diff --git a/master/.buildinfo b/master/.buildinfo
index dd53b0946..36be57d98 100644
--- a/master/.buildinfo
+++ b/master/.buildinfo
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
-config: 89be7db3801ede3a5d915adddcf50f37
+config: cf65d4f5317602c3d56b866305a7f86b
tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree
index fd2beaf54..1ac246b22 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ
diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree
index b4d2ba52b..b70f1cd9f 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ
diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree
index d32015d64..5ccab5e65 100644
Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ
diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree
index 0bc4f84cc..c2b522248 100644
Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree
index a1bdb66de..57e18ff21 100644
Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree
index e1f486c82..3e7d666d8 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree
index b23a4e6e8..b25709e35 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree
index 0046598cb..70933bc32 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree
index 52612389f..221a04d41 100644
Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree
index 0f64f6565..48f8116ca 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree
index 84caf7410..197ed673a 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree
index a47a624bf..aaf6c9904 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree
index ce75b2020..c61bb107c 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree
index 45094e942..b1ad5dccf 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree
index f45e7333c..40a52abd7 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree
index d73f0234e..6b23e3bd6 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree
index 2e4de2aa1..c34ed2559 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree
index 1f2815c5f..46f3093ee 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree
index c6206c10a..2cafef73d 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree
index d9dfacc5b..89fb7cb55 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree
index 63bd3cdde..14cf1afb2 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree
index 5c4a415d4..229554a4b 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree
index 6e49dca5c..0fd01a262 100644
Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ
diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree
index fefa2bb97..5e97492bd 100644
Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree
index 279cce634..032dd9d7b 100644
Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree
index a70f7fef0..c2f6473fd 100644
Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree
index 939fba5a2..5cc30e150 100644
Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree
index 3d18caac9..70c914159 100644
Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree
index 41bbe5596..74f98e3af 100644
Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ
diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree
index 600ac9940..23fa9ea80 100644
Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree
index e66470c1e..ada2dc330 100644
Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree
index 182fb12a7..8a7af1e22 100644
Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree
index d36d964a2..a72d6d639 100644
Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree
index fb4e0c571..693f3d164 100644
Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree
index 649ac9be0..15d9d5262 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree
index 9a78b7752..b50b362b6 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree
index 8ddd1e749..eda9ddd7f 100644
Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree
index c14c0d739..824600450 100644
Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree
index 214404172..941d60c4f 100644
Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree
index 3d9d763b2..490ab8aba 100644
Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ
diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree
index 2ef7cd92b..7d70ed78a 100644
Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ
diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree
index 27444fc8a..3db5d2265 100644
Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ
diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree
index fba2a2261..fe3ad13ef 100644
Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ
diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree
index 3d7f435fd..db0098153 100644
Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree
index a6a55a50d..5de82a7a3 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree
index 4fa8b5b16..9e60e3269 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree
index b2b229ee9..70d42e608 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree
index 6b0cc8daa..c2981c0cb 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree
index 01eb76db7..141689095 100644
Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree
index f1bc78846..d74c0f24a 100644
Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree
index b468a594b..8bed33cfb 100644
Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree
index 13c8fed03..028ceba66 100644
Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree
index 224c515dc..7b7870b9d 100644
Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree
index a0715eea5..c8d0d1ffc 100644
Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree
index 95b778a52..c4849c594 100644
Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree
index 63bfbce35..76e75437d 100644
Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree
index 3c5c6401c..c0c5e6966 100644
Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree
index 5e170915a..230461844 100644
Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree
index 2fda9bb57..0fed6423e 100644
Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree
index 896315a7e..05498098e 100644
Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree
index 7e62dac41..f5c8b36c6 100644
Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree
index 797b7371a..dbf2a9ec1 100644
Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree
index 8d5a6bf4c..73422a7cc 100644
Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree
index 5b91e1fcb..3c5d5992d 100644
Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree
index feafa6851..9a98a5ac1 100644
Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ
diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle
index 7c550c125..e196fd1c9 100644
Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ
diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree
index dd8ecc7a4..aaea3a452 100644
Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ
diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree
index e6fe28cd1..37888c2d9 100644
Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ
diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb
index 7fea2ce14..b57479d2e 100644
--- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:33:57.811082Z",
- "iopub.status.busy": "2023-10-06T06:33:57.810702Z",
- "iopub.status.idle": "2023-10-06T06:34:01.791219Z",
- "shell.execute_reply": "2023-10-06T06:34:01.790365Z"
+ "iopub.execute_input": "2023-10-11T10:06:13.530712Z",
+ "iopub.status.busy": "2023-10-11T10:06:13.530270Z",
+ "iopub.status.idle": "2023-10-11T10:06:17.624587Z",
+ "shell.execute_reply": "2023-10-11T10:06:17.623834Z"
},
"nbsphinx": "hidden"
},
@@ -97,7 +97,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -131,10 +131,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:01.795548Z",
- "iopub.status.busy": "2023-10-06T06:34:01.794851Z",
- "iopub.status.idle": "2023-10-06T06:34:01.801189Z",
- "shell.execute_reply": "2023-10-06T06:34:01.800577Z"
+ "iopub.execute_input": "2023-10-11T10:06:17.629374Z",
+ "iopub.status.busy": "2023-10-11T10:06:17.628483Z",
+ "iopub.status.idle": "2023-10-11T10:06:17.632507Z",
+ "shell.execute_reply": "2023-10-11T10:06:17.631963Z"
},
"id": "LaEiwXUiVHCS"
},
@@ -157,10 +157,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:01.804254Z",
- "iopub.status.busy": "2023-10-06T06:34:01.803638Z",
- "iopub.status.idle": "2023-10-06T06:34:01.810426Z",
- "shell.execute_reply": "2023-10-06T06:34:01.809770Z"
+ "iopub.execute_input": "2023-10-11T10:06:17.635666Z",
+ "iopub.status.busy": "2023-10-11T10:06:17.635226Z",
+ "iopub.status.idle": "2023-10-11T10:06:17.640894Z",
+ "shell.execute_reply": "2023-10-11T10:06:17.640234Z"
},
"nbsphinx": "hidden"
},
@@ -208,10 +208,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:01.813409Z",
- "iopub.status.busy": "2023-10-06T06:34:01.812975Z",
- "iopub.status.idle": "2023-10-06T06:34:04.038287Z",
- "shell.execute_reply": "2023-10-06T06:34:04.037226Z"
+ "iopub.execute_input": "2023-10-11T10:06:17.644263Z",
+ "iopub.status.busy": "2023-10-11T10:06:17.643621Z",
+ "iopub.status.idle": "2023-10-11T10:06:19.409539Z",
+ "shell.execute_reply": "2023-10-11T10:06:19.408284Z"
},
"id": "GRDPEg7-VOQe",
"outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6"
@@ -242,10 +242,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:04.042343Z",
- "iopub.status.busy": "2023-10-06T06:34:04.041872Z",
- "iopub.status.idle": "2023-10-06T06:34:04.061190Z",
- "shell.execute_reply": "2023-10-06T06:34:04.060590Z"
+ "iopub.execute_input": "2023-10-11T10:06:19.414213Z",
+ "iopub.status.busy": "2023-10-11T10:06:19.413666Z",
+ "iopub.status.idle": "2023-10-11T10:06:19.433427Z",
+ "shell.execute_reply": "2023-10-11T10:06:19.432769Z"
},
"id": "FDA5sGZwUSur",
"outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895"
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:04.095741Z",
- "iopub.status.busy": "2023-10-06T06:34:04.095178Z",
- "iopub.status.idle": "2023-10-06T06:34:04.102186Z",
- "shell.execute_reply": "2023-10-06T06:34:04.101476Z"
+ "iopub.execute_input": "2023-10-11T10:06:19.472896Z",
+ "iopub.status.busy": "2023-10-11T10:06:19.472266Z",
+ "iopub.status.idle": "2023-10-11T10:06:19.479743Z",
+ "shell.execute_reply": "2023-10-11T10:06:19.479048Z"
},
"nbsphinx": "hidden"
},
@@ -380,10 +380,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:04.105477Z",
- "iopub.status.busy": "2023-10-06T06:34:04.104872Z",
- "iopub.status.idle": "2023-10-06T06:34:04.965548Z",
- "shell.execute_reply": "2023-10-06T06:34:04.964900Z"
+ "iopub.execute_input": "2023-10-11T10:06:19.482840Z",
+ "iopub.status.busy": "2023-10-11T10:06:19.482392Z",
+ "iopub.status.idle": "2023-10-11T10:06:20.428208Z",
+ "shell.execute_reply": "2023-10-11T10:06:20.427353Z"
},
"id": "dLBvUZLlII5w",
"outputId": "c6a4917f-4a82-4a89-9193-415072e45550"
@@ -435,10 +435,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:04.968436Z",
- "iopub.status.busy": "2023-10-06T06:34:04.967960Z",
- "iopub.status.idle": "2023-10-06T06:34:06.918212Z",
- "shell.execute_reply": "2023-10-06T06:34:06.917506Z"
+ "iopub.execute_input": "2023-10-11T10:06:20.431985Z",
+ "iopub.status.busy": "2023-10-11T10:06:20.431338Z",
+ "iopub.status.idle": "2023-10-11T10:06:22.361117Z",
+ "shell.execute_reply": "2023-10-11T10:06:22.360333Z"
},
"id": "vL9lkiKsHvKr"
},
@@ -472,10 +472,10 @@
"height": 143
},
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:06.921684Z",
- "iopub.status.busy": "2023-10-06T06:34:06.921193Z",
- "iopub.status.idle": "2023-10-06T06:34:06.958139Z",
- "shell.execute_reply": "2023-10-06T06:34:06.957485Z"
+ "iopub.execute_input": "2023-10-11T10:06:22.365050Z",
+ "iopub.status.busy": "2023-10-11T10:06:22.364632Z",
+ "iopub.status.idle": "2023-10-11T10:06:22.401154Z",
+ "shell.execute_reply": "2023-10-11T10:06:22.400355Z"
},
"id": "obQYDKdLiUU6",
"outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4"
@@ -555,10 +555,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:06.964241Z",
- "iopub.status.busy": "2023-10-06T06:34:06.963715Z",
- "iopub.status.idle": "2023-10-06T06:34:06.967580Z",
- "shell.execute_reply": "2023-10-06T06:34:06.966909Z"
+ "iopub.execute_input": "2023-10-11T10:06:22.404975Z",
+ "iopub.status.busy": "2023-10-11T10:06:22.404572Z",
+ "iopub.status.idle": "2023-10-11T10:06:22.408515Z",
+ "shell.execute_reply": "2023-10-11T10:06:22.407975Z"
},
"id": "I8JqhOZgi94g"
},
@@ -580,10 +580,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:06.970603Z",
- "iopub.status.busy": "2023-10-06T06:34:06.970082Z",
- "iopub.status.idle": "2023-10-06T06:34:21.231021Z",
- "shell.execute_reply": "2023-10-06T06:34:21.230263Z"
+ "iopub.execute_input": "2023-10-11T10:06:22.411570Z",
+ "iopub.status.busy": "2023-10-11T10:06:22.411136Z",
+ "iopub.status.idle": "2023-10-11T10:06:35.954615Z",
+ "shell.execute_reply": "2023-10-11T10:06:35.953925Z"
},
"id": "2FSQ2GR9R_YA"
},
@@ -615,10 +615,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:21.234804Z",
- "iopub.status.busy": "2023-10-06T06:34:21.234164Z",
- "iopub.status.idle": "2023-10-06T06:34:21.241258Z",
- "shell.execute_reply": "2023-10-06T06:34:21.240546Z"
+ "iopub.execute_input": "2023-10-11T10:06:35.958400Z",
+ "iopub.status.busy": "2023-10-11T10:06:35.957919Z",
+ "iopub.status.idle": "2023-10-11T10:06:35.962537Z",
+ "shell.execute_reply": "2023-10-11T10:06:35.961976Z"
},
"id": "kAkY31IVXyr8",
"outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632"
@@ -677,10 +677,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:21.244392Z",
- "iopub.status.busy": "2023-10-06T06:34:21.244113Z",
- "iopub.status.idle": "2023-10-06T06:34:28.601864Z",
- "shell.execute_reply": "2023-10-06T06:34:28.601230Z"
+ "iopub.execute_input": "2023-10-11T10:06:35.965630Z",
+ "iopub.status.busy": "2023-10-11T10:06:35.965182Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.068518Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.067831Z"
},
"id": "i_drkY9YOcw4"
},
@@ -714,10 +714,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:28.605821Z",
- "iopub.status.busy": "2023-10-06T06:34:28.605165Z",
- "iopub.status.idle": "2023-10-06T06:34:28.611669Z",
- "shell.execute_reply": "2023-10-06T06:34:28.611074Z"
+ "iopub.execute_input": "2023-10-11T10:06:42.072974Z",
+ "iopub.status.busy": "2023-10-11T10:06:42.071653Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.079428Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.078858Z"
},
"id": "_b-AQeoXOc7q",
"outputId": "15ae534a-f517-4906-b177-ca91931a8954"
@@ -764,10 +764,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:28.614836Z",
- "iopub.status.busy": "2023-10-06T06:34:28.614212Z",
- "iopub.status.idle": "2023-10-06T06:34:28.711942Z",
- "shell.execute_reply": "2023-10-06T06:34:28.711055Z"
+ "iopub.execute_input": "2023-10-11T10:06:42.083907Z",
+ "iopub.status.busy": "2023-10-11T10:06:42.082745Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.182816Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.182051Z"
}
},
"outputs": [
@@ -804,10 +804,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:28.716027Z",
- "iopub.status.busy": "2023-10-06T06:34:28.715457Z",
- "iopub.status.idle": "2023-10-06T06:34:28.730018Z",
- "shell.execute_reply": "2023-10-06T06:34:28.729236Z"
+ "iopub.execute_input": "2023-10-11T10:06:42.186838Z",
+ "iopub.status.busy": "2023-10-11T10:06:42.186411Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.199311Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.198511Z"
},
"scrolled": true
},
@@ -862,10 +862,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:28.733487Z",
- "iopub.status.busy": "2023-10-06T06:34:28.732791Z",
- "iopub.status.idle": "2023-10-06T06:34:28.744918Z",
- "shell.execute_reply": "2023-10-06T06:34:28.744217Z"
+ "iopub.execute_input": "2023-10-11T10:06:42.202668Z",
+ "iopub.status.busy": "2023-10-11T10:06:42.202106Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.213276Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.212591Z"
}
},
"outputs": [
@@ -969,10 +969,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:28.748470Z",
- "iopub.status.busy": "2023-10-06T06:34:28.748053Z",
- "iopub.status.idle": "2023-10-06T06:34:28.755566Z",
- "shell.execute_reply": "2023-10-06T06:34:28.754885Z"
+ "iopub.execute_input": "2023-10-11T10:06:42.216159Z",
+ "iopub.status.busy": "2023-10-11T10:06:42.215771Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.221165Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.220471Z"
}
},
"outputs": [
@@ -1010,10 +1010,10 @@
"height": 237
},
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:28.758919Z",
- "iopub.status.busy": "2023-10-06T06:34:28.758520Z",
- "iopub.status.idle": "2023-10-06T06:34:28.768688Z",
- "shell.execute_reply": "2023-10-06T06:34:28.767981Z"
+ "iopub.execute_input": "2023-10-11T10:06:42.224258Z",
+ "iopub.status.busy": "2023-10-11T10:06:42.223670Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.233376Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.232275Z"
},
"id": "FQwRHgbclpsO",
"outputId": "fee5c335-c00e-4fcc-f22b-718705e93182"
@@ -1133,10 +1133,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:28.772280Z",
- "iopub.status.busy": "2023-10-06T06:34:28.771857Z",
- "iopub.status.idle": "2023-10-06T06:34:28.927290Z",
- "shell.execute_reply": "2023-10-06T06:34:28.926569Z"
+ "iopub.execute_input": "2023-10-11T10:06:42.236775Z",
+ "iopub.status.busy": "2023-10-11T10:06:42.236260Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.393008Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.392180Z"
},
"id": "ff1NFVlDoysO",
"outputId": "8141a036-44c1-4349-c338-880432513e37"
@@ -1190,10 +1190,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:28.931104Z",
- "iopub.status.busy": "2023-10-06T06:34:28.930500Z",
- "iopub.status.idle": "2023-10-06T06:34:29.075447Z",
- "shell.execute_reply": "2023-10-06T06:34:29.074733Z"
+ "iopub.execute_input": "2023-10-11T10:06:42.396683Z",
+ "iopub.status.busy": "2023-10-11T10:06:42.396229Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.542955Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.542241Z"
},
"id": "GZgovGkdiaiP",
"outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7"
@@ -1238,10 +1238,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:29.079070Z",
- "iopub.status.busy": "2023-10-06T06:34:29.078639Z",
- "iopub.status.idle": "2023-10-06T06:34:29.225055Z",
- "shell.execute_reply": "2023-10-06T06:34:29.224289Z"
+ "iopub.execute_input": "2023-10-11T10:06:42.546200Z",
+ "iopub.status.busy": "2023-10-11T10:06:42.545707Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.693407Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.692633Z"
},
"id": "lfa2eHbMwG8R",
"outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c"
@@ -1282,10 +1282,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:29.228789Z",
- "iopub.status.busy": "2023-10-06T06:34:29.228165Z",
- "iopub.status.idle": "2023-10-06T06:34:29.373658Z",
- "shell.execute_reply": "2023-10-06T06:34:29.373005Z"
+ "iopub.execute_input": "2023-10-11T10:06:42.696904Z",
+ "iopub.status.busy": "2023-10-11T10:06:42.696301Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.841328Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.840647Z"
}
},
"outputs": [
@@ -1333,10 +1333,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:29.380244Z",
- "iopub.status.busy": "2023-10-06T06:34:29.378604Z",
- "iopub.status.idle": "2023-10-06T06:34:29.385840Z",
- "shell.execute_reply": "2023-10-06T06:34:29.384869Z"
+ "iopub.execute_input": "2023-10-11T10:06:42.844799Z",
+ "iopub.status.busy": "2023-10-11T10:06:42.844446Z",
+ "iopub.status.idle": "2023-10-11T10:06:42.850945Z",
+ "shell.execute_reply": "2023-10-11T10:06:42.849568Z"
},
"nbsphinx": "hidden"
},
@@ -1377,7 +1377,28 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "045582fa2e264245bd93aa80fac29ca0": {
+ "018c12f4bb2748fa8b6146ce71beb80c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4099c2c987a3484e9ee8f30579d43812",
+ "placeholder": "",
+ "style": "IPY_MODEL_fb44cdabd036409dab2fddeb00554554",
+ "value": "Downloading: 100%"
+ }
+ },
+ "0b98afcef659408390c3f0c3187a1931": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1392,7 +1413,7 @@
"description_width": ""
}
},
- "0b44b22fdf0445c685934e44fa0c8a56": {
+ "17493e62ee004d7da87038724b06abfd": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1444,28 +1465,44 @@
"width": null
}
},
- "0d87830b3f4a4bc7943ba8a980564dc6": {
+ "1a2289b90992489f97dfc0b852bb95e4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e8b82083389d4573b556f3f2fbd025a2",
- "placeholder": "",
- "style": "IPY_MODEL_17121d0963f644f5aa4b8351a2e4124b",
- "value": " 3.20k/3.20k [00:00<00:00, 496kB/s]"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_018c12f4bb2748fa8b6146ce71beb80c",
+ "IPY_MODEL_a39dae1d75dd4e098c69341b83e03b65",
+ "IPY_MODEL_b47c682bb75b430381107f64713b435d"
+ ],
+ "layout": "IPY_MODEL_17493e62ee004d7da87038724b06abfd"
+ }
+ },
+ "1afcef1e03674ecda259c2ff9a7ae6d9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "12ddf61e03c04c448e56148a1316f04c": {
+ "1dc5761b98cd48219a4194ddec6526b7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1517,68 +1554,28 @@
"width": null
}
},
- "17121d0963f644f5aa4b8351a2e4124b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "196ed22213e14808976f7feeb53257f5": {
+ "1ef29a170b5549faac1f2694d2e06501": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_a49ef86a9bd144d1931a7be38b2a5a01",
- "max": 2041.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_532b7f85502d4c0da068d1332d3a2cc4",
- "value": 2041.0
- }
- },
- "232f223de8db4ab8af2c1dde668f008b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_6942981f478d492bb7f394fa5350239d",
- "IPY_MODEL_dd7a1cb002cd44b39c38b166f6dca0dd",
- "IPY_MODEL_0d87830b3f4a4bc7943ba8a980564dc6"
- ],
- "layout": "IPY_MODEL_2d7e97a682ce45d3827c4c7a01bb4589"
+ "layout": "IPY_MODEL_1dc5761b98cd48219a4194ddec6526b7",
+ "placeholder": "",
+ "style": "IPY_MODEL_ed84a42d5de3498a930602c0f3d780e2",
+ "value": " 2.04k/2.04k [00:00<00:00, 271kB/s]"
}
},
- "2d7e97a682ce45d3827c4c7a01bb4589": {
+ "21b452f4fe8c483e82b50d37a5e21af1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1630,7 +1627,7 @@
"width": null
}
},
- "32a36dde49344419b3b4e7be815490a7": {
+ "27f3f12f83454a9bb0a5fee0e47c426b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1682,7 +1679,31 @@
"width": null
}
},
- "3529fa120c664508a1f7e3018c9f9c55": {
+ "28f305305cb540b08b7d6e233970c5c5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5e67d58415924ca8a4f172a5e9690974",
+ "max": 2041.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_8f7753bfe0014edf97884369b8d33c4d",
+ "value": 2041.0
+ }
+ },
+ "2d283da15cce476793e2247f5c59dad9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1697,22 +1718,45 @@
"description_width": ""
}
},
- "368df7a165d54c678a9621f778a25c9f": {
+ "3a16922938de4df9a1be051af9791adf": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b984345129a244b7848070d451e81d39",
+ "IPY_MODEL_b54e5de4478d46abbb2b8a5950446a69",
+ "IPY_MODEL_af6edd0025f549ebb38044f4ba74180a"
+ ],
+ "layout": "IPY_MODEL_e1506dc085d042229dabf40909be1eee"
+ }
+ },
+ "3aaef80f95984be7a6521be8c34688bd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "36a59442845548cb916463d010d88d63": {
+ "3eb111e036ef43fe81f5260f065d1c18": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -1728,31 +1772,37 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_0b44b22fdf0445c685934e44fa0c8a56",
+ "layout": "IPY_MODEL_c2aa343c35ab4e5b955e9109ef5122fb",
"max": 15856877.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_c4868c5d246b4a199b762954dfdf32b2",
+ "style": "IPY_MODEL_3aaef80f95984be7a6521be8c34688bd",
"value": 15856877.0
}
},
- "3c1b109171ca44849cedcc2720a51a67": {
+ "3f1533a7aaaa4915b0a58bea504ac277": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_47b831f72d9847d382c6f3baa7f2e135",
+ "IPY_MODEL_3eb111e036ef43fe81f5260f065d1c18",
+ "IPY_MODEL_8fb7f1e5381c4360a5b82e5578cdad06"
+ ],
+ "layout": "IPY_MODEL_50f624c2421b472c8c1f1b53afeb0bed"
}
},
- "4089a9f371624f199b0a0bdaae8aadbe": {
+ "4099c2c987a3484e9ee8f30579d43812": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1804,22 +1854,7 @@
"width": null
}
},
- "449cef325f5a4b8b93eb6e6eb2e93b8c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "51bb9bcc7e9c4f7599feb35ca4d7e015": {
+ "4563b44482964c1696c3758eed7cb38c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1871,23 +1906,80 @@
"width": null
}
},
- "532b7f85502d4c0da068d1332d3a2cc4": {
+ "47901410190c496db5a7001965edc597": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "47b831f72d9847d382c6f3baa7f2e135": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e414fe50fbd6406387b83f73ad49a1af",
+ "placeholder": "",
+ "style": "IPY_MODEL_0b98afcef659408390c3f0c3187a1931",
+ "value": "Downloading: 100%"
+ }
+ },
+ "4a03f59311ab478a86fe2fe3e9f304c9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_903d4ca0e7ed4cf1847160a3472496e1",
+ "IPY_MODEL_63e0ad84258848959cc53f7a1e5ab1ce",
+ "IPY_MODEL_b483c477b28f4ebca4c63cf6e4b9fb7a"
+ ],
+ "layout": "IPY_MODEL_75378deda3df4ffc9b70f1a36ea91f17"
+ }
+ },
+ "4a2033e7163e42edacf468deaf77898e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "5365b3d444254f48b34ef90ca7351131": {
+ "50f624c2421b472c8c1f1b53afeb0bed": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1939,22 +2031,7 @@
"width": null
}
},
- "5c8efbc4cee74d4caf74c9aec9e7c587": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6200da02a8124489b0647c2b4a6fa02c": {
+ "5e4aae5a6995480f8721afb1fc564aec": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2006,28 +2083,7 @@
"width": null
}
},
- "6942981f478d492bb7f394fa5350239d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5365b3d444254f48b34ef90ca7351131",
- "placeholder": "",
- "style": "IPY_MODEL_045582fa2e264245bd93aa80fac29ca0",
- "value": "Downloading: 100%"
- }
- },
- "6c4f6453da3a442bab0b936d9ad01b30": {
+ "5e67d58415924ca8a4f172a5e9690974": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2079,15 +2135,91 @@
"width": null
}
},
- "6e77ca0b847d45609149599588df7185": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "6061cf918e854396a1b07695e6458b60": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c97d8abbf91c433893db082142f3ca58",
+ "IPY_MODEL_28f305305cb540b08b7d6e233970c5c5",
+ "IPY_MODEL_1ef29a170b5549faac1f2694d2e06501"
+ ],
+ "layout": "IPY_MODEL_c0fc2cf124ea4dcfabd0ab9605265f18"
+ }
+ },
+ "6119f5efd9294ddfa7e06cb0952d9265": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "63e0ad84258848959cc53f7a1e5ab1ce": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d663ffe70d2f4b22a7732e7be6be3553",
+ "max": 128619.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_9246cff512af4988bf1a62faaf51cd22",
+ "value": 128619.0
+ }
+ },
+ "7335e068e3d54ef78c5ae567c8c4cce9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "75378deda3df4ffc9b70f1a36ea91f17": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
@@ -2131,46 +2263,90 @@
"width": null
}
},
- "6eebba3899c94b48b388f3f97eeded45": {
+ "7ff95803607e435996c9bf92ef513800": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_daf6104a1b0f40f1830ccd4fe75146a0",
- "max": 16887676.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_a277815b5a61495eb8875e6c873c754a",
- "value": 16887676.0
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "727d84872e8a4a95805cfee09c910d42": {
+ "8f7753bfe0014edf97884369b8d33c4d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "72977f7022d14e1fa6ae4a72d4be8635": {
+ "8fb6eef8146a4b7bbfe1f98030548a43": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "8fb7f1e5381c4360a5b82e5578cdad06": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2185,13 +2361,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6e77ca0b847d45609149599588df7185",
+ "layout": "IPY_MODEL_e6ce7990787b4ebea9aecd301d4e835d",
"placeholder": "",
- "style": "IPY_MODEL_5c8efbc4cee74d4caf74c9aec9e7c587",
- "value": " 16.9M/16.9M [00:00<00:00, 82.3MB/s]"
+ "style": "IPY_MODEL_6119f5efd9294ddfa7e06cb0952d9265",
+ "value": " 15.9M/15.9M [00:00<00:00, 75.2MB/s]"
}
},
- "73566f0085464f61a1e128448a5078ab": {
+ "903d4ca0e7ed4cf1847160a3472496e1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2206,35 +2382,53 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_ddec1730a690405dae12bdf0c77d45ad",
+ "layout": "IPY_MODEL_5e4aae5a6995480f8721afb1fc564aec",
"placeholder": "",
- "style": "IPY_MODEL_727d84872e8a4a95805cfee09c910d42",
+ "style": "IPY_MODEL_47901410190c496db5a7001965edc597",
"value": "Downloading: 100%"
}
},
- "7371bbe858054f02a79b3b16a5a3b7ac": {
+ "9246cff512af4988bf1a62faaf51cd22": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "a39dae1d75dd4e098c69341b83e03b65": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_73fcbd9c96a848d6abf9004c39cda302",
- "IPY_MODEL_a5ff0ebb96f64be985c3305480d0fc80",
- "IPY_MODEL_89f6c21afbac4a308560ab9e3e5aeadd"
- ],
- "layout": "IPY_MODEL_9ac745d4a4cb40f6ab87734056a4c792"
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ce1cb404c1f345a8b16485c9db8491cc",
+ "max": 3201.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c9d248e8840c4e1eb86117026ba1311d",
+ "value": 3201.0
}
},
- "73fcbd9c96a848d6abf9004c39cda302": {
+ "af6edd0025f549ebb38044f4ba74180a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2249,13 +2443,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_4089a9f371624f199b0a0bdaae8aadbe",
+ "layout": "IPY_MODEL_21b452f4fe8c483e82b50d37a5e21af1",
"placeholder": "",
- "style": "IPY_MODEL_3529fa120c664508a1f7e3018c9f9c55",
- "value": "Downloading: 100%"
+ "style": "IPY_MODEL_7ff95803607e435996c9bf92ef513800",
+ "value": " 16.9M/16.9M [00:00<00:00, 79.5MB/s]"
}
},
- "7bc6f8d236fd4e19916889562345f410": {
+ "afce138a808a4b69a2c63930614137ea": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2307,59 +2501,94 @@
"width": null
}
},
- "7c5d3b4f1dbc4a2f8ce6711ef7ffa2fc": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "b47c682bb75b430381107f64713b435d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8fb6eef8146a4b7bbfe1f98030548a43",
+ "placeholder": "",
+ "style": "IPY_MODEL_1afcef1e03674ecda259c2ff9a7ae6d9",
+ "value": " 3.20k/3.20k [00:00<00:00, 439kB/s]"
+ }
+ },
+ "b483c477b28f4ebca4c63cf6e4b9fb7a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_27f3f12f83454a9bb0a5fee0e47c426b",
+ "placeholder": "",
+ "style": "IPY_MODEL_4a2033e7163e42edacf468deaf77898e",
+ "value": " 129k/129k [00:00<00:00, 11.9MB/s]"
+ }
+ },
+ "b54e5de4478d46abbb2b8a5950446a69": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_afce138a808a4b69a2c63930614137ea",
+ "max": 16887676.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_cc43857e69f343ef92fada928e9740cf",
+ "value": 16887676.0
+ }
+ },
+ "b984345129a244b7848070d451e81d39": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ebca93b25576446e8c42289cde7515ad",
+ "placeholder": "",
+ "style": "IPY_MODEL_2d283da15cce476793e2247f5c59dad9",
+ "value": "Downloading: 100%"
}
},
- "7eeb4ac6bc7b43b4a691b0a258b6720f": {
+ "c0fc2cf124ea4dcfabd0ab9605265f18": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2411,7 +2640,7 @@
"width": null
}
},
- "7eee3c0f99624be3b2164aa0604f2e90": {
+ "c2aa343c35ab4e5b955e9109ef5122fb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2463,60 +2692,7 @@
"width": null
}
},
- "804691af901148b18412889fc499f8f2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "875e2edede054c63aa4eda4d28a1a33c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "89c987a11a494130948f5964710a5482": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_73566f0085464f61a1e128448a5078ab",
- "IPY_MODEL_36a59442845548cb916463d010d88d63",
- "IPY_MODEL_bd2d7aa9ddab4df7ba7d853c2a75a154"
- ],
- "layout": "IPY_MODEL_12ddf61e03c04c448e56148a1316f04c"
- }
- },
- "89f6c21afbac4a308560ab9e3e5aeadd": {
+ "c97d8abbf91c433893db082142f3ca58": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2531,56 +2707,45 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_51bb9bcc7e9c4f7599feb35ca4d7e015",
+ "layout": "IPY_MODEL_4563b44482964c1696c3758eed7cb38c",
"placeholder": "",
- "style": "IPY_MODEL_368df7a165d54c678a9621f778a25c9f",
- "value": " 129k/129k [00:00<00:00, 765kB/s]"
+ "style": "IPY_MODEL_7335e068e3d54ef78c5ae567c8c4cce9",
+ "value": "Downloading: 100%"
}
},
- "8ea154f5b3034a20ae21570f16e504ed": {
+ "c9d248e8840c4e1eb86117026ba1311d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f76a89adcfdb446cacafc8a85b3b8354",
- "IPY_MODEL_6eebba3899c94b48b388f3f97eeded45",
- "IPY_MODEL_72977f7022d14e1fa6ae4a72d4be8635"
- ],
- "layout": "IPY_MODEL_7eee3c0f99624be3b2164aa0604f2e90"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "9188e16ab0bf405cbb6ede3d095090eb": {
+ "cc43857e69f343ef92fada928e9740cf": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b91b7eef8707452cae9f843e371fbd45",
- "placeholder": "",
- "style": "IPY_MODEL_b60d5405d45f4315bfedc2d177513d5c",
- "value": "Downloading: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "9ac745d4a4cb40f6ab87734056a4c792": {
+ "ce1cb404c1f345a8b16485c9db8491cc": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2632,23 +2797,7 @@
"width": null
}
},
- "a277815b5a61495eb8875e6c873c754a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "a49ef86a9bd144d1931a7be38b2a5a01": {
+ "d663ffe70d2f4b22a7732e7be6be3553": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2700,68 +2849,7 @@
"width": null
}
},
- "a5ff0ebb96f64be985c3305480d0fc80": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_7c5d3b4f1dbc4a2f8ce6711ef7ffa2fc",
- "max": 128619.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_3c1b109171ca44849cedcc2720a51a67",
- "value": 128619.0
- }
- },
- "a64838b316ea4a70b83bb295f397185b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_9188e16ab0bf405cbb6ede3d095090eb",
- "IPY_MODEL_196ed22213e14808976f7feeb53257f5",
- "IPY_MODEL_eb1a3ccc7c2c49d3b68b283330d66b46"
- ],
- "layout": "IPY_MODEL_32a36dde49344419b3b4e7be815490a7"
- }
- },
- "b60d5405d45f4315bfedc2d177513d5c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "b91b7eef8707452cae9f843e371fbd45": {
+ "e1506dc085d042229dabf40909be1eee": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2813,44 +2901,7 @@
"width": null
}
},
- "bd2d7aa9ddab4df7ba7d853c2a75a154": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_7bc6f8d236fd4e19916889562345f410",
- "placeholder": "",
- "style": "IPY_MODEL_449cef325f5a4b8b93eb6e6eb2e93b8c",
- "value": " 15.9M/15.9M [00:00<00:00, 78.4MB/s]"
- }
- },
- "c4868c5d246b4a199b762954dfdf32b2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "daf6104a1b0f40f1830ccd4fe75146a0": {
+ "e414fe50fbd6406387b83f73ad49a1af": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2902,46 +2953,7 @@
"width": null
}
},
- "dc64655542ef4ff4b5814755edfa5186": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "dd7a1cb002cd44b39c38b166f6dca0dd": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6c4f6453da3a442bab0b936d9ad01b30",
- "max": 3201.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_804691af901148b18412889fc499f8f2",
- "value": 3201.0
- }
- },
- "ddec1730a690405dae12bdf0c77d45ad": {
+ "e6ce7990787b4ebea9aecd301d4e835d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2993,7 +3005,7 @@
"width": null
}
},
- "e8b82083389d4573b556f3f2fbd025a2": {
+ "ebca93b25576446e8c42289cde7515ad": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3045,46 +3057,34 @@
"width": null
}
},
- "eb1a3ccc7c2c49d3b68b283330d66b46": {
+ "ed84a42d5de3498a930602c0f3d780e2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_7eeb4ac6bc7b43b4a691b0a258b6720f",
- "placeholder": "",
- "style": "IPY_MODEL_dc64655542ef4ff4b5814755edfa5186",
- "value": " 2.04k/2.04k [00:00<00:00, 289kB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "f76a89adcfdb446cacafc8a85b3b8354": {
+ "fb44cdabd036409dab2fddeb00554554": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6200da02a8124489b0647c2b4a6fa02c",
- "placeholder": "",
- "style": "IPY_MODEL_875e2edede054c63aa4eda4d28a1a33c",
- "value": "Downloading: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
index ad88e6923..f349085c3 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
@@ -80,10 +80,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:35.311395Z",
- "iopub.status.busy": "2023-10-06T06:34:35.310889Z",
- "iopub.status.idle": "2023-10-06T06:34:36.592498Z",
- "shell.execute_reply": "2023-10-06T06:34:36.591730Z"
+ "iopub.execute_input": "2023-10-11T10:06:47.925963Z",
+ "iopub.status.busy": "2023-10-11T10:06:47.925706Z",
+ "iopub.status.idle": "2023-10-11T10:06:49.196469Z",
+ "shell.execute_reply": "2023-10-11T10:06:49.195684Z"
},
"nbsphinx": "hidden"
},
@@ -93,7 +93,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -118,10 +118,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:36.596102Z",
- "iopub.status.busy": "2023-10-06T06:34:36.595513Z",
- "iopub.status.idle": "2023-10-06T06:34:36.600429Z",
- "shell.execute_reply": "2023-10-06T06:34:36.599809Z"
+ "iopub.execute_input": "2023-10-11T10:06:49.200264Z",
+ "iopub.status.busy": "2023-10-11T10:06:49.199701Z",
+ "iopub.status.idle": "2023-10-11T10:06:49.204725Z",
+ "shell.execute_reply": "2023-10-11T10:06:49.204075Z"
}
},
"outputs": [],
@@ -252,10 +252,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:36.603908Z",
- "iopub.status.busy": "2023-10-06T06:34:36.603438Z",
- "iopub.status.idle": "2023-10-06T06:34:36.616203Z",
- "shell.execute_reply": "2023-10-06T06:34:36.615530Z"
+ "iopub.execute_input": "2023-10-11T10:06:49.207917Z",
+ "iopub.status.busy": "2023-10-11T10:06:49.207471Z",
+ "iopub.status.idle": "2023-10-11T10:06:49.220660Z",
+ "shell.execute_reply": "2023-10-11T10:06:49.219522Z"
},
"nbsphinx": "hidden"
},
@@ -353,10 +353,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:36.619652Z",
- "iopub.status.busy": "2023-10-06T06:34:36.619212Z",
- "iopub.status.idle": "2023-10-06T06:34:36.625829Z",
- "shell.execute_reply": "2023-10-06T06:34:36.625116Z"
+ "iopub.execute_input": "2023-10-11T10:06:49.223760Z",
+ "iopub.status.busy": "2023-10-11T10:06:49.223377Z",
+ "iopub.status.idle": "2023-10-11T10:06:49.232520Z",
+ "shell.execute_reply": "2023-10-11T10:06:49.230357Z"
}
},
"outputs": [],
@@ -445,10 +445,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:36.629296Z",
- "iopub.status.busy": "2023-10-06T06:34:36.629027Z",
- "iopub.status.idle": "2023-10-06T06:34:36.970439Z",
- "shell.execute_reply": "2023-10-06T06:34:36.969698Z"
+ "iopub.execute_input": "2023-10-11T10:06:49.236038Z",
+ "iopub.status.busy": "2023-10-11T10:06:49.235602Z",
+ "iopub.status.idle": "2023-10-11T10:06:49.592190Z",
+ "shell.execute_reply": "2023-10-11T10:06:49.591409Z"
},
"nbsphinx": "hidden"
},
@@ -517,10 +517,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:36.974310Z",
- "iopub.status.busy": "2023-10-06T06:34:36.973685Z",
- "iopub.status.idle": "2023-10-06T06:34:37.353250Z",
- "shell.execute_reply": "2023-10-06T06:34:37.352425Z"
+ "iopub.execute_input": "2023-10-11T10:06:49.596124Z",
+ "iopub.status.busy": "2023-10-11T10:06:49.595560Z",
+ "iopub.status.idle": "2023-10-11T10:06:49.993332Z",
+ "shell.execute_reply": "2023-10-11T10:06:49.992442Z"
}
},
"outputs": [
@@ -568,10 +568,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:37.357001Z",
- "iopub.status.busy": "2023-10-06T06:34:37.356307Z",
- "iopub.status.idle": "2023-10-06T06:34:37.384275Z",
- "shell.execute_reply": "2023-10-06T06:34:37.383586Z"
+ "iopub.execute_input": "2023-10-11T10:06:49.998251Z",
+ "iopub.status.busy": "2023-10-11T10:06:49.996894Z",
+ "iopub.status.idle": "2023-10-11T10:06:50.027716Z",
+ "shell.execute_reply": "2023-10-11T10:06:50.027022Z"
}
},
"outputs": [],
@@ -607,10 +607,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:37.387652Z",
- "iopub.status.busy": "2023-10-06T06:34:37.387261Z",
- "iopub.status.idle": "2023-10-06T06:34:37.401464Z",
- "shell.execute_reply": "2023-10-06T06:34:37.400770Z"
+ "iopub.execute_input": "2023-10-11T10:06:50.032775Z",
+ "iopub.status.busy": "2023-10-11T10:06:50.032294Z",
+ "iopub.status.idle": "2023-10-11T10:06:50.048894Z",
+ "shell.execute_reply": "2023-10-11T10:06:50.048063Z"
}
},
"outputs": [],
@@ -641,10 +641,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:37.404797Z",
- "iopub.status.busy": "2023-10-06T06:34:37.404375Z",
- "iopub.status.idle": "2023-10-06T06:34:39.017516Z",
- "shell.execute_reply": "2023-10-06T06:34:39.016588Z"
+ "iopub.execute_input": "2023-10-11T10:06:50.052393Z",
+ "iopub.status.busy": "2023-10-11T10:06:50.051868Z",
+ "iopub.status.idle": "2023-10-11T10:06:51.729322Z",
+ "shell.execute_reply": "2023-10-11T10:06:51.728441Z"
}
},
"outputs": [
@@ -708,10 +708,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:39.021223Z",
- "iopub.status.busy": "2023-10-06T06:34:39.020657Z",
- "iopub.status.idle": "2023-10-06T06:34:39.053070Z",
- "shell.execute_reply": "2023-10-06T06:34:39.052324Z"
+ "iopub.execute_input": "2023-10-11T10:06:51.733189Z",
+ "iopub.status.busy": "2023-10-11T10:06:51.732510Z",
+ "iopub.status.idle": "2023-10-11T10:06:51.765133Z",
+ "shell.execute_reply": "2023-10-11T10:06:51.764425Z"
}
},
"outputs": [
@@ -820,10 +820,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:39.056590Z",
- "iopub.status.busy": "2023-10-06T06:34:39.056315Z",
- "iopub.status.idle": "2023-10-06T06:34:39.083702Z",
- "shell.execute_reply": "2023-10-06T06:34:39.083060Z"
+ "iopub.execute_input": "2023-10-11T10:06:51.768381Z",
+ "iopub.status.busy": "2023-10-11T10:06:51.768129Z",
+ "iopub.status.idle": "2023-10-11T10:06:51.792755Z",
+ "shell.execute_reply": "2023-10-11T10:06:51.792140Z"
}
},
"outputs": [
@@ -935,10 +935,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:39.087905Z",
- "iopub.status.busy": "2023-10-06T06:34:39.086371Z",
- "iopub.status.idle": "2023-10-06T06:34:39.108178Z",
- "shell.execute_reply": "2023-10-06T06:34:39.107399Z"
+ "iopub.execute_input": "2023-10-11T10:06:51.796349Z",
+ "iopub.status.busy": "2023-10-11T10:06:51.795866Z",
+ "iopub.status.idle": "2023-10-11T10:06:51.814866Z",
+ "shell.execute_reply": "2023-10-11T10:06:51.814031Z"
}
},
"outputs": [
@@ -1068,17 +1068,17 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:39.112295Z",
- "iopub.status.busy": "2023-10-06T06:34:39.111668Z",
- "iopub.status.idle": "2023-10-06T06:34:39.143288Z",
- "shell.execute_reply": "2023-10-06T06:34:39.142634Z"
+ "iopub.execute_input": "2023-10-11T10:06:51.818318Z",
+ "iopub.status.busy": "2023-10-11T10:06:51.817962Z",
+ "iopub.status.idle": "2023-10-11T10:06:51.851217Z",
+ "shell.execute_reply": "2023-10-11T10:06:51.850651Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "6713c53175244c529ffae4fda3ab5714",
+ "model_id": "000a72a34108458187c056846d927f18",
"version_major": 2,
"version_minor": 0
},
@@ -1114,10 +1114,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:39.146114Z",
- "iopub.status.busy": "2023-10-06T06:34:39.145701Z",
- "iopub.status.idle": "2023-10-06T06:34:39.164460Z",
- "shell.execute_reply": "2023-10-06T06:34:39.163789Z"
+ "iopub.execute_input": "2023-10-11T10:06:51.854291Z",
+ "iopub.status.busy": "2023-10-11T10:06:51.853819Z",
+ "iopub.status.idle": "2023-10-11T10:06:51.871821Z",
+ "shell.execute_reply": "2023-10-11T10:06:51.871225Z"
}
},
"outputs": [
@@ -1235,10 +1235,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:39.167856Z",
- "iopub.status.busy": "2023-10-06T06:34:39.167060Z",
- "iopub.status.idle": "2023-10-06T06:34:39.174808Z",
- "shell.execute_reply": "2023-10-06T06:34:39.174237Z"
+ "iopub.execute_input": "2023-10-11T10:06:51.875226Z",
+ "iopub.status.busy": "2023-10-11T10:06:51.874736Z",
+ "iopub.status.idle": "2023-10-11T10:06:51.882299Z",
+ "shell.execute_reply": "2023-10-11T10:06:51.881732Z"
}
},
"outputs": [],
@@ -1295,10 +1295,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:39.178006Z",
- "iopub.status.busy": "2023-10-06T06:34:39.177289Z",
- "iopub.status.idle": "2023-10-06T06:34:39.199860Z",
- "shell.execute_reply": "2023-10-06T06:34:39.199257Z"
+ "iopub.execute_input": "2023-10-11T10:06:51.885597Z",
+ "iopub.status.busy": "2023-10-11T10:06:51.884870Z",
+ "iopub.status.idle": "2023-10-11T10:06:51.907502Z",
+ "shell.execute_reply": "2023-10-11T10:06:51.906898Z"
}
},
"outputs": [
@@ -1430,62 +1430,29 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "0a52fa425a414cc7a12b67af84ed77f6": {
+ "000a72a34108458187c056846d927f18": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "0db1020fb61f4591a35b0b4ed9f8b92d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5c021ebf34de4581981fecf21195993e",
- "max": 132.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_3987137de4504b5abe1733797f16b424",
- "value": 132.0
- }
- },
- "3987137de4504b5abe1733797f16b424": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_969a3d67c56f46baa147ce1d9dd21e0f",
+ "IPY_MODEL_8c86f4ddf7a14abea61133f0bf1d790a",
+ "IPY_MODEL_64f62e1fa7f640b79efce9f8e3b56a45"
+ ],
+ "layout": "IPY_MODEL_4f35b8f73d034069a603c23a0563307a"
}
},
- "58f15bc382044332bc048fab5370e1bd": {
+ "1b6beabc1b5c4d3a8fad1f9081b50341": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1537,7 +1504,7 @@
"width": null
}
},
- "5c021ebf34de4581981fecf21195993e": {
+ "4f35b8f73d034069a603c23a0563307a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1585,33 +1552,32 @@
"padding": null,
"right": null,
"top": null,
- "visibility": null,
+ "visibility": "hidden",
"width": null
}
},
- "6713c53175244c529ffae4fda3ab5714": {
+ "64f62e1fa7f640b79efce9f8e3b56a45": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e4e09c0c6fb3437b94ed88932e6de16c",
- "IPY_MODEL_0db1020fb61f4591a35b0b4ed9f8b92d",
- "IPY_MODEL_ee621ec79e424de5af003af733820b8f"
- ],
- "layout": "IPY_MODEL_b83be3b245cb4069b4d72d50e73e18a4"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8c70d44a1e4142b1a00913bb4666681d",
+ "placeholder": "",
+ "style": "IPY_MODEL_d2bd8e0fc99640f9b387ee5193893c74",
+ "value": " 132/132 [00:00<00:00, 7337.46 examples/s]"
}
},
- "74aeae835eb8460582d6603a33f0ac88": {
+ "8c70d44a1e4142b1a00913bb4666681d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1663,22 +1629,31 @@
"width": null
}
},
- "77bd3f4f099c4c599987c0173f0d4c89": {
+ "8c86f4ddf7a14abea61133f0bf1d790a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9027272d8c804b79be47cdd3881f0b1b",
+ "max": 132.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f4102172a11745b28bd7187d5ed85cc8",
+ "value": 132.0
}
},
- "b83be3b245cb4069b4d72d50e73e18a4": {
+ "9027272d8c804b79be47cdd3881f0b1b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1726,11 +1701,11 @@
"padding": null,
"right": null,
"top": null,
- "visibility": "hidden",
+ "visibility": null,
"width": null
}
},
- "e4e09c0c6fb3437b94ed88932e6de16c": {
+ "969a3d67c56f46baa147ce1d9dd21e0f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1745,31 +1720,56 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_74aeae835eb8460582d6603a33f0ac88",
+ "layout": "IPY_MODEL_1b6beabc1b5c4d3a8fad1f9081b50341",
"placeholder": "",
- "style": "IPY_MODEL_77bd3f4f099c4c599987c0173f0d4c89",
+ "style": "IPY_MODEL_ebf2259c70a54e689384bd5d242b9d28",
"value": "Saving the dataset (1/1 shards): 100%"
}
},
- "ee621ec79e424de5af003af733820b8f": {
+ "d2bd8e0fc99640f9b387ee5193893c74": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_58f15bc382044332bc048fab5370e1bd",
- "placeholder": "",
- "style": "IPY_MODEL_0a52fa425a414cc7a12b67af84ed77f6",
- "value": " 132/132 [00:00<00:00, 8406.70 examples/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ebf2259c70a54e689384bd5d242b9d28": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f4102172a11745b28bd7187d5ed85cc8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
index 7f47959c9..3ae97f87e 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:44.530012Z",
- "iopub.status.busy": "2023-10-06T06:34:44.529327Z",
- "iopub.status.idle": "2023-10-06T06:34:45.752223Z",
- "shell.execute_reply": "2023-10-06T06:34:45.751499Z"
+ "iopub.execute_input": "2023-10-11T10:06:57.182275Z",
+ "iopub.status.busy": "2023-10-11T10:06:57.182000Z",
+ "iopub.status.idle": "2023-10-11T10:06:58.458719Z",
+ "shell.execute_reply": "2023-10-11T10:06:58.457973Z"
},
"nbsphinx": "hidden"
},
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -116,10 +116,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:45.756043Z",
- "iopub.status.busy": "2023-10-06T06:34:45.755496Z",
- "iopub.status.idle": "2023-10-06T06:34:45.760292Z",
- "shell.execute_reply": "2023-10-06T06:34:45.759649Z"
+ "iopub.execute_input": "2023-10-11T10:06:58.463256Z",
+ "iopub.status.busy": "2023-10-11T10:06:58.462318Z",
+ "iopub.status.idle": "2023-10-11T10:06:58.467044Z",
+ "shell.execute_reply": "2023-10-11T10:06:58.466421Z"
}
},
"outputs": [],
@@ -250,10 +250,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:45.763382Z",
- "iopub.status.busy": "2023-10-06T06:34:45.763142Z",
- "iopub.status.idle": "2023-10-06T06:34:45.774856Z",
- "shell.execute_reply": "2023-10-06T06:34:45.774113Z"
+ "iopub.execute_input": "2023-10-11T10:06:58.470490Z",
+ "iopub.status.busy": "2023-10-11T10:06:58.470045Z",
+ "iopub.status.idle": "2023-10-11T10:06:58.482516Z",
+ "shell.execute_reply": "2023-10-11T10:06:58.481902Z"
},
"nbsphinx": "hidden"
},
@@ -351,10 +351,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:45.778271Z",
- "iopub.status.busy": "2023-10-06T06:34:45.777712Z",
- "iopub.status.idle": "2023-10-06T06:34:45.783404Z",
- "shell.execute_reply": "2023-10-06T06:34:45.782740Z"
+ "iopub.execute_input": "2023-10-11T10:06:58.485314Z",
+ "iopub.status.busy": "2023-10-11T10:06:58.484859Z",
+ "iopub.status.idle": "2023-10-11T10:06:58.490137Z",
+ "shell.execute_reply": "2023-10-11T10:06:58.489591Z"
}
},
"outputs": [],
@@ -443,10 +443,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:45.786666Z",
- "iopub.status.busy": "2023-10-06T06:34:45.786210Z",
- "iopub.status.idle": "2023-10-06T06:34:46.123213Z",
- "shell.execute_reply": "2023-10-06T06:34:46.122453Z"
+ "iopub.execute_input": "2023-10-11T10:06:58.498897Z",
+ "iopub.status.busy": "2023-10-11T10:06:58.498312Z",
+ "iopub.status.idle": "2023-10-11T10:06:58.857671Z",
+ "shell.execute_reply": "2023-10-11T10:06:58.856914Z"
},
"nbsphinx": "hidden"
},
@@ -515,10 +515,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:46.127008Z",
- "iopub.status.busy": "2023-10-06T06:34:46.126560Z",
- "iopub.status.idle": "2023-10-06T06:34:46.491674Z",
- "shell.execute_reply": "2023-10-06T06:34:46.490961Z"
+ "iopub.execute_input": "2023-10-11T10:06:58.861585Z",
+ "iopub.status.busy": "2023-10-11T10:06:58.861324Z",
+ "iopub.status.idle": "2023-10-11T10:06:59.304856Z",
+ "shell.execute_reply": "2023-10-11T10:06:59.303992Z"
}
},
"outputs": [
@@ -554,10 +554,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:46.495300Z",
- "iopub.status.busy": "2023-10-06T06:34:46.494906Z",
- "iopub.status.idle": "2023-10-06T06:34:46.499373Z",
- "shell.execute_reply": "2023-10-06T06:34:46.498754Z"
+ "iopub.execute_input": "2023-10-11T10:06:59.308420Z",
+ "iopub.status.busy": "2023-10-11T10:06:59.307919Z",
+ "iopub.status.idle": "2023-10-11T10:06:59.311319Z",
+ "shell.execute_reply": "2023-10-11T10:06:59.310596Z"
}
},
"outputs": [],
@@ -596,10 +596,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:46.502989Z",
- "iopub.status.busy": "2023-10-06T06:34:46.502484Z",
- "iopub.status.idle": "2023-10-06T06:34:46.530547Z",
- "shell.execute_reply": "2023-10-06T06:34:46.529867Z"
+ "iopub.execute_input": "2023-10-11T10:06:59.314849Z",
+ "iopub.status.busy": "2023-10-11T10:06:59.314312Z",
+ "iopub.status.idle": "2023-10-11T10:06:59.343610Z",
+ "shell.execute_reply": "2023-10-11T10:06:59.342900Z"
}
},
"outputs": [],
@@ -632,10 +632,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:46.533984Z",
- "iopub.status.busy": "2023-10-06T06:34:46.533474Z",
- "iopub.status.idle": "2023-10-06T06:34:48.171070Z",
- "shell.execute_reply": "2023-10-06T06:34:48.170184Z"
+ "iopub.execute_input": "2023-10-11T10:06:59.347326Z",
+ "iopub.status.busy": "2023-10-11T10:06:59.346928Z",
+ "iopub.status.idle": "2023-10-11T10:07:01.022421Z",
+ "shell.execute_reply": "2023-10-11T10:07:01.021624Z"
}
},
"outputs": [
@@ -677,10 +677,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:48.175163Z",
- "iopub.status.busy": "2023-10-06T06:34:48.174504Z",
- "iopub.status.idle": "2023-10-06T06:34:48.197172Z",
- "shell.execute_reply": "2023-10-06T06:34:48.196388Z"
+ "iopub.execute_input": "2023-10-11T10:07:01.026281Z",
+ "iopub.status.busy": "2023-10-11T10:07:01.025669Z",
+ "iopub.status.idle": "2023-10-11T10:07:01.049344Z",
+ "shell.execute_reply": "2023-10-11T10:07:01.048554Z"
}
},
"outputs": [
@@ -814,10 +814,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:48.200207Z",
- "iopub.status.busy": "2023-10-06T06:34:48.199960Z",
- "iopub.status.idle": "2023-10-06T06:34:48.210460Z",
- "shell.execute_reply": "2023-10-06T06:34:48.209861Z"
+ "iopub.execute_input": "2023-10-11T10:07:01.053321Z",
+ "iopub.status.busy": "2023-10-11T10:07:01.052903Z",
+ "iopub.status.idle": "2023-10-11T10:07:01.063033Z",
+ "shell.execute_reply": "2023-10-11T10:07:01.062379Z"
}
},
"outputs": [
@@ -907,10 +907,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:48.213307Z",
- "iopub.status.busy": "2023-10-06T06:34:48.213060Z",
- "iopub.status.idle": "2023-10-06T06:34:48.222638Z",
- "shell.execute_reply": "2023-10-06T06:34:48.221983Z"
+ "iopub.execute_input": "2023-10-11T10:07:01.066668Z",
+ "iopub.status.busy": "2023-10-11T10:07:01.066228Z",
+ "iopub.status.idle": "2023-10-11T10:07:01.073540Z",
+ "shell.execute_reply": "2023-10-11T10:07:01.072942Z"
}
},
"outputs": [
@@ -977,10 +977,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:48.225750Z",
- "iopub.status.busy": "2023-10-06T06:34:48.225346Z",
- "iopub.status.idle": "2023-10-06T06:34:48.236195Z",
- "shell.execute_reply": "2023-10-06T06:34:48.235472Z"
+ "iopub.execute_input": "2023-10-11T10:07:01.076793Z",
+ "iopub.status.busy": "2023-10-11T10:07:01.076469Z",
+ "iopub.status.idle": "2023-10-11T10:07:01.089389Z",
+ "shell.execute_reply": "2023-10-11T10:07:01.088731Z"
}
},
"outputs": [
@@ -1122,10 +1122,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:48.239234Z",
- "iopub.status.busy": "2023-10-06T06:34:48.238841Z",
- "iopub.status.idle": "2023-10-06T06:34:48.250540Z",
- "shell.execute_reply": "2023-10-06T06:34:48.249849Z"
+ "iopub.execute_input": "2023-10-11T10:07:01.092889Z",
+ "iopub.status.busy": "2023-10-11T10:07:01.092446Z",
+ "iopub.status.idle": "2023-10-11T10:07:01.104238Z",
+ "shell.execute_reply": "2023-10-11T10:07:01.103539Z"
}
},
"outputs": [
@@ -1241,10 +1241,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:48.254637Z",
- "iopub.status.busy": "2023-10-06T06:34:48.254072Z",
- "iopub.status.idle": "2023-10-06T06:34:48.262855Z",
- "shell.execute_reply": "2023-10-06T06:34:48.262177Z"
+ "iopub.execute_input": "2023-10-11T10:07:01.107384Z",
+ "iopub.status.busy": "2023-10-11T10:07:01.107015Z",
+ "iopub.status.idle": "2023-10-11T10:07:01.115859Z",
+ "shell.execute_reply": "2023-10-11T10:07:01.115130Z"
},
"scrolled": true
},
@@ -1357,10 +1357,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:48.265781Z",
- "iopub.status.busy": "2023-10-06T06:34:48.265408Z",
- "iopub.status.idle": "2023-10-06T06:34:48.277839Z",
- "shell.execute_reply": "2023-10-06T06:34:48.277158Z"
+ "iopub.execute_input": "2023-10-11T10:07:01.119659Z",
+ "iopub.status.busy": "2023-10-11T10:07:01.119289Z",
+ "iopub.status.idle": "2023-10-11T10:07:01.131555Z",
+ "shell.execute_reply": "2023-10-11T10:07:01.130874Z"
}
},
"outputs": [
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
index 4369597c8..0bd08c60e 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
@@ -74,10 +74,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:53.708975Z",
- "iopub.status.busy": "2023-10-06T06:34:53.708594Z",
- "iopub.status.idle": "2023-10-06T06:34:54.865526Z",
- "shell.execute_reply": "2023-10-06T06:34:54.864834Z"
+ "iopub.execute_input": "2023-10-11T10:07:06.638560Z",
+ "iopub.status.busy": "2023-10-11T10:07:06.637949Z",
+ "iopub.status.idle": "2023-10-11T10:07:07.838231Z",
+ "shell.execute_reply": "2023-10-11T10:07:07.837461Z"
},
"nbsphinx": "hidden"
},
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:54.869516Z",
- "iopub.status.busy": "2023-10-06T06:34:54.869109Z",
- "iopub.status.idle": "2023-10-06T06:34:54.921759Z",
- "shell.execute_reply": "2023-10-06T06:34:54.921070Z"
+ "iopub.execute_input": "2023-10-11T10:07:07.842540Z",
+ "iopub.status.busy": "2023-10-11T10:07:07.841919Z",
+ "iopub.status.idle": "2023-10-11T10:07:07.906031Z",
+ "shell.execute_reply": "2023-10-11T10:07:07.904742Z"
}
},
"outputs": [],
@@ -155,10 +155,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:54.925371Z",
- "iopub.status.busy": "2023-10-06T06:34:54.924797Z",
- "iopub.status.idle": "2023-10-06T06:34:55.194035Z",
- "shell.execute_reply": "2023-10-06T06:34:55.193305Z"
+ "iopub.execute_input": "2023-10-11T10:07:07.909838Z",
+ "iopub.status.busy": "2023-10-11T10:07:07.909434Z",
+ "iopub.status.idle": "2023-10-11T10:07:08.071412Z",
+ "shell.execute_reply": "2023-10-11T10:07:08.070158Z"
}
},
"outputs": [
@@ -265,10 +265,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:55.198303Z",
- "iopub.status.busy": "2023-10-06T06:34:55.197828Z",
- "iopub.status.idle": "2023-10-06T06:34:55.203885Z",
- "shell.execute_reply": "2023-10-06T06:34:55.201827Z"
+ "iopub.execute_input": "2023-10-11T10:07:08.074833Z",
+ "iopub.status.busy": "2023-10-11T10:07:08.074431Z",
+ "iopub.status.idle": "2023-10-11T10:07:08.079886Z",
+ "shell.execute_reply": "2023-10-11T10:07:08.079259Z"
}
},
"outputs": [],
@@ -289,10 +289,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:55.207672Z",
- "iopub.status.busy": "2023-10-06T06:34:55.207117Z",
- "iopub.status.idle": "2023-10-06T06:34:55.216914Z",
- "shell.execute_reply": "2023-10-06T06:34:55.216301Z"
+ "iopub.execute_input": "2023-10-11T10:07:08.083168Z",
+ "iopub.status.busy": "2023-10-11T10:07:08.082725Z",
+ "iopub.status.idle": "2023-10-11T10:07:08.093640Z",
+ "shell.execute_reply": "2023-10-11T10:07:08.093035Z"
}
},
"outputs": [],
@@ -337,10 +337,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:55.220983Z",
- "iopub.status.busy": "2023-10-06T06:34:55.220730Z",
- "iopub.status.idle": "2023-10-06T06:34:55.223736Z",
- "shell.execute_reply": "2023-10-06T06:34:55.223207Z"
+ "iopub.execute_input": "2023-10-11T10:07:08.096833Z",
+ "iopub.status.busy": "2023-10-11T10:07:08.096464Z",
+ "iopub.status.idle": "2023-10-11T10:07:08.100440Z",
+ "shell.execute_reply": "2023-10-11T10:07:08.099833Z"
}
},
"outputs": [],
@@ -362,10 +362,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:34:55.226831Z",
- "iopub.status.busy": "2023-10-06T06:34:55.226597Z",
- "iopub.status.idle": "2023-10-06T06:35:00.605839Z",
- "shell.execute_reply": "2023-10-06T06:35:00.605201Z"
+ "iopub.execute_input": "2023-10-11T10:07:08.103888Z",
+ "iopub.status.busy": "2023-10-11T10:07:08.103365Z",
+ "iopub.status.idle": "2023-10-11T10:07:13.675614Z",
+ "shell.execute_reply": "2023-10-11T10:07:13.674870Z"
}
},
"outputs": [],
@@ -401,10 +401,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:00.611013Z",
- "iopub.status.busy": "2023-10-06T06:35:00.609745Z",
- "iopub.status.idle": "2023-10-06T06:35:00.623272Z",
- "shell.execute_reply": "2023-10-06T06:35:00.622572Z"
+ "iopub.execute_input": "2023-10-11T10:07:13.680750Z",
+ "iopub.status.busy": "2023-10-11T10:07:13.679520Z",
+ "iopub.status.idle": "2023-10-11T10:07:13.692886Z",
+ "shell.execute_reply": "2023-10-11T10:07:13.692323Z"
}
},
"outputs": [],
@@ -436,10 +436,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:00.626681Z",
- "iopub.status.busy": "2023-10-06T06:35:00.626423Z",
- "iopub.status.idle": "2023-10-06T06:35:02.259991Z",
- "shell.execute_reply": "2023-10-06T06:35:02.259145Z"
+ "iopub.execute_input": "2023-10-11T10:07:13.697360Z",
+ "iopub.status.busy": "2023-10-11T10:07:13.696220Z",
+ "iopub.status.idle": "2023-10-11T10:07:15.322758Z",
+ "shell.execute_reply": "2023-10-11T10:07:15.321880Z"
}
},
"outputs": [
@@ -476,10 +476,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:02.264279Z",
- "iopub.status.busy": "2023-10-06T06:35:02.263075Z",
- "iopub.status.idle": "2023-10-06T06:35:02.286957Z",
- "shell.execute_reply": "2023-10-06T06:35:02.286209Z"
+ "iopub.execute_input": "2023-10-11T10:07:15.326569Z",
+ "iopub.status.busy": "2023-10-11T10:07:15.325871Z",
+ "iopub.status.idle": "2023-10-11T10:07:15.346082Z",
+ "shell.execute_reply": "2023-10-11T10:07:15.345423Z"
},
"scrolled": true
},
@@ -577,10 +577,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:02.291067Z",
- "iopub.status.busy": "2023-10-06T06:35:02.290583Z",
- "iopub.status.idle": "2023-10-06T06:35:02.302758Z",
- "shell.execute_reply": "2023-10-06T06:35:02.302130Z"
+ "iopub.execute_input": "2023-10-11T10:07:15.349209Z",
+ "iopub.status.busy": "2023-10-11T10:07:15.348969Z",
+ "iopub.status.idle": "2023-10-11T10:07:15.360411Z",
+ "shell.execute_reply": "2023-10-11T10:07:15.359643Z"
}
},
"outputs": [
@@ -684,10 +684,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:02.306789Z",
- "iopub.status.busy": "2023-10-06T06:35:02.306103Z",
- "iopub.status.idle": "2023-10-06T06:35:02.324541Z",
- "shell.execute_reply": "2023-10-06T06:35:02.323753Z"
+ "iopub.execute_input": "2023-10-11T10:07:15.363595Z",
+ "iopub.status.busy": "2023-10-11T10:07:15.363236Z",
+ "iopub.status.idle": "2023-10-11T10:07:15.377028Z",
+ "shell.execute_reply": "2023-10-11T10:07:15.376408Z"
}
},
"outputs": [
@@ -816,10 +816,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:02.329003Z",
- "iopub.status.busy": "2023-10-06T06:35:02.328537Z",
- "iopub.status.idle": "2023-10-06T06:35:02.341875Z",
- "shell.execute_reply": "2023-10-06T06:35:02.340546Z"
+ "iopub.execute_input": "2023-10-11T10:07:15.380368Z",
+ "iopub.status.busy": "2023-10-11T10:07:15.380016Z",
+ "iopub.status.idle": "2023-10-11T10:07:15.392057Z",
+ "shell.execute_reply": "2023-10-11T10:07:15.391432Z"
}
},
"outputs": [
@@ -933,10 +933,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:02.345633Z",
- "iopub.status.busy": "2023-10-06T06:35:02.344945Z",
- "iopub.status.idle": "2023-10-06T06:35:02.358826Z",
- "shell.execute_reply": "2023-10-06T06:35:02.358117Z"
+ "iopub.execute_input": "2023-10-11T10:07:15.395348Z",
+ "iopub.status.busy": "2023-10-11T10:07:15.394999Z",
+ "iopub.status.idle": "2023-10-11T10:07:15.409338Z",
+ "shell.execute_reply": "2023-10-11T10:07:15.408025Z"
}
},
"outputs": [
@@ -1047,10 +1047,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:02.362397Z",
- "iopub.status.busy": "2023-10-06T06:35:02.362112Z",
- "iopub.status.idle": "2023-10-06T06:35:02.373380Z",
- "shell.execute_reply": "2023-10-06T06:35:02.372616Z"
+ "iopub.execute_input": "2023-10-11T10:07:15.412563Z",
+ "iopub.status.busy": "2023-10-11T10:07:15.412216Z",
+ "iopub.status.idle": "2023-10-11T10:07:15.422364Z",
+ "shell.execute_reply": "2023-10-11T10:07:15.421757Z"
}
},
"outputs": [
@@ -1134,10 +1134,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:02.377153Z",
- "iopub.status.busy": "2023-10-06T06:35:02.376727Z",
- "iopub.status.idle": "2023-10-06T06:35:02.389440Z",
- "shell.execute_reply": "2023-10-06T06:35:02.388793Z"
+ "iopub.execute_input": "2023-10-11T10:07:15.425822Z",
+ "iopub.status.busy": "2023-10-11T10:07:15.425465Z",
+ "iopub.status.idle": "2023-10-11T10:07:15.435810Z",
+ "shell.execute_reply": "2023-10-11T10:07:15.435194Z"
}
},
"outputs": [
@@ -1221,10 +1221,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:02.393460Z",
- "iopub.status.busy": "2023-10-06T06:35:02.392980Z",
- "iopub.status.idle": "2023-10-06T06:35:02.404659Z",
- "shell.execute_reply": "2023-10-06T06:35:02.403660Z"
+ "iopub.execute_input": "2023-10-11T10:07:15.439021Z",
+ "iopub.status.busy": "2023-10-11T10:07:15.438660Z",
+ "iopub.status.idle": "2023-10-11T10:07:15.448445Z",
+ "shell.execute_reply": "2023-10-11T10:07:15.447817Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
index 44a64a72c..267260c6d 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
@@ -75,10 +75,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:07.905114Z",
- "iopub.status.busy": "2023-10-06T06:35:07.904472Z",
- "iopub.status.idle": "2023-10-06T06:35:10.815830Z",
- "shell.execute_reply": "2023-10-06T06:35:10.815000Z"
+ "iopub.execute_input": "2023-10-11T10:07:20.647904Z",
+ "iopub.status.busy": "2023-10-11T10:07:20.647609Z",
+ "iopub.status.idle": "2023-10-11T10:07:23.817558Z",
+ "shell.execute_reply": "2023-10-11T10:07:23.816895Z"
},
"nbsphinx": "hidden"
},
@@ -93,7 +93,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "7bbe9e1a7dd947af9d479bd5e6adf343",
+ "model_id": "3e5263f90c834ffe8e75512b1c9ff0da",
"version_major": 2,
"version_minor": 0
},
@@ -118,7 +118,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -143,10 +143,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:10.819966Z",
- "iopub.status.busy": "2023-10-06T06:35:10.819368Z",
- "iopub.status.idle": "2023-10-06T06:35:10.825100Z",
- "shell.execute_reply": "2023-10-06T06:35:10.824495Z"
+ "iopub.execute_input": "2023-10-11T10:07:23.821638Z",
+ "iopub.status.busy": "2023-10-11T10:07:23.821245Z",
+ "iopub.status.idle": "2023-10-11T10:07:23.826575Z",
+ "shell.execute_reply": "2023-10-11T10:07:23.825547Z"
}
},
"outputs": [],
@@ -167,10 +167,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:10.828533Z",
- "iopub.status.busy": "2023-10-06T06:35:10.828036Z",
- "iopub.status.idle": "2023-10-06T06:35:10.834503Z",
- "shell.execute_reply": "2023-10-06T06:35:10.833791Z"
+ "iopub.execute_input": "2023-10-11T10:07:23.829423Z",
+ "iopub.status.busy": "2023-10-11T10:07:23.828974Z",
+ "iopub.status.idle": "2023-10-11T10:07:23.832787Z",
+ "shell.execute_reply": "2023-10-11T10:07:23.832078Z"
},
"nbsphinx": "hidden"
},
@@ -200,10 +200,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:10.838698Z",
- "iopub.status.busy": "2023-10-06T06:35:10.838092Z",
- "iopub.status.idle": "2023-10-06T06:35:10.982840Z",
- "shell.execute_reply": "2023-10-06T06:35:10.981988Z"
+ "iopub.execute_input": "2023-10-11T10:07:23.836150Z",
+ "iopub.status.busy": "2023-10-11T10:07:23.835606Z",
+ "iopub.status.idle": "2023-10-11T10:07:23.878702Z",
+ "shell.execute_reply": "2023-10-11T10:07:23.877960Z"
}
},
"outputs": [
@@ -293,10 +293,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:10.986224Z",
- "iopub.status.busy": "2023-10-06T06:35:10.985815Z",
- "iopub.status.idle": "2023-10-06T06:35:10.991046Z",
- "shell.execute_reply": "2023-10-06T06:35:10.990365Z"
+ "iopub.execute_input": "2023-10-11T10:07:23.882564Z",
+ "iopub.status.busy": "2023-10-11T10:07:23.882112Z",
+ "iopub.status.idle": "2023-10-11T10:07:23.886709Z",
+ "shell.execute_reply": "2023-10-11T10:07:23.886013Z"
}
},
"outputs": [
@@ -305,7 +305,7 @@
"output_type": "stream",
"text": [
"This dataset has 10 classes.\n",
- "Classes: {'visa_or_mastercard', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'cancel_transfer', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'getting_spare_card', 'change_pin', 'card_about_to_expire'}\n"
+ "Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'change_pin', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies'}\n"
]
}
],
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:10.995179Z",
- "iopub.status.busy": "2023-10-06T06:35:10.994691Z",
- "iopub.status.idle": "2023-10-06T06:35:10.998909Z",
- "shell.execute_reply": "2023-10-06T06:35:10.998234Z"
+ "iopub.execute_input": "2023-10-11T10:07:23.890686Z",
+ "iopub.status.busy": "2023-10-11T10:07:23.890314Z",
+ "iopub.status.idle": "2023-10-11T10:07:23.894223Z",
+ "shell.execute_reply": "2023-10-11T10:07:23.893517Z"
}
},
"outputs": [
@@ -387,17 +387,17 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:11.003434Z",
- "iopub.status.busy": "2023-10-06T06:35:11.002820Z",
- "iopub.status.idle": "2023-10-06T06:35:17.044715Z",
- "shell.execute_reply": "2023-10-06T06:35:17.044052Z"
+ "iopub.execute_input": "2023-10-11T10:07:23.898230Z",
+ "iopub.status.busy": "2023-10-11T10:07:23.897863Z",
+ "iopub.status.idle": "2023-10-11T10:07:28.215486Z",
+ "shell.execute_reply": "2023-10-11T10:07:28.214776Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "b2a7d43a75994007a1e0039d44bf4eea",
+ "model_id": "b85482da3c1c4ec2bf18f764413385f0",
"version_major": 2,
"version_minor": 0
},
