs": [ @@ -1459,10 +1459,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:01:58.986424Z", - "iopub.status.busy": "2024-06-25T16:01:58.985891Z", - "iopub.status.idle": "2024-06-25T16:01:58.991554Z", - "shell.execute_reply": "2024-06-25T16:01:58.991111Z" + "iopub.execute_input": "2024-06-25T19:35:55.437276Z", + "iopub.status.busy": "2024-06-25T19:35:55.436956Z", + "iopub.status.idle": "2024-06-25T19:35:55.441824Z", + "shell.execute_reply": "2024-06-25T19:35:55.441386Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 569a2d749..370aa25d4 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -384,6 +384,15 @@ >
  • +
  • + v2.6.6 +
  • +
  • 6. (Optional) Visualize the Results - +
    - - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
     AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
    8nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
    diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index c5b93e0b1..073e233c2 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:03.278476Z", - "iopub.status.busy": "2024-06-25T16:02:03.278250Z", - "iopub.status.idle": "2024-06-25T16:02:03.738248Z", - "shell.execute_reply": "2024-06-25T16:02:03.737620Z" + "iopub.execute_input": "2024-06-25T19:35:59.467250Z", + "iopub.status.busy": "2024-06-25T19:35:59.467073Z", + "iopub.status.idle": "2024-06-25T19:35:59.885710Z", + "shell.execute_reply": "2024-06-25T19:35:59.885107Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:03.740991Z", - "iopub.status.busy": "2024-06-25T16:02:03.740456Z", - "iopub.status.idle": "2024-06-25T16:02:03.870272Z", - "shell.execute_reply": "2024-06-25T16:02:03.869699Z" + "iopub.execute_input": "2024-06-25T19:35:59.888637Z", + "iopub.status.busy": "2024-06-25T19:35:59.888151Z", + "iopub.status.idle": "2024-06-25T19:36:00.014649Z", + "shell.execute_reply": "2024-06-25T19:36:00.014148Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:03.872521Z", - "iopub.status.busy": "2024-06-25T16:02:03.872274Z", - "iopub.status.idle": "2024-06-25T16:02:03.895571Z", - "shell.execute_reply": "2024-06-25T16:02:03.895004Z" + "iopub.execute_input": "2024-06-25T19:36:00.016873Z", + "iopub.status.busy": "2024-06-25T19:36:00.016623Z", + "iopub.status.idle": "2024-06-25T19:36:00.039876Z", + "shell.execute_reply": "2024-06-25T19:36:00.039305Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:03.898323Z", - "iopub.status.busy": "2024-06-25T16:02:03.898050Z", - "iopub.status.idle": "2024-06-25T16:02:06.877864Z", - "shell.execute_reply": "2024-06-25T16:02:06.877213Z" + "iopub.execute_input": "2024-06-25T19:36:00.042285Z", + "iopub.status.busy": "2024-06-25T19:36:00.041898Z", + "iopub.status.idle": "2024-06-25T19:36:02.696869Z", + "shell.execute_reply": "2024-06-25T19:36:02.696318Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:06.880622Z", - "iopub.status.busy": "2024-06-25T16:02:06.880154Z", - "iopub.status.idle": "2024-06-25T16:02:14.828345Z", - "shell.execute_reply": "2024-06-25T16:02:14.827773Z" + "iopub.execute_input": "2024-06-25T19:36:02.699546Z", + "iopub.status.busy": "2024-06-25T19:36:02.698988Z", + "iopub.status.idle": "2024-06-25T19:36:11.210546Z", + "shell.execute_reply": "2024-06-25T19:36:11.209947Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:14.830402Z", - "iopub.status.busy": "2024-06-25T16:02:14.830211Z", - "iopub.status.idle": "2024-06-25T16:02:14.992524Z", - "shell.execute_reply": "2024-06-25T16:02:14.992007Z" + "iopub.execute_input": "2024-06-25T19:36:11.212912Z", + "iopub.status.busy": "2024-06-25T19:36:11.212489Z", + "iopub.status.idle": "2024-06-25T19:36:11.354224Z", + "shell.execute_reply": "2024-06-25T19:36:11.353605Z" } }, "outputs": [], @@ -854,10 +854,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:14.995052Z", - "iopub.status.busy": "2024-06-25T16:02:14.994828Z", - "iopub.status.idle": "2024-06-25T16:02:16.343274Z", - "shell.execute_reply": "2024-06-25T16:02:16.342777Z" + "iopub.execute_input": "2024-06-25T19:36:11.356684Z", + "iopub.status.busy": "2024-06-25T19:36:11.356497Z", + "iopub.status.idle": "2024-06-25T19:36:12.692416Z", + "shell.execute_reply": "2024-06-25T19:36:12.691867Z" } }, "outputs": [ @@ -1016,10 +1016,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:16.345457Z", - "iopub.status.busy": "2024-06-25T16:02:16.345102Z", - "iopub.status.idle": "2024-06-25T16:02:16.795402Z", - "shell.execute_reply": "2024-06-25T16:02:16.794807Z" + "iopub.execute_input": "2024-06-25T19:36:12.694507Z", + "iopub.status.busy": "2024-06-25T19:36:12.694321Z", + "iopub.status.idle": "2024-06-25T19:36:13.110943Z", + "shell.execute_reply": "2024-06-25T19:36:13.110403Z" } }, "outputs": [ @@ -1098,10 +1098,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:16.797906Z", - "iopub.status.busy": "2024-06-25T16:02:16.797348Z", - "iopub.status.idle": "2024-06-25T16:02:16.806905Z", - "shell.execute_reply": "2024-06-25T16:02:16.806435Z" + "iopub.execute_input": "2024-06-25T19:36:13.113354Z", + "iopub.status.busy": "2024-06-25T19:36:13.112876Z", + "iopub.status.idle": "2024-06-25T19:36:13.121876Z", + "shell.execute_reply": "2024-06-25T19:36:13.121426Z" } }, "outputs": [], @@ -1131,10 +1131,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:16.809218Z", - "iopub.status.busy": "2024-06-25T16:02:16.808867Z", - "iopub.status.idle": "2024-06-25T16:02:16.830549Z", - "shell.execute_reply": "2024-06-25T16:02:16.830060Z" + "iopub.execute_input": "2024-06-25T19:36:13.123927Z", + "iopub.status.busy": "2024-06-25T19:36:13.123749Z", + "iopub.status.idle": "2024-06-25T19:36:13.143234Z", + "shell.execute_reply": "2024-06-25T19:36:13.142805Z" } }, "outputs": [], @@ -1162,10 +1162,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:16.833159Z", - "iopub.status.busy": "2024-06-25T16:02:16.832781Z", - "iopub.status.idle": "2024-06-25T16:02:17.053532Z", - "shell.execute_reply": "2024-06-25T16:02:17.052990Z" + "iopub.execute_input": "2024-06-25T19:36:13.145167Z", + "iopub.status.busy": "2024-06-25T19:36:13.144993Z", + "iopub.status.idle": "2024-06-25T19:36:13.369942Z", + "shell.execute_reply": "2024-06-25T19:36:13.369417Z" } }, "outputs": [], @@ -1205,10 +1205,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.056191Z", - "iopub.status.busy": "2024-06-25T16:02:17.055798Z", - "iopub.status.idle": "2024-06-25T16:02:17.076017Z", - "shell.execute_reply": "2024-06-25T16:02:17.075526Z" + "iopub.execute_input": "2024-06-25T19:36:13.372709Z", + "iopub.status.busy": "2024-06-25T19:36:13.372266Z", + "iopub.status.idle": "2024-06-25T19:36:13.391271Z", + "shell.execute_reply": "2024-06-25T19:36:13.390786Z" } }, "outputs": [ @@ -1406,10 +1406,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.078246Z", - "iopub.status.busy": "2024-06-25T16:02:17.077880Z", - "iopub.status.idle": "2024-06-25T16:02:17.224988Z", - "shell.execute_reply": "2024-06-25T16:02:17.224353Z" + "iopub.execute_input": "2024-06-25T19:36:13.393275Z", + "iopub.status.busy": "2024-06-25T19:36:13.392955Z", + "iopub.status.idle": "2024-06-25T19:36:13.562067Z", + "shell.execute_reply": "2024-06-25T19:36:13.561518Z" } }, "outputs": [ @@ -1476,10 +1476,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.227348Z", - "iopub.status.busy": "2024-06-25T16:02:17.226988Z", - "iopub.status.idle": "2024-06-25T16:02:17.237752Z", - "shell.execute_reply": "2024-06-25T16:02:17.237274Z" + "iopub.execute_input": "2024-06-25T19:36:13.564551Z", + "iopub.status.busy": "2024-06-25T19:36:13.564210Z", + "iopub.status.idle": "2024-06-25T19:36:13.574249Z", + "shell.execute_reply": "2024-06-25T19:36:13.573705Z" } }, "outputs": [ @@ -1745,10 +1745,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.239946Z", - "iopub.status.busy": "2024-06-25T16:02:17.239599Z", - "iopub.status.idle": "2024-06-25T16:02:17.249303Z", - "shell.execute_reply": "2024-06-25T16:02:17.248766Z" + "iopub.execute_input": "2024-06-25T19:36:13.576275Z", + "iopub.status.busy": "2024-06-25T19:36:13.575975Z", + "iopub.status.idle": "2024-06-25T19:36:13.585430Z", + "shell.execute_reply": "2024-06-25T19:36:13.584885Z" } }, "outputs": [ @@ -1935,10 +1935,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.251573Z", - "iopub.status.busy": "2024-06-25T16:02:17.251165Z", - "iopub.status.idle": "2024-06-25T16:02:17.282613Z", - "shell.execute_reply": "2024-06-25T16:02:17.282124Z" + "iopub.execute_input": "2024-06-25T19:36:13.587370Z", + "iopub.status.busy": "2024-06-25T19:36:13.587068Z", + "iopub.status.idle": "2024-06-25T19:36:13.629038Z", + "shell.execute_reply": "2024-06-25T19:36:13.628478Z" } }, "outputs": [], @@ -1972,10 +1972,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.285176Z", - "iopub.status.busy": "2024-06-25T16:02:17.284816Z", - "iopub.status.idle": "2024-06-25T16:02:17.287691Z", - "shell.execute_reply": "2024-06-25T16:02:17.287229Z" + "iopub.execute_input": "2024-06-25T19:36:13.631050Z", + "iopub.status.busy": "2024-06-25T19:36:13.630746Z", + "iopub.status.idle": "2024-06-25T19:36:13.633461Z", + "shell.execute_reply": "2024-06-25T19:36:13.632931Z" } }, "outputs": [], @@ -1997,10 +1997,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.289975Z", - "iopub.status.busy": "2024-06-25T16:02:17.289556Z", - "iopub.status.idle": "2024-06-25T16:02:17.310040Z", - "shell.execute_reply": "2024-06-25T16:02:17.309443Z" + "iopub.execute_input": "2024-06-25T19:36:13.635387Z", + "iopub.status.busy": "2024-06-25T19:36:13.635196Z", + "iopub.status.idle": "2024-06-25T19:36:13.655022Z", + "shell.execute_reply": "2024-06-25T19:36:13.654546Z" } }, "outputs": [ @@ -2158,10 +2158,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.312269Z", - "iopub.status.busy": "2024-06-25T16:02:17.311957Z", - "iopub.status.idle": "2024-06-25T16:02:17.316335Z", - "shell.execute_reply": "2024-06-25T16:02:17.315795Z" + "iopub.execute_input": "2024-06-25T19:36:13.657280Z", + "iopub.status.busy": "2024-06-25T19:36:13.656950Z", + "iopub.status.idle": "2024-06-25T19:36:13.661121Z", + "shell.execute_reply": "2024-06-25T19:36:13.660700Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.318468Z", - "iopub.status.busy": "2024-06-25T16:02:17.318124Z", - "iopub.status.idle": "2024-06-25T16:02:17.347731Z", - "shell.execute_reply": "2024-06-25T16:02:17.347189Z" + "iopub.execute_input": "2024-06-25T19:36:13.663070Z", + "iopub.status.busy": "2024-06-25T19:36:13.662753Z", + "iopub.status.idle": "2024-06-25T19:36:13.690582Z", + "shell.execute_reply": "2024-06-25T19:36:13.690034Z" } }, "outputs": [ @@ -2343,10 +2343,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.350381Z", - "iopub.status.busy": "2024-06-25T16:02:17.349956Z", - "iopub.status.idle": "2024-06-25T16:02:17.734520Z", - "shell.execute_reply": "2024-06-25T16:02:17.733881Z" + "iopub.execute_input": "2024-06-25T19:36:13.692558Z", + "iopub.status.busy": "2024-06-25T19:36:13.692385Z", + "iopub.status.idle": "2024-06-25T19:36:14.062207Z", + "shell.execute_reply": "2024-06-25T19:36:14.061647Z" } }, "outputs": [ @@ -2413,10 +2413,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.736852Z", - "iopub.status.busy": "2024-06-25T16:02:17.736654Z", - "iopub.status.idle": "2024-06-25T16:02:17.739943Z", - "shell.execute_reply": "2024-06-25T16:02:17.739436Z" + "iopub.execute_input": "2024-06-25T19:36:14.064536Z", + "iopub.status.busy": "2024-06-25T19:36:14.064346Z", + "iopub.status.idle": "2024-06-25T19:36:14.067724Z", + "shell.execute_reply": "2024-06-25T19:36:14.067250Z" } }, "outputs": [ @@ -2467,10 +2467,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.742226Z", - "iopub.status.busy": "2024-06-25T16:02:17.741819Z", - "iopub.status.idle": "2024-06-25T16:02:17.755783Z", - "shell.execute_reply": "2024-06-25T16:02:17.755164Z" + "iopub.execute_input": "2024-06-25T19:36:14.069713Z", + "iopub.status.busy": "2024-06-25T19:36:14.069543Z", + "iopub.status.idle": "2024-06-25T19:36:14.082545Z", + "shell.execute_reply": "2024-06-25T19:36:14.082110Z" } }, "outputs": [ @@ -2749,10 +2749,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.758619Z", - "iopub.status.busy": "2024-06-25T16:02:17.758165Z", - "iopub.status.idle": "2024-06-25T16:02:17.772511Z", - "shell.execute_reply": "2024-06-25T16:02:17.772006Z" + "iopub.execute_input": "2024-06-25T19:36:14.084372Z", + "iopub.status.busy": "2024-06-25T19:36:14.084199Z", + "iopub.status.idle": "2024-06-25T19:36:14.097558Z", + "shell.execute_reply": "2024-06-25T19:36:14.097135Z" } }, "outputs": [ @@ -3019,10 +3019,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.774729Z", - "iopub.status.busy": "2024-06-25T16:02:17.774383Z", - "iopub.status.idle": "2024-06-25T16:02:17.784834Z", - "shell.execute_reply": "2024-06-25T16:02:17.784356Z" + "iopub.execute_input": "2024-06-25T19:36:14.099340Z", + "iopub.status.busy": "2024-06-25T19:36:14.099173Z", + "iopub.status.idle": "2024-06-25T19:36:14.108741Z", + "shell.execute_reply": "2024-06-25T19:36:14.108314Z" } }, "outputs": [], @@ -3047,10 +3047,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.787288Z", - "iopub.status.busy": "2024-06-25T16:02:17.786941Z", - "iopub.status.idle": "2024-06-25T16:02:17.796989Z", - "shell.execute_reply": "2024-06-25T16:02:17.796391Z" + "iopub.execute_input": "2024-06-25T19:36:14.110562Z", + "iopub.status.busy": "2024-06-25T19:36:14.110394Z", + "iopub.status.idle": "2024-06-25T19:36:14.119786Z", + "shell.execute_reply": "2024-06-25T19:36:14.119280Z" } }, "outputs": [ @@ -3222,10 +3222,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.799296Z", - "iopub.status.busy": "2024-06-25T16:02:17.798963Z", - "iopub.status.idle": "2024-06-25T16:02:17.803120Z", - "shell.execute_reply": "2024-06-25T16:02:17.802532Z" + "iopub.execute_input": "2024-06-25T19:36:14.121705Z", + "iopub.status.busy": "2024-06-25T19:36:14.121535Z", + "iopub.status.idle": "2024-06-25T19:36:14.125253Z", + "shell.execute_reply": "2024-06-25T19:36:14.124849Z" } }, "outputs": [], @@ -3257,10 +3257,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.805397Z", - "iopub.status.busy": "2024-06-25T16:02:17.804958Z", - "iopub.status.idle": "2024-06-25T16:02:17.859460Z", - "shell.execute_reply": "2024-06-25T16:02:17.858895Z" + "iopub.execute_input": "2024-06-25T19:36:14.127233Z", + "iopub.status.busy": "2024-06-25T19:36:14.126914Z", + "iopub.status.idle": "2024-06-25T19:36:14.177262Z", + "shell.execute_reply": "2024-06-25T19:36:14.176812Z" } }, "outputs": [ @@ -3268,230 +3268,230 @@ "data": { "text/html": [ "\n", - "\n", + "