@@ -411,7 +411,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "4a26b5ba183049c7998c8f73d4172ee0",
+ "model_id": "b921a2781e5b411d92977c1c84a05e0f",
"version_major": 2,
"version_minor": 0
},
@@ -425,7 +425,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "9508ce2d2b9641348c0764cd09fdcd6b",
+ "model_id": "45194cb1a20648d5a6a1eabd72cf1a09",
"version_major": 2,
"version_minor": 0
},
@@ -439,7 +439,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "62c92957735b42bfa8856482f295990e",
+ "model_id": "424933a378b84b5cb884fb55ffadd8ee",
"version_major": 2,
"version_minor": 0
},
@@ -453,7 +453,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "55c295f16b9a423c9af63d9990e60b3a",
+ "model_id": "1045ca303da444c292c424c09dde6fd9",
"version_major": 2,
"version_minor": 0
},
@@ -467,7 +467,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "44c15dfa0908484cb4e18a1de1b213c0",
+ "model_id": "83d82860dd344eed85830e46dbbe58d5",
"version_major": 2,
"version_minor": 0
},
@@ -481,7 +481,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "f335d8552862438c918a7d38750ea471",
+ "model_id": "03bcc7001f904860806a3bf48293ea5a",
"version_major": 2,
"version_minor": 0
},
@@ -503,7 +503,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight']\n",
+ "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.weight']\n",
"- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
]
@@ -544,10 +544,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:17.048744Z",
- "iopub.status.busy": "2023-10-06T06:35:17.048165Z",
- "iopub.status.idle": "2023-10-06T06:35:18.380924Z",
- "shell.execute_reply": "2023-10-06T06:35:18.380301Z"
+ "iopub.execute_input": "2023-10-11T10:07:28.221035Z",
+ "iopub.status.busy": "2023-10-11T10:07:28.219583Z",
+ "iopub.status.idle": "2023-10-11T10:07:29.495760Z",
+ "shell.execute_reply": "2023-10-11T10:07:29.495067Z"
},
"scrolled": true
},
@@ -579,10 +579,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:18.384409Z",
- "iopub.status.busy": "2023-10-06T06:35:18.383913Z",
- "iopub.status.idle": "2023-10-06T06:35:18.386938Z",
- "shell.execute_reply": "2023-10-06T06:35:18.386402Z"
+ "iopub.execute_input": "2023-10-11T10:07:29.500330Z",
+ "iopub.status.busy": "2023-10-11T10:07:29.499764Z",
+ "iopub.status.idle": "2023-10-11T10:07:29.504461Z",
+ "shell.execute_reply": "2023-10-11T10:07:29.503880Z"
}
},
"outputs": [],
@@ -602,10 +602,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:18.390628Z",
- "iopub.status.busy": "2023-10-06T06:35:18.389275Z",
- "iopub.status.idle": "2023-10-06T06:35:20.073368Z",
- "shell.execute_reply": "2023-10-06T06:35:20.072572Z"
+ "iopub.execute_input": "2023-10-11T10:07:29.508239Z",
+ "iopub.status.busy": "2023-10-11T10:07:29.507759Z",
+ "iopub.status.idle": "2023-10-11T10:07:31.170507Z",
+ "shell.execute_reply": "2023-10-11T10:07:31.169597Z"
},
"scrolled": true
},
@@ -647,10 +647,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:20.077045Z",
- "iopub.status.busy": "2023-10-06T06:35:20.076253Z",
- "iopub.status.idle": "2023-10-06T06:35:20.098562Z",
- "shell.execute_reply": "2023-10-06T06:35:20.097989Z"
+ "iopub.execute_input": "2023-10-11T10:07:31.175219Z",
+ "iopub.status.busy": "2023-10-11T10:07:31.174383Z",
+ "iopub.status.idle": "2023-10-11T10:07:31.199833Z",
+ "shell.execute_reply": "2023-10-11T10:07:31.199148Z"
},
"scrolled": true
},
@@ -775,10 +775,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:20.101688Z",
- "iopub.status.busy": "2023-10-06T06:35:20.101292Z",
- "iopub.status.idle": "2023-10-06T06:35:20.114451Z",
- "shell.execute_reply": "2023-10-06T06:35:20.113751Z"
+ "iopub.execute_input": "2023-10-11T10:07:31.203756Z",
+ "iopub.status.busy": "2023-10-11T10:07:31.203222Z",
+ "iopub.status.idle": "2023-10-11T10:07:31.216582Z",
+ "shell.execute_reply": "2023-10-11T10:07:31.215940Z"
},
"scrolled": true
},
@@ -888,10 +888,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:20.118385Z",
- "iopub.status.busy": "2023-10-06T06:35:20.117980Z",
- "iopub.status.idle": "2023-10-06T06:35:20.126856Z",
- "shell.execute_reply": "2023-10-06T06:35:20.126136Z"
+ "iopub.execute_input": "2023-10-11T10:07:31.220392Z",
+ "iopub.status.busy": "2023-10-11T10:07:31.219895Z",
+ "iopub.status.idle": "2023-10-11T10:07:31.227784Z",
+ "shell.execute_reply": "2023-10-11T10:07:31.227148Z"
}
},
"outputs": [
@@ -929,10 +929,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:20.130383Z",
- "iopub.status.busy": "2023-10-06T06:35:20.129993Z",
- "iopub.status.idle": "2023-10-06T06:35:20.141340Z",
- "shell.execute_reply": "2023-10-06T06:35:20.140662Z"
+ "iopub.execute_input": "2023-10-11T10:07:31.231283Z",
+ "iopub.status.busy": "2023-10-11T10:07:31.230949Z",
+ "iopub.status.idle": "2023-10-11T10:07:31.239608Z",
+ "shell.execute_reply": "2023-10-11T10:07:31.239047Z"
}
},
"outputs": [
@@ -1049,10 +1049,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:20.145046Z",
- "iopub.status.busy": "2023-10-06T06:35:20.144665Z",
- "iopub.status.idle": "2023-10-06T06:35:20.156354Z",
- "shell.execute_reply": "2023-10-06T06:35:20.155618Z"
+ "iopub.execute_input": "2023-10-11T10:07:31.242527Z",
+ "iopub.status.busy": "2023-10-11T10:07:31.242138Z",
+ "iopub.status.idle": "2023-10-11T10:07:31.249463Z",
+ "shell.execute_reply": "2023-10-11T10:07:31.248915Z"
}
},
"outputs": [
@@ -1135,10 +1135,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:20.160261Z",
- "iopub.status.busy": "2023-10-06T06:35:20.159686Z",
- "iopub.status.idle": "2023-10-06T06:35:20.169217Z",
- "shell.execute_reply": "2023-10-06T06:35:20.168594Z"
+ "iopub.execute_input": "2023-10-11T10:07:31.252238Z",
+ "iopub.status.busy": "2023-10-11T10:07:31.251859Z",
+ "iopub.status.idle": "2023-10-11T10:07:31.258599Z",
+ "shell.execute_reply": "2023-10-11T10:07:31.258051Z"
}
},
"outputs": [
@@ -1246,10 +1246,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:20.172348Z",
- "iopub.status.busy": "2023-10-06T06:35:20.171955Z",
- "iopub.status.idle": "2023-10-06T06:35:20.182758Z",
- "shell.execute_reply": "2023-10-06T06:35:20.182184Z"
+ "iopub.execute_input": "2023-10-11T10:07:31.261466Z",
+ "iopub.status.busy": "2023-10-11T10:07:31.261084Z",
+ "iopub.status.idle": "2023-10-11T10:07:31.271326Z",
+ "shell.execute_reply": "2023-10-11T10:07:31.270782Z"
}
},
"outputs": [
@@ -1360,10 +1360,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:20.185753Z",
- "iopub.status.busy": "2023-10-06T06:35:20.185367Z",
- "iopub.status.idle": "2023-10-06T06:35:20.191971Z",
- "shell.execute_reply": "2023-10-06T06:35:20.191385Z"
+ "iopub.execute_input": "2023-10-11T10:07:31.274105Z",
+ "iopub.status.busy": "2023-10-11T10:07:31.273726Z",
+ "iopub.status.idle": "2023-10-11T10:07:31.279846Z",
+ "shell.execute_reply": "2023-10-11T10:07:31.279275Z"
}
},
"outputs": [
@@ -1431,10 +1431,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:20.194785Z",
- "iopub.status.busy": "2023-10-06T06:35:20.194400Z",
- "iopub.status.idle": "2023-10-06T06:35:20.200755Z",
- "shell.execute_reply": "2023-10-06T06:35:20.200200Z"
+ "iopub.execute_input": "2023-10-11T10:07:31.282544Z",
+ "iopub.status.busy": "2023-10-11T10:07:31.282162Z",
+ "iopub.status.idle": "2023-10-11T10:07:31.288223Z",
+ "shell.execute_reply": "2023-10-11T10:07:31.287651Z"
}
},
"outputs": [
@@ -1512,10 +1512,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:20.203680Z",
- "iopub.status.busy": "2023-10-06T06:35:20.203318Z",
- "iopub.status.idle": "2023-10-06T06:35:20.209433Z",
- "shell.execute_reply": "2023-10-06T06:35:20.208867Z"
+ "iopub.execute_input": "2023-10-11T10:07:31.291092Z",
+ "iopub.status.busy": "2023-10-11T10:07:31.290705Z",
+ "iopub.status.idle": "2023-10-11T10:07:31.296619Z",
+ "shell.execute_reply": "2023-10-11T10:07:31.296059Z"
},
"nbsphinx": "hidden"
},
@@ -1565,37 +1565,29 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "00d4881e37364b46bd15efdaf3d27490": {
+ "03bcc7001f904860806a3bf48293ea5a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "01c763d36b954f8594ee4817c643748e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b16e3649d0c44a02a3b4c06951a20f21",
+ "IPY_MODEL_fc805ae8481941ecb7b4d453e85270e1",
+ "IPY_MODEL_15c13f2ef1904d36aae0da490e444994"
+ ],
+ "layout": "IPY_MODEL_a17af920182941e58002c4cf8e83171e"
}
},
- "036b7778c36543bdbeac3d2f0ced5cd3": {
+ "069cbc86cb6d43559308307b56cbdaa0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1647,28 +1639,7 @@
"width": null
}
},
- "0a250e335b8e4c219343a2094c200e60": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ab03a31e33ca4042ad900e6cbe62f1ec",
- "placeholder": "",
- "style": "IPY_MODEL_59329ef378d54b129158814627d099f8",
- "value": "Downloading: 100%"
- }
- },
- "0bbaa18a07b34edaa3b8df2b4b3c5137": {
+ "07f1a2139f464c99afacc75ed456aa89": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1720,7 +1691,183 @@
"width": null
}
},
- "10911ca5d8c445cfa6351535653f4785": {
+ "08222567e27c40d1abead6c1ec8c93ce": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3e694296ae8d4c84aa6680938cf17629",
+ "max": 1.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b595faff4a024526b60539fe63c2ee7c",
+ "value": 0.0
+ }
+ },
+ "0b98e997fea741f29c36386e79658c5a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "0df75e3802eb4765969e10fab4fe3ee8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1045ca303da444c292c424c09dde6fd9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_8ff8d141345b401c9c1f84c64a39cf67",
+ "IPY_MODEL_14c02c041b124e57bf4002edba0cdf00",
+ "IPY_MODEL_ed3fa51bbd94410eb093a36bc6b17844"
+ ],
+ "layout": "IPY_MODEL_91e09a7ba7934fd685263b3866b937fa"
+ }
+ },
+ "10d89be6a0374ec897cf377497b18e5f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "11abdc356fc747f4aec38230faef0d33": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3d50484d44df4b18bfe556d46bb3c90c",
+ "placeholder": "",
+ "style": "IPY_MODEL_1e2c40d987be46338cffea0f98710625",
+ "value": ""
+ }
+ },
+ "1407f5da059048d9bea48292a33a67bd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8aa6fe06fe4444aab2b762c8af919d4e",
+ "max": 29.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_3468e33f5ac042eb893e9caa9a6fe2d8",
+ "value": 29.0
+ }
+ },
+ "14095d01843c47b092005e5e53137e39": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "14c02c041b124e57bf4002edba0cdf00": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_40404ad564e54f289b94b4b391a2fbf1",
+ "max": 466062.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_952f61bd253d4397bcdb3ba9e08cc27a",
+ "value": 466062.0
+ }
+ },
+ "15c13f2ef1904d36aae0da490e444994": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1735,13 +1882,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_64de4ffe6afd4bfcae90b87d2078f02c",
+ "layout": "IPY_MODEL_58bba979fc734eddbcf16f916f25795c",
"placeholder": "",
- "style": "IPY_MODEL_581b8cb923de472ead864c8ba17eca58",
- "value": " 665/665 [00:00<00:00, 70.2kB/s]"
+ "style": "IPY_MODEL_ea7bdd86579240b4b0acbda847f962e6",
+ "value": " 232k/232k [00:00<00:00, 11.7MB/s]"
}
},
- "196c4e5f7f894fee99378255683c69ea": {
+ "1808d4824d614576b143efc02b695a79": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1793,7 +1940,103 @@
"width": null
}
},
- "1c23b34a7293486e8fb3a73c3cdcc74a": {
+ "1e2c40d987be46338cffea0f98710625": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2282f899be604402bbcb09e97e28c74b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "23efd1d587f4466d8ffe87ab695976a2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_844fc9a638e64344a64f6c9fcc4b1dc8",
+ "placeholder": "",
+ "style": "IPY_MODEL_57a396c415214478a1756d8429b28142",
+ "value": " 2.21k/2.21k [00:00<00:00, 200kB/s]"
+ }
+ },
+ "24cefcf7db0144a284cc29542ef69f64": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a505aca9ba4749f38170f2c26ecada79",
+ "placeholder": "",
+ "style": "IPY_MODEL_313354f869f940e18cea2bbd127ae12f",
+ "value": " 54.2M/54.2M [00:00<00:00, 97.6MB/s]"
+ }
+ },
+ "255cd285c2964168bd5d592797319799": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e7e3acde30064f1d9904d5b63d9d4a05",
+ "max": 2211.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f87840aa69ad485d9908bda606c72497",
+ "value": 2211.0
+ }
+ },
+ "292922cc6d4a45e58b35a866527a29e5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -1809,7 +2052,7 @@
"description_width": ""
}
},
- "20af6857c9d64effa8d3097ca76f980c": {
+ "2e02daa7c3ca45149d91dde070b6b9c4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1824,7 +2067,83 @@
"description_width": ""
}
},
- "22e89d2f72534beab670b51b1b20daa6": {
+ "313354f869f940e18cea2bbd127ae12f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3468e33f5ac042eb893e9caa9a6fe2d8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "35f604b8306542a9ae4c62d3a1c514d0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e5a054c0b2e145c48b6889d24cd75a8e",
+ "placeholder": "",
+ "style": "IPY_MODEL_9446ff9a5e194ead9455a669a89eb178",
+ "value": "Downloading: 100%"
+ }
+ },
+ "366253d68f314232a50a891614f4b4bf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bd503ff4fa494883a7f2adba92a3897e",
+ "max": 665.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_499d1c7f4c5a4fe1a9324f6468bfeb59",
+ "value": 665.0
+ }
+ },
+ "3b86029b2f0642c59a20a096cd0c0e27": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1876,23 +2195,7 @@
"width": null
}
},
- "25c136838f8e4167812e96724c54d554": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "2a7ad8fe6d1040b4bfeea9d7ce09be50": {
+ "3bfb1b741d9f4d8c9c8d7decc0b01b80": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1944,7 +2247,7 @@
"width": null
}
},
- "2c0653445662466fb758895be4ba71e6": {
+ "3d50484d44df4b18bfe556d46bb3c90c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1996,7 +2299,29 @@
"width": null
}
},
- "2da5437e1acc494284ae4898ecf5825d": {
+ "3e5263f90c834ffe8e75512b1c9ff0da": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_11abdc356fc747f4aec38230faef0d33",
+ "IPY_MODEL_08222567e27c40d1abead6c1ec8c93ce",
+ "IPY_MODEL_af8074b8c23b4251b1d07a6df232c716"
+ ],
+ "layout": "IPY_MODEL_e705824be7084bcfbcd847ca65fdab2d"
+ }
+ },
+ "3e694296ae8d4c84aa6680938cf17629": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2045,10 +2370,10 @@
"right": null,
"top": null,
"visibility": null,
- "width": null
+ "width": "20px"
}
},
- "2e5d0372d3834746aa0d0c1c8f0e7f1d": {
+ "40404ad564e54f289b94b4b391a2fbf1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2100,31 +2425,50 @@
"width": null
}
},
- "2ecf7dfd01c34450a5428be8316c8b11": {
+ "41524cf278db44f78c46303a6352ee0b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e67af21d8af94bf9b8a0a7041681f4f1",
- "max": 2211.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_4534af8ca61c4e5ca6601e31f912e07b",
- "value": 2211.0
+ "layout": "IPY_MODEL_4f121a17923d4b41b907456fd43cea76",
+ "placeholder": "",
+ "style": "IPY_MODEL_8a68688d67f141f49b015ffb7631c5ab",
+ "value": " 29.0/29.0 [00:00<00:00, 2.24kB/s]"
+ }
+ },
+ "424933a378b84b5cb884fb55ffadd8ee": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ab6ac57e7c6640da9ad33aa8d020dd5a",
+ "IPY_MODEL_798c619031384f2bae98952ab342f9d4",
+ "IPY_MODEL_24cefcf7db0144a284cc29542ef69f64"
+ ],
+ "layout": "IPY_MODEL_de92500a117c4c0da4e9e70013924e96"
}
},
- "3c3551484b5449899d1fe2e170072a55": {
+ "425e484ab48344418b6e4895eb45dace": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2176,7 +2520,45 @@
"width": null
}
},
- "4055649aad66458f9876f0b4c62e54fc": {
+ "45194cb1a20648d5a6a1eabd72cf1a09": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_35f604b8306542a9ae4c62d3a1c514d0",
+ "IPY_MODEL_366253d68f314232a50a891614f4b4bf",
+ "IPY_MODEL_edc99d9a0c5249b9955e3f1f9c7155f4"
+ ],
+ "layout": "IPY_MODEL_ec7716facfd74b3f938c25ac1a9d16f1"
+ }
+ },
+ "499d1c7f4c5a4fe1a9324f6468bfeb59": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "4f121a17923d4b41b907456fd43cea76": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2228,7 +2610,7 @@
"width": null
}
},
- "4330bdb512fe46d48298469d69c9e65c": {
+ "53b0e001d729478c867a3e96d7080c39": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -2244,75 +2626,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_a2c56565c89245b1b2404448eebb5048",
- "max": 231508.0,
+ "layout": "IPY_MODEL_b6f37e0167e843b5ade3e5ed7a60a25b",
+ "max": 391.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_25c136838f8e4167812e96724c54d554",
- "value": 231508.0
- }
- },
- "44c15dfa0908484cb4e18a1de1b213c0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_560c97ef330f4ba8b3d3dba045f3fa53",
- "IPY_MODEL_f33471391501412a8459aec2086f2c05",
- "IPY_MODEL_f9729f845f3a4803b112798042fb2873"
- ],
- "layout": "IPY_MODEL_0bbaa18a07b34edaa3b8df2b4b3c5137"
- }
- },
- "4534af8ca61c4e5ca6601e31f912e07b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "4a26b5ba183049c7998c8f73d4172ee0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_b633e1c734554e19907a1391d2c5cbe1",
- "IPY_MODEL_2ecf7dfd01c34450a5428be8316c8b11",
- "IPY_MODEL_75bc474a92ae48729d6845c664d57cb7"
- ],
- "layout": "IPY_MODEL_9146bcb240a24bdc8ea111f42c2e405a"
+ "style": "IPY_MODEL_0df75e3802eb4765969e10fab4fe3ee8",
+ "value": 391.0
}
},
- "4f60b6883d2c4f999a40e92885a5c854": {
+ "5658f38e06684572b9bca2c6174683a8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2327,96 +2649,80 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_cb4def97587f4181924c5e7424f2a68b",
+ "layout": "IPY_MODEL_be7782e2612d4fb3992d72064280ba3a",
"placeholder": "",
- "style": "IPY_MODEL_01c763d36b954f8594ee4817c643748e",
+ "style": "IPY_MODEL_8b4a9fd13f424189b9c44412f391f749",
"value": "Downloading: 100%"
}
},
- "506409b8914a48229f15b57447a43add": {
+ "57a396c415214478a1756d8429b28142": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "514c1d873693435c8152d9b1f91c94f6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5ce01c65834b4616a7d17da59e6d0ac9",
- "max": 665.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_506409b8914a48229f15b57447a43add",
- "value": 665.0
- }
- },
- "55c295f16b9a423c9af63d9990e60b3a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_4f60b6883d2c4f999a40e92885a5c854",
- "IPY_MODEL_600ebc6a946c4593adb15b477911d8d5",
- "IPY_MODEL_e9f09eabb6794661a266de606d853f4b"
- ],
- "layout": "IPY_MODEL_a230ef69c1b445d39970505fff86e52e"
- }
- },
- "560c97ef330f4ba8b3d3dba045f3fa53": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "58bba979fc734eddbcf16f916f25795c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2a7ad8fe6d1040b4bfeea9d7ce09be50",
- "placeholder": "",
- "style": "IPY_MODEL_bb09ca3d247941e2a8ab0ffe66637f5f",
- "value": "Downloading: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "57c5f26a0f8249bf86e508798575f9b1": {
+ "61066423dc16481d88ce2edadb92ae4e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2431,43 +2737,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6cd8c7c4d84b467280a26fbd2786e6ef",
+ "layout": "IPY_MODEL_1808d4824d614576b143efc02b695a79",
"placeholder": "",
- "style": "IPY_MODEL_77886c7a107a452c8780ab1e0047680a",
- "value": " 232k/232k [00:00<00:00, 1.73MB/s]"
- }
- },
- "581b8cb923de472ead864c8ba17eca58": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "59329ef378d54b129158814627d099f8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "style": "IPY_MODEL_2282f899be604402bbcb09e97e28c74b",
+ "value": " 391/391 [00:00<00:00, 18.1kB/s]"
}
},
- "5a4763bbcb4f40a19aa3b17a5d32f370": {
+ "6f8e39a189f541498183c2e6ba35ee72": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2519,7 +2795,7 @@
"width": null
}
},
- "5ce01c65834b4616a7d17da59e6d0ac9": {
+ "6fc6e8391ccf45b0b90422d2bb9c6771": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2571,7 +2847,7 @@
"width": null
}
},
- "600ebc6a946c4593adb15b477911d8d5": {
+ "798c619031384f2bae98952ab342f9d4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -2587,15 +2863,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_3c3551484b5449899d1fe2e170072a55",
- "max": 466062.0,
+ "layout": "IPY_MODEL_c34979b264fc43a28b90b91f2b1acebb",
+ "max": 54245363.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_1c23b34a7293486e8fb3a73c3cdcc74a",
- "value": 466062.0
+ "style": "IPY_MODEL_a101184f8ba541e49f2e703ef8827f60",
+ "value": 54245363.0
}
},
- "62c92957735b42bfa8856482f295990e": {
+ "83d82860dd344eed85830e46dbbe58d5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -2610,14 +2886,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_6c853912724f4772b69751e41c87d551",
- "IPY_MODEL_feb305bf675e4c8fac258ba63dfd7a2d",
- "IPY_MODEL_9742a02e71714a12a771ed3004428b20"
+ "IPY_MODEL_92c2dbce6d7c412a9fbe8087c6f39c73",
+ "IPY_MODEL_1407f5da059048d9bea48292a33a67bd",
+ "IPY_MODEL_41524cf278db44f78c46303a6352ee0b"
],
- "layout": "IPY_MODEL_2e5d0372d3834746aa0d0c1c8f0e7f1d"
+ "layout": "IPY_MODEL_6f8e39a189f541498183c2e6ba35ee72"
}
},
- "64de4ffe6afd4bfcae90b87d2078f02c": {
+ "844fc9a638e64344a64f6c9fcc4b1dc8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2669,43 +2945,7 @@
"width": null
}
},
- "680aaa6533ba499683d0440ba9cd8d6f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6c853912724f4772b69751e41c87d551": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_cb7ebd8cc0b548f6af8b893f83a52a91",
- "placeholder": "",
- "style": "IPY_MODEL_7f7eab30af7f433b8963af55c75f1d05",
- "value": "Downloading: 100%"
- }
- },
- "6cd8c7c4d84b467280a26fbd2786e6ef": {
+ "8a31b581011b4a93b6c157aed2f3018e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2757,7 +2997,22 @@
"width": null
}
},
- "6f8288c6bb5642ae89de14df3107e620": {
+ "8a68688d67f141f49b015ffb7631c5ab": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "8aa6fe06fe4444aab2b762c8af919d4e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2809,58 +3064,7 @@
"width": null
}
},
- "75bc474a92ae48729d6845c664d57cb7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d0a0d225553c44c2bbd6c0daef585f97",
- "placeholder": "",
- "style": "IPY_MODEL_a847ef32c0b040138998c2e6f3a1ab5a",
- "value": " 2.21k/2.21k [00:00<00:00, 168kB/s]"
- }
- },
- "77886c7a107a452c8780ab1e0047680a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "78566a9152264c5aa12f9ea87241abc0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "7a1f037669de4a0e91b587e52cffa6e8": {
+ "8b4a9fd13f424189b9c44412f391f749": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2875,29 +3079,7 @@
"description_width": ""
}
},
- "7bbe9e1a7dd947af9d479bd5e6adf343": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f78ecc51f869439185011ce475404230",
- "IPY_MODEL_bdf8fd5422474a60a42e47705a16f773",
- "IPY_MODEL_837927af9c014f588951eb0dda77b120"
- ],
- "layout": "IPY_MODEL_7f7636fff1b341d2afccdd8e8eefa6b4"
- }
- },
- "7d464f341e3e4dfd89cca8f3c705cd3b": {
+ "8ff8d141345b401c9c1f84c64a39cf67": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2912,13 +3094,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_196c4e5f7f894fee99378255683c69ea",
+ "layout": "IPY_MODEL_b728bdbf92d14a0cb266fbfbf3626506",
"placeholder": "",
- "style": "IPY_MODEL_b831b897360043cc8d9db0163ddfdd4b",
+ "style": "IPY_MODEL_dd9814e8a2ab4745a9180d96ad063b50",
"value": "Downloading: 100%"
}
},
- "7f7636fff1b341d2afccdd8e8eefa6b4": {
+ "91e09a7ba7934fd685263b3866b937fa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2970,7 +3152,28 @@
"width": null
}
},
- "7f7eab30af7f433b8963af55c75f1d05": {
+ "92c2dbce6d7c412a9fbe8087c6f39c73": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8a31b581011b4a93b6c157aed2f3018e",
+ "placeholder": "",
+ "style": "IPY_MODEL_fd7b0fbc75624cd292369b36fe4474b1",
+ "value": "Downloading: 100%"
+ }
+ },
+ "9446ff9a5e194ead9455a669a89eb178": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2985,52 +3188,39 @@
"description_width": ""
}
},
- "837927af9c014f588951eb0dda77b120": {
+ "952f61bd253d4397bcdb3ba9e08cc27a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5a4763bbcb4f40a19aa3b17a5d32f370",
- "placeholder": "",
- "style": "IPY_MODEL_680aaa6533ba499683d0440ba9cd8d6f",
- "value": " 0/0 [00:00<?, ?it/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "85b335b646bb4d4cb6af4543ad3b55a4": {
+ "a101184f8ba541e49f2e703ef8827f60": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4055649aad66458f9876f0b4c62e54fc",
- "max": 391.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_fb64bce345774581b0d574dd2b9a8212",
- "value": 391.0
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "87867366263b48f6a52ac08eb484436a": {
+ "a17af920182941e58002c4cf8e83171e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3082,7 +3272,7 @@
"width": null
}
},
- "8b29690fa1cb437d9fe109c5bdeb8ea6": {
+ "a505aca9ba4749f38170f2c26ecada79": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3134,59 +3324,86 @@
"width": null
}
},
- "8b3e8c6c43de4dc7bb122f92b2f3f4fb": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "ab6ac57e7c6640da9ad33aa8d020dd5a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d3f7d4deed8f4bb7bd8f73ec2dc44787",
+ "placeholder": "",
+ "style": "IPY_MODEL_2e02daa7c3ca45149d91dde070b6b9c4",
+ "value": "Downloading: 100%"
+ }
+ },
+ "af8074b8c23b4251b1d07a6df232c716": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3bfb1b741d9f4d8c9c8d7decc0b01b80",
+ "placeholder": "",
+ "style": "IPY_MODEL_14095d01843c47b092005e5e53137e39",
+ "value": " 0/0 [00:00<?, ?it/s]"
+ }
+ },
+ "b16e3649d0c44a02a3b4c06951a20f21": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bdbf77706b2a448a883c3f8534e5ed76",
+ "placeholder": "",
+ "style": "IPY_MODEL_10d89be6a0374ec897cf377497b18e5f",
+ "value": "Downloading: 100%"
+ }
+ },
+ "b595faff4a024526b60539fe63c2ee7c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "8cafbbeed54d423b873d83db5431837c": {
+ "b6f37e0167e843b5ade3e5ed7a60a25b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3238,7 +3455,7 @@
"width": null
}
},
- "9146bcb240a24bdc8ea111f42c2e405a": {
+ "b728bdbf92d14a0cb266fbfbf3626506": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3277,41 +3494,20 @@
"max_width": null,
"min_height": null,
"min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "9349552ff53e4ad6af5db8422f9153eb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8cafbbeed54d423b873d83db5431837c",
- "placeholder": "",
- "style": "IPY_MODEL_20af6857c9d64effa8d3097ca76f980c",
- "value": " 391/391 [00:00<00:00, 35.7kB/s]"
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "9508ce2d2b9641348c0764cd09fdcd6b": {
+ "b85482da3c1c4ec2bf18f764413385f0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -3326,35 +3522,36 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_0a250e335b8e4c219343a2094c200e60",
- "IPY_MODEL_514c1d873693435c8152d9b1f91c94f6",
- "IPY_MODEL_10911ca5d8c445cfa6351535653f4785"
+ "IPY_MODEL_5658f38e06684572b9bca2c6174683a8",
+ "IPY_MODEL_53b0e001d729478c867a3e96d7080c39",
+ "IPY_MODEL_61066423dc16481d88ce2edadb92ae4e"
],
- "layout": "IPY_MODEL_f4b9c6908a654ccca12a5a79df763444"
+ "layout": "IPY_MODEL_f13126affda446cfbd40755a48b66d1d"
}
},
- "9742a02e71714a12a771ed3004428b20": {
+ "b921a2781e5b411d92977c1c84a05e0f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2da5437e1acc494284ae4898ecf5825d",
- "placeholder": "",
- "style": "IPY_MODEL_f4e431dfd531456fba5960523e44b81e",
- "value": " 54.2M/54.2M [00:00<00:00, 91.5MB/s]"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_dcc1d67a6ca1484ab12838d655989880",
+ "IPY_MODEL_255cd285c2964168bd5d592797319799",
+ "IPY_MODEL_23efd1d587f4466d8ffe87ab695976a2"
+ ],
+ "layout": "IPY_MODEL_069cbc86cb6d43559308307b56cbdaa0"
}
},
- "9b2fab74a79944f297e4bfea317ae949": {
+ "bd503ff4fa494883a7f2adba92a3897e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3406,7 +3603,7 @@
"width": null
}
},
- "9e6d509891064270bbb435d72a126095": {
+ "bdbf77706b2a448a883c3f8534e5ed76": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3455,10 +3652,10 @@
"right": null,
"top": null,
"visibility": null,
- "width": "20px"
+ "width": null
}
},
- "a230ef69c1b445d39970505fff86e52e": {
+ "be7782e2612d4fb3992d72064280ba3a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3510,7 +3707,7 @@
"width": null
}
},
- "a2c56565c89245b1b2404448eebb5048": {
+ "c34979b264fc43a28b90b91f2b1acebb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3562,38 +3759,7 @@
"width": null
}
},
- "a847ef32c0b040138998c2e6f3a1ab5a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "aaf66787d00c4f92a788285f1322d3bb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "ab03a31e33ca4042ad900e6cbe62f1ec": {
+ "d3f7d4deed8f4bb7bd8f73ec2dc44787": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3645,66 +3811,22 @@
"width": null
}
},
- "b2a7d43a75994007a1e0039d44bf4eea": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_b39ff5aa02c3408cbbb519b43f852e97",
- "IPY_MODEL_85b335b646bb4d4cb6af4543ad3b55a4",
- "IPY_MODEL_9349552ff53e4ad6af5db8422f9153eb"
- ],
- "layout": "IPY_MODEL_8b3e8c6c43de4dc7bb122f92b2f3f4fb"
- }
- },
- "b39ff5aa02c3408cbbb519b43f852e97": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_87867366263b48f6a52ac08eb484436a",
- "placeholder": "",
- "style": "IPY_MODEL_c31705e08c12422ba157d236829f1cc0",
- "value": "Downloading: 100%"
- }
- },
- "b3eab04139114b8a883f533efb31e57c": {
+ "d53bb78b776c471ebdbed69dcd8c1107": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "b633e1c734554e19907a1391d2c5cbe1": {
+ "dcc1d67a6ca1484ab12838d655989880": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3719,82 +3841,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_22e89d2f72534beab670b51b1b20daa6",
+ "layout": "IPY_MODEL_3b86029b2f0642c59a20a096cd0c0e27",
"placeholder": "",
- "style": "IPY_MODEL_bd5d8b1eae00448d961af904ad7bf551",
+ "style": "IPY_MODEL_d53bb78b776c471ebdbed69dcd8c1107",
"value": "Downloading: 100%"
}
},
- "b831b897360043cc8d9db0163ddfdd4b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "bb09ca3d247941e2a8ab0ffe66637f5f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "bd5d8b1eae00448d961af904ad7bf551": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "bdf8fd5422474a60a42e47705a16f773": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_9e6d509891064270bbb435d72a126095",
- "max": 1.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b3eab04139114b8a883f533efb31e57c",
- "value": 0.0
- }
- },
- "c31705e08c12422ba157d236829f1cc0": {
+ "dd9814e8a2ab4745a9180d96ad063b50": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -3809,7 +3862,7 @@
"description_width": ""
}
},
- "cb4def97587f4181924c5e7424f2a68b": {
+ "de92500a117c4c0da4e9e70013924e96": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3861,7 +3914,7 @@
"width": null
}
},
- "cb7ebd8cc0b548f6af8b893f83a52a91": {
+ "e5a054c0b2e145c48b6889d24cd75a8e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3913,7 +3966,7 @@
"width": null
}
},
- "d0a0d225553c44c2bbd6c0daef585f97": {
+ "e705824be7084bcfbcd847ca65fdab2d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3965,7 +4018,7 @@
"width": null
}
},
- "e67af21d8af94bf9b8a0a7041681f4f1": {
+ "e7e3acde30064f1d9904d5b63d9d4a05": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4017,7 +4070,22 @@
"width": null
}
},
- "e80e53a506f34a4eb15f5ca41dcc8f3a": {
+ "ea7bdd86579240b4b0acbda847f962e6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ec7716facfd74b3f938c25ac1a9d16f1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4069,7 +4137,7 @@
"width": null
}
},
- "e9f09eabb6794661a266de606d853f4b": {
+ "ed3fa51bbd94410eb093a36bc6b17844": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -4084,59 +4152,34 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e80e53a506f34a4eb15f5ca41dcc8f3a",
+ "layout": "IPY_MODEL_425e484ab48344418b6e4895eb45dace",
"placeholder": "",
- "style": "IPY_MODEL_7a1f037669de4a0e91b587e52cffa6e8",
- "value": " 466k/466k [00:00<00:00, 2.68MB/s]"
+ "style": "IPY_MODEL_f3ac47bb4ec24568a69c933fe01e37b5",
+ "value": " 466k/466k [00:00<00:00, 22.8MB/s]"
}
},
- "f33471391501412a8459aec2086f2c05": {
+ "edc99d9a0c5249b9955e3f1f9c7155f4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_9b2fab74a79944f297e4bfea317ae949",
- "max": 29.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_aaf66787d00c4f92a788285f1322d3bb",
- "value": 29.0
- }
- },
- "f335d8552862438c918a7d38750ea471": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7d464f341e3e4dfd89cca8f3c705cd3b",
- "IPY_MODEL_4330bdb512fe46d48298469d69c9e65c",
- "IPY_MODEL_57c5f26a0f8249bf86e508798575f9b1"
- ],
- "layout": "IPY_MODEL_036b7778c36543bdbeac3d2f0ced5cd3"
+ "layout": "IPY_MODEL_07f1a2139f464c99afacc75ed456aa89",
+ "placeholder": "",
+ "style": "IPY_MODEL_0b98e997fea741f29c36386e79658c5a",
+ "value": " 665/665 [00:00<00:00, 32.7kB/s]"
}
},
- "f4b9c6908a654ccca12a5a79df763444": {
+ "f13126affda446cfbd40755a48b66d1d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4188,7 +4231,7 @@
"width": null
}
},
- "f4e431dfd531456fba5960523e44b81e": {
+ "f3ac47bb4ec24568a69c933fe01e37b5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -4203,28 +4246,7 @@
"description_width": ""
}
},
- "f78ecc51f869439185011ce475404230": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6f8288c6bb5642ae89de14df3107e620",
- "placeholder": "",
- "style": "IPY_MODEL_00d4881e37364b46bd15efdaf3d27490",
- "value": ""
- }
- },
- "f8d0fe29fd574a11a3ff23f9fb9c6def": {
+ "f87840aa69ad485d9908bda606c72497": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -4240,66 +4262,44 @@
"description_width": ""
}
},
- "f9729f845f3a4803b112798042fb2873": {
+ "fc805ae8481941ecb7b4d453e85270e1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_8b29690fa1cb437d9fe109c5bdeb8ea6",
- "placeholder": "",
- "style": "IPY_MODEL_78566a9152264c5aa12f9ea87241abc0",
- "value": " 29.0/29.0 [00:00<00:00, 3.11kB/s]"
+ "layout": "IPY_MODEL_6fc6e8391ccf45b0b90422d2bb9c6771",
+ "max": 231508.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_292922cc6d4a45e58b35a866527a29e5",
+ "value": 231508.0
}
},
- "fb64bce345774581b0d574dd2b9a8212": {
+ "fd7b0fbc75624cd292369b36fe4474b1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
- },
- "feb305bf675e4c8fac258ba63dfd7a2d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2c0653445662466fb758895be4ba71e6",
- "max": 54245363.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_f8d0fe29fd574a11a3ff23f9fb9c6def",
- "value": 54245363.0
- }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
index a81d446d1..876c32612 100644
--- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
@@ -68,10 +68,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:25.374211Z",
- "iopub.status.busy": "2023-10-06T06:35:25.373835Z",
- "iopub.status.idle": "2023-10-06T06:35:26.540620Z",
- "shell.execute_reply": "2023-10-06T06:35:26.539898Z"
+ "iopub.execute_input": "2023-10-11T10:07:37.080093Z",
+ "iopub.status.busy": "2023-10-11T10:07:37.079618Z",
+ "iopub.status.idle": "2023-10-11T10:07:38.289799Z",
+ "shell.execute_reply": "2023-10-11T10:07:38.289011Z"
},
"nbsphinx": "hidden"
},
@@ -83,7 +83,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -108,10 +108,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:26.545737Z",
- "iopub.status.busy": "2023-10-06T06:35:26.544250Z",
- "iopub.status.idle": "2023-10-06T06:35:26.549175Z",
- "shell.execute_reply": "2023-10-06T06:35:26.548571Z"
+ "iopub.execute_input": "2023-10-11T10:07:38.293531Z",
+ "iopub.status.busy": "2023-10-11T10:07:38.292966Z",
+ "iopub.status.idle": "2023-10-11T10:07:38.297833Z",
+ "shell.execute_reply": "2023-10-11T10:07:38.297125Z"
},
"id": "_UvI80l42iyi"
},
@@ -201,10 +201,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:26.552992Z",
- "iopub.status.busy": "2023-10-06T06:35:26.552745Z",
- "iopub.status.idle": "2023-10-06T06:35:26.602094Z",
- "shell.execute_reply": "2023-10-06T06:35:26.601368Z"
+ "iopub.execute_input": "2023-10-11T10:07:38.301706Z",
+ "iopub.status.busy": "2023-10-11T10:07:38.301185Z",
+ "iopub.status.idle": "2023-10-11T10:07:38.349050Z",
+ "shell.execute_reply": "2023-10-11T10:07:38.348345Z"
},
"nbsphinx": "hidden"
},
@@ -301,10 +301,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:26.605547Z",
- "iopub.status.busy": "2023-10-06T06:35:26.605090Z",
- "iopub.status.idle": "2023-10-06T06:35:44.431461Z",
- "shell.execute_reply": "2023-10-06T06:35:44.430739Z"
+ "iopub.execute_input": "2023-10-11T10:07:38.352885Z",
+ "iopub.status.busy": "2023-10-11T10:07:38.352400Z",
+ "iopub.status.idle": "2023-10-11T10:07:55.583042Z",
+ "shell.execute_reply": "2023-10-11T10:07:55.581664Z"
},
"id": "dhTHOg8Pyv5G"
},
@@ -2602,13 +2602,7 @@
"\n",
"\n",
"🎯 Cifar100_test_set 🎯\n",
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
+ "\n",
"\n",
"Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n",
"\n",
diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
index fdfacd08c..f8adcb06e 100644
--- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
@@ -18,10 +18,10 @@
"id": "2a4efdde",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:46.702241Z",
- "iopub.status.busy": "2023-10-06T06:35:46.701424Z",
- "iopub.status.idle": "2023-10-06T06:35:47.897272Z",
- "shell.execute_reply": "2023-10-06T06:35:47.896538Z"
+ "iopub.execute_input": "2023-10-11T10:07:57.816728Z",
+ "iopub.status.busy": "2023-10-11T10:07:57.816485Z",
+ "iopub.status.idle": "2023-10-11T10:07:59.026260Z",
+ "shell.execute_reply": "2023-10-11T10:07:59.025496Z"
},
"nbsphinx": "hidden"
},
@@ -97,10 +97,10 @@
"id": "239d5ee7",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:47.901348Z",
- "iopub.status.busy": "2023-10-06T06:35:47.900708Z",
- "iopub.status.idle": "2023-10-06T06:35:47.906348Z",
- "shell.execute_reply": "2023-10-06T06:35:47.905579Z"
+ "iopub.execute_input": "2023-10-11T10:07:59.030456Z",
+ "iopub.status.busy": "2023-10-11T10:07:59.029913Z",
+ "iopub.status.idle": "2023-10-11T10:07:59.035450Z",
+ "shell.execute_reply": "2023-10-11T10:07:59.034832Z"
}
},
"outputs": [],
@@ -136,10 +136,10 @@
"id": "28b324aa",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:47.909784Z",
- "iopub.status.busy": "2023-10-06T06:35:47.909202Z",
- "iopub.status.idle": "2023-10-06T06:35:50.496469Z",
- "shell.execute_reply": "2023-10-06T06:35:50.495383Z"
+ "iopub.execute_input": "2023-10-11T10:07:59.038568Z",
+ "iopub.status.busy": "2023-10-11T10:07:59.038194Z",
+ "iopub.status.idle": "2023-10-11T10:08:01.652795Z",
+ "shell.execute_reply": "2023-10-11T10:08:01.651760Z"
}
},
"outputs": [],
@@ -162,10 +162,10 @@
"id": "28b324ab",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.501429Z",
- "iopub.status.busy": "2023-10-06T06:35:50.500232Z",
- "iopub.status.idle": "2023-10-06T06:35:50.543038Z",
- "shell.execute_reply": "2023-10-06T06:35:50.542071Z"
+ "iopub.execute_input": "2023-10-11T10:08:01.657989Z",
+ "iopub.status.busy": "2023-10-11T10:08:01.656923Z",
+ "iopub.status.idle": "2023-10-11T10:08:01.702215Z",
+ "shell.execute_reply": "2023-10-11T10:08:01.701304Z"
}
},
"outputs": [],
@@ -188,10 +188,10 @@
"id": "90c10e18",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.547244Z",
- "iopub.status.busy": "2023-10-06T06:35:50.546623Z",
- "iopub.status.idle": "2023-10-06T06:35:50.594347Z",
- "shell.execute_reply": "2023-10-06T06:35:50.593337Z"
+ "iopub.execute_input": "2023-10-11T10:08:01.705900Z",
+ "iopub.status.busy": "2023-10-11T10:08:01.705462Z",
+ "iopub.status.idle": "2023-10-11T10:08:01.745163Z",
+ "shell.execute_reply": "2023-10-11T10:08:01.744187Z"
}
},
"outputs": [],
@@ -213,10 +213,10 @@
"id": "88839519",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.598918Z",
- "iopub.status.busy": "2023-10-06T06:35:50.598256Z",
- "iopub.status.idle": "2023-10-06T06:35:50.603684Z",
- "shell.execute_reply": "2023-10-06T06:35:50.603007Z"
+ "iopub.execute_input": "2023-10-11T10:08:01.749587Z",
+ "iopub.status.busy": "2023-10-11T10:08:01.749065Z",
+ "iopub.status.idle": "2023-10-11T10:08:01.754299Z",
+ "shell.execute_reply": "2023-10-11T10:08:01.753647Z"
}
},
"outputs": [],
@@ -238,10 +238,10 @@
"id": "558490c2",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.607346Z",
- "iopub.status.busy": "2023-10-06T06:35:50.606955Z",
- "iopub.status.idle": "2023-10-06T06:35:50.611621Z",
- "shell.execute_reply": "2023-10-06T06:35:50.610994Z"
+ "iopub.execute_input": "2023-10-11T10:08:01.757759Z",
+ "iopub.status.busy": "2023-10-11T10:08:01.757307Z",
+ "iopub.status.idle": "2023-10-11T10:08:01.761240Z",
+ "shell.execute_reply": "2023-10-11T10:08:01.760581Z"
}
},
"outputs": [],
@@ -298,10 +298,10 @@
"id": "41714b51",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.615316Z",
- "iopub.status.busy": "2023-10-06T06:35:50.614749Z",
- "iopub.status.idle": "2023-10-06T06:35:50.649105Z",
- "shell.execute_reply": "2023-10-06T06:35:50.648436Z"
+ "iopub.execute_input": "2023-10-11T10:08:01.764426Z",
+ "iopub.status.busy": "2023-10-11T10:08:01.763978Z",
+ "iopub.status.idle": "2023-10-11T10:08:01.799681Z",
+ "shell.execute_reply": "2023-10-11T10:08:01.798932Z"
}
},
"outputs": [
@@ -315,7 +315,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "be0c14921b504ae9a2b71c8a1f0dd81a",
+ "model_id": "2b251b453e8e41a682609e2f8b3b9a0b",
"version_major": 2,
"version_minor": 0
},
@@ -329,7 +329,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "2fc0c118beb748e2b5e1646d0d3ee90a",
+ "model_id": "7c9d800dbdae44238eecd9e1660902f0",
"version_major": 2,
"version_minor": 0
},
@@ -369,16 +369,28 @@
")"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "13228a99-5d3f-47c0-87e5-2290d16461c4",
+ "metadata": {},
+ "source": [
+ "Methods that internally call `filter.find_label_issues()` can be sped up by specifying the argument `low_memory=True`, which will instead use `find_label_issues_batched()` internally. The following methods provide this option: \n",
+ "\n",
+ "1. [classification.CleanLearning](../cleanlab/classification.html#cleanlab.classification.CleanLearning)\n",
+ "2. [multilabel_classification.filter.find_label_issues](../cleanlab/multilabel_classification/filter.html#cleanlab.multilabel_classification.filter.find_label_issues)\n",
+ "3. [token_classification.filter.find_label_issues](../cleanlab/token_classification/filter.html?highlight=token#cleanlab.token_classification.filter.find_label_issues)"
+ ]
+ },
{
"cell_type": "code",
"execution_count": 9,
"id": "20476c70",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.659072Z",
- "iopub.status.busy": "2023-10-06T06:35:50.658637Z",
- "iopub.status.idle": "2023-10-06T06:35:50.666238Z",
- "shell.execute_reply": "2023-10-06T06:35:50.665620Z"
+ "iopub.execute_input": "2023-10-11T10:08:01.806292Z",
+ "iopub.status.busy": "2023-10-11T10:08:01.806037Z",
+ "iopub.status.idle": "2023-10-11T10:08:01.818327Z",
+ "shell.execute_reply": "2023-10-11T10:08:01.817709Z"
},
"nbsphinx": "hidden"
},
@@ -409,10 +421,10 @@
"id": "6983cdad",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.669472Z",
- "iopub.status.busy": "2023-10-06T06:35:50.669041Z",
- "iopub.status.idle": "2023-10-06T06:35:50.673074Z",
- "shell.execute_reply": "2023-10-06T06:35:50.672516Z"
+ "iopub.execute_input": "2023-10-11T10:08:01.821694Z",
+ "iopub.status.busy": "2023-10-11T10:08:01.821233Z",
+ "iopub.status.idle": "2023-10-11T10:08:01.825284Z",
+ "shell.execute_reply": "2023-10-11T10:08:01.824714Z"
},
"nbsphinx": "hidden"
},
@@ -435,10 +447,10 @@
"id": "9092b8a0",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.675923Z",
- "iopub.status.busy": "2023-10-06T06:35:50.675534Z",
- "iopub.status.idle": "2023-10-06T06:35:50.683859Z",
- "shell.execute_reply": "2023-10-06T06:35:50.683168Z"
+ "iopub.execute_input": "2023-10-11T10:08:01.828517Z",
+ "iopub.status.busy": "2023-10-11T10:08:01.828076Z",
+ "iopub.status.idle": "2023-10-11T10:08:01.837604Z",
+ "shell.execute_reply": "2023-10-11T10:08:01.837044Z"
}
},
"outputs": [],
@@ -488,10 +500,10 @@
"id": "b0a01109",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.687215Z",
- "iopub.status.busy": "2023-10-06T06:35:50.686615Z",
- "iopub.status.idle": "2023-10-06T06:35:50.726504Z",
- "shell.execute_reply": "2023-10-06T06:35:50.725494Z"
+ "iopub.execute_input": "2023-10-11T10:08:01.841816Z",
+ "iopub.status.busy": "2023-10-11T10:08:01.840680Z",
+ "iopub.status.idle": "2023-10-11T10:08:01.882053Z",
+ "shell.execute_reply": "2023-10-11T10:08:01.880812Z"
}
},
"outputs": [],
@@ -508,10 +520,10 @@
"id": "8b1da032",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.730613Z",
- "iopub.status.busy": "2023-10-06T06:35:50.730009Z",
- "iopub.status.idle": "2023-10-06T06:35:50.774911Z",
- "shell.execute_reply": "2023-10-06T06:35:50.773936Z"
+ "iopub.execute_input": "2023-10-11T10:08:01.887518Z",
+ "iopub.status.busy": "2023-10-11T10:08:01.886316Z",
+ "iopub.status.idle": "2023-10-11T10:08:01.941910Z",
+ "shell.execute_reply": "2023-10-11T10:08:01.940967Z"
},
"nbsphinx": "hidden"
},
@@ -590,10 +602,10 @@
"id": "4c9e9030",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.779489Z",
- "iopub.status.busy": "2023-10-06T06:35:50.778862Z",
- "iopub.status.idle": "2023-10-06T06:35:50.927787Z",
- "shell.execute_reply": "2023-10-06T06:35:50.926325Z"
+ "iopub.execute_input": "2023-10-11T10:08:01.946518Z",
+ "iopub.status.busy": "2023-10-11T10:08:01.946239Z",
+ "iopub.status.idle": "2023-10-11T10:08:02.108365Z",
+ "shell.execute_reply": "2023-10-11T10:08:02.107094Z"
}
},
"outputs": [
@@ -660,10 +672,10 @@
"id": "8751619e",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:50.931566Z",
- "iopub.status.busy": "2023-10-06T06:35:50.930949Z",
- "iopub.status.idle": "2023-10-06T06:35:53.976357Z",
- "shell.execute_reply": "2023-10-06T06:35:53.975618Z"
+ "iopub.execute_input": "2023-10-11T10:08:02.112121Z",
+ "iopub.status.busy": "2023-10-11T10:08:02.111609Z",
+ "iopub.status.idle": "2023-10-11T10:08:05.602326Z",
+ "shell.execute_reply": "2023-10-11T10:08:05.601496Z"
}
},
"outputs": [
@@ -749,10 +761,10 @@
"id": "623df36d",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:53.979888Z",
- "iopub.status.busy": "2023-10-06T06:35:53.979505Z",
- "iopub.status.idle": "2023-10-06T06:35:54.053412Z",
- "shell.execute_reply": "2023-10-06T06:35:54.052618Z"
+ "iopub.execute_input": "2023-10-11T10:08:05.606331Z",
+ "iopub.status.busy": "2023-10-11T10:08:05.605806Z",
+ "iopub.status.idle": "2023-10-11T10:08:05.688429Z",
+ "shell.execute_reply": "2023-10-11T10:08:05.687714Z"
}
},
"outputs": [
@@ -862,58 +874,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "06fd8639486845f0a5770bb831a3a054": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "0936b9e2055141ccb8c3c3392f9f35e7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "11cc4de1ee684fb7b62b44360845e16f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_9f135c37d2034d1db8141659bb80934d",
- "placeholder": "",
- "style": "IPY_MODEL_374b69e398924f97b3ae64fe3f1a651d",
- "value": " 10000/? [00:00<00:00, 951240.33it/s]"
- }
- },
- "16d43a81d1e645bc8ec9ac1f6bbdd846": {
+ "17d1546833ee4da5acb8eb563bbd9f1a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -965,81 +926,7 @@
"width": null
}
},
- "226990f90ba74add8ccf415794f4b586": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "2c21175c46b840cb969b3216ddd4818d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d7ddd051303b46dfbe7e4940618848fa",
- "placeholder": "",
- "style": "IPY_MODEL_06fd8639486845f0a5770bb831a3a054",
- "value": "number of examples processed for checking labels: "
- }
- },
- "2fc0c118beb748e2b5e1646d0d3ee90a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_2c21175c46b840cb969b3216ddd4818d",
- "IPY_MODEL_3eba1bce2e934d509ab39058423f90e0",
- "IPY_MODEL_e29a9661bb774a7cbaaf78dc7fce4724"
- ],
- "layout": "IPY_MODEL_bab7dcb3cea34792a34d2346be233df4"
- }
- },
- "374b69e398924f97b3ae64fe3f1a651d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "3eba1bce2e934d509ab39058423f90e0": {
+ "20134a20596d45a286748d3d699eb7ef": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -1055,15 +942,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_16d43a81d1e645bc8ec9ac1f6bbdd846",
+ "layout": "IPY_MODEL_3b4da2a4cc784c20a58e2065f12655d3",
"max": 50.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_948908b2e67e4695803af96945588f23",
+ "style": "IPY_MODEL_5cfcda576b9c46739eb7948eb7135b84",
"value": 50.0
}
},
- "450b8723e0d64f289233d3be7144493f": {
+ "25ba0e5222f54ac796ce584ce1a9c40b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1115,31 +1002,59 @@
"width": null
}
},
- "465eb8e97f324a1196bb2c4fe4c80307": {
+ "2b251b453e8e41a682609e2f8b3b9a0b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5a43f06761e24372af6df7522664bb27",
- "max": 50.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_226990f90ba74add8ccf415794f4b586",
- "value": 50.0
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d673388669234c0ca5473560de6047b1",
+ "IPY_MODEL_e58ea11219724945bca16c82010cd844",
+ "IPY_MODEL_58dbffc23579499a8ad44840f78ba02f"
+ ],
+ "layout": "IPY_MODEL_ebe75e14ba9a41459d6a32362e112629"
}
},
- "5a43f06761e24372af6df7522664bb27": {
+ "2c1e0a073b88408caf68027a23026794": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3510db2f3a614019b719c69f8da359f0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3b4da2a4cc784c20a58e2065f12655d3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1191,7 +1106,23 @@
"width": null
}
},
- "754add897d3543b3bdc3f4002835d76f": {
+ "57dfc2117732473d94ba95e2660d2325": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "58dbffc23579499a8ad44840f78ba02f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1206,13 +1137,66 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_771edf06ee73476c8d3a8120c432278f",
+ "layout": "IPY_MODEL_25ba0e5222f54ac796ce584ce1a9c40b",
"placeholder": "",
- "style": "IPY_MODEL_7bed1f4ec7ec4590a9af608f1daae97b",
- "value": "number of examples processed for estimating thresholds: "
+ "style": "IPY_MODEL_73b60b0c33154e96b0de8027c2a4cc3e",
+ "value": " 10000/? [00:00<00:00, 758559.67it/s]"
}
},
- "771edf06ee73476c8d3a8120c432278f": {
+ "5cfcda576b9c46739eb7948eb7135b84": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "73b60b0c33154e96b0de8027c2a4cc3e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7c9d800dbdae44238eecd9e1660902f0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_cc4091f892fe47dd9a278470b2c1320b",
+ "IPY_MODEL_20134a20596d45a286748d3d699eb7ef",
+ "IPY_MODEL_fb329ace41ec43bbad7d05e960aa5d7f"
+ ],
+ "layout": "IPY_MODEL_eb4775bd97f44603b1ec5b1a96e17b5d"
+ }
+ },
+ "882cd8ab79de4ce1b1a09c578bc15eb2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1264,38 +1248,7 @@
"width": null
}
},
- "7bed1f4ec7ec4590a9af608f1daae97b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "948908b2e67e4695803af96945588f23": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "9f135c37d2034d1db8141659bb80934d": {
+ "ad49f6662d6c4c85a94630cba969c923": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1347,7 +1300,7 @@
"width": null
}
},
- "bab7dcb3cea34792a34d2346be233df4": {
+ "b87b8222c9824b7ab3ad8c38e03366a0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1399,29 +1352,88 @@
"width": null
}
},
- "be0c14921b504ae9a2b71c8a1f0dd81a": {
+ "c31753285691439490c1d08253e85818": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "cc4091f892fe47dd9a278470b2c1320b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_754add897d3543b3bdc3f4002835d76f",
- "IPY_MODEL_465eb8e97f324a1196bb2c4fe4c80307",
- "IPY_MODEL_11cc4de1ee684fb7b62b44360845e16f"
- ],
- "layout": "IPY_MODEL_e9f2e9720ea7477aa5a6decbaea6da00"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b87b8222c9824b7ab3ad8c38e03366a0",
+ "placeholder": "",
+ "style": "IPY_MODEL_c31753285691439490c1d08253e85818",
+ "value": "number of examples processed for checking labels: "
+ }
+ },
+ "d673388669234c0ca5473560de6047b1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_17d1546833ee4da5acb8eb563bbd9f1a",
+ "placeholder": "",
+ "style": "IPY_MODEL_3510db2f3a614019b719c69f8da359f0",
+ "value": "number of examples processed for estimating thresholds: "
}
},
- "d7ddd051303b46dfbe7e4940618848fa": {
+ "e58ea11219724945bca16c82010cd844": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_882cd8ab79de4ce1b1a09c578bc15eb2",
+ "max": 50.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_57dfc2117732473d94ba95e2660d2325",
+ "value": 50.0
+ }
+ },
+ "eb4775bd97f44603b1ec5b1a96e17b5d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1473,28 +1485,7 @@
"width": null
}
},
- "e29a9661bb774a7cbaaf78dc7fce4724": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_450b8723e0d64f289233d3be7144493f",
- "placeholder": "",
- "style": "IPY_MODEL_0936b9e2055141ccb8c3c3392f9f35e7",
- "value": " 10000/? [00:00<00:00, 1032240.79it/s]"
- }
- },
- "e9f2e9720ea7477aa5a6decbaea6da00": {
+ "ebe75e14ba9a41459d6a32362e112629": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1545,6 +1536,27 @@
"visibility": null,
"width": null
}
+ },
+ "fb329ace41ec43bbad7d05e960aa5d7f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ad49f6662d6c4c85a94630cba969c923",
+ "placeholder": "",
+ "style": "IPY_MODEL_2c1e0a073b88408caf68027a23026794",
+ "value": " 10000/? [00:00<00:00, 879161.57it/s]"
+ }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb
index 1b394eb51..4c926444b 100644
--- a/master/.doctrees/nbsphinx/tutorials/image.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb
@@ -71,10 +71,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:35:58.996596Z",
- "iopub.status.busy": "2023-10-06T06:35:58.996169Z",
- "iopub.status.idle": "2023-10-06T06:36:01.613645Z",
- "shell.execute_reply": "2023-10-06T06:36:01.612696Z"
+ "iopub.execute_input": "2023-10-11T10:08:11.357497Z",
+ "iopub.status.busy": "2023-10-11T10:08:11.357036Z",
+ "iopub.status.idle": "2023-10-11T10:08:14.044877Z",
+ "shell.execute_reply": "2023-10-11T10:08:14.044097Z"
},
"nbsphinx": "hidden"
},
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:36:01.617821Z",
- "iopub.status.busy": "2023-10-06T06:36:01.617038Z",
- "iopub.status.idle": "2023-10-06T06:36:01.623043Z",
- "shell.execute_reply": "2023-10-06T06:36:01.622375Z"
+ "iopub.execute_input": "2023-10-11T10:08:14.049048Z",
+ "iopub.status.busy": "2023-10-11T10:08:14.048479Z",
+ "iopub.status.idle": "2023-10-11T10:08:14.054174Z",
+ "shell.execute_reply": "2023-10-11T10:08:14.053563Z"
}
},
"outputs": [],
@@ -152,17 +152,17 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:36:01.626761Z",
- "iopub.status.busy": "2023-10-06T06:36:01.626230Z",
- "iopub.status.idle": "2023-10-06T06:36:18.376569Z",
- "shell.execute_reply": "2023-10-06T06:36:18.375809Z"
+ "iopub.execute_input": "2023-10-11T10:08:14.057130Z",
+ "iopub.status.busy": "2023-10-11T10:08:14.056759Z",
+ "iopub.status.idle": "2023-10-11T10:08:29.524666Z",
+ "shell.execute_reply": "2023-10-11T10:08:29.523896Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "88b15f4b3fc74d1b8e47fc1ac4dfec47",
+ "model_id": "471ad93953614f17a2204c72fc743424",
"version_major": 2,
"version_minor": 0
},
@@ -176,7 +176,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "8f95920e837c4278a3189a10686934d1",
+ "model_id": "919b65c98a2d49adb86d4a2bf0a272ef",
"version_major": 2,
"version_minor": 0
},
@@ -190,7 +190,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a6e342b828e64febb10a1251f5430c2e",
+ "model_id": "eaa30426591f4d24adf70288ff7f338f",
"version_major": 2,
"version_minor": 0
},
@@ -211,7 +211,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "faa996b8481c4a60b9f6e0666aec6bf8",
+ "model_id": "9a2f3f65748042e4b3bff278de0563ea",
"version_major": 2,
"version_minor": 0
},
@@ -225,7 +225,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "c962710431744861ba0cfcdf2a0b6887",
+ "model_id": "a4ba8fa1a1c5413e89c0b3c2d5aaf479",
"version_major": 2,
"version_minor": 0
},
@@ -239,7 +239,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "b4a8cc673f994ad59d178c8f1a49bf1a",
+ "model_id": "e81ddb9fe8a240bfa8c6f23fb404bcd1",
"version_major": 2,
"version_minor": 0
},
@@ -253,7 +253,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "33cdde96c6f94e74a90cf9782fe2ac0e",
+ "model_id": "be0fa222992a4b689ffc715aa577a154",
"version_major": 2,
"version_minor": 0
},
@@ -267,7 +267,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "dd03d22ba98a413d90adc537006b8f39",
+ "model_id": "73d6fe322f2a4c548931f5375ca2ebbb",
"version_major": 2,
"version_minor": 0
},
@@ -281,7 +281,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "61ec067de744480d8ec2a0377c775341",
+ "model_id": "c150ef391de14b0bbed383ea10049561",
"version_major": 2,
"version_minor": 0
},
@@ -295,7 +295,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "3d1ef15b6e96488fa1467ed33fb0ff16",
+ "model_id": "879878209ae04f39a9d431f4b1a30527",
"version_major": 2,
"version_minor": 0
},
@@ -309,7 +309,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "f4eaccaf8aea4d86b3d8bc23ac879bd2",
+ "model_id": "19cb56bcbce449d8a8e650440d90bb26",
"version_major": 2,
"version_minor": 0
},
@@ -358,10 +358,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:36:18.380458Z",
- "iopub.status.busy": "2023-10-06T06:36:18.380188Z",
- "iopub.status.idle": "2023-10-06T06:36:18.384521Z",
- "shell.execute_reply": "2023-10-06T06:36:18.383961Z"
+ "iopub.execute_input": "2023-10-11T10:08:29.528494Z",
+ "iopub.status.busy": "2023-10-11T10:08:29.528081Z",
+ "iopub.status.idle": "2023-10-11T10:08:29.532854Z",
+ "shell.execute_reply": "2023-10-11T10:08:29.532164Z"
}
},
"outputs": [
@@ -386,17 +386,17 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:36:18.387234Z",
- "iopub.status.busy": "2023-10-06T06:36:18.386867Z",
- "iopub.status.idle": "2023-10-06T06:36:34.519477Z",
- "shell.execute_reply": "2023-10-06T06:36:34.518687Z"
+ "iopub.execute_input": "2023-10-11T10:08:29.536554Z",
+ "iopub.status.busy": "2023-10-11T10:08:29.536115Z",
+ "iopub.status.idle": "2023-10-11T10:08:47.447516Z",
+ "shell.execute_reply": "2023-10-11T10:08:47.446625Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "90b11b854c844458a3b8e8e2cdc39e57",
+ "model_id": "e426ac8581ba43e8be7e6691e756322a",
"version_major": 2,
"version_minor": 0
},
@@ -434,10 +434,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:36:34.523529Z",
- "iopub.status.busy": "2023-10-06T06:36:34.522940Z",
- "iopub.status.idle": "2023-10-06T06:37:03.835229Z",
- "shell.execute_reply": "2023-10-06T06:37:03.834494Z"
+ "iopub.execute_input": "2023-10-11T10:08:47.451942Z",
+ "iopub.status.busy": "2023-10-11T10:08:47.451378Z",
+ "iopub.status.idle": "2023-10-11T10:09:17.298514Z",
+ "shell.execute_reply": "2023-10-11T10:09:17.297748Z"
}
},
"outputs": [],
@@ -470,10 +470,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:37:03.839339Z",
- "iopub.status.busy": "2023-10-06T06:37:03.839057Z",
- "iopub.status.idle": "2023-10-06T06:37:03.845266Z",
- "shell.execute_reply": "2023-10-06T06:37:03.844566Z"
+ "iopub.execute_input": "2023-10-11T10:09:17.303314Z",
+ "iopub.status.busy": "2023-10-11T10:09:17.302764Z",
+ "iopub.status.idle": "2023-10-11T10:09:17.311365Z",
+ "shell.execute_reply": "2023-10-11T10:09:17.309075Z"
}
},
"outputs": [],
@@ -511,10 +511,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:37:03.848467Z",
- "iopub.status.busy": "2023-10-06T06:37:03.847836Z",
- "iopub.status.idle": "2023-10-06T06:37:03.854129Z",
- "shell.execute_reply": "2023-10-06T06:37:03.853442Z"
+ "iopub.execute_input": "2023-10-11T10:09:17.315942Z",
+ "iopub.status.busy": "2023-10-11T10:09:17.314767Z",
+ "iopub.status.idle": "2023-10-11T10:09:17.320716Z",
+ "shell.execute_reply": "2023-10-11T10:09:17.320170Z"
},
"nbsphinx": "hidden"
},
@@ -651,10 +651,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:37:03.857588Z",
- "iopub.status.busy": "2023-10-06T06:37:03.857339Z",
- "iopub.status.idle": "2023-10-06T06:37:03.869193Z",
- "shell.execute_reply": "2023-10-06T06:37:03.868578Z"
+ "iopub.execute_input": "2023-10-11T10:09:17.325168Z",
+ "iopub.status.busy": "2023-10-11T10:09:17.324027Z",
+ "iopub.status.idle": "2023-10-11T10:09:17.337140Z",
+ "shell.execute_reply": "2023-10-11T10:09:17.336590Z"
},
"nbsphinx": "hidden"
},
@@ -779,10 +779,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:37:03.872254Z",
- "iopub.status.busy": "2023-10-06T06:37:03.871738Z",
- "iopub.status.idle": "2023-10-06T06:37:03.906971Z",
- "shell.execute_reply": "2023-10-06T06:37:03.906276Z"
+ "iopub.execute_input": "2023-10-11T10:09:17.341535Z",
+ "iopub.status.busy": "2023-10-11T10:09:17.340408Z",
+ "iopub.status.idle": "2023-10-11T10:09:17.380446Z",
+ "shell.execute_reply": "2023-10-11T10:09:17.379690Z"
}
},
"outputs": [],
@@ -819,10 +819,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:37:03.910573Z",
- "iopub.status.busy": "2023-10-06T06:37:03.909972Z",
- "iopub.status.idle": "2023-10-06T06:37:47.074575Z",
- "shell.execute_reply": "2023-10-06T06:37:47.073820Z"
+ "iopub.execute_input": "2023-10-11T10:09:17.385260Z",
+ "iopub.status.busy": "2023-10-11T10:09:17.384093Z",
+ "iopub.status.idle": "2023-10-11T10:09:57.442330Z",
+ "shell.execute_reply": "2023-10-11T10:09:57.441579Z"
}
},
"outputs": [
@@ -838,14 +838,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 6.443\n"
+ "epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 6.045\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 6.120\n",
+ "epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 5.663\n",
"Computing feature embeddings ...\n"
]
},
@@ -862,7 +862,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.35it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 9.18it/s]"
]
},
{
@@ -870,7 +870,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▌ | 6/40 [00:00<00:01, 31.46it/s]"
+ " 18%|█▊ | 7/40 [00:00<00:00, 34.59it/s]"
]
},
{
@@ -878,7 +878,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 11/40 [00:00<00:00, 38.97it/s]"
+ " 32%|███▎ | 13/40 [00:00<00:00, 42.65it/s]"
]
},
{
@@ -886,7 +886,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 16/40 [00:00<00:00, 42.47it/s]"
+ " 45%|████▌ | 18/40 [00:00<00:00, 43.86it/s]"
]
},
{
@@ -894,7 +894,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▎ | 21/40 [00:00<00:00, 42.42it/s]"
+ " 60%|██████ | 24/40 [00:00<00:00, 48.27it/s]"
]
},
{
@@ -902,7 +902,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 44.41it/s]"
+ " 75%|███████▌ | 30/40 [00:00<00:00, 49.45it/s]"
]
},
{
@@ -910,7 +910,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 31/40 [00:00<00:00, 45.37it/s]"
+ " 90%|█████████ | 36/40 [00:00<00:00, 51.44it/s]"
]
},
{
@@ -918,15 +918,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▎| 37/40 [00:00<00:00, 48.21it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- "100%|██████████| 40/40 [00:00<00:00, 43.78it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 44.57it/s]"
]
},
{
@@ -956,15 +948,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.36it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 15%|█▌ | 6/40 [00:00<00:01, 31.53it/s]"
+ " 2%|▎ | 1/40 [00:00<00:05, 6.69it/s]"
]
},
{
@@ -972,7 +956,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 11/40 [00:00<00:00, 39.37it/s]"
+ " 15%|█▌ | 6/40 [00:00<00:01, 27.16it/s]"
]
},
{
@@ -980,7 +964,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 16/40 [00:00<00:00, 42.81it/s]"
+ " 30%|███ | 12/40 [00:00<00:00, 37.62it/s]"
]
},
{
@@ -988,7 +972,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▎ | 21/40 [00:00<00:00, 43.60it/s]"
+ " 45%|████▌ | 18/40 [00:00<00:00, 40.73it/s]"
]
},
{
@@ -996,7 +980,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 43.90it/s]"
+ " 60%|██████ | 24/40 [00:00<00:00, 44.74it/s]"
]
},
{
@@ -1004,7 +988,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 31/40 [00:00<00:00, 45.24it/s]"
+ " 75%|███████▌ | 30/40 [00:00<00:00, 46.38it/s]"
]
},
{
@@ -1012,7 +996,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▎| 37/40 [00:00<00:00, 47.74it/s]"
+ " 90%|█████████ | 36/40 [00:00<00:00, 49.53it/s]"
]
},
{
@@ -1020,7 +1004,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 43.40it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 43.83it/s]"
]
},
{
@@ -1042,14 +1026,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 6.403\n"
+ "epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 5.897\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 6.145\n",
+ "epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 5.464\n",
"Computing feature embeddings ...\n"
]
},
@@ -1066,7 +1050,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 8.33it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 8.34it/s]"
]
},
{
@@ -1074,7 +1058,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▌ | 6/40 [00:00<00:01, 29.46it/s]"
+ " 15%|█▌ | 6/40 [00:00<00:01, 25.01it/s]"
]
},
{
@@ -1082,7 +1066,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 11/40 [00:00<00:00, 34.48it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:01, 26.56it/s]"
]
},
{
@@ -1090,7 +1074,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 16/40 [00:00<00:00, 38.20it/s]"
+ " 30%|███ | 12/40 [00:00<00:01, 27.35it/s]"
]
},
{
@@ -1098,7 +1082,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▎ | 21/40 [00:00<00:00, 41.46it/s]"
+ " 42%|████▎ | 17/40 [00:00<00:00, 33.00it/s]"
]
},
{
@@ -1106,7 +1090,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 43.43it/s]"
+ " 57%|█████▊ | 23/40 [00:00<00:00, 39.80it/s]"
]
},
{
@@ -1114,7 +1098,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 31/40 [00:00<00:00, 44.82it/s]"
+ " 72%|███████▎ | 29/40 [00:00<00:00, 43.61it/s]"
]
},
{
@@ -1122,7 +1106,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▎| 37/40 [00:00<00:00, 47.53it/s]"
+ " 85%|████████▌ | 34/40 [00:00<00:00, 45.23it/s]"
]
},
{
@@ -1130,7 +1114,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 41.92it/s]"
+ "100%|██████████| 40/40 [00:01<00:00, 39.03it/s]"
]
},
{
@@ -1160,15 +1144,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.67it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 15%|█▌ | 6/40 [00:00<00:01, 32.05it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 8.19it/s]"
]
},
{
@@ -1176,7 +1152,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 11/40 [00:00<00:00, 39.57it/s]"
+ " 15%|█▌ | 6/40 [00:00<00:01, 30.29it/s]"
]
},
{
@@ -1184,7 +1160,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 16/40 [00:00<00:00, 40.49it/s]"
+ " 30%|███ | 12/40 [00:00<00:00, 40.42it/s]"
]
},
{
@@ -1192,7 +1168,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▎ | 21/40 [00:00<00:00, 43.07it/s]"
+ " 45%|████▌ | 18/40 [00:00<00:00, 45.78it/s]"
]
},
{
@@ -1200,7 +1176,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 45.03it/s]"
+ " 57%|█████▊ | 23/40 [00:00<00:00, 44.58it/s]"
]
},
{
@@ -1208,7 +1184,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 31/40 [00:00<00:00, 46.06it/s]"
+ " 72%|███████▎ | 29/40 [00:00<00:00, 47.09it/s]"
]
},
{
@@ -1216,7 +1192,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▎| 37/40 [00:00<00:00, 48.48it/s]"
+ " 88%|████████▊ | 35/40 [00:00<00:00, 48.18it/s]"
]
},
{
@@ -1224,7 +1200,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 43.97it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 45.22it/s]"
]
},
{
@@ -1246,14 +1222,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 6.562\n"
+ "epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 5.942\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 5.901\n",
+ "epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 5.527\n",
"Computing feature embeddings ...\n"
]
},
@@ -1270,15 +1246,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.63it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 15%|█▌ | 6/40 [00:00<00:01, 32.36it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 8.68it/s]"
]
},
{
@@ -1286,7 +1254,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 11/40 [00:00<00:00, 38.53it/s]"
+ " 15%|█▌ | 6/40 [00:00<00:01, 29.84it/s]"
]
},
{
@@ -1294,7 +1262,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 16/40 [00:00<00:00, 40.39it/s]"
+ " 30%|███ | 12/40 [00:00<00:00, 40.63it/s]"
]
},
{
@@ -1302,7 +1270,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▎ | 21/40 [00:00<00:00, 43.56it/s]"
+ " 45%|████▌ | 18/40 [00:00<00:00, 46.00it/s]"
]
},
{
@@ -1310,7 +1278,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 45.13it/s]"
+ " 57%|█████▊ | 23/40 [00:00<00:00, 44.49it/s]"
]
},
{
@@ -1318,7 +1286,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 31/40 [00:00<00:00, 46.29it/s]"
+ " 70%|███████ | 28/40 [00:00<00:00, 45.71it/s]"
]
},
{
@@ -1326,7 +1294,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▎| 37/40 [00:00<00:00, 48.76it/s]"
+ " 85%|████████▌ | 34/40 [00:00<00:00, 48.27it/s]"
]
},
{
@@ -1334,7 +1302,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 44.13it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 45.38it/s]"
]
},
{
@@ -1372,7 +1340,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▌ | 6/40 [00:00<00:01, 30.31it/s]"
+ " 15%|█▌ | 6/40 [00:00<00:01, 32.66it/s]"
]
},
{
@@ -1380,7 +1348,7 @@
"output_type": "stream",
"text": [
"\r",
- " 30%|███ | 12/40 [00:00<00:00, 39.85it/s]"
+ " 30%|███ | 12/40 [00:00<00:00, 43.06it/s]"
]
},
{
@@ -1388,7 +1356,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▎ | 17/40 [00:00<00:00, 40.81it/s]"
+ " 45%|████▌ | 18/40 [00:00<00:00, 48.51it/s]"
]
},
{
@@ -1396,7 +1364,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▌ | 22/40 [00:00<00:00, 43.67it/s]"
+ " 60%|██████ | 24/40 [00:00<00:00, 50.15it/s]"
]
},
{
@@ -1404,7 +1372,7 @@
"output_type": "stream",
"text": [
"\r",
- " 68%|██████▊ | 27/40 [00:00<00:00, 45.38it/s]"
+ " 75%|███████▌ | 30/40 [00:00<00:00, 51.97it/s]"
]
},
{
@@ -1412,7 +1380,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|████████ | 32/40 [00:00<00:00, 46.54it/s]"
+ " 90%|█████████ | 36/40 [00:00<00:00, 50.03it/s]"
]
},
{
@@ -1420,15 +1388,14 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▌| 38/40 [00:00<00:00, 50.25it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 47.76it/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "\r",
- "100%|██████████| 40/40 [00:00<00:00, 44.05it/s]"
+ "\n"
]
},
{
@@ -1437,13 +1404,6 @@
"text": [
"Finished Training\n"
]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
}
],
"source": [
@@ -1505,10 +1465,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:37:47.079451Z",
- "iopub.status.busy": "2023-10-06T06:37:47.078307Z",
- "iopub.status.idle": "2023-10-06T06:37:47.096551Z",
- "shell.execute_reply": "2023-10-06T06:37:47.095936Z"
+ "iopub.execute_input": "2023-10-11T10:09:57.445751Z",
+ "iopub.status.busy": "2023-10-11T10:09:57.445209Z",
+ "iopub.status.idle": "2023-10-11T10:09:57.464093Z",
+ "shell.execute_reply": "2023-10-11T10:09:57.463363Z"
}
},
"outputs": [],
@@ -1533,10 +1493,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:37:47.101221Z",
- "iopub.status.busy": "2023-10-06T06:37:47.100050Z",
- "iopub.status.idle": "2023-10-06T06:37:47.766910Z",
- "shell.execute_reply": "2023-10-06T06:37:47.766200Z"
+ "iopub.execute_input": "2023-10-11T10:09:57.467334Z",
+ "iopub.status.busy": "2023-10-11T10:09:57.466780Z",
+ "iopub.status.idle": "2023-10-11T10:09:58.133127Z",
+ "shell.execute_reply": "2023-10-11T10:09:58.132378Z"
}
},
"outputs": [],
@@ -1556,10 +1516,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:37:47.770185Z",
- "iopub.status.busy": "2023-10-06T06:37:47.769784Z",
- "iopub.status.idle": "2023-10-06T06:41:51.993212Z",
- "shell.execute_reply": "2023-10-06T06:41:51.992421Z"
+ "iopub.execute_input": "2023-10-11T10:09:58.137122Z",
+ "iopub.status.busy": "2023-10-11T10:09:58.136613Z",
+ "iopub.status.idle": "2023-10-11T10:13:47.757973Z",
+ "shell.execute_reply": "2023-10-11T10:13:47.756992Z"
}
},
"outputs": [
@@ -1596,7 +1556,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "9d0d44d31d0a4b36bf059e3a5cba53c6",
+ "model_id": "b937c984956f4e769733f07751dbd4fa",
"version_major": 2,
"version_minor": 0
},
@@ -1635,10 +1595,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:51.997394Z",
- "iopub.status.busy": "2023-10-06T06:41:51.996280Z",
- "iopub.status.idle": "2023-10-06T06:41:52.515365Z",
- "shell.execute_reply": "2023-10-06T06:41:52.514685Z"
+ "iopub.execute_input": "2023-10-11T10:13:47.762235Z",
+ "iopub.status.busy": "2023-10-11T10:13:47.761108Z",
+ "iopub.status.idle": "2023-10-11T10:13:48.329878Z",
+ "shell.execute_reply": "2023-10-11T10:13:48.329124Z"
}
},
"outputs": [
@@ -1772,13 +1732,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "----------------------- dark images ------------------------\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
+ "----------------------- dark images ------------------------\n",
"\n",
"Number of examples with this issue: 16\n",
"Examples representing most severe instances of this issue:\n",
@@ -1816,10 +1770,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:52.518525Z",
- "iopub.status.busy": "2023-10-06T06:41:52.518275Z",
- "iopub.status.idle": "2023-10-06T06:41:52.571551Z",
- "shell.execute_reply": "2023-10-06T06:41:52.570943Z"
+ "iopub.execute_input": "2023-10-11T10:13:48.335054Z",
+ "iopub.status.busy": "2023-10-11T10:13:48.333835Z",
+ "iopub.status.idle": "2023-10-11T10:13:48.406725Z",
+ "shell.execute_reply": "2023-10-11T10:13:48.406099Z"
}
},
"outputs": [
@@ -1923,10 +1877,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:52.574712Z",
- "iopub.status.busy": "2023-10-06T06:41:52.574462Z",
- "iopub.status.idle": "2023-10-06T06:41:52.584420Z",
- "shell.execute_reply": "2023-10-06T06:41:52.583750Z"
+ "iopub.execute_input": "2023-10-11T10:13:48.411489Z",
+ "iopub.status.busy": "2023-10-11T10:13:48.410328Z",
+ "iopub.status.idle": "2023-10-11T10:13:48.423987Z",
+ "shell.execute_reply": "2023-10-11T10:13:48.423385Z"
}
},
"outputs": [
@@ -2056,10 +2010,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:52.587253Z",
- "iopub.status.busy": "2023-10-06T06:41:52.587026Z",
- "iopub.status.idle": "2023-10-06T06:41:52.592597Z",
- "shell.execute_reply": "2023-10-06T06:41:52.591944Z"
+ "iopub.execute_input": "2023-10-11T10:13:48.428538Z",
+ "iopub.status.busy": "2023-10-11T10:13:48.427366Z",
+ "iopub.status.idle": "2023-10-11T10:13:48.434492Z",
+ "shell.execute_reply": "2023-10-11T10:13:48.433933Z"
},
"nbsphinx": "hidden"
},
@@ -2105,10 +2059,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:52.595392Z",
- "iopub.status.busy": "2023-10-06T06:41:52.595172Z",
- "iopub.status.idle": "2023-10-06T06:41:53.358678Z",
- "shell.execute_reply": "2023-10-06T06:41:53.358096Z"
+ "iopub.execute_input": "2023-10-11T10:13:48.438863Z",
+ "iopub.status.busy": "2023-10-11T10:13:48.437732Z",
+ "iopub.status.idle": "2023-10-11T10:13:49.276524Z",
+ "shell.execute_reply": "2023-10-11T10:13:49.275792Z"
}
},
"outputs": [
@@ -2143,10 +2097,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:53.361658Z",
- "iopub.status.busy": "2023-10-06T06:41:53.361425Z",
- "iopub.status.idle": "2023-10-06T06:41:53.371666Z",
- "shell.execute_reply": "2023-10-06T06:41:53.371029Z"
+ "iopub.execute_input": "2023-10-11T10:13:49.280173Z",
+ "iopub.status.busy": "2023-10-11T10:13:49.279524Z",
+ "iopub.status.idle": "2023-10-11T10:13:49.290691Z",
+ "shell.execute_reply": "2023-10-11T10:13:49.289977Z"
}
},
"outputs": [
@@ -2313,10 +2267,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:53.374771Z",
- "iopub.status.busy": "2023-10-06T06:41:53.374329Z",
- "iopub.status.idle": "2023-10-06T06:41:53.384584Z",
- "shell.execute_reply": "2023-10-06T06:41:53.383958Z"
+ "iopub.execute_input": "2023-10-11T10:13:49.294117Z",
+ "iopub.status.busy": "2023-10-11T10:13:49.293464Z",
+ "iopub.status.idle": "2023-10-11T10:13:49.303413Z",
+ "shell.execute_reply": "2023-10-11T10:13:49.302721Z"
},
"nbsphinx": "hidden"
},
@@ -2392,10 +2346,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:53.387412Z",
- "iopub.status.busy": "2023-10-06T06:41:53.387059Z",
- "iopub.status.idle": "2023-10-06T06:41:53.929155Z",
- "shell.execute_reply": "2023-10-06T06:41:53.928406Z"
+ "iopub.execute_input": "2023-10-11T10:13:49.306738Z",
+ "iopub.status.busy": "2023-10-11T10:13:49.306085Z",
+ "iopub.status.idle": "2023-10-11T10:13:49.877129Z",
+ "shell.execute_reply": "2023-10-11T10:13:49.876445Z"
}
},
"outputs": [
@@ -2432,10 +2386,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:53.932899Z",
- "iopub.status.busy": "2023-10-06T06:41:53.932337Z",
- "iopub.status.idle": "2023-10-06T06:41:53.954268Z",
- "shell.execute_reply": "2023-10-06T06:41:53.953626Z"
+ "iopub.execute_input": "2023-10-11T10:13:49.880872Z",
+ "iopub.status.busy": "2023-10-11T10:13:49.880359Z",
+ "iopub.status.idle": "2023-10-11T10:13:49.905077Z",
+ "shell.execute_reply": "2023-10-11T10:13:49.904324Z"
}
},
"outputs": [
@@ -2592,10 +2546,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:53.957354Z",
- "iopub.status.busy": "2023-10-06T06:41:53.956956Z",
- "iopub.status.idle": "2023-10-06T06:41:53.964279Z",
- "shell.execute_reply": "2023-10-06T06:41:53.963529Z"
+ "iopub.execute_input": "2023-10-11T10:13:49.909062Z",
+ "iopub.status.busy": "2023-10-11T10:13:49.908784Z",
+ "iopub.status.idle": "2023-10-11T10:13:49.917015Z",
+ "shell.execute_reply": "2023-10-11T10:13:49.916337Z"
},
"nbsphinx": "hidden"
},
@@ -2640,10 +2594,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:53.967600Z",
- "iopub.status.busy": "2023-10-06T06:41:53.966955Z",
- "iopub.status.idle": "2023-10-06T06:41:54.410937Z",
- "shell.execute_reply": "2023-10-06T06:41:54.410327Z"
+ "iopub.execute_input": "2023-10-11T10:13:49.920620Z",
+ "iopub.status.busy": "2023-10-11T10:13:49.920163Z",
+ "iopub.status.idle": "2023-10-11T10:13:50.395111Z",
+ "shell.execute_reply": "2023-10-11T10:13:50.394485Z"
}
},
"outputs": [
@@ -2718,10 +2672,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:54.414287Z",
- "iopub.status.busy": "2023-10-06T06:41:54.413709Z",
- "iopub.status.idle": "2023-10-06T06:41:54.424267Z",
- "shell.execute_reply": "2023-10-06T06:41:54.423678Z"
+ "iopub.execute_input": "2023-10-11T10:13:50.398554Z",
+ "iopub.status.busy": "2023-10-11T10:13:50.398057Z",
+ "iopub.status.idle": "2023-10-11T10:13:50.408772Z",
+ "shell.execute_reply": "2023-10-11T10:13:50.408212Z"
}
},
"outputs": [
@@ -2849,10 +2803,10 @@
"execution_count": 27,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:54.427440Z",
- "iopub.status.busy": "2023-10-06T06:41:54.426976Z",
- "iopub.status.idle": "2023-10-06T06:41:54.445935Z",
- "shell.execute_reply": "2023-10-06T06:41:54.445120Z"
+ "iopub.execute_input": "2023-10-11T10:13:50.411961Z",
+ "iopub.status.busy": "2023-10-11T10:13:50.411350Z",
+ "iopub.status.idle": "2023-10-11T10:13:50.418505Z",
+ "shell.execute_reply": "2023-10-11T10:13:50.417860Z"
},
"nbsphinx": "hidden"
},
@@ -2889,10 +2843,10 @@
"execution_count": 28,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:54.453589Z",
- "iopub.status.busy": "2023-10-06T06:41:54.449597Z",
- "iopub.status.idle": "2023-10-06T06:41:54.654951Z",
- "shell.execute_reply": "2023-10-06T06:41:54.654275Z"
+ "iopub.execute_input": "2023-10-11T10:13:50.421240Z",
+ "iopub.status.busy": "2023-10-11T10:13:50.420937Z",
+ "iopub.status.idle": "2023-10-11T10:13:50.629910Z",
+ "shell.execute_reply": "2023-10-11T10:13:50.629179Z"
}
},
"outputs": [
@@ -2934,10 +2888,10 @@
"execution_count": 29,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:54.658172Z",
- "iopub.status.busy": "2023-10-06T06:41:54.657630Z",
- "iopub.status.idle": "2023-10-06T06:41:54.667376Z",
- "shell.execute_reply": "2023-10-06T06:41:54.666717Z"
+ "iopub.execute_input": "2023-10-11T10:13:50.633768Z",
+ "iopub.status.busy": "2023-10-11T10:13:50.633372Z",
+ "iopub.status.idle": "2023-10-11T10:13:50.645259Z",
+ "shell.execute_reply": "2023-10-11T10:13:50.644589Z"
}
},
"outputs": [
@@ -2962,47 +2916,47 @@
" \n",
" \n",
" | \n",
- " low_information_score | \n",
" is_low_information_issue | \n",
+ " low_information_score | \n",
"
\n",
" \n",
"
\n",
" \n",
" 53050 | \n",
- " 0.067975 | \n",
" True | \n",
+ " 0.067975 | \n",
"
\n",
" \n",
" 40875 | \n",
- " 0.089929 | \n",
" True | \n",
+ " 0.089929 | \n",
"
\n",
" \n",
" 9594 | \n",
- " 0.092601 | \n",
" True | \n",
+ " 0.092601 | \n",
"
\n",
" \n",
" 34825 | \n",
- " 0.107744 | \n",
" True | \n",
+ " 0.107744 | \n",
"
\n",
" \n",
" 37530 | \n",
- " 0.108516 | \n",
" True | \n",
+ " 0.108516 | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " low_information_score is_low_information_issue\n",
- "53050 0.067975 True\n",
- "40875 0.089929 True\n",
- "9594 0.092601 True\n",
- "34825 0.107744 True\n",
- "37530 0.108516 True"
+ " is_low_information_issue low_information_score\n",
+ "53050 True 0.067975\n",
+ "40875 True 0.089929\n",
+ "9594 True 0.092601\n",
+ "34825 True 0.107744\n",
+ "37530 True 0.108516"
]
},
"execution_count": 29,
@@ -3023,10 +2977,10 @@
"execution_count": 30,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:54.670140Z",
- "iopub.status.busy": "2023-10-06T06:41:54.669781Z",
- "iopub.status.idle": "2023-10-06T06:41:54.865356Z",
- "shell.execute_reply": "2023-10-06T06:41:54.864585Z"
+ "iopub.execute_input": "2023-10-11T10:13:50.648555Z",
+ "iopub.status.busy": "2023-10-11T10:13:50.648181Z",
+ "iopub.status.idle": "2023-10-11T10:13:50.853163Z",
+ "shell.execute_reply": "2023-10-11T10:13:50.852446Z"
}
},
"outputs": [
@@ -3057,10 +3011,10 @@
"execution_count": 31,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:41:54.868428Z",
- "iopub.status.busy": "2023-10-06T06:41:54.868067Z",
- "iopub.status.idle": "2023-10-06T06:41:54.874369Z",
- "shell.execute_reply": "2023-10-06T06:41:54.873751Z"
+ "iopub.execute_input": "2023-10-11T10:13:50.856553Z",
+ "iopub.status.busy": "2023-10-11T10:13:50.855985Z",
+ "iopub.status.idle": "2023-10-11T10:13:50.861797Z",
+ "shell.execute_reply": "2023-10-11T10:13:50.861237Z"
},
"nbsphinx": "hidden"
},
@@ -3097,31 +3051,43 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "0151ebd127904b58993879d5948d5543": {
+ "02c6f0a42df84df08d778dec1af0af70": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_893a3906fd80400ca06dc6cd60f2b3de",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_f48ba079fc754c11a1107f624273ab52",
- "value": 60000.0
+ "layout": "IPY_MODEL_24b068c742324f13b546986aa15688c8",
+ "placeholder": "",
+ "style": "IPY_MODEL_dd5165334aab40bca65fd1c56bacd6ab",
+ "value": " 9617/10000 [00:01<00:00, 5829.69 examples/s]"
+ }
+ },
+ "04f0dec9e2024f9bb55309f482e2a808": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "01671bb1af594ed1aaa264189721e161": {
+ "0530e34526e74f2c8fbe18160e0b98e4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3173,74 +3139,59 @@
"width": null
}
},
- "01e5ca03fde34295afdc0a7e47a2ef9e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "02c6bb29d5ff429b98a5f4e28b2cf996": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "06e0d153463d4e80ac2cf34d0073219c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "081f2419fe27464c80a27551ae122f4c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "07c235f5a12e433d8548139c3d2c1f06": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4bce7cb5562b49e0959b06ac4e948878",
- "placeholder": "",
- "style": "IPY_MODEL_b1f260c53b9d4190b0baabdf94245266",
- "value": " 9635/10000 [00:01<00:00, 6219.23 examples/s]"
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "084e5989bff34f99aa0927df9c33f5ca": {
+ "08ee3f3b655547bb9197afb0fa6d9a50": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -3253,33 +3204,18 @@
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
- "bar_style": "success",
+ "bar_style": "",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_57e1fb2ec7574a57ab84f5d0169fdb2a",
- "max": 4.0,
+ "layout": "IPY_MODEL_d5ee54a9268e40848992e8fdd001cc30",
+ "max": 60000.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_6492f686e3414d2e939e0347a87261fa",
- "value": 4.0
- }
- },
- "09ff6a5101a3425b88b0b796dbc19348": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "style": "IPY_MODEL_149c237e59304d11be5fe2c969ac65c6",
+ "value": 60000.0
}
},
- "0a31e565c6164dbb95f9063af7c30476": {
+ "0a1b3634ed6f45689c55a69c4d358c70": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3327,11 +3263,11 @@
"padding": null,
"right": null,
"top": null,
- "visibility": "hidden",
+ "visibility": null,
"width": null
}
},
- "0a6f675ca92c4491843d1bfc2dbe2f73": {
+ "0d97dd203dd749c98e492df740ad1a8a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -3347,7 +3283,7 @@
"description_width": ""
}
},
- "0c8cb9f8e6f44b4f9b398fba6dc63327": {
+ "145b49eab7524442b9a18a49e4da466d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3399,7 +3335,23 @@
"width": null
}
},
- "0ed3644c553146f9858ec34a1abe66b4": {
+ "149c237e59304d11be5fe2c969ac65c6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "166290f12ec64720ade2b151369625b8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3447,50 +3399,11 @@
"padding": null,
"right": null,
"top": null,
- "visibility": "hidden",
+ "visibility": null,
"width": null
}
},
- "0ff7ecbba50441bc8acd04172d7878b4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1f32673a5bb342c4a558461413b1fa3c",
- "max": 26421880.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_cbf0b1dba3ea49f9bc102d0106f59e4c",
- "value": 26421880.0
- }
- },
- "1403b860563b4f118bf69a9385ce03be": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "141ba5460c0f40ae9e6e898595d1fb04": {
+ "17df8f0b127748528def3ab9ee066e9c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3505,43 +3418,124 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_8df648fe80e042d38fca49b6a6c14155",
+ "layout": "IPY_MODEL_2bfcc1ba222b46b6bd22c53a26bb8ffb",
"placeholder": "",
- "style": "IPY_MODEL_986fe4a4df6047c1a0fbc3c3f144db88",
- "value": "Downloading data: 100%"
+ "style": "IPY_MODEL_824581c27bd54707a1dbd7054941396b",
+ "value": " 4/4 [00:00<00:00, 622.74it/s]"
}
},
- "1749e0a97a9d40e7af24b6322bc38eb7": {
- "model_module": "@jupyter-widgets/controls",
+ "17fa1cfef36c4838b2af5ae5c56a2199": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": "hidden",
+ "width": null
+ }
+ },
+ "18ddedcb5c2b45d68ea020d85ec2957a": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ee84a0ddb0ff453e9e2ad203d1ec2fbe",
+ "placeholder": "",
+ "style": "IPY_MODEL_b7132a8576a84832a293b379c8146ccb",
+ "value": "Downloading data: 100%"
}
},
- "1d6ba9ad5a0f477d86aedd8503d4c816": {
+ "19cb56bcbce449d8a8e650440d90bb26": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c234ef001e8d4a52810d7d8c57e71a06",
+ "IPY_MODEL_4a49bfbbc62f4d5a9f3a2ef5f3f9ca7d",
+ "IPY_MODEL_02c6f0a42df84df08d778dec1af0af70"
+ ],
+ "layout": "IPY_MODEL_17fa1cfef36c4838b2af5ae5c56a2199"
+ }
+ },
+ "1a1751cab1284fadad8950d60cfbfa98": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "1dad32857f1c40f8bd6a8ff6199a5f6e": {
+ "1cb3c5ccdcc1482b90ef1579f97a7836": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -3557,15 +3551,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_a90b395968c14dd4abbfab66088619d0",
- "max": 4.0,
+ "layout": "IPY_MODEL_081f2419fe27464c80a27551ae122f4c",
+ "max": 3126.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_81e899abc48143ac841fa8aeea8b4f3e",
- "value": 4.0
+ "style": "IPY_MODEL_796d3a9dc21b498daed15f7910c37dd4",
+ "value": 3126.0
}
},
- "1f32673a5bb342c4a558461413b1fa3c": {
+ "1d93bcd956e048a1b0dc39e0cc356c0d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3617,22 +3611,7 @@
"width": null
}
},
- "211746264aba474384ebf63383ca003f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "225f13c4665d424ba2ccb424d13ca2af": {
+ "1da917103e2146f699b66ecb90c8713d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3684,131 +3663,37 @@
"width": null
}
},
- "24f3a69463c344eba134c96c15bc0098": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6e878ffb2ec546d394990efba924591a",
- "placeholder": "",
- "style": "IPY_MODEL_8b462027ddf74098832001a78cd07634",
- "value": "Generating train split: 99%"
- }
- },
- "275368c326b449d88566e43cc460e9ba": {
+ "22752480604c4f99b5b0e8acafbf27fc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_88e8534545094e0c963ec575e95cc2c2",
- "placeholder": "",
- "style": "IPY_MODEL_ea678bebcfe2498db2895163b2459f58",
- "value": "Downloading builder script: 100%"
- }
- },
- "299aa0eff6144b94bd17d873f2c8bddc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e22d4c4bce3a4b53bbf0e20cf57c81c8",
- "placeholder": "",
- "style": "IPY_MODEL_cc34bb1b87524f388a8f46f998078cb5",
- "value": "Downloading readme: 100%"
- }
- },
- "2ab3efb6c5f74a3b9c54005bd8c52d15": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fa6b9ac9d98f4610b25acf9fd34c9cd7",
- "placeholder": "",
- "style": "IPY_MODEL_f0746106a8244eb2b9f15cf3186ffbdc",
- "value": " 29.5k/29.5k [00:00<00:00, 2.51MB/s]"
- }
- },
- "2cf14236d6b348139bccc29262556a4d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b032fe5407d6402e8cddcea0f75f7348",
- "max": 3126.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_0a6f675ca92c4491843d1bfc2dbe2f73",
- "value": 3126.0
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "2ea284ff7eb44f8188972e764cbd7aad": {
+ "2316e73fd848478997624e289f885e78": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "33a7dbc094c8467593b70492a7889c6b": {
+ "23d89cb0f39d4026a7fc0feb189966db": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3845,116 +3730,22 @@
"margin": null,
"max_height": null,
"max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "33cdde96c6f94e74a90cf9782fe2ac0e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_141ba5460c0f40ae9e6e898595d1fb04",
- "IPY_MODEL_5b0141868e224c45b9f34eb14dc3f503",
- "IPY_MODEL_52af8bc7ba71495497d942d3f8e3108a"
- ],
- "layout": "IPY_MODEL_70e3f1da8b574e20a73dcdae80a663cd"
- }
- },
- "36c9785b3d5a4a58b55da86ab88f4ae8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_43905303f8a343f6b2c4fa023c32ef73",
- "placeholder": "",
- "style": "IPY_MODEL_01e5ca03fde34295afdc0a7e47a2ef9e",
- "value": " 4/4 [00:00<00:00, 2.79it/s]"
- }
- },
- "3839a58bc40e4985b854b28e76751270": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "395122d8162d4902b5e474611ff95663": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a9b572fd134640c68524b7c36e53f49b",
- "placeholder": "",
- "style": "IPY_MODEL_f8dbc859491a483fb708ff57979ea23a",
- "value": "Downloading data: 100%"
- }
- },
- "39dfc68b4a464b0c915ba7dcbf4be31e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "3af7a267f69a4179ade464518a83d144": {
+ "24b068c742324f13b546986aa15688c8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4006,29 +3797,23 @@
"width": null
}
},
- "3d1ef15b6e96488fa1467ed33fb0ff16": {
+ "24f0dd9fe7aa4e5293b12229a20826bb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_24f3a69463c344eba134c96c15bc0098",
- "IPY_MODEL_473606641293409c9166005473f7da63",
- "IPY_MODEL_6e799b868e8e41e9a23eb44a07f7c964"
- ],
- "layout": "IPY_MODEL_0a31e565c6164dbb95f9063af7c30476"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "3d2f71a9f6e54418a5ed89f8ec45fc54": {
+ "27158263426e4326bea37b17780b13a7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4080,94 +3865,7 @@
"width": null
}
},
- "3d962587604c4d2d930b18b9acf54dc7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "3dad4a6558ae4c9ba3e9317d48a97e26": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "3f68f8498be148848fa2ce1649ebb5ed": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "40669995d2a94598a3210f2767d0824b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f1730c6c7a2f4151a5cdf5407e4bfe64",
- "placeholder": "",
- "style": "IPY_MODEL_d627e1e57e1e427ca521fa53addedeb0",
- "value": "Computing checksums: 100%"
- }
- },
- "41c4d9d3f4e54674ac4ada871fa5db02": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a1c89a6b82d94910956cd2087b93b293",
- "placeholder": "",
- "style": "IPY_MODEL_3d962587604c4d2d930b18b9acf54dc7",
- "value": "Extracting data files: 100%"
- }
- },
- "43905303f8a343f6b2c4fa023c32ef73": {
+ "273a11e90a6f44a2a5e0214019a7a7a0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4215,116 +3913,27 @@
"padding": null,
"right": null,
"top": null,
- "visibility": null,
+ "visibility": "hidden",
"width": null
}
},
- "43bf3282121448eab75d01ed88496868": {
+ "27dc7709d9104ae6936c712c3cd1c1b3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "458c0bc485a74f8a91020cf3173f7842": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6064f73b972b4f819f9643eb378c10a1",
- "max": 10000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_e55c8a9a601342c59a6b69e5b81457c8",
- "value": 10000.0
- }
- },
- "45f3cb23469e4510b7b2871daf17b8bf": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d2c75f018c34465b8bead430756a9676",
- "placeholder": "",
- "style": "IPY_MODEL_1d6ba9ad5a0f477d86aedd8503d4c816",
- "value": " 4.83k/4.83k [00:00<00:00, 385kB/s]"
- }
- },
- "473606641293409c9166005473f7da63": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_53dd8fadf0554a00bf9f5548e1973730",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_51f97d1b43a24a748b73657754fb41de",
- "value": 60000.0
- }
- },
- "4b483079a604407d89f71f81b11d8637": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_bf73b96ae84a47bf93e41030dcd65a86",
- "placeholder": "",
- "style": "IPY_MODEL_09ff6a5101a3425b88b0b796dbc19348",
- "value": " 4/4 [00:00<00:00, 613.94it/s]"
- }
- },
- "4bce7cb5562b49e0959b06ac4e948878": {
+ "29a57bb372844662ba5b50a6816b3bd4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4376,7 +3985,7 @@
"width": null
}
},
- "4d06d70cfcf5403db9768c1b6c7ea1c0": {
+ "2b4ea11a7ca8411f9ad4e2dd06db4666": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4428,44 +4037,81 @@
"width": null
}
},
- "51f97d1b43a24a748b73657754fb41de": {
+ "2bcf4863514e44b8a54f1b2b2b38c784": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_76e624e1df7a4932b1c44bb698fdc4bb",
+ "IPY_MODEL_819cea03472b44a6b15101d9083a8a21",
+ "IPY_MODEL_17df8f0b127748528def3ab9ee066e9c"
+ ],
+ "layout": "IPY_MODEL_7a75183b24834208b5c28167acb72c73"
}
},
- "52af8bc7ba71495497d942d3f8e3108a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "2bfcc1ba222b46b6bd22c53a26bb8ffb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4d06d70cfcf5403db9768c1b6c7ea1c0",
- "placeholder": "",
- "style": "IPY_MODEL_1749e0a97a9d40e7af24b6322bc38eb7",
- "value": " 4.42M/4.42M [00:00<00:00, 51.3MB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "53dd8fadf0554a00bf9f5548e1973730": {
+ "2cedd620897b4b7ebc38cd3c6a65c91a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4517,7 +4163,7 @@
"width": null
}
},
- "55bb3ed2b93c43e7a7ae7956e7f5f072": {
+ "2ef5a77a55d94c78baa40ea1709dd540": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4569,7 +4215,7 @@
"width": null
}
},
- "56f725efc02d44f1804d80151899ae54": {
+ "3217c5f2a83e4d2386c96aee450e0cf6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4617,11 +4263,11 @@
"padding": null,
"right": null,
"top": null,
- "visibility": null,
+ "visibility": "hidden",
"width": null
}
},
- "57e1fb2ec7574a57ab84f5d0169fdb2a": {
+ "33a2accde46c479ba6a9d32efc0fc132": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4673,7 +4319,7 @@
"width": null
}
},
- "5b0141868e224c45b9f34eb14dc3f503": {
+ "34579b0fd42f402bb5c668d10306f0da": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -4689,15 +4335,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_ba99985ebb204af4b9a7a5e34c7001df",
- "max": 4422102.0,
+ "layout": "IPY_MODEL_29a57bb372844662ba5b50a6816b3bd4",
+ "max": 60000.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_a1ff33a9b7424d4196eaf869f54b8886",
- "value": 4422102.0
+ "style": "IPY_MODEL_27dc7709d9104ae6936c712c3cd1c1b3",
+ "value": 60000.0
}
},
- "5b328adcfdb04550831822d926e1628f": {
+ "34cfef4161174003ab992c33ffe64ff2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -4712,13 +4358,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_eb1b6a4da22f46cca0dc4fbf6e861449",
+ "layout": "IPY_MODEL_90c772d5b71c46528baae9d8e8bed162",
"placeholder": "",
- "style": "IPY_MODEL_3dad4a6558ae4c9ba3e9317d48a97e26",
- "value": " 59928/60000 [00:15<00:00, 4121.17 examples/s]"
+ "style": "IPY_MODEL_22752480604c4f99b5b0e8acafbf27fc",
+ "value": "Downloading data: 100%"
}
},
- "5c56933ef85d473fb2f83c90fb87f0c0": {
+ "34ef2aacc2d64a75a1a39629a4f0e6d2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -4731,18 +4377,18 @@
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
- "bar_style": "success",
+ "bar_style": "",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_ed46963891574900a7eacc41e84d9997",
- "max": 5148.0,
+ "layout": "IPY_MODEL_23d89cb0f39d4026a7fc0feb189966db",
+ "max": 60000.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_2ea284ff7eb44f8188972e764cbd7aad",
- "value": 5148.0
+ "style": "IPY_MODEL_885869664c2e4787a4f4538b02c6691c",
+ "value": 60000.0
}
},
- "5c607a84f1444542bbaac679854e1b01": {
+ "3553c2ef58114f9a936ebd6f09229d99": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4794,59 +4440,28 @@
"width": null
}
},
- "5fe5a726a00c4ddfb55ecc5914ef0075": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "358723d13f4d4aed9dfba7bfe0e6ae9e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_938305ce640b4005af8098ad5810cb69",
+ "placeholder": "",
+ "style": "IPY_MODEL_66754249067e42eba1fe8b066b45d7f9",
+ "value": " 5.15k/5.15k [00:00<00:00, 393kB/s]"
}
},
- "602f58878fac4e29aa493c675525722c": {
+ "35ea246fcb374a8f8d74af458959e93c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -4861,13 +4476,28 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_996e2db5825d4518ad2d4d4fabeddd88",
+ "layout": "IPY_MODEL_dc1561fff54643499c0bab20c7c6093b",
"placeholder": "",
- "style": "IPY_MODEL_43bf3282121448eab75d01ed88496868",
- "value": "Downloading data files: 100%"
+ "style": "IPY_MODEL_5f968fc6c31f475992e1f89598bd44ec",
+ "value": " 59804/60000 [00:10<00:00, 5734.26 examples/s]"
+ }
+ },
+ "388810db058f44f69ede67c3d5f7dbbb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "6064f73b972b4f819f9643eb378c10a1": {
+ "3969ba13cf6a45338e795850a8e1032d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4919,90 +4549,7 @@
"width": null
}
},
- "61ec067de744480d8ec2a0377c775341": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_41c4d9d3f4e54674ac4ada871fa5db02",
- "IPY_MODEL_f0a52bca034c4b199170aba6ea2feed4",
- "IPY_MODEL_36c9785b3d5a4a58b55da86ab88f4ae8"
- ],
- "layout": "IPY_MODEL_55bb3ed2b93c43e7a7ae7956e7f5f072"
- }
- },
- "6492f686e3414d2e939e0347a87261fa": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "65e6ffb8c15c4a60a0a38431a50015e6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6accb71036214df9a1e0c4bb745d49c7",
- "placeholder": "",
- "style": "IPY_MODEL_8b5993c5101e4900b60d25ede6ecc165",
- "value": "Downloading data: 100%"
- }
- },
- "697051b9e4d64222acc5a77f918bd133": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ed65830d599646469908fff377873260",
- "max": 29515.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_ecdc5d2b0971466ca6fe10b3be15b802",
- "value": 29515.0
- }
- },
- "6accb71036214df9a1e0c4bb745d49c7": {
+ "3d99f62fdbaf4890a678133e7ce0ef9d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5054,50 +4601,7 @@
"width": null
}
},
- "6b2a8b54141a4c1da3515dd6dff7308d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_40669995d2a94598a3210f2767d0824b",
- "IPY_MODEL_084e5989bff34f99aa0927df9c33f5ca",
- "IPY_MODEL_4b483079a604407d89f71f81b11d8637"
- ],
- "layout": "IPY_MODEL_0c8cb9f8e6f44b4f9b398fba6dc63327"
- }
- },
- "6e799b868e8e41e9a23eb44a07f7c964": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_01671bb1af594ed1aaa264189721e161",
- "placeholder": "",
- "style": "IPY_MODEL_3839a58bc40e4985b854b28e76751270",
- "value": " 59530/60000 [00:09<00:00, 6186.86 examples/s]"
- }
- },
- "6e878ffb2ec546d394990efba924591a": {
+ "43ce4d5c01d64a389be2ab17db643203": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5149,7 +4653,7 @@
"width": null
}
},
- "70e3f1da8b574e20a73dcdae80a663cd": {
+ "44726a05265b410094fdc31944fb6346": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5201,59 +4705,83 @@
"width": null
}
},
- "711309b7eaec4fa9848d2982dada90af": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "471ad93953614f17a2204c72fc743424": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b46973d78b6044c58cb0b065af3fcc29",
+ "IPY_MODEL_a2500082713c4f7f8bacbfe37165c6c3",
+ "IPY_MODEL_bfab3a07981d46538b94c07a77879d04"
+ ],
+ "layout": "IPY_MODEL_43ce4d5c01d64a389be2ab17db643203"
+ }
+ },
+ "497ba684a54b4c55bd282633189297b3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4a49bfbbc62f4d5a9f3a2ef5f3f9ca7d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e6232384e32c45ab857e6b0db2473592",
+ "max": 10000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0d97dd203dd749c98e492df740ad1a8a",
+ "value": 10000.0
+ }
+ },
+ "4ac0611cc2004f7c8c23b1e186519907": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "7a34bc51e4234e16ad880c8ee0b61ddd": {
+ "4ee876d61a494dc28b9583d4708b305b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5305,7 +4833,7 @@
"width": null
}
},
- "7d776926d19d4afab5af0ead9d7b6983": {
+ "50abbeda51104b988a414f28699f1791": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -5320,13 +4848,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e3ef29165bd24e338053cea5836afaf0",
+ "layout": "IPY_MODEL_0530e34526e74f2c8fbe18160e0b98e4",
"placeholder": "",
- "style": "IPY_MODEL_83d091ebb83c4976985f8f4ba4a6b137",
+ "style": "IPY_MODEL_554202939b2b4468aa9c983ecb8e5ad5",
"value": "100%"
}
},
- "7f8cd140bc134cf39b86db70c064a59e": {
+ "554202939b2b4468aa9c983ecb8e5ad5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -5341,7 +4869,7 @@
"description_width": ""
}
},
- "802b59b6da604b728597ee0f2a195e02": {
+ "5597552515a443568a713cf452505e3c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -5356,7 +4884,7 @@
"description_width": ""
}
},
- "81137cb7597c46a5b79a3203f847fbd3": {
+ "563ceae2befe4a29a553ec515c85e0c4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -5371,29 +4899,34 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5fe5a726a00c4ddfb55ecc5914ef0075",
+ "layout": "IPY_MODEL_e2aa2b8d04584980b4e7e38f64155397",
"placeholder": "",
- "style": "IPY_MODEL_06e0d153463d4e80ac2cf34d0073219c",
- "value": " 5.15k/5.15k [00:00<00:00, 317kB/s]"
+ "style": "IPY_MODEL_b7f742808e984130b2831853efdbf512",
+ "value": " 4/4 [00:02<00:00, 1.64it/s]"
}
},
- "81e899abc48143ac841fa8aeea8b4f3e": {
+ "5a3be28d1bdc4bb388e481945cc539ea": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1d93bcd956e048a1b0dc39e0cc356c0d",
+ "placeholder": "",
+ "style": "IPY_MODEL_eeac3e7eb46e4f4db75e49018cc7279b",
+ "value": " 4/4 [00:00<00:00, 3.13it/s]"
}
},
- "83d091ebb83c4976985f8f4ba4a6b137": {
+ "5c5ae74d2d4d447a84b93007bd3b2b8e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -5408,29 +4941,23 @@
"description_width": ""
}
},
- "88b15f4b3fc74d1b8e47fc1ac4dfec47": {
+ "5d1aa9f1bf2e48669873e27852771e57": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_275368c326b449d88566e43cc460e9ba",
- "IPY_MODEL_d9d7e77f20bf4053961273f33bc63c4a",
- "IPY_MODEL_45f3cb23469e4510b7b2871daf17b8bf"
- ],
- "layout": "IPY_MODEL_8f8de057b1db42989765dfa7441e5f4b"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "88e8534545094e0c963ec575e95cc2c2": {
+ "5e952e88c4024945980510045e4997cb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5482,7 +5009,22 @@
"width": null
}
},
- "893a3906fd80400ca06dc6cd60f2b3de": {
+ "5f968fc6c31f475992e1f89598bd44ec": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "61a6ba883fed4813be9bee47c29a5390": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5534,7 +5076,7 @@
"width": null
}
},
- "8b462027ddf74098832001a78cd07634": {
+ "644e9b5bc6e549918989726d11f1bc13": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -5549,7 +5091,7 @@
"description_width": ""
}
},
- "8b5993c5101e4900b60d25ede6ecc165": {
+ "66754249067e42eba1fe8b066b45d7f9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -5564,7 +5106,7 @@
"description_width": ""
}
},
- "8df648fe80e042d38fca49b6a6c14155": {
+ "672a93126ff84ec7852eed6b656e6a4b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5616,7 +5158,7 @@
"width": null
}
},
- "8f8de057b1db42989765dfa7441e5f4b": {
+ "68df7f3bcc1a424486c93b6c16877d82": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5668,66 +5210,95 @@
"width": null
}
},
- "8f95920e837c4278a3189a10686934d1": {
+ "6923ecab36614f488946e77b0400211d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f494146fe5f3418ca4c7a070154e390c",
- "IPY_MODEL_2cf14236d6b348139bccc29262556a4d",
- "IPY_MODEL_ac24325460954081b244544fcfd0818b"
- ],
- "layout": "IPY_MODEL_b19e6a8b56e4417db6319cd03a94e7aa"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "90b11b854c844458a3b8e8e2cdc39e57": {
+ "6dbf3b48842240b5b06517d7bf644f66": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a7d4ee8fd3804fdeaae465aa22298ae1",
- "IPY_MODEL_0151ebd127904b58993879d5948d5543",
- "IPY_MODEL_5b328adcfdb04550831822d926e1628f"
- ],
- "layout": "IPY_MODEL_c0b88fdeba9f4356a33834c8891a5427"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7312f9eb9add43b497eac7c249001dd1",
+ "placeholder": "",
+ "style": "IPY_MODEL_644e9b5bc6e549918989726d11f1bc13",
+ "value": " 4.42M/4.42M [00:00<00:00, 73.1MB/s]"
}
},
- "986fe4a4df6047c1a0fbc3c3f144db88": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "706cab8691894b17b3ca83148edf9537": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "996e2db5825d4518ad2d4d4fabeddd88": {
+ "7312f9eb9add43b497eac7c249001dd1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5779,7 +5350,29 @@
"width": null
}
},
- "9d04baaef43d42a9a4031bfd73162284": {
+ "73d6fe322f2a4c548931f5375ca2ebbb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_78dc3a36d4f444f794b7814f03b576b1",
+ "IPY_MODEL_d3ea63f59e1e4289a55637d86e510018",
+ "IPY_MODEL_358723d13f4d4aed9dfba7bfe0e6ae9e"
+ ],
+ "layout": "IPY_MODEL_ef03d83b67ce4ca1be2d788de0af6fa8"
+ }
+ },
+ "73f87714f172420daeb7476f1dd6d1de": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -5794,35 +5387,65 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_225f13c4665d424ba2ccb424d13ca2af",
+ "layout": "IPY_MODEL_a3e66fb9df094a46aaff7d1f086a1dcc",
"placeholder": "",
- "style": "IPY_MODEL_d3c91085dc2f4e358b8d9ba7171edc86",
- "value": "Downloading data: 100%"
+ "style": "IPY_MODEL_2316e73fd848478997624e289f885e78",
+ "value": "Extracting data files: 100%"
}
},
- "9d0d44d31d0a4b36bf059e3a5cba53c6": {
+ "741d83c0dfda4c599feb62df18e918fe": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "757358d2997a4b5c9b5e1fa73341d87f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "76e624e1df7a4932b1c44bb698fdc4bb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7d776926d19d4afab5af0ead9d7b6983",
- "IPY_MODEL_dcb24aca340942299d0c1bec3d240773",
- "IPY_MODEL_f0c85a2d35574d3ba0aa5e316dd4ce1c"
- ],
- "layout": "IPY_MODEL_5c607a84f1444542bbaac679854e1b01"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3553c2ef58114f9a936ebd6f09229d99",
+ "placeholder": "",
+ "style": "IPY_MODEL_f71b33e0c6034a90b7b7d994f3fc8119",
+ "value": "Computing checksums: 100%"
}
},
- "a1c89a6b82d94910956cd2087b93b293": {
+ "77fbac9f50694f019e7e07768d9277c2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5874,45 +5497,65 @@
"width": null
}
},
- "a1ff33a9b7424d4196eaf869f54b8886": {
+ "786ab11d0340413abf874f6acb9000a6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1da917103e2146f699b66ecb90c8713d",
+ "placeholder": "",
+ "style": "IPY_MODEL_388810db058f44f69ede67c3d5f7dbbb",
+ "value": " 26.4M/26.4M [00:00<00:00, 89.6MB/s]"
+ }
+ },
+ "78dc3a36d4f444f794b7814f03b576b1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4ee876d61a494dc28b9583d4708b305b",
+ "placeholder": "",
+ "style": "IPY_MODEL_e4d9b1c9f75a48e59721fe7195d5d1d3",
+ "value": "Downloading data: 100%"
}
},
- "a6e342b828e64febb10a1251f5430c2e": {
+ "796d3a9dc21b498daed15f7910c37dd4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_299aa0eff6144b94bd17d873f2c8bddc",
- "IPY_MODEL_dcc4169587cc4e7cbb69d72332762952",
- "IPY_MODEL_c0bfb68de22b46efbfa5f581a47933cf"
- ],
- "layout": "IPY_MODEL_56f725efc02d44f1804d80151899ae54"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "a7d4ee8fd3804fdeaae465aa22298ae1": {
+ "79cb24b03b314bd9b4a24286e52af192": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -5927,13 +5570,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_dd35b2659196472b91de4048656a837e",
+ "layout": "IPY_MODEL_ae1868ea77924c86b4556cf2f6b90e52",
"placeholder": "",
- "style": "IPY_MODEL_bce4ac39b60447bfa844d74ac2161a62",
+ "style": "IPY_MODEL_4ac0611cc2004f7c8c23b1e186519907",
"value": "Map (num_proc=2): 100%"
}
},
- "a90b395968c14dd4abbfab66088619d0": {
+ "7a75183b24834208b5c28167acb72c73": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5985,7 +5628,23 @@
"width": null
}
},
- "a9b572fd134640c68524b7c36e53f49b": {
+ "7b57e0729c014ac59243e20cb836fc63": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "803f8bed0ae04d9ead2231ca4d73178c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6037,80 +5696,115 @@
"width": null
}
},
- "ac24325460954081b244544fcfd0818b": {
+ "805d3d17423c4ddcbefd8dd36e9a4dba": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "819cea03472b44a6b15101d9083a8a21": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e0854f59becb4f83a0f529dfeca13598",
- "placeholder": "",
- "style": "IPY_MODEL_b01da0aad7404edcbcca0b57a9c1401b",
- "value": " 3.13k/3.13k [00:00<00:00, 231kB/s]"
+ "layout": "IPY_MODEL_3969ba13cf6a45338e795850a8e1032d",
+ "max": 4.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_24f0dd9fe7aa4e5293b12229a20826bb",
+ "value": 4.0
}
},
- "aca71be19594459c8da95aff7ff51804": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "824581c27bd54707a1dbd7054941396b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "86acdfafd7c2440b8b365a0194c97131": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "879878209ae04f39a9d431f4b1a30527": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b04504a2f2de44fcab6fc2fce8399663",
+ "IPY_MODEL_34ef2aacc2d64a75a1a39629a4f0e6d2",
+ "IPY_MODEL_35ea246fcb374a8f8d74af458959e93c"
+ ],
+ "layout": "IPY_MODEL_273a11e90a6f44a2a5e0214019a7a7a0"
+ }
+ },
+ "885869664c2e4787a4f4538b02c6691c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "b01da0aad7404edcbcca0b57a9c1401b": {
+ "8c1c8c6c4bb8498589a2934f7f1761b2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -6125,7 +5819,7 @@
"description_width": ""
}
},
- "b032fe5407d6402e8cddcea0f75f7348": {
+ "90c772d5b71c46528baae9d8e8bed162": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6177,7 +5871,29 @@
"width": null
}
},
- "b19e6a8b56e4417db6319cd03a94e7aa": {
+ "919b65c98a2d49adb86d4a2bf0a272ef": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b25dd42728a44b93aec814ad5963e5cb",
+ "IPY_MODEL_1cb3c5ccdcc1482b90ef1579f97a7836",
+ "IPY_MODEL_a12b7f6c88674c529d7e301e81c947f7"
+ ],
+ "layout": "IPY_MODEL_2cedd620897b4b7ebc38cd3c6a65c91a"
+ }
+ },
+ "92886bb5677f4e5eb198b9643ed0580e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6229,7 +5945,7 @@
"width": null
}
},
- "b1e011a63af64416954348b761a09179": {
+ "938305ce640b4005af8098ad5810cb69": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6275,82 +5991,13 @@
"overflow_x": null,
"overflow_y": null,
"padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "b1f260c53b9d4190b0baabdf94245266": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "b202b5782f4046dbaf753b232947ca7f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "b4a8cc673f994ad59d178c8f1a49bf1a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_9d04baaef43d42a9a4031bfd73162284",
- "IPY_MODEL_697051b9e4d64222acc5a77f918bd133",
- "IPY_MODEL_2ab3efb6c5f74a3b9c54005bd8c52d15"
- ],
- "layout": "IPY_MODEL_3d2f71a9f6e54418a5ed89f8ec45fc54"
- }
- },
- "b924ade4081d43b3a0948cc65ebae993": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "ba99985ebb204af4b9a7a5e34c7001df": {
+ "96df8fd2c9c14b769cc09eabf25c383b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6402,22 +6049,111 @@
"width": null
}
},
- "bce4ac39b60447bfa844d74ac2161a62": {
+ "9a2f3f65748042e4b3bff278de0563ea": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d853464533a64c64a4dd7a29cf5a5dc8",
+ "IPY_MODEL_ce459a8fd5c0462a8bb9b13626151fa0",
+ "IPY_MODEL_563ceae2befe4a29a553ec515c85e0c4"
+ ],
+ "layout": "IPY_MODEL_e8606e4cac274bfe913056b0397bd948"
+ }
+ },
+ "9adc889157114a6383e4faae7ff4243d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "bd24d985acfa47e197b655c7f68578e7": {
+ "a12b7f6c88674c529d7e301e81c947f7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_44726a05265b410094fdc31944fb6346",
+ "placeholder": "",
+ "style": "IPY_MODEL_8c1c8c6c4bb8498589a2934f7f1761b2",
+ "value": " 3.13k/3.13k [00:00<00:00, 283kB/s]"
+ }
+ },
+ "a2500082713c4f7f8bacbfe37165c6c3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_68df7f3bcc1a424486c93b6c16877d82",
+ "max": 4833.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_9adc889157114a6383e4faae7ff4243d",
+ "value": 4833.0
+ }
+ },
+ "a2fbe6194dc045f98f9da9aa1977e5de": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_27158263426e4326bea37b17780b13a7",
+ "placeholder": "",
+ "style": "IPY_MODEL_b2ecbc9908234c64ae2bd6fd5d12eabb",
+ "value": "Downloading data: 100%"
+ }
+ },
+ "a3a9386b54904ed5869204356c2e0134": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6469,7 +6205,7 @@
"width": null
}
},
- "bf73b96ae84a47bf93e41030dcd65a86": {
+ "a3e66fb9df094a46aaff7d1f086a1dcc": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6521,7 +6257,29 @@
"width": null
}
},
- "c0b88fdeba9f4356a33834c8891a5427": {
+ "a4ba8fa1a1c5413e89c0b3c2d5aaf479": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a2fbe6194dc045f98f9da9aa1977e5de",
+ "IPY_MODEL_cbe5ce7a3561449c8d9154f6543ff007",
+ "IPY_MODEL_786ab11d0340413abf874f6acb9000a6"
+ ],
+ "layout": "IPY_MODEL_672a93126ff84ec7852eed6b656e6a4b"
+ }
+ },
+ "ae1868ea77924c86b4556cf2f6b90e52": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6569,32 +6327,11 @@
"padding": null,
"right": null,
"top": null,
- "visibility": "hidden",
+ "visibility": null,
"width": null
}
},
- "c0bfb68de22b46efbfa5f581a47933cf": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3af7a267f69a4179ade464518a83d144",
- "placeholder": "",
- "style": "IPY_MODEL_3f68f8498be148848fa2ce1649ebb5ed",
- "value": " 8.85k/8.85k [00:00<00:00, 695kB/s]"
- }
- },
- "c437635a9efc4c7b8911bc6bd29b2eb1": {
+ "ae2857cdae43496fa9ad91d297073afa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6646,7 +6383,7 @@
"width": null
}
},
- "c8ea3ac570de4717a8baa2dc0f70fdca": {
+ "b04504a2f2de44fcab6fc2fce8399663": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -6661,66 +6398,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_33a7dbc094c8467593b70492a7889c6b",
+ "layout": "IPY_MODEL_77fbac9f50694f019e7e07768d9277c2",
"placeholder": "",
- "style": "IPY_MODEL_1403b860563b4f118bf69a9385ce03be",
- "value": "Generating test split: 96%"
- }
- },
- "c962710431744861ba0cfcdf2a0b6887": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_65e6ffb8c15c4a60a0a38431a50015e6",
- "IPY_MODEL_0ff7ecbba50441bc8acd04172d7878b4",
- "IPY_MODEL_eb8f2aef4fed42bdbd16f931b651bf30"
- ],
- "layout": "IPY_MODEL_aca71be19594459c8da95aff7ff51804"
- }
- },
- "cbf0b1dba3ea49f9bc102d0106f59e4c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "cc34bb1b87524f388a8f46f998078cb5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "style": "IPY_MODEL_5597552515a443568a713cf452505e3c",
+ "value": "Generating train split: 100%"
}
},
- "cc5f570c26ae470893c6517163c57717": {
+ "b18d294539ef4003899854dbace1578b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6772,7 +6456,28 @@
"width": null
}
},
- "d2c75f018c34465b8bead430756a9676": {
+ "b25dd42728a44b93aec814ad5963e5cb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e8c9ac67500948dba7a4ce77d9e6b184",
+ "placeholder": "",
+ "style": "IPY_MODEL_5c5ae74d2d4d447a84b93007bd3b2b8e",
+ "value": "Downloading metadata: 100%"
+ }
+ },
+ "b2719169a30d4a0eaa54f728311d2238": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6824,22 +6529,110 @@
"width": null
}
},
- "d3c91085dc2f4e358b8d9ba7171edc86": {
+ "b2ecbc9908234c64ae2bd6fd5d12eabb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b46973d78b6044c58cb0b065af3fcc29": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0a1b3634ed6f45689c55a69c4d358c70",
+ "placeholder": "",
+ "style": "IPY_MODEL_d8bb136a377140638356501c2007f737",
+ "value": "Downloading builder script: 100%"
+ }
+ },
+ "b7132a8576a84832a293b379c8146ccb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b7f742808e984130b2831853efdbf512": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b805d3385e7c4d14a13c357ea74f04f1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b937c984956f4e769733f07751dbd4fa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_50abbeda51104b988a414f28699f1791",
+ "IPY_MODEL_34579b0fd42f402bb5c668d10306f0da",
+ "IPY_MODEL_f42074798a8f44648a3c1c5616a0cfa5"
+ ],
+ "layout": "IPY_MODEL_96df8fd2c9c14b769cc09eabf25c383b"
}
},
- "d3dc5fb6429b4b9e9cdc023e95bd3a36": {
+ "b9d8f35c3ed340a4b5c41249c6362afe": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -6891,22 +6684,135 @@
"width": null
}
},
- "d627e1e57e1e427ca521fa53addedeb0": {
+ "baebf91f7dd54566adea94c752d57aed": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d2638b9baf554491b1981a22a7baec58",
+ "placeholder": "",
+ "style": "IPY_MODEL_757358d2997a4b5c9b5e1fa73341d87f",
+ "value": " 29.5k/29.5k [00:00<00:00, 2.57MB/s]"
+ }
+ },
+ "be0fa222992a4b689ffc715aa577a154": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_18ddedcb5c2b45d68ea020d85ec2957a",
+ "IPY_MODEL_ffea52f1c7e74fbf95e14092cadb4991",
+ "IPY_MODEL_6dbf3b48842240b5b06517d7bf644f66"
+ ],
+ "layout": "IPY_MODEL_e9ec2060710c42b681b93ce4b6180716"
+ }
+ },
+ "bfab3a07981d46538b94c07a77879d04": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_145b49eab7524442b9a18a49e4da466d",
+ "placeholder": "",
+ "style": "IPY_MODEL_d46d1f1270bb49ffa5dbe36f6f20ea45",
+ "value": " 4.83k/4.83k [00:00<00:00, 401kB/s]"
+ }
+ },
+ "c150ef391de14b0bbed383ea10049561": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_73f87714f172420daeb7476f1dd6d1de",
+ "IPY_MODEL_cb172118b0794216a2f931552a89631d",
+ "IPY_MODEL_5a3be28d1bdc4bb388e481945cc539ea"
+ ],
+ "layout": "IPY_MODEL_b9d8f35c3ed340a4b5c41249c6362afe"
+ }
+ },
+ "c234ef001e8d4a52810d7d8c57e71a06": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_33a2accde46c479ba6a9d32efc0fc132",
+ "placeholder": "",
+ "style": "IPY_MODEL_04f0dec9e2024f9bb55309f482e2a808",
+ "value": "Generating test split: 96%"
+ }
+ },
+ "c7b9ec42f0aa4003bed07f0cc434f7f7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a3a9386b54904ed5869204356c2e0134",
+ "placeholder": "",
+ "style": "IPY_MODEL_fc0184bcee27403a9a76e1a145c64fa9",
+ "value": "Downloading readme: 100%"
}
},
- "d9d7e77f20bf4053961273f33bc63c4a": {
+ "cb172118b0794216a2f931552a89631d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -6922,15 +6828,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_c437635a9efc4c7b8911bc6bd29b2eb1",
- "max": 4833.0,
+ "layout": "IPY_MODEL_ae2857cdae43496fa9ad91d297073afa",
+ "max": 4.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_b924ade4081d43b3a0948cc65ebae993",
- "value": 4833.0
+ "style": "IPY_MODEL_5d1aa9f1bf2e48669873e27852771e57",
+ "value": 4.0
}
},
- "dcb24aca340942299d0c1bec3d240773": {
+ "cbe5ce7a3561449c8d9154f6543ff007": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -6946,15 +6852,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_bd24d985acfa47e197b655c7f68578e7",
- "max": 60000.0,
+ "layout": "IPY_MODEL_166290f12ec64720ade2b151369625b8",
+ "max": 26421880.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_02c6bb29d5ff429b98a5f4e28b2cf996",
- "value": 60000.0
+ "style": "IPY_MODEL_fe462236c0ae4f83bf9bdde5c92a4fdd",
+ "value": 26421880.0
}
},
- "dcc4169587cc4e7cbb69d72332762952": {
+ "ce459a8fd5c0462a8bb9b13626151fa0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -6970,37 +6876,39 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_ea4f0fd3d84b4419a1e7ab3de48f0683",
- "max": 8845.0,
+ "layout": "IPY_MODEL_b2719169a30d4a0eaa54f728311d2238",
+ "max": 4.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_b202b5782f4046dbaf753b232947ca7f",
- "value": 8845.0
+ "style": "IPY_MODEL_7b57e0729c014ac59243e20cb836fc63",
+ "value": 4.0
}
},
- "dd03d22ba98a413d90adc537006b8f39": {
+ "ced9532ca7354d94b4cf3f0b478729b8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_395122d8162d4902b5e474611ff95663",
- "IPY_MODEL_5c56933ef85d473fb2f83c90fb87f0c0",
- "IPY_MODEL_81137cb7597c46a5b79a3203f847fbd3"
- ],
- "layout": "IPY_MODEL_7a34bc51e4234e16ad880c8ee0b61ddd"
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3d99f62fdbaf4890a678133e7ce0ef9d",
+ "max": 8845.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_741d83c0dfda4c599feb62df18e918fe",
+ "value": 8845.0
}
},
- "dd35b2659196472b91de4048656a837e": {
+ "d2638b9baf554491b1981a22a7baec58": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7052,59 +6960,46 @@
"width": null
}
},
- "e0854f59becb4f83a0f529dfeca13598": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "d3ea63f59e1e4289a55637d86e510018": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_706cab8691894b17b3ca83148edf9537",
+ "max": 5148.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_86acdfafd7c2440b8b365a0194c97131",
+ "value": 5148.0
+ }
+ },
+ "d46d1f1270bb49ffa5dbe36f6f20ea45": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "e22d4c4bce3a4b53bbf0e20cf57c81c8": {
+ "d5ee54a9268e40848992e8fdd001cc30": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7156,7 +7051,80 @@
"width": null
}
},
- "e3ef29165bd24e338053cea5836afaf0": {
+ "d6b87f3b419d486b98d7d3ac3c80c263": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b18d294539ef4003899854dbace1578b",
+ "placeholder": "",
+ "style": "IPY_MODEL_805d3d17423c4ddcbefd8dd36e9a4dba",
+ "value": " 59766/60000 [00:17<00:00, 4354.66 examples/s]"
+ }
+ },
+ "d853464533a64c64a4dd7a29cf5a5dc8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2ef5a77a55d94c78baa40ea1709dd540",
+ "placeholder": "",
+ "style": "IPY_MODEL_497ba684a54b4c55bd282633189297b3",
+ "value": "Downloading data files: 100%"
+ }
+ },
+ "d8bb136a377140638356501c2007f737": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "db2efafd173f4bcea5a3f5fab45315e2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "dc1561fff54643499c0bab20c7c6093b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7208,23 +7176,22 @@
"width": null
}
},
- "e55c8a9a601342c59a6b69e5b81457c8": {
+ "dd5165334aab40bca65fd1c56bacd6ab": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "e7438ef5064241a096a740028a60f36c": {
+ "e2aa2b8d04584980b4e7e38f64155397": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7276,7 +7243,44 @@
"width": null
}
},
- "ea4f0fd3d84b4419a1e7ab3de48f0683": {
+ "e426ac8581ba43e8be7e6691e756322a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_79cb24b03b314bd9b4a24286e52af192",
+ "IPY_MODEL_08ee3f3b655547bb9197afb0fa6d9a50",
+ "IPY_MODEL_d6b87f3b419d486b98d7d3ac3c80c263"
+ ],
+ "layout": "IPY_MODEL_3217c5f2a83e4d2386c96aee450e0cf6"
+ }
+ },
+ "e4d9b1c9f75a48e59721fe7195d5d1d3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e6232384e32c45ab857e6b0db2473592": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7328,22 +7332,29 @@
"width": null
}
},
- "ea678bebcfe2498db2895163b2459f58": {
+ "e81ddb9fe8a240bfa8c6f23fb404bcd1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_34cfef4161174003ab992c33ffe64ff2",
+ "IPY_MODEL_fada51ce9cc04800b91e06adb2ff8c2a",
+ "IPY_MODEL_baebf91f7dd54566adea94c752d57aed"
+ ],
+ "layout": "IPY_MODEL_92886bb5677f4e5eb198b9643ed0580e"
}
},
- "eb1b6a4da22f46cca0dc4fbf6e861449": {
+ "e8606e4cac274bfe913056b0397bd948": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7395,44 +7406,7 @@
"width": null
}
},
- "eb8f2aef4fed42bdbd16f931b651bf30": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d3dc5fb6429b4b9e9cdc023e95bd3a36",
- "placeholder": "",
- "style": "IPY_MODEL_7f8cd140bc134cf39b86db70c064a59e",
- "value": " 26.4M/26.4M [00:00<00:00, 87.2MB/s]"
- }
- },
- "ecdc5d2b0971466ca6fe10b3be15b802": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "ed46963891574900a7eacc41e84d9997": {
+ "e8c9ac67500948dba7a4ce77d9e6b184": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7484,7 +7458,7 @@
"width": null
}
},
- "ed65830d599646469908fff377873260": {
+ "e9ec2060710c42b681b93ce4b6180716": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7536,28 +7510,29 @@
"width": null
}
},
- "ee90d27a499c4b08a0059997fe0526e5": {
+ "eaa30426591f4d24adf70288ff7f338f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ef0beb6a96ea4882a90d42ffeefa8826",
- "placeholder": "",
- "style": "IPY_MODEL_211746264aba474384ebf63383ca003f",
- "value": " 4/4 [00:03<00:00, 1.18it/s]"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c7b9ec42f0aa4003bed07f0cc434f7f7",
+ "IPY_MODEL_ced9532ca7354d94b4cf3f0b478729b8",
+ "IPY_MODEL_fca68101da93472d858358f3965f6fdc"
+ ],
+ "layout": "IPY_MODEL_2b4ea11a7ca8411f9ad4e2dd06db4666"
}
},
- "ef0beb6a96ea4882a90d42ffeefa8826": {
+ "ee84a0ddb0ff453e9e2ad203d1ec2fbe": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7609,23 +7584,7 @@
"width": null
}
},
- "ef9144b755a247b0af470acee04b17f1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "f0746106a8244eb2b9f15cf3186ffbdc": {
+ "eeac3e7eb46e4f4db75e49018cc7279b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -7640,52 +7599,7 @@
"description_width": ""
}
},
- "f0a52bca034c4b199170aba6ea2feed4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_711309b7eaec4fa9848d2982dada90af",
- "max": 4.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_ef9144b755a247b0af470acee04b17f1",
- "value": 4.0
- }
- },
- "f0c85a2d35574d3ba0aa5e316dd4ce1c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b1e011a63af64416954348b761a09179",
- "placeholder": "",
- "style": "IPY_MODEL_802b59b6da604b728597ee0f2a195e02",
- "value": " 60000/60000 [00:50<00:00, 1215.06it/s]"
- }
- },
- "f1730c6c7a2f4151a5cdf5407e4bfe64": {
+ "ef03d83b67ce4ca1be2d788de0af6fa8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7737,81 +7651,119 @@
"width": null
}
},
- "f48ba079fc754c11a1107f624273ab52": {
+ "f42074798a8f44648a3c1c5616a0cfa5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5e952e88c4024945980510045e4997cb",
+ "placeholder": "",
+ "style": "IPY_MODEL_6923ecab36614f488946e77b0400211d",
+ "value": " 60000/60000 [00:55<00:00, 1101.17it/s]"
+ }
+ },
+ "f71b33e0c6034a90b7b7d994f3fc8119": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "f494146fe5f3418ca4c7a070154e390c": {
+ "fada51ce9cc04800b91e06adb2ff8c2a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_cc5f570c26ae470893c6517163c57717",
- "placeholder": "",
- "style": "IPY_MODEL_39dfc68b4a464b0c915ba7dcbf4be31e",
- "value": "Downloading metadata: 100%"
+ "layout": "IPY_MODEL_803f8bed0ae04d9ead2231ca4d73178c",
+ "max": 29515.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1a1751cab1284fadad8950d60cfbfa98",
+ "value": 29515.0
}
},
- "f4eaccaf8aea4d86b3d8bc23ac879bd2": {
+ "fc0184bcee27403a9a76e1a145c64fa9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "fca68101da93472d858358f3965f6fdc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_c8ea3ac570de4717a8baa2dc0f70fdca",
- "IPY_MODEL_458c0bc485a74f8a91020cf3173f7842",
- "IPY_MODEL_07c235f5a12e433d8548139c3d2c1f06"
- ],
- "layout": "IPY_MODEL_0ed3644c553146f9858ec34a1abe66b4"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fee3cfbfdf2641c8a24007b480271e04",
+ "placeholder": "",
+ "style": "IPY_MODEL_b805d3385e7c4d14a13c357ea74f04f1",
+ "value": " 8.85k/8.85k [00:00<00:00, 885kB/s]"
}
},
- "f8dbc859491a483fb708ff57979ea23a": {
+ "fe462236c0ae4f83bf9bdde5c92a4fdd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "fa6b9ac9d98f4610b25acf9fd34c9cd7": {
+ "fee3cfbfdf2641c8a24007b480271e04": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -7863,26 +7815,28 @@
"width": null
}
},
- "faa996b8481c4a60b9f6e0666aec6bf8": {
+ "ffea52f1c7e74fbf95e14092cadb4991": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_602f58878fac4e29aa493c675525722c",
- "IPY_MODEL_1dad32857f1c40f8bd6a8ff6199a5f6e",
- "IPY_MODEL_ee90d27a499c4b08a0059997fe0526e5"
- ],
- "layout": "IPY_MODEL_e7438ef5064241a096a740028a60f36c"
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_61a6ba883fed4813be9bee47c29a5390",
+ "max": 4422102.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_db2efafd173f4bcea5a3f5fab45315e2",
+ "value": 4422102.0
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
index 7cca43c56..c6e4ed944 100644
--- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
@@ -53,10 +53,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:00.752111Z",
- "iopub.status.busy": "2023-10-06T06:42:00.751554Z",
- "iopub.status.idle": "2023-10-06T06:42:01.984932Z",
- "shell.execute_reply": "2023-10-06T06:42:01.984222Z"
+ "iopub.execute_input": "2023-10-11T10:13:57.120429Z",
+ "iopub.status.busy": "2023-10-11T10:13:57.119967Z",
+ "iopub.status.idle": "2023-10-11T10:13:58.448393Z",
+ "shell.execute_reply": "2023-10-11T10:13:58.447584Z"
},
"nbsphinx": "hidden"
},
@@ -68,7 +68,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -95,10 +95,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:01.989913Z",
- "iopub.status.busy": "2023-10-06T06:42:01.988485Z",
- "iopub.status.idle": "2023-10-06T06:42:02.244041Z",
- "shell.execute_reply": "2023-10-06T06:42:02.243312Z"
+ "iopub.execute_input": "2023-10-11T10:13:58.452554Z",
+ "iopub.status.busy": "2023-10-11T10:13:58.451781Z",
+ "iopub.status.idle": "2023-10-11T10:13:58.721718Z",
+ "shell.execute_reply": "2023-10-11T10:13:58.720904Z"
},
"id": "avXlHJcXjruP"
},
@@ -234,10 +234,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:02.248272Z",
- "iopub.status.busy": "2023-10-06T06:42:02.247996Z",
- "iopub.status.idle": "2023-10-06T06:42:02.342896Z",
- "shell.execute_reply": "2023-10-06T06:42:02.342171Z"
+ "iopub.execute_input": "2023-10-11T10:13:58.726058Z",
+ "iopub.status.busy": "2023-10-11T10:13:58.725553Z",
+ "iopub.status.idle": "2023-10-11T10:13:58.842660Z",
+ "shell.execute_reply": "2023-10-11T10:13:58.841926Z"
},
"nbsphinx": "hidden"
},
@@ -340,10 +340,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:02.346599Z",
- "iopub.status.busy": "2023-10-06T06:42:02.345796Z",
- "iopub.status.idle": "2023-10-06T06:42:02.593217Z",
- "shell.execute_reply": "2023-10-06T06:42:02.592597Z"
+ "iopub.execute_input": "2023-10-11T10:13:58.846228Z",
+ "iopub.status.busy": "2023-10-11T10:13:58.845632Z",
+ "iopub.status.idle": "2023-10-11T10:13:59.105478Z",
+ "shell.execute_reply": "2023-10-11T10:13:59.104826Z"
}
},
"outputs": [
@@ -393,10 +393,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:02.596603Z",
- "iopub.status.busy": "2023-10-06T06:42:02.596008Z",
- "iopub.status.idle": "2023-10-06T06:42:02.624699Z",
- "shell.execute_reply": "2023-10-06T06:42:02.624096Z"
+ "iopub.execute_input": "2023-10-11T10:13:59.109808Z",
+ "iopub.status.busy": "2023-10-11T10:13:59.109055Z",
+ "iopub.status.idle": "2023-10-11T10:13:59.143034Z",
+ "shell.execute_reply": "2023-10-11T10:13:59.142328Z"
}
},
"outputs": [],
@@ -427,10 +427,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:02.627929Z",
- "iopub.status.busy": "2023-10-06T06:42:02.627213Z",
- "iopub.status.idle": "2023-10-06T06:42:04.260009Z",
- "shell.execute_reply": "2023-10-06T06:42:04.259249Z"
+ "iopub.execute_input": "2023-10-11T10:13:59.146701Z",
+ "iopub.status.busy": "2023-10-11T10:13:59.146192Z",
+ "iopub.status.idle": "2023-10-11T10:14:00.902837Z",
+ "shell.execute_reply": "2023-10-11T10:14:00.902026Z"
}
},
"outputs": [
@@ -471,10 +471,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:04.263601Z",
- "iopub.status.busy": "2023-10-06T06:42:04.262984Z",
- "iopub.status.idle": "2023-10-06T06:42:04.284428Z",
- "shell.execute_reply": "2023-10-06T06:42:04.283750Z"
+ "iopub.execute_input": "2023-10-11T10:14:00.908526Z",
+ "iopub.status.busy": "2023-10-11T10:14:00.907016Z",
+ "iopub.status.idle": "2023-10-11T10:14:00.930887Z",
+ "shell.execute_reply": "2023-10-11T10:14:00.930271Z"
},
"scrolled": true
},
@@ -599,10 +599,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:04.287522Z",
- "iopub.status.busy": "2023-10-06T06:42:04.286971Z",
- "iopub.status.idle": "2023-10-06T06:42:05.384581Z",
- "shell.execute_reply": "2023-10-06T06:42:05.383764Z"
+ "iopub.execute_input": "2023-10-11T10:14:00.934811Z",
+ "iopub.status.busy": "2023-10-11T10:14:00.934288Z",
+ "iopub.status.idle": "2023-10-11T10:14:02.173518Z",
+ "shell.execute_reply": "2023-10-11T10:14:02.172623Z"
},
"id": "AaHC5MRKjruT"
},
@@ -721,10 +721,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:05.387922Z",
- "iopub.status.busy": "2023-10-06T06:42:05.387552Z",
- "iopub.status.idle": "2023-10-06T06:42:05.404111Z",
- "shell.execute_reply": "2023-10-06T06:42:05.403317Z"
+ "iopub.execute_input": "2023-10-11T10:14:02.177637Z",
+ "iopub.status.busy": "2023-10-11T10:14:02.177188Z",
+ "iopub.status.idle": "2023-10-11T10:14:02.197229Z",
+ "shell.execute_reply": "2023-10-11T10:14:02.196542Z"
},
"id": "Wy27rvyhjruU"
},
@@ -773,10 +773,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:05.407759Z",
- "iopub.status.busy": "2023-10-06T06:42:05.407182Z",
- "iopub.status.idle": "2023-10-06T06:42:05.496270Z",
- "shell.execute_reply": "2023-10-06T06:42:05.495456Z"
+ "iopub.execute_input": "2023-10-11T10:14:02.200738Z",
+ "iopub.status.busy": "2023-10-11T10:14:02.200356Z",
+ "iopub.status.idle": "2023-10-11T10:14:02.305073Z",
+ "shell.execute_reply": "2023-10-11T10:14:02.304176Z"
},
"id": "Db8YHnyVjruU"
},
@@ -883,10 +883,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:05.500111Z",
- "iopub.status.busy": "2023-10-06T06:42:05.499558Z",
- "iopub.status.idle": "2023-10-06T06:42:05.712588Z",
- "shell.execute_reply": "2023-10-06T06:42:05.711891Z"
+ "iopub.execute_input": "2023-10-11T10:14:02.309252Z",
+ "iopub.status.busy": "2023-10-11T10:14:02.308684Z",
+ "iopub.status.idle": "2023-10-11T10:14:02.536286Z",
+ "shell.execute_reply": "2023-10-11T10:14:02.535535Z"
},
"id": "iJqAHuS2jruV"
},
@@ -923,10 +923,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:05.717185Z",
- "iopub.status.busy": "2023-10-06T06:42:05.715897Z",
- "iopub.status.idle": "2023-10-06T06:42:05.739941Z",
- "shell.execute_reply": "2023-10-06T06:42:05.739310Z"
+ "iopub.execute_input": "2023-10-11T10:14:02.540203Z",
+ "iopub.status.busy": "2023-10-11T10:14:02.539674Z",
+ "iopub.status.idle": "2023-10-11T10:14:02.567501Z",
+ "shell.execute_reply": "2023-10-11T10:14:02.566798Z"
},
"id": "PcPTZ_JJG3Cx"
},
@@ -988,10 +988,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:05.743364Z",
- "iopub.status.busy": "2023-10-06T06:42:05.742943Z",
- "iopub.status.idle": "2023-10-06T06:42:05.756906Z",
- "shell.execute_reply": "2023-10-06T06:42:05.756295Z"
+ "iopub.execute_input": "2023-10-11T10:14:02.571057Z",
+ "iopub.status.busy": "2023-10-11T10:14:02.570585Z",
+ "iopub.status.idle": "2023-10-11T10:14:02.585321Z",
+ "shell.execute_reply": "2023-10-11T10:14:02.584593Z"
},
"id": "0lonvOYvjruV"
},
@@ -1138,10 +1138,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:05.760342Z",
- "iopub.status.busy": "2023-10-06T06:42:05.759825Z",
- "iopub.status.idle": "2023-10-06T06:42:05.857424Z",
- "shell.execute_reply": "2023-10-06T06:42:05.856396Z"
+ "iopub.execute_input": "2023-10-11T10:14:02.588832Z",
+ "iopub.status.busy": "2023-10-11T10:14:02.588443Z",
+ "iopub.status.idle": "2023-10-11T10:14:02.709322Z",
+ "shell.execute_reply": "2023-10-11T10:14:02.708447Z"
},
"id": "MfqTCa3kjruV"
},
@@ -1222,10 +1222,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:05.861184Z",
- "iopub.status.busy": "2023-10-06T06:42:05.860689Z",
- "iopub.status.idle": "2023-10-06T06:42:06.007412Z",
- "shell.execute_reply": "2023-10-06T06:42:06.006687Z"
+ "iopub.execute_input": "2023-10-11T10:14:02.713270Z",
+ "iopub.status.busy": "2023-10-11T10:14:02.712728Z",
+ "iopub.status.idle": "2023-10-11T10:14:02.888185Z",
+ "shell.execute_reply": "2023-10-11T10:14:02.887162Z"
},
"id": "9ZtWAYXqMAPL"
},
@@ -1285,10 +1285,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:06.010972Z",
- "iopub.status.busy": "2023-10-06T06:42:06.010325Z",
- "iopub.status.idle": "2023-10-06T06:42:06.016716Z",
- "shell.execute_reply": "2023-10-06T06:42:06.016089Z"
+ "iopub.execute_input": "2023-10-11T10:14:02.892225Z",
+ "iopub.status.busy": "2023-10-11T10:14:02.891729Z",
+ "iopub.status.idle": "2023-10-11T10:14:02.897298Z",
+ "shell.execute_reply": "2023-10-11T10:14:02.896610Z"
},
"id": "0rXP3ZPWjruW"
},
@@ -1326,10 +1326,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:06.020764Z",
- "iopub.status.busy": "2023-10-06T06:42:06.019509Z",
- "iopub.status.idle": "2023-10-06T06:42:06.026888Z",
- "shell.execute_reply": "2023-10-06T06:42:06.026283Z"
+ "iopub.execute_input": "2023-10-11T10:14:02.900624Z",
+ "iopub.status.busy": "2023-10-11T10:14:02.900002Z",
+ "iopub.status.idle": "2023-10-11T10:14:02.906040Z",
+ "shell.execute_reply": "2023-10-11T10:14:02.905353Z"
},
"id": "-iRPe8KXjruW"
},
@@ -1384,10 +1384,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:06.030143Z",
- "iopub.status.busy": "2023-10-06T06:42:06.029649Z",