    \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
     AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
    8nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
    \n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3567,10 +3567,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.861887Z", - "iopub.status.busy": "2024-06-25T16:02:17.861391Z", - "iopub.status.idle": "2024-06-25T16:02:17.867312Z", - "shell.execute_reply": "2024-06-25T16:02:17.866753Z" + "iopub.execute_input": "2024-06-25T19:36:14.179445Z", + "iopub.status.busy": "2024-06-25T19:36:14.179018Z", + "iopub.status.idle": "2024-06-25T19:36:14.184786Z", + "shell.execute_reply": "2024-06-25T19:36:14.184224Z" } }, "outputs": [], @@ -3609,10 +3609,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.869315Z", - "iopub.status.busy": "2024-06-25T16:02:17.869000Z", - "iopub.status.idle": "2024-06-25T16:02:17.880761Z", - "shell.execute_reply": "2024-06-25T16:02:17.880169Z" + "iopub.execute_input": "2024-06-25T19:36:14.186887Z", + "iopub.status.busy": "2024-06-25T19:36:14.186471Z", + "iopub.status.idle": "2024-06-25T19:36:14.196806Z", + "shell.execute_reply": "2024-06-25T19:36:14.196244Z" } }, "outputs": [ @@ -3648,10 +3648,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:17.883066Z", - "iopub.status.busy": "2024-06-25T16:02:17.882616Z", - "iopub.status.idle": "2024-06-25T16:02:18.106274Z", - "shell.execute_reply": "2024-06-25T16:02:18.105691Z" + "iopub.execute_input": "2024-06-25T19:36:14.198752Z", + "iopub.status.busy": "2024-06-25T19:36:14.198440Z", + "iopub.status.idle": "2024-06-25T19:36:14.412825Z", + "shell.execute_reply": "2024-06-25T19:36:14.412259Z" } }, "outputs": [ @@ -3703,10 +3703,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:18.108615Z", - "iopub.status.busy": "2024-06-25T16:02:18.108164Z", - "iopub.status.idle": "2024-06-25T16:02:18.116186Z", - "shell.execute_reply": "2024-06-25T16:02:18.115708Z" + "iopub.execute_input": "2024-06-25T19:36:14.414958Z", + "iopub.status.busy": "2024-06-25T19:36:14.414688Z", + "iopub.status.idle": "2024-06-25T19:36:14.422114Z", + "shell.execute_reply": "2024-06-25T19:36:14.421663Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.html b/master/tutorials/dataset_health.html index 33b3f9431..613b97d45 100644 --- a/master/tutorials/dataset_health.html +++ b/master/tutorials/dataset_health.html @@ -384,6 +384,15 @@ >
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • How can I find label issues in big datasets with limited memory?
    -
    +
    -
    +
    @@ -1702,7 +1711,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index cf0213fe0..649612439 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:29.093911Z", - "iopub.status.busy": "2024-06-25T16:02:29.093556Z", - "iopub.status.idle": "2024-06-25T16:02:30.271993Z", - "shell.execute_reply": "2024-06-25T16:02:30.271440Z" + "iopub.execute_input": "2024-06-25T19:36:31.054579Z", + "iopub.status.busy": "2024-06-25T19:36:31.054404Z", + "iopub.status.idle": "2024-06-25T19:36:32.183683Z", + "shell.execute_reply": "2024-06-25T19:36:32.183056Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:30.275199Z", - "iopub.status.busy": "2024-06-25T16:02:30.274597Z", - "iopub.status.idle": "2024-06-25T16:02:30.278598Z", - "shell.execute_reply": "2024-06-25T16:02:30.278052Z" + "iopub.execute_input": "2024-06-25T19:36:32.186495Z", + "iopub.status.busy": "2024-06-25T19:36:32.186073Z", + "iopub.status.idle": "2024-06-25T19:36:32.189610Z", + "shell.execute_reply": "2024-06-25T19:36:32.189148Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:30.280929Z", - "iopub.status.busy": "2024-06-25T16:02:30.280543Z", - "iopub.status.idle": "2024-06-25T16:02:33.664200Z", - "shell.execute_reply": "2024-06-25T16:02:33.663468Z" + "iopub.execute_input": "2024-06-25T19:36:32.191776Z", + "iopub.status.busy": "2024-06-25T19:36:32.191309Z", + "iopub.status.idle": "2024-06-25T19:36:35.412500Z", + "shell.execute_reply": "2024-06-25T19:36:35.411739Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.667568Z", - "iopub.status.busy": "2024-06-25T16:02:33.666753Z", - "iopub.status.idle": "2024-06-25T16:02:33.706553Z", - "shell.execute_reply": "2024-06-25T16:02:33.705839Z" + "iopub.execute_input": "2024-06-25T19:36:35.415868Z", + "iopub.status.busy": "2024-06-25T19:36:35.414996Z", + "iopub.status.idle": "2024-06-25T19:36:35.452492Z", + "shell.execute_reply": "2024-06-25T19:36:35.451863Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.709552Z", - "iopub.status.busy": "2024-06-25T16:02:33.709080Z", - "iopub.status.idle": "2024-06-25T16:02:33.747295Z", - "shell.execute_reply": "2024-06-25T16:02:33.746692Z" + "iopub.execute_input": "2024-06-25T19:36:35.455265Z", + "iopub.status.busy": "2024-06-25T19:36:35.454795Z", + "iopub.status.idle": "2024-06-25T19:36:35.489174Z", + "shell.execute_reply": "2024-06-25T19:36:35.488560Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.750054Z", - "iopub.status.busy": "2024-06-25T16:02:33.749633Z", - "iopub.status.idle": "2024-06-25T16:02:33.752782Z", - "shell.execute_reply": "2024-06-25T16:02:33.752208Z" + "iopub.execute_input": "2024-06-25T19:36:35.491931Z", + "iopub.status.busy": "2024-06-25T19:36:35.491449Z", + "iopub.status.idle": "2024-06-25T19:36:35.494631Z", + "shell.execute_reply": "2024-06-25T19:36:35.494157Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.754793Z", - "iopub.status.busy": "2024-06-25T16:02:33.754393Z", - "iopub.status.idle": "2024-06-25T16:02:33.757184Z", - "shell.execute_reply": "2024-06-25T16:02:33.756618Z" + "iopub.execute_input": "2024-06-25T19:36:35.496822Z", + "iopub.status.busy": "2024-06-25T19:36:35.496395Z", + "iopub.status.idle": "2024-06-25T19:36:35.499017Z", + "shell.execute_reply": "2024-06-25T19:36:35.498537Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.759344Z", - "iopub.status.busy": "2024-06-25T16:02:33.759015Z", - "iopub.status.idle": "2024-06-25T16:02:33.784607Z", - "shell.execute_reply": "2024-06-25T16:02:33.783988Z" + "iopub.execute_input": "2024-06-25T19:36:35.501249Z", + "iopub.status.busy": "2024-06-25T19:36:35.500816Z", + "iopub.status.idle": "2024-06-25T19:36:35.525422Z", + "shell.execute_reply": "2024-06-25T19:36:35.524821Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c6a877036d2484099e04e3a1a4f477a", + "model_id": "d8af54b634f1457680edc574c7fcb110", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3dcecf61b1ea493891d9c418f6d478c9", + "model_id": "84b64175499142ae9cf770d1e88b80ac", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.791372Z", - "iopub.status.busy": "2024-06-25T16:02:33.790898Z", - "iopub.status.idle": "2024-06-25T16:02:33.798187Z", - "shell.execute_reply": "2024-06-25T16:02:33.797608Z" + "iopub.execute_input": "2024-06-25T19:36:35.532028Z", + "iopub.status.busy": "2024-06-25T19:36:35.531847Z", + "iopub.status.idle": "2024-06-25T19:36:35.538645Z", + "shell.execute_reply": "2024-06-25T19:36:35.538198Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.800382Z", - "iopub.status.busy": "2024-06-25T16:02:33.800203Z", - "iopub.status.idle": "2024-06-25T16:02:33.803758Z", - "shell.execute_reply": "2024-06-25T16:02:33.803335Z" + "iopub.execute_input": "2024-06-25T19:36:35.540612Z", + "iopub.status.busy": "2024-06-25T19:36:35.540437Z", + "iopub.status.idle": "2024-06-25T19:36:35.543848Z", + "shell.execute_reply": "2024-06-25T19:36:35.543410Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.805911Z", - "iopub.status.busy": "2024-06-25T16:02:33.805578Z", - "iopub.status.idle": "2024-06-25T16:02:33.811761Z", - "shell.execute_reply": "2024-06-25T16:02:33.811312Z" + "iopub.execute_input": "2024-06-25T19:36:35.545806Z", + "iopub.status.busy": "2024-06-25T19:36:35.545508Z", + "iopub.status.idle": "2024-06-25T19:36:35.551703Z", + "shell.execute_reply": "2024-06-25T19:36:35.551260Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.813716Z", - "iopub.status.busy": "2024-06-25T16:02:33.813419Z", - "iopub.status.idle": "2024-06-25T16:02:33.850139Z", - "shell.execute_reply": "2024-06-25T16:02:33.849563Z" + "iopub.execute_input": "2024-06-25T19:36:35.553602Z", + "iopub.status.busy": "2024-06-25T19:36:35.553415Z", + "iopub.status.idle": "2024-06-25T19:36:35.589414Z", + "shell.execute_reply": "2024-06-25T19:36:35.588805Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.852668Z", - "iopub.status.busy": "2024-06-25T16:02:33.852353Z", - "iopub.status.idle": "2024-06-25T16:02:33.887227Z", - "shell.execute_reply": "2024-06-25T16:02:33.886643Z" + "iopub.execute_input": "2024-06-25T19:36:35.592001Z", + "iopub.status.busy": "2024-06-25T19:36:35.591752Z", + "iopub.status.idle": "2024-06-25T19:36:35.628128Z", + "shell.execute_reply": "2024-06-25T19:36:35.627508Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:33.889899Z", - "iopub.status.busy": "2024-06-25T16:02:33.889587Z", - "iopub.status.idle": "2024-06-25T16:02:34.020226Z", - "shell.execute_reply": "2024-06-25T16:02:34.019640Z" + "iopub.execute_input": "2024-06-25T19:36:35.630864Z", + "iopub.status.busy": "2024-06-25T19:36:35.630509Z", + "iopub.status.idle": "2024-06-25T19:36:35.751028Z", + "shell.execute_reply": "2024-06-25T19:36:35.750367Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:34.022853Z", - "iopub.status.busy": "2024-06-25T16:02:34.022310Z", - "iopub.status.idle": "2024-06-25T16:02:37.124984Z", - "shell.execute_reply": "2024-06-25T16:02:37.124295Z" + "iopub.execute_input": "2024-06-25T19:36:35.753981Z", + "iopub.status.busy": "2024-06-25T19:36:35.753115Z", + "iopub.status.idle": "2024-06-25T19:36:38.820276Z", + "shell.execute_reply": "2024-06-25T19:36:38.819614Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:37.127549Z", - "iopub.status.busy": "2024-06-25T16:02:37.127178Z", - "iopub.status.idle": "2024-06-25T16:02:37.190571Z", - "shell.execute_reply": "2024-06-25T16:02:37.189933Z" + "iopub.execute_input": "2024-06-25T19:36:38.822817Z", + "iopub.status.busy": "2024-06-25T19:36:38.822359Z", + "iopub.status.idle": "2024-06-25T19:36:38.881135Z", + "shell.execute_reply": "2024-06-25T19:36:38.880677Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:37.192895Z", - "iopub.status.busy": "2024-06-25T16:02:37.192539Z", - "iopub.status.idle": "2024-06-25T16:02:37.236637Z", - "shell.execute_reply": "2024-06-25T16:02:37.235957Z" + "iopub.execute_input": "2024-06-25T19:36:38.883155Z", + "iopub.status.busy": "2024-06-25T19:36:38.882856Z", + "iopub.status.idle": "2024-06-25T19:36:38.922999Z", + "shell.execute_reply": "2024-06-25T19:36:38.922558Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "89239277", + "id": "91d13c0b", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "ac0629ed", + "id": "838b0e29", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "24692753", + "id": "72c82160", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "9a0a402a", + "id": "c8ef0e49", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:37.239147Z", - "iopub.status.busy": "2024-06-25T16:02:37.238875Z", - "iopub.status.idle": "2024-06-25T16:02:37.247577Z", - "shell.execute_reply": "2024-06-25T16:02:37.246901Z" + "iopub.execute_input": "2024-06-25T19:36:38.925175Z", + "iopub.status.busy": "2024-06-25T19:36:38.924869Z", + "iopub.status.idle": "2024-06-25T19:36:38.933100Z", + "shell.execute_reply": "2024-06-25T19:36:38.932519Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "ea91a64c", + "id": "bfd8eea7", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "ced0d3fc", + "id": "7515c699", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:37.250161Z", - "iopub.status.busy": "2024-06-25T16:02:37.249739Z", - "iopub.status.idle": "2024-06-25T16:02:37.272485Z", - "shell.execute_reply": "2024-06-25T16:02:37.271873Z" + "iopub.execute_input": "2024-06-25T19:36:38.935170Z", + "iopub.status.busy": "2024-06-25T19:36:38.934961Z", + "iopub.status.idle": "2024-06-25T19:36:38.958819Z", + "shell.execute_reply": "2024-06-25T19:36:38.958261Z" } }, "outputs": [ @@ -1495,7 +1495,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7641/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7655/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1529,13 +1529,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "55af4542", + "id": "0be681e4", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:02:37.275141Z", - "iopub.status.busy": "2024-06-25T16:02:37.274751Z", - "iopub.status.idle": "2024-06-25T16:02:37.278487Z", - "shell.execute_reply": "2024-06-25T16:02:37.277886Z" + "iopub.execute_input": "2024-06-25T19:36:38.960846Z", + "iopub.status.busy": "2024-06-25T19:36:38.960529Z", + "iopub.status.idle": "2024-06-25T19:36:38.963912Z", + "shell.execute_reply": "2024-06-25T19:36:38.963342Z" } }, "outputs": [ @@ -1630,7 +1630,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08a80543c96c4c38a6982a0f41c36750": { + "1ac8a486230942529a1f92b9b04d7e25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1683,84 +1683,7 @@ "width": null } }, - "1b93ed5e4dd548078869118a0b22e7e1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2c6a877036d2484099e04e3a1a4f477a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8be0fc5b54764ea9820badef4cebd3da", - "IPY_MODEL_47f32190573c41afaccce4d766d1f6d5", - "IPY_MODEL_da200aa4ab9647a1a0458010a34d05ed" - ], - "layout": "IPY_MODEL_b1669677c220423bae10d787c58cf862", - "tabbable": null, - "tooltip": null - } - }, - "3bcdaa2696af411490fea143c024fdb4": { + "1e692354f23845bf94b6ee7d9d7b2637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1778,83 +1701,7 @@ "text_color": null } }, - "3dcecf61b1ea493891d9c418f6d478c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ee4a98e1f6b34e82b215c981b977b406", - "IPY_MODEL_4350e96f713649bface4533a2db2205d", - "IPY_MODEL_95968ea26b4049e38d5b504c5cbe8c80" - ], - "layout": "IPY_MODEL_08a80543c96c4c38a6982a0f41c36750", - "tabbable": null, - "tooltip": null - } - }, - "4350e96f713649bface4533a2db2205d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d128773ccdaa44d1a69a770e5b0f330a", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e6ecb3f3ed9b426ab76c814c9abef1af", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "47f32190573c41afaccce4d766d1f6d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c726e5b7cd6f48cd85a020eb02a66db2", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9a577d18d92846c195df80e480e2414a", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "4c1633c8b3ad41b4b6043b1052cc2464": { + "27e85dda33254222a2c4e9d42bf88ff4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1872,7 +1719,7 @@ "text_color": null } }, - "4d5211dd68e841b283f7e75b0cce3600": { + "2f598ca1115244399eac8ba3ae5fcba3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1925,7 +1772,7 @@ "width": null } }, - "6458034c095740819698e38d034b409a": { + "3e18aac5a76f4d2f8ce8f5acb53421d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1978,7 +1825,49 @@ "width": null } }, - "6c5bcd0bb835465ea478e8e9ce6fb829": { + "45a1fa5ae2f84e1b9e7c58b238c02698": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "58d31513ffc848d98369cbd1a5fadbf4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2f598ca1115244399eac8ba3ae5fcba3", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_45a1fa5ae2f84e1b9e7c58b238c02698", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "83e8730e8f4b4919bc838506ae45e9f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2031,30 +1920,31 @@ "width": null } }, - "8be0fc5b54764ea9820badef4cebd3da": { + "84b64175499142ae9cf770d1e88b80ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1b93ed5e4dd548078869118a0b22e7e1", - "placeholder": "​", - "style": "IPY_MODEL_3bcdaa2696af411490fea143c024fdb4", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_89f81d1899184862ad07ccb4185e5559", + "IPY_MODEL_58d31513ffc848d98369cbd1a5fadbf4", + "IPY_MODEL_f724bd9057e2403697996412c3965090" + ], + "layout": "IPY_MODEL_1ac8a486230942529a1f92b9b04d7e25", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "tooltip": null } }, - "95968ea26b4049e38d5b504c5cbe8c80": { + "89f81d1899184862ad07ccb4185e5559": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2069,49 +1959,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c5bcd0bb835465ea478e8e9ce6fb829", + "layout": "IPY_MODEL_bd49361ee585455e9e0ea110e22cd11e", "placeholder": "​", - "style": "IPY_MODEL_fb1cf02f236241ffacfd6d2220068210", + "style": "IPY_MODEL_1e692354f23845bf94b6ee7d9d7b2637", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1583832.04it/s]" + "value": "number of examples processed for checking labels: " } }, - "9a577d18d92846c195df80e480e2414a": { + "9e433498da854beaad7447e349a6c08e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e18aac5a76f4d2f8ce8f5acb53421d0", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dcebb06a360d4208903b16c601b8b9f0", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "9f0eefc4ef404d8885f9dd0a67762b60": { + "a4ce410049214dbe89d19e4dbe853b25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bbe8dc417f9d43f1ae6a2da9fe46bcfd", + "placeholder": "​", + "style": "IPY_MODEL_c0572681372e40379a108207eae59244", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " } }, - "b1669677c220423bae10d787c58cf862": { + "b2b8153149be48568be2b6c09e02fa2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2164,7 +2069,30 @@ "width": null } }, - "c726e5b7cd6f48cd85a020eb02a66db2": { + "ba90ec735ab140eda8d3905b17d24bf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b2b8153149be48568be2b6c09e02fa2f", + "placeholder": "​", + "style": "IPY_MODEL_27e85dda33254222a2c4e9d42bf88ff4", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1015594.57it/s]" + } + }, + "bbe8dc417f9d43f1ae6a2da9fe46bcfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2217,7 +2145,7 @@ "width": null } }, - "d128773ccdaa44d1a69a770e5b0f330a": { + "bd49361ee585455e9e0ea110e22cd11e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2270,30 +2198,49 @@ "width": null } }, - "da200aa4ab9647a1a0458010a34d05ed": { + "c0572681372e40379a108207eae59244": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d8af54b634f1457680edc574c7fcb110": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4d5211dd68e841b283f7e75b0cce3600", - "placeholder": "​", - "style": "IPY_MODEL_4c1633c8b3ad41b4b6043b1052cc2464", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4ce410049214dbe89d19e4dbe853b25", + "IPY_MODEL_9e433498da854beaad7447e349a6c08e", + "IPY_MODEL_ba90ec735ab140eda8d3905b17d24bf0" + ], + "layout": "IPY_MODEL_83e8730e8f4b4919bc838506ae45e9f1", "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 965806.39it/s]" + "tooltip": null } }, - "e6ecb3f3ed9b426ab76c814c9abef1af": { + "dcebb06a360d4208903b16c601b8b9f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2309,7 +2256,60 @@ "description_width": "" } }, - "ee4a98e1f6b34e82b215c981b977b406": { + "ef7c6e423a9041328b6cffec28d2d266": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f724bd9057e2403697996412c3965090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2324,15 +2324,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6458034c095740819698e38d034b409a", + "layout": "IPY_MODEL_ef7c6e423a9041328b6cffec28d2d266", "placeholder": "​", - "style": "IPY_MODEL_9f0eefc4ef404d8885f9dd0a67762b60", + "style": "IPY_MODEL_f9185cf0646b4409bb846af3b144c5a1", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": " 10000/? [00:00<00:00, 1581801.18it/s]" } }, - "fb1cf02f236241ffacfd6d2220068210": { + "f9185cf0646b4409bb846af3b144c5a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/indepth_overview.html b/master/tutorials/indepth_overview.html index 66e257593..a350bf26f 100644 --- a/master/tutorials/indepth_overview.html +++ b/master/tutorials/indepth_overview.html @@ -384,6 +384,15 @@ >

  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • 2. Pre-process the Cifar10 dataset
    -100%|██████████| 170498071/170498071 [00:01<00:00, 103569824.35it/s]
    +100%|██████████| 170498071/170498071 [00:03<00:00, 43010872.29it/s]
     
    -
    +
    @@ -1115,7 +1124,7 @@

    4. Use cleanlab and here.

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 2dea51c7e..3359ecfd0 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:23.195795Z", - "iopub.status.busy": "2024-06-25T16:03:23.195602Z", - "iopub.status.idle": "2024-06-25T16:03:26.091061Z", - "shell.execute_reply": "2024-06-25T16:03:26.090423Z" + "iopub.execute_input": "2024-06-25T19:37:22.937714Z", + "iopub.status.busy": "2024-06-25T19:37:22.937546Z", + "iopub.status.idle": "2024-06-25T19:37:25.620183Z", + "shell.execute_reply": "2024-06-25T19:37:25.619593Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:26.094331Z", - "iopub.status.busy": "2024-06-25T16:03:26.093744Z", - "iopub.status.idle": "2024-06-25T16:03:26.454459Z", - "shell.execute_reply": "2024-06-25T16:03:26.453903Z" + "iopub.execute_input": "2024-06-25T19:37:25.622737Z", + "iopub.status.busy": "2024-06-25T19:37:25.622414Z", + "iopub.status.idle": "2024-06-25T19:37:25.936079Z", + "shell.execute_reply": "2024-06-25T19:37:25.935452Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:26.457002Z", - "iopub.status.busy": "2024-06-25T16:03:26.456560Z", - "iopub.status.idle": "2024-06-25T16:03:26.460809Z", - "shell.execute_reply": "2024-06-25T16:03:26.460238Z" + "iopub.execute_input": "2024-06-25T19:37:25.938723Z", + "iopub.status.busy": "2024-06-25T19:37:25.938422Z", + "iopub.status.idle": "2024-06-25T19:37:25.942622Z", + "shell.execute_reply": "2024-06-25T19:37:25.942185Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:26.462889Z", - "iopub.status.busy": "2024-06-25T16:03:26.462580Z", - "iopub.status.idle": "2024-06-25T16:03:30.759832Z", - "shell.execute_reply": "2024-06-25T16:03:30.759210Z" + "iopub.execute_input": "2024-06-25T19:37:25.944514Z", + "iopub.status.busy": "2024-06-25T19:37:25.944341Z", + "iopub.status.idle": "2024-06-25T19:37:33.410224Z", + "shell.execute_reply": "2024-06-25T19:37:33.409701Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1802240/170498071 [00:00<00:09, 17649465.30it/s]" + " 0%| | 32768/170498071 [00:00<10:33, 269061.34it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 12779520/170498071 [00:00<00:02, 71353034.12it/s]" + " 0%| | 229376/170498071 [00:00<02:43, 1044330.69it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 23756800/170498071 [00:00<00:01, 88730770.74it/s]" + " 1%| | 884736/170498071 [00:00<00:56, 2986468.56it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 34635776/170498071 [00:00<00:01, 96614715.40it/s]" + " 2%|▏ | 3506176/170498071 [00:00<00:15, 10508236.75it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 45580288/170498071 [00:00<00:01, 101195245.43it/s]" + " 5%|▌ | 8552448/170498071 [00:00<00:06, 23273913.94it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 56360960/170498071 [00:00<00:01, 103315287.66it/s]" + " 8%|▊ | 12877824/170498071 [00:00<00:05, 29531831.70it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 67436544/170498071 [00:00<00:00, 105682081.60it/s]" + " 10%|█ | 17661952/170498071 [00:00<00:04, 34683944.45it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 78381056/170498071 [00:00<00:00, 106846021.95it/s]" + " 13%|█▎ | 22478848/170498071 [00:00<00:03, 38419021.56it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 89260032/170498071 [00:00<00:00, 107449884.19it/s]" + " 16%|█▌ | 27590656/170498071 [00:00<00:03, 42218756.72it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 100171776/170498071 [00:01<00:00, 107946197.36it/s]" + " 19%|█▉ | 32145408/170498071 [00:01<00:03, 42979378.57it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 111050752/170498071 [00:01<00:00, 108170834.68it/s]" + " 22%|██▏ | 37552128/170498071 [00:01<00:02, 46248329.44it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 122191872/170498071 [00:01<00:00, 109110942.95it/s]" + " 25%|██▍ | 42237952/170498071 [00:01<00:02, 45894868.35it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 133136384/170498071 [00:01<00:00, 109086561.45it/s]" + " 28%|██▊ | 47546368/170498071 [00:01<00:02, 47987784.85it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 144080896/170498071 [00:01<00:00, 109130312.95it/s]" + " 31%|███ | 52396032/170498071 [00:01<00:02, 47660760.18it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 155025408/170498071 [00:01<00:00, 108924921.38it/s]" + " 34%|███▎ | 57212928/170498071 [00:01<00:02, 46221672.73it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 166035456/170498071 [00:01<00:00, 109194560.59it/s]" + " 37%|███▋ | 62259200/170498071 [00:01<00:02, 47420663.64it/s]" ] }, { @@ -380,7 +380,175 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 103569824.35it/s]" + " 39%|███▉ | 67043328/170498071 [00:01<00:02, 46870615.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 42%|████▏ | 72187904/170498071 [00:01<00:02, 48207181.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 45%|████▌ | 77037568/170498071 [00:02<00:01, 47426096.98it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 48%|████▊ | 82477056/170498071 [00:02<00:01, 48903231.41it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 51%|█████▏ | 87392256/170498071 [00:02<00:01, 48876811.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 54%|█████▍ | 92307456/170498071 [00:02<00:01, 46456343.45it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 57%|█████▋ | 97714176/170498071 [00:02<00:01, 48622672.55it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 60%|██████ | 102629376/170498071 [00:02<00:01, 47303583.33it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 63%|██████▎ | 107839488/170498071 [00:02<00:01, 48660290.70it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 66%|██████▌ | 112754688/170498071 [00:02<00:01, 48170138.42it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▉ | 117604352/170498071 [00:02<00:01, 48147632.32it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 122552320/170498071 [00:02<00:01, 47622185.83it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 75%|███████▍ | 127336448/170498071 [00:03<00:00, 46393005.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 78%|███████▊ | 133300224/170498071 [00:03<00:00, 50178503.28it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████ | 138346496/170498071 [00:03<00:00, 48020765.51it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 143196160/170498071 [00:03<00:00, 46334061.22it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 149061632/170498071 [00:03<00:00, 49353288.