- "iopub.status.idle": "2023-10-06T06:42:06.075198Z",
- "shell.execute_reply": "2023-10-06T06:42:06.074522Z"
+ "iopub.execute_input": "2023-10-11T10:14:02.909279Z",
+ "iopub.status.busy": "2023-10-11T10:14:02.908924Z",
+ "iopub.status.idle": "2023-10-11T10:14:02.961199Z",
+ "shell.execute_reply": "2023-10-11T10:14:02.960379Z"
},
"id": "ZpipUliyjruW"
},
@@ -1438,10 +1438,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:06.078772Z",
- "iopub.status.busy": "2023-10-06T06:42:06.078400Z",
- "iopub.status.idle": "2023-10-06T06:42:06.131252Z",
- "shell.execute_reply": "2023-10-06T06:42:06.130571Z"
+ "iopub.execute_input": "2023-10-11T10:14:02.964680Z",
+ "iopub.status.busy": "2023-10-11T10:14:02.964248Z",
+ "iopub.status.idle": "2023-10-11T10:14:03.022389Z",
+ "shell.execute_reply": "2023-10-11T10:14:03.021659Z"
},
"id": "SLq-3q4xjruX"
},
@@ -1510,10 +1510,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:06.134879Z",
- "iopub.status.busy": "2023-10-06T06:42:06.134329Z",
- "iopub.status.idle": "2023-10-06T06:42:06.229121Z",
- "shell.execute_reply": "2023-10-06T06:42:06.228107Z"
+ "iopub.execute_input": "2023-10-11T10:14:03.025803Z",
+ "iopub.status.busy": "2023-10-11T10:14:03.025268Z",
+ "iopub.status.idle": "2023-10-11T10:14:03.134328Z",
+ "shell.execute_reply": "2023-10-11T10:14:03.133401Z"
},
"id": "g5LHhhuqFbXK"
},
@@ -1545,10 +1545,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:06.232711Z",
- "iopub.status.busy": "2023-10-06T06:42:06.232283Z",
- "iopub.status.idle": "2023-10-06T06:42:06.333271Z",
- "shell.execute_reply": "2023-10-06T06:42:06.332395Z"
+ "iopub.execute_input": "2023-10-11T10:14:03.138905Z",
+ "iopub.status.busy": "2023-10-11T10:14:03.138390Z",
+ "iopub.status.idle": "2023-10-11T10:14:03.263066Z",
+ "shell.execute_reply": "2023-10-11T10:14:03.262155Z"
},
"id": "p7w8F8ezBcet"
},
@@ -1605,10 +1605,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:06.337092Z",
- "iopub.status.busy": "2023-10-06T06:42:06.336564Z",
- "iopub.status.idle": "2023-10-06T06:42:06.550977Z",
- "shell.execute_reply": "2023-10-06T06:42:06.550309Z"
+ "iopub.execute_input": "2023-10-11T10:14:03.267338Z",
+ "iopub.status.busy": "2023-10-11T10:14:03.266800Z",
+ "iopub.status.idle": "2023-10-11T10:14:03.492781Z",
+ "shell.execute_reply": "2023-10-11T10:14:03.491850Z"
},
"id": "WETRL74tE_sU"
},
@@ -1643,10 +1643,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:06.554148Z",
- "iopub.status.busy": "2023-10-06T06:42:06.553782Z",
- "iopub.status.idle": "2023-10-06T06:42:06.783468Z",
- "shell.execute_reply": "2023-10-06T06:42:06.782697Z"
+ "iopub.execute_input": "2023-10-11T10:14:03.497643Z",
+ "iopub.status.busy": "2023-10-11T10:14:03.496183Z",
+ "iopub.status.idle": "2023-10-11T10:14:03.737406Z",
+ "shell.execute_reply": "2023-10-11T10:14:03.736450Z"
},
"id": "kCfdx2gOLmXS"
},
@@ -1808,10 +1808,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:06.786661Z",
- "iopub.status.busy": "2023-10-06T06:42:06.786239Z",
- "iopub.status.idle": "2023-10-06T06:42:06.795369Z",
- "shell.execute_reply": "2023-10-06T06:42:06.794757Z"
+ "iopub.execute_input": "2023-10-11T10:14:03.741218Z",
+ "iopub.status.busy": "2023-10-11T10:14:03.740736Z",
+ "iopub.status.idle": "2023-10-11T10:14:03.751095Z",
+ "shell.execute_reply": "2023-10-11T10:14:03.750463Z"
},
"id": "-uogYRWFYnuu"
},
@@ -1865,10 +1865,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:06.798677Z",
- "iopub.status.busy": "2023-10-06T06:42:06.798291Z",
- "iopub.status.idle": "2023-10-06T06:42:07.024806Z",
- "shell.execute_reply": "2023-10-06T06:42:07.024085Z"
+ "iopub.execute_input": "2023-10-11T10:14:03.754393Z",
+ "iopub.status.busy": "2023-10-11T10:14:03.753995Z",
+ "iopub.status.idle": "2023-10-11T10:14:03.987407Z",
+ "shell.execute_reply": "2023-10-11T10:14:03.986506Z"
},
"id": "pG-ljrmcYp9Q"
},
@@ -1915,10 +1915,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:07.028317Z",
- "iopub.status.busy": "2023-10-06T06:42:07.027866Z",
- "iopub.status.idle": "2023-10-06T06:42:08.356236Z",
- "shell.execute_reply": "2023-10-06T06:42:08.355530Z"
+ "iopub.execute_input": "2023-10-11T10:14:03.991521Z",
+ "iopub.status.busy": "2023-10-11T10:14:03.990842Z",
+ "iopub.status.idle": "2023-10-11T10:14:05.577534Z",
+ "shell.execute_reply": "2023-10-11T10:14:05.576748Z"
},
"id": "wL3ngCnuLEWd"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
index b5255c166..94c10718b 100644
--- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
@@ -89,10 +89,10 @@
"id": "a3ddc95f",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:14.489469Z",
- "iopub.status.busy": "2023-10-06T06:42:14.489142Z",
- "iopub.status.idle": "2023-10-06T06:42:15.635757Z",
- "shell.execute_reply": "2023-10-06T06:42:15.635069Z"
+ "iopub.execute_input": "2023-10-11T10:14:11.825429Z",
+ "iopub.status.busy": "2023-10-11T10:14:11.825151Z",
+ "iopub.status.idle": "2023-10-11T10:14:13.048562Z",
+ "shell.execute_reply": "2023-10-11T10:14:13.047720Z"
},
"nbsphinx": "hidden"
},
@@ -102,7 +102,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -136,10 +136,10 @@
"id": "c4efd119",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:15.640608Z",
- "iopub.status.busy": "2023-10-06T06:42:15.639168Z",
- "iopub.status.idle": "2023-10-06T06:42:15.644290Z",
- "shell.execute_reply": "2023-10-06T06:42:15.643681Z"
+ "iopub.execute_input": "2023-10-11T10:14:13.053084Z",
+ "iopub.status.busy": "2023-10-11T10:14:13.052428Z",
+ "iopub.status.idle": "2023-10-11T10:14:13.057100Z",
+ "shell.execute_reply": "2023-10-11T10:14:13.056428Z"
}
},
"outputs": [],
@@ -264,10 +264,10 @@
"id": "c37c0a69",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:15.647692Z",
- "iopub.status.busy": "2023-10-06T06:42:15.647450Z",
- "iopub.status.idle": "2023-10-06T06:42:15.658588Z",
- "shell.execute_reply": "2023-10-06T06:42:15.657967Z"
+ "iopub.execute_input": "2023-10-11T10:14:13.060478Z",
+ "iopub.status.busy": "2023-10-11T10:14:13.060232Z",
+ "iopub.status.idle": "2023-10-11T10:14:13.070814Z",
+ "shell.execute_reply": "2023-10-11T10:14:13.070192Z"
},
"nbsphinx": "hidden"
},
@@ -351,10 +351,10 @@
"id": "99f69523",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:15.661692Z",
- "iopub.status.busy": "2023-10-06T06:42:15.661014Z",
- "iopub.status.idle": "2023-10-06T06:42:15.721692Z",
- "shell.execute_reply": "2023-10-06T06:42:15.720944Z"
+ "iopub.execute_input": "2023-10-11T10:14:13.074078Z",
+ "iopub.status.busy": "2023-10-11T10:14:13.073727Z",
+ "iopub.status.idle": "2023-10-11T10:14:13.136814Z",
+ "shell.execute_reply": "2023-10-11T10:14:13.136073Z"
}
},
"outputs": [],
@@ -380,10 +380,10 @@
"id": "8f241c16",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:15.725638Z",
- "iopub.status.busy": "2023-10-06T06:42:15.725217Z",
- "iopub.status.idle": "2023-10-06T06:42:15.751469Z",
- "shell.execute_reply": "2023-10-06T06:42:15.750769Z"
+ "iopub.execute_input": "2023-10-11T10:14:13.140864Z",
+ "iopub.status.busy": "2023-10-11T10:14:13.140185Z",
+ "iopub.status.idle": "2023-10-11T10:14:13.165307Z",
+ "shell.execute_reply": "2023-10-11T10:14:13.164597Z"
}
},
"outputs": [
@@ -598,10 +598,10 @@
"id": "4f0819ba",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:15.755148Z",
- "iopub.status.busy": "2023-10-06T06:42:15.754635Z",
- "iopub.status.idle": "2023-10-06T06:42:15.761117Z",
- "shell.execute_reply": "2023-10-06T06:42:15.760485Z"
+ "iopub.execute_input": "2023-10-11T10:14:13.168773Z",
+ "iopub.status.busy": "2023-10-11T10:14:13.168208Z",
+ "iopub.status.idle": "2023-10-11T10:14:13.174909Z",
+ "shell.execute_reply": "2023-10-11T10:14:13.174285Z"
}
},
"outputs": [
@@ -672,10 +672,10 @@
"id": "d009f347",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:15.765237Z",
- "iopub.status.busy": "2023-10-06T06:42:15.764705Z",
- "iopub.status.idle": "2023-10-06T06:42:15.803048Z",
- "shell.execute_reply": "2023-10-06T06:42:15.802052Z"
+ "iopub.execute_input": "2023-10-11T10:14:13.178319Z",
+ "iopub.status.busy": "2023-10-11T10:14:13.177924Z",
+ "iopub.status.idle": "2023-10-11T10:14:13.214257Z",
+ "shell.execute_reply": "2023-10-11T10:14:13.213498Z"
}
},
"outputs": [],
@@ -699,10 +699,10 @@
"id": "cbd1e415",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:15.806871Z",
- "iopub.status.busy": "2023-10-06T06:42:15.806549Z",
- "iopub.status.idle": "2023-10-06T06:42:15.841392Z",
- "shell.execute_reply": "2023-10-06T06:42:15.840675Z"
+ "iopub.execute_input": "2023-10-11T10:14:13.218276Z",
+ "iopub.status.busy": "2023-10-11T10:14:13.217701Z",
+ "iopub.status.idle": "2023-10-11T10:14:13.254925Z",
+ "shell.execute_reply": "2023-10-11T10:14:13.254173Z"
}
},
"outputs": [],
@@ -739,10 +739,10 @@
"id": "6ca92617",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:15.844584Z",
- "iopub.status.busy": "2023-10-06T06:42:15.844317Z",
- "iopub.status.idle": "2023-10-06T06:42:17.522519Z",
- "shell.execute_reply": "2023-10-06T06:42:17.521774Z"
+ "iopub.execute_input": "2023-10-11T10:14:13.258799Z",
+ "iopub.status.busy": "2023-10-11T10:14:13.258315Z",
+ "iopub.status.idle": "2023-10-11T10:14:15.021004Z",
+ "shell.execute_reply": "2023-10-11T10:14:15.020194Z"
}
},
"outputs": [],
@@ -772,10 +772,10 @@
"id": "bf945113",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:17.526337Z",
- "iopub.status.busy": "2023-10-06T06:42:17.525524Z",
- "iopub.status.idle": "2023-10-06T06:42:17.537152Z",
- "shell.execute_reply": "2023-10-06T06:42:17.536497Z"
+ "iopub.execute_input": "2023-10-11T10:14:15.025841Z",
+ "iopub.status.busy": "2023-10-11T10:14:15.024979Z",
+ "iopub.status.idle": "2023-10-11T10:14:15.034493Z",
+ "shell.execute_reply": "2023-10-11T10:14:15.033801Z"
},
"scrolled": true
},
@@ -886,10 +886,10 @@
"id": "14251ee0",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:17.540244Z",
- "iopub.status.busy": "2023-10-06T06:42:17.539782Z",
- "iopub.status.idle": "2023-10-06T06:42:17.556604Z",
- "shell.execute_reply": "2023-10-06T06:42:17.555911Z"
+ "iopub.execute_input": "2023-10-11T10:14:15.037919Z",
+ "iopub.status.busy": "2023-10-11T10:14:15.037346Z",
+ "iopub.status.idle": "2023-10-11T10:14:15.055490Z",
+ "shell.execute_reply": "2023-10-11T10:14:15.054819Z"
}
},
"outputs": [
@@ -1139,10 +1139,10 @@
"id": "efe16638",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:17.560258Z",
- "iopub.status.busy": "2023-10-06T06:42:17.559870Z",
- "iopub.status.idle": "2023-10-06T06:42:17.568259Z",
- "shell.execute_reply": "2023-10-06T06:42:17.567554Z"
+ "iopub.execute_input": "2023-10-11T10:14:15.059126Z",
+ "iopub.status.busy": "2023-10-11T10:14:15.058570Z",
+ "iopub.status.idle": "2023-10-11T10:14:15.069052Z",
+ "shell.execute_reply": "2023-10-11T10:14:15.068401Z"
},
"scrolled": true
},
@@ -1316,10 +1316,10 @@
"id": "abd0fb0b",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:17.571912Z",
- "iopub.status.busy": "2023-10-06T06:42:17.571512Z",
- "iopub.status.idle": "2023-10-06T06:42:17.574930Z",
- "shell.execute_reply": "2023-10-06T06:42:17.574243Z"
+ "iopub.execute_input": "2023-10-11T10:14:15.072472Z",
+ "iopub.status.busy": "2023-10-11T10:14:15.072093Z",
+ "iopub.status.idle": "2023-10-11T10:14:15.076415Z",
+ "shell.execute_reply": "2023-10-11T10:14:15.075778Z"
}
},
"outputs": [],
@@ -1341,10 +1341,10 @@
"id": "cdf061df",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:17.577828Z",
- "iopub.status.busy": "2023-10-06T06:42:17.577443Z",
- "iopub.status.idle": "2023-10-06T06:42:17.583304Z",
- "shell.execute_reply": "2023-10-06T06:42:17.582674Z"
+ "iopub.execute_input": "2023-10-11T10:14:15.079613Z",
+ "iopub.status.busy": "2023-10-11T10:14:15.079247Z",
+ "iopub.status.idle": "2023-10-11T10:14:15.084863Z",
+ "shell.execute_reply": "2023-10-11T10:14:15.084239Z"
},
"scrolled": true
},
@@ -1396,10 +1396,10 @@
"id": "08949890",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:17.586678Z",
- "iopub.status.busy": "2023-10-06T06:42:17.586172Z",
- "iopub.status.idle": "2023-10-06T06:42:17.590466Z",
- "shell.execute_reply": "2023-10-06T06:42:17.589826Z"
+ "iopub.execute_input": "2023-10-11T10:14:15.088118Z",
+ "iopub.status.busy": "2023-10-11T10:14:15.087739Z",
+ "iopub.status.idle": "2023-10-11T10:14:15.091897Z",
+ "shell.execute_reply": "2023-10-11T10:14:15.091263Z"
}
},
"outputs": [],
@@ -1423,10 +1423,10 @@
"id": "6948b073",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:17.593673Z",
- "iopub.status.busy": "2023-10-06T06:42:17.593163Z",
- "iopub.status.idle": "2023-10-06T06:42:17.600145Z",
- "shell.execute_reply": "2023-10-06T06:42:17.599501Z"
+ "iopub.execute_input": "2023-10-11T10:14:15.095018Z",
+ "iopub.status.busy": "2023-10-11T10:14:15.094663Z",
+ "iopub.status.idle": "2023-10-11T10:14:15.100964Z",
+ "shell.execute_reply": "2023-10-11T10:14:15.100337Z"
}
},
"outputs": [
@@ -1481,10 +1481,10 @@
"id": "6f8e6914",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:17.603540Z",
- "iopub.status.busy": "2023-10-06T06:42:17.603046Z",
- "iopub.status.idle": "2023-10-06T06:42:17.640047Z",
- "shell.execute_reply": "2023-10-06T06:42:17.639256Z"
+ "iopub.execute_input": "2023-10-11T10:14:15.104236Z",
+ "iopub.status.busy": "2023-10-11T10:14:15.103874Z",
+ "iopub.status.idle": "2023-10-11T10:14:15.148266Z",
+ "shell.execute_reply": "2023-10-11T10:14:15.147483Z"
}
},
"outputs": [],
@@ -1527,10 +1527,10 @@
"id": "b806d2ea",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:17.643804Z",
- "iopub.status.busy": "2023-10-06T06:42:17.643497Z",
- "iopub.status.idle": "2023-10-06T06:42:17.651284Z",
- "shell.execute_reply": "2023-10-06T06:42:17.650617Z"
+ "iopub.execute_input": "2023-10-11T10:14:15.152634Z",
+ "iopub.status.busy": "2023-10-11T10:14:15.152105Z",
+ "iopub.status.idle": "2023-10-11T10:14:15.159365Z",
+ "shell.execute_reply": "2023-10-11T10:14:15.158722Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
index 6d0bdd24d..09e88c44d 100644
--- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
@@ -63,10 +63,10 @@
"id": "7383d024-8273-4039-bccd-aab3020d331f",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:22.813418Z",
- "iopub.status.busy": "2023-10-06T06:42:22.812982Z",
- "iopub.status.idle": "2023-10-06T06:42:24.046280Z",
- "shell.execute_reply": "2023-10-06T06:42:24.045557Z"
+ "iopub.execute_input": "2023-10-11T10:14:21.271618Z",
+ "iopub.status.busy": "2023-10-11T10:14:21.271368Z",
+ "iopub.status.idle": "2023-10-11T10:14:22.578137Z",
+ "shell.execute_reply": "2023-10-11T10:14:22.577377Z"
},
"nbsphinx": "hidden"
},
@@ -78,7 +78,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -104,10 +104,10 @@
"id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:24.049763Z",
- "iopub.status.busy": "2023-10-06T06:42:24.049226Z",
- "iopub.status.idle": "2023-10-06T06:42:24.411655Z",
- "shell.execute_reply": "2023-10-06T06:42:24.410950Z"
+ "iopub.execute_input": "2023-10-11T10:14:22.582014Z",
+ "iopub.status.busy": "2023-10-11T10:14:22.581420Z",
+ "iopub.status.idle": "2023-10-11T10:14:22.974677Z",
+ "shell.execute_reply": "2023-10-11T10:14:22.973899Z"
}
},
"outputs": [],
@@ -269,10 +269,10 @@
"id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:24.415251Z",
- "iopub.status.busy": "2023-10-06T06:42:24.414971Z",
- "iopub.status.idle": "2023-10-06T06:42:24.432546Z",
- "shell.execute_reply": "2023-10-06T06:42:24.431900Z"
+ "iopub.execute_input": "2023-10-11T10:14:22.978649Z",
+ "iopub.status.busy": "2023-10-11T10:14:22.978310Z",
+ "iopub.status.idle": "2023-10-11T10:14:22.996898Z",
+ "shell.execute_reply": "2023-10-11T10:14:22.996247Z"
},
"nbsphinx": "hidden"
},
@@ -408,10 +408,10 @@
"id": "dac65d3b-51e8-4682-b829-beab610b56d6",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:24.435846Z",
- "iopub.status.busy": "2023-10-06T06:42:24.435276Z",
- "iopub.status.idle": "2023-10-06T06:42:27.295634Z",
- "shell.execute_reply": "2023-10-06T06:42:27.294969Z"
+ "iopub.execute_input": "2023-10-11T10:14:23.000361Z",
+ "iopub.status.busy": "2023-10-11T10:14:22.999988Z",
+ "iopub.status.idle": "2023-10-11T10:14:26.108245Z",
+ "shell.execute_reply": "2023-10-11T10:14:26.107525Z"
}
},
"outputs": [
@@ -453,10 +453,10 @@
"id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:27.298756Z",
- "iopub.status.busy": "2023-10-06T06:42:27.298515Z",
- "iopub.status.idle": "2023-10-06T06:42:29.217234Z",
- "shell.execute_reply": "2023-10-06T06:42:29.216520Z"
+ "iopub.execute_input": "2023-10-11T10:14:26.112155Z",
+ "iopub.status.busy": "2023-10-11T10:14:26.111886Z",
+ "iopub.status.idle": "2023-10-11T10:14:28.201149Z",
+ "shell.execute_reply": "2023-10-11T10:14:28.200375Z"
}
},
"outputs": [],
@@ -498,10 +498,10 @@
"id": "ac1a60df",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:29.220473Z",
- "iopub.status.busy": "2023-10-06T06:42:29.220211Z",
- "iopub.status.idle": "2023-10-06T06:42:29.238406Z",
- "shell.execute_reply": "2023-10-06T06:42:29.237629Z"
+ "iopub.execute_input": "2023-10-11T10:14:28.204772Z",
+ "iopub.status.busy": "2023-10-11T10:14:28.204276Z",
+ "iopub.status.idle": "2023-10-11T10:14:28.222625Z",
+ "shell.execute_reply": "2023-10-11T10:14:28.221712Z"
}
},
"outputs": [
@@ -543,10 +543,10 @@
"id": "d09115b6-ad44-474f-9c8a-85a459586439",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:29.241923Z",
- "iopub.status.busy": "2023-10-06T06:42:29.241437Z",
- "iopub.status.idle": "2023-10-06T06:42:30.906896Z",
- "shell.execute_reply": "2023-10-06T06:42:30.905889Z"
+ "iopub.execute_input": "2023-10-11T10:14:28.225653Z",
+ "iopub.status.busy": "2023-10-11T10:14:28.225263Z",
+ "iopub.status.idle": "2023-10-11T10:14:29.944519Z",
+ "shell.execute_reply": "2023-10-11T10:14:29.943502Z"
}
},
"outputs": [
@@ -584,10 +584,10 @@
"id": "fffa88f6-84d7-45fe-8214-0e22079a06d1",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:30.911116Z",
- "iopub.status.busy": "2023-10-06T06:42:30.910015Z",
- "iopub.status.idle": "2023-10-06T06:42:33.760685Z",
- "shell.execute_reply": "2023-10-06T06:42:33.759969Z"
+ "iopub.execute_input": "2023-10-11T10:14:29.949244Z",
+ "iopub.status.busy": "2023-10-11T10:14:29.948159Z",
+ "iopub.status.idle": "2023-10-11T10:14:33.032286Z",
+ "shell.execute_reply": "2023-10-11T10:14:33.031520Z"
}
},
"outputs": [
@@ -622,10 +622,10 @@
"id": "c1198575",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:33.764037Z",
- "iopub.status.busy": "2023-10-06T06:42:33.763407Z",
- "iopub.status.idle": "2023-10-06T06:42:33.770524Z",
- "shell.execute_reply": "2023-10-06T06:42:33.769866Z"
+ "iopub.execute_input": "2023-10-11T10:14:33.036284Z",
+ "iopub.status.busy": "2023-10-11T10:14:33.035595Z",
+ "iopub.status.idle": "2023-10-11T10:14:33.042204Z",
+ "shell.execute_reply": "2023-10-11T10:14:33.041481Z"
}
},
"outputs": [
@@ -662,10 +662,10 @@
"id": "49161b19-7625-4fb7-add9-607d91a7eca1",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:33.773710Z",
- "iopub.status.busy": "2023-10-06T06:42:33.773130Z",
- "iopub.status.idle": "2023-10-06T06:42:33.778251Z",
- "shell.execute_reply": "2023-10-06T06:42:33.777579Z"
+ "iopub.execute_input": "2023-10-11T10:14:33.045437Z",
+ "iopub.status.busy": "2023-10-11T10:14:33.044886Z",
+ "iopub.status.idle": "2023-10-11T10:14:33.049900Z",
+ "shell.execute_reply": "2023-10-11T10:14:33.049197Z"
}
},
"outputs": [],
@@ -688,10 +688,10 @@
"id": "d1a2c008",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:33.781434Z",
- "iopub.status.busy": "2023-10-06T06:42:33.780878Z",
- "iopub.status.idle": "2023-10-06T06:42:33.784883Z",
- "shell.execute_reply": "2023-10-06T06:42:33.784163Z"
+ "iopub.execute_input": "2023-10-11T10:14:33.053058Z",
+ "iopub.status.busy": "2023-10-11T10:14:33.052676Z",
+ "iopub.status.idle": "2023-10-11T10:14:33.056643Z",
+ "shell.execute_reply": "2023-10-11T10:14:33.055929Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
index 55162ce12..f36e17395 100644
--- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
@@ -70,10 +70,10 @@
"id": "0ba0dc70",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:38.827543Z",
- "iopub.status.busy": "2023-10-06T06:42:38.827182Z",
- "iopub.status.idle": "2023-10-06T06:42:40.040059Z",
- "shell.execute_reply": "2023-10-06T06:42:40.039358Z"
+ "iopub.execute_input": "2023-10-11T10:14:38.145177Z",
+ "iopub.status.busy": "2023-10-11T10:14:38.144663Z",
+ "iopub.status.idle": "2023-10-11T10:14:39.457951Z",
+ "shell.execute_reply": "2023-10-11T10:14:39.457164Z"
},
"nbsphinx": "hidden"
},
@@ -83,7 +83,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -109,10 +109,10 @@
"id": "c90449c8",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:40.043489Z",
- "iopub.status.busy": "2023-10-06T06:42:40.042901Z",
- "iopub.status.idle": "2023-10-06T06:42:42.806381Z",
- "shell.execute_reply": "2023-10-06T06:42:42.805383Z"
+ "iopub.execute_input": "2023-10-11T10:14:39.461839Z",
+ "iopub.status.busy": "2023-10-11T10:14:39.461266Z",
+ "iopub.status.idle": "2023-10-11T10:14:40.735125Z",
+ "shell.execute_reply": "2023-10-11T10:14:40.733964Z"
}
},
"outputs": [],
@@ -130,10 +130,10 @@
"id": "df8be4c6",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:42.810112Z",
- "iopub.status.busy": "2023-10-06T06:42:42.809500Z",
- "iopub.status.idle": "2023-10-06T06:42:42.814515Z",
- "shell.execute_reply": "2023-10-06T06:42:42.813892Z"
+ "iopub.execute_input": "2023-10-11T10:14:40.740507Z",
+ "iopub.status.busy": "2023-10-11T10:14:40.739041Z",
+ "iopub.status.idle": "2023-10-11T10:14:40.744547Z",
+ "shell.execute_reply": "2023-10-11T10:14:40.743918Z"
}
},
"outputs": [],
@@ -165,10 +165,10 @@
"id": "2e9ffd6f",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:42.817301Z",
- "iopub.status.busy": "2023-10-06T06:42:42.816940Z",
- "iopub.status.idle": "2023-10-06T06:42:42.824678Z",
- "shell.execute_reply": "2023-10-06T06:42:42.824079Z"
+ "iopub.execute_input": "2023-10-11T10:14:40.748660Z",
+ "iopub.status.busy": "2023-10-11T10:14:40.747375Z",
+ "iopub.status.idle": "2023-10-11T10:14:40.756836Z",
+ "shell.execute_reply": "2023-10-11T10:14:40.756183Z"
}
},
"outputs": [],
@@ -194,10 +194,10 @@
"id": "56705562",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:42.827618Z",
- "iopub.status.busy": "2023-10-06T06:42:42.827242Z",
- "iopub.status.idle": "2023-10-06T06:42:43.565874Z",
- "shell.execute_reply": "2023-10-06T06:42:43.565212Z"
+ "iopub.execute_input": "2023-10-11T10:14:40.760217Z",
+ "iopub.status.busy": "2023-10-11T10:14:40.759720Z",
+ "iopub.status.idle": "2023-10-11T10:14:41.538167Z",
+ "shell.execute_reply": "2023-10-11T10:14:41.537478Z"
},
"scrolled": true
},
@@ -237,10 +237,10 @@
"id": "b08144d7",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:43.571115Z",
- "iopub.status.busy": "2023-10-06T06:42:43.570393Z",
- "iopub.status.idle": "2023-10-06T06:42:43.577522Z",
- "shell.execute_reply": "2023-10-06T06:42:43.576854Z"
+ "iopub.execute_input": "2023-10-11T10:14:41.543364Z",
+ "iopub.status.busy": "2023-10-11T10:14:41.542867Z",
+ "iopub.status.idle": "2023-10-11T10:14:41.549933Z",
+ "shell.execute_reply": "2023-10-11T10:14:41.549377Z"
}
},
"outputs": [
@@ -492,10 +492,10 @@
"id": "3d70bec6",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:43.580727Z",
- "iopub.status.busy": "2023-10-06T06:42:43.580208Z",
- "iopub.status.idle": "2023-10-06T06:42:43.586587Z",
- "shell.execute_reply": "2023-10-06T06:42:43.585970Z"
+ "iopub.execute_input": "2023-10-11T10:14:41.552749Z",
+ "iopub.status.busy": "2023-10-11T10:14:41.552299Z",
+ "iopub.status.idle": "2023-10-11T10:14:41.556872Z",
+ "shell.execute_reply": "2023-10-11T10:14:41.556335Z"
}
},
"outputs": [
@@ -552,10 +552,10 @@
"id": "4caa635d",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:43.590034Z",
- "iopub.status.busy": "2023-10-06T06:42:43.589424Z",
- "iopub.status.idle": "2023-10-06T06:42:44.269421Z",
- "shell.execute_reply": "2023-10-06T06:42:44.268565Z"
+ "iopub.execute_input": "2023-10-11T10:14:41.559649Z",
+ "iopub.status.busy": "2023-10-11T10:14:41.559200Z",
+ "iopub.status.idle": "2023-10-11T10:14:42.239478Z",
+ "shell.execute_reply": "2023-10-11T10:14:42.238623Z"
}
},
"outputs": [
@@ -611,10 +611,10 @@
"id": "a9b4c590",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:44.273021Z",
- "iopub.status.busy": "2023-10-06T06:42:44.272395Z",
- "iopub.status.idle": "2023-10-06T06:42:44.405290Z",
- "shell.execute_reply": "2023-10-06T06:42:44.404566Z"
+ "iopub.execute_input": "2023-10-11T10:14:42.243666Z",
+ "iopub.status.busy": "2023-10-11T10:14:42.243094Z",
+ "iopub.status.idle": "2023-10-11T10:14:42.361450Z",
+ "shell.execute_reply": "2023-10-11T10:14:42.360722Z"
}
},
"outputs": [
@@ -655,10 +655,10 @@
"id": "ffd9ebcc",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:44.408457Z",
- "iopub.status.busy": "2023-10-06T06:42:44.408222Z",
- "iopub.status.idle": "2023-10-06T06:42:44.415389Z",
- "shell.execute_reply": "2023-10-06T06:42:44.414802Z"
+ "iopub.execute_input": "2023-10-11T10:14:42.365097Z",
+ "iopub.status.busy": "2023-10-11T10:14:42.364684Z",
+ "iopub.status.idle": "2023-10-11T10:14:42.372504Z",
+ "shell.execute_reply": "2023-10-11T10:14:42.371871Z"
}
},
"outputs": [
@@ -695,10 +695,10 @@
"id": "4dd46d67",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:44.418415Z",
- "iopub.status.busy": "2023-10-06T06:42:44.417886Z",
- "iopub.status.idle": "2023-10-06T06:42:44.848994Z",
- "shell.execute_reply": "2023-10-06T06:42:44.848316Z"
+ "iopub.execute_input": "2023-10-11T10:14:42.375717Z",
+ "iopub.status.busy": "2023-10-11T10:14:42.375160Z",
+ "iopub.status.idle": "2023-10-11T10:14:42.832948Z",
+ "shell.execute_reply": "2023-10-11T10:14:42.832163Z"
}
},
"outputs": [
@@ -757,10 +757,10 @@
"id": "ceec2394",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:44.852327Z",
- "iopub.status.busy": "2023-10-06T06:42:44.851732Z",
- "iopub.status.idle": "2023-10-06T06:42:45.232990Z",
- "shell.execute_reply": "2023-10-06T06:42:45.232396Z"
+ "iopub.execute_input": "2023-10-11T10:14:42.837046Z",
+ "iopub.status.busy": "2023-10-11T10:14:42.836548Z",
+ "iopub.status.idle": "2023-10-11T10:14:43.241324Z",
+ "shell.execute_reply": "2023-10-11T10:14:43.240529Z"
}
},
"outputs": [
@@ -807,10 +807,10 @@
"id": "94f82b0d",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:45.236497Z",
- "iopub.status.busy": "2023-10-06T06:42:45.236024Z",
- "iopub.status.idle": "2023-10-06T06:42:45.673157Z",
- "shell.execute_reply": "2023-10-06T06:42:45.672573Z"
+ "iopub.execute_input": "2023-10-11T10:14:43.244865Z",
+ "iopub.status.busy": "2023-10-11T10:14:43.244361Z",
+ "iopub.status.idle": "2023-10-11T10:14:43.717249Z",
+ "shell.execute_reply": "2023-10-11T10:14:43.716536Z"
}
},
"outputs": [
@@ -857,10 +857,10 @@
"id": "1ea18c5d",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:45.678207Z",
- "iopub.status.busy": "2023-10-06T06:42:45.677552Z",
- "iopub.status.idle": "2023-10-06T06:42:46.217025Z",
- "shell.execute_reply": "2023-10-06T06:42:46.216410Z"
+ "iopub.execute_input": "2023-10-11T10:14:43.720695Z",
+ "iopub.status.busy": "2023-10-11T10:14:43.720189Z",
+ "iopub.status.idle": "2023-10-11T10:14:44.297358Z",
+ "shell.execute_reply": "2023-10-11T10:14:44.296598Z"
}
},
"outputs": [
@@ -920,10 +920,10 @@
"id": "7e770d23",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:46.224090Z",
- "iopub.status.busy": "2023-10-06T06:42:46.223470Z",
- "iopub.status.idle": "2023-10-06T06:42:46.761043Z",
- "shell.execute_reply": "2023-10-06T06:42:46.760415Z"
+ "iopub.execute_input": "2023-10-11T10:14:44.306826Z",
+ "iopub.status.busy": "2023-10-11T10:14:44.306266Z",
+ "iopub.status.idle": "2023-10-11T10:14:44.877281Z",
+ "shell.execute_reply": "2023-10-11T10:14:44.876617Z"
}
},
"outputs": [
@@ -966,10 +966,10 @@
"id": "57e84a27",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:46.766294Z",
- "iopub.status.busy": "2023-10-06T06:42:46.765658Z",
- "iopub.status.idle": "2023-10-06T06:42:47.009286Z",
- "shell.execute_reply": "2023-10-06T06:42:47.008592Z"
+ "iopub.execute_input": "2023-10-11T10:14:44.880925Z",
+ "iopub.status.busy": "2023-10-11T10:14:44.880266Z",
+ "iopub.status.idle": "2023-10-11T10:14:45.169266Z",
+ "shell.execute_reply": "2023-10-11T10:14:45.168623Z"
}
},
"outputs": [
@@ -1012,10 +1012,10 @@
"id": "0302818a",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:47.012459Z",
- "iopub.status.busy": "2023-10-06T06:42:47.012212Z",
- "iopub.status.idle": "2023-10-06T06:42:47.241149Z",
- "shell.execute_reply": "2023-10-06T06:42:47.240568Z"
+ "iopub.execute_input": "2023-10-11T10:14:45.173068Z",
+ "iopub.status.busy": "2023-10-11T10:14:45.172641Z",
+ "iopub.status.idle": "2023-10-11T10:14:45.403753Z",
+ "shell.execute_reply": "2023-10-11T10:14:45.403119Z"
}
},
"outputs": [
@@ -1050,10 +1050,10 @@
"id": "8ce74938",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:47.245512Z",
- "iopub.status.busy": "2023-10-06T06:42:47.245037Z",
- "iopub.status.idle": "2023-10-06T06:42:47.249301Z",
- "shell.execute_reply": "2023-10-06T06:42:47.248618Z"
+ "iopub.execute_input": "2023-10-11T10:14:45.409774Z",
+ "iopub.status.busy": "2023-10-11T10:14:45.409332Z",
+ "iopub.status.idle": "2023-10-11T10:14:45.413869Z",
+ "shell.execute_reply": "2023-10-11T10:14:45.413295Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
index ead06f972..a782b4946 100644
--- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
@@ -109,10 +109,10 @@
"id": "2bbebfc8",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:49.931678Z",
- "iopub.status.busy": "2023-10-06T06:42:49.931182Z",
- "iopub.status.idle": "2023-10-06T06:42:52.302575Z",
- "shell.execute_reply": "2023-10-06T06:42:52.301897Z"
+ "iopub.execute_input": "2023-10-11T10:14:48.248522Z",
+ "iopub.status.busy": "2023-10-11T10:14:48.248060Z",
+ "iopub.status.idle": "2023-10-11T10:14:50.766490Z",
+ "shell.execute_reply": "2023-10-11T10:14:50.765725Z"
},
"nbsphinx": "hidden"
},
@@ -125,7 +125,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -159,10 +159,10 @@
"id": "4396f544",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:52.306349Z",
- "iopub.status.busy": "2023-10-06T06:42:52.305724Z",
- "iopub.status.idle": "2023-10-06T06:42:52.686477Z",
- "shell.execute_reply": "2023-10-06T06:42:52.685783Z"
+ "iopub.execute_input": "2023-10-11T10:14:50.770556Z",
+ "iopub.status.busy": "2023-10-11T10:14:50.769989Z",
+ "iopub.status.idle": "2023-10-11T10:14:51.193239Z",
+ "shell.execute_reply": "2023-10-11T10:14:51.192424Z"
}
},
"outputs": [],
@@ -188,10 +188,10 @@
"id": "3792f82e",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:52.690278Z",
- "iopub.status.busy": "2023-10-06T06:42:52.689676Z",
- "iopub.status.idle": "2023-10-06T06:42:52.694547Z",
- "shell.execute_reply": "2023-10-06T06:42:52.693875Z"
+ "iopub.execute_input": "2023-10-11T10:14:51.197965Z",
+ "iopub.status.busy": "2023-10-11T10:14:51.197528Z",
+ "iopub.status.idle": "2023-10-11T10:14:51.208067Z",
+ "shell.execute_reply": "2023-10-11T10:14:51.204570Z"
},
"nbsphinx": "hidden"
},
@@ -225,10 +225,10 @@
"id": "fd853a54",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:42:52.697643Z",
- "iopub.status.busy": "2023-10-06T06:42:52.697164Z",
- "iopub.status.idle": "2023-10-06T06:43:04.860852Z",
- "shell.execute_reply": "2023-10-06T06:43:04.860235Z"
+ "iopub.execute_input": "2023-10-11T10:14:51.216010Z",
+ "iopub.status.busy": "2023-10-11T10:14:51.214804Z",
+ "iopub.status.idle": "2023-10-11T10:14:57.872879Z",
+ "shell.execute_reply": "2023-10-11T10:14:57.871995Z"
}
},
"outputs": [
@@ -242,7 +242,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "ccf6571d3adb4741985552a78e4d8fa2",
+ "model_id": "2187a5317f1445fc9127f6334a669a11",
"version_major": 2,
"version_minor": 0
},
@@ -361,10 +361,10 @@
"id": "9b64e0aa",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:04.864200Z",
- "iopub.status.busy": "2023-10-06T06:43:04.863735Z",
- "iopub.status.idle": "2023-10-06T06:43:04.870788Z",
- "shell.execute_reply": "2023-10-06T06:43:04.870167Z"
+ "iopub.execute_input": "2023-10-11T10:14:57.876489Z",
+ "iopub.status.busy": "2023-10-11T10:14:57.876055Z",
+ "iopub.status.idle": "2023-10-11T10:14:57.883665Z",
+ "shell.execute_reply": "2023-10-11T10:14:57.883007Z"
},
"nbsphinx": "hidden"
},
@@ -415,10 +415,10 @@
"id": "a00aa3ed",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:04.873511Z",
- "iopub.status.busy": "2023-10-06T06:43:04.873258Z",
- "iopub.status.idle": "2023-10-06T06:43:05.471458Z",
- "shell.execute_reply": "2023-10-06T06:43:05.470758Z"
+ "iopub.execute_input": "2023-10-11T10:14:57.887146Z",
+ "iopub.status.busy": "2023-10-11T10:14:57.886624Z",
+ "iopub.status.idle": "2023-10-11T10:14:58.513974Z",
+ "shell.execute_reply": "2023-10-11T10:14:58.513288Z"
}
},
"outputs": [
@@ -451,10 +451,10 @@
"id": "41e5cb6b",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:05.475311Z",
- "iopub.status.busy": "2023-10-06T06:43:05.474490Z",
- "iopub.status.idle": "2023-10-06T06:43:06.043140Z",
- "shell.execute_reply": "2023-10-06T06:43:06.042378Z"
+ "iopub.execute_input": "2023-10-11T10:14:58.517518Z",
+ "iopub.status.busy": "2023-10-11T10:14:58.517258Z",
+ "iopub.status.idle": "2023-10-11T10:14:59.113315Z",
+ "shell.execute_reply": "2023-10-11T10:14:59.112513Z"
}
},
"outputs": [
@@ -492,10 +492,10 @@
"id": "1cf25354",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:06.046277Z",
- "iopub.status.busy": "2023-10-06T06:43:06.045883Z",
- "iopub.status.idle": "2023-10-06T06:43:06.051186Z",
- "shell.execute_reply": "2023-10-06T06:43:06.050582Z"
+ "iopub.execute_input": "2023-10-11T10:14:59.117272Z",
+ "iopub.status.busy": "2023-10-11T10:14:59.116673Z",
+ "iopub.status.idle": "2023-10-11T10:14:59.122344Z",
+ "shell.execute_reply": "2023-10-11T10:14:59.121714Z"
}
},
"outputs": [],
@@ -518,10 +518,10 @@
"id": "85a58d41",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:06.054063Z",
- "iopub.status.busy": "2023-10-06T06:43:06.053689Z",
- "iopub.status.idle": "2023-10-06T06:43:20.764569Z",
- "shell.execute_reply": "2023-10-06T06:43:20.763956Z"
+ "iopub.execute_input": "2023-10-11T10:14:59.125452Z",
+ "iopub.status.busy": "2023-10-11T10:14:59.124992Z",
+ "iopub.status.idle": "2023-10-11T10:15:12.338984Z",
+ "shell.execute_reply": "2023-10-11T10:15:12.338203Z"
}
},
"outputs": [
@@ -580,10 +580,10 @@
"id": "feb0f519",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:20.768030Z",
- "iopub.status.busy": "2023-10-06T06:43:20.767585Z",
- "iopub.status.idle": "2023-10-06T06:43:22.576120Z",
- "shell.execute_reply": "2023-10-06T06:43:22.575517Z"
+ "iopub.execute_input": "2023-10-11T10:15:12.342679Z",
+ "iopub.status.busy": "2023-10-11T10:15:12.342160Z",
+ "iopub.status.idle": "2023-10-11T10:15:13.939999Z",
+ "shell.execute_reply": "2023-10-11T10:15:13.939181Z"
}
},
"outputs": [
@@ -627,10 +627,10 @@
"id": "089d5860",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:22.579152Z",
- "iopub.status.busy": "2023-10-06T06:43:22.578776Z",
- "iopub.status.idle": "2023-10-06T06:43:22.855276Z",
- "shell.execute_reply": "2023-10-06T06:43:22.854690Z"
+ "iopub.execute_input": "2023-10-11T10:15:13.943281Z",
+ "iopub.status.busy": "2023-10-11T10:15:13.942871Z",
+ "iopub.status.idle": "2023-10-11T10:15:14.237154Z",
+ "shell.execute_reply": "2023-10-11T10:15:14.236479Z"
}
},
"outputs": [
@@ -666,10 +666,10 @@
"id": "78b1951c",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:22.858774Z",
- "iopub.status.busy": "2023-10-06T06:43:22.858378Z",
- "iopub.status.idle": "2023-10-06T06:43:23.678242Z",
- "shell.execute_reply": "2023-10-06T06:43:23.677668Z"
+ "iopub.execute_input": "2023-10-11T10:15:14.240534Z",
+ "iopub.status.busy": "2023-10-11T10:15:14.240195Z",
+ "iopub.status.idle": "2023-10-11T10:15:15.103691Z",
+ "shell.execute_reply": "2023-10-11T10:15:15.103046Z"
}
},
"outputs": [
@@ -719,10 +719,10 @@
"id": "e9dff81b",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:23.681478Z",
- "iopub.status.busy": "2023-10-06T06:43:23.681071Z",
- "iopub.status.idle": "2023-10-06T06:43:24.014813Z",
- "shell.execute_reply": "2023-10-06T06:43:24.014150Z"
+ "iopub.execute_input": "2023-10-11T10:15:15.108620Z",
+ "iopub.status.busy": "2023-10-11T10:15:15.107416Z",
+ "iopub.status.idle": "2023-10-11T10:15:15.457851Z",
+ "shell.execute_reply": "2023-10-11T10:15:15.457219Z"
}
},
"outputs": [
@@ -770,10 +770,10 @@
"id": "616769f8",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:24.018005Z",
- "iopub.status.busy": "2023-10-06T06:43:24.017443Z",
- "iopub.status.idle": "2023-10-06T06:43:24.297178Z",
- "shell.execute_reply": "2023-10-06T06:43:24.296603Z"
+ "iopub.execute_input": "2023-10-11T10:15:15.461313Z",
+ "iopub.status.busy": "2023-10-11T10:15:15.460828Z",
+ "iopub.status.idle": "2023-10-11T10:15:15.753304Z",
+ "shell.execute_reply": "2023-10-11T10:15:15.752651Z"
}
},
"outputs": [
@@ -829,10 +829,10 @@
"id": "40fed4ef",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:24.300543Z",
- "iopub.status.busy": "2023-10-06T06:43:24.300054Z",
- "iopub.status.idle": "2023-10-06T06:43:24.452368Z",
- "shell.execute_reply": "2023-10-06T06:43:24.451646Z"
+ "iopub.execute_input": "2023-10-11T10:15:15.756626Z",
+ "iopub.status.busy": "2023-10-11T10:15:15.756115Z",
+ "iopub.status.idle": "2023-10-11T10:15:15.910302Z",
+ "shell.execute_reply": "2023-10-11T10:15:15.909590Z"
}
},
"outputs": [],
@@ -853,10 +853,10 @@
"id": "89f9db72",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:43:24.456293Z",
- "iopub.status.busy": "2023-10-06T06:43:24.455637Z",
- "iopub.status.idle": "2023-10-06T06:44:12.619311Z",
- "shell.execute_reply": "2023-10-06T06:44:12.618417Z"
+ "iopub.execute_input": "2023-10-11T10:15:15.914207Z",
+ "iopub.status.busy": "2023-10-11T10:15:15.913659Z",
+ "iopub.status.idle": "2023-10-11T10:16:11.565422Z",
+ "shell.execute_reply": "2023-10-11T10:16:11.564466Z"
}
},
"outputs": [
@@ -893,10 +893,10 @@
"id": "874c885a",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:12.622903Z",
- "iopub.status.busy": "2023-10-06T06:44:12.622485Z",
- "iopub.status.idle": "2023-10-06T06:44:14.166267Z",
- "shell.execute_reply": "2023-10-06T06:44:14.165380Z"
+ "iopub.execute_input": "2023-10-11T10:16:11.570126Z",
+ "iopub.status.busy": "2023-10-11T10:16:11.569548Z",
+ "iopub.status.idle": "2023-10-11T10:16:13.183899Z",
+ "shell.execute_reply": "2023-10-11T10:16:13.183075Z"
}
},
"outputs": [
@@ -927,10 +927,10 @@
"id": "e110fc4b",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:14.170824Z",
- "iopub.status.busy": "2023-10-06T06:44:14.170017Z",
- "iopub.status.idle": "2023-10-06T06:44:14.391897Z",
- "shell.execute_reply": "2023-10-06T06:44:14.391122Z"
+ "iopub.execute_input": "2023-10-11T10:16:13.188631Z",
+ "iopub.status.busy": "2023-10-11T10:16:13.187699Z",
+ "iopub.status.idle": "2023-10-11T10:16:13.537046Z",
+ "shell.execute_reply": "2023-10-11T10:16:13.536202Z"
}
},
"outputs": [],
@@ -944,10 +944,10 @@
"id": "85b60cbf",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:14.396218Z",
- "iopub.status.busy": "2023-10-06T06:44:14.395691Z",
- "iopub.status.idle": "2023-10-06T06:44:14.400242Z",
- "shell.execute_reply": "2023-10-06T06:44:14.399044Z"
+ "iopub.execute_input": "2023-10-11T10:16:13.541469Z",
+ "iopub.status.busy": "2023-10-11T10:16:13.540788Z",
+ "iopub.status.idle": "2023-10-11T10:16:13.545347Z",
+ "shell.execute_reply": "2023-10-11T10:16:13.544614Z"
}
},
"outputs": [],
@@ -969,10 +969,10 @@
"id": "17f96fa6",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:14.403794Z",
- "iopub.status.busy": "2023-10-06T06:44:14.403371Z",
- "iopub.status.idle": "2023-10-06T06:44:14.413607Z",
- "shell.execute_reply": "2023-10-06T06:44:14.412909Z"
+ "iopub.execute_input": "2023-10-11T10:16:13.548582Z",
+ "iopub.status.busy": "2023-10-11T10:16:13.548159Z",
+ "iopub.status.idle": "2023-10-11T10:16:13.560156Z",
+ "shell.execute_reply": "2023-10-11T10:16:13.558936Z"
},
"nbsphinx": "hidden"
},
@@ -1017,43 +1017,29 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "150c8d8ad66d493b9f1037d6d305bd3c": {
+ "2187a5317f1445fc9127f6334a669a11": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "424d34a394bb4874930a352fed327b8b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_486e6072aa0e48bfa66c430b66b5f0b8",
- "placeholder": "",
- "style": "IPY_MODEL_7ca17c532434424c8ada5df20f3a2c67",
- "value": " 170498071/170498071 [00:04<00:00, 41576700.02it/s]"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_843ceb611bc74db8a334d03975a66956",
+ "IPY_MODEL_9ca7b1c3a96b4d019fd43271debf17c1",
+ "IPY_MODEL_f9b27459060f414e9f8c796ddb711d9c"
+ ],
+ "layout": "IPY_MODEL_265106b7b67b47578424ade6aa125e14"
}
},
- "486e6072aa0e48bfa66c430b66b5f0b8": {
+ "265106b7b67b47578424ade6aa125e14": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1105,7 +1091,22 @@
"width": null
}
},
- "594942b396154d7ea39098412ed5ab6d": {
+ "7239fe90d76743afa44528ef490f4cd5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "843ceb611bc74db8a334d03975a66956": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1120,13 +1121,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_f5a463a192734f3b816fa4226f433b20",
+ "layout": "IPY_MODEL_f5e1643e798e40fca4aebc0ca34c4cf7",
"placeholder": "",
- "style": "IPY_MODEL_150c8d8ad66d493b9f1037d6d305bd3c",
+ "style": "IPY_MODEL_7239fe90d76743afa44528ef490f4cd5",
"value": "100%"
}
},
- "778adb2c672d42b38ad9a9dbde1f066d": {
+ "98de8f3a440f4d61aa012aa6c7a4afbf": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -1142,22 +1143,31 @@
"description_width": ""
}
},
- "7ca17c532434424c8ada5df20f3a2c67": {
+ "9ca7b1c3a96b4d019fd43271debf17c1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ddbba9dd2f7e4ba2b538ec7f3c57db09",
+ "max": 170498071.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_98de8f3a440f4d61aa012aa6c7a4afbf",
+ "value": 170498071.0
}
},
- "85bb3bc369df46a18567269e9470a462": {
+ "bb23ca25827842429d4d3f3ca044e55f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1209,7 +1219,22 @@
"width": null
}
},
- "8c4316e45d8b4109afcea3b3b1ecaf09": {
+ "bb78051e21e14dc58ad638173ad1aed4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ddbba9dd2f7e4ba2b538ec7f3c57db09": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1261,53 +1286,7 @@
"width": null
}
},
- "ccf6571d3adb4741985552a78e4d8fa2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_594942b396154d7ea39098412ed5ab6d",
- "IPY_MODEL_ebc831a19e104c85a17c4d65ce3c62f8",
- "IPY_MODEL_424d34a394bb4874930a352fed327b8b"
- ],
- "layout": "IPY_MODEL_8c4316e45d8b4109afcea3b3b1ecaf09"
- }
- },
- "ebc831a19e104c85a17c4d65ce3c62f8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_85bb3bc369df46a18567269e9470a462",
- "max": 170498071.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_778adb2c672d42b38ad9a9dbde1f066d",
- "value": 170498071.0
- }
- },
- "f5a463a192734f3b816fa4226f433b20": {
+ "f5e1643e798e40fca4aebc0ca34c4cf7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1358,6 +1337,27 @@
"visibility": null,
"width": null
}
+ },
+ "f9b27459060f414e9f8c796ddb711d9c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bb23ca25827842429d4d3f3ca044e55f",
+ "placeholder": "",
+ "style": "IPY_MODEL_bb78051e21e14dc58ad638173ad1aed4",
+ "value": " 170498071/170498071 [00:02<00:00, 72669604.58it/s]"
+ }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb
index 020d5c7bf..b2f2a4e9c 100644
--- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb
@@ -94,10 +94,10 @@
"id": "2e1af7d8",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:20.188807Z",
- "iopub.status.busy": "2023-10-06T06:44:20.188323Z",
- "iopub.status.idle": "2023-10-06T06:44:21.435886Z",
- "shell.execute_reply": "2023-10-06T06:44:21.435171Z"
+ "iopub.execute_input": "2023-10-11T10:16:18.972969Z",
+ "iopub.status.busy": "2023-10-11T10:16:18.972511Z",
+ "iopub.status.idle": "2023-10-11T10:16:20.274981Z",
+ "shell.execute_reply": "2023-10-11T10:16:20.274212Z"
},
"nbsphinx": "hidden"
},
@@ -109,7 +109,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -135,10 +135,10 @@
"id": "4fb10b8f",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:21.439404Z",
- "iopub.status.busy": "2023-10-06T06:44:21.438796Z",
- "iopub.status.idle": "2023-10-06T06:44:21.464741Z",
- "shell.execute_reply": "2023-10-06T06:44:21.464035Z"
+ "iopub.execute_input": "2023-10-11T10:16:20.279070Z",
+ "iopub.status.busy": "2023-10-11T10:16:20.278677Z",
+ "iopub.status.idle": "2023-10-11T10:16:20.305714Z",
+ "shell.execute_reply": "2023-10-11T10:16:20.305003Z"
}
},
"outputs": [],
@@ -157,10 +157,10 @@
"id": "284dc264",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:21.467841Z",
- "iopub.status.busy": "2023-10-06T06:44:21.467347Z",
- "iopub.status.idle": "2023-10-06T06:44:21.470959Z",
- "shell.execute_reply": "2023-10-06T06:44:21.470297Z"
+ "iopub.execute_input": "2023-10-11T10:16:20.309499Z",
+ "iopub.status.busy": "2023-10-11T10:16:20.309086Z",
+ "iopub.status.idle": "2023-10-11T10:16:20.312780Z",
+ "shell.execute_reply": "2023-10-11T10:16:20.312076Z"
},
"nbsphinx": "hidden"
},
@@ -191,10 +191,10 @@
"id": "0f7450db",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:21.474127Z",
- "iopub.status.busy": "2023-10-06T06:44:21.473568Z",
- "iopub.status.idle": "2023-10-06T06:44:21.751928Z",
- "shell.execute_reply": "2023-10-06T06:44:21.751138Z"
+ "iopub.execute_input": "2023-10-11T10:16:20.315961Z",
+ "iopub.status.busy": "2023-10-11T10:16:20.315631Z",
+ "iopub.status.idle": "2023-10-11T10:16:20.410714Z",
+ "shell.execute_reply": "2023-10-11T10:16:20.409898Z"
}
},
"outputs": [
@@ -367,10 +367,10 @@
"id": "55513fed",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:21.755435Z",
- "iopub.status.busy": "2023-10-06T06:44:21.754920Z",
- "iopub.status.idle": "2023-10-06T06:44:22.091374Z",
- "shell.execute_reply": "2023-10-06T06:44:22.090668Z"
+ "iopub.execute_input": "2023-10-11T10:16:20.414708Z",
+ "iopub.status.busy": "2023-10-11T10:16:20.414304Z",
+ "iopub.status.idle": "2023-10-11T10:16:20.773326Z",
+ "shell.execute_reply": "2023-10-11T10:16:20.772563Z"
},
"nbsphinx": "hidden"
},
@@ -410,10 +410,10 @@
"id": "df5a0f59",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:22.094691Z",
- "iopub.status.busy": "2023-10-06T06:44:22.094223Z",
- "iopub.status.idle": "2023-10-06T06:44:22.376398Z",
- "shell.execute_reply": "2023-10-06T06:44:22.375739Z"
+ "iopub.execute_input": "2023-10-11T10:16:20.777081Z",
+ "iopub.status.busy": "2023-10-11T10:16:20.776566Z",
+ "iopub.status.idle": "2023-10-11T10:16:21.063336Z",
+ "shell.execute_reply": "2023-10-11T10:16:21.062687Z"
}
},
"outputs": [
@@ -449,10 +449,10 @@
"id": "7af78a8a",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:22.379782Z",
- "iopub.status.busy": "2023-10-06T06:44:22.379486Z",
- "iopub.status.idle": "2023-10-06T06:44:22.384898Z",
- "shell.execute_reply": "2023-10-06T06:44:22.384197Z"
+ "iopub.execute_input": "2023-10-11T10:16:21.067100Z",
+ "iopub.status.busy": "2023-10-11T10:16:21.066628Z",
+ "iopub.status.idle": "2023-10-11T10:16:21.072122Z",
+ "shell.execute_reply": "2023-10-11T10:16:21.071554Z"
}
},
"outputs": [],
@@ -470,10 +470,10 @@
"id": "9556c624",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:22.388039Z",
- "iopub.status.busy": "2023-10-06T06:44:22.387598Z",
- "iopub.status.idle": "2023-10-06T06:44:22.395712Z",
- "shell.execute_reply": "2023-10-06T06:44:22.395000Z"
+ "iopub.execute_input": "2023-10-11T10:16:21.074893Z",
+ "iopub.status.busy": "2023-10-11T10:16:21.074440Z",
+ "iopub.status.idle": "2023-10-11T10:16:21.081812Z",
+ "shell.execute_reply": "2023-10-11T10:16:21.081267Z"
}
},
"outputs": [],
@@ -520,10 +520,10 @@
"id": "3c2f1ccc",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:22.398657Z",
- "iopub.status.busy": "2023-10-06T06:44:22.398277Z",
- "iopub.status.idle": "2023-10-06T06:44:22.401521Z",
- "shell.execute_reply": "2023-10-06T06:44:22.400860Z"
+ "iopub.execute_input": "2023-10-11T10:16:21.084812Z",
+ "iopub.status.busy": "2023-10-11T10:16:21.084361Z",
+ "iopub.status.idle": "2023-10-11T10:16:21.087410Z",
+ "shell.execute_reply": "2023-10-11T10:16:21.086872Z"
}
},
"outputs": [],
@@ -538,10 +538,10 @@
"id": "7e1b7860",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:22.404233Z",
- "iopub.status.busy": "2023-10-06T06:44:22.403998Z",
- "iopub.status.idle": "2023-10-06T06:44:36.706587Z",
- "shell.execute_reply": "2023-10-06T06:44:36.705934Z"
+ "iopub.execute_input": "2023-10-11T10:16:21.090213Z",
+ "iopub.status.busy": "2023-10-11T10:16:21.089763Z",
+ "iopub.status.idle": "2023-10-11T10:16:36.213624Z",
+ "shell.execute_reply": "2023-10-11T10:16:36.212898Z"
}
},
"outputs": [],
@@ -565,10 +565,10 @@
"id": "f407bd69",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:36.710552Z",
- "iopub.status.busy": "2023-10-06T06:44:36.709835Z",
- "iopub.status.idle": "2023-10-06T06:44:36.718214Z",
- "shell.execute_reply": "2023-10-06T06:44:36.717653Z"
+ "iopub.execute_input": "2023-10-11T10:16:36.217947Z",
+ "iopub.status.busy": "2023-10-11T10:16:36.217420Z",
+ "iopub.status.idle": "2023-10-11T10:16:36.227342Z",
+ "shell.execute_reply": "2023-10-11T10:16:36.226624Z"
}
},
"outputs": [
@@ -671,10 +671,10 @@
"id": "f7385336",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:36.721133Z",
- "iopub.status.busy": "2023-10-06T06:44:36.720716Z",
- "iopub.status.idle": "2023-10-06T06:44:36.724780Z",
- "shell.execute_reply": "2023-10-06T06:44:36.724226Z"
+ "iopub.execute_input": "2023-10-11T10:16:36.230618Z",
+ "iopub.status.busy": "2023-10-11T10:16:36.230039Z",
+ "iopub.status.idle": "2023-10-11T10:16:36.234621Z",
+ "shell.execute_reply": "2023-10-11T10:16:36.233913Z"
}
},
"outputs": [],
@@ -689,10 +689,10 @@
"id": "59fc3091",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:36.727576Z",
- "iopub.status.busy": "2023-10-06T06:44:36.727161Z",
- "iopub.status.idle": "2023-10-06T06:44:36.731008Z",
- "shell.execute_reply": "2023-10-06T06:44:36.730471Z"
+ "iopub.execute_input": "2023-10-11T10:16:36.237432Z",
+ "iopub.status.busy": "2023-10-11T10:16:36.237055Z",
+ "iopub.status.idle": "2023-10-11T10:16:36.241156Z",
+ "shell.execute_reply": "2023-10-11T10:16:36.240442Z"
}
},
"outputs": [
@@ -727,10 +727,10 @@
"id": "00949977",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:36.733921Z",
- "iopub.status.busy": "2023-10-06T06:44:36.733491Z",
- "iopub.status.idle": "2023-10-06T06:44:36.737030Z",
- "shell.execute_reply": "2023-10-06T06:44:36.736471Z"
+ "iopub.execute_input": "2023-10-11T10:16:36.245201Z",
+ "iopub.status.busy": "2023-10-11T10:16:36.244553Z",
+ "iopub.status.idle": "2023-10-11T10:16:36.248400Z",
+ "shell.execute_reply": "2023-10-11T10:16:36.247715Z"
}
},
"outputs": [],
@@ -749,10 +749,10 @@
"id": "b6c1ae3a",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:36.739788Z",
- "iopub.status.busy": "2023-10-06T06:44:36.739349Z",
- "iopub.status.idle": "2023-10-06T06:44:36.749619Z",
- "shell.execute_reply": "2023-10-06T06:44:36.749053Z"
+ "iopub.execute_input": "2023-10-11T10:16:36.251451Z",
+ "iopub.status.busy": "2023-10-11T10:16:36.250809Z",
+ "iopub.status.idle": "2023-10-11T10:16:36.261470Z",
+ "shell.execute_reply": "2023-10-11T10:16:36.260779Z"
}
},
"outputs": [
@@ -894,10 +894,10 @@
"id": "31c704e7",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:36.752678Z",
- "iopub.status.busy": "2023-10-06T06:44:36.752182Z",
- "iopub.status.idle": "2023-10-06T06:44:36.961281Z",
- "shell.execute_reply": "2023-10-06T06:44:36.960683Z"
+ "iopub.execute_input": "2023-10-11T10:16:36.264543Z",
+ "iopub.status.busy": "2023-10-11T10:16:36.264169Z",
+ "iopub.status.idle": "2023-10-11T10:16:36.475717Z",
+ "shell.execute_reply": "2023-10-11T10:16:36.475081Z"
}
},
"outputs": [
@@ -936,10 +936,10 @@
"id": "0bcc43db",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:36.964329Z",
- "iopub.status.busy": "2023-10-06T06:44:36.963897Z",
- "iopub.status.idle": "2023-10-06T06:44:37.147426Z",
- "shell.execute_reply": "2023-10-06T06:44:37.146834Z"
+ "iopub.execute_input": "2023-10-11T10:16:36.478871Z",
+ "iopub.status.busy": "2023-10-11T10:16:36.478371Z",
+ "iopub.status.idle": "2023-10-11T10:16:36.664946Z",
+ "shell.execute_reply": "2023-10-11T10:16:36.664310Z"
}
},
"outputs": [
@@ -995,10 +995,10 @@
"id": "7021bd68",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:37.150574Z",
- "iopub.status.busy": "2023-10-06T06:44:37.150124Z",
- "iopub.status.idle": "2023-10-06T06:44:38.005164Z",
- "shell.execute_reply": "2023-10-06T06:44:38.004524Z"
+ "iopub.execute_input": "2023-10-11T10:16:36.668419Z",
+ "iopub.status.busy": "2023-10-11T10:16:36.667655Z",
+ "iopub.status.idle": "2023-10-11T10:16:37.547694Z",
+ "shell.execute_reply": "2023-10-11T10:16:37.546993Z"
}
},
"outputs": [],
@@ -1014,10 +1014,10 @@
"id": "d49c990b",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:38.009559Z",
- "iopub.status.busy": "2023-10-06T06:44:38.008466Z",
- "iopub.status.idle": "2023-10-06T06:44:38.126282Z",
- "shell.execute_reply": "2023-10-06T06:44:38.125673Z"
+ "iopub.execute_input": "2023-10-11T10:16:37.551659Z",
+ "iopub.status.busy": "2023-10-11T10:16:37.550946Z",
+ "iopub.status.idle": "2023-10-11T10:16:37.678064Z",
+ "shell.execute_reply": "2023-10-11T10:16:37.677350Z"
}
},
"outputs": [
@@ -1056,10 +1056,10 @@
"id": "95531cda",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:38.130026Z",
- "iopub.status.busy": "2023-10-06T06:44:38.129553Z",
- "iopub.status.idle": "2023-10-06T06:44:38.141898Z",
- "shell.execute_reply": "2023-10-06T06:44:38.141346Z"
+ "iopub.execute_input": "2023-10-11T10:16:37.681349Z",
+ "iopub.status.busy": "2023-10-11T10:16:37.680929Z",
+ "iopub.status.idle": "2023-10-11T10:16:37.693007Z",
+ "shell.execute_reply": "2023-10-11T10:16:37.692356Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
index 568140485..dff96ea6a 100644
--- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
@@ -61,10 +61,10 @@
"id": "ae8a08e0",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:43.095134Z",
- "iopub.status.busy": "2023-10-06T06:44:43.094899Z",
- "iopub.status.idle": "2023-10-06T06:44:45.505572Z",
- "shell.execute_reply": "2023-10-06T06:44:45.504646Z"
+ "iopub.execute_input": "2023-10-11T10:16:42.879562Z",
+ "iopub.status.busy": "2023-10-11T10:16:42.879290Z",
+ "iopub.status.idle": "2023-10-11T10:16:45.171421Z",
+ "shell.execute_reply": "2023-10-11T10:16:45.170196Z"
}
},
"outputs": [],
@@ -79,10 +79,10 @@
"id": "58fd4c55",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:44:45.509351Z",
- "iopub.status.busy": "2023-10-06T06:44:45.508947Z",
- "iopub.status.idle": "2023-10-06T06:45:45.764466Z",
- "shell.execute_reply": "2023-10-06T06:45:45.763493Z"
+ "iopub.execute_input": "2023-10-11T10:16:45.176121Z",
+ "iopub.status.busy": "2023-10-11T10:16:45.175449Z",
+ "iopub.status.idle": "2023-10-11T10:17:46.462708Z",
+ "shell.execute_reply": "2023-10-11T10:17:46.461482Z"
}
},
"outputs": [],
@@ -97,10 +97,10 @@
"id": "439b0305",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:45:45.768835Z",
- "iopub.status.busy": "2023-10-06T06:45:45.768189Z",
- "iopub.status.idle": "2023-10-06T06:45:46.906225Z",
- "shell.execute_reply": "2023-10-06T06:45:46.905522Z"
+ "iopub.execute_input": "2023-10-11T10:17:46.468279Z",
+ "iopub.status.busy": "2023-10-11T10:17:46.466743Z",
+ "iopub.status.idle": "2023-10-11T10:17:47.703296Z",
+ "shell.execute_reply": "2023-10-11T10:17:47.702514Z"
},
"nbsphinx": "hidden"
},
@@ -111,7 +111,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -137,10 +137,10 @@
"id": "a1349304",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:45:46.910342Z",
- "iopub.status.busy": "2023-10-06T06:45:46.909626Z",
- "iopub.status.idle": "2023-10-06T06:45:46.914175Z",
- "shell.execute_reply": "2023-10-06T06:45:46.913586Z"
+ "iopub.execute_input": "2023-10-11T10:17:47.708935Z",
+ "iopub.status.busy": "2023-10-11T10:17:47.708287Z",
+ "iopub.status.idle": "2023-10-11T10:17:47.714808Z",
+ "shell.execute_reply": "2023-10-11T10:17:47.714115Z"
}
},
"outputs": [],
@@ -203,10 +203,10 @@
"id": "07dc5678",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:45:46.917128Z",
- "iopub.status.busy": "2023-10-06T06:45:46.916692Z",
- "iopub.status.idle": "2023-10-06T06:45:46.921191Z",
- "shell.execute_reply": "2023-10-06T06:45:46.920520Z"
+ "iopub.execute_input": "2023-10-11T10:17:47.717978Z",
+ "iopub.status.busy": "2023-10-11T10:17:47.717499Z",
+ "iopub.status.idle": "2023-10-11T10:17:47.723159Z",
+ "shell.execute_reply": "2023-10-11T10:17:47.722398Z"
}
},
"outputs": [
@@ -247,10 +247,10 @@
"id": "25ebe22a",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:45:46.924775Z",
- "iopub.status.busy": "2023-10-06T06:45:46.924240Z",
- "iopub.status.idle": "2023-10-06T06:45:46.928457Z",
- "shell.execute_reply": "2023-10-06T06:45:46.927789Z"
+ "iopub.execute_input": "2023-10-11T10:17:47.726282Z",
+ "iopub.status.busy": "2023-10-11T10:17:47.725847Z",
+ "iopub.status.idle": "2023-10-11T10:17:47.732041Z",
+ "shell.execute_reply": "2023-10-11T10:17:47.729495Z"
}
},
"outputs": [
@@ -290,10 +290,10 @@
"id": "3faedea9",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:45:46.931629Z",
- "iopub.status.busy": "2023-10-06T06:45:46.931206Z",
- "iopub.status.idle": "2023-10-06T06:45:46.934510Z",
- "shell.execute_reply": "2023-10-06T06:45:46.933862Z"
+ "iopub.execute_input": "2023-10-11T10:17:47.742692Z",
+ "iopub.status.busy": "2023-10-11T10:17:47.742200Z",
+ "iopub.status.idle": "2023-10-11T10:17:47.747083Z",
+ "shell.execute_reply": "2023-10-11T10:17:47.746497Z"
}
},
"outputs": [],
@@ -333,10 +333,10 @@
"id": "2c2ad9ad",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:45:46.937427Z",
- "iopub.status.busy": "2023-10-06T06:45:46.936856Z",
- "iopub.status.idle": "2023-10-06T06:46:57.007851Z",
- "shell.execute_reply": "2023-10-06T06:46:57.006953Z"
+ "iopub.execute_input": "2023-10-11T10:17:47.750396Z",
+ "iopub.status.busy": "2023-10-11T10:17:47.749938Z",
+ "iopub.status.idle": "2023-10-11T10:18:51.614820Z",
+ "shell.execute_reply": "2023-10-11T10:18:51.613672Z"
}
},
"outputs": [
@@ -350,7 +350,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "336d03a0c73b4578928d5bc19103d16f",
+ "model_id": "d24024213fa24b41a523a4e18640be86",
"version_major": 2,
"version_minor": 0
},
@@ -364,7 +364,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e84dbe083ff345a8a028e51f15dfc8bd",
+ "model_id": "ee1410e8ee504c9298c084a53ee9f179",
"version_major": 2,
"version_minor": 0
},
@@ -407,10 +407,10 @@
"id": "95dc7268",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:46:57.012078Z",
- "iopub.status.busy": "2023-10-06T06:46:57.011627Z",
- "iopub.status.idle": "2023-10-06T06:46:57.970367Z",
- "shell.execute_reply": "2023-10-06T06:46:57.969674Z"
+ "iopub.execute_input": "2023-10-11T10:18:51.619344Z",
+ "iopub.status.busy": "2023-10-11T10:18:51.618768Z",
+ "iopub.status.idle": "2023-10-11T10:18:52.599476Z",
+ "shell.execute_reply": "2023-10-11T10:18:52.598567Z"
}
},
"outputs": [
@@ -453,10 +453,10 @@
"id": "57fed473",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:46:57.974184Z",
- "iopub.status.busy": "2023-10-06T06:46:57.973503Z",
- "iopub.status.idle": "2023-10-06T06:47:00.848809Z",
- "shell.execute_reply": "2023-10-06T06:47:00.848132Z"
+ "iopub.execute_input": "2023-10-11T10:18:52.603006Z",
+ "iopub.status.busy": "2023-10-11T10:18:52.602342Z",
+ "iopub.status.idle": "2023-10-11T10:18:55.732067Z",
+ "shell.execute_reply": "2023-10-11T10:18:55.731136Z"
}
},
"outputs": [
@@ -526,10 +526,10 @@
"id": "e4a006bd",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:47:00.852016Z",
- "iopub.status.busy": "2023-10-06T06:47:00.851751Z",
- "iopub.status.idle": "2023-10-06T06:47:39.439716Z",
- "shell.execute_reply": "2023-10-06T06:47:39.439030Z"
+ "iopub.execute_input": "2023-10-11T10:18:55.735974Z",
+ "iopub.status.busy": "2023-10-11T10:18:55.735410Z",
+ "iopub.status.idle": "2023-10-11T10:19:35.144920Z",
+ "shell.execute_reply": "2023-10-11T10:19:35.144291Z"
}
},
"outputs": [
@@ -546,7 +546,7 @@
"output_type": "stream",
"text": [
"\r",
- " 0%| | 12899/4997436 [00:00<00:38, 128983.97it/s]"
+ " 0%| | 12761/4997436 [00:00<00:39, 127597.34it/s]"
]
},
{
@@ -554,7 +554,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%| | 25932/4997436 [00:00<00:38, 129768.90it/s]"
+ " 1%| | 25581/4997436 [00:00<00:38, 127944.19it/s]"
]
},
{
@@ -562,7 +562,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%| | 39095/4997436 [00:00<00:37, 130613.48it/s]"
+ " 1%| | 38462/4997436 [00:00<00:38, 128333.00it/s]"
]
},
{
@@ -570,7 +570,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%| | 52247/4997436 [00:00<00:37, 130965.97it/s]"
+ " 1%| | 51440/4997436 [00:00<00:38, 128900.03it/s]"
]
},
{
@@ -578,7 +578,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%|▏ | 65399/4997436 [00:00<00:37, 131161.96it/s]"
+ " 1%|▏ | 64331/4997436 [00:00<00:38, 128376.89it/s]"
]
},
{
@@ -586,7 +586,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▏ | 78559/4997436 [00:00<00:37, 131308.05it/s]"
+ " 2%|▏ | 77170/4997436 [00:00<00:38, 127739.59it/s]"
]
},
{
@@ -594,7 +594,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▏ | 91690/4997436 [00:00<00:37, 130906.43it/s]"
+ " 2%|▏ | 89958/4997436 [00:00<00:38, 127781.33it/s]"
]
},
{
@@ -602,7 +602,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▏ | 104871/4997436 [00:00<00:37, 131188.54it/s]"
+ " 2%|▏ | 102737/4997436 [00:00<00:38, 127552.31it/s]"
]
},
{
@@ -610,7 +610,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▏ | 118022/4997436 [00:00<00:37, 131284.82it/s]"
+ " 2%|▏ | 115569/4997436 [00:00<00:38, 127787.56it/s]"
]
},
{
@@ -618,7 +618,7 @@
"output_type": "stream",
"text": [
"\r",
- " 3%|▎ | 131212/4997436 [00:01<00:37, 131471.00it/s]"
+ " 3%|▎ | 128358/4997436 [00:01<00:38, 127815.76it/s]"
]
},
{
@@ -626,7 +626,7 @@
"output_type": "stream",
"text": [
"\r",
- " 3%|▎ | 144366/4997436 [00:01<00:36, 131489.46it/s]"
+ " 3%|▎ | 141140/4997436 [00:01<00:38, 127792.15it/s]"
]
},
{
@@ -634,7 +634,7 @@
"output_type": "stream",
"text": [
"\r",
- " 3%|▎ | 157516/4997436 [00:01<00:36, 131268.13it/s]"
+ " 3%|▎ | 154077/4997436 [00:01<00:37, 128266.59it/s]"
]
},
{
@@ -642,7 +642,7 @@
"output_type": "stream",
"text": [
"\r",
- " 3%|▎ | 170670/4997436 [00:01<00:36, 131349.36it/s]"
+ " 3%|▎ | 166904/4997436 [00:01<00:37, 128054.23it/s]"
]
},
{
@@ -650,7 +650,7 @@
"output_type": "stream",
"text": [
"\r",
- " 4%|▎ | 183829/4997436 [00:01<00:36, 131420.39it/s]"
+ " 4%|▎ | 179914/4997436 [00:01<00:37, 128667.98it/s]"
]
},
{
@@ -658,7 +658,7 @@
"output_type": "stream",
"text": [
"\r",
- " 4%|▍ | 197074/4997436 [00:01<00:36, 131728.56it/s]"
+ " 4%|▍ | 192782/4997436 [00:01<00:37, 128593.83it/s]"
]
},
{
@@ -666,7 +666,7 @@
"output_type": "stream",
"text": [
"\r",
- " 4%|▍ | 210272/4997436 [00:01<00:36, 131801.59it/s]"
+ " 4%|▍ | 205784/4997436 [00:01<00:37, 129020.44it/s]"
]
},
{
@@ -674,7 +674,7 @@
"output_type": "stream",
"text": [
"\r",
- " 4%|▍ | 223453/4997436 [00:01<00:36, 131780.55it/s]"
+ " 4%|▍ | 218687/4997436 [00:01<00:37, 128867.00it/s]"
]
},
{
@@ -682,7 +682,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▍ | 236632/4997436 [00:01<00:36, 131747.67it/s]"
+ " 5%|▍ | 231721/4997436 [00:01<00:36, 129305.47it/s]"
]
},
{
@@ -690,7 +690,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▍ | 249860/4997436 [00:01<00:35, 131904.30it/s]"
+ " 5%|▍ | 244687/4997436 [00:01<00:36, 129408.26it/s]"
]
},
{
@@ -698,7 +698,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 263055/4997436 [00:02<00:35, 131916.54it/s]"
+ " 5%|▌ | 257767/4997436 [00:02<00:36, 129821.28it/s]"
]
},
{
@@ -706,7 +706,7 @@
"output_type": "stream",
"text": [
"\r",
- " 6%|▌ | 276260/4997436 [00:02<00:35, 131954.65it/s]"
+ " 5%|▌ | 270750/4997436 [00:02<00:36, 129558.26it/s]"
]
},
{
@@ -714,7 +714,7 @@
"output_type": "stream",
"text": [
"\r",
- " 6%|▌ | 289466/4997436 [00:02<00:35, 131984.32it/s]"
+ " 6%|▌ | 283707/4997436 [00:02<00:36, 129296.59it/s]"
]
},
{
@@ -722,7 +722,7 @@
"output_type": "stream",
"text": [
"\r",
- " 6%|▌ | 302665/4997436 [00:02<00:35, 131921.13it/s]"
+ " 6%|▌ | 296757/4997436 [00:02<00:36, 129653.26it/s]"
]
},
{
@@ -730,7 +730,7 @@
"output_type": "stream",
"text": [
"\r",
- " 6%|▋ | 315858/4997436 [00:02<00:35, 131921.75it/s]"
+ " 6%|▌ | 309723/4997436 [00:02<00:36, 129527.22it/s]"
]
},
{
@@ -738,7 +738,7 @@
"output_type": "stream",
"text": [
"\r",
- " 7%|▋ | 329071/4997436 [00:02<00:35, 131982.18it/s]"
+ " 6%|▋ | 322711/4997436 [00:02<00:36, 129628.45it/s]"
]
},
{
@@ -746,7 +746,7 @@
"output_type": "stream",
"text": [
"\r",
- " 7%|▋ | 342288/4997436 [00:02<00:35, 132034.31it/s]"
+ " 7%|▋ | 335747/4997436 [00:02<00:35, 129845.24it/s]"
]
},
{
@@ -754,7 +754,7 @@
"output_type": "stream",
"text": [
"\r",
- " 7%|▋ | 355546/4997436 [00:02<00:35, 132196.61it/s]"
+ " 7%|▋ | 348732/4997436 [00:02<00:35, 129604.34it/s]"
]
},
{
@@ -762,7 +762,7 @@
"output_type": "stream",
"text": [
"\r",
- " 7%|▋ | 368805/4997436 [00:02<00:34, 132312.57it/s]"
+ " 7%|▋ | 361693/4997436 [00:02<00:35, 129500.60it/s]"
]
},
{
@@ -770,7 +770,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 382037/4997436 [00:02<00:34, 132304.34it/s]"
+ " 7%|▋ | 374753/4997436 [00:02<00:35, 129826.75it/s]"
]
},
{
@@ -778,7 +778,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 395268/4997436 [00:03<00:34, 132302.86it/s]"
+ " 8%|▊ | 387830/4997436 [00:03<00:35, 130106.58it/s]"
]
},
{
@@ -786,7 +786,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 408499/4997436 [00:03<00:34, 132212.09it/s]"
+ " 8%|▊ | 400841/4997436 [00:03<00:35, 129732.30it/s]"
]
},
{
@@ -794,7 +794,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 421721/4997436 [00:03<00:34, 132187.85it/s]"
+ " 8%|▊ | 413941/4997436 [00:03<00:35, 130107.16it/s]"
]
},
{
@@ -802,7 +802,7 @@
"output_type": "stream",
"text": [
"\r",
- " 9%|▊ | 435023/4997436 [00:03<00:34, 132435.13it/s]"
+ " 9%|▊ | 426953/4997436 [00:03<00:35, 130084.21it/s]"
]
},
{
@@ -810,7 +810,7 @@
"output_type": "stream",
"text": [
"\r",
- " 9%|▉ | 448267/4997436 [00:03<00:34, 132432.08it/s]"
+ " 9%|▉ | 439962/4997436 [00:03<00:35, 129730.29it/s]"
]
},
{
@@ -818,7 +818,7 @@
"output_type": "stream",
"text": [
"\r",
- " 9%|▉ | 461513/4997436 [00:03<00:34, 132438.31it/s]"
+ " 9%|▉ | 452988/4997436 [00:03<00:34, 129885.71it/s]"
]
},
{
@@ -826,7 +826,7 @@
"output_type": "stream",
"text": [
"\r",
- " 10%|▉ | 474770/4997436 [00:03<00:34, 132475.10it/s]"
+ " 9%|▉ | 466063/4997436 [00:03<00:34, 130142.08it/s]"
]
},
{
@@ -834,7 +834,7 @@
"output_type": "stream",
"text": [
"\r",
- " 10%|▉ | 488018/4997436 [00:03<00:34, 132359.90it/s]"
+ " 10%|▉ | 479078/4997436 [00:03<00:34, 129913.55it/s]"
]
},
{
@@ -842,7 +842,7 @@
"output_type": "stream",
"text": [
"\r",
- " 10%|█ | 501255/4997436 [00:03<00:33, 132282.98it/s]"
+ " 10%|▉ | 492083/4997436 [00:03<00:34, 129950.44it/s]"
]
},
{
@@ -850,7 +850,7 @@
"output_type": "stream",
"text": [
"\r",
- " 10%|█ | 514506/4997436 [00:03<00:33, 132349.17it/s]"
+ " 10%|█ | 505086/4997436 [00:03<00:34, 129969.85it/s]"
]
},
{
@@ -858,7 +858,7 @@
"output_type": "stream",
"text": [
"\r",
- " 11%|█ | 527741/4997436 [00:04<00:33, 132247.27it/s]"
+ " 10%|█ | 518084/4997436 [00:04<00:34, 129627.77it/s]"
]
},
{
@@ -866,7 +866,7 @@
"output_type": "stream",
"text": [
"\r",
- " 11%|█ | 540966/4997436 [00:04<00:33, 132185.50it/s]"
+ " 11%|█ | 531048/4997436 [00:04<00:34, 129085.51it/s]"
]
},
{
@@ -874,7 +874,7 @@
"output_type": "stream",
"text": [
"\r",
- " 11%|█ | 554185/4997436 [00:04<00:33, 132168.19it/s]"
+ " 11%|█ | 543958/4997436 [00:04<00:34, 128757.00it/s]"
]
},
{
@@ -882,7 +882,7 @@
"output_type": "stream",
"text": [
"\r",
- " 11%|█▏ | 567402/4997436 [00:04<00:33, 131977.96it/s]"
+ " 11%|█ | 556904/4997436 [00:04<00:34, 128961.89it/s]"
]
},
{
@@ -890,7 +890,7 @@
"output_type": "stream",
"text": [
"\r",
- " 12%|█▏ | 580600/4997436 [00:04<00:33, 131895.25it/s]"
+ " 11%|█▏ | 569801/4997436 [00:04<00:34, 128795.10it/s]"
]
},
{
@@ -898,7 +898,7 @@
"output_type": "stream",
"text": [
"\r",
- " 12%|█▏ | 593794/4997436 [00:04<00:33, 131906.81it/s]"
+ " 12%|█▏ | 582681/4997436 [00:04<00:34, 128439.20it/s]"
]
},
{
@@ -906,7 +906,7 @@
"output_type": "stream",
"text": [
"\r",
- " 12%|█▏ | 606985/4997436 [00:04<00:33, 131866.25it/s]"
+ " 12%|█▏ | 595526/4997436 [00:04<00:34, 128186.14it/s]"
]
},
{
@@ -914,7 +914,7 @@
"output_type": "stream",
"text": [
"\r",
- " 12%|█▏ | 620172/4997436 [00:04<00:33, 131865.72it/s]"
+ " 12%|█▏ | 608398/4997436 [00:04<00:34, 128341.23it/s]"
]
},
{
@@ -922,7 +922,7 @@
"output_type": "stream",
"text": [
"\r",
- " 13%|█▎ | 633359/4997436 [00:04<00:33, 131746.22it/s]"
+ " 12%|█▏ | 621247/4997436 [00:04<00:34, 128383.29it/s]"
]
},
{
@@ -930,7 +930,7 @@
"output_type": "stream",
"text": [
"\r",
- " 13%|█▎ | 646535/4997436 [00:04<00:33, 131748.23it/s]"
+ " 13%|█▎ | 634175/4997436 [00:04<00:33, 128648.80it/s]"
]
},
{
@@ -938,7 +938,7 @@
"output_type": "stream",
"text": [
"\r",
- " 13%|█▎ | 659747/4997436 [00:05<00:32, 131857.92it/s]"
+ " 13%|█▎ | 647049/4997436 [00:05<00:33, 128671.93it/s]"
]
},
{
@@ -946,7 +946,7 @@
"output_type": "stream",
"text": [
"\r",
- " 13%|█▎ | 672974/4997436 [00:05<00:32, 131979.90it/s]"
+ " 13%|█▎ | 659917/4997436 [00:05<00:33, 128331.75it/s]"
]
},
{
@@ -954,7 +954,7 @@
"output_type": "stream",
"text": [
"\r",
- " 14%|█▎ | 686182/4997436 [00:05<00:32, 132007.50it/s]"
+ " 13%|█▎ | 672751/4997436 [00:05<00:33, 128299.02it/s]"
]
},
{
@@ -962,7 +962,7 @@
"output_type": "stream",
"text": [
"\r",
- " 14%|█▍ | 699383/4997436 [00:05<00:32, 131915.95it/s]"
+ " 14%|█▎ | 685637/4997436 [00:05<00:33, 128464.80it/s]"
]
},
{
@@ -970,7 +970,7 @@
"output_type": "stream",
"text": [
"\r",
- " 14%|█▍ | 712575/4997436 [00:05<00:32, 131849.91it/s]"
+ " 14%|█▍ | 698484/4997436 [00:05<00:33, 128435.67it/s]"
]
},
{
@@ -978,7 +978,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▍ | 725761/4997436 [00:05<00:32, 131740.94it/s]"
+ " 14%|█▍ | 711524/4997436 [00:05<00:33, 129020.25it/s]"
]
},
{
@@ -986,7 +986,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▍ | 738936/4997436 [00:05<00:32, 131543.62it/s]"
+ " 14%|█▍ | 724427/4997436 [00:05<00:33, 128730.02it/s]"
]
},
{
@@ -994,7 +994,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▌ | 752125/4997436 [00:05<00:32, 131644.27it/s]"
+ " 15%|█▍ | 737334/4997436 [00:05<00:33, 128827.60it/s]"
]
},
{
@@ -1002,7 +1002,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▌ | 765338/4997436 [00:05<00:32, 131785.69it/s]"
+ " 15%|█▌ | 750354/4997436 [00:05<00:32, 129235.39it/s]"
]
},
{
@@ -1010,7 +1010,7 @@
"output_type": "stream",
"text": [
"\r",
- " 16%|█▌ | 778561/4997436 [00:05<00:31, 131914.84it/s]"
+ " 15%|█▌ | 763278/4997436 [00:05<00:32, 128798.42it/s]"
]
},
{
@@ -1018,7 +1018,7 @@
"output_type": "stream",
"text": [
"\r",
- " 16%|█▌ | 791807/4997436 [00:06<00:31, 132074.72it/s]"
+ " 16%|█▌ | 776277/4997436 [00:06<00:32, 129152.69it/s]"
]
},
{
@@ -1026,7 +1026,7 @@
"output_type": "stream",
"text": [
"\r",
- " 16%|█▌ | 805045/4997436 [00:06<00:31, 132162.33it/s]"
+ " 16%|█▌ | 789265/4997436 [00:06<00:32, 129366.55it/s]"
]
},
{
@@ -1034,7 +1034,7 @@
"output_type": "stream",
"text": [
"\r",
- " 16%|█▋ | 818286/4997436 [00:06<00:31, 132233.24it/s]"
+ " 16%|█▌ | 802203/4997436 [00:06<00:32, 129365.45it/s]"
]
},
{
@@ -1042,7 +1042,7 @@
"output_type": "stream",
"text": [
"\r",
- " 17%|█▋ | 831510/4997436 [00:06<00:31, 132083.53it/s]"
+ " 16%|█▋ | 815140/4997436 [00:06<00:32, 129146.51it/s]"
]
},
{
@@ -1050,7 +1050,7 @@
"output_type": "stream",
"text": [
"\r",
- " 17%|█▋ | 844759/4997436 [00:06<00:31, 132202.46it/s]"
+ " 17%|█▋ | 828055/4997436 [00:06<00:32, 128597.81it/s]"
]
},
{
@@ -1058,7 +1058,7 @@
"output_type": "stream",
"text": [
"\r",
- " 17%|█▋ | 857999/4997436 [00:06<00:31, 132258.88it/s]"
+ " 17%|█▋ | 841040/4997436 [00:06<00:32, 128967.36it/s]"
]
},
{
@@ -1066,7 +1066,7 @@
"output_type": "stream",
"text": [
"\r",
- " 17%|█▋ | 871225/4997436 [00:06<00:31, 131844.91it/s]"
+ " 17%|█▋ | 853938/4997436 [00:06<00:32, 128882.04it/s]"
]
},
{
@@ -1074,7 +1074,7 @@
"output_type": "stream",
"text": [
"\r",
- " 18%|█▊ | 884410/4997436 [00:06<00:31, 131826.06it/s]"
+ " 17%|█▋ | 866827/4997436 [00:06<00:32, 128539.04it/s]"
]
},
{
@@ -1082,7 +1082,7 @@
"output_type": "stream",
"text": [
"\r",
- " 18%|█▊ | 897593/4997436 [00:06<00:31, 131818.62it/s]"
+ " 18%|█▊ | 879801/4997436 [00:06<00:31, 128893.52it/s]"
]
},
{
@@ -1090,7 +1090,7 @@
"output_type": "stream",
"text": [
"\r",
- " 18%|█▊ | 910802/4997436 [00:06<00:30, 131897.61it/s]"
+ " 18%|█▊ | 892691/4997436 [00:06<00:31, 128761.48it/s]"
]
},
{
@@ -1098,7 +1098,7 @@
"output_type": "stream",
"text": [
"\r",
- " 18%|█▊ | 924017/4997436 [00:07<00:30, 131968.48it/s]"
+ " 18%|█▊ | 905627/4997436 [00:07<00:31, 128936.29it/s]"
]
},
{
@@ -1106,7 +1106,7 @@
"output_type": "stream",
"text": [
"\r",
- " 19%|█▉ | 937214/4997436 [00:07<00:30, 131843.64it/s]"
+ " 18%|█▊ | 918629/4997436 [00:07<00:31, 129257.52it/s]"
]
},
{
@@ -1114,7 +1114,7 @@
"output_type": "stream",
"text": [
"\r",
- " 19%|█▉ | 950410/4997436 [00:07<00:30, 131875.15it/s]"
+ " 19%|█▊ | 931555/4997436 [00:07<00:31, 129117.74it/s]"
]
},
{
@@ -1122,7 +1122,7 @@
"output_type": "stream",
"text": [
"\r",
- " 19%|█▉ | 963627/4997436 [00:07<00:30, 131960.84it/s]"
+ " 19%|█▉ | 944467/4997436 [00:07<00:31, 128864.39it/s]"
]
},
{
@@ -1130,7 +1130,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|█▉ | 976844/4997436 [00:07<00:30, 132021.51it/s]"
+ " 19%|█▉ | 957354/4997436 [00:07<00:31, 128745.05it/s]"
]
},
{
@@ -1138,7 +1138,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|█▉ | 990089/4997436 [00:07<00:30, 132145.79it/s]"
+ " 19%|█▉ | 970342/4997436 [00:07<00:31, 129080.69it/s]"
]
},
{
@@ -1146,7 +1146,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 1003304/4997436 [00:07<00:30, 131977.32it/s]"
+ " 20%|█▉ | 983251/4997436 [00:07<00:31, 128797.96it/s]"
]
},
{
@@ -1154,7 +1154,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 1016505/4997436 [00:07<00:30, 131984.04it/s]"
+ " 20%|█▉ | 996164/4997436 [00:07<00:31, 128893.29it/s]"
]
},
{
@@ -1162,7 +1162,7 @@
"output_type": "stream",
"text": [
"\r",
- " 21%|██ | 1029717/4997436 [00:07<00:30, 132020.78it/s]"
+ " 20%|██ | 1009084/4997436 [00:07<00:30, 128981.20it/s]"
]
},
{
@@ -1170,7 +1170,7 @@
"output_type": "stream",
"text": [
"\r",
- " 21%|██ | 1042920/4997436 [00:07<00:29, 131975.56it/s]"
+ " 20%|██ | 1022004/4997436 [00:07<00:30, 129042.46it/s]"
]
},
{
@@ -1178,7 +1178,7 @@
"output_type": "stream",
"text": [
"\r",
- " 21%|██ | 1056122/4997436 [00:08<00:29, 131986.28it/s]"
+ " 21%|██ | 1034909/4997436 [00:08<00:30, 128952.80it/s]"
]
},
{
@@ -1186,7 +1186,7 @@
"output_type": "stream",
"text": [
"\r",
- " 21%|██▏ | 1069377/4997436 [00:08<00:29, 132152.33it/s]"
+ " 21%|██ | 1047805/4997436 [00:08<00:30, 128827.16it/s]"
]
},
{
@@ -1194,7 +1194,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▏ | 1082615/4997436 [00:08<00:29, 132218.28it/s]"
+ " 21%|██ | 1060865/4997436 [00:08<00:30, 129355.18it/s]"
]
},
{
@@ -1202,7 +1202,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▏ | 1095849/4997436 [00:08<00:29, 132251.99it/s]"
+ " 21%|██▏ | 1073801/4997436 [00:08<00:30, 129239.58it/s]"
]
},
{
@@ -1210,7 +1210,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▏ | 1109075/4997436 [00:08<00:29, 132248.66it/s]"
+ " 22%|██▏ | 1086890/4997436 [00:08<00:30, 129730.90it/s]"
]
},
{
@@ -1218,7 +1218,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▏ | 1122300/4997436 [00:08<00:29, 132225.93it/s]"
+ " 22%|██▏ | 1099866/4997436 [00:08<00:30, 129736.23it/s]"
]
},
{
@@ -1226,7 +1226,7 @@
"output_type": "stream",
"text": [
"\r",
- " 23%|██▎ | 1135523/4997436 [00:08<00:29, 132019.31it/s]"
+ " 22%|██▏ | 1112840/4997436 [00:08<00:29, 129636.21it/s]"
]
},
{
@@ -1234,7 +1234,7 @@
"output_type": "stream",
"text": [
"\r",
- " 23%|██▎ | 1148726/4997436 [00:08<00:29, 131974.28it/s]"
+ " 23%|██▎ | 1125804/4997436 [00:08<00:29, 129435.87it/s]"
]
},
{
@@ -1242,7 +1242,7 @@
"output_type": "stream",
"text": [
"\r",
- " 23%|██▎ | 1161999/4997436 [00:08<00:29, 132197.47it/s]"
+ " 23%|██▎ | 1138748/4997436 [00:08<00:29, 128665.60it/s]"
]
},
{
@@ -1250,7 +1250,7 @@
"output_type": "stream",
"text": [
"\r",
- " 24%|██▎ | 1175224/4997436 [00:08<00:28, 132212.12it/s]"
+ " 23%|██▎ | 1151665/4997436 [00:08<00:29, 128812.65it/s]"
]
},
{
@@ -1258,7 +1258,7 @@
"output_type": "stream",
"text": [
"\r",
- " 24%|██▍ | 1188446/4997436 [00:09<00:28, 131754.15it/s]"
+ " 23%|██▎ | 1164548/4997436 [00:09<00:29, 128757.32it/s]"
]
},
{
@@ -1266,7 +1266,7 @@
"output_type": "stream",
"text": [
"\r",
- " 24%|██▍ | 1201622/4997436 [00:09<00:28, 131581.20it/s]"
+ " 24%|██▎ | 1177467/4997436 [00:09<00:29, 128882.73it/s]"
]
},
{
@@ -1274,7 +1274,7 @@
"output_type": "stream",
"text": [
"\r",
- " 24%|██▍ | 1214809/4997436 [00:09<00:28, 131666.21it/s]"
+ " 24%|██▍ | 1190356/4997436 [00:09<00:29, 128698.11it/s]"
]
},
{
@@ -1282,7 +1282,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▍ | 1227976/4997436 [00:09<00:28, 131612.43it/s]"
+ " 24%|██▍ | 1203227/4997436 [00:09<00:29, 128553.21it/s]"
]
},
{
@@ -1290,7 +1290,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▍ | 1241162/4997436 [00:09<00:28, 131685.10it/s]"
+ " 24%|██▍ | 1216083/4997436 [00:09<00:29, 128150.45it/s]"
]
},
{
@@ -1298,7 +1298,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 1254331/4997436 [00:09<00:28, 131613.27it/s]"
+ " 25%|██▍ | 1228939/4997436 [00:09<00:29, 128270.76it/s]"
]
},
{
@@ -1306,7 +1306,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 1267493/4997436 [00:09<00:28, 131137.37it/s]"
+ " 25%|██▍ | 1241767/4997436 [00:09<00:29, 128248.59it/s]"
]
},
{
@@ -1314,7 +1314,7 @@
"output_type": "stream",
"text": [
"\r",
- " 26%|██▌ | 1280608/4997436 [00:09<00:28, 131026.58it/s]"
+ " 25%|██▌ | 1254698/4997436 [00:09<00:29, 128561.79it/s]"
]
},
{
@@ -1322,7 +1322,7 @@
"output_type": "stream",
"text": [
"\r",
- " 26%|██▌ | 1293820/4997436 [00:09<00:28, 131349.63it/s]"
+ " 25%|██▌ | 1267555/4997436 [00:09<00:29, 128390.71it/s]"
]
},
{
@@ -1330,7 +1330,7 @@
"output_type": "stream",
"text": [
"\r",
- " 26%|██▌ | 1307006/4997436 [00:09<00:28, 131500.11it/s]"
+ " 26%|██▌ | 1280395/4997436 [00:09<00:29, 127938.18it/s]"
]
},
{
@@ -1338,7 +1338,7 @@
"output_type": "stream",
"text": [
"\r",
- " 26%|██▋ | 1320157/4997436 [00:10<00:28, 131118.52it/s]"
+ " 26%|██▌ | 1293408/4997436 [00:10<00:28, 128590.46it/s]"
]
},
{
@@ -1346,7 +1346,7 @@
"output_type": "stream",
"text": [
"\r",
- " 27%|██▋ | 1333351/4997436 [00:10<00:27, 131362.83it/s]"
+ " 26%|██▌ | 1306268/4997436 [00:10<00:28, 128459.39it/s]"
]
},
{
@@ -1354,7 +1354,7 @@
"output_type": "stream",
"text": [
"\r",
- " 27%|██▋ | 1346576/4997436 [00:10<00:27, 131624.59it/s]"
+ " 26%|██▋ | 1319192/4997436 [00:10<00:28, 128690.88it/s]"
]
},
{
@@ -1362,7 +1362,7 @@
"output_type": "stream",
"text": [
"\r",
- " 27%|██▋ | 1359861/4997436 [00:10<00:27, 131987.72it/s]"
+ " 27%|██▋ | 1332062/4997436 [00:10<00:28, 128662.87it/s]"
]
},
{
@@ -1370,7 +1370,7 @@
"output_type": "stream",
"text": [
"\r",
- " 27%|██▋ | 1373183/4997436 [00:10<00:27, 132354.01it/s]"
+ " 27%|██▋ | 1344991/4997436 [00:10<00:28, 128848.93it/s]"
]
},
{
@@ -1378,7 +1378,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 1386461/4997436 [00:10<00:27, 132479.94it/s]"
+ " 27%|██▋ | 1357877/4997436 [00:10<00:28, 128678.51it/s]"
]
},
{
@@ -1386,7 +1386,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 1399711/4997436 [00:10<00:27, 132483.91it/s]"
+ " 27%|██▋ | 1370934/4997436 [00:10<00:28, 129240.89it/s]"
]
},
{
@@ -1394,7 +1394,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 1412960/4997436 [00:10<00:27, 131831.36it/s]"
+ " 28%|██▊ | 1383859/4997436 [00:10<00:28, 129029.71it/s]"
]
},
{
@@ -1402,7 +1402,7 @@
"output_type": "stream",
"text": [
"\r",
- " 29%|██▊ | 1426144/4997436 [00:10<00:27, 131395.51it/s]"
+ " 28%|██▊ | 1396887/4997436 [00:10<00:27, 129400.21it/s]"
]
},
{
@@ -1410,7 +1410,7 @@
"output_type": "stream",
"text": [
"\r",
- " 29%|██▉ | 1439390/4997436 [00:10<00:27, 131710.60it/s]"
+ " 28%|██▊ | 1409931/4997436 [00:10<00:27, 129709.05it/s]"
]
},
{
@@ -1418,7 +1418,7 @@
"output_type": "stream",
"text": [
"\r",
- " 29%|██▉ | 1452651/4997436 [00:11<00:26, 131975.28it/s]"
+ " 28%|██▊ | 1422903/4997436 [00:11<00:27, 129550.93it/s]"
]
},
{
@@ -1426,7 +1426,7 @@
"output_type": "stream",
"text": [
"\r",
- " 29%|██▉ | 1465850/4997436 [00:11<00:26, 131569.12it/s]"
+ " 29%|██▊ | 1435884/4997436 [00:11<00:27, 129626.62it/s]"
]
},
{
@@ -1434,7 +1434,7 @@
"output_type": "stream",
"text": [
"\r",
- " 30%|██▉ | 1479089/4997436 [00:11<00:26, 131810.80it/s]"
+ " 29%|██▉ | 1448852/4997436 [00:11<00:27, 129640.52it/s]"
]
},
{
@@ -1442,7 +1442,7 @@
"output_type": "stream",
"text": [
"\r",
- " 30%|██▉ | 1492271/4997436 [00:11<00:26, 131799.39it/s]"
+ " 29%|██▉ | 1461817/4997436 [00:11<00:27, 129623.58it/s]"
]
},
{
@@ -1450,7 +1450,7 @@
"output_type": "stream",
"text": [
"\r",
- " 30%|███ | 1505452/4997436 [00:11<00:26, 131682.57it/s]"
+ " 30%|██▉ | 1474780/4997436 [00:11<00:27, 129184.62it/s]"
]
},
{
@@ -1458,7 +1458,7 @@
"output_type": "stream",
"text": [
"\r",
- " 30%|███ | 1518621/4997436 [00:11<00:26, 131682.77it/s]"
+ " 30%|██▉ | 1487699/4997436 [00:11<00:27, 128832.87it/s]"
]
},
{
@@ -1466,7 +1466,7 @@
"output_type": "stream",
"text": [
"\r",
- " 31%|███ | 1531857/4997436 [00:11<00:26, 131882.67it/s]"
+ " 30%|███ | 1500788/4997436 [00:11<00:27, 129444.22it/s]"
]
},
{
@@ -1474,7 +1474,7 @@
"output_type": "stream",
"text": [
"\r",
- " 31%|███ | 1545046/4997436 [00:11<00:26, 131880.94it/s]"
+ " 30%|███ | 1513733/4997436 [00:11<00:27, 128960.03it/s]"
]
},
{
@@ -1482,7 +1482,7 @@
"output_type": "stream",
"text": [
"\r",
- " 31%|███ | 1558261/4997436 [00:11<00:26, 131957.58it/s]"
+ " 31%|███ | 1526728/4997436 [00:11<00:26, 129251.84it/s]"
]
},
{
@@ -1490,7 +1490,7 @@
"output_type": "stream",
"text": [
"\r",
- " 31%|███▏ | 1571457/4997436 [00:11<00:26, 131734.12it/s]"
+ " 31%|███ | 1539670/4997436 [00:11<00:26, 129298.20it/s]"
]
},
{
@@ -1498,7 +1498,7 @@
"output_type": "stream",
"text": [
"\r",
- " 32%|███▏ | 1584631/4997436 [00:12<00:25, 131578.53it/s]"
+ " 31%|███ | 1552710/4997436 [00:12<00:26, 129625.16it/s]"
]
},
{
@@ -1506,7 +1506,7 @@
"output_type": "stream",
"text": [
"\r",
- " 32%|███▏ | 1597789/4997436 [00:12<00:25, 130932.29it/s]"
+ " 31%|███▏ | 1565880/4997436 [00:12<00:26, 130244.23it/s]"
]
},
{
@@ -1514,7 +1514,7 @@
"output_type": "stream",
"text": [
"\r",
- " 32%|███▏ | 1610890/4997436 [00:12<00:25, 130953.67it/s]"
+ " 32%|███▏ | 1578905/4997436 [00:12<00:26, 129801.42it/s]"
]
},
{
@@ -1522,7 +1522,7 @@
"output_type": "stream",
"text": [
"\r",
- " 32%|███▏ | 1624050/4997436 [00:12<00:25, 131145.08it/s]"
+ " 32%|███▏ | 1591920/4997436 [00:12<00:26, 129903.20it/s]"
]
},
{
@@ -1530,7 +1530,7 @@
"output_type": "stream",
"text": [
"\r",
- " 33%|███▎ | 1637165/4997436 [00:12<00:25, 131108.79it/s]"
+ " 32%|███▏ | 1604911/4997436 [00:12<00:26, 129285.07it/s]"
]
},
{
@@ -1538,7 +1538,7 @@
"output_type": "stream",
"text": [
"\r",
- " 33%|███▎ | 1650277/4997436 [00:12<00:25, 130945.50it/s]"
+ " 32%|███▏ | 1617880/4997436 [00:12<00:26, 129404.06it/s]"
]
},
{
@@ -1546,7 +1546,7 @@
"output_type": "stream",
"text": [
"\r",
- " 33%|███▎ | 1663372/4997436 [00:12<00:25, 130416.54it/s]"
+ " 33%|███▎ | 1630870/4997436 [00:12<00:25, 129549.04it/s]"
]
},
{
@@ -1554,7 +1554,7 @@
"output_type": "stream",
"text": [
"\r",
- " 34%|███▎ | 1676506/4997436 [00:12<00:25, 130690.91it/s]"
+ " 33%|███▎ | 1643826/4997436 [00:12<00:25, 129357.42it/s]"
]
},
{
@@ -1562,7 +1562,7 @@
"output_type": "stream",
"text": [
"\r",
- " 34%|███▍ | 1689678/4997436 [00:12<00:25, 130996.21it/s]"
+ " 33%|███▎ | 1656763/4997436 [00:12<00:25, 129310.31it/s]"
]
},
{
@@ -1570,7 +1570,7 @@
"output_type": "stream",
"text": [
"\r",
- " 34%|███▍ | 1702830/4997436 [00:12<00:25, 131150.05it/s]"
+ " 33%|███▎ | 1669695/4997436 [00:12<00:25, 129128.47it/s]"
]
},
{
@@ -1578,7 +1578,7 @@
"output_type": "stream",
"text": [
"\r",
- " 34%|███▍ | 1715946/4997436 [00:13<00:25, 131127.78it/s]"
+ " 34%|███▎ | 1682609/4997436 [00:13<00:25, 129071.74it/s]"
]
},
{
@@ -1586,7 +1586,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▍ | 1729060/4997436 [00:13<00:24, 131021.40it/s]"
+ " 34%|███▍ | 1695562/4997436 [00:13<00:25, 129205.27it/s]"
]
},
{
@@ -1594,7 +1594,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▍ | 1742284/4997436 [00:13<00:24, 131384.90it/s]"
+ " 34%|███▍ | 1708602/4997436 [00:13<00:25, 129558.94it/s]"
]
},
{
@@ -1602,7 +1602,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▌ | 1755435/4997436 [00:13<00:24, 131420.36it/s]"
+ " 34%|███▍ | 1721679/4997436 [00:13<00:25, 129919.86it/s]"
]
},
{
@@ -1610,7 +1610,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▌ | 1768619/4997436 [00:13<00:24, 131543.38it/s]"
+ " 35%|███▍ | 1734802/4997436 [00:13<00:25, 130308.36it/s]"
]
},
{
@@ -1618,7 +1618,7 @@
"output_type": "stream",
"text": [
"\r",
- " 36%|███▌ | 1781774/4997436 [00:13<00:24, 131314.38it/s]"
+ " 35%|███▍ | 1747833/4997436 [00:13<00:24, 129999.33it/s]"
]
},
{
@@ -1626,7 +1626,7 @@
"output_type": "stream",
"text": [
"\r",
- " 36%|███▌ | 1794914/4997436 [00:13<00:24, 131335.84it/s]"
+ " 35%|███▌ | 1760834/4997436 [00:13<00:25, 128986.95it/s]"
]
},
{
@@ -1634,7 +1634,7 @@
"output_type": "stream",
"text": [
"\r",
- " 36%|███▌ | 1808099/4997436 [00:13<00:24, 131486.10it/s]"
+ " 35%|███▌ | 1773735/4997436 [00:13<00:25, 128482.05it/s]"
]
},
{
@@ -1642,7 +1642,7 @@
"output_type": "stream",
"text": [
"\r",
- " 36%|███▋ | 1821292/4997436 [00:13<00:24, 131617.32it/s]"
+ " 36%|███▌ | 1786683/4997436 [00:13<00:24, 128774.44it/s]"
]
},
{
@@ -1650,7 +1650,7 @@
"output_type": "stream",
"text": [
"\r",
- " 37%|███▋ | 1834454/4997436 [00:13<00:24, 131476.34it/s]"
+ " 36%|███▌ | 1799562/4997436 [00:13<00:24, 128753.65it/s]"
]
},
{
@@ -1658,7 +1658,7 @@
"output_type": "stream",
"text": [
"\r",
- " 37%|███▋ | 1847630/4997436 [00:14<00:23, 131559.12it/s]"
+ " 36%|███▋ | 1812529/4997436 [00:14<00:24, 129024.21it/s]"
]
},
{
@@ -1666,7 +1666,7 @@
"output_type": "stream",
"text": [
"\r",
- " 37%|███▋ | 1860811/4997436 [00:14<00:23, 131632.29it/s]"
+ " 37%|███▋ | 1825433/4997436 [00:14<00:24, 128999.80it/s]"
]
},
{
@@ -1674,7 +1674,7 @@
"output_type": "stream",
"text": [
"\r",
- " 37%|███▋ | 1874019/4997436 [00:14<00:23, 131763.92it/s]"
+ " 37%|███▋ | 1838371/4997436 [00:14<00:24, 129111.27it/s]"
]
},
{
@@ -1682,7 +1682,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 1887196/4997436 [00:14<00:23, 131714.46it/s]"
+ " 37%|███▋ | 1851283/4997436 [00:14<00:24, 128908.52it/s]"
]
},
{
@@ -1690,7 +1690,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 1900413/4997436 [00:14<00:23, 131849.10it/s]"
+ " 37%|███▋ | 1864313/4997436 [00:14<00:24, 129323.07it/s]"
]
},
{
@@ -1698,7 +1698,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 1913628/4997436 [00:14<00:23, 131937.20it/s]"
+ " 38%|███▊ | 1877255/4997436 [00:14<00:24, 129350.30it/s]"
]
},
{
@@ -1706,7 +1706,7 @@
"output_type": "stream",
"text": [
"\r",
- " 39%|███▊ | 1926827/4997436 [00:14<00:23, 131951.19it/s]"
+ " 38%|███▊ | 1890191/4997436 [00:14<00:24, 129340.40it/s]"
]
},
{
@@ -1714,7 +1714,7 @@
"output_type": "stream",
"text": [
"\r",
- " 39%|███▉ | 1940023/4997436 [00:14<00:23, 131701.66it/s]"
+ " 38%|███▊ | 1903126/4997436 [00:14<00:23, 129278.82it/s]"
]
},
{
@@ -1722,7 +1722,7 @@
"output_type": "stream",
"text": [
"\r",
- " 39%|███▉ | 1953194/4997436 [00:14<00:23, 131568.51it/s]"
+ " 38%|███▊ | 1916054/4997436 [00:14<00:23, 128953.19it/s]"
]
},
{
@@ -1730,7 +1730,7 @@
"output_type": "stream",
"text": [
"\r",
- " 39%|███▉ | 1966351/4997436 [00:14<00:23, 131562.13it/s]"
+ " 39%|███▊ | 1928950/4997436 [00:14<00:23, 128939.81it/s]"
]
},
{
@@ -1738,7 +1738,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|███▉ | 1979508/4997436 [00:15<00:22, 131413.02it/s]"
+ " 39%|███▉ | 1941845/4997436 [00:15<00:23, 128706.27it/s]"
]
},
{
@@ -1746,7 +1746,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|███▉ | 1992650/4997436 [00:15<00:22, 131143.40it/s]"
+ " 39%|███▉ | 1954793/4997436 [00:15<00:23, 128933.70it/s]"
]
},
{
@@ -1754,7 +1754,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 2005765/4997436 [00:15<00:23, 128013.28it/s]"
+ " 39%|███▉ | 1967687/4997436 [00:15<00:23, 128808.25it/s]"
]
},
{
@@ -1762,7 +1762,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 2018583/4997436 [00:15<00:23, 126973.67it/s]"
+ " 40%|███▉ | 1980568/4997436 [00:15<00:23, 128542.98it/s]"
]
},
{
@@ -1770,7 +1770,7 @@
"output_type": "stream",
"text": [
"\r",
- " 41%|████ | 2031292/4997436 [00:15<00:24, 121783.43it/s]"
+ " 40%|███▉ | 1993423/4997436 [00:15<00:23, 128309.73it/s]"
]
},
{
@@ -1778,7 +1778,7 @@
"output_type": "stream",
"text": [
"\r",
- " 41%|████ | 2043603/4997436 [00:15<00:24, 122160.82it/s]"
+ " 40%|████ | 2006255/4997436 [00:15<00:23, 128216.31it/s]"
]
},
{
@@ -1786,7 +1786,7 @@
"output_type": "stream",
"text": [
"\r",
- " 41%|████ | 2056633/4997436 [00:15<00:23, 124527.00it/s]"
+ " 40%|████ | 2019080/4997436 [00:15<00:23, 128223.77it/s]"
]
},
{
@@ -1794,7 +1794,7 @@
"output_type": "stream",
"text": [
"\r",
- " 41%|████▏ | 2069692/4997436 [00:15<00:23, 126305.02it/s]"
+ " 41%|████ | 2032008/4997436 [00:15<00:23, 128536.29it/s]"
]
},
{
@@ -1802,7 +1802,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▏ | 2082761/4997436 [00:15<00:22, 127597.17it/s]"
+ " 41%|████ | 2044862/4997436 [00:15<00:22, 128402.35it/s]"
]
},
{
@@ -1810,7 +1810,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▏ | 2095863/4997436 [00:15<00:22, 128611.77it/s]"
+ " 41%|████ | 2057718/4997436 [00:15<00:22, 128445.10it/s]"
]
},
{
@@ -1818,7 +1818,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▏ | 2108940/4997436 [00:16<00:22, 129251.08it/s]"
+ " 41%|████▏ | 2070563/4997436 [00:16<00:22, 128022.52it/s]"
]
},
{
@@ -1826,7 +1826,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▏ | 2122076/4997436 [00:16<00:22, 129876.52it/s]"
+ " 42%|████▏ | 2083366/4997436 [00:16<00:22, 127792.18it/s]"
]
},
{
@@ -1834,7 +1834,7 @@
"output_type": "stream",
"text": [
"\r",
- " 43%|████▎ | 2135072/4997436 [00:16<00:22, 129653.80it/s]"
+ " 42%|████▏ | 2096146/4997436 [00:16<00:22, 127487.15it/s]"
]
},
{
@@ -1842,7 +1842,7 @@
"output_type": "stream",
"text": [
"\r",
- " 43%|████▎ | 2148178/4997436 [00:16<00:21, 130070.80it/s]"
+ " 42%|████▏ | 2108899/4997436 [00:16<00:22, 127463.94it/s]"
]
},
{
@@ -1850,7 +1850,7 @@
"output_type": "stream",
"text": [
"\r",
- " 43%|████▎ | 2161308/4997436 [00:16<00:21, 130436.91it/s]"
+ " 42%|████▏ | 2121768/4997436 [00:16<00:22, 127827.29it/s]"
]
},
{
@@ -1858,7 +1858,7 @@
"output_type": "stream",
"text": [
"\r",
- " 44%|████▎ | 2174388/4997436 [00:16<00:21, 130541.37it/s]"
+ " 43%|████▎ | 2134620/4997436 [00:16<00:22, 128032.03it/s]"
]
},
{
@@ -1866,7 +1866,7 @@
"output_type": "stream",
"text": [
"\r",
- " 44%|████▍ | 2187446/4997436 [00:16<00:21, 130548.88it/s]"
+ " 43%|████▎ | 2147424/4997436 [00:16<00:22, 127851.03it/s]"
]
},
{
@@ -1874,7 +1874,7 @@
"output_type": "stream",
"text": [
"\r",
- " 44%|████▍ | 2200520/4997436 [00:16<00:21, 130603.68it/s]"
+ " 43%|████▎ | 2160211/4997436 [00:16<00:22, 127853.00it/s]"
]
},
{
@@ -1882,7 +1882,7 @@
"output_type": "stream",
"text": [
"\r",
- " 44%|████▍ | 2213582/4997436 [00:16<00:21, 130100.88it/s]"
+ " 43%|████▎ | 2172997/4997436 [00:16<00:22, 127071.02it/s]"
]
},
{
@@ -1890,7 +1890,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▍ | 2226594/4997436 [00:16<00:21, 129971.53it/s]"
+ " 44%|████▎ | 2185865/4997436 [00:16<00:22, 127547.27it/s]"
]
},
{
@@ -1898,7 +1898,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▍ | 2239614/4997436 [00:17<00:21, 130038.05it/s]"
+ " 44%|████▍ | 2198621/4997436 [00:17<00:21, 127394.52it/s]"
]
},
{
@@ -1906,7 +1906,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 2252671/4997436 [00:17<00:21, 130193.34it/s]"
+ " 44%|████▍ | 2211362/4997436 [00:17<00:21, 126818.61it/s]"
]
},
{
@@ -1914,7 +1914,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 2265691/4997436 [00:17<00:21, 129763.60it/s]"
+ " 45%|████▍ | 2224103/4997436 [00:17<00:21, 126991.27it/s]"
]
},
{
@@ -1922,7 +1922,7 @@
"output_type": "stream",
"text": [
"\r",
- " 46%|████▌ | 2278678/4997436 [00:17<00:20, 129793.23it/s]"
+ " 45%|████▍ | 2236832/4997436 [00:17<00:21, 127075.59it/s]"
]
},
{
@@ -1930,7 +1930,7 @@
"output_type": "stream",
"text": [
"\r",
- " 46%|████▌ | 2291682/4997436 [00:17<00:20, 129864.71it/s]"
+ " 45%|████▌ | 2249611/4997436 [00:17<00:21, 127285.17it/s]"
]
},
{
@@ -1938,7 +1938,7 @@
"output_type": "stream",
"text": [
"\r",
- " 46%|████▌ | 2304669/4997436 [00:17<00:20, 129716.56it/s]"
+ " 45%|████▌ | 2262340/4997436 [00:17<00:21, 126764.35it/s]"
]
},
{
@@ -1946,7 +1946,7 @@
"output_type": "stream",
"text": [
"\r",
- " 46%|████▋ | 2317729/4997436 [00:17<00:20, 129978.41it/s]"
+ " 46%|████▌ | 2275018/4997436 [00:17<00:21, 126513.71it/s]"
]
},
{
@@ -1954,7 +1954,7 @@
"output_type": "stream",
"text": [
"\r",
- " 47%|████▋ | 2330728/4997436 [00:17<00:20, 129764.02it/s]"
+ " 46%|████▌ | 2287786/4997436 [00:17<00:21, 126859.11it/s]"
]
},
{
@@ -1962,7 +1962,7 @@
"output_type": "stream",
"text": [
"\r",
- " 47%|████▋ | 2343900/4997436 [00:17<00:20, 130345.96it/s]"
+ " 46%|████▌ | 2300496/4997436 [00:17<00:21, 126928.39it/s]"
]
},
{
@@ -1970,7 +1970,7 @@
"output_type": "stream",
"text": [
"\r",
- " 47%|████▋ | 2357040/4997436 [00:17<00:20, 130657.90it/s]"
+ " 46%|████▋ | 2313309/4997436 [00:17<00:21, 127285.03it/s]"
]
},
{
@@ -1978,7 +1978,7 @@
"output_type": "stream",
"text": [
"\r",
- " 47%|████▋ | 2370272/4997436 [00:18<00:20, 131152.65it/s]"
+ " 47%|████▋ | 2326038/4997436 [00:18<00:21, 127019.77it/s]"
]
},
{
@@ -1986,7 +1986,7 @@
"output_type": "stream",
"text": [
"\r",
- " 48%|████▊ | 2383450/4997436 [00:18<00:19, 131336.52it/s]"
+ " 47%|████▋ | 2339051/4997436 [00:18<00:20, 127946.57it/s]"
]
},
{
@@ -1994,7 +1994,7 @@
"output_type": "stream",
"text": [
"\r",
- " 48%|████▊ | 2396584/4997436 [00:18<00:19, 131099.75it/s]"
+ " 47%|████▋ | 2351985/4997436 [00:18<00:20, 128361.68it/s]"
]
},
{
@@ -2002,7 +2002,7 @@
"output_type": "stream",
"text": [
"\r",
- " 48%|████▊ | 2409695/4997436 [00:18<00:19, 131095.37it/s]"
+ " 47%|████▋ | 2364832/4997436 [00:18<00:20, 128391.60it/s]"
]
},
{
@@ -2010,7 +2010,7 @@
"output_type": "stream",
"text": [
"\r",
- " 48%|████▊ | 2422805/4997436 [00:18<00:19, 130830.79it/s]"
+ " 48%|████▊ | 2377672/4997436 [00:18<00:20, 128283.60it/s]"
]
},
{
@@ -2018,7 +2018,7 @@
"output_type": "stream",
"text": [
"\r",
- " 49%|████▊ | 2435952/4997436 [00:18<00:19, 131019.07it/s]"
+ " 48%|████▊ | 2390676/4997436 [00:18<00:20, 128805.49it/s]"
]
},
{
@@ -2026,7 +2026,7 @@
"output_type": "stream",
"text": [
"\r",
- " 49%|████▉ | 2449087/4997436 [00:18<00:19, 131115.89it/s]"
+ " 48%|████▊ | 2403609/4997436 [00:18<00:20, 128959.70it/s]"
]
},
{
@@ -2034,7 +2034,7 @@
"output_type": "stream",
"text": [
"\r",
- " 49%|████▉ | 2462199/4997436 [00:18<00:19, 130984.18it/s]"
+ " 48%|████▊ | 2416552/4997436 [00:18<00:19, 129098.52it/s]"
]
},
{
@@ -2042,7 +2042,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|████▉ | 2475298/4997436 [00:18<00:19, 130683.29it/s]"
+ " 49%|████▊ | 2429529/4997436 [00:18<00:19, 129295.75it/s]"
]
},
{
@@ -2050,7 +2050,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|████▉ | 2488378/4997436 [00:18<00:19, 130715.82it/s]"
+ " 49%|████▉ | 2442459/4997436 [00:18<00:19, 129175.42it/s]"
]
},
{
@@ -2058,7 +2058,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|█████ | 2501479/4997436 [00:19<00:19, 130799.84it/s]"
+ " 49%|████▉ | 2455458/4997436 [00:19<00:19, 129416.47it/s]"
]
},
{
@@ -2066,7 +2066,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|█████ | 2514564/4997436 [00:19<00:18, 130812.47it/s]"
+ " 49%|████▉ | 2468497/4997436 [00:19<00:19, 129704.20it/s]"
]
},
{
@@ -2074,7 +2074,7 @@
"output_type": "stream",
"text": [
"\r",
- " 51%|█████ | 2527646/4997436 [00:19<00:18, 130712.12it/s]"
+ " 50%|████▉ | 2481468/4997436 [00:19<00:19, 129416.66it/s]"
]
},
{
@@ -2082,7 +2082,7 @@
"output_type": "stream",
"text": [
"\r",
- " 51%|█████ | 2540718/4997436 [00:19<00:18, 130394.82it/s]"
+ " 50%|████▉ | 2494472/4997436 [00:19<00:19, 129599.65it/s]"
]
},
{
@@ -2090,7 +2090,7 @@
"output_type": "stream",
"text": [
"\r",
- " 51%|█████ | 2553768/4997436 [00:19<00:18, 130425.12it/s]"
+ " 50%|█████ | 2507435/4997436 [00:19<00:19, 129606.37it/s]"
]
},
{
@@ -2098,7 +2098,7 @@
"output_type": "stream",
"text": [
"\r",
- " 51%|█████▏ | 2566814/4997436 [00:19<00:18, 130432.81it/s]"
+ " 50%|█████ | 2520396/4997436 [00:19<00:19, 129496.36it/s]"
]
},
{
@@ -2106,7 +2106,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▏ | 2579858/4997436 [00:19<00:18, 130369.72it/s]"
+ " 51%|█████ | 2533370/4997436 [00:19<00:19, 129564.58it/s]"
]
},
{
@@ -2114,7 +2114,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▏ | 2592896/4997436 [00:19<00:18, 130055.28it/s]"
+ " 51%|█████ | 2546327/4997436 [00:19<00:19, 128746.69it/s]"
]
},
{
@@ -2122,7 +2122,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▏ | 2605983/4997436 [00:19<00:18, 130296.78it/s]"
+ " 51%|█████ | 2559203/4997436 [00:19<00:18, 128552.09it/s]"
]
},
{
@@ -2130,7 +2130,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▏ | 2619013/4997436 [00:19<00:18, 130176.86it/s]"
+ " 51%|█████▏ | 2572059/4997436 [00:19<00:18, 127876.60it/s]"
]
},
{
@@ -2138,7 +2138,7 @@
"output_type": "stream",
"text": [
"\r",
- " 53%|█████▎ | 2632050/4997436 [00:20<00:18, 130232.69it/s]"
+ " 52%|█████▏ | 2584848/4997436 [00:20<00:18, 127605.00it/s]"
]
},
{
@@ -2146,7 +2146,7 @@
"output_type": "stream",
"text": [
"\r",
- " 53%|█████▎ | 2645074/4997436 [00:20<00:18, 130164.35it/s]"
+ " 52%|█████▏ | 2597689/4997436 [00:20<00:18, 127841.18it/s]"
]
},
{
@@ -2154,7 +2154,7 @@
"output_type": "stream",
"text": [
"\r",
- " 53%|█████▎ | 2658179/4997436 [00:20<00:17, 130427.21it/s]"
+ " 52%|█████▏ | 2610474/4997436 [00:20<00:18, 127736.89it/s]"
]
},
{
@@ -2162,7 +2162,7 @@
"output_type": "stream",
"text": [
"\r",
- " 53%|█████▎ | 2671272/4997436 [00:20<00:17, 130573.93it/s]"
+ " 52%|█████▏ | 2623249/4997436 [00:20<00:18, 127689.34it/s]"
]
},
{
@@ -2170,7 +2170,7 @@
"output_type": "stream",
"text": [
"\r",
- " 54%|█████▎ | 2684330/4997436 [00:20<00:17, 130546.21it/s]"
+ " 53%|█████▎ | 2636019/4997436 [00:20<00:18, 127569.38it/s]"
]
},
{
@@ -2178,7 +2178,7 @@
"output_type": "stream",
"text": [
"\r",
- " 54%|█████▍ | 2697385/4997436 [00:20<00:17, 130383.07it/s]"
+ " 53%|█████▎ | 2648786/4997436 [00:20<00:18, 127595.43it/s]"
]
},
{
@@ -2186,7 +2186,7 @@
"output_type": "stream",
"text": [
"\r",
- " 54%|█████▍ | 2710424/4997436 [00:20<00:17, 130197.60it/s]"
+ " 53%|█████▎ | 2661546/4997436 [00:20<00:18, 127395.30it/s]"
]
},
{
@@ -2194,7 +2194,7 @@
"output_type": "stream",
"text": [
"\r",
- " 54%|█████▍ | 2723465/4997436 [00:20<00:17, 130257.89it/s]"
+ " 54%|█████▎ | 2674286/4997436 [00:20<00:18, 127088.34it/s]"
]
},
{
@@ -2202,7 +2202,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▍ | 2736648/4997436 [00:20<00:17, 130726.67it/s]"
+ " 54%|█████▍ | 2686996/4997436 [00:20<00:18, 126904.25it/s]"
]
},
{
@@ -2210,7 +2210,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▌ | 2749721/4997436 [00:20<00:17, 130643.41it/s]"
+ " 54%|█████▍ | 2699687/4997436 [00:20<00:18, 126610.26it/s]"
]
},
{
@@ -2218,7 +2218,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▌ | 2762838/4997436 [00:21<00:17, 130797.60it/s]"
+ " 54%|█████▍ | 2712349/4997436 [00:21<00:18, 125773.85it/s]"
]
},
{
@@ -2226,7 +2226,7 @@
"output_type": "stream",
"text": [
"\r",
- " 56%|█████▌ | 2775918/4997436 [00:21<00:17, 130594.52it/s]"
+ " 55%|█████▍ | 2725322/4997436 [00:21<00:17, 126948.27it/s]"
]
},
{
@@ -2234,7 +2234,7 @@
"output_type": "stream",
"text": [
"\r",
- " 56%|█████▌ | 2789004/4997436 [00:21<00:16, 130671.55it/s]"
+ " 55%|█████▍ | 2738178/4997436 [00:21<00:17, 127425.02it/s]"
]
},
{
@@ -2242,7 +2242,7 @@
"output_type": "stream",
"text": [
"\r",
- " 56%|█████▌ | 2802112/4997436 [00:21<00:16, 130792.02it/s]"
+ " 55%|█████▌ | 2750958/4997436 [00:21<00:17, 127534.50it/s]"
]
},
{
@@ -2250,7 +2250,7 @@
"output_type": "stream",
"text": [
"\r",
- " 56%|█████▋ | 2815272/4997436 [00:21<00:16, 131030.97it/s]"
+ " 55%|█████▌ | 2763713/4997436 [00:21<00:17, 127084.33it/s]"
]
},
{
@@ -2258,7 +2258,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▋ | 2828417/4997436 [00:21<00:16, 131152.98it/s]"
+ " 56%|█████▌ | 2776423/4997436 [00:21<00:17, 127071.58it/s]"
]
},
{
@@ -2266,7 +2266,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▋ | 2841533/4997436 [00:21<00:16, 131119.69it/s]"
+ " 56%|█████▌ | 2789133/4997436 [00:21<00:17, 127076.85it/s]"
]
},
{
@@ -2274,7 +2274,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▋ | 2854646/4997436 [00:21<00:16, 130829.42it/s]"
+ " 56%|█████▌ | 2801842/4997436 [00:21<00:17, 126861.09it/s]"
]
},
{
@@ -2282,7 +2282,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▋ | 2867765/4997436 [00:21<00:16, 130933.21it/s]"
+ " 56%|█████▋ | 2814556/4997436 [00:21<00:17, 126940.49it/s]"
]
},
{
@@ -2290,7 +2290,7 @@
"output_type": "stream",
"text": [
"\r",
- " 58%|█████▊ | 2880859/4997436 [00:21<00:16, 130701.42it/s]"
+ " 57%|█████▋ | 2827251/4997436 [00:21<00:17, 126921.72it/s]"
]
},
{
@@ -2298,7 +2298,7 @@
"output_type": "stream",
"text": [
"\r",
- " 58%|█████▊ | 2893930/4997436 [00:22<00:16, 130296.83it/s]"
+ " 57%|█████▋ | 2839944/4997436 [00:22<00:17, 126542.49it/s]"
]
},
{
@@ -2306,7 +2306,7 @@
"output_type": "stream",
"text": [
"\r",
- " 58%|█████▊ | 2907021/4997436 [00:22<00:16, 130476.50it/s]"
+ " 57%|█████▋ | 2852703/4997436 [00:22<00:16, 126852.44it/s]"
]
},
{
@@ -2314,7 +2314,7 @@
"output_type": "stream",
"text": [
"\r",
- " 58%|█████▊ | 2920069/4997436 [00:22<00:15, 130274.62it/s]"
+ " 57%|█████▋ | 2865389/4997436 [00:22<00:16, 126746.38it/s]"
]
},
{
@@ -2322,7 +2322,7 @@
"output_type": "stream",
"text": [
"\r",
- " 59%|█████▊ | 2933097/4997436 [00:22<00:15, 130189.92it/s]"
+ " 58%|█████▊ | 2878169/4997436 [00:22<00:16, 127057.56it/s]"
]
},
{
@@ -2330,7 +2330,7 @@
"output_type": "stream",
"text": [
"\r",
- " 59%|█████▉ | 2946163/4997436 [00:22<00:15, 130328.58it/s]"
+ " 58%|█████▊ | 2890967/4997436 [00:22<00:16, 127330.36it/s]"
]
},
{
@@ -2338,7 +2338,7 @@
"output_type": "stream",
"text": [
"\r",
- " 59%|█████▉ | 2959196/4997436 [00:22<00:15, 130245.72it/s]"
+ " 58%|█████▊ | 2903703/4997436 [00:22<00:16, 127334.82it/s]"
]
},
{
@@ -2346,7 +2346,7 @@
"output_type": "stream",
"text": [
"\r",
- " 59%|█████▉ | 2972221/4997436 [00:22<00:15, 130153.82it/s]"
+ " 58%|█████▊ | 2916437/4997436 [00:22<00:16, 127299.65it/s]"
]
},
{
@@ -2354,7 +2354,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|█████▉ | 2985237/4997436 [00:22<00:15, 130127.56it/s]"
+ " 59%|█████▊ | 2929168/4997436 [00:22<00:16, 127235.77it/s]"
]
},
{
@@ -2362,7 +2362,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|█████▉ | 2998378/4997436 [00:22<00:15, 130508.74it/s]"
+ " 59%|█████▉ | 2941892/4997436 [00:22<00:16, 126966.06it/s]"
]
},
{
@@ -2370,7 +2370,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|██████ | 3011511/4997436 [00:22<00:15, 130752.30it/s]"
+ " 59%|█████▉ | 2954680/4997436 [00:22<00:16, 127236.43it/s]"
]
},
{
@@ -2378,7 +2378,7 @@
"output_type": "stream",
"text": [
"\r",
- " 61%|██████ | 3024597/4997436 [00:23<00:15, 130780.14it/s]"
+ " 59%|█████▉ | 2967404/4997436 [00:23<00:16, 126873.64it/s]"
]
},
{
@@ -2386,7 +2386,7 @@
"output_type": "stream",
"text": [
"\r",
- " 61%|██████ | 3037714/4997436 [00:23<00:14, 130893.24it/s]"
+ " 60%|█████▉ | 2980211/4997436 [00:23<00:15, 127226.59it/s]"
]
},
{
@@ -2394,7 +2394,7 @@
"output_type": "stream",
"text": [
"\r",
- " 61%|██████ | 3050804/4997436 [00:23<00:14, 130672.66it/s]"
+ " 60%|█████▉ | 2992934/4997436 [00:23<00:15, 126770.92it/s]"
]
},
{
@@ -2402,7 +2402,7 @@
"output_type": "stream",
"text": [
"\r",
- " 61%|██████▏ | 3063889/4997436 [00:23<00:14, 130722.74it/s]"
+ " 60%|██████ | 3005612/4997436 [00:23<00:15, 126742.70it/s]"
]
},
{
@@ -2410,7 +2410,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▏ | 3076962/4997436 [00:23<00:14, 128458.30it/s]"
+ " 60%|██████ | 3018287/4997436 [00:23<00:15, 126055.90it/s]"
]
},
{
@@ -2418,7 +2418,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▏ | 3090064/4997436 [00:23<00:14, 129214.92it/s]"
+ " 61%|██████ | 3031026/4997436 [00:23<00:15, 126450.11it/s]"
]
},
{
@@ -2426,7 +2426,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▏ | 3103151/4997436 [00:23<00:14, 129704.02it/s]"
+ " 61%|██████ | 3043697/4997436 [00:23<00:15, 126524.82it/s]"
]
},
{
@@ -2434,7 +2434,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▏ | 3116220/4997436 [00:23<00:14, 129996.76it/s]"
+ " 61%|██████ | 3056538/4997436 [00:23<00:15, 127084.31it/s]"
]
},
{
@@ -2442,7 +2442,7 @@
"output_type": "stream",
"text": [
"\r",
- " 63%|██████▎ | 3129363/4997436 [00:23<00:14, 130420.57it/s]"
+ " 61%|██████▏ | 3069446/4997436 [00:23<00:15, 127677.62it/s]"
]
},
{
@@ -2450,7 +2450,7 @@
"output_type": "stream",
"text": [
"\r",
- " 63%|██████▎ | 3142536/4997436 [00:23<00:14, 130810.23it/s]"
+ " 62%|██████▏ | 3082215/4997436 [00:23<00:15, 126928.77it/s]"
]
},
{
@@ -2458,7 +2458,7 @@
"output_type": "stream",
"text": [
"\r",
- " 63%|██████▎ | 3155636/4997436 [00:24<00:14, 130864.08it/s]"
+ " 62%|██████▏ | 3095031/4997436 [00:24<00:14, 127293.82it/s]"
]
},
{
@@ -2466,7 +2466,7 @@
"output_type": "stream",
"text": [
"\r",
- " 63%|██████▎ | 3168724/4997436 [00:24<00:13, 130826.85it/s]"
+ " 62%|██████▏ | 3107873/4997436 [00:24<00:14, 127626.48it/s]"
]
},
{
@@ -2474,7 +2474,7 @@
"output_type": "stream",
"text": [
"\r",
- " 64%|██████▎ | 3181851/4997436 [00:24<00:13, 130956.66it/s]"
+ " 62%|██████▏ | 3120637/4997436 [00:24<00:14, 127587.33it/s]"
]
},
{
@@ -2482,7 +2482,7 @@
"output_type": "stream",
"text": [
"\r",
- " 64%|██████▍ | 3195001/4997436 [00:24<00:13, 131115.70it/s]"
+ " 63%|██████▎ | 3133397/4997436 [00:24<00:14, 127022.75it/s]"
]
},
{
@@ -2490,7 +2490,7 @@
"output_type": "stream",
"text": [
"\r",
- " 64%|██████▍ | 3208114/4997436 [00:24<00:13, 131051.74it/s]"
+ " 63%|██████▎ | 3146125/4997436 [00:24<00:14, 127097.08it/s]"
]
},
{
@@ -2498,7 +2498,7 @@
"output_type": "stream",
"text": [
"\r",
- " 64%|██████▍ | 3221220/4997436 [00:24<00:13, 130790.57it/s]"
+ " 63%|██████▎ | 3159048/4997436 [00:24<00:14, 127732.85it/s]"
]
},
{
@@ -2506,7 +2506,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▍ | 3234326/4997436 [00:24<00:13, 130868.94it/s]"
+ " 63%|██████▎ | 3171849/4997436 [00:24<00:14, 127812.65it/s]"
]
},
{
@@ -2514,7 +2514,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▍ | 3247451/4997436 [00:24<00:13, 130980.52it/s]"
+ " 64%|██████▎ | 3184689/4997436 [00:24<00:14, 127985.87it/s]"
]
},
{
@@ -2522,7 +2522,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 3260550/4997436 [00:24<00:13, 130808.33it/s]"
+ " 64%|██████▍ | 3197494/4997436 [00:24<00:14, 128001.83it/s]"
]
},
{
@@ -2530,7 +2530,7 @@
"output_type": "stream",
"text": [
"\r",
- " 66%|██████▌ | 3273632/4997436 [00:24<00:13, 130652.05it/s]"
+ " 64%|██████▍ | 3210295/4997436 [00:24<00:13, 127672.46it/s]"
]
},
{
@@ -2538,7 +2538,7 @@
"output_type": "stream",
"text": [
"\r",
- " 66%|██████▌ | 3286698/4997436 [00:25<00:13, 130638.33it/s]"
+ " 64%|██████▍ | 3223063/4997436 [00:25<00:13, 127636.32it/s]"
]
},
{
@@ -2546,7 +2546,7 @@
"output_type": "stream",
"text": [
"\r",
- " 66%|██████▌ | 3299762/4997436 [00:25<00:13, 130359.84it/s]"
+ " 65%|██████▍ | 3235827/4997436 [00:25<00:13, 127612.77it/s]"
]
},
{
@@ -2554,7 +2554,7 @@
"output_type": "stream",
"text": [
"\r",
- " 66%|██████▋ | 3312799/4997436 [00:25<00:12, 130199.16it/s]"
+ " 65%|██████▌ | 3248589/4997436 [00:25<00:13, 127222.89it/s]"
]
},
{
@@ -2562,7 +2562,7 @@
"output_type": "stream",
"text": [
"\r",
- " 67%|██████▋ | 3325832/4997436 [00:25<00:12, 130237.04it/s]"
+ " 65%|██████▌ | 3261312/4997436 [00:25<00:13, 126688.51it/s]"
]
},
{
@@ -2570,7 +2570,7 @@
"output_type": "stream",
"text": [
"\r",
- " 67%|██████▋ | 3338856/4997436 [00:25<00:12, 130136.70it/s]"
+ " 66%|██████▌ | 3274065/4997436 [00:25<00:13, 126936.79it/s]"
]
},
{
@@ -2578,7 +2578,7 @@
"output_type": "stream",
"text": [
"\r",
- " 67%|██████▋ | 3351904/4997436 [00:25<00:12, 130237.58it/s]"
+ " 66%|██████▌ | 3286849/4997436 [00:25<00:13, 127203.18it/s]"
]
},
{
@@ -2586,7 +2586,7 @@
"output_type": "stream",
"text": [
"\r",
- " 67%|██████▋ | 3364956/4997436 [00:25<00:12, 130318.79it/s]"
+ " 66%|██████▌ | 3299632/4997436 [00:25<00:13, 127386.05it/s]"
]
},
{
@@ -2594,7 +2594,7 @@
"output_type": "stream",
"text": [
"\r",
- " 68%|██████▊ | 3378049/4997436 [00:25<00:12, 130499.78it/s]"
+ " 66%|██████▋ | 3312463/4997436 [00:25<00:13, 127658.30it/s]"
]
},
{
@@ -2602,7 +2602,7 @@
"output_type": "stream",
"text": [
"\r",
- " 68%|██████▊ | 3391100/4997436 [00:25<00:12, 130481.99it/s]"
+ " 67%|██████▋ | 3325409/4997436 [00:25<00:13, 128195.85it/s]"
]
},
{
@@ -2610,7 +2610,7 @@
"output_type": "stream",
"text": [
"\r",
- " 68%|██████▊ | 3404149/4997436 [00:25<00:12, 130418.42it/s]"
+ " 67%|██████▋ | 3338229/4997436 [00:25<00:12, 128133.13it/s]"
]
},
{
@@ -2618,7 +2618,7 @@
"output_type": "stream",
"text": [
"\r",
- " 68%|██████▊ | 3417191/4997436 [00:26<00:12, 130247.83it/s]"
+ " 67%|██████▋ | 3351077/4997436 [00:26<00:12, 128232.45it/s]"
]
},
{
@@ -2626,7 +2626,7 @@
"output_type": "stream",
"text": [
"\r",
- " 69%|██████▊ | 3430216/4997436 [00:26<00:12, 130195.70it/s]"
+ " 67%|██████▋ | 3363901/4997436 [00:26<00:12, 127494.36it/s]"
]
},
{
@@ -2634,7 +2634,7 @@
"output_type": "stream",
"text": [
"\r",
- " 69%|██████▉ | 3443236/4997436 [00:26<00:11, 130170.90it/s]"
+ " 68%|██████▊ | 3376729/4997436 [00:26<00:12, 127725.10it/s]"
]
},
{
@@ -2642,7 +2642,7 @@
"output_type": "stream",
"text": [
"\r",
- " 69%|██████▉ | 3456254/4997436 [00:26<00:11, 130065.49it/s]"
+ " 68%|██████▊ | 3389591/4997436 [00:26<00:12, 127990.37it/s]"
]
},
{
@@ -2650,7 +2650,7 @@
"output_type": "stream",
"text": [
"\r",
- " 69%|██████▉ | 3469276/4997436 [00:26<00:11, 130108.85it/s]"
+ " 68%|██████▊ | 3402391/4997436 [00:26<00:12, 127848.04it/s]"
]
},
{
@@ -2658,7 +2658,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|██████▉ | 3482296/4997436 [00:26<00:11, 130133.60it/s]"
+ " 68%|██████▊ | 3415177/4997436 [00:26<00:12, 127739.54it/s]"
]
},
{
@@ -2666,7 +2666,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|██████▉ | 3495341/4997436 [00:26<00:11, 130227.00it/s]"
+ " 69%|██████▊ | 3427983/4997436 [00:26<00:12, 127833.04it/s]"
]
},
{
@@ -2674,7 +2674,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|███████ | 3508364/4997436 [00:26<00:11, 130194.62it/s]"
+ " 69%|██████▉ | 3440767/4997436 [00:26<00:12, 126917.51it/s]"
]
},
{
@@ -2682,7 +2682,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|███████ | 3521384/4997436 [00:26<00:11, 130109.77it/s]"
+ " 69%|██████▉ | 3453628/4997436 [00:26<00:12, 127418.18it/s]"
]
},
{
@@ -2690,7 +2690,7 @@
"output_type": "stream",
"text": [
"\r",
- " 71%|███████ | 3534529/4997436 [00:26<00:11, 130508.74it/s]"
+ " 69%|██████▉ | 3466372/4997436 [00:26<00:12, 127318.83it/s]"
]
},
{
@@ -2698,7 +2698,7 @@
"output_type": "stream",
"text": [
"\r",
- " 71%|███████ | 3547609/4997436 [00:27<00:11, 130594.52it/s]"
+ " 70%|██████▉ | 3479181/4997436 [00:27<00:11, 127544.02it/s]"
]
},
{
@@ -2706,7 +2706,7 @@
"output_type": "stream",
"text": [
"\r",
- " 71%|███████▏ | 3560762/4997436 [00:27<00:10, 130872.09it/s]"
+ " 70%|██████▉ | 3491937/4997436 [00:27<00:11, 127379.17it/s]"
]
},
{
@@ -2714,7 +2714,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▏ | 3573878/4997436 [00:27<00:10, 130957.07it/s]"
+ " 70%|███████ | 3504870/4997436 [00:27<00:11, 127960.03it/s]"
]
},
{
@@ -2722,7 +2722,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▏ | 3587020/4997436 [00:27<00:10, 131093.89it/s]"
+ " 70%|███████ | 3517667/4997436 [00:27<00:11, 127588.52it/s]"
]
},
{
@@ -2730,7 +2730,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▏ | 3600130/4997436 [00:27<00:10, 131083.95it/s]"
+ " 71%|███████ | 3530478/4997436 [00:27<00:11, 127741.55it/s]"
]
},
{
@@ -2738,7 +2738,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▏ | 3613239/4997436 [00:27<00:10, 130965.73it/s]"
+ " 71%|███████ | 3543253/4997436 [00:27<00:11, 127419.36it/s]"
]
},
{
@@ -2746,7 +2746,7 @@
"output_type": "stream",
"text": [
"\r",
- " 73%|███████▎ | 3626336/4997436 [00:27<00:10, 130875.66it/s]"
+ " 71%|███████ | 3556090/4997436 [00:27<00:11, 127700.32it/s]"
]
},
{
@@ -2754,7 +2754,7 @@
"output_type": "stream",
"text": [
"\r",
- " 73%|███████▎ | 3639424/4997436 [00:27<00:10, 130850.07it/s]"
+ " 71%|███████▏ | 3568976/4997436 [00:27<00:11, 128045.86it/s]"
]
},
{
@@ -2762,7 +2762,7 @@
"output_type": "stream",
"text": [
"\r",
- " 73%|███████▎ | 3652569/4997436 [00:27<00:10, 131025.72it/s]"
+ " 72%|███████▏ | 3581781/4997436 [00:27<00:11, 128014.05it/s]"
]
},
{
@@ -2770,7 +2770,7 @@
"output_type": "stream",
"text": [
"\r",
- " 73%|███████▎ | 3665695/4997436 [00:27<00:10, 131092.44it/s]"
+ " 72%|███████▏ | 3594583/4997436 [00:27<00:10, 127625.80it/s]"
]
},
{
@@ -2778,7 +2778,7 @@
"output_type": "stream",
"text": [
"\r",
- " 74%|███████▎ | 3678805/4997436 [00:28<00:10, 130852.73it/s]"
+ " 72%|███████▏ | 3607465/4997436 [00:28<00:10, 127980.25it/s]"
]
},
{
@@ -2786,7 +2786,7 @@
"output_type": "stream",
"text": [
"\r",
- " 74%|███████▍ | 3692023/4997436 [00:28<00:09, 131246.27it/s]"
+ " 72%|███████▏ | 3620475/4997436 [00:28<00:10, 128612.98it/s]"
]
},
{
@@ -2794,7 +2794,7 @@
"output_type": "stream",
"text": [
"\r",
- " 74%|███████▍ | 3705240/4997436 [00:28<00:09, 131520.57it/s]"
+ " 73%|███████▎ | 3633337/4997436 [00:28<00:10, 128308.06it/s]"
]
},
{
@@ -2802,7 +2802,7 @@
"output_type": "stream",
"text": [
"\r",
- " 74%|███████▍ | 3718428/4997436 [00:28<00:09, 131626.09it/s]"
+ " 73%|███████▎ | 3646169/4997436 [00:28<00:10, 128173.99it/s]"
]
},
{
@@ -2810,7 +2810,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▍ | 3731641/4997436 [00:28<00:09, 131774.77it/s]"
+ " 73%|███████▎ | 3659036/4997436 [00:28<00:10, 128320.69it/s]"
]
},
{
@@ -2818,7 +2818,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▍ | 3744819/4997436 [00:28<00:09, 131700.20it/s]"
+ " 73%|███████▎ | 3671869/4997436 [00:28<00:10, 128226.94it/s]"
]
},
{
@@ -2826,7 +2826,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▌ | 3757990/4997436 [00:28<00:09, 131577.34it/s]"
+ " 74%|███████▎ | 3684770/4997436 [00:28<00:10, 128459.26it/s]"
]
},
{
@@ -2834,7 +2834,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▌ | 3771148/4997436 [00:28<00:09, 130721.78it/s]"
+ " 74%|███████▍ | 3697617/4997436 [00:28<00:10, 128375.85it/s]"
]
},
{
@@ -2842,7 +2842,7 @@
"output_type": "stream",
"text": [
"\r",
- " 76%|███████▌ | 3784222/4997436 [00:28<00:09, 130477.09it/s]"
+ " 74%|███████▍ | 3710490/4997436 [00:28<00:10, 128477.77it/s]"
]
},
{
@@ -2850,7 +2850,7 @@
"output_type": "stream",
"text": [
"\r",
- " 76%|███████▌ | 3797300/4997436 [00:28<00:09, 130563.45it/s]"
+ " 75%|███████▍ | 3723338/4997436 [00:29<00:09, 128020.27it/s]"
]
},
{
@@ -2858,7 +2858,7 @@
"output_type": "stream",
"text": [
"\r",
- " 76%|███████▌ | 3810357/4997436 [00:29<00:09, 130077.82it/s]"
+ " 75%|███████▍ | 3736372/4997436 [00:29<00:09, 128710.24it/s]"
]
},
{
@@ -2866,7 +2866,7 @@
"output_type": "stream",
"text": [
"\r",
- " 77%|███████▋ | 3823478/4997436 [00:29<00:09, 130414.28it/s]"
+ " 75%|███████▌ | 3749244/4997436 [00:29<00:09, 128021.86it/s]"
]
},
{
@@ -2874,7 +2874,7 @@
"output_type": "stream",
"text": [
"\r",
- " 77%|███████▋ | 3836666/4997436 [00:29<00:08, 130849.28it/s]"
+ " 75%|███████▌ | 3762048/4997436 [00:29<00:09, 127885.93it/s]"
]
},
{
@@ -2882,7 +2882,7 @@
"output_type": "stream",
"text": [
"\r",
- " 77%|███████▋ | 3849752/4997436 [00:29<00:08, 130832.64it/s]"
+ " 76%|███████▌ | 3774970/4997436 [00:29<00:09, 128282.09it/s]"
]
},
{
@@ -2890,7 +2890,7 @@
"output_type": "stream",
"text": [
"\r",
- " 77%|███████▋ | 3862910/4997436 [00:29<00:08, 131054.87it/s]"
+ " 76%|███████▌ | 3787799/4997436 [00:29<00:09, 128004.58it/s]"
]
},
{
@@ -2898,7 +2898,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 3876073/4997436 [00:29<00:08, 131224.50it/s]"
+ " 76%|███████▌ | 3800600/4997436 [00:29<00:09, 127364.86it/s]"
]
},
{
@@ -2906,7 +2906,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 3889244/4997436 [00:29<00:08, 131368.55it/s]"
+ " 76%|███████▋ | 3813479/4997436 [00:29<00:09, 127786.46it/s]"
]
},
{
@@ -2914,7 +2914,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 3902382/4997436 [00:29<00:08, 131193.10it/s]"
+ " 77%|███████▋ | 3826259/4997436 [00:29<00:09, 127434.78it/s]"
]
},
{
@@ -2922,7 +2922,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 3915502/4997436 [00:29<00:08, 131071.54it/s]"
+ " 77%|███████▋ | 3839076/4997436 [00:29<00:09, 127651.92it/s]"
]
},
{
@@ -2930,7 +2930,7 @@
"output_type": "stream",
"text": [
"\r",
- " 79%|███████▊ | 3928610/4997436 [00:29<00:08, 131031.91it/s]"
+ " 77%|███████▋ | 3852025/4997436 [00:30<00:08, 128198.44it/s]"
]
},
{
@@ -2938,7 +2938,7 @@
"output_type": "stream",
"text": [
"\r",
- " 79%|███████▉ | 3941714/4997436 [00:30<00:08, 130779.73it/s]"
+ " 77%|███████▋ | 3864921/4997436 [00:30<00:08, 128422.16it/s]"
]
},
{
@@ -2946,7 +2946,7 @@
"output_type": "stream",
"text": [
"\r",
- " 79%|███████▉ | 3954816/4997436 [00:30<00:07, 130850.37it/s]"
+ " 78%|███████▊ | 3877824/4997436 [00:30<00:08, 128601.02it/s]"
]
},
{
@@ -2954,7 +2954,7 @@
"output_type": "stream",
"text": [
"\r",
- " 79%|███████▉ | 3967974/4997436 [00:30<00:07, 131067.54it/s]"
+ " 78%|███████▊ | 3890734/4997436 [00:30<00:08, 128748.54it/s]"
]
},
{
@@ -2962,7 +2962,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|███████▉ | 3981081/4997436 [00:30<00:07, 130825.02it/s]"
+ " 78%|███████▊ | 3903610/4997436 [00:30<00:08, 128244.65it/s]"
]
},
{
@@ -2970,7 +2970,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|███████▉ | 3994227/4997436 [00:30<00:07, 131011.22it/s]"
+ " 78%|███████▊ | 3916436/4997436 [00:30<00:08, 128174.54it/s]"
]
},
{
@@ -2978,7 +2978,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|████████ | 4007342/4997436 [00:30<00:07, 131048.81it/s]"
+ " 79%|███████▊ | 3929384/4997436 [00:30<00:08, 128561.00it/s]"
]
},
{
@@ -2986,7 +2986,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|████████ | 4020447/4997436 [00:30<00:07, 130187.67it/s]"
+ " 79%|███████▉ | 3942241/4997436 [00:30<00:08, 128278.40it/s]"
]
},
{
@@ -2994,7 +2994,7 @@
"output_type": "stream",
"text": [
"\r",
- " 81%|████████ | 4033521/4997436 [00:30<00:07, 130348.99it/s]"
+ " 79%|███████▉ | 3955071/4997436 [00:30<00:08, 128282.52it/s]"
]
},
{
@@ -3002,7 +3002,7 @@
"output_type": "stream",
"text": [
"\r",
- " 81%|████████ | 4046580/4997436 [00:30<00:07, 130417.90it/s]"
+ " 79%|███████▉ | 3967988/4997436 [00:30<00:08, 128544.67it/s]"
]
},
{
@@ -3010,7 +3010,7 @@
"output_type": "stream",
"text": [
"\r",
- " 81%|████████ | 4059724/4997436 [00:30<00:07, 130721.98it/s]"
+ " 80%|███████▉ | 3980880/4997436 [00:31<00:07, 128653.37it/s]"
]
},
{
@@ -3018,7 +3018,7 @@
"output_type": "stream",
"text": [
"\r",
- " 81%|████████▏ | 4072827/4997436 [00:31<00:07, 130810.33it/s]"
+ " 80%|███████▉ | 3993746/4997436 [00:31<00:07, 128122.24it/s]"
]
},
{
@@ -3026,7 +3026,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▏ | 4085927/4997436 [00:31<00:06, 130863.26it/s]"
+ " 80%|████████ | 4006601/4997436 [00:31<00:07, 128248.40it/s]"
]
},
{
@@ -3034,7 +3034,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▏ | 4099014/4997436 [00:31<00:06, 130157.26it/s]"
+ " 80%|████████ | 4019509/4997436 [00:31<00:07, 128494.16it/s]"
]
},
{
@@ -3042,7 +3042,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▏ | 4112059/4997436 [00:31<00:06, 130242.69it/s]"
+ " 81%|████████ | 4032359/4997436 [00:31<00:07, 128321.42it/s]"
]
},
{
@@ -3050,7 +3050,7 @@
"output_type": "stream",
"text": [
"\r",
- " 83%|████████▎ | 4125085/4997436 [00:31<00:06, 130141.75it/s]"
+ " 81%|████████ | 4045192/4997436 [00:31<00:07, 127042.81it/s]"
]
},
{
@@ -3058,7 +3058,7 @@
"output_type": "stream",
"text": [
"\r",
- " 83%|████████▎ | 4138100/4997436 [00:31<00:06, 130116.04it/s]"
+ " 81%|████████ | 4057965/4997436 [00:31<00:07, 127244.26it/s]"
]
},
{
@@ -3066,7 +3066,7 @@
"output_type": "stream",
"text": [
"\r",
- " 83%|████████▎ | 4151166/4997436 [00:31<00:06, 130276.78it/s]"
+ " 81%|████████▏ | 4070752/4997436 [00:31<00:07, 127426.18it/s]"
]
},
{
@@ -3074,7 +3074,7 @@
"output_type": "stream",
"text": [
"\r",
- " 83%|████████▎ | 4164289/4997436 [00:31<00:06, 130560.97it/s]"
+ " 82%|████████▏ | 4083497/4997436 [00:31<00:07, 127187.94it/s]"
]
},
{
@@ -3082,7 +3082,7 @@
"output_type": "stream",
"text": [
"\r",
- " 84%|████████▎ | 4177346/4997436 [00:31<00:06, 130382.33it/s]"
+ " 82%|████████▏ | 4096217/4997436 [00:31<00:07, 127123.22it/s]"
]
},
{
@@ -3090,7 +3090,7 @@
"output_type": "stream",
"text": [
"\r",
- " 84%|████████▍ | 4190385/4997436 [00:31<00:06, 129905.02it/s]"
+ " 82%|████████▏ | 4108978/4997436 [00:32<00:06, 127266.35it/s]"
]
},
{
@@ -3098,7 +3098,7 @@
"output_type": "stream",
"text": [
"\r",
- " 84%|████████▍ | 4203376/4997436 [00:32<00:06, 129732.84it/s]"
+ " 82%|████████▏ | 4121731/4997436 [00:32<00:06, 127341.56it/s]"
]
},
{
@@ -3106,7 +3106,7 @@
"output_type": "stream",
"text": [
"\r",
- " 84%|████████▍ | 4216350/4997436 [00:32<00:06, 129454.73it/s]"
+ " 83%|████████▎ | 4134562/4997436 [00:32<00:06, 127627.72it/s]"
]
},
{
@@ -3114,7 +3114,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▍ | 4229456/4997436 [00:32<00:05, 129932.19it/s]"
+ " 83%|████████▎ | 4147370/4997436 [00:32<00:06, 127759.71it/s]"
]
},
{
@@ -3122,7 +3122,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▍ | 4242508/4997436 [00:32<00:05, 130105.57it/s]"
+ " 83%|████████▎ | 4160147/4997436 [00:32<00:06, 127141.72it/s]"
]
},
{
@@ -3130,7 +3130,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 4255709/4997436 [00:32<00:05, 130674.02it/s]"
+ " 84%|████████▎ | 4172862/4997436 [00:32<00:06, 126899.87it/s]"
]
},
{
@@ -3138,7 +3138,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 4268777/4997436 [00:32<00:05, 130592.74it/s]"
+ " 84%|████████▍ | 4185553/4997436 [00:32<00:06, 125420.78it/s]"
]
},
{
@@ -3146,7 +3146,7 @@
"output_type": "stream",
"text": [
"\r",
- " 86%|████████▌ | 4281980/4997436 [00:32<00:05, 131020.25it/s]"
+ " 84%|████████▍ | 4198201/4997436 [00:32<00:06, 125731.76it/s]"
]
},
{
@@ -3154,7 +3154,7 @@
"output_type": "stream",
"text": [
"\r",
- " 86%|████████▌ | 4295101/4997436 [00:32<00:05, 131075.10it/s]"
+ " 84%|████████▍ | 4210801/4997436 [00:32<00:06, 125807.44it/s]"
]
},
{
@@ -3162,7 +3162,7 @@
"output_type": "stream",
"text": [
"\r",
- " 86%|████████▌ | 4308284/4997436 [00:32<00:05, 131298.91it/s]"
+ " 85%|████████▍ | 4223466/4997436 [00:32<00:06, 126055.81it/s]"
]
},
{
@@ -3170,7 +3170,7 @@
"output_type": "stream",
"text": [
"\r",
- " 86%|████████▋ | 4321472/4997436 [00:32<00:05, 131469.80it/s]"
+ " 85%|████████▍ | 4236347/4997436 [00:33<00:05, 126874.10it/s]"
]
},
{
@@ -3178,7 +3178,7 @@
"output_type": "stream",
"text": [
"\r",
- " 87%|████████▋ | 4334620/4997436 [00:33<00:05, 131421.50it/s]"
+ " 85%|████████▌ | 4249206/4997436 [00:33<00:05, 127385.04it/s]"
]
},
{
@@ -3186,7 +3186,7 @@
"output_type": "stream",
"text": [
"\r",
- " 87%|████████▋ | 4347763/4997436 [00:33<00:04, 131377.69it/s]"
+ " 85%|████████▌ | 4262163/4997436 [00:33<00:05, 128035.18it/s]"
]
},
{
@@ -3194,7 +3194,7 @@
"output_type": "stream",
"text": [
"\r",
- " 87%|████████▋ | 4360901/4997436 [00:33<00:04, 131198.26it/s]"
+ " 86%|████████▌ | 4274968/4997436 [00:33<00:05, 127964.98it/s]"
]
},
{
@@ -3202,7 +3202,7 @@
"output_type": "stream",
"text": [
"\r",
- " 88%|████████▊ | 4374048/4997436 [00:33<00:04, 131277.27it/s]"
+ " 86%|████████▌ | 4287955/4997436 [00:33<00:05, 128531.70it/s]"
]
},
{
@@ -3210,7 +3210,7 @@
"output_type": "stream",
"text": [
"\r",
- " 88%|████████▊ | 4387202/4997436 [00:33<00:04, 131354.08it/s]"
+ " 86%|████████▌ | 4300879/4997436 [00:33<00:05, 128740.34it/s]"
]
},
{
@@ -3218,7 +3218,7 @@
"output_type": "stream",
"text": [
"\r",
- " 88%|████████▊ | 4400360/4997436 [00:33<00:04, 131417.43it/s]"
+ " 86%|████████▋ | 4313910/4997436 [00:33<00:05, 129208.08it/s]"
]
},
{
@@ -3226,7 +3226,7 @@
"output_type": "stream",
"text": [
"\r",
- " 88%|████████▊ | 4413516/4997436 [00:33<00:04, 131458.62it/s]"
+ " 87%|████████▋ | 4326832/4997436 [00:33<00:05, 128975.28it/s]"
]
},
{
@@ -3234,7 +3234,7 @@
"output_type": "stream",
"text": [
"\r",
- " 89%|████████▊ | 4426735/4997436 [00:33<00:04, 131676.58it/s]"
+ " 87%|████████▋ | 4339730/4997436 [00:33<00:05, 128693.04it/s]"
]
},
{
@@ -3242,7 +3242,7 @@
"output_type": "stream",
"text": [
"\r",
- " 89%|████████▉ | 4439903/4997436 [00:33<00:04, 131236.49it/s]"
+ " 87%|████████▋ | 4352604/4997436 [00:33<00:05, 128704.19it/s]"
]
},
{
@@ -3250,7 +3250,7 @@
"output_type": "stream",
"text": [
"\r",
- " 89%|████████▉ | 4453027/4997436 [00:33<00:04, 131088.31it/s]"
+ " 87%|████████▋ | 4365521/4997436 [00:34<00:04, 128839.38it/s]"
]
},
{
@@ -3258,7 +3258,7 @@
"output_type": "stream",
"text": [
"\r",
- " 89%|████████▉ | 4466171/4997436 [00:34<00:04, 131190.87it/s]"
+ " 88%|████████▊ | 4378446/4997436 [00:34<00:04, 128957.46it/s]"
]
},
{
@@ -3266,7 +3266,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|████████▉ | 4479327/4997436 [00:34<00:03, 131300.41it/s]"
+ " 88%|████████▊ | 4391342/4997436 [00:34<00:04, 128948.31it/s]"
]
},
{
@@ -3274,7 +3274,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|████████▉ | 4492458/4997436 [00:34<00:03, 131097.67it/s]"
+ " 88%|████████▊ | 4404237/4997436 [00:34<00:04, 128630.30it/s]"
]
},
{
@@ -3282,7 +3282,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|█████████ | 4505568/4997436 [00:34<00:03, 131044.99it/s]"
+ " 88%|████████▊ | 4417185/4997436 [00:34<00:04, 128881.64it/s]"
]
},
{
@@ -3290,7 +3290,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|█████████ | 4518673/4997436 [00:34<00:03, 130995.08it/s]"
+ " 89%|████████▊ | 4430115/4997436 [00:34<00:04, 129003.67it/s]"
]
},
{
@@ -3298,7 +3298,7 @@
"output_type": "stream",
"text": [
"\r",
- " 91%|█████████ | 4531783/4997436 [00:34<00:03, 131023.18it/s]"
+ " 89%|████████▉ | 4443104/4997436 [00:34<00:04, 129266.07it/s]"
]
},
{
@@ -3306,7 +3306,7 @@
"output_type": "stream",
"text": [
"\r",
- " 91%|█████████ | 4544930/4997436 [00:34<00:03, 131153.75it/s]"
+ " 89%|████████▉ | 4456031/4997436 [00:34<00:04, 129146.74it/s]"
]
},
{
@@ -3314,7 +3314,7 @@
"output_type": "stream",
"text": [
"\r",
- " 91%|█████████ | 4558166/4997436 [00:34<00:03, 131513.33it/s]"
+ " 89%|████████▉ | 4468946/4997436 [00:34<00:04, 129105.70it/s]"
]
},
{
@@ -3322,7 +3322,7 @@
"output_type": "stream",
"text": [
"\r",
- " 91%|█████████▏| 4571318/4997436 [00:34<00:03, 131485.85it/s]"
+ " 90%|████████▉ | 4481867/4997436 [00:34<00:03, 129134.04it/s]"
]
},
{
@@ -3330,7 +3330,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▏| 4584467/4997436 [00:34<00:03, 131242.73it/s]"
+ " 90%|████████▉ | 4494786/4997436 [00:35<00:03, 129148.18it/s]"
]
},
{
@@ -3338,7 +3338,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▏| 4597592/4997436 [00:35<00:03, 131068.62it/s]"
+ " 90%|█████████ | 4507701/4997436 [00:35<00:03, 128898.77it/s]"
]
},
{
@@ -3346,7 +3346,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▏| 4610699/4997436 [00:35<00:02, 130872.16it/s]"
+ " 90%|█████████ | 4520786/4997436 [00:35<00:03, 129480.84it/s]"
]
},
{
@@ -3354,7 +3354,7 @@
"output_type": "stream",
"text": [
"\r",
- " 93%|█████████▎| 4623787/4997436 [00:35<00:02, 130631.30it/s]"
+ " 91%|█████████ | 4533735/4997436 [00:35<00:03, 128673.34it/s]"
]
},
{
@@ -3362,7 +3362,7 @@
"output_type": "stream",
"text": [
"\r",
- " 93%|█████████▎| 4636851/4997436 [00:35<00:02, 130382.64it/s]"
+ " 91%|█████████ | 4546604/4997436 [00:35<00:03, 128505.64it/s]"
]
},
{
@@ -3370,7 +3370,7 @@
"output_type": "stream",
"text": [
"\r",
- " 93%|█████████▎| 4649890/4997436 [00:35<00:02, 130220.59it/s]"
+ " 91%|█████████ | 4559456/4997436 [00:35<00:03, 128238.35it/s]"
]
},
{
@@ -3378,7 +3378,7 @@
"output_type": "stream",
"text": [
"\r",
- " 93%|█████████▎| 4662933/4997436 [00:35<00:02, 130279.53it/s]"
+ " 91%|█████████▏| 4572413/4997436 [00:35<00:03, 128632.70it/s]"
]
},
{
@@ -3386,7 +3386,7 @@
"output_type": "stream",
"text": [
"\r",
- " 94%|█████████▎| 4675962/4997436 [00:35<00:02, 130147.85it/s]"
+ " 92%|█████████▏| 4585277/4997436 [00:35<00:03, 128590.28it/s]"
]
},
{
@@ -3394,7 +3394,7 @@
"output_type": "stream",
"text": [
"\r",
- " 94%|█████████▍| 4689031/4997436 [00:35<00:02, 130308.01it/s]"
+ " 92%|█████████▏| 4598137/4997436 [00:35<00:03, 128435.07it/s]"
]
},
{
@@ -3402,7 +3402,7 @@
"output_type": "stream",
"text": [
"\r",
- " 94%|█████████▍| 4702120/4997436 [00:35<00:02, 130479.00it/s]"
+ " 92%|█████████▏| 4610981/4997436 [00:35<00:03, 128255.61it/s]"
]
},
{
@@ -3410,7 +3410,7 @@
"output_type": "stream",
"text": [
"\r",
- " 94%|█████████▍| 4715203/4997436 [00:36<00:02, 130581.69it/s]"
+ " 93%|█████████▎| 4623807/4997436 [00:36<00:02, 127915.76it/s]"
]
},
{
@@ -3418,7 +3418,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▍| 4728262/4997436 [00:36<00:02, 130378.40it/s]"
+ " 93%|█████████▎| 4636796/4997436 [00:36<00:02, 128502.58it/s]"
]
},
{
@@ -3426,7 +3426,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▍| 4741310/4997436 [00:36<00:01, 130407.00it/s]"
+ " 93%|█████████▎| 4649647/4997436 [00:36<00:02, 128104.96it/s]"
]
},
{
@@ -3434,7 +3434,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▌| 4754402/4997436 [00:36<00:01, 130558.05it/s]"
+ " 93%|█████████▎| 4662578/4997436 [00:36<00:02, 128463.02it/s]"
]
},
{
@@ -3442,7 +3442,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▌| 4767461/4997436 [00:36<00:01, 130564.77it/s]"
+ " 94%|█████████▎| 4675427/4997436 [00:36<00:02, 128468.75it/s]"
]
},
{
@@ -3450,7 +3450,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▌| 4780518/4997436 [00:36<00:01, 130479.82it/s]"
+ " 94%|█████████▍| 4688275/4997436 [00:36<00:02, 128432.73it/s]"
]
},
{
@@ -3458,7 +3458,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▌| 4793567/4997436 [00:36<00:01, 130433.32it/s]"
+ " 94%|█████████▍| 4701119/4997436 [00:36<00:02, 128275.84it/s]"
]
},
{
@@ -3466,7 +3466,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▌| 4806668/4997436 [00:36<00:01, 130604.06it/s]"
+ " 94%|█████████▍| 4713947/4997436 [00:36<00:02, 128162.85it/s]"
]
},
{
@@ -3474,7 +3474,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▋| 4819729/4997436 [00:36<00:01, 129887.45it/s]"
+ " 95%|█████████▍| 4726764/4997436 [00:36<00:02, 127807.77it/s]"
]
},
{
@@ -3482,7 +3482,7 @@
"output_type": "stream",
"text": [
"\r",
- " 97%|█████████▋| 4832758/4997436 [00:36<00:01, 130006.07it/s]"
+ " 95%|█████████▍| 4739546/4997436 [00:36<00:02, 127678.77it/s]"
]
},
{
@@ -3490,7 +3490,7 @@
"output_type": "stream",
"text": [
"\r",
- " 97%|█████████▋| 4845783/4997436 [00:37<00:01, 130077.39it/s]"
+ " 95%|█████████▌| 4752338/4997436 [00:37<00:01, 127748.31it/s]"
]
},
{
@@ -3498,7 +3498,7 @@
"output_type": "stream",
"text": [
"\r",
- " 97%|█████████▋| 4858834/4997436 [00:37<00:01, 130203.96it/s]"
+ " 95%|█████████▌| 4765113/4997436 [00:37<00:01, 127316.42it/s]"
]
},
{
@@ -3506,7 +3506,7 @@
"output_type": "stream",
"text": [
"\r",
- " 97%|█████████▋| 4871855/4997436 [00:37<00:00, 130191.95it/s]"
+ " 96%|█████████▌| 4777845/4997436 [00:37<00:01, 127249.17it/s]"
]
},
{
@@ -3514,7 +3514,7 @@
"output_type": "stream",
"text": [
"\r",
- " 98%|█████████▊| 4884875/4997436 [00:37<00:00, 130169.01it/s]"
+ " 96%|█████████▌| 4790571/4997436 [00:37<00:01, 127225.96it/s]"
]
},
{
@@ -3522,7 +3522,7 @@
"output_type": "stream",
"text": [
"\r",
- " 98%|█████████▊| 4897893/4997436 [00:37<00:00, 130130.31it/s]"
+ " 96%|█████████▌| 4803320/4997436 [00:37<00:01, 127302.84it/s]"
]
},
{
@@ -3530,7 +3530,7 @@
"output_type": "stream",
"text": [
"\r",
- " 98%|█████████▊| 4910923/4997436 [00:37<00:00, 130178.23it/s]"
+ " 96%|█████████▋| 4816051/4997436 [00:37<00:01, 127070.64it/s]"
]
},
{
@@ -3538,7 +3538,7 @@
"output_type": "stream",
"text": [
"\r",
- " 99%|█████████▊| 4924004/4997436 [00:37<00:00, 130364.70it/s]"
+ " 97%|█████████▋| 4828789/4997436 [00:37<00:01, 127160.54it/s]"
]
},
{
@@ -3546,7 +3546,7 @@
"output_type": "stream",
"text": [
"\r",
- " 99%|█████████▉| 4937049/4997436 [00:37<00:00, 130385.93it/s]"
+ " 97%|█████████▋| 4841619/4997436 [00:37<00:01, 127498.18it/s]"
]
},
{
@@ -3554,7 +3554,7 @@
"output_type": "stream",
"text": [
"\r",
- " 99%|█████████▉| 4950088/4997436 [00:37<00:00, 130181.95it/s]"
+ " 97%|█████████▋| 4854383/4997436 [00:37<00:01, 127538.80it/s]"
]
},
{
@@ -3562,7 +3562,7 @@
"output_type": "stream",
"text": [
"\r",
- " 99%|█████████▉| 4963107/4997436 [00:37<00:00, 130006.10it/s]"
+ " 97%|█████████▋| 4867276/4997436 [00:37<00:01, 127951.72it/s]"
]
},
{
@@ -3570,7 +3570,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|█████████▉| 4976165/4997436 [00:38<00:00, 130175.56it/s]"
+ " 98%|█████████▊| 4880077/4997436 [00:38<00:00, 127965.48it/s]"
]
},
{
@@ -3578,7 +3578,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|█████████▉| 4989183/4997436 [00:38<00:00, 130002.63it/s]"
+ " 98%|█████████▊| 4892874/4997436 [00:38<00:00, 127529.87it/s]"
]
},
{
@@ -3586,7 +3586,71 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 4997436/4997436 [00:38<00:00, 130927.69it/s]"
+ " 98%|█████████▊| 4905745/4997436 [00:38<00:00, 127879.70it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 98%|█████████▊| 4918749/4997436 [00:38<00:00, 128522.27it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 99%|█████████▊| 4931681/4997436 [00:38<00:00, 128757.62it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 99%|█████████▉| 4944558/4997436 [00:38<00:00, 128694.88it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 99%|█████████▉| 4957428/4997436 [00:38<00:00, 128348.88it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 99%|█████████▉| 4970264/4997436 [00:38<00:00, 127022.11it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ "100%|█████████▉| 4982970/4997436 [00:38<00:00, 126848.39it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ "100%|█████████▉| 4995657/4997436 [00:38<00:00, 126109.95it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ "100%|██████████| 4997436/4997436 [00:38<00:00, 128276.27it/s]"
]
},
{
@@ -3825,10 +3889,10 @@
"id": "c8f4e163",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:47:39.443366Z",
- "iopub.status.busy": "2023-10-06T06:47:39.442705Z",
- "iopub.status.idle": "2023-10-06T06:47:49.817388Z",
- "shell.execute_reply": "2023-10-06T06:47:49.814757Z"
+ "iopub.execute_input": "2023-10-11T10:19:35.148300Z",
+ "iopub.status.busy": "2023-10-11T10:19:35.147632Z",
+ "iopub.status.idle": "2023-10-11T10:19:48.201026Z",
+ "shell.execute_reply": "2023-10-11T10:19:48.197594Z"
}
},
"outputs": [],
@@ -3842,10 +3906,10 @@
"id": "716c74f3",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:47:49.824505Z",
- "iopub.status.busy": "2023-10-06T06:47:49.823545Z",
- "iopub.status.idle": "2023-10-06T06:47:53.829402Z",
- "shell.execute_reply": "2023-10-06T06:47:53.828476Z"
+ "iopub.execute_input": "2023-10-11T10:19:48.210210Z",
+ "iopub.status.busy": "2023-10-11T10:19:48.209525Z",
+ "iopub.status.idle": "2023-10-11T10:19:52.588224Z",
+ "shell.execute_reply": "2023-10-11T10:19:52.587532Z"
}
},
"outputs": [
@@ -3914,17 +3978,17 @@
"id": "db0b5179",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:47:53.833842Z",
- "iopub.status.busy": "2023-10-06T06:47:53.833175Z",
- "iopub.status.idle": "2023-10-06T06:47:55.805247Z",
- "shell.execute_reply": "2023-10-06T06:47:55.804550Z"
+ "iopub.execute_input": "2023-10-11T10:19:52.591451Z",
+ "iopub.status.busy": "2023-10-11T10:19:52.590941Z",
+ "iopub.status.idle": "2023-10-11T10:19:54.698010Z",
+ "shell.execute_reply": "2023-10-11T10:19:54.697195Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "939204745b0f4982a168c635c9281d65",
+ "model_id": "621df82686744ab7968be80cacbaaa44",
"version_major": 2,
"version_minor": 0
},
@@ -3954,10 +4018,10 @@
"id": "390780a1",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:47:55.808460Z",
- "iopub.status.busy": "2023-10-06T06:47:55.808070Z",
- "iopub.status.idle": "2023-10-06T06:47:56.078221Z",
- "shell.execute_reply": "2023-10-06T06:47:56.077541Z"
+ "iopub.execute_input": "2023-10-11T10:19:54.702025Z",
+ "iopub.status.busy": "2023-10-11T10:19:54.701595Z",
+ "iopub.status.idle": "2023-10-11T10:19:54.983490Z",
+ "shell.execute_reply": "2023-10-11T10:19:54.982691Z"
}
},
"outputs": [],
@@ -3971,10 +4035,10 @@
"id": "933d6ef0",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:47:56.082113Z",
- "iopub.status.busy": "2023-10-06T06:47:56.081500Z",
- "iopub.status.idle": "2023-10-06T06:48:02.736266Z",
- "shell.execute_reply": "2023-10-06T06:48:02.735404Z"
+ "iopub.execute_input": "2023-10-11T10:19:54.987693Z",
+ "iopub.status.busy": "2023-10-11T10:19:54.987030Z",