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|█████████ | 154042368/170498071 [00:03<00:00, 48340337.16it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 93%|█████████▎| 158924800/170498071 [00:03<00:00, 46140400.23it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 164921344/170498071 [00:03<00:00, 49140811.61it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 169869312/170498071 [00:03<00:00, 48444737.50it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:03<00:00, 43010872.29it/s]" ] }, { @@ -498,10 +666,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:30.762200Z", - "iopub.status.busy": "2024-06-25T16:03:30.761769Z", - "iopub.status.idle": "2024-06-25T16:03:30.766643Z", - "shell.execute_reply": "2024-06-25T16:03:30.766112Z" + "iopub.execute_input": "2024-06-25T19:37:33.412458Z", + "iopub.status.busy": "2024-06-25T19:37:33.412129Z", + "iopub.status.idle": "2024-06-25T19:37:33.416824Z", + "shell.execute_reply": "2024-06-25T19:37:33.416305Z" }, "nbsphinx": "hidden" }, @@ -552,10 +720,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:30.768712Z", - "iopub.status.busy": "2024-06-25T16:03:30.768398Z", - "iopub.status.idle": "2024-06-25T16:03:31.325263Z", - "shell.execute_reply": "2024-06-25T16:03:31.324699Z" + "iopub.execute_input": "2024-06-25T19:37:33.418809Z", + "iopub.status.busy": "2024-06-25T19:37:33.418495Z", + "iopub.status.idle": "2024-06-25T19:37:33.960026Z", + "shell.execute_reply": "2024-06-25T19:37:33.959496Z" } }, "outputs": [ @@ -588,10 +756,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:31.327654Z", - "iopub.status.busy": "2024-06-25T16:03:31.327253Z", - "iopub.status.idle": "2024-06-25T16:03:31.863327Z", - "shell.execute_reply": "2024-06-25T16:03:31.862748Z" + "iopub.execute_input": "2024-06-25T19:37:33.962172Z", + "iopub.status.busy": "2024-06-25T19:37:33.961834Z", + "iopub.status.idle": "2024-06-25T19:37:34.466908Z", + "shell.execute_reply": "2024-06-25T19:37:34.466308Z" } }, "outputs": [ @@ -629,10 +797,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:31.865655Z", - "iopub.status.busy": "2024-06-25T16:03:31.865227Z", - "iopub.status.idle": "2024-06-25T16:03:31.868935Z", - "shell.execute_reply": "2024-06-25T16:03:31.868378Z" + "iopub.execute_input": "2024-06-25T19:37:34.469197Z", + "iopub.status.busy": "2024-06-25T19:37:34.468825Z", + "iopub.status.idle": "2024-06-25T19:37:34.472416Z", + "shell.execute_reply": "2024-06-25T19:37:34.471962Z" } }, "outputs": [], @@ -655,17 +823,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:31.871124Z", - "iopub.status.busy": "2024-06-25T16:03:31.870707Z", - "iopub.status.idle": "2024-06-25T16:03:45.646921Z", - "shell.execute_reply": "2024-06-25T16:03:45.646296Z" + "iopub.execute_input": "2024-06-25T19:37:34.474255Z", + "iopub.status.busy": "2024-06-25T19:37:34.474084Z", + "iopub.status.idle": "2024-06-25T19:37:46.991980Z", + "shell.execute_reply": "2024-06-25T19:37:46.991418Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "28d0d7b5bab24921acc304c33b071421", + "model_id": "3a6eebd9a9694b07864d194c78cdb317", "version_major": 2, "version_minor": 0 }, @@ -724,10 +892,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:45.649462Z", - "iopub.status.busy": "2024-06-25T16:03:45.649114Z", - "iopub.status.idle": "2024-06-25T16:03:47.703796Z", - "shell.execute_reply": "2024-06-25T16:03:47.703274Z" + "iopub.execute_input": "2024-06-25T19:37:46.994340Z", + "iopub.status.busy": "2024-06-25T19:37:46.994149Z", + "iopub.status.idle": "2024-06-25T19:37:49.075191Z", + "shell.execute_reply": "2024-06-25T19:37:49.074609Z" } }, "outputs": [ @@ -771,10 +939,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:47.705994Z", - "iopub.status.busy": "2024-06-25T16:03:47.705670Z", - "iopub.status.idle": "2024-06-25T16:03:47.936227Z", - "shell.execute_reply": "2024-06-25T16:03:47.935552Z" + "iopub.execute_input": "2024-06-25T19:37:49.077233Z", + "iopub.status.busy": "2024-06-25T19:37:49.077055Z", + "iopub.status.idle": "2024-06-25T19:37:49.302913Z", + "shell.execute_reply": "2024-06-25T19:37:49.302334Z" } }, "outputs": [ @@ -810,10 +978,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:47.938936Z", - "iopub.status.busy": "2024-06-25T16:03:47.938600Z", - "iopub.status.idle": "2024-06-25T16:03:48.584520Z", - "shell.execute_reply": "2024-06-25T16:03:48.583905Z" + "iopub.execute_input": "2024-06-25T19:37:49.305112Z", + "iopub.status.busy": "2024-06-25T19:37:49.304932Z", + "iopub.status.idle": "2024-06-25T19:37:49.943529Z", + "shell.execute_reply": "2024-06-25T19:37:49.942935Z" } }, "outputs": [ @@ -863,10 +1031,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:48.587219Z", - "iopub.status.busy": "2024-06-25T16:03:48.586719Z", - "iopub.status.idle": "2024-06-25T16:03:48.876256Z", - "shell.execute_reply": "2024-06-25T16:03:48.875610Z" + "iopub.execute_input": "2024-06-25T19:37:49.945968Z", + "iopub.status.busy": "2024-06-25T19:37:49.945641Z", + "iopub.status.idle": "2024-06-25T19:37:50.264955Z", + "shell.execute_reply": "2024-06-25T19:37:50.264439Z" } }, "outputs": [ @@ -914,10 +1082,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:48.878510Z", - "iopub.status.busy": "2024-06-25T16:03:48.878183Z", - "iopub.status.idle": "2024-06-25T16:03:49.109967Z", - "shell.execute_reply": "2024-06-25T16:03:49.109281Z" + "iopub.execute_input": "2024-06-25T19:37:50.267076Z", + "iopub.status.busy": "2024-06-25T19:37:50.266888Z", + "iopub.status.idle": "2024-06-25T19:37:50.495188Z", + "shell.execute_reply": "2024-06-25T19:37:50.494600Z" } }, "outputs": [ @@ -973,10 +1141,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:49.112544Z", - "iopub.status.busy": "2024-06-25T16:03:49.112226Z", - "iopub.status.idle": "2024-06-25T16:03:49.192821Z", - "shell.execute_reply": "2024-06-25T16:03:49.192178Z" + "iopub.execute_input": "2024-06-25T19:37:50.497736Z", + "iopub.status.busy": "2024-06-25T19:37:50.497230Z", + "iopub.status.idle": "2024-06-25T19:37:50.573192Z", + "shell.execute_reply": "2024-06-25T19:37:50.572575Z" } }, "outputs": [], @@ -997,10 +1165,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:49.195415Z", - "iopub.status.busy": "2024-06-25T16:03:49.194986Z", - "iopub.status.idle": "2024-06-25T16:03:59.651057Z", - "shell.execute_reply": "2024-06-25T16:03:59.650371Z" + "iopub.execute_input": "2024-06-25T19:37:50.575685Z", + "iopub.status.busy": "2024-06-25T19:37:50.575502Z", + "iopub.status.idle": "2024-06-25T19:38:00.831598Z", + "shell.execute_reply": "2024-06-25T19:38:00.830941Z" } }, "outputs": [ @@ -1037,10 +1205,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:03:59.653445Z", - "iopub.status.busy": "2024-06-25T16:03:59.653198Z", - "iopub.status.idle": "2024-06-25T16:04:01.915157Z", - "shell.execute_reply": "2024-06-25T16:04:01.914552Z" + "iopub.execute_input": "2024-06-25T19:38:00.834016Z", + "iopub.status.busy": "2024-06-25T19:38:00.833627Z", + "iopub.status.idle": "2024-06-25T19:38:02.973271Z", + "shell.execute_reply": "2024-06-25T19:38:02.972713Z" } }, "outputs": [ @@ -1071,10 +1239,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:01.917857Z", - "iopub.status.busy": "2024-06-25T16:04:01.917299Z", - "iopub.status.idle": "2024-06-25T16:04:02.113558Z", - "shell.execute_reply": "2024-06-25T16:04:02.113049Z" + "iopub.execute_input": "2024-06-25T19:38:02.975964Z", + "iopub.status.busy": "2024-06-25T19:38:02.975476Z", + "iopub.status.idle": "2024-06-25T19:38:03.180118Z", + "shell.execute_reply": "2024-06-25T19:38:03.179626Z" } }, "outputs": [], @@ -1088,10 +1256,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:02.115919Z", - "iopub.status.busy": "2024-06-25T16:04:02.115572Z", - "iopub.status.idle": "2024-06-25T16:04:02.118666Z", - "shell.execute_reply": "2024-06-25T16:04:02.118221Z" + "iopub.execute_input": "2024-06-25T19:38:03.182510Z", + "iopub.status.busy": "2024-06-25T19:38:03.182166Z", + "iopub.status.idle": "2024-06-25T19:38:03.185175Z", + "shell.execute_reply": "2024-06-25T19:38:03.184750Z" } }, "outputs": [], @@ -1113,10 +1281,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:02.120691Z", - "iopub.status.busy": "2024-06-25T16:04:02.120347Z", - "iopub.status.idle": "2024-06-25T16:04:02.129059Z", - "shell.execute_reply": "2024-06-25T16:04:02.128479Z" + "iopub.execute_input": "2024-06-25T19:38:03.187201Z", + "iopub.status.busy": "2024-06-25T19:38:03.186922Z", + "iopub.status.idle": "2024-06-25T19:38:03.194967Z", + "shell.execute_reply": "2024-06-25T19:38:03.194449Z" }, "nbsphinx": "hidden" }, @@ -1161,23 +1329,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0b937618327843d2bf966a23390fb711": { + "3a6eebd9a9694b07864d194c78cdb317": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d314e5a0eb894d12bc8321b569f74cd0", + "IPY_MODEL_932ee016f6a74520b9da6cc833f044b5", + "IPY_MODEL_de1dfc7949d842468505de0b2a43b4f7" + ], + "layout": "IPY_MODEL_8876ddc2f4f248ff81bbe8f98f0e2826", + "tabbable": null, + "tooltip": null } }, - "10a4e89474e54662b7165ff29385bc67": { + "8876ddc2f4f248ff81bbe8f98f0e2826": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1230,54 +1406,49 @@ "width": null } }, - "28d0d7b5bab24921acc304c33b071421": { + "9117500d199d44088b40d306a6001f86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_aac9b93602e04d0dafce5cb64ba3f304", - "IPY_MODEL_89b7f171cd2a4e5eb7c7a4f7762e90fa", - "IPY_MODEL_4c000720af3c4ec9a8ec1aa272f5d907" - ], - "layout": "IPY_MODEL_60ca8b96f6b14eb9bc39d63462385b39", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4c000720af3c4ec9a8ec1aa272f5d907": { + "932ee016f6a74520b9da6cc833f044b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_68089751fa2f44b5bcf3262b28eca5c9", - "placeholder": "​", - "style": "IPY_MODEL_d37fdb352b8d4b6daf0eb44b1f04489f", + "layout": "IPY_MODEL_be482c428a914ad9bc5accbfcda59810", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9117500d199d44088b40d306a6001f86", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:01<00:00, 71.4MB/s]" + "value": 102469840.0 } }, - "60ca8b96f6b14eb9bc39d63462385b39": { + "9345c22a7d26444e94e7dc281c6f7083": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1330,7 +1501,7 @@ "width": null } }, - "68089751fa2f44b5bcf3262b28eca5c9": { + "a0c0e9532ae04b61941f4f996fe124d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1383,74 +1554,7 @@ "width": null } }, - "6cb76de3bd3440aba29e7eed8f626c20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "89b7f171cd2a4e5eb7c7a4f7762e90fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c08dc6f6ce09426d98ab2220c32db7d0", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0b937618327843d2bf966a23390fb711", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "aac9b93602e04d0dafce5cb64ba3f304": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_10a4e89474e54662b7165ff29385bc67", - "placeholder": "​", - "style": "IPY_MODEL_6cb76de3bd3440aba29e7eed8f626c20", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "c08dc6f6ce09426d98ab2220c32db7d0": { + "be482c428a914ad9bc5accbfcda59810": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1503,7 +1607,71 @@ "width": null } }, - "d37fdb352b8d4b6daf0eb44b1f04489f": { + "d314e5a0eb894d12bc8321b569f74cd0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9345c22a7d26444e94e7dc281c6f7083", + "placeholder": "​", + "style": "IPY_MODEL_ed999755dbfa4b068fb1bc1851f1d2ea", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "d8c964fe861d44eeb4663c74d1331470": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "de1dfc7949d842468505de0b2a43b4f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a0c0e9532ae04b61941f4f996fe124d2", + "placeholder": "​", + "style": "IPY_MODEL_d8c964fe861d44eeb4663c74d1331470", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 265MB/s]" + } + }, + "ed999755dbfa4b068fb1bc1851f1d2ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/pred_probs_cross_val.html b/master/tutorials/pred_probs_cross_val.html index 91b5942df..396e3017b 100644 --- a/master/tutorials/pred_probs_cross_val.html +++ b/master/tutorials/pred_probs_cross_val.html @@ -383,6 +383,15 @@ >

  • +
  • + v2.6.6 +
  • +
  • +
  • + v2.6.6 +
  • +