+ "iopub.status.idle": "2023-10-11T10:20:02.233342Z",
+ "shell.execute_reply": "2023-10-11T10:20:02.232534Z"
}
},
"outputs": [
@@ -4047,10 +4111,10 @@
"id": "86bac686",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:02.739693Z",
- "iopub.status.busy": "2023-10-06T06:48:02.739222Z",
- "iopub.status.idle": "2023-10-06T06:48:02.866296Z",
- "shell.execute_reply": "2023-10-06T06:48:02.865580Z"
+ "iopub.execute_input": "2023-10-11T10:20:02.236951Z",
+ "iopub.status.busy": "2023-10-11T10:20:02.236471Z",
+ "iopub.status.idle": "2023-10-11T10:20:02.347742Z",
+ "shell.execute_reply": "2023-10-11T10:20:02.347040Z"
},
"nbsphinx": "hidden"
},
@@ -4094,28 +4158,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "167054c5ebb941edb2e8f149ac55d5cc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f6b3092af0d243ba8f2aa0acb24b6e9f",
- "placeholder": "",
- "style": "IPY_MODEL_849dd948df6d4bc58467f68a4be9065e",
- "value": " 300000/? [00:00<00:00, 4645437.97it/s]"
- }
- },
- "1f51d127129d407eb4fea986469e260a": {
+ "02f67f8acfd9447cb63ca4583c175be7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4167,50 +4210,52 @@
"width": null
}
},
- "2a00e8ffa1c943c99797d4c9a7c6e743": {
+ "05625dee20734c23884a88910b162bb0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_fd1fa443e127492db49e901ad4c28c70",
- "placeholder": "",
- "style": "IPY_MODEL_76c397db97b04d698eca6926024ee5ad",
- "value": " 300000/? [00:02<00:00, 111119.87it/s]"
+ "layout": "IPY_MODEL_7258609b786446f7b92392b9edc83a2e",
+ "max": 244800.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_8ddf4726235b471287ba087aaca6f752",
+ "value": 244800.0
}
},
- "336d03a0c73b4578928d5bc19103d16f": {
+ "124e688aaf6d4506b8acf07cfcb603eb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_c811b138be5640acb87fb8bf4ad643bc",
- "IPY_MODEL_d2d1cab68d4042419767fd79062cadbc",
- "IPY_MODEL_167054c5ebb941edb2e8f149ac55d5cc"
- ],
- "layout": "IPY_MODEL_33c3b72ddcbe43ac871f51a4cfd58d0f"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_853e4fd65b9a4a1e82439518d7e8b6ee",
+ "placeholder": "",
+ "style": "IPY_MODEL_4218f4a8138146e4aa29e1f2d98bd1ae",
+ "value": " 30/30 [00:02<00:00, 15.64it/s]"
}
},
- "33c3b72ddcbe43ac871f51a4cfd58d0f": {
+ "2da8d09c7abd43419959ff3e8aaec28c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4262,7 +4307,22 @@
"width": null
}
},
- "36af193474584b6c9f78e08975253853": {
+ "4218f4a8138146e4aa29e1f2d98bd1ae": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "44e99e229f574e4b896a8ae16c47aa67": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -4278,7 +4338,89 @@
"description_width": ""
}
},
- "3995d9ac273343a7827b928b3898029b": {
+ "49b0de5cbc534b68bd1a55f5dfbb1126": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2da8d09c7abd43419959ff3e8aaec28c",
+ "placeholder": "",
+ "style": "IPY_MODEL_79ac9db1e81c45de80f4c1900adef432",
+ "value": " 300000/? [00:01<00:00, 168383.75it/s]"
+ }
+ },
+ "5005d98454ac4da68bc69e8f2e99fe54": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "56d164ebb05d483cad178ef703a85fd8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9e4b7b564abd401d805f0aea85492e0f",
+ "placeholder": "",
+ "style": "IPY_MODEL_7b0fc80c49c84fd99f47403d4a8fa63d",
+ "value": "images processed using softmin: 100%"
+ }
+ },
+ "584f4088c6fd4a7da7a4d15793cb6074": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e9f539aac0f34cbc9dd52c54314549e1",
+ "max": 244800.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_44e99e229f574e4b896a8ae16c47aa67",
+ "value": 244800.0
+ }
+ },
+ "58769a21dd4345a5840de0747cdafb0e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4330,7 +4472,7 @@
"width": null
}
},
- "4170a1cb9ad448ccbbedd42be8d03337": {
+ "5bb80d30b1b14a399bbdb989eedf2c7c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4382,22 +4524,29 @@
"width": null
}
},
- "4e7fc62e2c2046b8a524b85d72fff8e2": {
+ "621df82686744ab7968be80cacbaaa44": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_56d164ebb05d483cad178ef703a85fd8",
+ "IPY_MODEL_b78305818de9464485dfc2b5332bb221",
+ "IPY_MODEL_124e688aaf6d4506b8acf07cfcb603eb"
+ ],
+ "layout": "IPY_MODEL_dffda93c9b9c4ff6bf057a27145e14c7"
}
},
- "533e126940914949aa0663b359502445": {
+ "7258609b786446f7b92392b9edc83a2e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4449,31 +4598,7 @@
"width": null
}
},
- "5bff0fa4c7104836b4146c945096493e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e7e8ebd7bc2e4e2dad33f61ed20ab31b",
- "max": 244800.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_bf2e978e13464deca55856a6505714f0",
- "value": 244800.0
- }
- },
- "6ade89eb2c9b40798f092f048f711f99": {
+ "79ac9db1e81c45de80f4c1900adef432": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -4488,7 +4613,7 @@
"description_width": ""
}
},
- "76c397db97b04d698eca6926024ee5ad": {
+ "7b0fc80c49c84fd99f47403d4a8fa63d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -4503,7 +4628,7 @@
"description_width": ""
}
},
- "7774f79b49da4dd3b113649c658a529d": {
+ "853e4fd65b9a4a1e82439518d7e8b6ee": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4555,111 +4680,7 @@
"width": null
}
},
- "7cc834cabc334188a671202a5d7c7e90": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "7fabad8cda034a918af254fd5b01031f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "849dd948df6d4bc58467f68a4be9065e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "939204745b0f4982a168c635c9281d65": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a33f40285b5e44a4b34a7fecec0e23d8",
- "IPY_MODEL_d2bd249401614c7287e7502b0f213727",
- "IPY_MODEL_c318c2d95ab347419437c8ea6c4d97e1"
- ],
- "layout": "IPY_MODEL_c32a77752484460aacf4d0e82f2b991b"
- }
- },
- "9d57faf7b78f46b79b9785abbce739a3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "a33f40285b5e44a4b34a7fecec0e23d8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_533e126940914949aa0663b359502445",
- "placeholder": "",
- "style": "IPY_MODEL_4e7fc62e2c2046b8a524b85d72fff8e2",
- "value": "images processed using softmin: 100%"
- }
- },
- "b2971b7b51e14ed6a843818812633f43": {
+ "89cfdf73c4d945359adcceef37adebf6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4711,7 +4732,7 @@
"width": null
}
},
- "bf2e978e13464deca55856a6505714f0": {
+ "8ddf4726235b471287ba087aaca6f752": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -4727,7 +4748,22 @@
"description_width": ""
}
},
- "c318c2d95ab347419437c8ea6c4d97e1": {
+ "8f7130c6de834fcd86cfdb73e17e3e22": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "91b407a811ee4ed8a27a89f44d6140bf": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -4742,13 +4778,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_d4d0c229f27f412eb7f99d20aa4b3107",
+ "layout": "IPY_MODEL_02f67f8acfd9447cb63ca4583c175be7",
"placeholder": "",
- "style": "IPY_MODEL_6ade89eb2c9b40798f092f048f711f99",
- "value": " 30/30 [00:02<00:00, 16.59it/s]"
+ "style": "IPY_MODEL_bf04f9c7993748be96def20f7a35fa44",
+ "value": "number of examples processed for checking labels: "
}
},
- "c32a77752484460aacf4d0e82f2b991b": {
+ "9e4b7b564abd401d805f0aea85492e0f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4800,7 +4836,7 @@
"width": null
}
},
- "c811b138be5640acb87fb8bf4ad643bc": {
+ "a53260dd17754be08c522afb7425157a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -4815,13 +4851,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_4170a1cb9ad448ccbbedd42be8d03337",
+ "layout": "IPY_MODEL_cf637b7dcc8f419993311bb20c2c4eb3",
"placeholder": "",
- "style": "IPY_MODEL_7cc834cabc334188a671202a5d7c7e90",
+ "style": "IPY_MODEL_8f7130c6de834fcd86cfdb73e17e3e22",
"value": "number of examples processed for estimating thresholds: "
}
},
- "d2bd249401614c7287e7502b0f213727": {
+ "b78305818de9464485dfc2b5332bb221": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -4837,39 +4873,30 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_7774f79b49da4dd3b113649c658a529d",
+ "layout": "IPY_MODEL_f64482910bc44324bec013719c15a8ef",
"max": 30.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_9d57faf7b78f46b79b9785abbce739a3",
+ "style": "IPY_MODEL_5005d98454ac4da68bc69e8f2e99fe54",
"value": 30.0
}
},
- "d2d1cab68d4042419767fd79062cadbc": {
+ "bf04f9c7993748be96def20f7a35fa44": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1f51d127129d407eb4fea986469e260a",
- "max": 244800.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_36af193474584b6c9f78e08975253853",
- "value": 244800.0
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "d4d0c229f27f412eb7f99d20aa4b3107": {
+ "cf637b7dcc8f419993311bb20c2c4eb3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4921,7 +4948,65 @@
"width": null
}
},
- "e7e8ebd7bc2e4e2dad33f61ed20ab31b": {
+ "d02f8d91ca6f4b8782604de4f193d4da": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d24024213fa24b41a523a4e18640be86": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a53260dd17754be08c522afb7425157a",
+ "IPY_MODEL_05625dee20734c23884a88910b162bb0",
+ "IPY_MODEL_da08aae6f8c14e198ee8d7a934da6746"
+ ],
+ "layout": "IPY_MODEL_89cfdf73c4d945359adcceef37adebf6"
+ }
+ },
+ "da08aae6f8c14e198ee8d7a934da6746": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_58769a21dd4345a5840de0747cdafb0e",
+ "placeholder": "",
+ "style": "IPY_MODEL_d02f8d91ca6f4b8782604de4f193d4da",
+ "value": " 300000/? [00:00<00:00, 3780741.31it/s]"
+ }
+ },
+ "dffda93c9b9c4ff6bf057a27145e14c7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4973,50 +5058,7 @@
"width": null
}
},
- "e84dbe083ff345a8a028e51f15dfc8bd": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f2e79a4412aa4a79bcb06be5bcef27f4",
- "IPY_MODEL_5bff0fa4c7104836b4146c945096493e",
- "IPY_MODEL_2a00e8ffa1c943c99797d4c9a7c6e743"
- ],
- "layout": "IPY_MODEL_b2971b7b51e14ed6a843818812633f43"
- }
- },
- "f2e79a4412aa4a79bcb06be5bcef27f4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3995d9ac273343a7827b928b3898029b",
- "placeholder": "",
- "style": "IPY_MODEL_7fabad8cda034a918af254fd5b01031f",
- "value": "number of examples processed for checking labels: "
- }
- },
- "f6b3092af0d243ba8f2aa0acb24b6e9f": {
+ "e9f539aac0f34cbc9dd52c54314549e1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5068,7 +5110,29 @@
"width": null
}
},
- "fd1fa443e127492db49e901ad4c28c70": {
+ "ee1410e8ee504c9298c084a53ee9f179": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_91b407a811ee4ed8a27a89f44d6140bf",
+ "IPY_MODEL_584f4088c6fd4a7da7a4d15793cb6074",
+ "IPY_MODEL_49b0de5cbc534b68bd1a55f5dfbb1126"
+ ],
+ "layout": "IPY_MODEL_5bb80d30b1b14a399bbdb989eedf2c7c"
+ }
+ },
+ "f64482910bc44324bec013719c15a8ef": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb
index 5ac2fe1f4..a1c0b3634 100644
--- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb
@@ -112,10 +112,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:06.705520Z",
- "iopub.status.busy": "2023-10-06T06:48:06.705263Z",
- "iopub.status.idle": "2023-10-06T06:48:08.476124Z",
- "shell.execute_reply": "2023-10-06T06:48:08.475398Z"
+ "iopub.execute_input": "2023-10-11T10:20:06.426153Z",
+ "iopub.status.busy": "2023-10-11T10:20:06.424960Z",
+ "iopub.status.idle": "2023-10-11T10:20:08.312459Z",
+ "shell.execute_reply": "2023-10-11T10:20:08.311668Z"
},
"nbsphinx": "hidden"
},
@@ -125,7 +125,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -150,10 +150,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:08.479839Z",
- "iopub.status.busy": "2023-10-06T06:48:08.479307Z",
- "iopub.status.idle": "2023-10-06T06:48:08.534683Z",
- "shell.execute_reply": "2023-10-06T06:48:08.533985Z"
+ "iopub.execute_input": "2023-10-11T10:20:08.316573Z",
+ "iopub.status.busy": "2023-10-11T10:20:08.315903Z",
+ "iopub.status.idle": "2023-10-11T10:20:08.374318Z",
+ "shell.execute_reply": "2023-10-11T10:20:08.373580Z"
}
},
"outputs": [],
@@ -194,10 +194,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:08.538076Z",
- "iopub.status.busy": "2023-10-06T06:48:08.537601Z",
- "iopub.status.idle": "2023-10-06T06:48:08.683076Z",
- "shell.execute_reply": "2023-10-06T06:48:08.682361Z"
+ "iopub.execute_input": "2023-10-11T10:20:08.378375Z",
+ "iopub.status.busy": "2023-10-11T10:20:08.377961Z",
+ "iopub.status.idle": "2023-10-11T10:20:08.421283Z",
+ "shell.execute_reply": "2023-10-11T10:20:08.420592Z"
}
},
"outputs": [
@@ -304,10 +304,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:08.686539Z",
- "iopub.status.busy": "2023-10-06T06:48:08.685870Z",
- "iopub.status.idle": "2023-10-06T06:48:08.690722Z",
- "shell.execute_reply": "2023-10-06T06:48:08.689927Z"
+ "iopub.execute_input": "2023-10-11T10:20:08.424814Z",
+ "iopub.status.busy": "2023-10-11T10:20:08.424331Z",
+ "iopub.status.idle": "2023-10-11T10:20:08.431600Z",
+ "shell.execute_reply": "2023-10-11T10:20:08.430958Z"
}
},
"outputs": [],
@@ -328,10 +328,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:08.693380Z",
- "iopub.status.busy": "2023-10-06T06:48:08.693150Z",
- "iopub.status.idle": "2023-10-06T06:48:08.704186Z",
- "shell.execute_reply": "2023-10-06T06:48:08.703577Z"
+ "iopub.execute_input": "2023-10-11T10:20:08.434862Z",
+ "iopub.status.busy": "2023-10-11T10:20:08.434495Z",
+ "iopub.status.idle": "2023-10-11T10:20:08.446243Z",
+ "shell.execute_reply": "2023-10-11T10:20:08.445536Z"
}
},
"outputs": [],
@@ -383,10 +383,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:08.707660Z",
- "iopub.status.busy": "2023-10-06T06:48:08.707308Z",
- "iopub.status.idle": "2023-10-06T06:48:08.711447Z",
- "shell.execute_reply": "2023-10-06T06:48:08.710865Z"
+ "iopub.execute_input": "2023-10-11T10:20:08.449490Z",
+ "iopub.status.busy": "2023-10-11T10:20:08.448897Z",
+ "iopub.status.idle": "2023-10-11T10:20:08.453400Z",
+ "shell.execute_reply": "2023-10-11T10:20:08.452778Z"
}
},
"outputs": [],
@@ -408,10 +408,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:08.714811Z",
- "iopub.status.busy": "2023-10-06T06:48:08.714344Z",
- "iopub.status.idle": "2023-10-06T06:48:09.510043Z",
- "shell.execute_reply": "2023-10-06T06:48:09.509357Z"
+ "iopub.execute_input": "2023-10-11T10:20:08.456780Z",
+ "iopub.status.busy": "2023-10-11T10:20:08.456260Z",
+ "iopub.status.idle": "2023-10-11T10:20:09.291447Z",
+ "shell.execute_reply": "2023-10-11T10:20:09.290689Z"
}
},
"outputs": [],
@@ -445,10 +445,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:09.513901Z",
- "iopub.status.busy": "2023-10-06T06:48:09.513515Z",
- "iopub.status.idle": "2023-10-06T06:48:12.158603Z",
- "shell.execute_reply": "2023-10-06T06:48:12.157675Z"
+ "iopub.execute_input": "2023-10-11T10:20:09.295697Z",
+ "iopub.status.busy": "2023-10-11T10:20:09.295072Z",
+ "iopub.status.idle": "2023-10-11T10:20:12.163392Z",
+ "shell.execute_reply": "2023-10-11T10:20:12.162218Z"
}
},
"outputs": [
@@ -480,10 +480,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:12.163152Z",
- "iopub.status.busy": "2023-10-06T06:48:12.162048Z",
- "iopub.status.idle": "2023-10-06T06:48:12.177283Z",
- "shell.execute_reply": "2023-10-06T06:48:12.176559Z"
+ "iopub.execute_input": "2023-10-11T10:20:12.168334Z",
+ "iopub.status.busy": "2023-10-11T10:20:12.167038Z",
+ "iopub.status.idle": "2023-10-11T10:20:12.182361Z",
+ "shell.execute_reply": "2023-10-11T10:20:12.181700Z"
}
},
"outputs": [
@@ -604,10 +604,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:12.180755Z",
- "iopub.status.busy": "2023-10-06T06:48:12.180380Z",
- "iopub.status.idle": "2023-10-06T06:48:12.186704Z",
- "shell.execute_reply": "2023-10-06T06:48:12.186081Z"
+ "iopub.execute_input": "2023-10-11T10:20:12.185611Z",
+ "iopub.status.busy": "2023-10-11T10:20:12.185132Z",
+ "iopub.status.idle": "2023-10-11T10:20:12.190973Z",
+ "shell.execute_reply": "2023-10-11T10:20:12.190303Z"
}
},
"outputs": [],
@@ -632,10 +632,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:12.189576Z",
- "iopub.status.busy": "2023-10-06T06:48:12.189334Z",
- "iopub.status.idle": "2023-10-06T06:48:12.197944Z",
- "shell.execute_reply": "2023-10-06T06:48:12.197320Z"
+ "iopub.execute_input": "2023-10-11T10:20:12.194281Z",
+ "iopub.status.busy": "2023-10-11T10:20:12.193819Z",
+ "iopub.status.idle": "2023-10-11T10:20:12.203832Z",
+ "shell.execute_reply": "2023-10-11T10:20:12.203169Z"
}
},
"outputs": [],
@@ -657,10 +657,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:12.201032Z",
- "iopub.status.busy": "2023-10-06T06:48:12.200795Z",
- "iopub.status.idle": "2023-10-06T06:48:12.364588Z",
- "shell.execute_reply": "2023-10-06T06:48:12.363817Z"
+ "iopub.execute_input": "2023-10-11T10:20:12.207186Z",
+ "iopub.status.busy": "2023-10-11T10:20:12.206721Z",
+ "iopub.status.idle": "2023-10-11T10:20:12.384041Z",
+ "shell.execute_reply": "2023-10-11T10:20:12.383160Z"
}
},
"outputs": [
@@ -690,10 +690,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:12.367973Z",
- "iopub.status.busy": "2023-10-06T06:48:12.367326Z",
- "iopub.status.idle": "2023-10-06T06:48:12.371048Z",
- "shell.execute_reply": "2023-10-06T06:48:12.370339Z"
+ "iopub.execute_input": "2023-10-11T10:20:12.387949Z",
+ "iopub.status.busy": "2023-10-11T10:20:12.387435Z",
+ "iopub.status.idle": "2023-10-11T10:20:12.390968Z",
+ "shell.execute_reply": "2023-10-11T10:20:12.390261Z"
}
},
"outputs": [],
@@ -714,10 +714,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:12.374095Z",
- "iopub.status.busy": "2023-10-06T06:48:12.373702Z",
- "iopub.status.idle": "2023-10-06T06:48:14.726368Z",
- "shell.execute_reply": "2023-10-06T06:48:14.725347Z"
+ "iopub.execute_input": "2023-10-11T10:20:12.394163Z",
+ "iopub.status.busy": "2023-10-11T10:20:12.393777Z",
+ "iopub.status.idle": "2023-10-11T10:20:14.833454Z",
+ "shell.execute_reply": "2023-10-11T10:20:14.832244Z"
}
},
"outputs": [],
@@ -737,10 +737,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:14.730739Z",
- "iopub.status.busy": "2023-10-06T06:48:14.730260Z",
- "iopub.status.idle": "2023-10-06T06:48:14.749131Z",
- "shell.execute_reply": "2023-10-06T06:48:14.748396Z"
+ "iopub.execute_input": "2023-10-11T10:20:14.837861Z",
+ "iopub.status.busy": "2023-10-11T10:20:14.837245Z",
+ "iopub.status.idle": "2023-10-11T10:20:14.854013Z",
+ "shell.execute_reply": "2023-10-11T10:20:14.853268Z"
}
},
"outputs": [
@@ -770,10 +770,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:14.752786Z",
- "iopub.status.busy": "2023-10-06T06:48:14.752371Z",
- "iopub.status.idle": "2023-10-06T06:48:14.882905Z",
- "shell.execute_reply": "2023-10-06T06:48:14.882206Z"
+ "iopub.execute_input": "2023-10-11T10:20:14.857412Z",
+ "iopub.status.busy": "2023-10-11T10:20:14.856850Z",
+ "iopub.status.idle": "2023-10-11T10:20:14.880967Z",
+ "shell.execute_reply": "2023-10-11T10:20:14.880339Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb
index 71a358b39..3ea30015a 100644
--- a/master/.doctrees/nbsphinx/tutorials/text.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb
@@ -114,10 +114,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:22.941002Z",
- "iopub.status.busy": "2023-10-06T06:48:22.940576Z",
- "iopub.status.idle": "2023-10-06T06:48:25.588403Z",
- "shell.execute_reply": "2023-10-06T06:48:25.587664Z"
+ "iopub.execute_input": "2023-10-11T10:20:20.225113Z",
+ "iopub.status.busy": "2023-10-11T10:20:20.224832Z",
+ "iopub.status.idle": "2023-10-11T10:20:23.000840Z",
+ "shell.execute_reply": "2023-10-11T10:20:23.000055Z"
},
"nbsphinx": "hidden"
},
@@ -134,7 +134,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -159,10 +159,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:25.592265Z",
- "iopub.status.busy": "2023-10-06T06:48:25.591688Z",
- "iopub.status.idle": "2023-10-06T06:48:25.597061Z",
- "shell.execute_reply": "2023-10-06T06:48:25.596400Z"
+ "iopub.execute_input": "2023-10-11T10:20:23.005118Z",
+ "iopub.status.busy": "2023-10-11T10:20:23.004408Z",
+ "iopub.status.idle": "2023-10-11T10:20:23.009263Z",
+ "shell.execute_reply": "2023-10-11T10:20:23.008581Z"
}
},
"outputs": [],
@@ -184,10 +184,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:25.599877Z",
- "iopub.status.busy": "2023-10-06T06:48:25.599480Z",
- "iopub.status.idle": "2023-10-06T06:48:25.603211Z",
- "shell.execute_reply": "2023-10-06T06:48:25.602544Z"
+ "iopub.execute_input": "2023-10-11T10:20:23.012298Z",
+ "iopub.status.busy": "2023-10-11T10:20:23.011922Z",
+ "iopub.status.idle": "2023-10-11T10:20:23.015755Z",
+ "shell.execute_reply": "2023-10-11T10:20:23.015065Z"
},
"nbsphinx": "hidden"
},
@@ -218,10 +218,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:25.606008Z",
- "iopub.status.busy": "2023-10-06T06:48:25.605766Z",
- "iopub.status.idle": "2023-10-06T06:48:25.761219Z",
- "shell.execute_reply": "2023-10-06T06:48:25.760521Z"
+ "iopub.execute_input": "2023-10-11T10:20:23.019137Z",
+ "iopub.status.busy": "2023-10-11T10:20:23.018583Z",
+ "iopub.status.idle": "2023-10-11T10:20:23.051361Z",
+ "shell.execute_reply": "2023-10-11T10:20:23.050531Z"
}
},
"outputs": [
@@ -311,10 +311,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:25.764619Z",
- "iopub.status.busy": "2023-10-06T06:48:25.764196Z",
- "iopub.status.idle": "2023-10-06T06:48:25.769238Z",
- "shell.execute_reply": "2023-10-06T06:48:25.768496Z"
+ "iopub.execute_input": "2023-10-11T10:20:23.055400Z",
+ "iopub.status.busy": "2023-10-11T10:20:23.054883Z",
+ "iopub.status.idle": "2023-10-11T10:20:23.060856Z",
+ "shell.execute_reply": "2023-10-11T10:20:23.060141Z"
}
},
"outputs": [],
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:25.773611Z",
- "iopub.status.busy": "2023-10-06T06:48:25.772275Z",
- "iopub.status.idle": "2023-10-06T06:48:25.779157Z",
- "shell.execute_reply": "2023-10-06T06:48:25.778471Z"
+ "iopub.execute_input": "2023-10-11T10:20:23.063969Z",
+ "iopub.status.busy": "2023-10-11T10:20:23.063574Z",
+ "iopub.status.idle": "2023-10-11T10:20:23.067856Z",
+ "shell.execute_reply": "2023-10-11T10:20:23.067280Z"
}
},
"outputs": [
@@ -341,7 +341,7 @@
"output_type": "stream",
"text": [
"This dataset has 10 classes.\n",
- "Classes: {'supported_cards_and_currencies', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'cancel_transfer', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin'}\n"
+ "Classes: {'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'beneficiary_not_allowed', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'cancel_transfer'}\n"
]
}
],
@@ -364,10 +364,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:25.782746Z",
- "iopub.status.busy": "2023-10-06T06:48:25.782367Z",
- "iopub.status.idle": "2023-10-06T06:48:25.787825Z",
- "shell.execute_reply": "2023-10-06T06:48:25.787126Z"
+ "iopub.execute_input": "2023-10-11T10:20:23.071118Z",
+ "iopub.status.busy": "2023-10-11T10:20:23.070562Z",
+ "iopub.status.idle": "2023-10-11T10:20:23.074611Z",
+ "shell.execute_reply": "2023-10-11T10:20:23.073912Z"
}
},
"outputs": [
@@ -408,10 +408,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:25.791289Z",
- "iopub.status.busy": "2023-10-06T06:48:25.790745Z",
- "iopub.status.idle": "2023-10-06T06:48:25.797314Z",
- "shell.execute_reply": "2023-10-06T06:48:25.796615Z"
+ "iopub.execute_input": "2023-10-11T10:20:23.078031Z",
+ "iopub.status.busy": "2023-10-11T10:20:23.077664Z",
+ "iopub.status.idle": "2023-10-11T10:20:23.081801Z",
+ "shell.execute_reply": "2023-10-11T10:20:23.081112Z"
}
},
"outputs": [],
@@ -452,10 +452,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:25.800846Z",
- "iopub.status.busy": "2023-10-06T06:48:25.800314Z",
- "iopub.status.idle": "2023-10-06T06:48:30.081084Z",
- "shell.execute_reply": "2023-10-06T06:48:30.080427Z"
+ "iopub.execute_input": "2023-10-11T10:20:23.085131Z",
+ "iopub.status.busy": "2023-10-11T10:20:23.084690Z",
+ "iopub.status.idle": "2023-10-11T10:20:26.891533Z",
+ "shell.execute_reply": "2023-10-11T10:20:26.890816Z"
}
},
"outputs": [
@@ -470,7 +470,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.weight', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense_prediction.weight']\n",
+ "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.weight']\n",
"- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
]
@@ -511,10 +511,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:30.085323Z",
- "iopub.status.busy": "2023-10-06T06:48:30.084736Z",
- "iopub.status.idle": "2023-10-06T06:48:30.088074Z",
- "shell.execute_reply": "2023-10-06T06:48:30.087471Z"
+ "iopub.execute_input": "2023-10-11T10:20:26.895502Z",
+ "iopub.status.busy": "2023-10-11T10:20:26.894979Z",
+ "iopub.status.idle": "2023-10-11T10:20:26.898194Z",
+ "shell.execute_reply": "2023-10-11T10:20:26.897652Z"
}
},
"outputs": [],
@@ -536,10 +536,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:30.091070Z",
- "iopub.status.busy": "2023-10-06T06:48:30.090576Z",
- "iopub.status.idle": "2023-10-06T06:48:30.093704Z",
- "shell.execute_reply": "2023-10-06T06:48:30.093163Z"
+ "iopub.execute_input": "2023-10-11T10:20:26.901052Z",
+ "iopub.status.busy": "2023-10-11T10:20:26.900594Z",
+ "iopub.status.idle": "2023-10-11T10:20:26.903646Z",
+ "shell.execute_reply": "2023-10-11T10:20:26.903113Z"
}
},
"outputs": [],
@@ -554,10 +554,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:30.096457Z",
- "iopub.status.busy": "2023-10-06T06:48:30.095984Z",
- "iopub.status.idle": "2023-10-06T06:48:32.851203Z",
- "shell.execute_reply": "2023-10-06T06:48:32.850176Z"
+ "iopub.execute_input": "2023-10-11T10:20:26.906333Z",
+ "iopub.status.busy": "2023-10-11T10:20:26.905885Z",
+ "iopub.status.idle": "2023-10-11T10:20:29.690692Z",
+ "shell.execute_reply": "2023-10-11T10:20:29.689609Z"
},
"scrolled": true
},
@@ -580,10 +580,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:32.856226Z",
- "iopub.status.busy": "2023-10-06T06:48:32.855166Z",
- "iopub.status.idle": "2023-10-06T06:48:32.868208Z",
- "shell.execute_reply": "2023-10-06T06:48:32.867548Z"
+ "iopub.execute_input": "2023-10-11T10:20:29.696101Z",
+ "iopub.status.busy": "2023-10-11T10:20:29.694721Z",
+ "iopub.status.idle": "2023-10-11T10:20:29.708080Z",
+ "shell.execute_reply": "2023-10-11T10:20:29.707445Z"
}
},
"outputs": [
@@ -684,10 +684,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:32.871131Z",
- "iopub.status.busy": "2023-10-06T06:48:32.870885Z",
- "iopub.status.idle": "2023-10-06T06:48:32.877262Z",
- "shell.execute_reply": "2023-10-06T06:48:32.876563Z"
+ "iopub.execute_input": "2023-10-11T10:20:29.711789Z",
+ "iopub.status.busy": "2023-10-11T10:20:29.711254Z",
+ "iopub.status.idle": "2023-10-11T10:20:29.716905Z",
+ "shell.execute_reply": "2023-10-11T10:20:29.716284Z"
}
},
"outputs": [],
@@ -701,10 +701,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:32.880600Z",
- "iopub.status.busy": "2023-10-06T06:48:32.880035Z",
- "iopub.status.idle": "2023-10-06T06:48:32.884120Z",
- "shell.execute_reply": "2023-10-06T06:48:32.883421Z"
+ "iopub.execute_input": "2023-10-11T10:20:29.720082Z",
+ "iopub.status.busy": "2023-10-11T10:20:29.719511Z",
+ "iopub.status.idle": "2023-10-11T10:20:29.724851Z",
+ "shell.execute_reply": "2023-10-11T10:20:29.724057Z"
}
},
"outputs": [
@@ -739,10 +739,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:32.888064Z",
- "iopub.status.busy": "2023-10-06T06:48:32.887483Z",
- "iopub.status.idle": "2023-10-06T06:48:32.891338Z",
- "shell.execute_reply": "2023-10-06T06:48:32.890638Z"
+ "iopub.execute_input": "2023-10-11T10:20:29.727953Z",
+ "iopub.status.busy": "2023-10-11T10:20:29.727488Z",
+ "iopub.status.idle": "2023-10-11T10:20:29.731191Z",
+ "shell.execute_reply": "2023-10-11T10:20:29.730517Z"
}
},
"outputs": [],
@@ -762,10 +762,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:32.894241Z",
- "iopub.status.busy": "2023-10-06T06:48:32.893861Z",
- "iopub.status.idle": "2023-10-06T06:48:32.903248Z",
- "shell.execute_reply": "2023-10-06T06:48:32.902537Z"
+ "iopub.execute_input": "2023-10-11T10:20:29.734345Z",
+ "iopub.status.busy": "2023-10-11T10:20:29.733739Z",
+ "iopub.status.idle": "2023-10-11T10:20:29.743059Z",
+ "shell.execute_reply": "2023-10-11T10:20:29.742371Z"
}
},
"outputs": [
@@ -890,10 +890,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:32.906575Z",
- "iopub.status.busy": "2023-10-06T06:48:32.906006Z",
- "iopub.status.idle": "2023-10-06T06:48:33.207593Z",
- "shell.execute_reply": "2023-10-06T06:48:33.206881Z"
+ "iopub.execute_input": "2023-10-11T10:20:29.746123Z",
+ "iopub.status.busy": "2023-10-11T10:20:29.745754Z",
+ "iopub.status.idle": "2023-10-11T10:20:30.014255Z",
+ "shell.execute_reply": "2023-10-11T10:20:30.013649Z"
},
"scrolled": true
},
@@ -932,10 +932,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:33.210599Z",
- "iopub.status.busy": "2023-10-06T06:48:33.210169Z",
- "iopub.status.idle": "2023-10-06T06:48:33.558244Z",
- "shell.execute_reply": "2023-10-06T06:48:33.557661Z"
+ "iopub.execute_input": "2023-10-11T10:20:30.017653Z",
+ "iopub.status.busy": "2023-10-11T10:20:30.017034Z",
+ "iopub.status.idle": "2023-10-11T10:20:30.325313Z",
+ "shell.execute_reply": "2023-10-11T10:20:30.324685Z"
},
"scrolled": true
},
@@ -968,10 +968,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:33.561421Z",
- "iopub.status.busy": "2023-10-06T06:48:33.560703Z",
- "iopub.status.idle": "2023-10-06T06:48:33.565548Z",
- "shell.execute_reply": "2023-10-06T06:48:33.564977Z"
+ "iopub.execute_input": "2023-10-11T10:20:30.328564Z",
+ "iopub.status.busy": "2023-10-11T10:20:30.328133Z",
+ "iopub.status.idle": "2023-10-11T10:20:30.333033Z",
+ "shell.execute_reply": "2023-10-11T10:20:30.332457Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
index a0b33531f..67e4a6b53 100644
--- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
@@ -75,10 +75,10 @@
"id": "ae8a08e0",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:39.062593Z",
- "iopub.status.busy": "2023-10-06T06:48:39.062349Z",
- "iopub.status.idle": "2023-10-06T06:48:41.080789Z",
- "shell.execute_reply": "2023-10-06T06:48:41.079948Z"
+ "iopub.execute_input": "2023-10-11T10:20:35.372720Z",
+ "iopub.status.busy": "2023-10-11T10:20:35.372440Z",
+ "iopub.status.idle": "2023-10-11T10:20:36.884484Z",
+ "shell.execute_reply": "2023-10-11T10:20:36.883317Z"
}
},
"outputs": [
@@ -86,7 +86,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "--2023-10-06 06:48:39-- https://data.deepai.org/conll2003.zip\r\n",
+ "--2023-10-11 10:20:35-- https://data.deepai.org/conll2003.zip\r\n",
"Resolving data.deepai.org (data.deepai.org)... "
]
},
@@ -94,8 +94,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "143.244.50.91, 2400:52e0:1a01::992:1\r\n",
- "Connecting to data.deepai.org (data.deepai.org)|143.244.50.91|:443... "
+ "185.93.1.244, 2400:52e0:1a00::871:1\r\n",
+ "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... "
]
},
{
@@ -103,7 +103,14 @@
"output_type": "stream",
"text": [
"connected.\r\n",
- "HTTP request sent, awaiting response... 200 OK\r\n",
+ "HTTP request sent, awaiting response... "
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "200 OK\r\n",
"Length: 982975 (960K) [application/zip]\r\n",
"Saving to: ‘conll2003.zip’\r\n",
"\r\n",
@@ -116,9 +123,9 @@
"output_type": "stream",
"text": [
"\r",
- "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.05s \r\n",
+ "conll2003.zip 100%[===================>] 959.94K 6.21MB/s in 0.2s \r\n",
"\r\n",
- "2023-10-06 06:48:39 (18.7 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
+ "2023-10-11 10:20:35 (6.21 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
"\r\n",
"mkdir: cannot create directory ‘data’: File exists\r\n"
]
@@ -138,22 +145,9 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "--2023-10-06 06:48:39-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
- "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.226.177, 52.216.102.19, 52.217.174.249, ...\r\n",
- "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.226.177|:443... "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "connected.\r\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
+ "--2023-10-11 10:20:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
+ "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.8.193, 52.217.136.137, 52.217.167.25, ...\r\n",
+ "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.8.193|:443... connected.\r\n",
"HTTP request sent, awaiting response... "
]
},
@@ -174,33 +168,10 @@
"output_type": "stream",
"text": [
"\r",
- "pred_probs.npz 1%[ ] 270.53K 1.26MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 26%[====> ] 4.30M 10.3MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 88%[================> ] 14.44M 22.9MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 100%[===================>] 16.26M 25.5MB/s in 0.6s \r\n",
+ "pred_probs.npz 96%[==================> ] 15.71M 42.6MB/s \r",
+ "pred_probs.npz 100%[===================>] 16.26M 43.8MB/s in 0.4s \r\n",
"\r\n",
- "2023-10-06 06:48:40 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
+ "2023-10-11 10:20:36 (43.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
"\r\n"
]
}
@@ -217,10 +188,10 @@
"id": "439b0305",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:41.084349Z",
- "iopub.status.busy": "2023-10-06T06:48:41.083848Z",
- "iopub.status.idle": "2023-10-06T06:48:42.231954Z",
- "shell.execute_reply": "2023-10-06T06:48:42.231231Z"
+ "iopub.execute_input": "2023-10-11T10:20:36.889183Z",
+ "iopub.status.busy": "2023-10-11T10:20:36.888442Z",
+ "iopub.status.idle": "2023-10-11T10:20:38.125163Z",
+ "shell.execute_reply": "2023-10-11T10:20:38.124378Z"
},
"nbsphinx": "hidden"
},
@@ -231,7 +202,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -257,10 +228,10 @@
"id": "a1349304",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:42.235937Z",
- "iopub.status.busy": "2023-10-06T06:48:42.235371Z",
- "iopub.status.idle": "2023-10-06T06:48:42.240956Z",
- "shell.execute_reply": "2023-10-06T06:48:42.240319Z"
+ "iopub.execute_input": "2023-10-11T10:20:38.129580Z",
+ "iopub.status.busy": "2023-10-11T10:20:38.129007Z",
+ "iopub.status.idle": "2023-10-11T10:20:38.134710Z",
+ "shell.execute_reply": "2023-10-11T10:20:38.134069Z"
}
},
"outputs": [],
@@ -310,10 +281,10 @@
"id": "ab9d59a0",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:42.244317Z",
- "iopub.status.busy": "2023-10-06T06:48:42.243940Z",
- "iopub.status.idle": "2023-10-06T06:48:42.248613Z",
- "shell.execute_reply": "2023-10-06T06:48:42.248010Z"
+ "iopub.execute_input": "2023-10-11T10:20:38.138320Z",
+ "iopub.status.busy": "2023-10-11T10:20:38.137946Z",
+ "iopub.status.idle": "2023-10-11T10:20:38.142685Z",
+ "shell.execute_reply": "2023-10-11T10:20:38.142077Z"
},
"nbsphinx": "hidden"
},
@@ -331,10 +302,10 @@
"id": "519cb80c",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:42.251798Z",
- "iopub.status.busy": "2023-10-06T06:48:42.251295Z",
- "iopub.status.idle": "2023-10-06T06:48:52.469139Z",
- "shell.execute_reply": "2023-10-06T06:48:52.468465Z"
+ "iopub.execute_input": "2023-10-11T10:20:38.146010Z",
+ "iopub.status.busy": "2023-10-11T10:20:38.145652Z",
+ "iopub.status.idle": "2023-10-11T10:20:49.925919Z",
+ "shell.execute_reply": "2023-10-11T10:20:49.925051Z"
}
},
"outputs": [],
@@ -408,10 +379,10 @@
"id": "202f1526",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:52.472915Z",
- "iopub.status.busy": "2023-10-06T06:48:52.472368Z",
- "iopub.status.idle": "2023-10-06T06:48:52.480311Z",
- "shell.execute_reply": "2023-10-06T06:48:52.479695Z"
+ "iopub.execute_input": "2023-10-11T10:20:49.931392Z",
+ "iopub.status.busy": "2023-10-11T10:20:49.929842Z",
+ "iopub.status.idle": "2023-10-11T10:20:49.938772Z",
+ "shell.execute_reply": "2023-10-11T10:20:49.938131Z"
},
"nbsphinx": "hidden"
},
@@ -451,10 +422,10 @@
"id": "a4381f03",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:52.482880Z",
- "iopub.status.busy": "2023-10-06T06:48:52.482653Z",
- "iopub.status.idle": "2023-10-06T06:48:53.043420Z",
- "shell.execute_reply": "2023-10-06T06:48:53.042728Z"
+ "iopub.execute_input": "2023-10-11T10:20:49.942138Z",
+ "iopub.status.busy": "2023-10-11T10:20:49.941760Z",
+ "iopub.status.idle": "2023-10-11T10:20:50.546735Z",
+ "shell.execute_reply": "2023-10-11T10:20:50.545987Z"
}
},
"outputs": [],
@@ -491,10 +462,10 @@
"id": "7842e4a3",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:53.047045Z",
- "iopub.status.busy": "2023-10-06T06:48:53.046379Z",
- "iopub.status.idle": "2023-10-06T06:48:53.053247Z",
- "shell.execute_reply": "2023-10-06T06:48:53.052503Z"
+ "iopub.execute_input": "2023-10-11T10:20:50.550832Z",
+ "iopub.status.busy": "2023-10-11T10:20:50.550567Z",
+ "iopub.status.idle": "2023-10-11T10:20:50.557200Z",
+ "shell.execute_reply": "2023-10-11T10:20:50.556539Z"
}
},
"outputs": [
@@ -566,10 +537,10 @@
"id": "2c2ad9ad",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:53.056073Z",
- "iopub.status.busy": "2023-10-06T06:48:53.055685Z",
- "iopub.status.idle": "2023-10-06T06:48:55.478985Z",
- "shell.execute_reply": "2023-10-06T06:48:55.477915Z"
+ "iopub.execute_input": "2023-10-11T10:20:50.560296Z",
+ "iopub.status.busy": "2023-10-11T10:20:50.560051Z",
+ "iopub.status.idle": "2023-10-11T10:20:53.164180Z",
+ "shell.execute_reply": "2023-10-11T10:20:53.162922Z"
}
},
"outputs": [],
@@ -591,10 +562,10 @@
"id": "95dc7268",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:55.483908Z",
- "iopub.status.busy": "2023-10-06T06:48:55.482651Z",
- "iopub.status.idle": "2023-10-06T06:48:55.492318Z",
- "shell.execute_reply": "2023-10-06T06:48:55.491607Z"
+ "iopub.execute_input": "2023-10-11T10:20:53.169416Z",
+ "iopub.status.busy": "2023-10-11T10:20:53.168197Z",
+ "iopub.status.idle": "2023-10-11T10:20:53.179163Z",
+ "shell.execute_reply": "2023-10-11T10:20:53.178325Z"
}
},
"outputs": [
@@ -630,10 +601,10 @@
"id": "e13de188",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:55.495323Z",
- "iopub.status.busy": "2023-10-06T06:48:55.494958Z",
- "iopub.status.idle": "2023-10-06T06:48:55.516458Z",
- "shell.execute_reply": "2023-10-06T06:48:55.515817Z"
+ "iopub.execute_input": "2023-10-11T10:20:53.182564Z",
+ "iopub.status.busy": "2023-10-11T10:20:53.181988Z",
+ "iopub.status.idle": "2023-10-11T10:20:53.204709Z",
+ "shell.execute_reply": "2023-10-11T10:20:53.203893Z"
}
},
"outputs": [
@@ -811,10 +782,10 @@
"id": "e4a006bd",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:55.519718Z",
- "iopub.status.busy": "2023-10-06T06:48:55.519469Z",
- "iopub.status.idle": "2023-10-06T06:48:55.563433Z",
- "shell.execute_reply": "2023-10-06T06:48:55.562735Z"
+ "iopub.execute_input": "2023-10-11T10:20:53.209238Z",
+ "iopub.status.busy": "2023-10-11T10:20:53.207924Z",
+ "iopub.status.idle": "2023-10-11T10:20:53.252601Z",
+ "shell.execute_reply": "2023-10-11T10:20:53.251876Z"
}
},
"outputs": [
@@ -916,10 +887,10 @@
"id": "c8f4e163",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:55.566930Z",
- "iopub.status.busy": "2023-10-06T06:48:55.566554Z",
- "iopub.status.idle": "2023-10-06T06:48:55.578505Z",
- "shell.execute_reply": "2023-10-06T06:48:55.577882Z"
+ "iopub.execute_input": "2023-10-11T10:20:53.256218Z",
+ "iopub.status.busy": "2023-10-11T10:20:53.255719Z",
+ "iopub.status.idle": "2023-10-11T10:20:53.268236Z",
+ "shell.execute_reply": "2023-10-11T10:20:53.267453Z"
}
},
"outputs": [
@@ -993,10 +964,10 @@
"id": "db0b5179",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:55.581920Z",
- "iopub.status.busy": "2023-10-06T06:48:55.581414Z",
- "iopub.status.idle": "2023-10-06T06:48:57.688051Z",
- "shell.execute_reply": "2023-10-06T06:48:57.687356Z"
+ "iopub.execute_input": "2023-10-11T10:20:53.272320Z",
+ "iopub.status.busy": "2023-10-11T10:20:53.271007Z",
+ "iopub.status.idle": "2023-10-11T10:20:55.580759Z",
+ "shell.execute_reply": "2023-10-11T10:20:55.579898Z"
}
},
"outputs": [
@@ -1168,10 +1139,10 @@
"id": "a18795eb",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-10-06T06:48:57.691531Z",
- "iopub.status.busy": "2023-10-06T06:48:57.691138Z",
- "iopub.status.idle": "2023-10-06T06:48:57.697369Z",
- "shell.execute_reply": "2023-10-06T06:48:57.696764Z"
+ "iopub.execute_input": "2023-10-11T10:20:55.584678Z",
+ "iopub.status.busy": "2023-10-11T10:20:55.584019Z",
+ "iopub.status.idle": "2023-10-11T10:20:55.589801Z",
+ "shell.execute_reply": "2023-10-11T10:20:55.589179Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree
index fbbc9b899..ea91c17cb 100644
Binary files a/master/.doctrees/tutorials/audio.doctree and b/master/.doctrees/tutorials/audio.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree
index 490a823ac..846031a47 100644
Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree
index 2cc73a733..99fe86fbc 100644
Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree
index 6fc514d81..5a2f816e1 100644
Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree
index 80620ed6e..7f6638b4d 100644
Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree
index 5c3734f9d..426f0b523 100644
Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ
diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree
index 9232f2995..a522fa0ea 100644
Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ
diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree
index ccb54e4c5..18d1fe7d5 100644
Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ
diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree
index 97038ca08..91b989a47 100644
Binary files a/master/.doctrees/tutorials/image.doctree and b/master/.doctrees/tutorials/image.doctree differ
diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree
index 4ec3fa164..adb7ffde5 100644
Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ
diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree
index 7f15d4b80..572eccf83 100644
Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ
diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree
index 23725c2e5..5a9fd594d 100644
Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ
diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree
index 94948b6a8..9daf51f3e 100644
Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ
diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree
index 7c7df8ee3..d113a2224 100644
Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ
diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree
index 202c5156e..ce3a550c1 100644
Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ
diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree
index a3eb2f375..38de35bc1 100644
Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ
diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree
index 13f33a90a..fc6220884 100644
Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ
diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree
index abf4562cf..ff5c75d39 100644
Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ
diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree
index 7ee22dc1e..ff9a9fd6b 100644
Binary files a/master/.doctrees/tutorials/tabular.doctree and b/master/.doctrees/tutorials/tabular.doctree differ
diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree
index 574033c65..422d6f767 100644
Binary files a/master/.doctrees/tutorials/text.doctree and b/master/.doctrees/tutorials/text.doctree differ
diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree
index 4c51b7b78..1203b6dd8 100644
Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ
diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb
index 652f7d213..4f07d7562 100644
--- a/master/_sources/tutorials/audio.ipynb
+++ b/master/_sources/tutorials/audio.ipynb
@@ -91,7 +91,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
index fa5ed5dae..95d906ea6 100644
--- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
index 7f9a91f8f..3219a94e0 100644
--- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
@@ -85,7 +85,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb
index 1b826c5a6..55540411f 100644
--- a/master/_sources/tutorials/datalab/tabular.ipynb
+++ b/master/_sources/tutorials/datalab/tabular.ipynb
@@ -81,7 +81,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb
index 9e5d5fe33..70e9d3c57 100644
--- a/master/_sources/tutorials/datalab/text.ipynb
+++ b/master/_sources/tutorials/datalab/text.ipynb
@@ -90,7 +90,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb
index 6f42dabb0..1718d2913 100644
--- a/master/_sources/tutorials/dataset_health.ipynb
+++ b/master/_sources/tutorials/dataset_health.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/faq.ipynb b/master/_sources/tutorials/faq.ipynb
index 68f00abc8..5b938cc35 100644
--- a/master/_sources/tutorials/faq.ipynb
+++ b/master/_sources/tutorials/faq.ipynb
@@ -271,6 +271,18 @@
")"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "13228a99-5d3f-47c0-87e5-2290d16461c4",
+ "metadata": {},
+ "source": [
+ "Methods that internally call `filter.find_label_issues()` can be sped up by specifying the argument `low_memory=True`, which will instead use `find_label_issues_batched()` internally. The following methods provide this option: \n",
+ "\n",
+ "1. [classification.CleanLearning](../cleanlab/classification.html#cleanlab.classification.CleanLearning)\n",
+ "2. [multilabel_classification.filter.find_label_issues](../cleanlab/multilabel_classification/filter.html#cleanlab.multilabel_classification.filter.find_label_issues)\n",
+ "3. [token_classification.filter.find_label_issues](../cleanlab/token_classification/filter.html?highlight=token#cleanlab.token_classification.filter.find_label_issues)"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb
index 41324628c..be02c86f8 100644
--- a/master/_sources/tutorials/indepth_overview.ipynb
+++ b/master/_sources/tutorials/indepth_overview.ipynb
@@ -62,7 +62,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb
index eca031728..760245459 100644
--- a/master/_sources/tutorials/multiannotator.ipynb
+++ b/master/_sources/tutorials/multiannotator.ipynb
@@ -96,7 +96,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb
index eda8c2c3c..f0a5e1998 100644
--- a/master/_sources/tutorials/multilabel_classification.ipynb
+++ b/master/_sources/tutorials/multilabel_classification.ipynb
@@ -72,7 +72,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb
index 01e7726fd..ca9edca3a 100644
--- a/master/_sources/tutorials/object_detection.ipynb
+++ b/master/_sources/tutorials/object_detection.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb
index 883821190..879c70a6a 100644
--- a/master/_sources/tutorials/outliers.ipynb
+++ b/master/_sources/tutorials/outliers.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb
index f7fe5eaf1..f46ee3106 100644
--- a/master/_sources/tutorials/regression.ipynb
+++ b/master/_sources/tutorials/regression.ipynb
@@ -103,7 +103,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb
index d6cd98ce7..068162fda 100644
--- a/master/_sources/tutorials/segmentation.ipynb
+++ b/master/_sources/tutorials/segmentation.ipynb
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb
index ec4726d5a..0e3f34e88 100644
--- a/master/_sources/tutorials/tabular.ipynb
+++ b/master/_sources/tutorials/tabular.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb
index 287774f72..a5f1d4c91 100644
--- a/master/_sources/tutorials/text.ipynb
+++ b/master/_sources/tutorials/text.ipynb
@@ -128,7 +128,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb
index 3462d40fa..911fd3162 100644
--- a/master/_sources/tutorials/token_classification.ipynb
+++ b/master/_sources/tutorials/token_classification.ipynb
@@ -95,7 +95,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/searchindex.js b/master/searchindex.js
index 2791d538f..515c69708 100644
--- a/master/searchindex.js
+++ b/master/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "outlier", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 66, 68, 69, 76, 78, 79], "helper": [1, 13, 27, 31, 33, 34, 35, 36, 37, 38, 50, 73, 75, 87], "method": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "ar": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "us": [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 65, 66, 68, 73, 77, 82], "benchmark": [1, 24, 65, 66, 68, 69, 76, 78, 79], "cleanlab": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82], "": [1, 2, 3, 7, 23, 24, 28, 31, 34, 36, 38, 43, 44, 48, 50, 51, 52, 53, 55, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "core": [1, 4, 27, 29, 57, 59, 84], "algorithm": [1, 2, 7, 25, 38, 43, 52, 61, 63, 65, 74, 76, 78, 87], "These": [1, 2, 3, 7, 26, 29, 30, 41, 43, 44, 47, 52, 56, 60, 61, 63, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "introduc": [1, 67, 74, 76], "synthet": [1, 78, 79, 84], "nois": [1, 2, 3, 23, 29, 32, 38, 44, 68, 69, 73, 78], "label": [1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 16, 17, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 73, 77, 81, 82], "classif": [1, 3, 7, 23, 27, 29, 32, 34, 35, 38, 43, 44, 45, 46, 47, 52, 53, 61, 62, 63, 64, 65, 66, 68, 69, 77, 78, 81, 82, 83, 84], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 27, 28, 29, 32, 34, 38, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 77, 78, 82, 85], "specif": [1, 3, 4, 6, 10, 13, 21, 26, 41, 45, 48, 51, 60, 64, 69, 72, 75, 76, 87], "thi": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "modul": [1, 3, 10, 11, 12, 13, 16, 21, 23, 24, 25, 26, 27, 28, 29, 38, 41, 43, 52, 53, 65, 74, 75, 79], "provid": [1, 2, 3, 4, 5, 7, 11, 13, 18, 23, 24, 25, 27, 28, 29, 32, 38, 42, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 82, 83, 84, 85, 86, 87], "gener": [1, 2, 3, 5, 7, 18, 21, 23, 34, 38, 39, 52, 53, 55, 60, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 86, 87], "valid": [1, 2, 3, 4, 7, 9, 23, 29, 30, 32, 33, 34, 38, 43, 45, 48, 53, 55, 56, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "matric": [1, 3, 32, 74], "which": [1, 2, 3, 4, 7, 9, 10, 11, 13, 17, 19, 21, 23, 24, 28, 29, 32, 34, 37, 38, 43, 44, 45, 48, 50, 52, 53, 55, 56, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "learn": [1, 2, 3, 7, 17, 25, 26, 27, 28, 29, 31, 33, 38, 41, 43, 45, 52, 54, 56, 59, 63, 65, 67, 68, 71, 72, 73, 77, 78, 83, 86], "i": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "possibl": [1, 2, 3, 7, 23, 24, 28, 29, 31, 32, 34, 45, 46, 47, 48, 50, 52, 53, 55, 61, 63, 64, 69, 74, 76, 78, 79, 80, 83, 84, 87], "noisi": [1, 2, 3, 23, 25, 28, 29, 32, 38, 44, 45, 47, 53, 55, 56, 57, 59, 60, 66, 68, 69, 71, 72, 74, 77, 78], "given": [1, 2, 3, 7, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 37, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 56, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "matrix": [1, 2, 3, 4, 7, 13, 23, 29, 31, 32, 35, 38, 39, 45, 50, 52, 53, 71, 81], "trace": [1, 68, 69, 76, 78, 79], "valu": [1, 2, 3, 4, 7, 9, 10, 13, 17, 19, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "more": [1, 2, 3, 4, 5, 7, 10, 13, 19, 23, 24, 27, 28, 31, 34, 38, 43, 44, 45, 46, 47, 48, 50, 53, 55, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 84, 87], "function": [1, 2, 3, 4, 5, 10, 11, 13, 18, 19, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 73, 74, 76, 78, 79, 80, 84, 85, 86, 87], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 7, 32, 38, 68, 69, 76, 78, 79], "py": [1, 3, 21, 24, 25, 29, 32, 34, 43, 68, 69, 76, 78, 79], "verbos": [1, 2, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 27, 29, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 68, 76, 78], "fals": [1, 2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 67, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81, 83, 84, 86], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65], "prior": [1, 2, 3, 23, 29, 32, 34], "repres": [1, 2, 3, 4, 5, 7, 9, 13, 19, 23, 27, 29, 32, 35, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "p": [1, 2, 3, 7, 23, 29, 31, 32, 38, 43, 51, 52, 53, 57, 69, 71, 72, 75, 76, 78, 87], "true_label": [1, 2, 3, 23, 32, 38, 76, 78], "k": [1, 2, 3, 4, 7, 9, 13, 14, 18, 19, 20, 23, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 68, 69, 74, 76, 78, 79, 80, 81, 84, 85, 87], "check": [1, 2, 4, 6, 7, 9, 13, 24, 27, 28, 33, 39, 42, 48, 55, 65, 67, 68, 69, 71, 74, 75, 76, 78, 79, 83, 85, 86], "learnabl": 1, "mean": [1, 2, 5, 9, 10, 17, 19, 25, 28, 32, 34, 50, 55, 69, 72, 74, 76, 78, 79, 81, 83, 86], "achiev": [1, 2, 24, 25, 28, 55, 78, 87], "better": [1, 4, 29, 43, 45, 53, 55, 56, 65, 67, 69, 71, 72, 74, 76, 79, 80, 81, 86, 87], "than": [1, 2, 3, 5, 7, 19, 20, 23, 29, 38, 42, 43, 48, 50, 52, 53, 55, 59, 63, 67, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 87], "random": [1, 2, 3, 5, 7, 27, 34, 43, 53, 55, 67, 68, 69, 71, 74, 75, 76, 78, 79, 81, 85], "perform": [1, 2, 5, 7, 19, 20, 24, 28, 34, 55, 65, 68, 74, 76, 78, 79, 82, 83, 85, 86], "averag": [1, 3, 17, 20, 23, 24, 28, 34, 36, 43, 44, 52, 53, 74, 78, 81], "amount": [1, 3, 75], "paramet": [1, 2, 3, 4, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 72, 75, 85, 86], "np": [1, 2, 3, 4, 5, 13, 23, 25, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 60, 61, 63, 64, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 84, 85, 86, 87], "ndarrai": [1, 2, 3, 4, 13, 18, 19, 23, 25, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 87], "an": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "arrai": [1, 2, 3, 4, 5, 9, 13, 19, 23, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "shape": [1, 2, 3, 4, 13, 23, 25, 27, 29, 31, 32, 33, 34, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 73, 74, 76, 79, 80, 81, 84, 87], "condit": [1, 2, 3, 32, 37, 38, 53, 75, 76, 87], "probabl": [1, 2, 3, 4, 7, 13, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 84, 87], "k_": [1, 2, 3, 32, 38], "k_y": [1, 2, 3, 32, 38], "contain": [1, 2, 3, 4, 9, 10, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86], "fraction": [1, 2, 3, 7, 15, 25, 32, 38, 43, 55, 71, 74], "exampl": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 78, 79, 80, 82, 83, 84, 85, 86, 87], "everi": [1, 2, 3, 4, 13, 24, 28, 29, 32, 37, 38, 45, 53, 55, 56, 67, 68, 69, 71, 72, 74, 75, 78, 80, 82, 84, 85, 87], "class": [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87], "other": [1, 2, 3, 4, 7, 13, 17, 23, 24, 26, 27, 28, 29, 32, 35, 38, 39, 41, 43, 44, 47, 52, 53, 55, 60, 67, 68, 69, 71, 72, 74, 75, 76, 79, 81, 84, 87], "assum": [1, 2, 3, 9, 29, 32, 36, 37, 38, 53, 57, 60, 74, 81, 84, 87], "column": [1, 2, 3, 4, 7, 9, 10, 23, 27, 29, 32, 34, 35, 37, 38, 43, 44, 45, 47, 48, 51, 52, 53, 55, 60, 61, 63, 64, 67, 68, 69, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "sum": [1, 2, 3, 19, 23, 32, 34, 38, 44, 45, 47, 50, 55, 68, 69, 74, 75, 76, 78, 79, 84, 87], "1": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 73, 74, 82], "each": [1, 2, 3, 4, 5, 6, 10, 11, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 38, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "true": [1, 2, 3, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "return": [1, 2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "type": [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 75, 79, 80, 84, 85, 87], "bool": [1, 2, 3, 4, 9, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 34, 37, 38, 43, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64], "is_valid": 1, "whether": [1, 3, 4, 7, 10, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 29, 38, 43, 44, 45, 47, 48, 64, 67, 69, 72, 73, 75, 76, 83, 86, 87], "generate_noisy_label": [1, 68, 69, 76, 78, 79], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 32, 34, 35, 36, 37, 38, 43, 45, 47, 50, 51, 52, 53, 55, 56, 61, 63, 64, 65, 67, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 84, 87], "perfect": [1, 2, 23, 55, 76, 80], "exactli": [1, 3, 7, 23, 24, 28, 29, 46, 52, 68, 69, 71, 72, 75, 76, 86], "yield": [1, 24, 28], "between": [1, 4, 7, 12, 13, 16, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 41, 43, 44, 47, 50, 52, 53, 55, 56, 59, 63, 64, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "below": [1, 3, 7, 23, 24, 27, 28, 29, 31, 34, 43, 44, 45, 50, 51, 59, 63, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "we": [1, 2, 3, 4, 5, 7, 10, 17, 24, 27, 28, 29, 34, 38, 39, 43, 50, 53, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "loop": [1, 3, 32, 38, 75], "implement": [1, 2, 3, 4, 6, 11, 17, 24, 25, 27, 28, 32, 38, 55, 65, 67, 68, 71, 81, 82, 85], "what": [1, 4, 6, 7, 13, 21, 23, 25, 27, 29, 43, 44, 48, 50, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "doe": [1, 2, 3, 7, 27, 28, 29, 34, 39, 50, 55, 57, 59, 63, 67, 68, 69, 71, 72, 75, 79, 83, 84, 86], "do": [1, 2, 4, 7, 23, 27, 28, 38, 39, 52, 53, 57, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "fast": 1, "explain": [1, 7], "python": [1, 2, 28, 42, 55, 68, 69, 73, 81], "pseudocod": [1, 82], "happen": [1, 7, 29, 45, 78, 84], "n": [1, 2, 3, 4, 5, 23, 24, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 67, 72, 73, 74, 75, 78, 79, 83, 84, 85, 86, 87], "without": [1, 2, 4, 7, 9, 13, 15, 24, 28, 47, 55, 65, 67, 72, 76, 80, 81, 86], "ani": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 33, 37, 38, 42, 43, 45, 47, 48, 50, 51, 53, 55, 57, 59, 60, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86], "distinct": [1, 38, 87], "natur": [1, 7, 78, 81], "number": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 84, 87], "0": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "count_joint": 1, "len": [1, 2, 3, 5, 23, 27, 32, 37, 38, 39, 52, 53, 55, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87], "y": [1, 2, 3, 4, 28, 32, 34, 38, 39, 42, 51, 55, 56, 67, 68, 69, 71, 74, 76, 78, 79, 81, 83, 86], "round": [1, 27, 29, 38, 55, 74, 83], "astyp": [1, 78], "int": [1, 2, 3, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 38, 44, 45, 47, 51, 52, 53, 55, 57, 59, 60, 61, 64, 67, 68, 75, 81], "rang": [1, 3, 5, 9, 32, 34, 36, 38, 55, 56, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 87], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 7, 9, 10, 13, 17, 23, 27, 29, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 86, 87], "pragma": 1, "cover": [1, 3, 66, 73], "choic": [1, 29, 75, 79, 81], "replac": [1, 37, 42, 53, 68, 69, 72, 73, 75, 78, 81, 85, 86], "generate_noise_matrix_from_trac": [1, 68, 69, 76, 78, 79], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 53, 67, 68, 69], "05": [1, 19, 37, 55, 61, 63, 73, 74, 76, 80, 87], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 68, 69, 76, 78, 79], "none": [1, 2, 3, 4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 74, 75, 76, 78, 79, 84], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 7, 19, 28, 34, 55, 67, 68, 69, 71, 73, 76, 78, 79, 85], "max_it": [1, 67, 72, 81, 86], "10000": [1, 27, 73, 74], "x": [1, 2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 32, 34, 37, 38, 39, 42, 43, 45, 51, 52, 53, 55, 57, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "diagon": [1, 3, 4, 13, 29, 32, 38], "equal": [1, 3, 7, 9, 45, 50, 60, 82], "creat": [1, 2, 6, 13, 24, 27, 28, 29, 38, 55, 65, 67, 71, 72, 74, 75, 84, 86, 87], "impli": [1, 23, 44], "float": [1, 2, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 33, 34, 37, 38, 43, 44, 45, 47, 50, 51, 55, 59, 63, 67, 68, 69, 76, 78, 79], "entri": [1, 3, 4, 13, 23, 24, 28, 29, 31, 35, 38, 43, 44, 45, 48, 71, 72, 76, 79, 80, 85, 86], "maximum": [1, 7, 52, 60, 64, 84], "minimum": [1, 7, 15, 29, 31, 45, 50, 63], "noise_r": 1, "non": [1, 2, 3, 4, 6, 13, 19, 24, 28, 29, 50, 55, 68, 74, 76, 78, 80, 81], "default": [1, 2, 3, 4, 7, 11, 13, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 68, 74, 75, 84], "If": [1, 2, 3, 4, 7, 10, 13, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 45, 48, 50, 51, 52, 55, 56, 57, 59, 60, 63, 64, 65, 66, 67, 68, 71, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "have": [1, 2, 3, 4, 7, 13, 16, 19, 23, 24, 26, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 48, 50, 52, 53, 55, 56, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "all": [1, 2, 3, 4, 5, 7, 10, 13, 17, 21, 23, 24, 27, 28, 29, 32, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "necessari": [1, 2, 3, 5, 7, 37, 68], "In": [1, 2, 3, 7, 23, 24, 27, 28, 43, 44, 46, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87], "particular": [1, 4, 7, 10, 11, 13, 14, 15, 17, 19, 20, 24, 28, 38, 43, 47, 51, 55, 60, 64, 65, 67, 69, 72, 74, 78, 79, 81, 83, 85, 86], "satisfi": [1, 3, 23], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 22, 24, 25, 26, 27, 28, 29, 32, 38, 41, 42, 45, 52, 53, 55, 57, 65, 66, 67, 73, 74, 76, 82], "argument": [1, 2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 34, 39, 42, 43, 44, 45, 47, 50, 52, 53, 55, 59, 60, 61, 63, 69, 72, 73, 74, 75, 80, 83, 86, 87], "when": [1, 2, 3, 4, 7, 9, 11, 13, 18, 19, 24, 28, 29, 32, 34, 38, 42, 45, 47, 48, 50, 52, 53, 55, 56, 68, 69, 71, 72, 74, 75, 78, 82, 83, 84, 85, 86, 87], "The": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "rate": [1, 2, 3, 7, 25, 38, 67, 87], "set": [1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 48, 50, 52, 53, 55, 57, 59, 60, 68, 69, 71, 72, 74, 78, 79, 81, 82, 83, 84, 85, 86, 87], "note": [1, 2, 3, 5, 7, 24, 27, 28, 29, 34, 38, 43, 48, 50, 51, 52, 53, 55, 56, 60, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "you": [1, 2, 3, 4, 5, 7, 11, 13, 23, 24, 26, 27, 28, 29, 34, 41, 42, 43, 45, 48, 50, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "high": [1, 2, 13, 27, 29, 38, 50, 53, 55, 68, 69, 73, 75, 76, 80, 83, 84, 85, 86, 87], "mai": [1, 2, 3, 4, 7, 10, 16, 17, 23, 24, 26, 27, 28, 29, 32, 34, 38, 43, 44, 48, 50, 52, 53, 55, 57, 60, 64, 66, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87], "imposs": [1, 7, 76], "also": [1, 2, 3, 5, 7, 17, 23, 24, 27, 28, 29, 37, 42, 43, 52, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "low": [1, 7, 38, 43, 65, 68, 69, 72, 76, 80, 84], "zero": [1, 3, 4, 13, 24, 28, 31, 38, 39, 68, 75, 79, 80, 81], "forc": [1, 2, 3, 4, 28, 68, 87], "instead": [1, 2, 3, 7, 10, 13, 21, 23, 24, 27, 28, 29, 32, 38, 42, 43, 45, 47, 52, 53, 55, 56, 59, 61, 63, 66, 67, 71, 74, 75, 76, 79, 80, 81, 83, 84, 85, 86, 87], "onli": [1, 2, 3, 4, 7, 13, 18, 19, 23, 24, 27, 28, 29, 31, 32, 37, 38, 42, 43, 52, 53, 55, 57, 59, 63, 64, 65, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 86, 87], "guarante": [1, 3, 4, 12, 16, 24, 26, 28, 30, 32, 41, 66], "produc": [1, 2, 4, 7, 13, 34, 43, 53, 55, 57, 59, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "higher": [1, 4, 7, 23, 29, 31, 32, 34, 43, 44, 55, 69, 72, 74, 80], "opposit": [1, 87], "occur": [1, 3, 7, 23, 37, 50, 68, 69, 74, 75, 81], "small": [1, 3, 7, 23, 27, 34, 38, 44, 72, 73, 75, 79, 81, 86], "numpi": [1, 3, 4, 5, 7, 9, 27, 28, 34, 36, 37, 39, 42, 47, 50, 55, 56, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "max": [1, 29, 52, 53, 75, 81], "tri": [1, 24, 28, 82], "befor": [1, 2, 3, 24, 28, 38, 52, 55, 60, 72, 74, 76, 78, 81, 83, 85, 86], "option": [1, 2, 3, 4, 5, 6, 9, 10, 13, 18, 19, 23, 24, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 74, 75, 76, 83, 84, 85], "left": [1, 2, 29, 31, 36, 38, 45, 48, 51, 68, 69, 79, 80, 81, 84], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 24, 28, 33, 34, 43, 48, 50, 51, 52, 68, 69, 73, 78, 79, 80, 87], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 24, 28, 42, 74, 76, 84], "length": [1, 4, 9, 19, 23, 25, 29, 38, 45, 48, 52, 53, 55, 57, 60, 64, 67, 79, 81, 84, 85, 87], "must": [1, 2, 3, 4, 13, 23, 24, 25, 26, 28, 29, 32, 34, 35, 38, 41, 42, 43, 44, 45, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 71, 78, 82, 84, 87], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 7, 9, 23, 27, 29, 35, 38, 39, 43, 45, 51, 57, 59, 60, 61, 63, 64, 67, 74, 78, 79, 80, 84, 85, 86, 87], "ball": [1, 73], "bin": [1, 3, 45, 68, 69, 81], "ensur": [1, 2, 7, 24, 28, 38, 39, 50, 53, 55, 67, 68, 69, 72, 75, 76, 81, 82, 83, 85, 86], "most": [1, 3, 4, 5, 7, 13, 23, 27, 29, 34, 42, 43, 44, 45, 48, 50, 52, 53, 56, 59, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86], "least": [1, 7, 23, 27, 43, 44, 50, 53, 63, 74, 75, 78, 81, 84], "int_arrai": [1, 38], "can": [2, 3, 4, 5, 6, 10, 11, 13, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 71, 72, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "model": [2, 3, 4, 7, 13, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 37, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82, 84, 87], "For": [2, 3, 4, 5, 6, 7, 8, 13, 17, 22, 23, 24, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "regular": [2, 3, 27, 42], "multi": [2, 3, 7, 23, 24, 27, 28, 29, 33, 34, 35, 38, 39, 44, 45, 46, 47, 52, 53, 65, 74, 76, 77], "task": [2, 4, 23, 27, 32, 34, 35, 36, 38, 43, 45, 53, 55, 65, 67, 72, 73, 74, 76, 79, 81, 84, 86, 87], "cleanlearn": [2, 3, 7, 18, 24, 38, 42, 55, 56, 65, 66, 83, 85, 86], "wrap": [2, 24, 28, 42, 52, 55, 65, 68, 69, 71, 72, 76, 83, 85, 86], "instanc": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42, 52, 55, 60, 67, 68, 69, 71, 72, 75, 76, 85], "sklearn": [2, 3, 4, 7, 23, 28, 34, 38, 42, 52, 55, 56, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86], "classifi": [2, 3, 28, 34, 38, 43, 46, 52, 53, 65, 66, 67, 71, 72, 74, 78, 79, 81, 82, 84, 85, 86, 87], "adher": [2, 28, 55], "estim": [2, 3, 4, 6, 10, 17, 23, 27, 28, 29, 32, 38, 43, 44, 45, 50, 52, 55, 57, 59, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 77, 79, 80, 81, 82, 83, 84, 87], "api": [2, 3, 11, 42, 52, 55, 66, 74, 83], "defin": [2, 3, 4, 5, 7, 11, 17, 23, 24, 25, 27, 28, 29, 53, 55, 57, 68, 69, 71, 78, 81, 87], "four": [2, 7, 73, 76, 87], "clf": [2, 3, 4, 34, 55, 65, 71, 74, 76, 79, 85], "fit": [2, 3, 4, 7, 28, 42, 52, 55, 65, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87], "sample_weight": [2, 28, 55, 76], "predict_proba": [2, 4, 23, 28, 34, 42, 67, 68, 69, 71, 72, 74, 76, 78, 79, 81, 85], "predict": [2, 3, 4, 7, 13, 17, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 81, 83, 84, 86, 87], "score": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 27, 29, 31, 34, 36, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 81, 83, 85, 86], "data": [2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 34, 35, 38, 41, 42, 43, 44, 45, 46, 50, 52, 53, 54, 55, 60, 61, 62, 63, 64, 66, 70, 72, 75, 77, 82, 86], "e": [2, 3, 4, 7, 13, 17, 23, 24, 27, 28, 29, 32, 34, 35, 38, 39, 43, 44, 45, 46, 52, 53, 55, 57, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "featur": [2, 3, 4, 7, 13, 14, 18, 19, 20, 34, 38, 52, 55, 65, 68, 69, 71, 72, 76, 78, 83, 85], "element": [2, 3, 4, 23, 29, 31, 38, 43, 45, 53, 60, 61, 63, 67, 72, 74, 86, 87], "first": [2, 7, 19, 23, 27, 34, 38, 43, 44, 48, 53, 55, 67, 68, 71, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "index": [2, 7, 19, 23, 29, 36, 37, 38, 39, 44, 53, 55, 60, 63, 64, 67, 68, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "should": [2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 47, 48, 50, 52, 53, 55, 56, 60, 61, 63, 64, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "correspond": [2, 3, 4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "differ": [2, 4, 5, 7, 10, 12, 16, 19, 23, 24, 26, 27, 28, 29, 30, 34, 38, 39, 41, 43, 48, 50, 52, 55, 67, 68, 69, 71, 72, 75, 76, 78, 81, 82, 85], "sampl": [2, 3, 4, 7, 13, 15, 29, 31, 34, 45, 48, 53, 55, 56, 65, 66, 73, 74, 76, 77, 79, 80, 83, 84, 86, 87], "size": [2, 7, 24, 27, 28, 29, 34, 45, 50, 51, 55, 57, 59, 71, 74, 75, 76, 78, 79, 82, 84, 86], "here": [2, 4, 5, 7, 13, 27, 29, 32, 42, 43, 44, 45, 47, 48, 51, 52, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "re": [2, 4, 24, 28, 37, 43, 55, 65, 67, 68, 71, 72, 74, 83, 84, 85, 86, 87], "weight": [2, 7, 24, 25, 28, 34, 43, 50, 53, 55, 67, 68, 69, 72, 81, 86], "loss": [2, 25, 42, 53, 55, 75], "while": [2, 3, 7, 24, 27, 28, 33, 34, 38, 48, 51, 55, 65, 74, 75, 76, 78, 83], "train": [2, 3, 4, 7, 13, 24, 25, 28, 34, 38, 42, 43, 48, 52, 55, 56, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 84, 87], "support": [2, 3, 4, 9, 27, 34, 38, 39, 52, 53, 63, 65, 66, 67, 68, 69, 74, 75], "your": [2, 3, 4, 6, 7, 13, 23, 24, 26, 27, 28, 29, 34, 38, 41, 42, 43, 44, 45, 47, 52, 53, 55, 56, 57, 59, 60, 66, 67, 71, 73, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "recommend": [2, 4, 7, 10, 13, 27, 29, 43, 68, 69, 74, 75, 82, 83], "furthermor": 2, "correctli": [2, 3, 7, 23, 24, 28, 29, 32, 39, 44, 45, 50, 55, 57, 72, 74, 79, 80, 83, 84, 86], "clonabl": [2, 55], "via": [2, 4, 7, 10, 13, 17, 23, 25, 27, 28, 34, 38, 43, 48, 52, 53, 55, 56, 59, 63, 67, 68, 69, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "base": [2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 27, 28, 29, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87], "clone": [2, 55, 79], "intern": [2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 47, 55, 61, 66, 68, 74, 76, 78, 79, 81, 87], "multipl": [2, 3, 4, 9, 10, 23, 29, 37, 43, 44, 45, 47, 50, 55, 65, 68, 69, 74, 75, 77, 79, 80, 83], "g": [2, 3, 4, 7, 17, 23, 24, 28, 29, 35, 38, 45, 46, 52, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "manual": [2, 55, 67, 74, 81, 82, 83, 85, 86, 87], "pytorch": [2, 24, 25, 28, 55, 65, 67, 74, 77, 79, 84], "call": [2, 3, 4, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 24, 28, 34, 38, 42, 52, 55, 67, 68, 69, 72, 74, 75, 76, 81, 82, 84, 86, 87], "__init__": [2, 25, 55, 75], "independ": [2, 3, 7, 44, 55, 82, 87], "compat": [2, 24, 27, 28, 42, 55, 56, 59, 63, 65, 74, 82, 83, 85, 86], "neural": [2, 25, 42, 52, 55, 67, 74, 75, 79, 81], "network": [2, 24, 25, 28, 42, 52, 55, 67, 72, 74, 75, 79, 81, 86], "typic": [2, 24, 28, 52, 55, 67, 69, 71, 72, 75, 81, 82, 85, 86], "initi": [2, 3, 10, 24, 28, 43, 55, 72, 74, 85, 86], "insid": [2, 28, 55, 74, 76], "There": [2, 3, 65, 76, 78, 79], "two": [2, 3, 7, 19, 23, 24, 27, 28, 35, 38, 48, 50, 51, 66, 68, 69, 71, 72, 74, 75, 76, 79, 83, 84, 86, 87], "new": [2, 5, 11, 17, 24, 27, 28, 33, 37, 38, 43, 55, 67, 68, 71, 72, 73, 74, 81, 82, 86, 87], "notion": 2, "confid": [2, 3, 7, 17, 23, 27, 29, 32, 34, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 59, 63, 65, 76, 78, 79, 80, 82, 84, 85, 87], "packag": [2, 4, 5, 6, 7, 8, 12, 22, 26, 29, 30, 38, 41, 48, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "prune": [2, 3, 29, 45, 55, 66, 80], "everyth": [2, 76], "els": [2, 68, 73, 74, 75, 78, 79], "mathemat": [2, 3, 7, 32], "keep": [2, 10, 11, 38, 65, 68, 73, 74, 84], "belong": [2, 3, 7, 23, 29, 31, 32, 44, 45, 46, 47, 52, 53, 57, 61, 63, 64, 75, 76, 79, 81, 84, 87], "2": [2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 45, 47, 52, 53, 55, 56, 60, 61, 63, 64, 73, 74, 82], "error": [2, 3, 4, 7, 10, 24, 28, 29, 31, 32, 36, 38, 44, 45, 47, 48, 50, 53, 55, 57, 59, 60, 63, 66, 67, 68, 69, 71, 72, 73, 77, 85], "erron": [2, 3, 23, 29, 32, 38, 44, 45, 53, 55, 56, 57, 81, 83], "import": [2, 3, 4, 5, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 27, 34, 36, 37, 43, 47, 50, 55, 56, 61, 63, 64, 65, 71, 72, 74, 79, 80, 81, 83, 84, 85, 86, 87], "linear_model": [2, 4, 23, 38, 55, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logisticregress": [2, 3, 4, 23, 38, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logreg": 2, "cl": [2, 11, 55, 65, 74, 76, 83, 85, 86], "pass": [2, 3, 4, 7, 9, 10, 11, 13, 18, 21, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 52, 53, 55, 61, 65, 67, 68, 69, 72, 73, 74, 76, 78, 80, 81, 83, 86], "x_train": [2, 68, 69, 76, 78, 79, 83, 85], "labels_maybe_with_error": 2, "had": [2, 3, 55, 80], "issu": [2, 3, 4, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 41, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 70, 77, 78, 82, 83, 86], "pred": [2, 29, 38, 82, 83, 85, 86], "x_test": [2, 68, 69, 76, 79, 83, 85], "might": [2, 43, 55, 60, 68, 69, 74, 75, 85, 86], "case": [2, 3, 10, 23, 34, 43, 55, 67, 68, 69, 71, 73, 75, 76, 81, 83, 85, 86, 87], "standard": [2, 3, 4, 23, 29, 42, 44, 45, 47, 53, 55, 65, 68, 69, 71, 73, 76, 85], "adapt": [2, 24, 26, 38, 41, 55, 81], "skorch": [2, 55, 65, 74], "kera": [2, 41, 55, 65, 74], "scikera": [2, 42, 55, 74], "open": [2, 27, 65, 73, 80, 87], "doesn": [2, 55, 65], "t": [2, 3, 7, 24, 25, 27, 28, 29, 34, 36, 37, 47, 52, 53, 55, 61, 63, 64, 65, 68, 69, 73, 75, 76, 79, 80, 87], "alreadi": [2, 4, 13, 24, 27, 28, 32, 42, 43, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 85, 86], "exist": [2, 4, 7, 9, 24, 27, 28, 37, 42, 48, 50, 52, 55, 65, 66, 68, 69, 72, 78, 79, 86, 87], "made": [2, 4, 13, 55, 72, 75, 78, 80, 82, 83, 85, 86], "easi": [2, 32, 55, 68, 69, 73, 74, 76, 79], "inherit": [2, 5, 25, 55], "baseestim": [2, 28, 55], "yourmodel": [2, 55], "def": [2, 5, 11, 24, 28, 42, 55, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "self": [2, 3, 4, 5, 9, 10, 11, 13, 24, 25, 27, 28, 29, 34, 52, 53, 55, 68, 73, 75, 79, 84, 85, 87], "refer": [2, 7, 24, 28, 44, 45, 47, 48, 50, 55, 59, 60, 68, 69, 71, 72, 74, 75, 76, 82, 83], "origin": [2, 4, 7, 28, 29, 37, 38, 42, 44, 45, 48, 51, 52, 55, 56, 59, 61, 63, 68, 71, 72, 74, 75, 76, 80, 81, 83, 85, 86, 87], "total": [2, 3, 23, 27, 38, 44, 64, 74, 75, 84], "state": [2, 3, 4, 24, 25, 28, 33, 55, 76, 79, 80, 87], "art": [2, 25, 76, 79], "northcutt": [2, 3, 23, 52, 53], "et": [2, 3, 23, 25, 52, 53], "al": [2, 3, 23, 25, 52, 53], "2021": [2, 3, 23, 52, 53], "weak": 2, "supervis": [2, 7, 68, 69, 74, 78], "find": [2, 4, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 26, 27, 28, 29, 33, 37, 38, 41, 48, 52, 53, 55, 57, 61, 63, 66, 68, 77, 82], "uncertainti": [2, 7, 31, 52, 55, 74, 81, 83], "It": [2, 3, 4, 5, 7, 9, 10, 13, 17, 21, 24, 28, 29, 32, 34, 36, 43, 50, 55, 65, 68, 69, 74, 75, 76, 79, 82], "work": [2, 3, 5, 7, 9, 23, 24, 27, 28, 29, 32, 37, 38, 39, 42, 43, 53, 55, 65, 66, 68, 69, 73, 81, 83, 86], "includ": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 37, 38, 41, 43, 44, 47, 48, 52, 53, 55, 59, 60, 61, 63, 65, 66, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 87], "deep": [2, 26, 28, 41, 42, 55, 72], "see": [2, 3, 4, 10, 23, 24, 27, 28, 29, 34, 38, 42, 44, 45, 47, 48, 52, 53, 55, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "subfield": 2, "theori": [2, 76], "machin": [2, 26, 41, 55, 68, 69, 73, 78], "across": [2, 3, 4, 5, 7, 10, 13, 17, 23, 27, 34, 44, 52, 68, 69, 71, 72, 73, 74, 75, 76, 80, 82], "varieti": [2, 85, 86], "like": [2, 3, 4, 5, 7, 11, 13, 23, 24, 27, 28, 29, 32, 38, 42, 43, 44, 47, 48, 50, 53, 55, 56, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "pu": [2, 38], "input": [2, 3, 4, 7, 13, 19, 23, 24, 27, 28, 32, 34, 37, 38, 39, 42, 55, 65, 66, 69, 72, 73, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "discret": [2, 29, 32, 38, 52, 53, 57, 59, 60], "vector": [2, 3, 4, 7, 13, 29, 32, 34, 35, 38, 52, 53, 65, 67, 68, 69, 71, 72, 75, 76, 79, 80, 81, 84, 86, 87], "would": [2, 3, 4, 24, 27, 28, 29, 38, 45, 55, 65, 68, 74, 75, 76, 81, 83, 86, 87], "obtain": [2, 4, 7, 13, 29, 43, 45, 48, 53, 56, 67, 69, 72, 74, 78, 80, 82, 84, 87], "been": [2, 23, 29, 32, 37, 38, 43, 44, 48, 50, 52, 53, 55, 67, 68, 71, 74, 76, 78, 79, 80, 81, 84, 87], "dure": [2, 13, 52, 55, 67, 71, 72, 74, 76, 79, 82, 83, 85, 86, 87], "denot": [2, 3, 32, 34, 38, 45, 52, 53, 63], "tild": 2, "paper": [2, 7, 43, 52, 61, 63, 73, 76, 78, 81, 83, 87], "cv_n_fold": [2, 3, 55, 86], "5": [2, 3, 4, 14, 15, 17, 18, 19, 20, 21, 23, 28, 29, 31, 33, 34, 38, 43, 44, 47, 48, 51, 55, 56, 63, 68, 72, 73, 74, 79, 80, 81, 82, 84, 86, 87], "converge_latent_estim": [2, 3], "pulearn": [2, 38], "find_label_issues_kwarg": [2, 7, 55, 66, 74, 76], "label_quality_scores_kwarg": [2, 7], "low_memori": [2, 45, 61], "clean": [2, 50, 53, 55, 56, 65, 68, 69, 73, 83, 85, 86], "even": [2, 3, 23, 27, 31, 32, 38, 55, 67, 74, 76, 78, 79, 80], "messi": [2, 55, 76], "ridden": [2, 55], "autom": [2, 55, 65, 69, 73, 74], "robust": [2, 32, 55, 69, 74], "prone": [2, 55], "out": [2, 3, 4, 7, 13, 20, 24, 28, 29, 34, 42, 45, 46, 48, 52, 53, 55, 56, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87], "current": [2, 3, 7, 10, 11, 17, 24, 28, 29, 34, 43, 50, 55, 68, 69, 74, 78], "intend": [2, 10, 11, 12, 13, 21, 30, 43, 59, 63, 67, 68, 69, 72, 76], "A": [2, 3, 4, 5, 7, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 28, 29, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 50, 51, 52, 53, 55, 57, 59, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78, 80, 82, 85, 86, 87], "follow": [2, 3, 7, 11, 23, 24, 27, 28, 34, 36, 43, 44, 48, 50, 52, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "experiment": [2, 24, 25, 27, 28, 45, 66, 74], "wrapper": [2, 4, 42, 67, 83, 85, 86], "around": [2, 4, 50, 68, 69, 80, 81, 87], "fasttext": [2, 41], "store": [2, 4, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 52, 55, 71, 72, 73, 84, 85, 86, 87], "along": [2, 34, 45, 63, 68, 69, 74, 75, 81], "dimens": [2, 36, 38, 57, 60, 74, 75, 81, 84], "select": [2, 6, 19, 43, 53, 75, 78, 81], "split": [2, 3, 4, 7, 9, 27, 34, 37, 38, 55, 67, 68, 69, 71, 72, 73, 75, 76, 79, 82, 85, 87], "cross": [2, 3, 7, 23, 29, 32, 33, 34, 45, 48, 53, 55, 56, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "fold": [2, 3, 23, 29, 32, 55, 67, 71, 73, 74, 80, 84, 85], "By": [2, 23, 44, 45, 55, 68, 84], "need": [2, 3, 7, 23, 24, 27, 28, 29, 44, 45, 47, 52, 55, 65, 67, 68, 69, 72, 74, 76, 78, 79, 80, 84, 86], "holdout": [2, 3, 55], "comput": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 43, 44, 45, 47, 50, 52, 53, 55, 56, 57, 59, 65, 66, 68, 69, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86], "them": [2, 3, 4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 43, 52, 55, 66, 68, 69, 71, 72, 74, 75, 78, 79, 81, 83, 84, 85, 86, 87], "numer": [2, 3, 4, 7, 10, 17, 34, 50, 52, 55, 60, 65, 66, 67, 68, 69, 70, 72, 75, 76, 78, 81, 83, 85, 86], "consist": [2, 3, 24, 28, 38, 43, 84, 87], "latent": [2, 3, 32], "thei": [2, 3, 12, 16, 19, 24, 25, 26, 28, 29, 30, 38, 42, 45, 50, 53, 55, 56, 59, 63, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 83, 86, 87], "relat": [2, 3, 10, 14, 15, 19, 20, 32, 38, 44, 55, 69], "close": [2, 3, 7, 27, 32, 52, 67, 68, 69, 71, 72, 74, 75, 76, 80], "form": [2, 3, 7, 24, 25, 28, 32, 37, 38, 53, 55, 74], "equival": [2, 3, 24, 28, 32, 52, 81], "iter": [2, 3, 23, 24, 28, 29, 38, 44, 45, 55, 78, 84], "enforc": [2, 24, 28, 38], "perfectli": [2, 23, 44, 76], "certain": [2, 3, 4, 13, 24, 28, 42, 55, 68, 69, 73, 81], "dict": [2, 3, 4, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 63, 68, 69, 74, 75, 87], "keyword": [2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 31, 34, 37, 42, 43, 45, 52, 53, 55, 61, 63, 68], "filter": [2, 3, 7, 27, 37, 44, 46, 47, 49, 58, 59, 60, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 79, 80, 83, 84, 85, 86, 87], "find_label_issu": [2, 3, 7, 27, 29, 44, 45, 47, 48, 50, 55, 57, 59, 60, 61, 63, 64, 65, 66, 74, 79, 80, 83, 84, 85, 86, 87], "particularli": [2, 65, 78, 81], "filter_bi": [2, 3, 27, 29, 45, 66, 74], "frac_nois": [2, 29, 45, 61, 74], "min_examples_per_class": [2, 29, 45, 74, 76], "impact": [2, 7, 68, 69, 75], "ml": [2, 4, 7, 55, 65, 68, 69, 71, 72, 75, 78, 85, 86], "accuraci": [2, 25, 53, 67, 74, 75, 76, 78, 81, 83, 84, 85, 86], "n_job": [2, 27, 29, 45, 57, 59, 61, 74, 81, 84], "disabl": [2, 24, 28, 29, 81], "process": [2, 3, 5, 13, 27, 29, 37, 43, 45, 57, 59, 61, 67, 68, 78, 82, 86], "caus": [2, 29, 34, 68, 69], "rank": [2, 3, 23, 27, 29, 34, 44, 45, 46, 48, 49, 52, 54, 58, 60, 61, 62, 64, 65, 66, 68, 69, 73, 74, 79, 80, 81, 83, 84, 85, 86, 87], "get_label_quality_scor": [2, 27, 29, 34, 43, 45, 47, 48, 50, 53, 56, 59, 61, 63, 66, 76, 79, 80, 83, 84, 87], "adjust_pred_prob": [2, 7, 47, 52, 53, 76], "control": [2, 4, 6, 7, 13, 27, 29, 36, 43, 52, 55, 61, 63, 68, 69, 73, 74], "how": [2, 3, 4, 7, 10, 11, 13, 17, 23, 24, 25, 27, 28, 32, 38, 43, 44, 47, 48, 50, 52, 53, 55, 59, 63, 65, 68, 69, 71, 72, 73, 75, 80, 81, 82, 83, 84, 85, 86], "much": [2, 7, 23, 27, 29, 55, 74, 76, 78, 81], "output": [2, 3, 4, 7, 13, 24, 25, 28, 32, 38, 42, 43, 44, 48, 50, 52, 55, 59, 60, 63, 64, 65, 66, 67, 68, 72, 73, 74, 75, 80, 81, 82, 83, 86], "print": [2, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 38, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 66, 67, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "suppress": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60, 84, 87], "statement": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60], "big": [2, 27, 45, 55, 76], "limit": [2, 4, 13, 27, 45, 80, 84, 87], "memori": [2, 24, 27, 28, 45, 51, 57, 59, 68, 84], "label_issues_batch": [2, 26, 45, 74], "find_label_issues_batch": [2, 27, 45, 74], "pred_prob": [2, 3, 4, 7, 13, 18, 20, 23, 27, 29, 31, 32, 33, 34, 35, 38, 39, 43, 44, 45, 47, 48, 51, 52, 53, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86], "threshold": [2, 3, 5, 7, 14, 15, 17, 20, 27, 50, 51, 52, 53, 59, 63, 68, 80, 81, 84, 87], "inverse_noise_matrix": [2, 3, 7, 32, 38, 66, 76], "label_issu": [2, 27, 29, 45, 48, 55, 57, 66, 67, 72, 74, 75, 76, 83, 85, 86], "clf_kwarg": [2, 3, 7, 55], "clf_final_kwarg": [2, 55], "validation_func": [2, 3, 7], "correct": [2, 7, 23, 27, 29, 31, 43, 44, 45, 47, 48, 50, 53, 55, 56, 59, 63, 65, 67, 71, 72, 75, 76, 78, 80, 82, 83], "result": [2, 3, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 27, 28, 29, 31, 38, 45, 47, 48, 53, 55, 56, 57, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 85, 86, 87], "identifi": [2, 3, 4, 5, 7, 9, 13, 21, 23, 27, 29, 45, 48, 53, 55, 56, 57, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79, 81, 83, 84, 85, 86, 87], "final": [2, 7, 55, 71, 80, 82, 83, 85], "remain": [2, 55, 66, 75, 83, 85, 86, 87], "datasetlik": [2, 38, 55], "beyond": [2, 4, 5, 6, 8, 22, 65, 84], "pd": [2, 3, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 33, 42, 43, 44, 55, 63, 67, 68, 69, 71, 72, 74, 76, 78, 83, 85, 86, 87], "datafram": [2, 3, 4, 5, 9, 10, 14, 15, 17, 18, 19, 20, 23, 27, 33, 38, 39, 42, 43, 44, 55, 60, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 86, 87], "scipi": [2, 10, 38], "spars": [2, 4, 7, 10, 13, 38, 39, 71], "csr_matrix": [2, 4, 10, 13], "torch": [2, 24, 25, 28, 67, 72, 73, 75, 81, 86], "util": [2, 4, 13, 21, 24, 25, 28, 30, 43, 55, 65, 66, 67, 68, 69, 74, 75, 76, 81], "tensorflow": [2, 38, 42, 65, 67, 74], "object": [2, 4, 9, 10, 13, 21, 24, 25, 27, 28, 34, 38, 39, 42, 45, 48, 49, 50, 51, 52, 55, 63, 65, 67, 69, 71, 75, 76, 77, 83, 86], "list": [2, 3, 4, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 35, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 59, 60, 61, 63, 64, 66, 67, 68, 69, 73, 75, 76, 79, 80, 83, 86, 87], "index_list": 2, "subset": [2, 3, 4, 13, 23, 27, 29, 38, 53, 60, 64, 67, 71, 72, 74, 75, 79, 80, 81, 82, 83, 85, 86, 87], "wa": [2, 3, 9, 11, 27, 38, 43, 44, 50, 52, 64, 67, 68, 69, 71, 72, 74, 76, 79, 80, 82, 84, 85, 86, 87], "abl": [2, 3, 7, 55, 67, 74, 76, 78, 79], "format": [2, 3, 4, 7, 9, 24, 27, 28, 29, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 48, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 71, 73, 75, 78, 83, 84, 85, 87], "make": [2, 3, 24, 27, 28, 34, 42, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "sure": [2, 27, 29, 34, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 85, 86], "shuffl": [2, 7, 38, 67, 75, 79, 81], "ha": [2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 24, 28, 32, 34, 37, 38, 43, 48, 50, 55, 61, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "batch": [2, 27, 38, 42, 43, 57, 59, 74, 75, 81], "order": [2, 7, 23, 24, 28, 29, 32, 33, 34, 36, 38, 43, 44, 45, 48, 52, 53, 57, 60, 61, 63, 64, 66, 67, 68, 69, 72, 73, 74, 75, 76, 80, 83, 84, 86, 87], "destroi": [2, 38], "oper": [2, 24, 27, 28, 38, 42, 53, 65, 72, 81, 85, 86], "eg": [2, 7, 38, 48, 68, 69, 74], "repeat": [2, 38, 43, 78, 81], "appli": [2, 24, 28, 29, 34, 35, 37, 38, 47, 52, 61, 67, 68, 71, 75, 78, 79, 81, 82, 83, 84, 85, 86], "array_lik": [2, 3, 23, 29, 38, 45, 52, 56], "some": [2, 3, 4, 7, 11, 17, 23, 24, 26, 28, 29, 32, 37, 38, 41, 43, 44, 45, 47, 48, 52, 53, 55, 57, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "seri": [2, 3, 27, 38, 39, 55, 63], "row": [2, 3, 4, 10, 13, 23, 27, 29, 31, 32, 36, 38, 43, 44, 45, 47, 52, 53, 55, 60, 61, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 81, 85, 87], "rather": [2, 3, 19, 23, 38, 42, 43, 50, 59, 63, 78, 82, 84, 86, 87], "leav": [2, 29], "per": [2, 3, 10, 23, 27, 29, 34, 37, 43, 44, 45, 47, 50, 53, 56, 57, 59, 63, 69, 74, 80, 87], "determin": [2, 3, 7, 13, 17, 19, 23, 27, 29, 34, 38, 43, 45, 48, 50, 53, 59, 63, 68, 78, 81, 83], "cutoff": [2, 3, 81], "consid": [2, 3, 4, 7, 10, 13, 18, 19, 20, 23, 24, 28, 29, 38, 43, 50, 52, 53, 56, 59, 63, 67, 69, 71, 72, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86], "section": [2, 3, 5, 7, 66, 71, 75], "3": [2, 3, 4, 5, 23, 24, 28, 29, 32, 33, 34, 35, 36, 37, 38, 42, 45, 52, 53, 55, 56, 61, 63, 73, 74, 82], "equat": [2, 3, 32], "advanc": [2, 3, 4, 6, 13, 50, 52, 63, 66, 69, 70, 76], "user": [2, 3, 4, 11, 13, 21, 24, 28, 29, 50, 52, 53, 55, 59, 63, 76], "specifi": [2, 3, 4, 7, 10, 13, 21, 24, 27, 28, 29, 34, 37, 43, 44, 45, 48, 50, 52, 53, 55, 56, 64, 66, 67, 69, 72, 75, 78, 80, 83, 86], "automat": [2, 3, 4, 19, 23, 65, 71, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "greater": [2, 3, 4, 6, 7, 20, 27, 36, 38, 50, 69, 73, 74, 87], "count": [2, 17, 19, 23, 27, 29, 32, 38, 44, 45, 66, 74, 75], "observ": [2, 3, 32, 67, 68, 69, 78, 81, 83], "mislabel": [2, 7, 23, 27, 29, 32, 43, 44, 45, 48, 50, 53, 59, 61, 63, 65, 67, 71, 72, 74, 75, 76, 79, 80, 83, 85, 86], "one": [2, 3, 4, 7, 19, 23, 24, 27, 28, 29, 34, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 78, 81, 82, 83, 85, 86, 87], "get_label_issu": [2, 27, 55, 76, 83, 85, 86], "either": [2, 3, 5, 7, 24, 27, 28, 29, 43, 45, 50, 52, 53, 57, 59, 69, 79, 80], "boolean": [2, 5, 7, 17, 27, 29, 37, 43, 45, 48, 53, 55, 57, 59, 60, 65, 67, 69, 72, 74, 75, 80, 83, 84, 86], "label_issues_mask": [2, 29, 53, 55, 66], "indic": [2, 3, 4, 5, 7, 10, 17, 23, 27, 28, 29, 31, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "its": [2, 4, 6, 7, 13, 24, 27, 28, 29, 36, 37, 45, 48, 52, 53, 55, 57, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86, 87], "return_indices_ranked_bi": [2, 27, 29, 45, 61, 66, 74, 76, 79, 85, 86], "significantli": [2, 75, 76, 78, 82], "reduc": [2, 27, 29, 38, 67, 74], "time": [2, 7, 24, 27, 28, 38, 43, 66, 68, 73, 74, 75, 76, 80, 81, 83, 84, 85, 86, 87], "take": [2, 4, 7, 13, 23, 24, 28, 33, 34, 38, 42, 53, 71, 75, 78, 85, 87], "run": [2, 4, 5, 6, 8, 13, 19, 22, 24, 27, 28, 55, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "skip": [2, 7, 24, 28, 55, 67, 74, 79, 87], "slow": [2, 3], "step": [2, 5, 19, 34, 74, 75, 76, 78, 82], "caution": [2, 4, 74], "previous": [2, 4, 10, 38, 52, 55, 66, 67, 68, 71, 72, 78, 82, 85], "assign": [2, 5, 14, 15, 17, 18, 19, 20, 33, 34, 38, 55, 68, 71, 74, 75, 83, 84, 85, 87], "individu": [2, 10, 19, 24, 28, 43, 47, 50, 53, 55, 61, 63, 66, 69, 71, 74, 78, 79, 80, 85, 87], "still": [2, 27, 28, 38, 52, 74, 75, 81, 85], "extra": [2, 24, 28, 38, 42, 43, 44, 55, 72, 74, 75, 78, 81], "receiv": [2, 7, 24, 28, 44, 47, 48, 55, 57, 61, 69, 80], "overwritten": [2, 55], "callabl": [2, 3, 34, 37, 42, 47], "x_val": 2, "y_val": 2, "map": [2, 3, 27, 28, 33, 37, 38, 51, 53, 55, 60, 67, 68, 69, 74, 75, 76, 79, 87], "appropri": [2, 7, 13, 45, 53, 68, 71, 79, 80], "earli": [2, 75], "stop": [2, 75], "x_valid": 2, "y_valid": 2, "could": [2, 17, 23, 38, 52, 68, 71, 75, 79, 83, 85, 87], "f": [2, 5, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "ignor": [2, 24, 28, 37, 42, 55, 60, 64, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "allow": [2, 23, 24, 27, 28, 31, 38, 43, 51, 52, 55, 57, 59, 67, 74, 75, 82, 84, 86], "access": [2, 7, 10, 24, 28, 55, 69, 75, 79], "hyperparamet": [2, 47, 52, 75], "purpos": [2, 68, 69, 74, 79, 83], "want": [2, 4, 23, 27, 39, 43, 45, 55, 68, 72, 73, 75, 78, 80, 81, 82, 84, 86, 87], "explicitli": [2, 28, 55], "yourself": [2, 4, 27, 69], "altern": [2, 7, 34, 38, 42, 43, 53, 66, 67, 71, 72, 74, 75, 76, 78, 79, 81, 83, 86], "same": [2, 3, 4, 5, 7, 9, 11, 19, 24, 27, 28, 29, 38, 42, 43, 45, 52, 53, 55, 59, 60, 63, 64, 65, 68, 69, 71, 72, 74, 75, 80, 81, 82, 83, 84, 85, 86], "effect": [2, 7, 24, 28, 43, 52, 55, 71, 72, 74, 81], "offer": [2, 4, 67, 68, 69, 72, 74, 76, 79, 86], "after": [2, 3, 4, 10, 14, 15, 17, 18, 19, 20, 24, 28, 38, 43, 55, 68, 72, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86], "attribut": [2, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 52, 55, 68, 85], "label_issues_df": [2, 55, 75], "similar": [2, 7, 23, 24, 28, 36, 38, 43, 47, 48, 50, 52, 55, 59, 63, 68, 69, 71, 72, 74, 75, 76, 80, 81, 84], "document": [2, 3, 4, 7, 11, 23, 24, 27, 28, 29, 34, 37, 42, 44, 45, 47, 50, 52, 55, 59, 60, 61, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "descript": [2, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 38, 48, 55, 68, 69], "were": [2, 3, 4, 23, 28, 44, 50, 63, 67, 71, 72, 74, 76, 78, 80, 82, 84, 85, 86], "present": [2, 3, 4, 7, 9, 10, 15, 23, 38, 52, 60, 65, 71, 74, 75, 81, 85], "actual": [2, 3, 4, 23, 43, 44, 53, 69, 74, 76, 87], "num_class": [2, 23, 27, 38, 42, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 85, 86], "uniqu": [2, 38, 60, 68, 74, 79, 81], "given_label": [2, 4, 23, 32, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86, 87], "normal": [2, 3, 19, 29, 31, 34, 37, 38, 53, 74, 76, 81], "trick": [2, 74], "distribut": [2, 3, 4, 7, 13, 19, 20, 23, 28, 29, 33, 43, 52, 53, 65, 68, 69, 71, 72, 75, 81], "account": [2, 23, 43, 47, 52, 53, 72, 74, 76, 78, 79, 81, 83, 86], "word": [2, 3, 37, 63, 64, 74], "remov": [2, 7, 23, 24, 28, 29, 55, 65, 72, 73, 74, 75, 81, 83, 85, 86], "so": [2, 3, 5, 7, 11, 19, 23, 24, 27, 28, 29, 38, 43, 44, 50, 53, 55, 59, 63, 67, 68, 69, 72, 75, 76, 81, 84], "proportion": [2, 7, 29], "just": [2, 3, 4, 7, 10, 23, 25, 27, 38, 42, 53, 55, 57, 65, 66, 67, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86], "procedur": 2, "get": [2, 3, 4, 10, 24, 25, 28, 29, 34, 37, 38, 43, 45, 47, 52, 53, 55, 56, 57, 65, 67, 72, 73, 74, 75, 76, 81, 82, 83, 85, 86], "detect": [2, 4, 5, 6, 10, 11, 13, 17, 20, 36, 46, 48, 49, 50, 51, 52, 53, 54, 55, 58, 62, 65, 68, 70, 75, 77, 79, 83, 84, 85, 86, 87], "arg": [2, 9, 17, 24, 25, 28, 34, 38, 53, 55], "kwarg": [2, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 42, 55, 57, 59, 61, 74], "test": [2, 7, 19, 28, 34, 42, 55, 65, 68, 69, 71, 72, 75, 82, 83, 85, 86, 87], "expect": [2, 3, 24, 28, 29, 34, 43, 52, 53, 55, 72, 74, 76, 78, 79, 80, 83, 85, 86, 87], "class_predict": 2, "evalu": [2, 7, 24, 25, 27, 28, 55, 67, 68, 69, 74, 75, 76, 78, 82, 83, 84, 85, 86], "simpli": [2, 23, 53, 68, 69, 71, 72, 74, 76, 83, 84, 86, 87], "quantifi": [2, 4, 5, 7, 10, 29, 47, 52, 55, 65, 69, 71, 72, 75, 76, 80], "save_spac": [2, 7, 55], "potenti": [2, 7, 23, 29, 37, 45, 48, 53, 55, 57, 59, 66, 67, 68, 69, 71, 72, 73, 75, 76, 79, 80, 84, 85, 87], "cach": [2, 72, 75, 81, 86], "panda": [2, 4, 5, 9, 14, 15, 17, 18, 19, 20, 23, 38, 39, 42, 43, 44, 66, 67, 68, 69, 71, 72, 73, 76, 78, 83, 84, 85, 86], "unlik": [2, 29, 31, 34, 42, 44, 45, 47, 63, 68, 78, 79, 81, 83], "both": [2, 4, 7, 13, 19, 23, 24, 28, 29, 38, 43, 45, 53, 57, 59, 64, 65, 68, 74, 75, 76, 78, 87], "mask": [2, 27, 29, 37, 38, 45, 48, 53, 55, 57, 59, 60, 65, 73, 74, 78, 80, 84, 87], "prefer": [2, 53, 61], "plan": 2, "subsequ": [2, 3, 24, 28, 72, 74, 75, 76, 80, 86], "invok": [2, 24, 28, 76, 82], "scratch": [2, 55], "To": [2, 4, 5, 6, 7, 8, 10, 13, 19, 22, 24, 27, 28, 29, 42, 43, 45, 47, 51, 52, 53, 55, 56, 57, 59, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "share": [2, 53, 55], "mostli": [2, 38, 50, 55], "longer": [2, 33, 37, 55, 66, 72, 74, 80, 86], "info": [2, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 44, 55, 63, 68, 69, 73, 74, 87], "about": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 21, 23, 25, 27, 31, 43, 44, 47, 55, 60, 63, 67, 68, 71, 72, 73, 74, 75, 76, 78, 81], "docstr": [2, 23, 24, 28, 38, 55, 73, 76], "unless": [2, 24, 28, 55, 74], "our": [2, 3, 7, 42, 43, 53, 55, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "is_label_issu": [2, 55, 67, 68, 69, 71, 72, 75, 76, 83, 86], "entir": [2, 7, 19, 27, 29, 32, 44, 45, 50, 53, 55, 57, 59, 60, 65, 68, 69, 74, 80, 81, 82, 84, 87], "accur": [2, 3, 4, 7, 13, 23, 27, 29, 43, 44, 45, 48, 53, 55, 56, 57, 59, 60, 66, 69, 71, 72, 74, 75, 78, 83], "label_qu": [2, 43, 55, 76, 78, 83, 86], "measur": [2, 23, 43, 44, 55, 65, 73, 74, 76, 78, 79, 84, 85, 87], "qualiti": [2, 3, 4, 5, 7, 10, 23, 27, 29, 31, 34, 43, 44, 45, 47, 48, 50, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 83, 85, 86], "lower": [2, 4, 5, 7, 10, 20, 27, 34, 43, 44, 47, 50, 53, 55, 56, 59, 63, 67, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 86, 87], "eas": 2, "comparison": [2, 24, 28, 76, 78, 83], "against": [2, 24, 28, 68, 71, 74, 78, 79], "predicted_label": [2, 4, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86], "ad": [2, 24, 28, 69, 78, 83], "precis": [2, 45, 48, 74, 76, 84, 87], "definit": [2, 5, 55, 71, 85], "accessor": [2, 55], "describ": [2, 7, 43, 52, 53, 55, 61, 63, 76, 78, 79, 80, 82, 87], "precomput": [2, 32, 55, 73], "clear": [2, 55, 72, 83, 86], "save": [2, 4, 13, 24, 27, 28, 51, 55, 74, 80, 84, 87], "space": [2, 7, 52, 55, 71, 73, 75], "place": [2, 24, 28, 38, 55, 78, 85], "larg": [2, 27, 55, 74, 81, 84, 87], "deploi": [2, 55, 74], "care": [2, 7, 24, 28, 55, 74, 76], "avail": [2, 4, 5, 9, 13, 21, 28, 55, 76, 78, 80, 83], "cannot": [2, 4, 9, 13, 38, 82, 87], "anymor": 2, "classmethod": [2, 14, 15, 17, 18, 19, 20, 28, 34, 55], "__init_subclass__": [2, 28, 55], "set_": [2, 28, 55], "_request": [2, 28, 55], "pep": [2, 28, 55], "487": [2, 28, 55], "look": [2, 4, 5, 13, 24, 28, 38, 55, 60, 68, 69, 71, 74, 76, 78, 79, 80, 81, 84, 85, 87], "inform": [2, 4, 5, 7, 10, 13, 21, 24, 28, 38, 43, 44, 48, 55, 60, 63, 64, 65, 67, 68, 71, 72, 76, 78, 81, 84, 87], "__metadata_request__": [2, 28, 55], "infer": [2, 28, 38, 55, 60, 64, 75, 78, 79, 83, 85, 86], "signatur": [2, 24, 28, 55], "accept": [2, 24, 28, 53, 55, 68, 69], "metadata": [2, 28, 55, 87], "through": [2, 4, 5, 28, 55, 67, 69, 72, 73, 78, 81, 83, 86], "develop": [2, 6, 28, 55, 74, 76, 87], "request": [2, 28, 55, 69, 72, 73, 79, 85, 86, 87], "those": [2, 3, 7, 27, 28, 29, 42, 43, 45, 55, 59, 63, 64, 65, 67, 74, 75, 80, 84], "http": [2, 4, 5, 6, 7, 8, 22, 24, 25, 27, 28, 31, 38, 52, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "www": [2, 28, 55, 81], "org": [2, 24, 25, 28, 38, 52, 55, 74, 76, 87], "dev": [2, 28, 55], "0487": [2, 28, 55], "get_metadata_rout": [2, 28, 55], "rout": [2, 28, 55], "pleas": [2, 24, 28, 42, 55, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "guid": [2, 5, 28, 55, 66, 75], "mechan": [2, 24, 28, 55], "metadatarequest": [2, 28, 55], "encapsul": [2, 13, 28, 50, 55], "get_param": [2, 28, 42, 55], "subobject": [2, 28, 55], "param": [2, 7, 24, 28, 42, 52, 55], "name": [2, 4, 5, 7, 9, 10, 23, 24, 28, 33, 34, 38, 42, 43, 44, 51, 55, 60, 64, 67, 69, 72, 73, 75, 76, 79, 84, 86, 87], "set_fit_request": [2, 28, 55], "union": [2, 3, 4, 9, 27, 28, 34, 38, 39, 45, 51, 55, 59, 63], "str": [2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 32, 34, 37, 38, 42, 43, 44, 48, 50, 51, 53, 55, 60, 64, 67, 68, 78, 79, 87], "unchang": [2, 24, 28, 55, 87], "relev": [2, 13, 19, 28, 55, 75], "enable_metadata_rout": [2, 28, 55], "set_config": [2, 28, 55], "meta": [2, 28, 55], "rais": [2, 4, 9, 10, 24, 28, 31, 34, 55, 74], "alia": [2, 24, 28, 55], "metadata_rout": [2, 28, 55], "retain": [2, 28, 38, 55], "chang": [2, 24, 27, 28, 31, 55, 63, 67, 68, 72, 74, 80, 81, 86, 87], "version": [2, 4, 5, 6, 7, 8, 12, 16, 22, 24, 26, 28, 30, 31, 38, 41, 42, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "sub": [2, 28, 50, 55], "pipelin": [2, 28, 55], "otherwis": [2, 7, 23, 24, 27, 28, 29, 35, 37, 38, 45, 52, 55, 57, 59, 60, 64, 72, 74, 86], "updat": [2, 10, 24, 27, 28, 55, 66, 68, 75], "set_param": [2, 28, 42, 55], "simpl": [2, 24, 28, 29, 43, 53, 55, 68, 69, 71, 72, 75, 78, 81, 83, 85, 86], "well": [2, 3, 7, 24, 28, 31, 32, 43, 45, 53, 55, 60, 63, 64, 66, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81], "nest": [2, 24, 28, 55, 61, 63, 64, 87], "latter": [2, 24, 28, 55, 81], "compon": [2, 28, 55], "__": [2, 28, 55], "set_score_request": [2, 55], "structur": [3, 52, 71, 85], "unobserv": 3, "less": [3, 4, 7, 27, 34, 43, 52, 53, 57, 59, 63, 71, 73, 74, 75, 76, 80, 87], "channel": [3, 67, 76], "character": 3, "flip": 3, "nm": 3, "invers": [3, 7, 23, 32, 38, 44, 69, 73, 86], "inv": 3, "confident_joint": [3, 17, 23, 29, 38, 44, 45, 66, 74, 76], "un": 3, "under": [3, 7, 24, 28, 44, 52, 81], "joint": [3, 23, 29, 32, 38, 44, 45, 73], "num_label_issu": [3, 27, 29, 45, 60, 64, 66], "estimation_method": [3, 27], "off_diagon": 3, "multi_label": [3, 23, 29, 38, 39, 45, 79], "don": [3, 65, 69, 76, 80], "statis": 3, "compute_confident_joint": [3, 23, 29, 38, 45, 76], "off": [3, 29, 38, 50, 75, 76, 80, 81], "j": [3, 4, 13, 23, 24, 28, 29, 45, 48, 51, 52, 61, 63, 64, 68, 69, 76, 84, 87], "confident_learn": [3, 29, 45, 76], "off_diagonal_calibr": 3, "calibr": [3, 29, 38, 43, 78], "cj": [3, 32, 38], "axi": [3, 32, 34, 57, 60, 67, 68, 69, 74, 75, 76, 78, 79, 81, 83, 84], "bincount": [3, 68, 69, 76, 78, 79], "alwai": [3, 7, 24, 28, 38, 67, 76, 83, 85, 86], "estimate_issu": 3, "over": [3, 7, 24, 27, 28, 50, 57, 59, 69, 71, 73, 74, 75, 76, 81, 83, 85], "As": [3, 5, 65, 68, 69, 72, 76, 83, 87], "add": [3, 4, 5, 10, 24, 28, 42, 51, 67, 68, 69, 72, 74, 75, 76, 79, 86], "approach": [3, 23, 27, 29, 71, 76, 79, 81, 83, 85], "custom": [3, 5, 8, 24, 27, 28, 34, 37, 53, 72, 76, 86], "know": [3, 68, 69, 74, 76, 78], "cut": [3, 50, 65, 76], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 81, 87], "underestim": 3, "few": [3, 65, 74, 78, 79, 80, 81, 87], "4": [3, 4, 14, 15, 17, 18, 19, 20, 33, 34, 37, 47, 48, 50, 51, 53, 56, 63, 73, 74, 79, 84, 87], "detail": [3, 11, 23, 24, 28, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 59, 60, 61, 65, 66, 67, 79, 81, 87], "num_issu": [3, 5, 27, 67, 68, 69, 71, 72, 75, 76], "calibrate_confident_joint": 3, "up": [3, 19, 29, 34, 43, 73, 74, 80, 83, 86, 87], "p_": [3, 23, 29], "pair": [3, 7, 23, 29, 76], "v": [3, 7, 27, 44, 45, 47, 53, 68, 69, 79, 81, 82], "rest": [3, 4, 5, 6, 7, 8, 22, 44, 45, 47, 55, 68, 69, 71, 72, 75, 76, 78, 83, 85, 86], "fashion": [3, 57, 85], "2x2": 3, "incorrectli": [3, 23, 44, 45, 48, 71, 87], "calibrated_cj": 3, "c": [3, 7, 37, 45, 53, 65, 67, 68, 69, 71, 72, 74, 76, 79, 81, 82, 83, 85], "whose": [3, 4, 7, 13, 20, 24, 28, 32, 37, 43, 47, 50, 56, 59, 63, 64, 67, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 84, 87], "truli": [3, 81, 84], "estimate_joint": [3, 23, 76], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 45, 76, 80, 82, 84, 87], "return_indices_of_off_diagon": 3, "frequenc": [3, 19, 43, 44, 60, 81], "done": [3, 7, 55, 68, 74, 76, 79, 81, 82], "overfit": [3, 7, 48, 67, 68, 69, 71, 72, 75, 82, 85], "classifict": 3, "singl": [3, 4, 19, 23, 24, 28, 34, 35, 38, 43, 44, 50, 51, 52, 53, 63, 67, 68, 74, 76, 79, 80, 85], "baselin": [3, 24, 29, 81, 83, 86], "proxi": 3, "tupl": [3, 24, 28, 32, 33, 35, 37, 38, 43, 45, 51, 59, 61, 63, 64, 67, 87], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 27, 32, 43, 57, 59, 65, 74, 75, 84, 86], "practic": [3, 69, 75, 76, 81, 83, 85, 86], "complet": [3, 67, 68, 69, 71, 72, 75, 76, 80], "gist": 3, "cj_ish": 3, "guess": [3, 32, 76, 78], "8": [3, 4, 5, 33, 34, 35, 37, 47, 61, 63, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "parallel": [3, 29, 61, 73], "again": [3, 42, 81, 85], "simplifi": [3, 11], "understand": [3, 6, 23, 44, 69, 76, 83, 84, 87], "100": [3, 24, 28, 53, 68, 69, 71, 73, 74, 75, 76, 79, 84, 85, 86, 87], "optim": [3, 24, 25, 28, 42, 75, 78], "speed": [3, 29, 73, 74, 83, 86], "dtype": [3, 18, 19, 24, 28, 37, 38, 47, 63, 67, 80], "enumer": [3, 24, 28, 67, 68, 69, 75, 87], "s_label": 3, "confident_bin": 3, "6": [3, 4, 28, 34, 38, 63, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "num_confident_bin": 3, "argmax": [3, 29, 53, 57, 60, 67, 74, 76, 81, 84], "elif": 3, "estimate_lat": 3, "py_method": [3, 32], "cnt": [3, 32], "1d": [3, 27, 29, 34, 35, 38, 39, 47, 56, 67, 85], "eqn": [3, 32], "margin": [3, 29, 32, 34, 53], "marginal_p": [3, 32], "shorthand": [3, 10], "proport": [3, 7, 23, 44, 76, 82], "poorli": [3, 32, 85], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 76], "variabl": [3, 5, 11, 38, 55, 56, 67, 68, 71, 76, 79, 83], "exact": [3, 32, 68, 69, 71, 75, 85], "within": [3, 4, 12, 24, 25, 28, 30, 45, 50, 59, 61, 63, 68, 69, 75, 80, 84], "percent": 3, "often": [3, 23, 32, 44, 74, 76, 82, 84], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 7, 38, 39, 67, 68, 71, 72, 74, 75, 80, 81, 86], "wai": [3, 4, 42, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 82, 85, 86], "pro": 3, "con": 3, "pred_proba": [3, 82], "combin": [3, 23, 68, 73, 74, 75, 76, 82, 83], "becaus": [3, 32, 38, 50, 74, 76, 78, 80], "littl": [3, 27, 73, 80, 87], "uniform": [3, 53, 73, 74, 76], "20": [3, 5, 64, 67, 69, 73, 75, 76, 84, 87], "Such": [3, 75, 81], "bound": [3, 18, 24, 28, 48, 50, 51, 80], "reason": [3, 17, 24, 28], "comment": [3, 37, 87], "end": [3, 24, 28, 51], "file": [3, 4, 9, 26, 27, 41, 51, 67, 68, 71, 72, 73, 74, 80, 81, 84, 85, 87], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 76], "handl": [3, 4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 66, 68, 69, 76, 84, 85, 87], "five": [3, 48, 51, 76, 80], "estimate_cv_predicted_prob": [3, 76], "estimate_noise_matric": 3, "get_confident_threshold": [3, 27], "amongst": [3, 7], "confident_threshold": [3, 7, 17, 27, 52], "unifi": 4, "audit": [4, 6, 9, 10, 13, 67, 70, 71, 72, 75, 76, 80], "kind": [4, 5, 67, 68, 71, 72, 73, 75, 76], "addit": [4, 5, 6, 7, 8, 10, 21, 22, 24, 28, 34, 39, 43, 61, 67, 68, 72, 75, 76, 78, 81, 82, 85, 86], "depend": [4, 5, 6, 7, 8, 9, 10, 22, 26, 29, 31, 38, 41, 45, 52, 55, 56, 65], "instal": [4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 42, 57, 59], "pip": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "development": [4, 5, 6, 8, 22], "git": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "github": [4, 5, 6, 8, 22, 24, 25, 38, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "com": [4, 5, 6, 8, 22, 24, 25, 27, 31, 38, 52, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "egg": [4, 5, 6, 8, 22, 65, 73], "label_nam": [4, 5, 7, 9, 65, 67, 68, 69, 71, 72, 75, 76], "image_kei": [4, 75], "interfac": [4, 65, 74, 76], "librari": [4, 7, 28, 48, 52, 65, 68, 72, 73, 74, 86], "goal": 4, "track": [4, 10, 11, 65, 68, 73, 74, 76], "intermedi": [4, 6, 69], "statist": [4, 7, 10, 17, 19, 23, 43, 44, 69, 72, 75, 76], "convert": [4, 9, 24, 28, 35, 39, 43, 50, 59, 63, 66, 67, 72, 73, 75, 78, 79, 80, 86], "hug": [4, 9, 75], "face": [4, 9, 13, 73, 75, 79], "kei": [4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 34, 43, 44, 50, 52, 68, 69, 74, 75, 76, 78, 80], "string": [4, 7, 9, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 28, 38, 43, 44, 56, 60, 63, 64, 71, 72, 74, 78, 79, 86, 87], "dictionari": [4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 33, 38, 43, 44, 47, 48, 50, 51, 68, 69, 71, 72, 76, 78, 79, 80], "path": [4, 9, 24, 27, 28, 51, 67, 68, 74, 80], "local": [4, 9, 24, 25, 28, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "text": [4, 5, 7, 9, 14, 15, 17, 18, 19, 20, 34, 52, 61, 63, 64, 65, 68, 69, 70, 73, 74, 76, 77, 78, 81], "txt": [4, 9, 87], "csv": [4, 9, 71, 72, 83, 85, 86], "json": [4, 9], "hub": [4, 9, 81], "imag": [4, 6, 23, 28, 48, 50, 51, 52, 57, 59, 60, 65, 68, 69, 73, 74, 77, 78, 79, 80, 82, 84], "point": [4, 5, 19, 24, 28, 68, 69, 74, 76, 78], "field": [4, 7, 24, 28], "themselv": [4, 83, 85, 86], "cleanvis": [4, 7], "level": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 37, 61, 63, 69, 75, 77, 84], "load_dataset": [4, 9, 75], "glue": 4, "sst2": 4, "properti": [4, 9, 10], "has_label": [4, 9], "class_nam": [4, 9, 23, 44, 51, 60, 64, 65, 73, 76, 80, 84, 87], "empti": [4, 9, 32, 43, 69, 79], "find_issu": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 65, 67, 68, 69, 71, 72, 75, 76], "knn_graph": [4, 7, 13, 14, 19, 20, 71], "issue_typ": [4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 67, 68, 69, 71, 72, 75, 76], "sort": [4, 13, 27, 29, 34, 36, 43, 45, 48, 50, 53, 59, 61, 63, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "common": [4, 10, 13, 69, 70, 73, 74, 76, 79, 80, 84], "real": [4, 13, 65, 68, 69, 74, 76, 78, 79, 83, 84], "world": [4, 13, 65, 68, 69, 74, 76, 78, 83, 84], "interact": [4, 13, 74], "embed": [4, 7, 13, 52, 65, 67, 68, 69, 71, 72, 76, 86], "thereof": [4, 13], "insight": [4, 13, 78], "act": [4, 7, 50, 68], "issuefind": [4, 13, 21], "logic": [4, 11, 27, 29, 57, 59, 84], "best": [4, 13, 33, 43, 53, 68, 69, 71, 74, 78, 79, 81, 83, 85, 86, 87], "2d": [4, 13, 27, 34, 35, 37, 38, 43, 67, 79, 85], "num_exampl": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 44, 67, 68, 69, 71, 72, 75, 76], "represent": [4, 7, 13, 24, 28, 35, 45, 65, 67, 68, 69, 72, 74, 75, 76, 81, 86], "num_featur": [4, 13, 24, 28, 42], "distanc": [4, 7, 13, 19, 20, 36, 50, 52, 71, 81], "nearest": [4, 7, 13, 18, 19, 20, 36, 52, 69, 72, 81], "neighbor": [4, 7, 13, 18, 19, 20, 36, 52, 68, 69, 71, 72, 75, 81], "graph": [4, 7, 10, 13, 19], "squar": [4, 13, 38, 55, 73, 83], "csr": [4, 13], "evenli": [4, 13], "omit": [4, 13, 50, 51, 75, 80], "itself": [4, 13, 24, 28, 80], "duplic": [4, 6, 12, 13, 16, 17, 24, 28, 65, 68, 76], "explicit": [4, 13], "precend": [4, 13], "construct": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42], "neither": [4, 7, 11, 13, 80], "nor": [4, 7, 11, 13], "collect": [4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 43, 78, 87], "unspecifi": [4, 13, 29, 45], "interest": [4, 13, 17, 60, 64, 72, 76, 84, 85, 86, 87], "constructor": [4, 7, 13, 18], "issuemanag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21], "respons": [4, 13, 17, 55, 56, 73, 83, 87], "random_st": [4, 67, 68, 69, 75, 76, 79, 81, 85], "lab": [4, 14, 15, 17, 18, 19, 20, 27, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79], "nearestneighbor": [4, 7, 52, 71, 81], "comprehens": [4, 65, 75], "nbr": 4, "n_neighbor": [4, 7, 52], "metric": [4, 7, 14, 19, 38, 42, 52, 67, 71, 72, 75, 76, 83, 85, 86], "euclidean": [4, 7, 50, 52, 71], "kneighbors_graph": [4, 71], "mode": [4, 24, 27, 28, 71, 81], "4x4": 4, "float64": [4, 19, 24, 28, 63], "compress": [4, 7, 38, 57, 59], "toarrai": 4, "NOT": [4, 27, 72, 86], "23606798": 4, "41421356": 4, "configur": [4, 13, 34], "suppos": [4, 48, 81, 83, 85, 86], "who": [4, 50, 71, 76, 85, 87], "manag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 68], "clean_learning_kwarg": [4, 7, 18], "labelissuemanag": [4, 7, 11, 18], "prune_method": [4, 66], "prune_by_noise_r": [4, 29, 45, 76], "report": [4, 5, 8, 12, 14, 15, 17, 18, 19, 20, 23, 44, 64, 65, 67, 68, 69, 71, 72, 76, 87], "include_descript": [4, 14, 15, 17, 18, 19, 20, 21], "show_summary_scor": [4, 21], "summari": [4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 42, 44, 49, 58, 59, 61, 62, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 80, 84, 87], "show": [4, 19, 24, 28, 33, 38, 51, 60, 64, 69, 71, 72, 73, 74, 75, 76, 78, 81, 83, 84, 85, 87], "top": [4, 23, 27, 29, 38, 45, 48, 51, 53, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 83, 86, 87], "suffer": [4, 7, 10, 17, 45, 53, 64, 87], "onc": [4, 17, 23, 24, 28, 68, 74, 76, 79, 80, 85], "familiar": 4, "usag": [4, 27, 42], "found": [4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 28, 38, 65, 67, 68, 69, 71, 72, 74, 75, 81, 83, 85, 86, 87], "issue_summari": [4, 7, 10, 68], "overal": [4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 34, 43, 44, 47, 50, 55, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 80, 87], "sever": [4, 5, 7, 9, 10, 17, 24, 27, 28, 29, 47, 50, 52, 53, 59, 63, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 85, 86, 87], "dataissu": [4, 10, 13, 21], "outlier": [4, 6, 11, 12, 16, 17, 30, 53, 65, 68, 69, 76, 77], "someth": [4, 5, 24, 28, 53], "123": [4, 68, 69], "456": [4, 67, 86], "nearest_neighbor": 4, "7": [4, 34, 35, 42, 61, 63, 67, 68, 69, 71, 72, 73, 74, 78, 79, 80, 81, 83, 84, 85, 86, 87], "9": [4, 14, 15, 17, 18, 19, 20, 34, 35, 47, 61, 63, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "distance_to_nearest_neighbor": [4, 68, 69, 71, 72, 75, 76], "789": 4, "get_issu": [4, 7, 10, 67, 69, 71, 72, 75], "issue_nam": [4, 5, 7, 10, 11, 14, 15, 17, 18, 19, 20, 68, 69], "focu": [4, 10, 72, 84, 87], "full": [4, 7, 10, 27, 51, 75, 87], "summar": [4, 10, 14, 15, 17, 18, 19, 20, 23, 44, 60, 64, 65, 84], "valueerror": [4, 9, 10, 31, 34, 74], "specific_issu": [4, 10], "exhibit": [4, 7, 10, 60, 69, 72, 75, 76, 80], "lie": [4, 7, 36, 52, 53, 67, 68, 69, 71, 72, 75, 76, 86], "directli": [4, 11, 13, 21, 27, 42, 43, 69, 72, 79, 80, 83, 86], "compar": [4, 43, 52, 63, 68, 69, 71, 76], "get_issue_summari": [4, 10, 69], "get_info": [4, 10, 69], "yet": [4, 10, 73, 78], "static": [4, 13], "list_possible_issue_typ": [4, 13], "regist": [4, 5, 11, 13, 24, 28, 68], "registri": [4, 11, 13], "list_default_issue_typ": [4, 13], "folder": [4, 67, 68, 75], "load": [4, 9, 27, 51, 73, 74, 75, 76, 80, 81, 84, 87], "futur": [4, 7, 17, 24, 28, 43, 65, 68], "overwrit": [4, 68], "separ": [4, 23, 34, 47, 68, 69, 74, 75, 80, 82], "rememb": [4, 74, 76], "part": [4, 7, 24, 28, 29, 48, 50, 67, 68, 73, 84, 87], "ident": [4, 7, 17, 38, 72, 86], "walk": 5, "alongsid": [5, 24, 28, 68, 74], "pre": [5, 7, 24, 28, 68, 69], "runtim": [5, 24, 27, 28, 55, 57, 59, 67, 74, 75], "issue_manager_factori": [5, 11, 68], "myissuemanag": [5, 11], "decor": [5, 11], "start": [5, 24, 25, 28, 65, 71, 79, 87], "ll": [5, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "thing": [5, 28, 76, 83, 86], "next": [5, 43, 65, 67, 71, 72, 78, 80, 83, 85, 86, 87], "dummi": 5, "randint": [5, 34, 68, 69], "mark": [5, 66, 80, 81, 83], "regard": [5, 69, 76], "rand": [5, 34, 68, 69], "is_": [5, 7, 68], "_issu": [5, 7, 68], "issue_score_kei": [5, 14, 15, 17, 18, 19, 20, 68], "whole": [5, 19, 24, 28, 69], "make_summari": [5, 14, 15, 17, 18, 19, 20, 68], "popul": 5, "verbosity_level": [5, 14, 15, 17, 18, 19, 20], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 27, 60, 64, 74, 79], "intermediate_arg": 5, "min": [5, 34, 50, 63, 68, 74, 81], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 7, 8, 10, 12, 14, 15, 18, 19, 20, 68], "instanti": [5, 13, 27, 42, 52, 67, 69, 71, 86], "477762": 5, "286455": 5, "term": [5, 7, 32, 38, 67, 68, 69, 71, 72, 75, 76], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 14, 20, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "003042": 5, "058117": 5, "11": [5, 42, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "121908": 5, "15": [5, 36, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "169312": 5, "17": [5, 67, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 68, 73, 76], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "search": [6, 7, 15, 19, 37, 55, 74, 82], "nondefault": 6, "Near": 6, "iid": [6, 19, 69, 72, 75, 76], "imbal": [6, 12, 16, 47, 52, 53], "togeth": [6, 7, 32, 68, 69, 71, 72, 75, 76, 83, 86, 87], "built": [6, 34], "own": [6, 24, 26, 28, 41, 47, 48, 57, 61, 67, 69, 71, 72, 75, 78, 79, 83, 84, 85, 86, 87], "prerequisit": 6, "basic": [6, 28, 42, 81], "page": [7, 69, 74, 76], "variou": [7, 10, 26, 39, 41, 65, 68, 69, 71, 72, 73, 76, 78, 80, 85], "sai": [7, 24, 28, 79, 84], "why": [7, 72], "matter": [7, 23, 44], "three": [7, 23, 43, 44, 55, 60, 67, 68, 69, 71, 73, 76, 78, 82, 83, 84, 85, 87], "_score": 7, "flag": [7, 17, 19, 29, 34, 44, 45, 48, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86], "badli": [7, 50, 87], "code": [7, 24, 28, 32, 38, 42, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "issue_scor": 7, "outlier_scor": [7, 20, 68, 69, 71, 72, 75, 76, 81], "atyp": [7, 52, 68, 69, 71, 72, 75, 76, 81], "datapoint": [7, 29, 34, 38, 53, 56, 65, 67, 68, 69, 71, 72, 74, 82, 83, 85, 86], "is_issu": [7, 17], "is_outlier_issu": [7, 68, 69, 71, 72, 75, 76], "annot": [7, 23, 33, 43, 44, 45, 47, 48, 50, 51, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 77, 80, 84], "transform": [7, 34, 36, 38, 52, 53, 69, 72, 75, 81, 85, 86, 87], "dissimilar": [7, 71, 72], "preced": 7, "cosin": [7, 52, 81], "incorrect": [7, 50, 53, 56, 67, 68, 69, 71, 72, 75, 76, 80, 83, 85], "due": [7, 27, 29, 53, 57, 59, 67, 68, 69, 71, 72, 75, 76], "appear": [7, 23, 33, 44, 45, 48, 56, 69, 71, 72, 75, 83, 84], "likelihood": [7, 27, 29, 45, 50, 52, 53, 57, 61], "now": [7, 27, 66, 67, 69, 78, 80, 81, 83, 85, 86, 87], "u": [7, 67, 68, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 86, 87], "token": [7, 37, 59, 60, 61, 62, 63, 64, 74, 76, 77], "etc": [7, 17, 24, 28, 32, 42, 43, 61, 65, 68, 69, 72, 74, 75, 76], "calcul": [7, 19, 27, 34, 43, 47, 48, 50, 52, 55, 59, 73, 75], "hamper": [7, 73, 75], "analyt": [7, 65, 78], "lead": [7, 50, 53, 75, 80], "draw": [7, 68, 69], "conclus": 7, "try": [7, 27, 29, 42, 43, 57, 59, 65, 69, 74, 76, 84], "veri": [7, 23, 44, 48, 50, 68, 69, 71, 72, 75, 76, 78, 81, 83, 86], "rare": [7, 29, 68, 69, 71, 72, 74, 75, 76], "anomal": [7, 53, 68, 69, 71, 72, 75, 76], "articl": [7, 27, 74], "ai": [7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 81, 83, 85, 86, 87], "blog": 7, "unexpect": [7, 24, 28], "consequ": 7, "inspect": [7, 67, 69, 75, 76, 80, 83, 86], "neg": [7, 50, 68, 69, 73], "affect": [7, 24, 28, 57, 63, 72, 74], "extrem": [7, 68, 69, 71, 72, 74, 75, 76], "rel": [7, 23, 43, 44, 52, 68, 69, 71, 72, 75, 76, 81], "record": [7, 24, 28, 67, 71, 83], "abbrevi": 7, "misspel": 7, "typo": [7, 64], "resolut": 7, "video": [7, 73], "audio": [7, 68, 69, 74, 77], "minor": [7, 37], "variat": 7, "translat": 7, "d": [7, 36, 71, 72, 76, 79, 85, 87], "constant": [7, 55], "median": 7, "question": [7, 17, 65, 76], "nearli": [7, 17, 69, 71, 72, 75], "awar": [7, 66, 76], "presenc": [7, 76], "signific": [7, 69, 72, 75, 76], "violat": [7, 69, 72, 75, 76], "assumpt": [7, 69, 72, 75, 76], "changepoint": [7, 69, 72, 75, 76], "shift": [7, 69, 72, 75, 76], "drift": [7, 69, 72, 75, 76], "autocorrel": [7, 69, 72, 75, 76], "almost": [7, 69, 72, 75, 76], "adjac": [7, 69, 72, 75, 76], "tend": [7, 23, 32, 69, 72, 75, 76, 84, 87], "sequenti": [7, 24, 28, 42, 75], "gap": 7, "group": [7, 19, 73, 80, 87], "b": [7, 14, 15, 17, 18, 19, 20, 23, 37, 38, 63, 71, 72, 73, 76, 82, 85, 87], "x1": [7, 48, 51, 80], "x2": [7, 48, 51, 80], "10th": 7, "100th": 7, "90": [7, 63, 71, 76, 82, 85], "similarli": [7, 24, 28, 68, 71, 74, 75, 80], "math": [7, 75], "behind": [7, 52, 76], "fundament": 7, "proper": [7, 38, 43, 48, 72, 75, 78, 80, 85], "closer": [7, 50, 80], "scenario": [7, 53, 68, 69], "underli": [7, 52, 61, 63, 87], "stem": [7, 52, 81], "evolv": 7, "influenc": 7, "accordingli": 7, "emploi": [7, 79, 81], "partit": [7, 82], "ahead": 7, "good": [7, 24, 28, 42, 44, 50, 53, 57, 59, 60, 65, 75], "fix": [7, 43, 72, 76, 83, 86], "problem": [7, 27, 34, 60, 65, 68, 69, 72, 74, 75], "deploy": [7, 76, 83, 85, 86], "overlook": [7, 50, 80], "fact": 7, "thu": [7, 23, 28, 44, 67, 71, 72, 76, 82, 85, 87], "diagnos": [7, 69, 74], "rarest": 7, "q": [7, 80], "fall": [7, 50, 59, 63, 76, 81], "subpar": 7, "special": [7, 37], "techniqu": 7, "smote": 7, "asymmetr": [7, 23], "properli": [7, 27, 33, 38, 39, 57, 74, 79, 81, 83, 84], "too": [7, 29, 34, 52, 74, 75, 80], "dark": [7, 84], "bright": [7, 87], "blurri": [7, 75], "abnorm": [7, 75], "exert": 7, "possible_issue_typ": 7, "label_kwarg": 7, "outlier_kwarg": 7, "near_dupl": [7, 11, 14, 68, 69, 71, 72, 75, 76], "near_duplicate_kwarg": 7, "non_iid": [7, 11, 19, 69, 71, 72, 75, 76], "non_iid_kwarg": 7, "health_summary_paramet": [7, 18], "health_summari": [7, 18, 23, 65, 73], "health_summary_kwarg": 7, "tandem": [7, 73], "view": [7, 24, 28, 29, 59, 61, 63, 65, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "sensit": 7, "ood_kwarg": 7, "outofdistribut": [7, 20, 52, 81], "outsid": 7, "knn": [7, 10, 19, 52, 71, 81], "outlierissuemanag": [7, 11, 20, 68], "nearduplicateissuemanag": [7, 11, 14], "noniidissuemanag": [7, 11, 19, 71], "num_permut": [7, 19], "permut": [7, 19], "significance_threshold": [7, 19], "signic": 7, "noniid": [7, 12, 16], "class_imbalance_kwarg": 7, "classimbalanceissuemanag": [7, 15], "data_issu": [8, 12, 13, 21, 68], "issue_find": [8, 12], "factori": [8, 12, 13], "datalab": [9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 65, 67, 75, 78, 85, 86], "except": [9, 42, 53, 68, 69, 75, 78], "dataformaterror": 9, "with_traceback": 9, "tb": 9, "__traceback__": 9, "datasetdicterror": 9, "datasetdict": 9, "usual": [9, 21, 75, 78, 83], "datasetloaderror": 9, "dataset_typ": 9, "fail": [9, 71], "hold": 9, "is_avail": [9, 75], "serv": [10, 13, 78], "central": [10, 87], "repositori": 10, "being": [10, 23, 24, 28, 29, 34, 37, 38, 53, 71, 76, 83, 84, 85], "basi": 10, "collect_statist": 10, "reus": [10, 17, 75], "avoid": [10, 24, 27, 28, 29, 36, 38, 45, 48, 55, 57, 59, 68, 69, 74], "recomput": [10, 86], "weighted_knn_graph": 10, "issue_manager_that_computes_knn_graph": 10, "collect_issues_from_issue_manag": 10, "set_health_scor": 10, "health": [10, 18, 23, 44, 65], "get_data_statist": 10, "concret": 11, "subclass": [11, 24, 28, 52, 68], "my_issu": 11, "stabl": [12, 16, 26, 30, 38, 41, 52, 66], "instati": 13, "public": [13, 76, 80, 84, 87], "creation": [13, 28], "execut": [13, 24, 28, 68, 74, 80], "coordin": [13, 48, 50, 51, 80, 87], "behavior": [13, 23, 24, 28], "At": [13, 74], "associ": [13, 24, 28, 78], "get_available_issue_typ": 13, "10": [14, 18, 19, 24, 25, 52, 53, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "_": [14, 17, 18, 19, 34, 37, 38, 67, 68, 73, 75, 76, 79, 85], "classvar": [14, 15, 17, 18, 19, 20], "short": [14, 15, 17, 18, 19, 20, 37, 38], "item": [14, 15, 17, 18, 19, 20, 38, 68, 69, 75, 76, 78, 79], "some_info_kei": [14, 15, 17, 18, 19, 20], "additional_info_kei": [14, 15, 17, 18, 19, 20], "near_duplicate_set": [14, 68, 69, 71, 72, 75, 76], "occurr": [14, 15, 17, 19, 20, 37], "collect_info": [14, 15, 17, 18, 19, 20], "near_duplicate_scor": [14, 68, 69, 71, 72, 75, 76], "info_to_omit": [14, 15, 17, 18, 19, 20], "compos": [14, 15, 17, 18, 19, 20, 24, 28, 72, 81, 86], "is_x_issu": [14, 15, 17, 18, 19, 20], "x_score": [14, 15, 17, 18, 19, 20], "val_a": [14, 15, 17, 18, 19, 20], "val_b1": [14, 15, 17, 18, 19, 20], "val_b2": [14, 15, 17, 18, 19, 20], "report_str": [14, 15, 17, 18, 19, 20, 21], "class_imbal": 15, "class_imbalance_scor": 15, "bleed": [16, 26], "edg": [16, 26, 50, 65, 76, 87], "sharp": [16, 26], "abc": 17, "believ": [17, 84], "priori": [17, 76], "global": 17, "anoth": [17, 23, 27, 37, 50, 53, 71, 72, 74, 76, 78, 81, 86], "abstract": 17, "applic": [18, 43, 76, 78, 79, 87], "typevar": [18, 24, 28, 50, 51], "_scalartype_co": 18, "covari": [18, 55, 83], "get_health_summari": 18, "summary_dict": 18, "label_scor": [18, 67, 68, 69, 71, 72, 75, 76], "simplified_kolmogorov_smirnov_test": 19, "neighbor_histogram": 19, "non_neighbor_histogram": 19, "kolmogorov": 19, "smirnov": 19, "largest": [19, 27, 34, 53, 57, 59, 84], "empir": [19, 33, 43], "cumul": 19, "ecdf": 19, "histogram": [19, 71, 83], "absolut": 19, "25": [19, 24, 34, 36, 73, 75, 76, 78, 79, 80, 87], "dimension": [19, 38, 67, 76, 81], "trial": 19, "non_iid_scor": [19, 69, 72, 75, 76], "default_threshold": 20, "37037": 20, "q3_avg_dist": 20, "iqr_avg_dist": 20, "median_outlier_scor": 20, "ood": [20, 52, 53, 68, 69, 72, 75, 76, 81], "exclud": [21, 60, 64, 68, 87], "get_report": 21, "overview": [23, 67, 69, 71, 72, 75, 78, 80, 81, 83, 85, 86, 87], "modifi": [23, 24, 27, 28, 38, 74, 76], "help": [23, 24, 28, 65, 66, 67, 68, 71, 72, 73, 74, 78, 79, 83, 84, 85, 86, 87], "rank_classes_by_label_qu": [23, 69], "merg": [23, 37, 65, 73, 74, 87], "find_overlapping_class": [23, 74, 76], "ascend": [23, 36, 44, 75, 76], "problemat": [23, 44, 60, 64, 67, 80, 87], "unnorm": [23, 44, 76], "abov": [23, 24, 27, 28, 38, 43, 50, 53, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "model_select": [23, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 83, 85, 86], "cross_val_predict": [23, 28, 67, 68, 69, 71, 72, 76, 78, 82, 83, 85, 86], "get_data_labels_from_dataset": 23, "yourfavoritemodel": [23, 76], "cv": [23, 34, 67, 68, 69, 71, 76, 78, 85], "df": [23, 38, 64, 67], "overall_label_qu": [23, 44], "col": 23, "prob": [23, 37, 76, 82], "divid": [23, 44, 53], "label_nois": [23, 44], "human": [23, 73, 84, 87], "clearli": [23, 53, 75, 80, 84], "num": [23, 44, 73, 76], "overlap": [23, 65, 73, 74, 76], "ontolog": 23, "publish": [23, 87], "therefor": [23, 53], "vehicl": [23, 73], "truck": [23, 73, 81, 84], "intuit": [23, 44], "car": [23, 73, 80, 84], "frequent": [23, 43, 71, 74, 83, 85], "confus": [23, 24, 28, 29, 38, 86, 87], "characterist": 23, "l": [23, 24, 28, 48, 50, 51], "class1": 23, "class2": 23, "relationship": 23, "arbitrari": [23, 59, 63, 68, 81, 83], "match": [23, 24, 28, 29, 43, 44, 53, 68, 69, 73, 75, 80, 82, 84], "dog": [23, 38, 44, 46, 60, 73, 74, 81, 82, 87], "cat": [23, 38, 44, 46, 73, 74, 81, 82], "captur": [23, 67, 80, 81, 84], "co": [23, 24, 25], "noisy_label": [23, 68, 69, 79], "overlapping_class": 23, "descend": [23, 24, 28, 34, 44], "overall_label_health_scor": [23, 44, 76], "suggest": [23, 43, 44, 50, 72, 74, 75, 83, 86], "half": [23, 24, 28, 44, 73, 87], "health_scor": [23, 44], "classes_by_label_qu": [23, 69], "cnn": [24, 28, 75], "cifar": [24, 25, 73, 81], "teach": [24, 25], "bhanml": 24, "blob": 24, "master": [24, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "call_bn": 24, "bn": 24, "input_channel": 24, "n_output": 24, "dropout_r": 24, "top_bn": 24, "architectur": [24, 28, 72, 86], "shown": [24, 51, 68, 74, 78, 81, 82, 84, 87], "forward": [24, 25, 28, 75, 78], "overridden": [24, 28], "although": [24, 28, 52, 71, 85], "recip": [24, 28], "afterward": [24, 28], "sinc": [24, 28, 31, 39, 44, 59, 63, 74, 78, 79, 80, 82, 87], "former": [24, 28], "hook": [24, 28, 73], "silent": [24, 27, 28], "t_destin": [24, 28], "__call__": [24, 28, 34], "add_modul": [24, 28], "child": [24, 28], "fn": [24, 28], "recurs": [24, 28, 34], "submodul": [24, 28], "children": [24, 28, 87], "nn": [24, 25, 28, 75], "init": [24, 28, 76], "doc": [24, 28, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "no_grad": [24, 28, 75, 81], "init_weight": [24, 28], "linear": [24, 28, 72, 75, 86], "fill_": [24, 28], "net": [24, 28, 67, 73, 75], "in_featur": [24, 28], "out_featur": [24, 28], "bia": [24, 28, 72, 75, 86], "tensor": [24, 25, 28, 67, 75, 81], "requires_grad": [24, 28], "bfloat16": [24, 28], "cast": [24, 28, 67], "buffer": [24, 28], "datatyp": [24, 28], "direct": [24, 28], "member": [24, 28, 68], "xdoctest": [24, 28], "undefin": [24, 28], "var": [24, 28], "buf": [24, 28], "20l": [24, 28], "1l": [24, 28], "5l": [24, 28], "immedi": [24, 28, 81], "cpu": [24, 28, 29, 67, 75], "move": [24, 28, 34, 66, 73], "cuda": [24, 28, 67, 75], "devic": [24, 28, 67, 75], "gpu": [24, 28, 67, 72, 86], "live": [24, 28], "copi": [24, 28, 55, 67, 68, 69, 71, 74, 79, 82, 83, 85], "doubl": [24, 28], "dump_patch": [24, 28], "eval": [24, 28, 75, 79, 81], "dropout": [24, 28], "batchnorm": [24, 28], "grad": [24, 28], "extra_repr": [24, 28], "line": [24, 28, 65, 68, 73, 78, 81, 87], "get_buff": [24, 28], "target": [24, 25, 28, 55, 56, 81, 83], "throw": [24, 28], "get_submodul": [24, 28], "explan": [24, 28], "fulli": [24, 28, 42, 74], "qualifi": [24, 28], "referenc": [24, 28], "attributeerror": [24, 28], "invalid": [24, 28], "resolv": [24, 28, 87], "get_extra_st": [24, 28], "state_dict": [24, 28], "set_extra_st": [24, 28], "build": [24, 28, 75, 84], "pickleabl": [24, 28], "serial": [24, 28], "backward": [24, 28, 75], "break": [24, 28, 75], "pickl": [24, 28, 80], "get_paramet": [24, 28], "let": [24, 28, 52, 53, 67, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "net_b": [24, 28], "net_c": [24, 28], "conv": [24, 28], "conv2d": [24, 28, 75], "16": [24, 28, 34, 59, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 86, 87], "33": [24, 28, 73, 80], "kernel_s": [24, 28], "stride": [24, 28], "200": [24, 28, 53, 73, 80, 87], "diagram": [24, 28, 82], "degre": [24, 28, 83], "queri": [24, 28, 69, 75], "named_modul": [24, 28], "o": [24, 28, 36, 37, 67, 68, 69, 73, 74, 76, 79, 80, 87], "transit": [24, 28], "ipu": [24, 28], "load_state_dict": [24, 28], "strict": [24, 28, 34], "persist": [24, 28], "strictli": [24, 28], "namedtupl": [24, 28], "missing_kei": [24, 28], "unexpected_kei": [24, 28], "miss": [24, 28, 38, 48, 50, 71, 74, 80, 83, 85], "runtimeerror": [24, 28], "idx": [24, 28, 38, 39, 68, 74, 75, 76, 78, 80, 81], "named_buff": [24, 28], "prefix": [24, 28, 67, 87], "prepend": [24, 28], "running_var": [24, 28], "named_children": [24, 28], "conv4": [24, 28], "conv5": [24, 28], "memo": [24, 28], "remove_dupl": [24, 28], "named_paramet": [24, 28], "register_backward_hook": [24, 28], "deprec": [24, 28, 31], "favor": [24, 28], "register_full_backward_hook": [24, 28], "removablehandl": [24, 28], "register_buff": [24, 28], "running_mean": [24, 28], "register_forward_hook": [24, 28], "posit": [24, 28, 38, 73, 81], "won": [24, 28, 68, 69, 74, 79], "inplac": [24, 28, 78], "register_forward_pre_hook": [24, 28], "gradient": [24, 28, 71, 75, 83], "respect": [24, 28, 76], "grad_input": [24, 28], "grad_output": [24, 28], "technic": [24, 28], "caller": [24, 28], "register_load_state_dict_post_hook": [24, 28], "post": [24, 28], "incompatible_kei": [24, 28], "modif": [24, 28], "thrown": [24, 28], "clearn": [24, 28], "register_modul": [24, 28], "register_paramet": [24, 28], "requires_grad_": [24, 28], "autograd": [24, 28], "freez": [24, 28, 67, 72, 86], "finetun": [24, 28], "gan": [24, 28], "share_memori": [24, 28], "share_memory_": [24, 28], "destin": [24, 28], "keep_var": [24, 28], "shallow": [24, 28], "howev": [24, 28, 38, 67, 71, 72, 75, 78, 82, 84, 85, 86], "releas": [24, 28, 66, 74, 81], "design": [24, 28], "ordereddict": [24, 28], "detach": [24, 28, 75], "non_block": [24, 28], "memory_format": [24, 28], "channels_last": [24, 28], "Its": [24, 28, 34, 44, 50], "complex": [24, 28], "integr": [24, 28, 65], "asynchron": [24, 28], "host": [24, 28], "pin": [24, 28, 72, 73, 86], "desir": [24, 28, 37, 51], "4d": [24, 28], "ignore_w": [24, 28], "determinist": [24, 28, 67], "1913": [24, 28], "3420": [24, 28], "5113": [24, 28], "2325": [24, 28], "env": [24, 28], "torch_doctest_cuda1": [24, 28], "gpu1": [24, 28], "1914": [24, 28], "5112": [24, 28], "2324": [24, 28], "float16": [24, 28], "cdoubl": [24, 28], "3741": [24, 28], "2382": [24, 28], "5593": [24, 28], "4443": [24, 28], "complex128": [24, 28], "6122": [24, 28], "1150": [24, 28], "to_empti": [24, 28], "storag": [24, 28], "dst_type": [24, 28], "xpu": [24, 28], "zero_grad": [24, 28, 75], "set_to_non": [24, 28], "context": [24, 28, 80], "noisili": [25, 76], "han": 25, "2018": 25, "cifar_cnn": [25, 26], "loss_coteach": 25, "y_1": 25, "y_2": 25, "forget_r": 25, "class_weight": 25, "logit": [25, 42, 75], "decim": [25, 38], "quickli": [25, 67, 71, 72, 74, 75, 79, 81, 84, 85, 87], "forget": [25, 34, 87], "rate_schedul": 25, "epoch": [25, 28, 74, 75], "initialize_lr_schedul": 25, "lr": [25, 28], "001": [25, 53, 74], "250": [25, 68, 69, 76, 80], "epoch_decay_start": 25, "80": [25, 71, 73, 79, 83, 85], "schedul": 25, "adjust": [25, 29, 47, 52, 53, 65, 76], "beta": 25, "adam": 25, "adjust_learning_r": 25, "alpha_plan": 25, "beta1_plan": 25, "forget_rate_schedul": 25, "num_gradu": 25, "expon": 25, "tell": [25, 72, 75, 76, 86], "train_load": [25, 28], "model1": [25, 76], "optimizer1": 25, "model2": [25, 76], "optimizer2": 25, "dataload": [25, 75, 81], "parser": 25, "parse_arg": 25, "num_iter_per_epoch": 25, "print_freq": 25, "topk": 25, "top1": 25, "top5": 25, "test_load": 25, "offici": [26, 41, 87], "wish": [26, 41, 81, 84, 87], "mnist_pytorch": 26, "coteach": [26, 66], "mini": [27, 57, 59, 74], "With": [27, 72, 76, 78, 83, 84, 86, 87], "approxim": [27, 52, 78], "low_self_confid": [27, 29, 45], "self_confid": [27, 29, 34, 45, 47, 53, 61, 63, 74, 76, 79, 85, 86], "conveni": [27, 67, 72, 86], "script": 27, "labelinspector": [27, 74], "adj_confident_thresholds_shar": 27, "labels_shar": 27, "pred_probs_shar": 27, "labels_fil": [27, 74], "pred_probs_fil": [27, 74], "batch_siz": [27, 28, 57, 59, 74, 75, 81, 84], "quality_score_kwarg": 27, "num_issue_kwarg": 27, "return_mask": 27, "variant": [27, 43, 84], "read": [27, 31, 69, 74, 76, 81, 87], "zarr": [27, 74], "memmap": [27, 84], "pythonspe": 27, "mmap": [27, 74], "hdf5": 27, "further": [27, 44, 45, 47, 50, 59, 60, 67, 74], "yourfil": 27, "r": [27, 55, 68, 69, 83, 84], "npy": [27, 73, 74, 84], "mmap_mod": [27, 84], "tip": [27, 29, 42, 74], "save_arrai": 27, "your_arrai": 27, "disk": [27, 73, 74], "npz": [27, 87], "maxim": [27, 43, 57, 59, 84], "multiprocess": [27, 29, 45, 57, 59, 74, 75, 84], "linux": [27, 57, 59], "physic": [27, 29, 57, 59, 80, 84], "psutil": [27, 29, 57, 59, 84], "demonstr": [27, 68, 72, 74, 75, 76, 78, 79, 80, 83, 84], "labels_arrai": [27, 39], "predprob": 27, "pred_probs_arrai": 27, "back": [27, 51, 68, 74, 80, 81], "store_result": 27, "becom": [27, 81], "verifi": [27, 74, 78, 81], "long": [27, 43, 52, 78], "enough": [27, 38, 74], "chunk": [27, 82], "ram": [27, 73], "faster": [27, 52, 55, 57, 59, 74, 76], "end_index": 27, "labels_batch": 27, "pred_probs_batch": 27, "update_confident_threshold": 27, "batch_result": 27, "score_label_qu": 27, "indices_of_examples_with_issu": [27, 74], "shortcut": 27, "encount": [27, 29, 57], "1000": [27, 67, 72, 73, 74, 81], "aggreg": [27, 34, 43, 47, 50, 53, 63, 74, 76, 78], "get_num_issu": 27, "fetch": [27, 67, 69], "seen": [27, 74, 81, 87], "far": [27, 43], "get_quality_scor": 27, "label_quality_scor": [27, 47, 50, 53, 56, 76, 80, 83], "method1": 27, "method2": 27, "normalized_margin": [27, 29, 34, 45, 47, 53, 61, 63], "low_normalized_margin": [27, 29, 45], "issue_indic": [27, 50, 75], "update_num_issu": 27, "split_arr": 27, "arr": [27, 74], "chunksiz": 27, "convnet": 28, "bespok": [28, 42], "get_mnist_dataset": 28, "loader": [28, 75], "download": [28, 67, 74, 75, 81], "mnist": [28, 65, 67, 73], "get_sklearn_digits_dataset": 28, "handwritten": 28, "digit": [28, 67, 73], "last": [28, 34, 48, 51, 68, 69, 74, 78, 87], "sklearn_digits_test_s": 28, "hard": [28, 73, 81], "simplenet": 28, "64": [28, 71, 75, 76, 80, 85], "log_interv": 28, "50": [28, 73, 74, 76, 78, 80, 81, 87], "01": [28, 53, 55, 67, 76, 79, 80, 83], "momentum": 28, "no_cuda": 28, "test_batch_s": [28, 75], "templat": 28, "enabl": 28, "flexibli": 28, "among": [28, 43, 76], "test_set": 28, "Be": 28, "overrid": 28, "train_idx": [28, 38, 81], "train_label": [28, 81, 86], "scikit": [28, 38, 52, 65, 67, 68, 69, 71, 72, 74, 77, 83, 86], "set_predict_proba_request": 28, "set_predict_request": 28, "encourag": [29, 45, 53, 56], "multilabel_classif": [29, 44, 45, 47, 53, 79], "pred_probs_by_class": 29, "prune_count_matrix_col": 29, "rank_by_kwarg": [29, 45, 53, 76], "num_to_remove_per_class": [29, 45], "bad": [29, 45, 50, 53, 72, 74, 86], "seem": [29, 76, 79], "fewer": [29, 38, 80], "aren": 29, "confidence_weighted_entropi": [29, 34, 45, 47, 53, 61, 63], "label_issues_idx": [29, 53], "entropi": [29, 31, 33, 34, 52, 53], "prune_by_class": [29, 45, 76], "predicted_neq_given": [29, 45, 76], "prune_counts_matrix": 29, "smallest": [29, 53], "unus": 29, "number_of_mislabeled_examples_in_class_k": 29, "delet": [29, 65, 74, 86], "thread": [29, 45], "window": [29, 73], "shorter": [29, 48], "find_predicted_neq_given": 29, "find_label_issues_using_argmax_confusion_matrix": 29, "latent_algebra": [30, 66], "label_quality_util": 30, "multilabel_util": [30, 79], "multilabel_scor": [30, 47], "token_classification_util": [30, 87], "get_normalized_entropi": 31, "min_allowed_prob": 31, "wikipedia": 31, "activ": [31, 33, 43, 65, 78], "towardsdatasci": 31, "cheatsheet": 31, "ec57bc067c0b": 31, "clip": [31, 38, 67], "behav": 31, "unnecessari": [31, 74], "slightli": [31, 85, 86], "interv": [31, 34, 81], "herein": 32, "inexact": 32, "cours": 32, "propag": 32, "throughout": [32, 38, 55, 67, 78, 84, 87], "compute_ps_py_inv_noise_matrix": 32, "compute_py_inv_noise_matrix": 32, "compute_inv_noise_matrix": 32, "easili": [32, 66, 67, 69, 71, 72, 76, 78, 79, 81, 82, 83, 84, 85, 86], "increas": [32, 50, 52, 53, 67, 68, 74, 78, 79, 87], "dot": [32, 63, 74], "compute_noise_matrix_from_invers": 32, "compute_pi": 32, "true_labels_class_count": 32, "compute_pyx": 32, "pyx": 32, "multiannot": 33, "assert_valid_inputs_multiannot": 33, "labels_multiannot": [33, 43], "ensembl": [33, 34, 43, 53, 71, 74, 79, 81, 83, 85], "allow_single_label": 33, "annotator_id": 33, "assert_valid_pred_prob": 33, "pred_probs_unlabel": [33, 43], "format_multiannotator_label": [33, 43, 78], "lexicograph": [33, 38], "formatted_label": [33, 38], "old": [33, 38, 66, 73], "th": [33, 37, 38, 43, 45, 48, 50, 51, 52, 61, 63, 64, 72, 79, 80, 87], "check_consensus_label_class": 33, "consensus_label": [33, 43, 78], "consensus_method": [33, 43], "consensu": [33, 43, 65, 77, 87], "establish": [33, 83, 86], "compute_soft_cross_entropi": 33, "soft": [33, 73], "find_best_temp_scal": 33, "coarse_search_rang": [33, 55, 74], "fine_search_s": [33, 55, 74], "temperatur": [33, 34, 50, 59, 63], "scale": [33, 36, 73, 74, 81, 84, 85], "factor": [33, 34, 57, 59], "minim": [33, 50, 81], "temp_scale_pred_prob": 33, "temp": 33, "sharpen": [33, 73], "smoothen": 33, "classlabelscor": 34, "enum": 34, "get_self_confidence_for_each_label": [34, 53], "get_normalized_margin_for_each_label": [34, 53], "get_confidence_weighted_entropy_for_each_label": [34, 53], "75": [34, 68, 69, 73, 78, 79, 80, 83, 87], "from_str": 34, "scorer": 34, "exponential_moving_averag": [34, 47], "alpha": [34, 47, 50, 68, 69, 76, 79, 83], "exponenti": 34, "ema": 34, "s_1": 34, "s_k": 34, "ema_k": 34, "accord": [34, 45, 71, 72, 76, 87], "formula": [34, 36], "_t": 34, "cdot": 34, "s_t": 34, "qquad": 34, "leq": 34, "_1": 34, "give": [34, 53, 76, 78, 84], "recent": [34, 87], "success": 34, "previou": [34, 75, 80], "discount": 34, "s_ema": 34, "175": [34, 76, 80], "softmin": [34, 47, 50, 59, 63], "underflow": 34, "nan": [34, 43, 71, 78, 83, 85], "possible_method": 34, "aggregated_scor": 34, "multilabelscor": 34, "base_scor": 34, "base_scorer_kwarg": 34, "aggregator_kwarg": [34, 47], "n_sampl": 34, "n_label": 34, "binari": [34, 38, 45, 47, 76, 87], "worst": [34, 78], "class_label_quality_scor": 34, "get_class_label_quality_scor": 34, "42": [34, 73, 80, 87], "452": 34, "new_scor": 34, "575": 34, "get_label_quality_scores_per_class": [34, 47], "ml_scorer": 34, "multilabel_pi": 34, "binar": [34, 35], "second": [34, 36, 38, 53, 68, 74, 76, 87], "get_cross_validated_multilabel_pred_prob": 34, "reformat": [34, 67], "wider": 34, "strategi": 34, "splitter": 34, "kfold": [34, 75], "multiclass": [34, 38, 43, 79], "onevsrestclassifi": [34, 79], "randomforestclassifi": [34, 76, 79], "n_split": [34, 75, 79], "stack_compl": 35, "pred_prob_slic": 35, "extend": [35, 75, 81, 87], "get_onehot_num_class": 35, "onehot": 35, "encod": [35, 51, 57, 60, 71, 72, 74, 83, 84, 85, 86], "multilabel": [35, 79], "int2onehot": [35, 79], "hot": [35, 45, 51, 57, 60, 71, 73, 74, 83, 84, 85], "onehot2int": [35, 79], "onehot_matrix": 35, "transform_distances_to_scor": 36, "exp": [36, 52, 53, 68], "dt": 36, "right": [36, 48, 51, 72, 79, 80, 81, 86], "num_neighbor": 36, "slice": 36, "ood_features_scor": [36, 52, 81], "95122942": 36, "83945702": 36, "token_classif": [37, 61, 63, 64], "get_sent": [37, 87], "sentenc": [37, 61, 63, 64, 72, 86], "readabl": 37, "filter_sent": [37, 87], "lambda": [37, 67, 68, 78], "long_sent": 37, "headlin": 37, "process_token": 37, "charact": [37, 38], "s1": 37, "s2": 37, "processed_token": 37, "rule": [37, 73], "alecnlcb": 37, "entiti": [37, 65, 74, 87], "mapped_ent": 37, "unique_ident": 37, "loc": [37, 68, 69, 75, 87], "merge_prob": 37, "probs_merg": 37, "55": [37, 73, 80, 83], "0125": [37, 63], "0375": 37, "075": 37, "025": 37, "color_sent": 37, "color": [37, 60, 68, 69, 71, 76, 79, 81, 83, 84], "red": [37, 51, 68, 69, 73, 76, 79, 80, 81, 84], "colored_sent": 37, "termcolor": 37, "31msentenc": 37, "0m": 37, "ancillari": 38, "remove_noise_from_class": 38, "class_without_nois": 38, "any_other_class": 38, "choos": [38, 53, 71, 74, 76, 83, 85], "tradition": 38, "clip_noise_r": 38, "clip_valu": 38, "new_sum": 38, "preserv": 38, "value_count": [38, 74], "fill": 38, "wherea": [38, 45, 82], "come": [38, 68, 69, 74, 84], "major": [38, 43, 66, 75, 81], "versu": [38, 76], "value_counts_fill_missing_class": 38, "get_missing_class": 38, "round_preserving_sum": 38, "obviou": 38, "cgdeboer": 38, "iteround": 38, "round_preserving_row_tot": 38, "reach": 38, "estimate_pu_f1": 38, "prob_s_eq_1": 38, "claesen": 38, "f1": [38, 72, 76], "confusion_matrix": 38, "BE": 38, "print_square_matrix": 38, "left_nam": 38, "top_nam": 38, "titl": [38, 68, 69, 76, 79, 81], "short_titl": 38, "round_plac": 38, "pretti": [38, 