  • =3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:07.525173Z", - "iopub.status.busy": "2024-06-25T16:04:07.524606Z", - "iopub.status.idle": "2024-06-25T16:04:07.543090Z", - "shell.execute_reply": "2024-06-25T16:04:07.542435Z" + "iopub.execute_input": "2024-06-25T19:38:08.724901Z", + "iopub.status.busy": "2024-06-25T19:38:08.724626Z", + "iopub.status.idle": "2024-06-25T19:38:08.741782Z", + "shell.execute_reply": "2024-06-25T19:38:08.741233Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:07.545913Z", - "iopub.status.busy": "2024-06-25T16:04:07.545447Z", - "iopub.status.idle": "2024-06-25T16:04:07.548804Z", - "shell.execute_reply": "2024-06-25T16:04:07.548231Z" + "iopub.execute_input": "2024-06-25T19:38:08.744094Z", + "iopub.status.busy": "2024-06-25T19:38:08.743687Z", + "iopub.status.idle": "2024-06-25T19:38:08.746763Z", + "shell.execute_reply": "2024-06-25T19:38:08.746228Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:07.551225Z", - "iopub.status.busy": "2024-06-25T16:04:07.550777Z", - "iopub.status.idle": "2024-06-25T16:04:07.587145Z", - "shell.execute_reply": "2024-06-25T16:04:07.586567Z" + "iopub.execute_input": "2024-06-25T19:38:08.748783Z", + "iopub.status.busy": "2024-06-25T19:38:08.748471Z", + "iopub.status.idle": "2024-06-25T19:38:09.023742Z", + "shell.execute_reply": "2024-06-25T19:38:09.023127Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:07.589476Z", - "iopub.status.busy": "2024-06-25T16:04:07.589161Z", - "iopub.status.idle": "2024-06-25T16:04:07.779592Z", - "shell.execute_reply": "2024-06-25T16:04:07.778963Z" + "iopub.execute_input": "2024-06-25T19:38:09.025867Z", + "iopub.status.busy": "2024-06-25T19:38:09.025685Z", + "iopub.status.idle": "2024-06-25T19:38:09.204489Z", + "shell.execute_reply": "2024-06-25T19:38:09.203970Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:07.782183Z", - "iopub.status.busy": "2024-06-25T16:04:07.781971Z", - "iopub.status.idle": "2024-06-25T16:04:08.032776Z", - "shell.execute_reply": "2024-06-25T16:04:08.032112Z" + "iopub.execute_input": "2024-06-25T19:38:09.206625Z", + "iopub.status.busy": "2024-06-25T19:38:09.206444Z", + "iopub.status.idle": "2024-06-25T19:38:09.445281Z", + "shell.execute_reply": "2024-06-25T19:38:09.444670Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:08.035255Z", - "iopub.status.busy": "2024-06-25T16:04:08.034764Z", - "iopub.status.idle": "2024-06-25T16:04:08.039814Z", - "shell.execute_reply": "2024-06-25T16:04:08.039224Z" + "iopub.execute_input": "2024-06-25T19:38:09.447540Z", + "iopub.status.busy": "2024-06-25T19:38:09.447186Z", + "iopub.status.idle": "2024-06-25T19:38:09.451599Z", + "shell.execute_reply": "2024-06-25T19:38:09.451044Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:08.042148Z", - "iopub.status.busy": "2024-06-25T16:04:08.041692Z", - "iopub.status.idle": "2024-06-25T16:04:08.049678Z", - "shell.execute_reply": "2024-06-25T16:04:08.049039Z" + "iopub.execute_input": "2024-06-25T19:38:09.453555Z", + "iopub.status.busy": "2024-06-25T19:38:09.453375Z", + "iopub.status.idle": "2024-06-25T19:38:09.460592Z", + "shell.execute_reply": "2024-06-25T19:38:09.460157Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:08.052267Z", - "iopub.status.busy": "2024-06-25T16:04:08.051893Z", - "iopub.status.idle": "2024-06-25T16:04:08.054873Z", - "shell.execute_reply": "2024-06-25T16:04:08.054306Z" + "iopub.execute_input": "2024-06-25T19:38:09.462899Z", + "iopub.status.busy": "2024-06-25T19:38:09.462366Z", + "iopub.status.idle": "2024-06-25T19:38:09.465304Z", + "shell.execute_reply": "2024-06-25T19:38:09.464836Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:08.057067Z", - "iopub.status.busy": "2024-06-25T16:04:08.056616Z", - "iopub.status.idle": "2024-06-25T16:04:16.878679Z", - "shell.execute_reply": "2024-06-25T16:04:16.878144Z" + "iopub.execute_input": "2024-06-25T19:38:09.467150Z", + "iopub.status.busy": "2024-06-25T19:38:09.466976Z", + "iopub.status.idle": "2024-06-25T19:38:18.068771Z", + "shell.execute_reply": "2024-06-25T19:38:18.068131Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.881611Z", - "iopub.status.busy": "2024-06-25T16:04:16.880992Z", - "iopub.status.idle": "2024-06-25T16:04:16.888328Z", - "shell.execute_reply": "2024-06-25T16:04:16.887857Z" + "iopub.execute_input": "2024-06-25T19:38:18.071591Z", + "iopub.status.busy": "2024-06-25T19:38:18.071196Z", + "iopub.status.idle": "2024-06-25T19:38:18.078371Z", + "shell.execute_reply": "2024-06-25T19:38:18.077824Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.890380Z", - "iopub.status.busy": "2024-06-25T16:04:16.890056Z", - "iopub.status.idle": "2024-06-25T16:04:16.893550Z", - "shell.execute_reply": "2024-06-25T16:04:16.893134Z" + "iopub.execute_input": "2024-06-25T19:38:18.080333Z", + "iopub.status.busy": "2024-06-25T19:38:18.080152Z", + "iopub.status.idle": "2024-06-25T19:38:18.083810Z", + "shell.execute_reply": "2024-06-25T19:38:18.083366Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.895458Z", - "iopub.status.busy": "2024-06-25T16:04:16.895142Z", - "iopub.status.idle": "2024-06-25T16:04:16.898097Z", - "shell.execute_reply": "2024-06-25T16:04:16.897586Z" + "iopub.execute_input": "2024-06-25T19:38:18.085821Z", + "iopub.status.busy": "2024-06-25T19:38:18.085497Z", + "iopub.status.idle": "2024-06-25T19:38:18.088621Z", + "shell.execute_reply": "2024-06-25T19:38:18.088109Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.899989Z", - "iopub.status.busy": "2024-06-25T16:04:16.899818Z", - "iopub.status.idle": "2024-06-25T16:04:16.902910Z", - "shell.execute_reply": "2024-06-25T16:04:16.902462Z" + "iopub.execute_input": "2024-06-25T19:38:18.090576Z", + "iopub.status.busy": "2024-06-25T19:38:18.090262Z", + "iopub.status.idle": "2024-06-25T19:38:18.093389Z", + "shell.execute_reply": "2024-06-25T19:38:18.092821Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.904872Z", - "iopub.status.busy": "2024-06-25T16:04:16.904469Z", - "iopub.status.idle": "2024-06-25T16:04:16.912279Z", - "shell.execute_reply": "2024-06-25T16:04:16.911760Z" + "iopub.execute_input": "2024-06-25T19:38:18.095470Z", + "iopub.status.busy": "2024-06-25T19:38:18.095154Z", + "iopub.status.idle": "2024-06-25T19:38:18.103228Z", + "shell.execute_reply": "2024-06-25T19:38:18.102775Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.914347Z", - "iopub.status.busy": "2024-06-25T16:04:16.914011Z", - "iopub.status.idle": "2024-06-25T16:04:16.916453Z", - "shell.execute_reply": "2024-06-25T16:04:16.916028Z" + "iopub.execute_input": "2024-06-25T19:38:18.105003Z", + "iopub.status.busy": "2024-06-25T19:38:18.104832Z", + "iopub.status.idle": "2024-06-25T19:38:18.107625Z", + "shell.execute_reply": "2024-06-25T19:38:18.107128Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:16.918455Z", - "iopub.status.busy": "2024-06-25T16:04:16.918103Z", - "iopub.status.idle": "2024-06-25T16:04:17.041099Z", - "shell.execute_reply": "2024-06-25T16:04:17.040461Z" + "iopub.execute_input": "2024-06-25T19:38:18.109671Z", + "iopub.status.busy": "2024-06-25T19:38:18.109367Z", + "iopub.status.idle": "2024-06-25T19:38:18.236233Z", + "shell.execute_reply": "2024-06-25T19:38:18.235732Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.043794Z", - "iopub.status.busy": "2024-06-25T16:04:17.043242Z", - "iopub.status.idle": "2024-06-25T16:04:17.148399Z", - "shell.execute_reply": "2024-06-25T16:04:17.147842Z" + "iopub.execute_input": "2024-06-25T19:38:18.238299Z", + "iopub.status.busy": "2024-06-25T19:38:18.237942Z", + "iopub.status.idle": "2024-06-25T19:38:18.347132Z", + "shell.execute_reply": "2024-06-25T19:38:18.346641Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.150850Z", - "iopub.status.busy": "2024-06-25T16:04:17.150479Z", - "iopub.status.idle": "2024-06-25T16:04:17.645229Z", - "shell.execute_reply": "2024-06-25T16:04:17.644591Z" + "iopub.execute_input": "2024-06-25T19:38:18.349402Z", + "iopub.status.busy": "2024-06-25T19:38:18.349044Z", + "iopub.status.idle": "2024-06-25T19:38:18.839672Z", + "shell.execute_reply": "2024-06-25T19:38:18.839073Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.647808Z", - "iopub.status.busy": "2024-06-25T16:04:17.647578Z", - "iopub.status.idle": "2024-06-25T16:04:17.732922Z", - "shell.execute_reply": "2024-06-25T16:04:17.732288Z" + "iopub.execute_input": "2024-06-25T19:38:18.841931Z", + "iopub.status.busy": "2024-06-25T19:38:18.841755Z", + "iopub.status.idle": "2024-06-25T19:38:18.912662Z", + "shell.execute_reply": "2024-06-25T19:38:18.912091Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.735171Z", - "iopub.status.busy": "2024-06-25T16:04:17.734985Z", - "iopub.status.idle": "2024-06-25T16:04:17.744244Z", - "shell.execute_reply": "2024-06-25T16:04:17.743814Z" + "iopub.execute_input": "2024-06-25T19:38:18.915065Z", + "iopub.status.busy": "2024-06-25T19:38:18.914579Z", + "iopub.status.idle": "2024-06-25T19:38:18.923159Z", + "shell.execute_reply": "2024-06-25T19:38:18.922730Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.746326Z", - "iopub.status.busy": "2024-06-25T16:04:17.746024Z", - "iopub.status.idle": "2024-06-25T16:04:17.748768Z", - "shell.execute_reply": "2024-06-25T16:04:17.748295Z" + "iopub.execute_input": "2024-06-25T19:38:18.925120Z", + "iopub.status.busy": "2024-06-25T19:38:18.924947Z", + "iopub.status.idle": "2024-06-25T19:38:18.927502Z", + "shell.execute_reply": "2024-06-25T19:38:18.927067Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:17.750556Z", - "iopub.status.busy": "2024-06-25T16:04:17.750380Z", - "iopub.status.idle": "2024-06-25T16:04:23.180932Z", - "shell.execute_reply": "2024-06-25T16:04:23.180316Z" + "iopub.execute_input": "2024-06-25T19:38:18.929453Z", + "iopub.status.busy": "2024-06-25T19:38:18.929127Z", + "iopub.status.idle": "2024-06-25T19:38:24.397527Z", + "shell.execute_reply": "2024-06-25T19:38:24.396937Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:23.183436Z", - "iopub.status.busy": "2024-06-25T16:04:23.182980Z", - "iopub.status.idle": "2024-06-25T16:04:23.191635Z", - "shell.execute_reply": "2024-06-25T16:04:23.191098Z" + "iopub.execute_input": "2024-06-25T19:38:24.400077Z", + "iopub.status.busy": "2024-06-25T19:38:24.399563Z", + "iopub.status.idle": "2024-06-25T19:38:24.408142Z", + "shell.execute_reply": "2024-06-25T19:38:24.407603Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:23.193732Z", - "iopub.status.busy": "2024-06-25T16:04:23.193357Z", - "iopub.status.idle": "2024-06-25T16:04:23.257489Z", - "shell.execute_reply": "2024-06-25T16:04:23.256902Z" + "iopub.execute_input": "2024-06-25T19:38:24.410281Z", + "iopub.status.busy": "2024-06-25T19:38:24.409820Z", + "iopub.status.idle": "2024-06-25T19:38:24.473861Z", + "shell.execute_reply": "2024-06-25T19:38:24.473281Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 42bce4f81..ea4121942 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -384,6 +384,15 @@ >
  • +
  • + v2.6.6 +
  • +
  • 3. Use cleanlab to find label issues
    -
    +
    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -1187,7 +1196,7 @@

    Get label quality scores -{"state": {"d4513f6464504320bab1656c3878acab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3dd7ed67f6df4ac9bab9ad09c20df517": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6b51203517114dbcb792111da56ffd3c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d4513f6464504320bab1656c3878acab", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3dd7ed67f6df4ac9bab9ad09c20df517", "tabbable": null, "tooltip": null, "value": 30.0}}, "684b95295e1a4f498e006b65c063e604": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "15978f3017384bdcaafcd530c33a2868": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "50840cb64f674b6eb21068fe7a49f5f0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_684b95295e1a4f498e006b65c063e604", "placeholder": "\u200b", "style": "IPY_MODEL_15978f3017384bdcaafcd530c33a2868", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "f45446c0d3474daba31f964d054cbde0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d727143295cd44c1ab42a816423c74b0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f6cae9edade64213ba68a8dded99ce56": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f45446c0d3474daba31f964d054cbde0", "placeholder": "\u200b", "style": "IPY_MODEL_d727143295cd44c1ab42a816423c74b0", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007754.29it/s]"}}, "85fd2638b160478598b53438d4b8875f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2af2403d62f9417892013c46d8d0308c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_50840cb64f674b6eb21068fe7a49f5f0", "IPY_MODEL_6b51203517114dbcb792111da56ffd3c", "IPY_MODEL_f6cae9edade64213ba68a8dded99ce56"], "layout": "IPY_MODEL_85fd2638b160478598b53438d4b8875f", "tabbable": null, "tooltip": null}}, "d68c66785c3c49c1afdb5648ec008530": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa0f2b8b33b24cb0acac29b78b2d01ac": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3a7a1d3c7abf4959a0697fc8cce5dbd2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d68c66785c3c49c1afdb5648ec008530", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_aa0f2b8b33b24cb0acac29b78b2d01ac", "tabbable": null, "tooltip": null, "value": 30.0}}, "3c08b85141b043988e8a6d1f23c660de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d68644ee6e144193bdceb1286c0945d1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a02ef5c60fee482d845728e739af7a62": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c08b85141b043988e8a6d1f23c660de", "placeholder": "\u200b", "style": "IPY_MODEL_d68644ee6e144193bdceb1286c0945d1", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "7877cde823c340dd8e5587bf5b1394f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6643db54b11542209144918905998ce0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3bfed17a44044d9b9298d0465514102b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7877cde823c340dd8e5587bf5b1394f4", "placeholder": "\u200b", "style": "IPY_MODEL_6643db54b11542209144918905998ce0", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:22<00:00,\u2007\u20071.29it/s]"}}, "dc87c34425f949259352e0892c283120": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96760fcea90d4e7e9092c7269a9c7289": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a02ef5c60fee482d845728e739af7a62", "IPY_MODEL_3a7a1d3c7abf4959a0697fc8cce5dbd2", "IPY_MODEL_3bfed17a44044d9b9298d0465514102b"], "layout": "IPY_MODEL_dc87c34425f949259352e0892c283120", "tabbable": null, "tooltip": null}}, "f9066a49a3ea4d4db6c10797e5960503": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04d1f4ec633c453791534547a5162ade": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c6317991cbd3479e9150b638d3379bb1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f9066a49a3ea4d4db6c10797e5960503", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_04d1f4ec633c453791534547a5162ade", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "a240d0f0928143e6a6d945c579ed0005": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f383a9ca2df4a4eb00824d2d157581d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e44925003e0344efb8a7144847bdcf1c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a240d0f0928143e6a6d945c579ed0005", "placeholder": "\u200b", "style": "IPY_MODEL_3f383a9ca2df4a4eb00824d2d157581d", "tabbable": null, "tooltip": null, "value": "100%"}}, "3c3654b303634b85b35d0650f73cb7fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f89de8d64d2d481f9b7bfd6dde761e73": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b3ce4905b1304582b4611ed16487c466": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c3654b303634b85b35d0650f73cb7fb", "placeholder": "\u200b", "style": "IPY_MODEL_f89de8d64d2d481f9b7bfd6dde761e73", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154808.52it/s]"}}, "f5f03d640b2e471589e8fcd4ffb526a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9af11f647b2949819c1f5a1edb762736": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e44925003e0344efb8a7144847bdcf1c", "IPY_MODEL_c6317991cbd3479e9150b638d3379bb1", "IPY_MODEL_b3ce4905b1304582b4611ed16487c466"], "layout": "IPY_MODEL_f5f03d640b2e471589e8fcd4ffb526a3", "tabbable": null, "tooltip": null}}, "49f5146f94a34bbbbb0e37bac31a6976": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa3c4ea5ca804e57976fbca8046f75f3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "725c7b5e265f454881a2ae2bd7237c7f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_49f5146f94a34bbbbb0e37bac31a6976", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fa3c4ea5ca804e57976fbca8046f75f3", "tabbable": null, "tooltip": null, "value": 30.0}}, "c2f1530a512445c98872e21e270d5abc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a2f4c4b023694de48afef7f6974b3345": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "471abcf8ee444a008bc8ded81a28b15a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c2f1530a512445c98872e21e270d5abc", "placeholder": "\u200b", "style": "IPY_MODEL_a2f4c4b023694de48afef7f6974b3345", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "fc6a14816890451bbcbaa406260ec37a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c9f65d1cc528477ba2702a735480b910": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0c6f2c8df4da49c98d07e7aaf8a22bcb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fc6a14816890451bbcbaa406260ec37a", "placeholder": "\u200b", "style": "IPY_MODEL_c9f65d1cc528477ba2702a735480b910", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200719.94it/s]"}}, "8b71529b8eb64e00985356d07eb3571c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "786f2d55589d44e8b977e731bfd737d4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_471abcf8ee444a008bc8ded81a28b15a", "IPY_MODEL_725c7b5e265f454881a2ae2bd7237c7f", "IPY_MODEL_0c6f2c8df4da49c98d07e7aaf8a22bcb"], "layout": "IPY_MODEL_8b71529b8eb64e00985356d07eb3571c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"c1f546fd71c24d498d05b3908214bd7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b658cb143704dbbb7f0ac48f95429f2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c2abb97f3c0f47e89640d65ea0507ceb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c1f546fd71c24d498d05b3908214bd7d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0b658cb143704dbbb7f0ac48f95429f2", "tabbable": null, "tooltip": null, "value": 30.0}}, "6dabf219795b408dabf8afe1ed3b2ba9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a61e682d08cd4b079011fff3976213c6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e3e1e81a9a074a9699b1c756208a42d1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6dabf219795b408dabf8afe1ed3b2ba9", "placeholder": "\u200b", "style": "IPY_MODEL_a61e682d08cd4b079011fff3976213c6", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "ab2778b3faa74fc58eae618ac7ad06b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9e435b2b0064cb389b0eba2fdb3ae58": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "61c316c9d6e6417db8e8f67c88ca16b3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab2778b3faa74fc58eae618ac7ad06b7", "placeholder": "\u200b", "style": "IPY_MODEL_d9e435b2b0064cb389b0eba2fdb3ae58", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007756.08it/s]"}}, "f0c67deadadc41a681e33253811fe3c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "944591b9a0384c6388bc6a076330ac62": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e3e1e81a9a074a9699b1c756208a42d1", "IPY_MODEL_c2abb97f3c0f47e89640d65ea0507ceb", "IPY_MODEL_61c316c9d6e6417db8e8f67c88ca16b3"], "layout": "IPY_MODEL_f0c67deadadc41a681e33253811fe3c3", "tabbable": null, "tooltip": null}}, "5868ffb252c44ac4aa39f70440bc622f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "15f5d288daf5495ba283ee4fad4d58fd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8aaa8a35422241b2a265233527fbf1e7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5868ffb252c44ac4aa39f70440bc622f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_15f5d288daf5495ba283ee4fad4d58fd", "tabbable": null, "tooltip": null, "value": 30.0}}, "a10c8b997a924841b67b483401b9d8c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e6a4c23dd054908be889d0f3d83ee3b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a858829ede1a452ba7407428df24b4fa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a10c8b997a924841b67b483401b9d8c3", "placeholder": "\u200b", "style": "IPY_MODEL_4e6a4c23dd054908be889d0f3d83ee3b", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "a832d5b427714b918a469d3e99a8e9ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0965a0f7f5304df18ccd851b34fef9fb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "07201424d87b4671ac4b1cfa673d7986": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a832d5b427714b918a469d3e99a8e9ff", "placeholder": "\u200b", "style": "IPY_MODEL_0965a0f7f5304df18ccd851b34fef9fb", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.44it/s]"}}, "cb515331da754c33a0c68f56fd6918b5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "456e1a39f8a0484d84df60d119f7d9b3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a858829ede1a452ba7407428df24b4fa", "IPY_MODEL_8aaa8a35422241b2a265233527fbf1e7", "IPY_MODEL_07201424d87b4671ac4b1cfa673d7986"], "layout": "IPY_MODEL_cb515331da754c33a0c68f56fd6918b5", "tabbable": null, "tooltip": null}}, "2f266a82a0cd46529aa761f6c67f7700": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8978b1bc574944349ad8045c8d081583": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "38cf33a9b7b9481cb9a58609d734b80f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2f266a82a0cd46529aa761f6c67f7700", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8978b1bc574944349ad8045c8d081583", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "74b719a4753841d48ddef0f60728929c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "531002ec92784d8c8567de9c2f6b2001": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b05c6a6bdf664a62a6cbd8f66104b29f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_74b719a4753841d48ddef0f60728929c", "placeholder": "\u200b", "style": "IPY_MODEL_531002ec92784d8c8567de9c2f6b2001", "tabbable": null, "tooltip": null, "value": "100%"}}, "e251eadf4c0d45e99ed477a752be3d71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9238a3aeb6694a54a16d5276afd69748": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2184a8202604452c862d764c590163a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e251eadf4c0d45e99ed477a752be3d71", "placeholder": "\u200b", "style": "IPY_MODEL_9238a3aeb6694a54a16d5276afd69748", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154374.13it/s]"}}, "04229ad3351b4f7aaf0a891a50bc135d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f91d1545f3254e83bb88ef07ebe6e9fe": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b05c6a6bdf664a62a6cbd8f66104b29f", "IPY_MODEL_38cf33a9b7b9481cb9a58609d734b80f", "IPY_MODEL_2184a8202604452c862d764c590163a7"], "layout": "IPY_MODEL_04229ad3351b4f7aaf0a891a50bc135d", "tabbable": null, "tooltip": null}}, "8d3f186b66e646faa88abf0438b28125": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "476d964c770641a799b799e08d88ea6e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "215c528b84a347b1a955651a8792356a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d3f186b66e646faa88abf0438b28125", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_476d964c770641a799b799e08d88ea6e", "tabbable": null, "tooltip": null, "value": 30.0}}, "2a9e65f5f4ec40d496f43ad1adfd040a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13d8b2f426d2467cbc47898751b6f6dd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f1b83d31de91416b8454f54a7486c222": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a9e65f5f4ec40d496f43ad1adfd040a", "placeholder": "\u200b", "style": "IPY_MODEL_13d8b2f426d2467cbc47898751b6f6dd", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "0413905ec4a1476eab10c5ca853497d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c8bceb12179495a84b898f7d7fb9df2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cc71964c79fb4cc48ccbc1e58b722da3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0413905ec4a1476eab10c5ca853497d3", "placeholder": "\u200b", "style": "IPY_MODEL_6c8bceb12179495a84b898f7d7fb9df2", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.71it/s]"}}, "6a036f411aba4cdc9fa68388d47ac9c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3ec5543994844ccbea4230fb9d7b4eb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f1b83d31de91416b8454f54a7486c222", "IPY_MODEL_215c528b84a347b1a955651a8792356a", "IPY_MODEL_cc71964c79fb4cc48ccbc1e58b722da3"], "layout": "IPY_MODEL_6a036f411aba4cdc9fa68388d47ac9c0", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index cbb5060c6..253b92cf5 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:26.297786Z", - "iopub.status.busy": "2024-06-25T16:04:26.297315Z", - "iopub.status.idle": "2024-06-25T16:04:27.887896Z", - "shell.execute_reply": "2024-06-25T16:04:27.887195Z" + "iopub.execute_input": "2024-06-25T19:38:27.445776Z", + "iopub.status.busy": "2024-06-25T19:38:27.445616Z", + "iopub.status.idle": "2024-06-25T19:38:29.357688Z", + "shell.execute_reply": "2024-06-25T19:38:29.356961Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:04:27.890914Z", - "iopub.status.busy": "2024-06-25T16:04:27.890427Z", - "iopub.status.idle": "2024-06-25T16:05:25.256867Z", - "shell.execute_reply": "2024-06-25T16:05:25.256120Z" + "iopub.execute_input": "2024-06-25T19:38:29.360485Z", + "iopub.status.busy": "2024-06-25T19:38:29.360106Z", + "iopub.status.idle": "2024-06-25T19:39:24.167594Z", + "shell.execute_reply": "2024-06-25T19:39:24.166933Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:25.259565Z", - "iopub.status.busy": "2024-06-25T16:05:25.259365Z", - "iopub.status.idle": "2024-06-25T16:05:26.415816Z", - "shell.execute_reply": "2024-06-25T16:05:26.415246Z" + "iopub.execute_input": "2024-06-25T19:39:24.170328Z", + "iopub.status.busy": "2024-06-25T19:39:24.169968Z", + "iopub.status.idle": "2024-06-25T19:39:25.274825Z", + "shell.execute_reply": "2024-06-25T19:39:25.274283Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:26.418735Z", - "iopub.status.busy": "2024-06-25T16:05:26.418225Z", - "iopub.status.idle": "2024-06-25T16:05:26.421695Z", - "shell.execute_reply": "2024-06-25T16:05:26.421227Z" + "iopub.execute_input": "2024-06-25T19:39:25.277334Z", + "iopub.status.busy": "2024-06-25T19:39:25.276961Z", + "iopub.status.idle": "2024-06-25T19:39:25.280274Z", + "shell.execute_reply": "2024-06-25T19:39:25.279814Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:26.423574Z", - "iopub.status.busy": "2024-06-25T16:05:26.423393Z", - "iopub.status.idle": "2024-06-25T16:05:26.427320Z", - "shell.execute_reply": "2024-06-25T16:05:26.426786Z" + "iopub.execute_input": "2024-06-25T19:39:25.282318Z", + "iopub.status.busy": "2024-06-25T19:39:25.282060Z", + "iopub.status.idle": "2024-06-25T19:39:25.285902Z", + "shell.execute_reply": "2024-06-25T19:39:25.285458Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:26.429441Z", - "iopub.status.busy": "2024-06-25T16:05:26.429045Z", - "iopub.status.idle": "2024-06-25T16:05:26.432756Z", - "shell.execute_reply": "2024-06-25T16:05:26.432275Z" + "iopub.execute_input": "2024-06-25T19:39:25.287764Z", + "iopub.status.busy": "2024-06-25T19:39:25.287595Z", + "iopub.status.idle": "2024-06-25T19:39:25.291186Z", + "shell.execute_reply": "2024-06-25T19:39:25.290735Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:26.434942Z", - "iopub.status.busy": "2024-06-25T16:05:26.434398Z", - "iopub.status.idle": "2024-06-25T16:05:26.437440Z", - "shell.execute_reply": "2024-06-25T16:05:26.437002Z" + "iopub.execute_input": "2024-06-25T19:39:25.293004Z", + "iopub.status.busy": "2024-06-25T19:39:25.292834Z", + "iopub.status.idle": "2024-06-25T19:39:25.296491Z", + "shell.execute_reply": "2024-06-25T19:39:25.296049Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:05:26.439523Z", - "iopub.status.busy": "2024-06-25T16:05:26.439086Z", - "iopub.status.idle": "2024-06-25T16:06:01.882759Z", - "shell.execute_reply": "2024-06-25T16:06:01.882179Z" + "iopub.execute_input": "2024-06-25T19:39:25.298372Z", + "iopub.status.busy": "2024-06-25T19:39:25.298196Z", + "iopub.status.idle": "2024-06-25T19:39:58.536591Z", + "shell.execute_reply": "2024-06-25T19:39:58.535983Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2af2403d62f9417892013c46d8d0308c", + "model_id": "944591b9a0384c6388bc6a076330ac62", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "96760fcea90d4e7e9092c7269a9c7289", + "model_id": "456e1a39f8a0484d84df60d119f7d9b3", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:01.885484Z", - "iopub.status.busy": "2024-06-25T16:06:01.885229Z", - "iopub.status.idle": "2024-06-25T16:06:02.567992Z", - "shell.execute_reply": "2024-06-25T16:06:02.567379Z" + "iopub.execute_input": "2024-06-25T19:39:58.539357Z", + "iopub.status.busy": "2024-06-25T19:39:58.538990Z", + "iopub.status.idle": "2024-06-25T19:39:59.206448Z", + "shell.execute_reply": "2024-06-25T19:39:59.205970Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:02.570524Z", - "iopub.status.busy": "2024-06-25T16:06:02.569978Z", - "iopub.status.idle": "2024-06-25T16:06:05.322080Z", - "shell.execute_reply": "2024-06-25T16:06:05.321553Z" + "iopub.execute_input": "2024-06-25T19:39:59.208781Z", + "iopub.status.busy": "2024-06-25T19:39:59.208330Z", + "iopub.status.idle": "2024-06-25T19:40:01.948266Z", + "shell.execute_reply": "2024-06-25T19:40:01.947672Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:05.324426Z", - "iopub.status.busy": "2024-06-25T16:06:05.324099Z", - "iopub.status.idle": "2024-06-25T16:06:37.863014Z", - "shell.execute_reply": "2024-06-25T16:06:37.862543Z" + "iopub.execute_input": "2024-06-25T19:40:01.950510Z", + "iopub.status.busy": "2024-06-25T19:40:01.950173Z", + "iopub.status.idle": "2024-06-25T19:40:34.744210Z", + "shell.execute_reply": "2024-06-25T19:40:34.743718Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9af11f647b2949819c1f5a1edb762736", + "model_id": "f91d1545f3254e83bb88ef07ebe6e9fe", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:37.865265Z", - "iopub.status.busy": "2024-06-25T16:06:37.864952Z", - "iopub.status.idle": "2024-06-25T16:06:52.437700Z", - "shell.execute_reply": "2024-06-25T16:06:52.437137Z" + "iopub.execute_input": "2024-06-25T19:40:34.746367Z", + "iopub.status.busy": "2024-06-25T19:40:34.746041Z", + "iopub.status.idle": "2024-06-25T19:40:49.559228Z", + "shell.execute_reply": "2024-06-25T19:40:49.558651Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:52.440243Z", - "iopub.status.busy": "2024-06-25T16:06:52.439857Z", - "iopub.status.idle": "2024-06-25T16:06:56.319044Z", - "shell.execute_reply": "2024-06-25T16:06:56.318418Z" + "iopub.execute_input": "2024-06-25T19:40:49.561671Z", + "iopub.status.busy": "2024-06-25T19:40:49.561368Z", + "iopub.status.idle": "2024-06-25T19:40:53.237064Z", + "shell.execute_reply": "2024-06-25T19:40:53.236459Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:56.321362Z", - "iopub.status.busy": "2024-06-25T16:06:56.321158Z", - "iopub.status.idle": "2024-06-25T16:06:57.835620Z", - "shell.execute_reply": "2024-06-25T16:06:57.835031Z" + "iopub.execute_input": "2024-06-25T19:40:53.239303Z", + "iopub.status.busy": "2024-06-25T19:40:53.238898Z", + "iopub.status.idle": "2024-06-25T19:40:54.630349Z", + "shell.execute_reply": "2024-06-25T19:40:54.629762Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "786f2d55589d44e8b977e731bfd737d4", + "model_id": "c3ec5543994844ccbea4230fb9d7b4eb", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:57.838471Z", - "iopub.status.busy": "2024-06-25T16:06:57.838060Z", - "iopub.status.idle": "2024-06-25T16:06:57.871338Z", - "shell.execute_reply": "2024-06-25T16:06:57.870761Z" + "iopub.execute_input": "2024-06-25T19:40:54.632662Z", + "iopub.status.busy": "2024-06-25T19:40:54.632244Z", + "iopub.status.idle": "2024-06-25T19:40:54.661012Z", + "shell.execute_reply": "2024-06-25T19:40:54.660347Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:06:57.873874Z", - "iopub.status.busy": "2024-06-25T16:06:57.873489Z", - "iopub.status.idle": "2024-06-25T16:07:04.145930Z", - "shell.execute_reply": "2024-06-25T16:07:04.145303Z" + "iopub.execute_input": "2024-06-25T19:40:54.663568Z", + "iopub.status.busy": "2024-06-25T19:40:54.663357Z", + "iopub.status.idle": "2024-06-25T19:41:00.730286Z", + "shell.execute_reply": "2024-06-25T19:41:00.729759Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:04.148435Z", - "iopub.status.busy": "2024-06-25T16:07:04.148068Z", - "iopub.status.idle": "2024-06-25T16:07:04.204925Z", - "shell.execute_reply": "2024-06-25T16:07:04.204361Z" + "iopub.execute_input": "2024-06-25T19:41:00.732454Z", + "iopub.status.busy": "2024-06-25T19:41:00.732273Z", + "iopub.status.idle": "2024-06-25T19:41:00.787546Z", + "shell.execute_reply": "2024-06-25T19:41:00.786977Z" }, "nbsphinx": "hidden" }, @@ -1038,137 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04d1f4ec633c453791534547a5162ade": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0c6f2c8df4da49c98d07e7aaf8a22bcb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc6a14816890451bbcbaa406260ec37a", - "placeholder": "​", - "style": "IPY_MODEL_c9f65d1cc528477ba2702a735480b910", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 19.94it/s]" - } - }, - "15978f3017384bdcaafcd530c33a2868": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2af2403d62f9417892013c46d8d0308c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_50840cb64f674b6eb21068fe7a49f5f0", - "IPY_MODEL_6b51203517114dbcb792111da56ffd3c", - "IPY_MODEL_f6cae9edade64213ba68a8dded99ce56" - ], - "layout": "IPY_MODEL_85fd2638b160478598b53438d4b8875f", - "tabbable": null, - "tooltip": null - } - }, - "3a7a1d3c7abf4959a0697fc8cce5dbd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d68c66785c3c49c1afdb5648ec008530", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aa0f2b8b33b24cb0acac29b78b2d01ac", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "3bfed17a44044d9b9298d0465514102b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7877cde823c340dd8e5587bf5b1394f4", - "placeholder": "​", - "style": "IPY_MODEL_6643db54b11542209144918905998ce0", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.29it/s]" - } - }, - "3c08b85141b043988e8a6d1f23c660de": { + "0413905ec4a1476eab10c5ca853497d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1221,7 +1091,7 @@ "width": null } }, - "3c3654b303634b85b35d0650f73cb7fb": { + "04229ad3351b4f7aaf0a891a50bc135d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1274,7 +1144,48 @@ "width": null } }, - "3dd7ed67f6df4ac9bab9ad09c20df517": { + "07201424d87b4671ac4b1cfa673d7986": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a832d5b427714b918a469d3e99a8e9ff", + "placeholder": "​", + "style": "IPY_MODEL_0965a0f7f5304df18ccd851b34fef9fb", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.44it/s]" + } + }, + "0965a0f7f5304df18ccd851b34fef9fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0b658cb143704dbbb7f0ac48f95429f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1290,7 +1201,7 @@ "description_width": "" } }, - "3f383a9ca2df4a4eb00824d2d157581d": { + "13d8b2f426d2467cbc47898751b6f6dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1308,7 +1219,49 @@ "text_color": null } }, - "471abcf8ee444a008bc8ded81a28b15a": { + "15f5d288daf5495ba283ee4fad4d58fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "215c528b84a347b1a955651a8792356a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8d3f186b66e646faa88abf0438b28125", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_476d964c770641a799b799e08d88ea6e", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "2184a8202604452c862d764c590163a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1323,15 +1276,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2f1530a512445c98872e21e270d5abc", + "layout": "IPY_MODEL_e251eadf4c0d45e99ed477a752be3d71", "placeholder": "​", - "style": "IPY_MODEL_a2f4c4b023694de48afef7f6974b3345", + "style": "IPY_MODEL_9238a3aeb6694a54a16d5276afd69748", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 4997683/4997683 [00:32<00:00, 154374.13it/s]" } }, - "49f5146f94a34bbbbb0e37bac31a6976": { + "2a9e65f5f4ec40d496f43ad1adfd040a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1384,48 +1337,7 @@ "width": null } }, - "50840cb64f674b6eb21068fe7a49f5f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_684b95295e1a4f498e006b65c063e604", - "placeholder": "​", - "style": "IPY_MODEL_15978f3017384bdcaafcd530c33a2868", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "6643db54b11542209144918905998ce0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "684b95295e1a4f498e006b65c063e604": { + "2f266a82a0cd46529aa761f6c67f7700": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1478,7 +1390,7 @@ "width": null } }, - "6b51203517114dbcb792111da56ffd3c": { + "38cf33a9b7b9481cb9a58609d734b80f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1494,67 +1406,93 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4513f6464504320bab1656c3878acab", - "max": 30.0, + "layout": "IPY_MODEL_2f266a82a0cd46529aa761f6c67f7700", + "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3dd7ed67f6df4ac9bab9ad09c20df517", + "style": "IPY_MODEL_8978b1bc574944349ad8045c8d081583", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": 4997683.0 } }, - "725c7b5e265f454881a2ae2bd7237c7f": { + "456e1a39f8a0484d84df60d119f7d9b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49f5146f94a34bbbbb0e37bac31a6976", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fa3c4ea5ca804e57976fbca8046f75f3", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a858829ede1a452ba7407428df24b4fa", + "IPY_MODEL_8aaa8a35422241b2a265233527fbf1e7", + "IPY_MODEL_07201424d87b4671ac4b1cfa673d7986" + ], + "layout": "IPY_MODEL_cb515331da754c33a0c68f56fd6918b5", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "786f2d55589d44e8b977e731bfd737d4": { + "476d964c770641a799b799e08d88ea6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_471abcf8ee444a008bc8ded81a28b15a", - "IPY_MODEL_725c7b5e265f454881a2ae2bd7237c7f", - "IPY_MODEL_0c6f2c8df4da49c98d07e7aaf8a22bcb" - ], - "layout": "IPY_MODEL_8b71529b8eb64e00985356d07eb3571c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4e6a4c23dd054908be889d0f3d83ee3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "531002ec92784d8c8567de9c2f6b2001": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7877cde823c340dd8e5587bf5b1394f4": { + "5868ffb252c44ac4aa39f70440bc622f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1607,7 +1545,30 @@ "width": null } }, - "85fd2638b160478598b53438d4b8875f": { + "61c316c9d6e6417db8e8f67c88ca16b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab2778b3faa74fc58eae618ac7ad06b7", + "placeholder": "​", + "style": "IPY_MODEL_d9e435b2b0064cb389b0eba2fdb3ae58", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 756.08it/s]" + } + }, + "6a036f411aba4cdc9fa68388d47ac9c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1660,7 +1621,25 @@ "width": null } }, - "8b71529b8eb64e00985356d07eb3571c": { + "6c8bceb12179495a84b898f7d7fb9df2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6dabf219795b408dabf8afe1ed3b2ba9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1713,78 +1692,7 @@ "width": null } }, - "96760fcea90d4e7e9092c7269a9c7289": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a02ef5c60fee482d845728e739af7a62", - "IPY_MODEL_3a7a1d3c7abf4959a0697fc8cce5dbd2", - "IPY_MODEL_3bfed17a44044d9b9298d0465514102b" - ], - "layout": "IPY_MODEL_dc87c34425f949259352e0892c283120", - "tabbable": null, - "tooltip": null - } - }, - "9af11f647b2949819c1f5a1edb762736": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e44925003e0344efb8a7144847bdcf1c", - "IPY_MODEL_c6317991cbd3479e9150b638d3379bb1", - "IPY_MODEL_b3ce4905b1304582b4611ed16487c466" - ], - "layout": "IPY_MODEL_f5f03d640b2e471589e8fcd4ffb526a3", - "tabbable": null, - "tooltip": null - } - }, - "a02ef5c60fee482d845728e739af7a62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3c08b85141b043988e8a6d1f23c660de", - "placeholder": "​", - "style": "IPY_MODEL_d68644ee6e144193bdceb1286c0945d1", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "a240d0f0928143e6a6d945c579ed0005": { + "74b719a4753841d48ddef0f60728929c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1837,25 +1745,7 @@ "width": null } }, - "a2f4c4b023694de48afef7f6974b3345": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aa0f2b8b33b24cb0acac29b78b2d01ac": { + "8978b1bc574944349ad8045c8d081583": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1871,30 +1761,33 @@ "description_width": "" } }, - "b3ce4905b1304582b4611ed16487c466": { + "8aaa8a35422241b2a265233527fbf1e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3c3654b303634b85b35d0650f73cb7fb", - "placeholder": "​", - "style": "IPY_MODEL_f89de8d64d2d481f9b7bfd6dde761e73", + "layout": "IPY_MODEL_5868ffb252c44ac4aa39f70440bc622f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_15f5d288daf5495ba283ee4fad4d58fd", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154808.52it/s]" + "value": 30.0 } }, - "c2f1530a512445c98872e21e270d5abc": { + "8d3f186b66e646faa88abf0438b28125": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1947,51 +1840,49 @@ "width": null } }, - "c6317991cbd3479e9150b638d3379bb1": { + "9238a3aeb6694a54a16d5276afd69748": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f9066a49a3ea4d4db6c10797e5960503", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04d1f4ec633c453791534547a5162ade", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c9f65d1cc528477ba2702a735480b910": { + "944591b9a0384c6388bc6a076330ac62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3e1e81a9a074a9699b1c756208a42d1", + "IPY_MODEL_c2abb97f3c0f47e89640d65ea0507ceb", + "IPY_MODEL_61c316c9d6e6417db8e8f67c88ca16b3" + ], + "layout": "IPY_MODEL_f0c67deadadc41a681e33253811fe3c3", + "tabbable": null, + "tooltip": null } }, - "d4513f6464504320bab1656c3878acab": { + "a10c8b997a924841b67b483401b9d8c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2044,7 +1935,7 @@ "width": null } }, - "d68644ee6e144193bdceb1286c0945d1": { + "a61e682d08cd4b079011fff3976213c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2062,7 +1953,7 @@ "text_color": null } }, - "d68c66785c3c49c1afdb5648ec008530": { + "a832d5b427714b918a469d3e99a8e9ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2115,25 +2006,30 @@ "width": null } }, - "d727143295cd44c1ab42a816423c74b0": { + "a858829ede1a452ba7407428df24b4fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a10c8b997a924841b67b483401b9d8c3", + "placeholder": "​", + "style": "IPY_MODEL_4e6a4c23dd054908be889d0f3d83ee3b", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "dc87c34425f949259352e0892c283120": { + "ab2778b3faa74fc58eae618ac7ad06b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,7 +2082,7 @@ "width": null } }, - "e44925003e0344efb8a7144847bdcf1c": { + "b05c6a6bdf664a62a6cbd8f66104b29f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2201,15 +2097,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a240d0f0928143e6a6d945c579ed0005", + "layout": "IPY_MODEL_74b719a4753841d48ddef0f60728929c", "placeholder": "​", - "style": "IPY_MODEL_3f383a9ca2df4a4eb00824d2d157581d", + "style": "IPY_MODEL_531002ec92784d8c8567de9c2f6b2001", "tabbable": null, "tooltip": null, "value": "100%" } }, - "f45446c0d3474daba31f964d054cbde0": { + "c1f546fd71c24d498d05b3908214bd7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2262,7 +2158,57 @@ "width": null } }, - "f5f03d640b2e471589e8fcd4ffb526a3": { + "c2abb97f3c0f47e89640d65ea0507ceb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1f546fd71c24d498d05b3908214bd7d", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0b658cb143704dbbb7f0ac48f95429f2", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "c3ec5543994844ccbea4230fb9d7b4eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f1b83d31de91416b8454f54a7486c222", + "IPY_MODEL_215c528b84a347b1a955651a8792356a", + "IPY_MODEL_cc71964c79fb4cc48ccbc1e58b722da3" + ], + "layout": "IPY_MODEL_6a036f411aba4cdc9fa68388d47ac9c0", + "tabbable": null, + "tooltip": null + } + }, + "cb515331da754c33a0c68f56fd6918b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2315,7 +2261,7 @@ "width": null } }, - "f6cae9edade64213ba68a8dded99ce56": { + "cc71964c79fb4cc48ccbc1e58b722da3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2330,15 +2276,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f45446c0d3474daba31f964d054cbde0", + "layout": "IPY_MODEL_0413905ec4a1476eab10c5ca853497d3", "placeholder": "​", - "style": "IPY_MODEL_d727143295cd44c1ab42a816423c74b0", + "style": "IPY_MODEL_6c8bceb12179495a84b898f7d7fb9df2", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 754.29it/s]" + "value": " 30/30 [00:01<00:00, 21.71it/s]" } }, - "f89de8d64d2d481f9b7bfd6dde761e73": { + "d9e435b2b0064cb389b0eba2fdb3ae58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2356,7 +2302,7 @@ "text_color": null } }, - "f9066a49a3ea4d4db6c10797e5960503": { + "e251eadf4c0d45e99ed477a752be3d71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2409,23 +2355,30 @@ "width": null } }, - "fa3c4ea5ca804e57976fbca8046f75f3": { + "e3e1e81a9a074a9699b1c756208a42d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6dabf219795b408dabf8afe1ed3b2ba9", + "placeholder": "​", + "style": "IPY_MODEL_a61e682d08cd4b079011fff3976213c6", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "fc6a14816890451bbcbaa406260ec37a": { + "f0c67deadadc41a681e33253811fe3c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2477,6 +2430,53 @@ "visibility": null, "width": null } + }, + "f1b83d31de91416b8454f54a7486c222": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a9e65f5f4ec40d496f43ad1adfd040a", + "placeholder": "​", + "style": "IPY_MODEL_13d8b2f426d2467cbc47898751b6f6dd", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "f91d1545f3254e83bb88ef07ebe6e9fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b05c6a6bdf664a62a6cbd8f66104b29f", + "IPY_MODEL_38cf33a9b7b9481cb9a58609d734b80f", + "IPY_MODEL_2184a8202604452c862d764c590163a7" + ], + "layout": "IPY_MODEL_04229ad3351b4f7aaf0a891a50bc135d", + "tabbable": null, + "tooltip": null + } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 6b6e6d2f3..525f1b13d 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -384,6 +384,15 @@ >

  • +
  • + v2.6.6 +
  • +
  • 1. Install required dependencies and download data diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index d39bc02fe..c6bf67460 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:06.547023Z", - "iopub.status.busy": "2024-06-25T16:07:06.546845Z", - "iopub.status.idle": "2024-06-25T16:07:07.828490Z", - "shell.execute_reply": "2024-06-25T16:07:07.827856Z" + "iopub.execute_input": "2024-06-25T19:41:02.971504Z", + "iopub.status.busy": "2024-06-25T19:41:02.971078Z", + "iopub.status.idle": "2024-06-25T19:41:04.919925Z", + "shell.execute_reply": "2024-06-25T19:41:04.919315Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-25 16:07:06-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-06-25 19:41:02-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,23 +94,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.97, 2400:52e0:1a00::894:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... connected.\r\n" + "169.150.249.162, 2400:52e0:1a01::984:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.249.162|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", + "Length: 982975 (960K) [application/zip]\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", - "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", "\r", @@ -124,7 +117,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-06-25 16:07:07 (7.72 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-06-25 19:41:03 (8.03 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,9 +137,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-25 16:07:07-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.66.57, 52.217.229.33, 54.231.194.233, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.66.57|:443... connected.\r\n", + "--2024-06-25 19:41:03-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.196.49, 52.216.88.99, 3.5.9.136, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.196.49|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -167,9 +173,25 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", + "pred_probs.npz 1%[ ] 296.53K 1.27MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 30%[=====> ] 4.94M 10.8MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 100%[===================>] 16.26M 25.4MB/s in 0.6s \r\n", "\r\n", - "2024-06-25 16:07:07 (122 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-06-25 19:41:04 (25.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +208,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:07.831341Z", - "iopub.status.busy": "2024-06-25T16:07:07.830840Z", - "iopub.status.idle": "2024-06-25T16:07:09.117960Z", - "shell.execute_reply": "2024-06-25T16:07:09.117319Z" + "iopub.execute_input": "2024-06-25T19:41:04.922457Z", + "iopub.status.busy": "2024-06-25T19:41:04.922075Z", + "iopub.status.idle": "2024-06-25T19:41:06.198016Z", + "shell.execute_reply": "2024-06-25T19:41:06.197533Z" }, "nbsphinx": "hidden" }, @@ -200,7 +222,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e604611b9bbdc89f91103c8112289faf56854619\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +248,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:09.120950Z", - "iopub.status.busy": "2024-06-25T16:07:09.120556Z", - "iopub.status.idle": "2024-06-25T16:07:09.125476Z", - "shell.execute_reply": "2024-06-25T16:07:09.124877Z" + "iopub.execute_input": "2024-06-25T19:41:06.200733Z", + "iopub.status.busy": "2024-06-25T19:41:06.200196Z", + "iopub.status.idle": "2024-06-25T19:41:06.203668Z", + "shell.execute_reply": "2024-06-25T19:41:06.203192Z" } }, "outputs": [], @@ -279,10 +301,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:09.128226Z", - "iopub.status.busy": "2024-06-25T16:07:09.127849Z", - "iopub.status.idle": "2024-06-25T16:07:09.131400Z", - "shell.execute_reply": "2024-06-25T16:07:09.130888Z" + "iopub.execute_input": "2024-06-25T19:41:06.205901Z", + "iopub.status.busy": "2024-06-25T19:41:06.205502Z", + "iopub.status.idle": "2024-06-25T19:41:06.208636Z", + "shell.execute_reply": "2024-06-25T19:41:06.208180Z" }, "nbsphinx": "hidden" }, @@ -300,10 +322,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:09.133756Z", - "iopub.status.busy": "2024-06-25T16:07:09.133276Z", - "iopub.status.idle": "2024-06-25T16:07:18.048912Z", - "shell.execute_reply": "2024-06-25T16:07:18.048398Z" + "iopub.execute_input": "2024-06-25T19:41:06.210610Z", + "iopub.status.busy": "2024-06-25T19:41:06.210285Z", + "iopub.status.idle": "2024-06-25T19:41:15.082955Z", + "shell.execute_reply": "2024-06-25T19:41:15.082336Z" } }, "outputs": [], @@ -377,10 +399,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:18.051705Z", - "iopub.status.busy": "2024-06-25T16:07:18.051294Z", - "iopub.status.idle": "2024-06-25T16:07:18.057098Z", - "shell.execute_reply": "2024-06-25T16:07:18.056598Z" + "iopub.execute_input": "2024-06-25T19:41:15.085860Z", + "iopub.status.busy": "2024-06-25T19:41:15.085425Z", + "iopub.status.idle": "2024-06-25T19:41:15.091166Z", + "shell.execute_reply": "2024-06-25T19:41:15.090711Z" }, "nbsphinx": "hidden" }, @@ -420,10 +442,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:18.059216Z", - "iopub.status.busy": "2024-06-25T16:07:18.058934Z", - "iopub.status.idle": "2024-06-25T16:07:18.414507Z", - "shell.execute_reply": "2024-06-25T16:07:18.413940Z" + "iopub.execute_input": "2024-06-25T19:41:15.093228Z", + "iopub.status.busy": "2024-06-25T19:41:15.092906Z", + "iopub.status.idle": "2024-06-25T19:41:15.428454Z", + "shell.execute_reply": "2024-06-25T19:41:15.427900Z" } }, "outputs": [], @@ -460,10 +482,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:18.417180Z", - "iopub.status.busy": "2024-06-25T16:07:18.416802Z", - "iopub.status.idle": "2024-06-25T16:07:18.421011Z", - "shell.execute_reply": "2024-06-25T16:07:18.420474Z" + "iopub.execute_input": "2024-06-25T19:41:15.430886Z", + "iopub.status.busy": "2024-06-25T19:41:15.430536Z", + "iopub.status.idle": "2024-06-25T19:41:15.435028Z", + "shell.execute_reply": "2024-06-25T19:41:15.434547Z" } }, "outputs": [ @@ -535,10 +557,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:18.423062Z", - "iopub.status.busy": "2024-06-25T16:07:18.422741Z", - "iopub.status.idle": "2024-06-25T16:07:21.086360Z", - "shell.execute_reply": "2024-06-25T16:07:21.085580Z" + "iopub.execute_input": "2024-06-25T19:41:15.437005Z", + "iopub.status.busy": "2024-06-25T19:41:15.436676Z", + "iopub.status.idle": "2024-06-25T19:41:17.963765Z", + "shell.execute_reply": "2024-06-25T19:41:17.963047Z" } }, "outputs": [], @@ -560,10 +582,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:21.089602Z", - "iopub.status.busy": "2024-06-25T16:07:21.088970Z", - "iopub.status.idle": "2024-06-25T16:07:21.093137Z", - "shell.execute_reply": "2024-06-25T16:07:21.092590Z" + "iopub.execute_input": "2024-06-25T19:41:17.966718Z", + "iopub.status.busy": "2024-06-25T19:41:17.966151Z", + "iopub.status.idle": "2024-06-25T19:41:17.970271Z", + "shell.execute_reply": "2024-06-25T19:41:17.969727Z" } }, "outputs": [ @@ -599,10 +621,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:21.095265Z", - "iopub.status.busy": "2024-06-25T16:07:21.094931Z", - "iopub.status.idle": "2024-06-25T16:07:21.100217Z", - "shell.execute_reply": "2024-06-25T16:07:21.099684Z" + "iopub.execute_input": "2024-06-25T19:41:17.972401Z", + "iopub.status.busy": "2024-06-25T19:41:17.971969Z", + "iopub.status.idle": "2024-06-25T19:41:17.977900Z", + "shell.execute_reply": "2024-06-25T19:41:17.977348Z" } }, "outputs": [ @@ -780,10 +802,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:21.102376Z", - "iopub.status.busy": "2024-06-25T16:07:21.102037Z", - "iopub.status.idle": "2024-06-25T16:07:21.128897Z", - "shell.execute_reply": "2024-06-25T16:07:21.128341Z" + "iopub.execute_input": "2024-06-25T19:41:17.979833Z", + "iopub.status.busy": "2024-06-25T19:41:17.979657Z", + "iopub.status.idle": "2024-06-25T19:41:18.005794Z", + "shell.execute_reply": "2024-06-25T19:41:18.005228Z" } }, "outputs": [ @@ -885,10 +907,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:21.131210Z", - "iopub.status.busy": "2024-06-25T16:07:21.130875Z", - "iopub.status.idle": "2024-06-25T16:07:21.135376Z", - "shell.execute_reply": "2024-06-25T16:07:21.134835Z" + "iopub.execute_input": "2024-06-25T19:41:18.007758Z", + "iopub.status.busy": "2024-06-25T19:41:18.007580Z", + "iopub.status.idle": "2024-06-25T19:41:18.011709Z", + "shell.execute_reply": "2024-06-25T19:41:18.011185Z" } }, "outputs": [ @@ -962,10 +984,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:21.137450Z", - "iopub.status.busy": "2024-06-25T16:07:21.137116Z", - "iopub.status.idle": "2024-06-25T16:07:22.574784Z", - "shell.execute_reply": "2024-06-25T16:07:22.574179Z" + "iopub.execute_input": "2024-06-25T19:41:18.013608Z", + "iopub.status.busy": "2024-06-25T19:41:18.013435Z", + "iopub.status.idle": "2024-06-25T19:41:19.410422Z", + "shell.execute_reply": "2024-06-25T19:41:19.409926Z" } }, "outputs": [ @@ -1137,10 +1159,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-06-25T16:07:22.577145Z", - "iopub.status.busy": "2024-06-25T16:07:22.576905Z", - "iopub.status.idle": "2024-06-25T16:07:22.581281Z", - "shell.execute_reply": "2024-06-25T16:07:22.580709Z" + "iopub.execute_input": "2024-06-25T19:41:19.412440Z", + "iopub.status.busy": "2024-06-25T19:41:19.412255Z", + "iopub.status.idle": "2024-06-25T19:41:19.416447Z", + "shell.execute_reply": "2024-06-25T19:41:19.415988Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 0bab917a5..e8963903c 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.5", - commit_hash: "ffdbe77dc641fc9d59d1c6c4f22c78550cc7da49", + commit_hash: "e604611b9bbdc89f91103c8112289faf56854619", }; \ No newline at end of file