76], "print_noise_matrix": [38, 76], "print_inverse_noise_matrix": 38, "print_joint_matrix": [38, 76], "joint_matrix": 38, "compress_int_arrai": 38, "num_possible_valu": 38, "train_val_split": 38, "holdout_idx": 38, "subset_x_i": 38, "extract": [38, 52, 67, 72, 78, 81, 84, 86], "subset_label": 38, "subset_data": 38, "extract_indices_tf": 38, "allow_shuffl": 38, "turn": [38, 65, 80], "unshuffle_tensorflow_dataset": 38, "shuffledataset": 38, "histori": 38, "pre_x": 38, "buffer_s": 38, "is_torch_dataset": 38, "is_tensorflow_dataset": 38, "csr_vstack": 38, "csr_matric": 38, "append": [38, 67, 73, 75, 76, 78, 79, 81, 87], "bottom": [38, 48, 51, 80], "vstack": [38, 73, 74, 75, 76, 78, 79], "append_extra_datapoint": 38, "to_data": 38, "from_data": 38, "taken": 38, "One": [38, 52, 74], "get_num_class": 38, "label_matrix": 38, "canon": 38, "num_unique_class": 38, "get_unique_class": 38, "format_label": 38, "smart_display_datafram": 38, "displai": [38, 51, 60, 64, 67, 72, 76, 86, 87], "jupyt": [38, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "notebook": [38, 43, 67, 69, 73, 74, 76, 78, 79, 80, 84, 87], "consol": 38, "force_two_dimens": 38, "html": [38, 52, 71, 74, 76], "assert_valid_input": 39, "allow_missing_class": 39, "allow_one_class": 39, "assert_valid_class_label": 39, "assert_nonempty_input": 39, "assert_indexing_work": 39, "length_x": 39, "labels_to_arrai": 39, "labellik": 39, "keraswrappermodel": [42, 65], "keraswrappersequenti": 42, "tf": [42, 67], "legaci": 42, "lack": 42, "keraswrapp": 42, "huggingface_keras_imdb": 42, "unit": [42, 87], "model_kwarg": [42, 55], "compile_kwarg": 42, "sparsecategoricalcrossentropi": 42, "layer": [42, 67, 72, 81, 86], "dens": [42, 72, 86], "my_keras_model": 42, "from_logit": 42, "compil": 42, "declar": 42, "apply_softmax": 42, "analysi": 43, "analyz": [43, 65, 76, 78, 79], "get_label_quality_multiannot": [43, 78], "vote": 43, "crowdsourc": [43, 65, 78], "dawid": [43, 78], "skene": [43, 78], "analog": [43, 73, 78], "chosen": [43, 53, 78], "crowdlab": [43, 78], "unlabel": [43, 78, 81, 84], "decid": [43, 72, 73, 78, 83, 86, 87], "get_active_learning_scor": [43, 78], "activelab": [43, 78], "priorit": [43, 50, 80, 84, 87], "showcas": 43, "main": 43, "best_qual": 43, "quality_method": 43, "calibrate_prob": 43, "return_detailed_qu": 43, "return_annotator_stat": 43, "return_weight": 43, "label_quality_score_kwarg": 43, "necessarili": [43, 72, 76], "did": [43, 44, 67, 71, 76, 78, 83, 85, 86], "id": [43, 68, 75, 78], "majority_vot": 43, "ti": 43, "broken": [43, 73], "highest": [43, 68, 75, 82], "0th": 43, "consensus_quality_scor": [43, 78], "annotator_agr": [43, 78], "reman": 43, "1st": 43, "2nd": [43, 57], "3rd": 43, "consensus_label_suffix": 43, "consensus_quality_score_suffix": 43, "suffix": 43, "emsembl": 43, "weigh": [43, 73], "agreement": [43, 78], "agre": 43, "prevent": 43, "overconfid": [43, 82], "wrong": [43, 48, 50, 66, 68, 69, 72, 74, 76, 80, 86], "detailed_label_qu": [43, 78], "annotator_stat": [43, 78], "model_weight": 43, "annotator_weight": 43, "warn": [43, 68], "labels_info": 43, "num_annot": [43, 78], "deriv": [43, 78], "quality_annotator_1": 43, "quality_annotator_2": 43, "quality_annotator_m": 43, "lowest": [43, 69, 75, 78, 79, 80, 84], "annotator_qu": [43, 78], "num_examples_label": [43, 78], "agreement_with_consensu": [43, 78], "worst_class": [43, 78], "trustworthi": [43, 78, 83], "get_label_quality_multiannotator_ensembl": 43, "func": 43, "weigtht": 43, "budget": 43, "retrain": [43, 83, 86], "active_learning_scor": 43, "improv": [43, 69, 73, 74, 75, 76, 83, 84, 85, 86], "active_learning_scores_unlabel": 43, "get_active_learning_scores_ensembl": 43, "henc": [43, 67, 68, 78], "get_majority_vote_label": [43, 78], "event": 43, "lastli": [43, 71], "convert_long_to_wide_dataset": 43, "labels_multiannotator_long": 43, "wide": [43, 67, 85, 86], "suitabl": [43, 71, 85], "labels_multiannotator_wid": 43, "common_multilabel_issu": 44, "mutual": [44, 79], "exclus": [44, 79], "vice": 44, "versa": 44, "rank_classes_by_multilabel_qu": 44, "overall_multilabel_health_scor": 44, "multilabel_health_summari": 44, "classes_by_multilabel_qu": 44, "inner": [45, 59], "find_multilabel_issues_per_class": 45, "per_class_label_issu": 45, "label_issues_list": 45, "labels_list": 45, "pred_probs_list": [45, 53, 75, 76], "anim": [46, 81], "rat": 46, "predat": 46, "pet": 46, "reptil": 46, "manner": [47, 78, 83, 85, 86], "box": [48, 50, 51, 73, 80], "object_detect": [48, 50, 51, 80], "return_indices_ranked_by_scor": [48, 80], "overlapping_label_check": [48, 50], "suboptim": [48, 50], "locat": [48, 50, 80, 84, 87], "bbox": [48, 51, 80], "image_nam": 48, "y1": [48, 51, 80], "y2": [48, 51, 80], "later": [48, 52, 86, 87], "mmdetect": [48, 80], "corner": [48, 51, 80], "swap": [48, 50, 60, 64], "penal": [48, 50], "concern": [48, 50, 65, 69], "aggregation_weight": 50, "imperfect": [50, 74], "chose": [50, 78, 80], "imperfectli": [50, 80], "dirti": [50, 53, 56, 83], "subtyp": 50, "badloc": 50, "nonneg": 50, "issues_from_scor": [50, 59, 60, 63, 64, 80, 84, 87], "compute_overlooked_box_scor": 50, "high_probability_threshold": 50, "auxiliary_input": 50, "vari": [50, 69], "iou": 50, "heavili": 50, "auxiliarytypesdict": 50, "pred_label": [50, 86], "pred_label_prob": 50, "pred_bbox": 50, "lab_label": 50, "lab_bbox": 50, "similarity_matrix": 50, "min_possible_similar": 50, "scores_overlook": 50, "compute_badloc_box_scor": 50, "low_probability_threshold": 50, "scores_badloc": 50, "compute_swap_box_scor": 50, "accident": [50, 71, 72, 86], "scores_swap": 50, "pool_box_scores_per_imag": 50, "box_scor": 50, "image_scor": [50, 59, 84], "visual": [51, 68, 69, 75, 83, 85, 87], "prediction_threshold": 51, "overlai": [51, 80], "figsiz": [51, 68, 69, 75, 76, 79, 81], "save_path": [51, 80], "blue": [51, 73, 76, 80], "overlaid": 51, "side": [51, 73, 80], "figur": [51, 76, 79, 81, 83], "extens": [51, 76, 78], "png": [51, 80], "pdf": [51, 52], "ep": 51, "svg": 51, "plot": [51, 68, 69, 76, 79, 81, 83, 84], "matplotlib": [51, 68, 69, 75, 76, 79, 80, 81, 83], "Of": 52, "li": 52, "smaller": [52, 79, 80], "find_top_issu": [52, 53, 81], "reli": [52, 67, 68, 69, 72, 80, 81, 86], "dist_metr": 52, "dim": [52, 75, 84], "subtract": [52, 53], "renorm": [52, 53, 74], "least_confid": 52, "sum_": 52, "log": [52, 53, 66], "softmax": [52, 59, 63, 75], "literatur": 52, "gen": 52, "liu": 52, "lochman": 52, "zach": 52, "openaccess": 52, "thecvf": 52, "content": [52, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "cvpr2023": 52, "liu_gen_pushing_the_limits_of_softmax": 52, "based_out": 52, "distribution_detection_cvpr_2023_pap": 52, "fit_scor": [52, 81], "ood_predictions_scor": 52, "categor": [52, 68, 69, 70, 83, 85], "pretrain": [52, 67, 72, 81, 86], "adjust_confident_threshold": 52, "probabilist": [52, 67, 68, 69, 71, 72, 81, 82, 85], "order_label_issu": [53, 66], "whichev": [53, 82], "argsort": [53, 72, 75, 76, 81, 83, 86], "max_": 53, "get_label_quality_ensemble_scor": [53, 74, 76], "weight_ensemble_members_bi": 53, "custom_weight": 53, "log_loss_search_t_valu": 53, "0001": [53, 73], "scheme": 53, "log_loss_search": 53, "log_loss": [53, 72], "1e0": 53, "1e1": 53, "1e2": 53, "2e2": 53, "quality_scor": [53, 81], "forth": 53, "top_issue_indic": 53, "rank_bi": [53, 66], "weird": [53, 64], "minu": 53, "prob_label": 53, "max_prob_not_label": 53, "idea": 53, "AND": [53, 72], "corrupt": [55, 83], "linearregress": [55, 74, 83], "y_with_nois": 55, "n_boot": [55, 74], "include_aleatoric_uncertainti": [55, 74], "sole": [55, 68, 78, 81, 85], "larger": [55, 57, 59, 73, 74, 75], "bootstrap": [55, 74, 83], "resampl": [55, 67, 74], "epistem": [55, 74, 81, 83], "aleator": [55, 74, 83], "model_final_kwarg": 55, "coars": 55, "thorough": [55, 74], "fine": [55, 67, 72, 81, 86], "grain": 55, "grid": 55, "get_epistemic_uncertainti": 55, "varianc": [55, 76], "epistemic_uncertainti": 55, "get_aleatoric_uncertainti": 55, "residu": [55, 56, 74], "deviat": [55, 83], "ie": 55, "aleatoric_uncertainti": 55, "outr": 56, "contin": 56, "raw": [56, 65, 66, 69, 73, 75, 78, 80, 81], "aka": [56, 67, 76, 87], "00323821": 56, "33692597": 56, "00191686": 56, "semant": [57, 59, 60, 77], "segment": [57, 59, 60, 77], "pixel": [57, 59, 60, 81, 84], "h": [57, 59, 60, 84], "height": [57, 59, 60, 84], "w": [57, 59, 60, 84], "width": [57, 59, 60, 84], "labels_one_hot": [57, 60, 84], "stream": [57, 81, 87], "downsampl": [57, 59, 84], "shrink": [57, 59], "divis": [57, 59, 68], "segmant": [59, 60], "num_pixel_issu": [59, 84], "product": [59, 74, 75], "pixel_scor": [59, 84], "display_issu": [59, 60, 61, 63, 64, 84, 87], "highlight": [60, 64, 68, 69, 71, 84], "enter": 60, "legend": [60, 68, 69, 79, 80, 83, 84], "colormap": 60, "background": 60, "person": [60, 74, 80, 84, 87], "common_label_issu": [60, 64, 84, 87], "ambigu": [60, 64, 67, 72, 73, 76, 86, 87], "systemat": [60, 64, 78], "misunderstood": [60, 64], "issues_df": [60, 75], "filter_by_class": [60, 84], "class_index": 60, "issues_subset": [60, 64], "95": [61, 63, 71, 73, 76, 83], "token_score_method": 63, "sentence_score_method": 63, "sentence_score_kwarg": 63, "compris": [63, 64], "token_scor": [63, 87], "converg": 63, "toward": 63, "_softmin_sentence_scor": 63, "sentence_scor": [63, 87], "token_info": 63, "70": [63, 71, 76, 83], "02": [63, 68, 69, 76, 80, 83], "03": [63, 73, 76, 80, 87], "04": [63, 80, 83], "08": [63, 76, 80, 87], "commonli": [64, 66, 68, 69, 79, 87], "filter_by_token": [64, 87], "But": [64, 76, 87], "restrict": [64, 74], "reliabl": [65, 67, 74, 78, 84, 85], "thousand": 65, "imagenet": [65, 73], "popular": [65, 78, 80], "centric": [65, 77], "capabl": 65, "minut": [65, 67, 71, 72, 73, 78, 79, 80, 83, 84, 85, 86, 87], "conda": 65, "feature_embed": [65, 81], "Then": [65, 74, 75, 83, 85, 86], "your_dataset": [65, 67, 68, 69, 71, 72, 75], "column_name_of_label": [65, 67, 68, 69, 71, 72, 75], "plagu": [65, 69], "untrain": 65, "\u30c4": 65, "label_issues_info": [65, 69], "sklearn_compatible_model": 65, "framework": [65, 79, 80], "complianc": 65, "tag": [65, 79, 87], "sequenc": 65, "recognit": [65, 67, 74, 87], "train_data": [65, 81, 83, 85, 86], "gotten": 65, "test_data": [65, 76, 79, 81, 83, 85, 86], "deal": [65, 69], "tutori": [65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "faq": [65, 77], "feel": [65, 67, 69, 74], "free": [65, 67, 69, 74, 76], "ask": [65, 74], "slack": [65, 74], "project": [65, 83], "welcom": 65, "commun": [65, 74], "guidelin": [65, 80], "piec": 65, "studio": [65, 69, 74], "platform": [65, 74], "tabular": [65, 68, 69, 70, 74, 77, 78], "automl": [65, 74], "foundat": 65, "smart": [65, 74], "edit": [65, 74], "easier": [65, 76], "unreli": [65, 67, 71, 72, 85], "older": 66, "outlin": 66, "substitut": 66, "v2": [66, 71, 85], "get_noise_indic": 66, "psx": 66, "sorted_index_method": 66, "order_label_error": 66, "label_errors_bool": 66, "latent_estim": 66, "num_label_error": 66, "learningwithnoisylabel": 66, "neatli": 66, "organ": [66, 71, 73, 85, 87], "reorgan": 66, "baseline_method": 66, "incorpor": [66, 76], "research": [66, 76], "polyplex": 66, "terminologi": 66, "label_error": 66, "quickstart": [67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "spoken": 67, "500": [67, 81, 87], "english": [67, 73], "pronunci": 67, "wav": 67, "huggingfac": [67, 68, 69, 75], "voxceleb": 67, "speech": [67, 87], "your_pred_prob": [67, 68, 69, 71, 72], "tensorflow_io": 67, "26": [67, 68, 73, 75, 76, 78, 80], "huggingface_hub": 67, "12": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "branch": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "reproduc": [67, 71, 76, 78], "command": 67, "wget": [67, 80, 84, 87], "navig": 67, "link": [67, 73, 80], "browser": 67, "jakobovski": 67, "archiv": [67, 87], "v1": 67, "tar": [67, 81], "gz": [67, 81], "mkdir": [67, 87], "spoken_digit": 67, "xf": 67, "6_nicolas_32": 67, "data_path": 67, "listdir": 67, "nondeterminist": 67, "file_nam": 67, "endswith": 67, "file_path": 67, "join": [67, 74, 75], "39": [67, 68, 72, 73, 74, 75, 80, 83, 84, 86, 87], "7_george_26": 67, "0_nicolas_24": 67, "0_nicolas_6": 67, "listen": 67, "display_exampl": 67, "click": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "expand": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "pulldown": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "colab": [67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "tfio": 67, "pathlib": 67, "ipython": 67, "load_wav_16k_mono": 67, "filenam": 67, "khz": 67, "file_cont": 67, "io": [67, 73], "read_fil": 67, "sample_r": 67, "decode_wav": 67, "desired_channel": 67, "squeez": 67, "int64": [67, 78], "rate_in": 67, "rate_out": 67, "16000": 67, "wav_file_nam": 67, "audio_r": 67, "wav_file_exampl": 67, "plai": [67, 73, 74], "button": 67, "wav_file_name_exampl": 67, "7_jackson_43": 67, "hear": 67, "extractor": 67, "encoderclassifi": 67, "spkrec": 67, "xvect": 67, "feature_extractor": 67, "from_hparam": 67, "run_opt": 67, "uncom": 67, "wav_audio_file_path": 67, "head": [67, 69, 71, 72, 73, 75, 76, 78, 83, 85, 86], "torchaudio": 67, "extract_audio_embed": 67, "emb": [67, 75], "signal": 67, "encode_batch": 67, "embeddings_list": [67, 75], "embeddings_arrai": 67, "512": [67, 75], "14": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "196308": 67, "319454": 67, "47899": 67, "289091": 67, "817013": 67, "892642": 67, "24": [67, 73, 76, 78, 80], "898056": 67, "2561927": 67, "559636": 67, "5597174": 67, "6206665": 67, "285249": 67, "21": [67, 68, 69, 73, 76, 80, 87], "709625": 67, "5033684": 67, "913807": 67, "819826": 67, "1831462": 67, "208761": 67, "08425": 67, "321053": 67, "005463": 67, "216175": 67, "478231": 67, "682177": 67, "053815": 67, "2424726": 67, "091422": 67, "78335106": 67, "039538": 67, "23": [67, 73, 75, 76, 80], "569181": 67, "19": [67, 72, 73, 75, 76, 81, 83, 84, 86, 87], "76109": 67, "1258249": 67, "75323": 67, "3508852": 67, "598273": 67, "237118": 67, "2500": 67, "leverag": [67, 72, 74, 76, 78, 86], "tune": [67, 72, 73, 81, 86], "computation": [67, 72, 86], "intens": [67, 72, 86], "held": [67, 71, 72, 73, 80, 81, 82, 85], "straightforward": [67, 71, 85], "benefit": [67, 82, 84, 85], "tol": 67, "num_crossval_fold": [67, 71, 78, 85], "decreas": [67, 74], "never": [67, 76, 79, 81, 82], "accuracy_scor": [67, 72, 76, 85, 86], "cv_accuraci": 67, "9772": 67, "probabilit": [67, 86], "9976": 67, "176": [67, 73, 76, 79], "006548": 67, "2318": 67, "008296": 67, "986": 67, "010476": 67, "1946": 67, "012922": 67, "516": 67, "013263": 67, "investig": 67, "100049": 67, "998728": 67, "998785": 67, "980984": 67, "998247": 67, "18": [67, 72, 73, 76, 80, 81, 83, 84, 86, 87], "identified_label_issu": [67, 72], "lowest_quality_label": [67, 72, 76, 83, 86], "sort_valu": [67, 69, 71, 72, 75, 76, 78], "469": 67, "1871": 67, "1955": 67, "2132": 67, "worth": [67, 76], "iloc": [67, 71, 72, 83, 85, 86], "6_yweweler_14": 67, "6_yweweler_36": 67, "6_yweweler_35": 67, "6_theo_27": 67, "4_george_31": 67, "6_nicolas_8": 67, "sound": 67, "quit": [67, 81], "22": [67, 68, 73, 75, 76, 79, 80, 87], "blindli": [67, 74, 83, 85, 86], "trust": [67, 74, 76, 78, 82, 83, 85, 86], "address": [68, 69, 72, 74, 86], "underneath": 68, "hood": 68, "alert": 68, "introduct": 68, "mayb": [68, 69, 72], "examin": [68, 69, 71, 85], "your_feature_matrix": [68, 69], "toi": [68, 69, 73, 75, 76, 78], "train_test_split": [68, 69, 81, 85, 86], "inf": [68, 69], "mid": [68, 69], "bins_map": [68, 69], "create_data": [68, 69], "y_bin": [68, 69], "y_i": [68, 69], "y_bin_idx": [68, 69], "y_train": [68, 69, 76, 83], "y_test": [68, 69, 76, 83], "y_train_idx": [68, 69], "y_test_idx": [68, 69], "test_siz": [68, 69, 85, 86], "slide": [68, 69, 73], "decis": [68, 69, 85], "boundari": [68, 69], "frame": [68, 69], "x_out": [68, 69], "tini": [68, 69], "concaten": [68, 69, 82], "y_out": [68, 69], "y_out_bin": [68, 69], "y_out_bin_idx": [68, 69], "exact_duplicate_idx": [68, 69], "x_duplic": [68, 69], "y_duplic": [68, 69], "y_duplicate_idx": [68, 69], "noisy_labels_idx": [68, 69, 79], "scatter": [68, 69, 76, 79, 83], "black": [68, 69, 73, 83], "cyan": [68, 69], "pyplot": [68, 69, 75, 76, 79, 81, 83], "plt": [68, 69, 75, 76, 79, 81, 83], "plot_data": [68, 69, 76, 79, 83], "fig": [68, 69, 73, 75, 81, 83], "ax": [68, 69, 75, 81, 83], "subplot": [68, 69, 75, 81], "set_titl": [68, 69, 75, 81], "set_xlabel": [68, 69], "x_1": [68, 69], "fontsiz": [68, 69, 75, 76, 79], "set_ylabel": [68, 69], "x_2": [68, 69], "set_xlim": [68, 69], "set_ylim": [68, 69], "linestyl": [68, 69], "circl": [68, 69, 76, 79], "misclassifi": [68, 69], "zip": [68, 69, 75, 80, 87], "label_err": [68, 69], "180": [68, 69, 80], "marker": [68, 69], "facecolor": [68, 69], "edgecolor": [68, 69], "linewidth": [68, 69, 81], "dup": [68, 69], "first_legend": [68, 69], "align": [68, 69], "title_fontproperti": [68, 69], "semibold": [68, 69], "second_legend": [68, 69], "45": [68, 69, 73, 76, 80], "gca": [68, 69], "add_artist": [68, 69], "tight_layout": [68, 69], "ideal": [68, 69], "logist": [68, 69, 72, 78, 81, 86], "regress": [68, 69, 72, 77, 78, 81, 86], "remaind": 68, "modal": [68, 69, 74, 78], "regardless": [68, 69], "132": [68, 69, 76, 80], "9091": [68, 69], "77": [68, 69, 71, 73, 80, 85], "006939": [68, 69], "007830": [68, 69], "40": [68, 69, 72, 73, 75, 87], "014826": [68, 69], "107": [68, 69, 76, 79], "021220": [68, 69], "120": [68, 69, 75], "026403": [68, 69], "notic": [68, 76, 78, 80], "5221": [68, 69], "126": [68, 69, 76, 80], "046465": [68, 69], "130": [68, 69], "068695": [68, 69], "129": [68, 69], "127": [68, 69], "076251": [68, 69], "128": [68, 69, 73, 75], "083941": [68, 69], "2465": [68, 69], "is_near_duplicate_issu": [68, 69, 71, 72, 75, 76], "131": [68, 69, 84], "000000e": [68, 69], "00": [68, 69, 71, 73, 75, 84, 85], "463180e": [68, 69], "07": [68, 69, 76, 80], "51": [68, 69, 71, 73, 76, 80], "857172e": [68, 69], "859087e": [68, 69], "30": [68, 73, 74, 75, 79, 84, 87], "3293": 68, "025076": 68, "026534": 68, "050766": 68, "051025": 68, "home": [68, 72, 73, 75, 81, 86], "runner": [68, 72, 75, 81, 86], "219": [68, 80], "userwarn": 68, "249": [68, 76, 80, 87], "228": [68, 80], "34": [68, 73, 76, 78, 80, 81, 87], "54": [68, 73, 76, 80], "039117": 68, "53": [68, 71, 73, 79, 80, 85], "044594": 68, "105": 68, "105121": 68, "133588": [68, 69], "43": [68, 73, 75, 76, 80, 86], "168035": 68, "125": 68, "090878": 68, "37": [68, 73], "169462": 68, "109": [68, 80], "194566": 68, "35": [68, 73, 78, 79, 80], "196302": 68, "206314": 68, "average_ood_scor": 68, "32933380816554325": 68, "52": [68, 73, 80, 87], "085049e": 68, "087324e": 68, "89": [68, 71, 80, 83], "92": [68, 73, 76, 80], "574261e": 68, "583757e": 68, "91": [68, 73, 80, 85, 87], "314215e": 68, "341292e": 68, "specfi": 68, "new_lab": 68, "scoring_funct": 68, "div": 68, "rem": 68, "inv_scal": 68, "49": [68, 73, 76, 80], "superstitionissuemanag": 68, "unlucki": 68, "superstit": 68, "to_seri": 68, "issues_mask": 68, "summary_scor": 68, "32": [68, 73, 76, 78, 80], "9242": 68, "is_superstition_issu": 68, "superstition_scor": 68, "047581": 68, "090635": 68, "129591": 68, "65": [68, 80], "164840": 68, "demo": [69, 71, 79, 85], "discov": [69, 87], "lurk": [69, 75, 76], "thoroughli": 69, "preprocess": [69, 71, 81, 83, 85, 86], "review": [69, 71, 72, 73, 74, 76, 80, 83, 84, 85, 86, 87], "8218": 69, "is_non_iid_issu": [69, 72, 75, 76], "810274": 69, "826147": 69, "849587": 69, "855359": 69, "855485": 69, "821750488732925": 69, "auto": [69, 73, 74, 83, 85, 86], "conceptu": 69, "909091": 69, "522080": 69, "246459": 69, "821750": 69, "betweeen": 69, "864232": 69, "586131": 69, "235095": 69, "970324": 69, "825563": 69, "548979": 69, "221560": 69, "890575": 69, "533367": 69, "622256": 69, "199185": 69, "755724": 69, "499498": [69, 73], "179601": 69, "948362": 69, "632385": 69, "292800": 69, "878267": 69, "examples_w_issu": [69, 74], "inde": [69, 72], "miscellan": [69, 87], "206897": 69, "041667": 69, "793103": 69, "071429": 69, "103448": 69, "928571": 69, "053333": 69, "101266": 69, "946667": 69, "portion": 69, "huge": [69, 76], "worri": 69, "critic": 69, "highli": [69, 75], "sql": [71, 85], "databas": [71, 85], "excel": [71, 85], "parquet": [71, 85], "student": [71, 83, 85, 87], "grade": [71, 83, 85], "900": [71, 83, 85], "exam": [71, 83, 85], "letter": [71, 85, 87], "hundr": [71, 85], "histgradientboostingclassifi": 71, "reflect": [71, 72, 78, 80, 81, 83, 85, 86], "standardscal": [71, 81, 85], "possibli": [71, 85], "grades_data": [71, 85], "read_csv": [71, 72, 83, 85, 86], "stud_id": [71, 85], "exam_1": [71, 83, 85], "exam_2": [71, 83, 85], "exam_3": [71, 83, 85], "letter_grad": [71, 85], "f48f73": [71, 85], "0bd4e7": [71, 85], "81": [71, 72, 80, 83, 85, 87], "great": [71, 73, 85], "particip": [71, 85], "cb9d7a": [71, 85], "61": [71, 80, 85], "94": [71, 73, 76, 80, 83, 85], "78": [71, 73, 76, 80, 83, 85], "9acca4": [71, 85], "48": [71, 73, 76, 80, 85, 87], "x_raw": [71, 85], "cat_featur": 71, "x_encod": [71, 85], "get_dummi": [71, 83, 85], "drop_first": [71, 85], "numeric_featur": [71, 85], "scaler": [71, 81, 85], "x_process": [71, 85], "fit_transform": [71, 85], "bring": [71, 72, 75, 78, 83, 85, 86], "byod": [71, 72, 75, 78, 83, 85, 86], "boost": [71, 74, 78, 83], "xgboost": [71, 74, 83], "think": [71, 74, 79, 84, 87], "carefulli": [71, 72, 75, 85], "nonzero": 71, "suspici": [71, 85], "tabl": [71, 73, 78, 85], "357": 71, "294": [71, 80], "46": [71, 73, 76, 80], "941": 71, "6578": 71, "000005": [71, 72, 75], "886": 71, "000059": 71, "709": 71, "000104": 71, "723": 71, "000169": 71, "689": 71, "000181": 71, "7154": 71, "012085": 71, "061510": 71, "115512": 71, "124391": 71, "214163": 71, "2169": 71, "915": 71, "168": [71, 76], "691": 71, "185": [71, 73, 80], "582": 71, "issue_result": 71, "000842": 71, "555944": 71, "004374": 71, "sorted_issu": 71, "73": [71, 73, 79, 80, 83], "86": [71, 73, 75, 76, 80, 83], "deserv": 71, "outlier_result": 71, "sorted_outli": 71, "56": [71, 83], "96": [71, 73, 76, 79, 80, 83], "lt": [71, 72, 73, 75, 78, 84], "style": [71, 84], "font": 71, "18px": 71, "ff00ff": 71, "bac": 71, "unintend": [71, 72], "mistak": [71, 72, 75, 85, 86], "duplicate_result": 71, "690": 71, "246": [71, 80], "58": [71, 73, 76, 80], "perhap": [71, 76, 78], "twice": 71, "67": [71, 73, 80, 83], "wari": [71, 72, 74], "intent": [72, 86], "servic": [72, 86], "onlin": [72, 86], "bank": [72, 73, 86], "banking77": [72, 86], "oo": [72, 86], "000": [72, 73, 75, 86, 87], "categori": [72, 75, 86], "scope": [72, 86], "dive": 72, "your_featur": 72, "sentence_transform": [72, 86], "sentencetransform": [72, 86], "payment": [72, 86], "cancel_transf": [72, 86], "transfer": [72, 86], "fund": [72, 86], "cancel": [72, 86], "transact": [72, 86], "my": [72, 86], "revert": [72, 86], "morn": [72, 86], "realis": [72, 86], "yesterdai": [72, 86], "rent": [72, 86], "realli": [72, 78, 84, 86], "tomorrow": [72, 86], "raw_text": [72, 86], "visa_or_mastercard": [72, 86], "card_payment_fee_charg": [72, 86], "supported_cards_and_curr": [72, 86], "beneficiary_not_allow": [72, 86], "lost_or_stolen_phon": [72, 86], "apple_pay_or_google_pai": [72, 86], "getting_spare_card": [72, 86], "change_pin": [72, 86], "card_about_to_expir": [72, 86], "utter": [72, 86], "continu": [72, 75, 78, 83, 85, 86, 87], "suit": [72, 73, 86], "electra": [72, 86], "discrimin": [72, 86], "googl": [72, 86], "text_embed": 72, "No": [72, 74, 86], "google_electra": [72, 86], "pool": [72, 74, 81, 86], "checkpoint": [72, 81, 86], "electramodel": [72, 86], "discriminator_predict": [72, 86], "dense_predict": [72, 86], "bertforsequenceclassif": [72, 86], "bertforpretrain": [72, 86], "400": [72, 86], "data_dict": [72, 76, 78], "84": [72, 73, 80], "41": [72, 73, 75, 80, 83], "38": [72, 73, 80, 84], "9580": 72, "981": 72, "974": 72, "000150": 72, "982": [72, 73], "000220": 72, "971": 72, "000511": 72, "980": [72, 73], "000948": 72, "9122": 72, "994": 72, "676322": 72, "999": [72, 73], "693868": 72, "697240": 72, "433": 72, "700874": 72, "989": 72, "713590": 72, "0656": 72, "148": 72, "006237": 72, "160": 72, "514": 72, "006485": 72, "546": 72, "481": 72, "008165": 72, "0000": [72, 73, 76], "313": [72, 80], "564102": 72, "572258": 72, "28": [72, 73, 75, 76, 78, 87], "574915": 72, "31": [72, 73, 78, 80], "575507": 72, "575874": 72, "791943": 72, "258507": 72, "698864": 72, "183013": 72, "771059": 72, "to_numpi": [72, 83, 86], "data_with_suggested_label": 72, "suggested_label": 72, "charg": [72, 86], "cash": [72, 86], "holidai": [72, 86], "sent": [72, 86, 87], "card": [72, 73, 86], "mine": [72, 86], "expir": [72, 86], "me": [72, 86], "withdraw": 72, "monei": 72, "whoever": [72, 86], "outlier_issu": [72, 75], "lowest_quality_outli": 72, "OR": 72, "636c65616e6c616220697320617765736f6d6521": 72, "phone": [72, 73], "gone": 72, "gt": [72, 78, 87], "samp": 72, "br": 72, "press": [72, 87], "nonsens": 72, "sens": 72, "detriment": 72, "duplicate_issu": 72, "fee": 72, "pai": 72, "go": [72, 73, 76], "shortlist": [72, 83, 86], "curat": [72, 77], "mnist_test_set": 73, "imagenet_val_set": 73, "tench": 73, "goldfish": 73, "white": [73, 87], "shark": 73, "tiger": 73, "hammerhead": 73, "electr": 73, "rai": 73, "stingrai": 73, "cock": 73, "hen": 73, "ostrich": 73, "brambl": 73, "goldfinch": 73, "hous": 73, "finch": 73, "junco": 73, "indigo": 73, "bunt": 73, "american": [73, 87], "robin": 73, "bulbul": 73, "jai": 73, "magpi": 73, "chickade": 73, "dipper": 73, "kite": 73, "bald": 73, "eagl": 73, "vultur": 73, "grei": 73, "owl": 73, "fire": 73, "salamand": 73, "smooth": 73, "newt": 73, "spot": [73, 80], "axolotl": 73, "bullfrog": 73, "tree": 73, "frog": [73, 81], "tail": 73, "loggerhead": 73, "sea": 73, "turtl": 73, "leatherback": 73, "mud": 73, "terrapin": 73, "band": 73, "gecko": 73, "green": [73, 87], "iguana": 73, "carolina": 73, "anol": 73, "desert": 73, "grassland": 73, "whiptail": 73, "lizard": 73, "agama": 73, "frill": 73, "neck": 73, "allig": 73, "gila": 73, "monster": 73, "european": 73, "chameleon": 73, "komodo": 73, "dragon": 73, "nile": 73, "crocodil": 73, "triceratop": 73, "worm": 73, "snake": 73, "ring": 73, "eastern": 73, "hog": 73, "nose": 73, "kingsnak": 73, "garter": 73, "water": 73, "vine": 73, "night": 73, "boa": 73, "constrictor": 73, "african": 73, "rock": 73, "indian": 73, "cobra": 73, "mamba": 73, "saharan": 73, "horn": 73, "viper": 73, "diamondback": 73, "rattlesnak": 73, "sidewind": 73, "trilobit": 73, "harvestman": 73, "scorpion": 73, "yellow": 73, "garden": 73, "spider": 73, "barn": 73, "southern": 73, "widow": 73, "tarantula": 73, "wolf": 73, "tick": 73, "centiped": 73, "grous": 73, "ptarmigan": 73, "ruf": 73, "prairi": 73, "peacock": 73, "quail": 73, "partridg": 73, "parrot": 73, "macaw": 73, "sulphur": 73, "crest": 73, "cockatoo": 73, "lorikeet": 73, "coucal": 73, "bee": 73, "eater": 73, "hornbil": 73, "hummingbird": 73, "jacamar": 73, "toucan": 73, "duck": [73, 86], "breast": 73, "mergans": 73, "goos": 73, "swan": 73, "tusker": 73, "echidna": 73, "platypu": 73, "wallabi": 73, "koala": 73, "wombat": 73, "jellyfish": 73, "anemon": 73, "brain": 73, "coral": 73, "flatworm": 73, "nematod": 73, "conch": 73, "snail": 73, "slug": 73, "chiton": 73, "chamber": 73, "nautilu": 73, "dung": 73, "crab": 73, "fiddler": 73, "king": 73, "lobster": 73, "spini": 73, "crayfish": 73, "hermit": 73, "isopod": 73, "stork": 73, "spoonbil": 73, "flamingo": 73, "heron": 73, "egret": 73, "bittern": 73, "crane": 73, "bird": [73, 81], "limpkin": 73, "gallinul": 73, "coot": 73, "bustard": 73, "ruddi": 73, "turnston": 73, "dunlin": 73, "redshank": 73, "dowitch": 73, "oystercatch": 73, "pelican": 73, "penguin": 73, "albatross": 73, "whale": 73, "killer": 73, "dugong": 73, "lion": 73, "chihuahua": 73, "japanes": 73, "chin": 73, "maltes": 73, "pekinges": 73, "shih": 73, "tzu": 73, "charl": 73, "spaniel": 73, "papillon": 73, "terrier": 73, "rhodesian": 73, "ridgeback": 73, "afghan": [73, 87], "hound": 73, "basset": 73, "beagl": 73, "bloodhound": 73, "bluetick": 73, "coonhound": 73, "tan": 73, "walker": 73, "foxhound": 73, "redbon": 73, "borzoi": 73, "irish": 73, "wolfhound": 73, "italian": 73, "greyhound": 73, "whippet": 73, "ibizan": 73, "norwegian": 73, "elkhound": 73, "otterhound": 73, "saluki": 73, "scottish": 73, "deerhound": 73, "weimaran": 73, "staffordshir": 73, "bull": 73, "bedlington": 73, "border": 73, "kerri": 73, "norfolk": 73, "norwich": 73, "yorkshir": 73, "wire": 73, "fox": 73, "lakeland": 73, "sealyham": 73, "airedal": 73, "cairn": 73, "australian": 73, "dandi": 73, "dinmont": 73, "boston": 73, "miniatur": 73, "schnauzer": 73, "giant": 73, "tibetan": 73, "silki": 73, "coat": [73, 75], "wheaten": 73, "west": 73, "highland": 73, "lhasa": 73, "apso": 73, "flat": 73, "retriev": 73, "curli": 73, "golden": 73, "labrador": 73, "chesapeak": 73, "bai": 73, "german": [73, 87], "shorthair": 73, "pointer": 73, "vizsla": 73, "setter": 73, "gordon": 73, "brittani": 73, "clumber": 73, "springer": 73, "welsh": 73, "cocker": 73, "sussex": 73, "kuvasz": 73, "schipperk": 73, "groenendael": 73, "malinoi": 73, "briard": 73, "kelpi": 73, "komondor": 73, "sheepdog": 73, "shetland": 73, "colli": 73, "bouvier": 73, "de": 73, "flandr": 73, "rottweil": 73, "shepherd": 73, "dobermann": 73, "pinscher": 73, "swiss": [73, 87], "mountain": 73, "bernes": 73, "appenzel": 73, "sennenhund": 73, "entlebuch": 73, "boxer": 73, "bullmastiff": 73, "mastiff": 73, "french": 73, "bulldog": 73, "dane": 73, "st": 73, "bernard": 73, "huski": 73, "alaskan": 73, "malamut": 73, "siberian": 73, "dalmatian": 73, "affenpinsch": 73, "basenji": 73, "pug": 73, "leonberg": 73, "newfoundland": 73, "pyrenean": 73, "samoi": 73, "pomeranian": 73, "chow": 73, "keeshond": 73, "griffon": 73, "bruxelloi": 73, "pembrok": 73, "corgi": 73, "cardigan": 73, "poodl": 73, "mexican": 73, "hairless": 73, "tundra": 73, "coyot": 73, "dingo": 73, "dhole": 73, "wild": 73, "hyena": 73, "kit": 73, "arctic": 73, "tabbi": 73, "persian": 73, "siames": 73, "egyptian": 73, "mau": 73, "cougar": 73, "lynx": 73, "leopard": 73, "snow": 73, "jaguar": 73, "cheetah": 73, "brown": [73, 84], "bear": 73, "polar": 73, "sloth": 73, "mongoos": 73, "meerkat": 73, "beetl": 73, "ladybug": 73, "ground": [73, 76, 78, 83], "longhorn": 73, "leaf": 73, "rhinocero": 73, "weevil": 73, "fly": 73, "ant": 73, "grasshopp": 73, "cricket": 73, "stick": 73, "insect": 73, "cockroach": 73, "manti": 73, "cicada": 73, "leafhopp": 73, "lacew": 73, "dragonfli": 73, "damselfli": 73, "admir": 73, "ringlet": 73, "monarch": 73, "butterfli": 73, "gossam": 73, "wing": 73, "starfish": 73, "urchin": 73, "cucumb": 73, "cottontail": 73, "rabbit": 73, "hare": 73, "angora": 73, "hamster": 73, "porcupin": 73, "squirrel": 73, "marmot": 73, "beaver": 73, "guinea": 73, "pig": 73, "sorrel": 73, "zebra": 73, "boar": 73, "warthog": 73, "hippopotamu": 73, "ox": 73, "buffalo": 73, "bison": 73, "bighorn": 73, "sheep": 73, "alpin": 73, "ibex": 73, "hartebeest": 73, "impala": 73, "gazel": 73, "dromedari": 73, "llama": 73, "weasel": 73, "mink": 73, "polecat": 73, "foot": 73, "ferret": 73, "otter": 73, "skunk": 73, "badger": 73, "armadillo": 73, "toed": 73, "orangutan": 73, "gorilla": 73, "chimpanze": 73, "gibbon": 73, "siamang": 73, "guenon": 73, "pata": 73, "monkei": 73, "baboon": 73, "macaqu": 73, "langur": 73, "colobu": 73, "probosci": 73, "marmoset": 73, "capuchin": 73, "howler": 73, "titi": 73, "geoffroi": 73, "lemur": 73, "indri": 73, "asian": 73, "eleph": 73, "bush": 73, "snoek": 73, "eel": 73, "coho": 73, "salmon": 73, "beauti": 73, "clownfish": 73, "sturgeon": 73, "garfish": 73, "lionfish": 73, "pufferfish": 73, "abacu": 73, "abaya": 73, "academ": 73, "gown": 73, "accordion": 73, "acoust": 73, "guitar": 73, "aircraft": 73, "carrier": 73, "airlin": 73, "airship": 73, "altar": 73, "ambul": 73, "amphibi": 73, "clock": [73, 87], "apiari": 73, "apron": 73, "wast": 73, "assault": 73, "rifl": 73, "backpack": 73, "bakeri": 73, "balanc": 73, "beam": 73, "balloon": 73, "ballpoint": 73, "pen": 73, "aid": 73, "banjo": 73, "balust": 73, "barbel": 73, "barber": 73, "chair": [73, 80], "barbershop": 73, "baromet": 73, "barrel": 73, "wheelbarrow": 73, "basebal": 73, "basketbal": 73, "bassinet": 73, "bassoon": 73, "swim": 73, "cap": 73, "bath": 73, "towel": 73, "bathtub": 73, "station": 73, "wagon": 73, "lighthous": 73, "beaker": 73, "militari": 73, "beer": 73, "bottl": 73, "glass": 73, "bell": 73, "cot": 73, "bib": 73, "bicycl": [73, 84], "bikini": 73, "binder": 73, "binocular": 73, "birdhous": 73, "boathous": 73, "bobsleigh": 73, "bolo": 73, "tie": 73, "poke": 73, "bonnet": 73, "bookcas": 73, "bookstor": 73, "bow": 73, "brass": 73, "bra": 73, "breakwat": 73, "breastplat": 73, "broom": 73, "bucket": 73, "buckl": 73, "bulletproof": 73, "vest": 73, "butcher": 73, "shop": 73, "taxicab": 73, "cauldron": 73, "candl": 73, "cannon": 73, "cano": 73, "mirror": [73, 80], "carousel": 73, "tool": [73, 76, 78], "carton": 73, "wheel": 73, "teller": 73, "cassett": 73, "player": 73, "castl": 73, "catamaran": 73, "cd": 73, "cello": 73, "mobil": [73, 87], "chain": 73, "fenc": [73, 84], "mail": 73, "chainsaw": 73, "chest": 73, "chiffoni": 73, "chime": 73, "china": 73, "cabinet": 73, "christma": 73, "stock": 73, "church": 73, "movi": 73, "theater": 73, "cleaver": 73, "cliff": 73, "dwell": 73, "cloak": 73, "clog": 73, "cocktail": 73, "shaker": 73, "coffe": 73, "mug": 73, "coffeemak": 73, "coil": 73, "lock": 73, "keyboard": 73, "confectioneri": 73, "ship": [73, 81], "corkscrew": 73, "cornet": 73, "cowboi": 73, "boot": 73, "hat": 73, "cradl": 73, "crash": 73, "helmet": 73, "crate": 73, "infant": 73, "bed": 73, "crock": 73, "pot": 73, "croquet": 73, "crutch": 73, "cuirass": 73, "dam": 73, "desk": 73, "desktop": 73, "rotari": 73, "dial": 73, "telephon": 73, "diaper": 73, "watch": 73, "dine": 73, "dishcloth": 73, "dishwash": 73, "disc": 73, "brake": 73, "dock": 73, "sled": 73, "dome": 73, "doormat": 73, "drill": 73, "rig": 73, "drum": 73, "drumstick": 73, "dumbbel": 73, "dutch": 73, "oven": 73, "fan": 73, "locomot": 73, "entertain": 73, "center": 73, "envelop": 73, "espresso": 73, "powder": 73, "feather": 73, "fireboat": 73, "engin": [73, 84], "screen": 73, "sheet": 73, "flagpol": 73, "flute": 73, "footbal": 73, "forklift": 73, "fountain": 73, "poster": 73, "freight": 73, "fry": 73, "pan": 73, "fur": 73, "garbag": 73, "ga": 73, "pump": 73, "goblet": 73, "kart": 73, "golf": 73, "cart": 73, "gondola": 73, "gong": 73, "grand": 73, "piano": 73, "greenhous": 73, "grill": 73, "groceri": 73, "guillotin": 73, "barrett": 73, "hair": 73, "sprai": 73, "hammer": 73, "dryer": 73, "hand": [73, 76], "handkerchief": 73, "drive": 73, "harmonica": 73, "harp": 73, "harvest": 73, "hatchet": 73, "holster": 73, "honeycomb": 73, "hoop": 73, "skirt": 73, "horizont": 73, "bar": 73, "hors": [73, 81, 86], "drawn": 73, "hourglass": 73, "ipod": 73, "cloth": 73, "iron": 73, "jack": 73, "lantern": 73, "jean": 73, "jeep": 73, "shirt": [73, 75], "jigsaw": 73, "puzzl": 73, "pull": 73, "rickshaw": 73, "joystick": 73, "kimono": 73, "knee": 73, "pad": 73, "knot": 73, "ladl": 73, "lampshad": 73, "laptop": 73, "lawn": 73, "mower": 73, "knife": 73, "lifeboat": 73, "lighter": 73, "limousin": 73, "ocean": 73, "liner": 73, "lipstick": 73, "slip": 73, "shoe": 73, "lotion": 73, "speaker": 73, "loup": 73, "sawmil": 73, "magnet": 73, "compass": 73, "bag": [73, 75, 81, 82], "mailbox": 73, "tight": 73, "tank": 73, "manhol": 73, "maraca": 73, "marimba": 73, "maypol": 73, "maze": 73, "cup": [73, 80], "medicin": 73, "megalith": 73, "microphon": 73, "microwav": 73, "milk": 73, "minibu": 73, "miniskirt": 73, "minivan": 73, "missil": 73, "mitten": 73, "mix": 73, "bowl": 73, "modem": 73, "monasteri": 73, "monitor": 73, "mope": 73, "mortar": 73, "mosqu": 73, "mosquito": 73, "scooter": 73, "bike": 73, "tent": 73, "mous": [73, 74], "mousetrap": 73, "van": 73, "muzzl": 73, "nail": 73, "brace": 73, "necklac": 73, "nippl": 73, "obelisk": 73, "obo": 73, "ocarina": 73, "odomet": 73, "oil": 73, "oscilloscop": 73, "overskirt": 73, "bullock": 73, "oxygen": 73, "packet": 73, "paddl": 73, "padlock": 73, "paintbrush": 73, "pajama": 73, "palac": [73, 87], "parachut": 73, "park": 73, "bench": 73, "meter": 73, "passeng": 73, "patio": 73, "payphon": 73, "pedest": 73, "pencil": 73, "perfum": 73, "petri": 73, "dish": 73, "photocopi": 73, "plectrum": 73, "pickelhaub": 73, "picket": 73, "pickup": 73, "pier": 73, "piggi": 73, "pill": 73, "pillow": 73, "ping": 73, "pong": 73, "pinwheel": 73, "pirat": 73, "pitcher": 73, "plane": 73, "planetarium": 73, "plastic": 73, "plate": 73, "rack": 73, "plow": 73, "plunger": 73, "polaroid": 73, "camera": 73, "pole": [73, 84], "polic": 73, "poncho": 73, "billiard": 73, "soda": 73, "potter": 73, "power": [73, 76, 87], "prayer": 73, "rug": 73, "printer": 73, "prison": 73, "projectil": 73, "projector": 73, "hockei": 73, "puck": 73, "punch": 73, "purs": 73, "quill": 73, "quilt": 73, "race": 73, "racket": 73, "radiat": 73, "radio": 73, "telescop": 73, "rain": 73, "recreat": 73, "reel": 73, "reflex": 73, "refriger": 73, "remot": 73, "restaur": 73, "revolv": 73, "rotisseri": 73, "eras": 73, "rugbi": 73, "ruler": 73, "safe": 73, "safeti": 73, "salt": 73, "sandal": [73, 75], "sarong": 73, "saxophon": 73, "scabbard": 73, "school": 73, "bu": [73, 84], "schooner": 73, "scoreboard": 73, "crt": 73, "screw": 73, "screwdriv": 73, "seat": 73, "belt": 73, "sew": 73, "shield": 73, "shoji": 73, "basket": 73, "shovel": 73, "shower": 73, "curtain": 73, "ski": 73, "sleep": 73, "door": 73, "slot": 73, "snorkel": 73, "snowmobil": 73, "snowplow": 73, "soap": 73, "dispens": 73, "soccer": [73, 87], "sock": 73, "solar": 73, "thermal": 73, "collector": 73, "sombrero": 73, "soup": 73, "heater": 73, "shuttl": 73, "spatula": 73, "motorboat": 73, "web": 73, "spindl": 73, "sport": [73, 87], "spotlight": 73, "stage": 73, "steam": 73, "arch": 73, "bridg": 73, "steel": 73, "stethoscop": 73, "scarf": 73, "stone": 73, "wall": [73, 84], "stopwatch": 73, "stove": 73, "strainer": 73, "tram": 73, "stretcher": 73, "couch": 73, "stupa": 73, "submarin": 73, "sundial": 73, "sunglass": 73, "sunscreen": 73, "suspens": 73, "mop": 73, "sweatshirt": 73, "swimsuit": 73, "swing": 73, "switch": 73, "syring": 73, "lamp": 73, "tape": 73, "teapot": 73, "teddi": 73, "televis": [73, 87], "tenni": 73, "thatch": 73, "roof": 73, "front": 73, "thimbl": 73, "thresh": 73, "throne": 73, "tile": 73, "toaster": 73, "tobacco": 73, "toilet": 73, "totem": 73, "tow": 73, "tractor": 73, "semi": 73, "trailer": 73, "trai": 73, "trench": 73, "tricycl": 73, "trimaran": 73, "tripod": 73, "triumphal": 73, "trolleybu": 73, "trombon": 73, "tub": 73, "turnstil": 73, "typewrit": 73, "umbrella": 73, "unicycl": 73, "upright": 73, "vacuum": 73, "cleaner": 73, "vase": 73, "vault": 73, "velvet": 73, "vend": 73, "vestment": 73, "viaduct": 73, "violin": 73, "volleybal": 73, "waffl": 73, "wallet": 73, "wardrob": 73, "sink": 73, "wash": 73, "jug": 73, "tower": 73, "whiskei": 73, "whistl": 73, "wig": 73, "shade": [73, 84], "windsor": 73, "wine": 73, "wok": 73, "wooden": 73, "spoon": 73, "wool": 73, "rail": 73, "shipwreck": 73, "yawl": 73, "yurt": 73, "websit": 73, "comic": 73, "book": 73, "crossword": 73, "traffic": [73, 80, 84], "sign": [73, 84, 87], "light": [73, 75, 80, 84], "dust": 73, "jacket": [73, 80], "menu": 73, "guacamol": 73, "consomm": 73, "trifl": 73, "ic": 73, "cream": 73, "pop": 73, "baguett": 73, "bagel": 73, "pretzel": 73, "cheeseburg": 73, "mash": 73, "potato": 73, "cabbag": 73, "broccoli": 73, "cauliflow": 73, "zucchini": 73, "spaghetti": 73, "squash": 73, "acorn": 73, "butternut": 73, "artichok": 73, "pepper": 73, "cardoon": 73, "mushroom": 73, "granni": 73, "smith": 73, "strawberri": 73, "orang": 73, "lemon": 73, "pineappl": 73, "banana": 73, "jackfruit": 73, "custard": 73, "appl": 73, "pomegran": 73, "hai": 73, "carbonara": 73, "chocol": 73, "syrup": 73, "dough": 73, "meatloaf": 73, "pizza": 73, "pie": 73, "burrito": 73, "eggnog": 73, "alp": 73, "bubbl": 73, "reef": 73, "geyser": 73, "lakeshor": 73, "promontori": 73, "shoal": 73, "seashor": 73, "vallei": 73, "volcano": 73, "bridegroom": 73, "scuba": 73, "diver": 73, "rapese": 73, "daisi": 73, "ladi": 73, "slipper": 73, "corn": 73, "rose": 73, "hip": 73, "chestnut": 73, "fungu": 73, "agar": 73, "gyromitra": 73, "stinkhorn": 73, "earth": 73, "star": 73, "wood": 73, "bolet": 73, "ear": 73, "cifar10_test_set": 73, "airplan": [73, 81], "automobil": [73, 81], "deer": [73, 81], "cifar100_test_set": 73, "aquarium_fish": 73, "babi": 73, "boi": 73, "camel": 73, "caterpillar": 73, "cattl": [73, 87], "cloud": 73, "dinosaur": 73, "dolphin": 73, "flatfish": 73, "forest": 73, "girl": 73, "kangaroo": 73, "lawn_mow": 73, "man": 73, "maple_tre": 73, "motorcycl": [73, 84], "oak_tre": 73, "orchid": 73, "palm_tre": 73, "pear": 73, "pickup_truck": 73, "pine_tre": 73, "plain": 73, "poppi": 73, "possum": 73, "raccoon": 73, "road": [73, 84], "rocket": 73, "seal": 73, "shrew": 73, "skyscrap": 73, "streetcar": 73, "sunflow": 73, "sweet_pepp": 73, "trout": 73, "tulip": 73, "willow_tre": 73, "woman": [73, 80], "caltech256": 73, "ak47": 73, "bat": 73, "glove": 73, "birdbath": 73, "blimp": 73, "bonsai": 73, "boom": 73, "breadmak": 73, "buddha": 73, "bulldoz": 73, "cactu": 73, "cake": 73, "tire": 73, "cartman": 73, "cereal": 73, "chandeli": 73, "chess": 73, "board": 73, "chimp": 73, "chopstick": 73, "coffin": 73, "coin": 73, "comet": 73, "cormor": 73, "globe": 73, "diamond": 73, "dice": 73, "doorknob": 73, "drink": 73, "straw": 73, "dumb": 73, "eiffel": 73, "elk": 73, "ewer": 73, "eyeglass": 73, "fern": 73, "fighter": 73, "jet": [73, 83], "extinguish": 73, "hydrant": 73, "firework": 73, "flashlight": 73, "floppi": 73, "fri": 73, "frisbe": 73, "galaxi": 73, "giraff": 73, "goat": 73, "gate": 73, "grape": 73, "pick": 73, "hamburg": 73, "hammock": 73, "harpsichord": 73, "hawksbil": 73, "helicopt": 73, "hibiscu": 73, "homer": 73, "simpson": 73, "horsesho": 73, "air": 73, "skeleton": 73, "ibi": 73, "cone": 73, "iri": 73, "jesu": 73, "christ": 73, "joi": 73, "kayak": 73, "ketch": 73, "ladder": 73, "lath": 73, "licens": 73, "lightbulb": 73, "lightn": 73, "mandolin": 73, "mar": 73, "mattress": 73, "megaphon": 73, "menorah": 73, "microscop": 73, "minaret": 73, "minotaur": 73, "motorbik": 73, "mussel": 73, "neckti": 73, "octopu": 73, "palm": 73, "pilot": 73, "paperclip": 73, "shredder": 73, "pci": 73, "peopl": [73, 80], "pez": 73, "picnic": 73, "pram": 73, "prai": 73, "pyramid": 73, "rainbow": 73, "roulett": 73, "saddl": 73, "saturn": 73, "segwai": 73, "propel": 73, "sextant": 73, "music": 73, "skateboard": 73, "smokestack": 73, "sneaker": 73, "boat": 73, "stain": 73, "steer": 73, "stirrup": 73, "superman": 73, "sushi": 73, "armi": [73, 87], "sword": 73, "tambourin": 73, "teepe": 73, "court": 73, "theodolit": 73, "tomato": 73, "tombston": 73, "tour": 73, "pisa": 73, "treadmil": 73, "fork": 73, "tweezer": 73, "unicorn": 73, "vcr": 73, "waterfal": 73, "watermelon": 73, "weld": 73, "windmil": 73, "xylophon": 73, "yarmulk": 73, "yo": 73, "toad": 73, "twenty_news_test_set": 73, "alt": 73, "atheism": 73, "comp": 73, "graphic": [73, 84], "misc": [73, 87], "sy": 73, "ibm": 73, "pc": 73, "hardwar": 73, "mac": 73, "forsal": 73, "rec": 73, "sci": 73, "crypt": 73, "electron": 73, "med": 73, "soc": 73, "religion": 73, "christian": [73, 87], "talk": [73, 87], "polit": 73, "gun": 73, "mideast": 73, "amazon": 73, "neutral": 73, "imdb_test_set": 73, "all_class": 73, "20news_test_set": 73, "_load_classes_predprobs_label": 73, "dataset_nam": 73, "labelerror": 73, "url_bas": 73, "5392f6c71473055060be3044becdde1cbc18284d": 73, "url_label": 73, "original_test_label": 73, "_original_label": 73, "url_prob": 73, "cross_validated_predicted_prob": 73, "_pyx": 73, "num_part": 73, "datatset": 73, "bytesio": 73, "allow_pickl": 73, "pred_probs_part": 73, "url": 73, "_of_": 73, "nload": 73, "imdb": 73, "ve": [73, 76, 78, 80], "interpret": [73, 74, 76], "capit": 73, "50000": 73, "medic": [73, 87], "doctor": 73, "836": 73, "736842": 73, "282": [73, 80], "76": [73, 76, 79, 80, 83], "714286": 73, "265": [73, 79], "400000": 73, "782": 73, "74": [73, 80, 83, 85], "628571": 73, "620": 73, "36": [73, 87], "72": [73, 76, 79, 83, 85], "500000": 73, "995": 73, "522": 73, "038462": 73, "996": 73, "480": 73, "074074": 73, "997": 73, "716": 73, "998": 73, "722": 73, "466": 73, "987": 73, "44": [73, 75, 79, 80], "00088": 73, "435": 73, "876": 73, "00076": 73, "638": 73, "639": 73, "00072": 73, "681": 73, "00070": 73, "499495": 73, "183": 73, "717": 73, "00000": 73, "499496": 73, "499497": 73, "715": 73, "714": 73, "499499": 73, "729": 73, "499500": 73, "772": 73, "82": [73, 76, 80], "29780": 73, "256": [73, 74, 80], "29": [73, 75, 78, 79, 80, 84, 87], "780": 73, "254": [73, 80], "359223": 73, "333333": 73, "640777": 73, "184": [73, 76], "282609": 73, "341176": 73, "253333": 73, "658824": 73, "337349": 73, "246575": 73, "662651": 73, "248": 73, "330000": 73, "355769": 73, "670000": 73, "251": [73, 80], "112": 73, "252": 73, "253": [73, 80], "058824": 73, "167": [73, 76, 80], "255": [73, 75], "190": [73, 76, 80], "66": 73, "002216": 73, "000974": 73, "59": [73, 80], "88": [73, 75, 76, 79, 80, 83, 85], "000873": 73, "79": [73, 80], "000739": 73, "32635": 73, "47": [73, 80], "32636": 73, "32637": 73, "32638": 73, "32639": 73, "32640": 73, "420": 73, "002242": 73, "997758": 73, "002088": 73, "001045": 73, "997912": 73, "002053": 73, "997947": 73, "001980": 73, "000991": 73, "998020": 73, "001946": 73, "002915": 73, "998054": 73, "001938": 73, "002904": 73, "998062": 73, "001020": 73, "998980": 73, "001018": 73, "002035": 73, "998982": 73, "999009": 73, "0003": 73, "0002": 73, "27": [73, 76, 80, 87], "71": [73, 80, 85], "071": 73, "067269": 73, "929": 73, "046": 73, "057312": 73, "954": 73, "035": 73, "032096": 73, "965": 73, "031": 73, "012232": 73, "969": 73, "022": 73, "025896": 73, "978": 73, "020": [73, 76], "013092": 73, "018": 73, "013065": 73, "016": 73, "031496": 73, "984": 73, "013": 73, "020833": 73, "012": 73, "010020": 73, "988": 73, "0073": 73, "0020": 73, "0016": 73, "0015": 73, "0014": 73, "0013": 73, "0012": 73, "0010": 73, "0008": 73, "0007": 73, "0006": 73, "0005": 73, "0004": 73, "284": [73, 80], "97": [73, 74, 76, 80, 83, 85, 87], "452381": 73, "459770": 73, "518868": 73, "460784": 73, "446602": 73, "57": 73, "68": [73, 76, 80, 85], "103774": 73, "030612": 73, "049020": 73, "98": [73, 74, 83], "110092": 73, "99": [73, 76, 85], "0034": 73, "0032": 73, "0026": 73, "0025": 73, "4945": 73, "4946": 73, "85": [73, 80, 83], "4947": 73, "4948": 73, "83": [73, 76, 80, 83, 85, 87], "4949": 73, "4950": 73, "25000": 73, "708": 73, "601": 73, "05664": 73, "048495": 73, "94336": 73, "04808": 73, "056159": 73, "95192": 73, "1309": 73, "05236": 73, "309": 73, "7532": 73, "532": 73, "034483": 73, "009646": 73, "965517": 73, "030457": 73, "020513": 73, "969543": 73, "028061": 73, "035443": 73, "971939": 73, "025316": 73, "005168": 73, "974684": 73, "049751": 73, "979487": 73, "019920": 73, "042802": 73, "980080": 73, "017677": 73, "005115": 73, "982323": 73, "012987": 73, "005236": 73, "987013": 73, "012723": 73, "025126": 73, "987277": 73, "010989": 73, "008264": 73, "989011": 73, "010283": 73, "027778": 73, "989717": 73, "009677": 73, "990323": 73, "007614": 73, "010127": 73, "992386": 73, "005051": 73, "994949": 73, "005025": 73, "994975": 73, "005013": 73, "994987": 73, "001859": 73, "001328": 73, "000929": 73, "000664": 73, "186": [73, 76], "187": 73, "188": [73, 76, 79], "189": [73, 76], "9996437": 73, "437": 73, "228667": 73, "287149": 73, "192393": 73, "230267": 73, "807607": 73, "142732": 73, "132872": 73, "155587": 73, "146413": 73, "844413": 73, "203006": 73, "154384": 73, "025728": 73, "019687": 73, "974272": 73, "298801": 73, "029891": 73, "217015": 73, "021709": 73, "58589": 73, "005861": 73, "574": 73, "405": 73, "snippet": 74, "nlp": [74, 87], "mind": [74, 76], "number_of_class": 74, "total_number_of_data_point": 74, "drop": [74, 78, 83, 86], "feed": 74, "alphabet": 74, "labels_proper_format": 74, "your_classifi": 74, "issues_datafram": 74, "class_predicted_for_flagged_exampl": 74, "class_predicted_for_all_exampl": 74, "grant": 74, "datataset": 74, "fair": [74, 76], "game": 74, "speedup": [74, 81], "flexibl": 74, "tempfil": 74, "mkdtemp": 74, "anywai": 74, "pred_probs_merg": 74, "merge_rare_class": 74, "count_threshold": 74, "class_mapping_orig2new": 74, "heath_summari": 74, "num_examples_per_class": 74, "rare_class": 74, "num_classes_merg": 74, "other_class": 74, "labels_merg": 74, "new_c": 74, "merged_prob": 74, "keepdim": 74, "hstack": [74, 75, 76, 78], "new_class": 74, "original_class": 74, "num_check": 74, "ones_array_ref": 74, "isclos": 74, "though": [74, 76, 87], "successfulli": 74, "meaning": [74, 81], "virtuou": [74, 78], "cycl": [74, 78], "jointli": 74, "junk": 74, "clutter": 74, "unknown": 74, "caltech": 74, "intersect": 74, "combined_boolean_mask": 74, "mask1": 74, "mask2": 74, "gradientboostingclassifi": [74, 76], "true_error": [74, 76, 79], "101": [74, 80], "102": [74, 79, 80, 87], "104": [74, 80], "model_to_find_error": 74, "model_to_return": 74, "cl0": 74, "randomizedsearchcv": 74, "expens": 74, "param_distribut": 74, "learning_r": [74, 76], "max_depth": [74, 76], "magnitud": 74, "coeffici": [74, 83], "optin": 74, "environ": [74, 76], "rerun": [74, 76], "cell": [74, 76], "On": [74, 76, 80], "unabl": [74, 76], "render": [74, 76], "nbviewer": [74, 76], "cleanlearningcleanlearn": [74, 76], "linearregressionlinearregress": 74, "assist": 74, "streamlin": 74, "ux": 74, "agpl": 74, "compani": 74, "commerci": 74, "alter": 74, "email": 74, "discuss": 74, "anywher": 74, "60": [75, 76], "excess": 75, "torchvis": [75, 81], "tensordataset": 75, "stratifiedkfold": [75, 79], "tqdm": 75, "fashion_mnist": 75, "0a671f063342996f19779d38c0ab4abef9c64f757b35af8134b331c294d7ba48": 75, "num_row": 75, "60000": 75, "pil": 75, "transformed_dataset": 75, "with_format": 75, "unsqueez": 75, "num_proc": 75, "cpu_count": 75, "torch_dataset": 75, "quick": [75, 79], "super": 75, "relu": 75, "batchnorm2d": 75, "maxpool2d": 75, "lazylinear": 75, "flatten": 75, "get_test_accuraci": 75, "testload": [75, 81], "energi": 75, "trainload": [75, 81], "n_epoch": 75, "patienc": 75, "criterion": 75, "crossentropyloss": 75, "adamw": 75, "best_test_accuraci": 75, "start_epoch": 75, "running_loss": 75, "best_epoch": 75, "end_epoch": 75, "3f": [75, 83], "acc": [75, 76], "time_taken": 75, "compute_embed": 75, "compute_pred_prob": 75, "train_batch_s": 75, "num_work": 75, "worker": [75, 87], "train_id_list": 75, "test_id_list": 75, "train_id": 75, "test_id": 75, "embeddings_model": 75, "ntrain": 75, "trainset": 75, "testset": 75, "pin_memori": 75, "fold_embed": 75, "fold_pred_prob": 75, "finish": 75, "483": 75, "775": 75, "443": [75, 87], "329": [75, 80], "215": [75, 80], "78it": 75, "40it": 75, "492": 75, "87": [75, 80, 83, 85, 86], "095": 75, "403": 75, "415": 75, "145": [75, 80], "92it": 75, "97it": 75, "476": 75, "562": 75, "327": [75, 80], "755": 75, "901": 75, "13it": 75, "05it": 75, "reorder": 75, "vision": 75, "low_inform": 75, "odd_aspect_ratio": 75, "odd_siz": 75, "grayscal": 75, "exce": 75, "max_preval": 75, "7797": 75, "3818": 75, "3486": 75, "310": 75, "166": 75, "9667": 75, "27080": 75, "715920": 75, "4156": 75, "718073": 75, "40378": 75, "721143": 75, "25316": 75, "725187": 75, "30820": 75, "731430": 75, "9410": 75, "19228": 75, "dress": 75, "32657": 75, "000007": 75, "53564": 75, "000010": 75, "pullov": 75, "21282": 75, "000021": 75, "54078": 75, "000022": [75, 87], "0262": 75, "54565": 75, "9762": 75, "47139": 75, "258": 75, "30968": 75, "30659": 75, "000026": 75, "0425": 75, "57620": 75, "647848": 75, "7475": 75, "663768": 75, "27513": 75, "672686": 75, "41556": 75, "674473": 75, "14509": 75, "675285": 75, "04246606876652691": 75, "069238": 75, "970188": 75, "997795": 75, "928584": 75, "999650": 75, "12076": 75, "trouser": 75, "11262": 75, "000028": 75, "plot_label_issue_exampl": 75, "ncol": [75, 81], "nrow": [75, 81], "ceil": 75, "axes_list": 75, "label_issue_indic": 75, "gl": 75, "sl": 75, "fontdict": 75, "imshow": [75, 81], "cmap": [75, 83], "grai": 75, "subplots_adjust": 75, "hspace": 75, "outsiz": 75, "outlier_issues_df": 75, "depict": [75, 79, 80, 81, 82, 84], "plot_outlier_issues_exampl": 75, "n_comparison_imag": 75, "sample_from_class": 75, "number_of_sampl": 75, "non_outlier_indic": 75, "isnul": 75, "non_outlier_indices_excluding_curr": 75, "sampled_indic": 75, "label_scores_of_sampl": 75, "top_score_indic": 75, "top_label_indic": 75, "sampled_imag": 75, "get_image_given_label_and_sampl": 75, "image_from_dataset": 75, "corresponding_label": 75, "comparison_imag": 75, "images_to_plot": 75, "idlist": 75, "iterrow": 75, "especi": [75, 83, 85, 86], "near_duplicate_issu": 75, "closest": 75, "counterpart": 75, "near_duplicate_issues_df": 75, "plot_near_duplicate_issue_exampl": 75, "seen_id_pair": 75, "get_image_and_given_label_and_predicted_label": 75, "duplicate_imag": 75, "nd_set": 75, "challeng": 75, "dark_issu": 75, "reveal": [75, 84], "dark_scor": 75, "dark_issues_df": 75, "is_dark_issu": 75, "34848": 75, "203922": 75, "50270": 75, "204588": 75, "3936": 75, "213098": 75, "733": 75, "217686": 75, "8094": 75, "230118": 75, "plot_image_issue_exampl": 75, "difficult": 75, "disproportion": 75, "lowinfo_issu": 75, "low_information_scor": 75, "lowinfo_issues_df": 75, "is_low_information_issu": 75, "53050": 75, "067975": 75, "40875": 75, "089929": 75, "9594": 75, "092601": 75, "34825": 75, "107744": 75, "37530": 75, "108516": 75, "lot": 75, "depth": 76, "survei": [76, 87], "focus": [76, 78], "scienc": 76, "multivariate_norm": [76, 78, 79], "make_data": [76, 78], "cov": [76, 78, 79], "avg_trac": [76, 79], "test_label": [76, 79, 81, 86], "py_tru": 76, "noise_matrix_tru": 76, "noise_marix": 76, "s_test": 76, "noisy_test_label": 76, "purpl": 76, "val": 76, "namespac": 76, "exec": 76, "markerfacecolor": [76, 79], "markeredgecolor": [76, 79, 83], "markers": [76, 79, 83], "markeredgewidth": [76, 79, 83], "realist": 76, "6000": 76, "638483e": 76, "897052e": 76, "548986e": 76, "924634e": 76, "374580e": 76, "4643": 76, "147": [76, 80], "050286": 76, "065420": 76, "109420": 76, "111687": 76, "115403": 76, "3312": 76, "007136": 76, "119": [76, 80], "033725": 76, "103": [76, 80], "033738": 76, "238": [76, 80], "037825": 76, "236": [76, 80], "037843": 76, "222": 76, "614915": 76, "122": [76, 80], "624422": 76, "625965": 76, "626079": 76, "118": 76, "627675": 76, "695174": 76, "323529": 76, "522929": 76, "013722": 76, "675606": 76, "646438": 76, "anyth": 76, "enhanc": [76, 78, 80], "magic": 76, "liter": 76, "identif": 76, "x27": 76, "logisticregressionlogisticregress": 76, "ever": 76, "truth": [76, 78, 83], "092": 76, "040": 76, "024": 76, "004": 76, "surpris": 76, "arxiv": 76, "ab": 76, "1705": 76, "01936": 76, "ton": 76, "yourfavoritemodel1": 76, "merged_label": 76, "merged_test_label": 76, "newli": [76, 78], "yourfavoritemodel2": 76, "yourfavoritemodel3": 76, "cl3": 76, "takeawai": 76, "That": [76, 79], "randomli": 76, "my_test_pred_prob": 76, "my_test_pr": 76, "issues_test": 76, "corrected_test_label": 76, "pretend": 76, "cl_test_pr": 76, "69": [76, 83], "fairli": 76, "label_acc": 76, "percentag": 76, "offset": 76, "nquestion": 76, "overestim": 76, "answer": 76, "experienc": 76, "06": [76, 80, 87], "62": [76, 80, 83], "knowledg": 76, "quantiti": [76, 83], "prioiri": 76, "known": 76, "versatil": 76, "label_issues_indic": 76, "213": [76, 80], "212": [76, 85], "218": [76, 80], "152": 76, "197": [76, 80], "196": [76, 80], "170": 76, "214": 76, "164": [76, 79], "198": [76, 80], "191": [76, 80], "63": [76, 80], "121": [76, 86], "117": [76, 83], "206": [76, 80], "115": [76, 80], "193": 76, "194": 76, "201": [76, 80], "174": [76, 87], "163": 76, "150": [76, 78, 80], "169": 76, "151": [76, 80], "precision_scor": 76, "recall_scor": 76, "f1_score": 76, "true_label_issu": 76, "filter_by_list": 76, "718750": [76, 78], "807018": 76, "912": 76, "733333": 76, "800000": 76, "721311": 76, "792793": 76, "908": 76, "676923": 76, "765217": 76, "892": 76, "567901": 76, "702290": 76, "844": 76, "gaug": 76, "label_issues_count": 76, "155": [76, 80], "156": 76, "172": [76, 79], "157": 76, "easiest": 76, "modular": 76, "penalti": 76, "l2": 76, "model3": 76, "n_estim": 76, "cv_pred_probs_1": 76, "cv_pred_probs_2": 76, "cv_pred_probs_3": 76, "label_quality_scores_best": 76, "cv_pred_probs_ensembl": 76, "label_quality_scores_bett": 76, "superior": [76, 82], "workflow": [77, 83], "speechbrain": 77, "timm": 77, "glad": 78, "multiannotator_label": 78, "300": [78, 87], "noisier": 78, "111": [78, 83], "local_data": [78, 79], "true_labels_train": [78, 79], "noise_matrix_bett": 78, "noise_matrix_wors": 78, "transpos": [78, 81], "dropna": 78, "zfill": 78, "row_na_check": 78, "notna": 78, "reset_index": 78, "a0001": 78, "a0002": 78, "a0003": 78, "a0004": 78, "a0005": 78, "a0006": 78, "a0007": 78, "a0008": 78, "a0009": 78, "a0010": 78, "a0041": 78, "a0042": 78, "a0043": 78, "a0044": 78, "a0045": 78, "a0046": 78, "a0047": 78, "a0048": 78, "a0049": 78, "a0050": 78, "na": 78, "60856743": 78, "41693214": 78, "40908785": 78, "87147629": 78, "64941785": 78, "10774851": 78, "0524466": 78, "71853246": 78, "37169848": 78, "66031048": 78, "multiannotator_util": 78, "crude": 78, "straight": 78, "majority_vote_label": 78, "736157": 78, "757738": 78, "782255": 78, "715585": 78, "824273": 78, "quality_annotator_a0001": 78, "quality_annotator_a0002": 78, "quality_annotator_a0003": 78, "quality_annotator_a0004": 78, "quality_annotator_a0005": 78, "quality_annotator_a0006": 78, "quality_annotator_a0007": 78, "quality_annotator_a0008": 78, "quality_annotator_a0009": 78, "quality_annotator_a0010": 78, "quality_annotator_a0041": 78, "quality_annotator_a0042": 78, "quality_annotator_a0043": 78, "quality_annotator_a0044": 78, "quality_annotator_a0045": 78, "quality_annotator_a0046": 78, "quality_annotator_a0047": 78, "quality_annotator_a0048": 78, "quality_annotator_a0049": 78, "quality_annotator_a0050": 78, "070551": 78, "216064": 78, "119178": 78, "alongisd": 78, "244982": 78, "208333": 78, "295978": 78, "294118": 78, "324194": 78, "310345": 78, "355315": 78, "346154": 78, "439728": 78, "480000": 78, "a0031": 78, "523205": 78, "580645": 78, "a0034": 78, "535313": 78, "607143": 78, "a0021": 78, "607002": 78, "a0015": 78, "609527": 78, "678571": 78, "a0011": 78, "621101": 78, "692308": 78, "wors": 78, "improved_consensus_label": 78, "majority_vote_accuraci": 78, "cleanlab_label_accuraci": 78, "8581081081081081": 78, "9797297297297297": 78, "besid": 78, "sorted_consensus_quality_scor": 78, "worst_qual": 78, "better_qu": 78, "worst_quality_accuraci": 78, "better_quality_accuraci": 78, "9893238434163701": 78, "improved_pred_prob": 78, "treat": [78, 79, 83, 87], "analzi": 78, "copyright": 79, "advertis": 79, "violenc": 79, "nsfw": 79, "ranked_label_issu": [79, 85, 86], "multioutput": 79, "multioutputclassifi": 79, "celeba": 79, "make_multilabel_data": 79, "boxes_coordin": 79, "box_multilabel": 79, "make_multi": 79, "bx1": 79, "by1": 79, "bx2": 79, "by2": 79, "label_list": 79, "ur": 79, "upper": 79, "inidx": 79, "logical_and": 79, "tolist": 79, "inv_d": 79, "labels_idx": 79, "true_labels_test": 79, "dict_unique_label": 79, "get_color_arrai": 79, "dcolor": 79, "aa4400": 79, "55227f": 79, "55a100": 79, "00ff00": 79, "007f7f": 79, "386b55": 79, "0000ff": 79, "simplic": 79, "advis": 79, "y_onehot": 79, "single_class_label": 79, "stratifi": [79, 82], "kf": 79, "train_index": 79, "test_index": 79, "clf_cv": 79, "x_train_cv": 79, "x_test_cv": 79, "y_train_cv": 79, "y_test_cv": 79, "y_pred_cv": 79, "saw": 79, "num_to_displai": 79, "09": [79, 80], "275": 79, "267": 79, "225": 79, "171": 79, "234": 79, "165": 79, "227": [79, 80], "262": [79, 80], "263": [79, 80], "266": [79, 80], "139": 79, "143": [79, 80, 87], "216": [79, 80, 87], "159": [79, 80], "despit": [79, 87], "suspect": 79, "888": 79, "8224": 79, "9632": 79, "968": 79, "6512": 79, "0444": 79, "774": 79, "labels_binary_format": 79, "labels_list_format": 79, "surround": 80, "scene": 80, "coco": 80, "everydai": 80, "has_label_issu": 80, "insal": 80, "nc": [80, 84, 87], "s3": [80, 84, 87], "amazonaw": [80, 84, 87], "objectdetectionbenchmark": 80, "tutorial_obj": 80, "pkl": 80, "example_imag": 80, "unzip": [80, 87], "begin": 80, "detectron2": 80, "image_path": 80, "rb": 80, "image_to_visu": 80, "seg_map": 80, "334": 80, "float32": 80, "bboxes_ignor": 80, "290": 80, "286": 80, "285": 80, "224": 80, "231": 80, "293": 80, "235": 80, "289": [80, 83], "281": 80, "271": 80, "280": 80, "277": 80, "93": [80, 83], "279": 80, "287": 80, "299": 80, "276": 80, "307": 80, "321": 80, "326": 80, "330": 80, "333": 80, "261": 80, "319": 80, "257": 80, "295": 80, "283": 80, "243": 80, "303": 80, "316": 80, "247": 80, "323": 80, "328": 80, "226": [80, 87], "232": 80, "239": 80, "240": 80, "209": 80, "242": 80, "202": 80, "230": 80, "220": 80, "229": 80, "217": [80, 87], "237": 80, "207": 80, "204": 80, "205": 80, "223": 80, "153": 80, "149": 80, "140": 80, "244": [80, 87], "124": 80, "268": 80, "273": 80, "108": 80, "110": 80, "136": 80, "173": 80, "297": 80, "317": 80, "192": 80, "332": 80, "324": 80, "203": 80, "320": 80, "314": 80, "199": 80, "291": 80, "000000481413": 80, "jpg": 80, "42398": 80, "44503": 80, "337": [80, 86], "29968": 80, "336": 80, "21005": 80, "9978472": 80, "forgot": 80, "drew": 80, "label_issue_idx": 80, "num_examples_to_show": 80, "113": [80, 83], "candid": 80, "97489622": 80, "70610878": 80, "98764951": 80, "88899237": 80, "99085805": 80, "issue_idx": 80, "95569726e": 80, "03354841e": 80, "57510169e": 80, "58447666e": 80, "39755858e": 80, "suppli": 80, "issue_to_visu": 80, "000000009483": 80, "955697261680538e": 80, "addition": [80, 84], "visibl": 80, "missmatch": 80, "likelei": 80, "agnost": 80, "vaidat": 80, "inconsist": 80, "000000395701": 80, "033548411774308e": 80, "armchair": 80, "tv": 80, "000000154004": 80, "38300759625496356": 80, "foreground": 80, "000000448410": 80, "0008575101690203273": 80, "crowd": 80, "alon": 80, "explor": [80, 81], "resembl": [80, 81], "contribut": 80, "000000499768": 80, "9748962231208227": 80, "000000521141": 80, "8889923658893665": 80, "000000143931": 80, "9876495074395957": 80, "train_feature_embed": 81, "ood_train_feature_scor": 81, "test_feature_embed": 81, "ood_test_feature_scor": 81, "ood_train_predictions_scor": 81, "train_pred_prob": 81, "ood_test_predictions_scor": 81, "test_pred_prob": 81, "pylab": 81, "rcparam": 81, "baggingclassifi": 81, "therebi": 81, "rescal": 81, "transform_norm": 81, "totensor": 81, "root": 81, "animal_class": 81, "non_animal_class": 81, "animal_idx": 81, "isin": 81, "test_idx": 81, "toronto": 81, "edu": 81, "kriz": 81, "5000": 81, "plot_imag": 81, "visualize_outli": 81, "txt_class": 81, "img": [81, 83], "npimg": 81, "show_label": 81, "data_subset": 81, "hidden": 81, "resnet50": 81, "corpu": 81, "2048": 81, "embed_imag": 81, "create_model": 81, "rwightman": 81, "v0": 81, "rsb": 81, "resnet50_a1_0": 81, "14fe96d1": 81, "pth": 81, "strang": 81, "odd": 81, "train_ood_features_scor": 81, "top_train_ood_features_idx": 81, "fun": 81, "negat": 81, "homogen": 81, "bottom_train_ood_features_idx": 81, "test_ood_features_scor": 81, "top_ood_features_idx": 81, "inevit": 81, "trade": 81, "5th": 81, "percentil": 81, "fifth_percentil": 81, "plt_rang": 81, "hist": 81, "train_outlier_scor": 81, "ylabel": 81, "axvlin": 81, "test_outlier_scor": 81, "sorted_idx": 81, "ood_features_indic": 81, "revisit": 81, "unusu": 81, "return_invers": 81, "train_feature_embeddings_sc": 81, "test_feature_embeddings_sc": 81, "train_pred_label": 81, "9702": 81, "train_ood_predictions_scor": 81, "test_ood_predictions_scor": 81, "mainli": [81, 87], "auxiliari": [81, 84], "lost": 81, "unsuit": 82, "ok": [82, 87], "convention": 82, "aforement": 82, "hypothet": 82, "contrast": 82, "tradit": 82, "disjoint": 82, "out_of_sample_pred_probs_for_a": 82, "out_of_sample_pred_probs_for_b": 82, "out_of_sample_pred_probs_for_c": 82, "out_of_sample_pred_prob": 82, "price": 83, "incom": 83, "ag": 83, "histgradientboostingregressor": 83, "r2_score": 83, "student_grades_r": 83, "final_scor": 83, "true_final_scor": 83, "homework": 83, "3d": 83, "hue": 83, "mpl_toolkit": 83, "mplot3d": 83, "axes3d": 83, "errors_idx": 83, "add_subplot": 83, "z": 83, "colorbar": 83, "errors_mask": 83, "feature_column": 83, "predicted_column": 83, "x_train_raw": 83, "x_test_raw": 83, "categorical_featur": [83, 85], "randomforestregressor": 83, "629763": 83, "521450": 83, "954607": 83, "547234": 83, "338296": 83, "754531": 83, "619090": 83, "312295": 83, "806626": 83, "784048": 83, "identified_issu": [83, 86], "659": 83, "367": 83, "560": 83, "318": 83, "305": 83, "688": 83, "657": 83, "view_datapoint": 83, "concat": 83, "consum": [83, 86], "baseline_model": [83, 86], "preds_og": 83, "r2_og": 83, "838": 83, "robustli": [83, 85, 86], "acceler": [83, 86], "found_label_issu": 83, "preds_cl": 83, "r2_cl": 83, "925": 83, "effort": [83, 85, 86], "favorit": 83, "64404888e": 83, "06755306e": 83, "05302732e": 83, "66635743e": 83, "53166364e": 83, "synthia": 84, "semantic_segment": 84, "imagesegment": 84, "given_mask": 84, "predicted_mask": 84, "set_printopt": [84, 87], "sky": 84, "sidewalk": 84, "veget": 84, "terrain": 84, "rider": 84, "pred_probs_filepath": 84, "1088": 84, "1920": 84, "label_filepath": 84, "synthia_class": 84, "maunal": 84, "100000": 84, "244800": 84, "system": 84, "leftmost": 84, "area": 84, "middl": [84, 87], "infact": 84, "rightmost": 84, "discrep": 84, "4997436": 84, "130927": 84, "69it": 84, "3263230": 84, "783379": 84, "275110": 84, "255792": 84, "78225": 84, "55990": 84, "54315": 84, "33591": 84, "24645": 84, "21054": 84, "15045": 84, "14171": 84, "13832": 84, "13498": 84, "11490": 84, "9149": 84, "8769": 84, "6999": 84, "6031": 84, "5011": 84, "mistakenli": 84, "class_issu": 84, "aim": [84, 87], "domin": 84, "extratreesclassifi": 85, "extratre": 85, "labelencod": [85, 86], "labels_raw": 85, "interg": [85, 86], "tress": 85, "928": 85, "911": 85, "cheat": 85, "0pt": 85, "864": 85, "498": 85, "labels_train": 85, "labels_test": 85, "acc_og": [85, 86], "783068783068783": 85, "acc_cl": [85, 86], "8095238095238095": 85, "earlier": [86, 87], "raw_label": 86, "raw_train_text": 86, "raw_test_text": 86, "raw_train_label": 86, "raw_test_label": 86, "encond": 86, "train_text": 86, "test_text": 86, "858043": 86, "545888": 86, "826290": 86, "965814": 86, "791937": 86, "646": 86, "390": 86, "628": 86, "702": 86, "863": 86, "135": 86, "735": 86, "print_as_df": 86, "inverse_transform": 86, "fight": 86, "bunch": 87, "conll": 87, "2003": 87, "love": 87, "n_i": 87, "optional_list_of_ordered_class_nam": 87, "deepai": 87, "conll2003": 87, "rm": 87, "tokenclassif": 87, "2023": 87, "2400": 87, "52e0": 87, "1a01": 87, "992": 87, "connect": 87, "await": 87, "982975": 87, "960k": 87, "959": 87, "94k": 87, "kb": 87, "mb": 87, "directori": 87, "inflat": 87, "177": 87, "17045998": 87, "16m": 87, "octet": 87, "26m": 87, "5mb": 87, "bert": 87, "read_npz": 87, "filepath": 87, "corrsespond": 87, "iob2": 87, "given_ent": 87, "entity_map": 87, "readfil": 87, "sep": 87, "startswith": 87, "docstart": 87, "isalpha": 87, "isupp": 87, "indices_to_preview": 87, "nsentenc": 87, "eu": 87, "reject": 87, "boycott": 87, "british": 87, "lamb": 87, "00030412": 87, "00023826": 87, "99936208": 87, "00007009": 87, "00002545": 87, "99998795": 87, "00000401": 87, "00000218": 87, "00000455": 87, "00000131": 87, "00000749": 87, "99996115": 87, "00001371": 87, "0000087": 87, "00000895": 87, "99998936": 87, "00000382": 87, "00000178": 87, "00000366": 87, "00000137": 87, "99999101": 87, "00000266": 87, "00000174": 87, "0000035": 87, "00000109": 87, "99998768": 87, "00000482": 87, "00000202": 87, "00000438": 87, "0000011": 87, "00000465": 87, "99996392": 87, "00001105": 87, "0000116": 87, "00000878": 87, "99998671": 87, "00000364": 87, "00000213": 87, "00000472": 87, "00000281": 87, "99999073": 87, "00000211": 87, "00000159": 87, "00000442": 87, "00000115": 87, "peter": 87, "blackburn": 87, "00000358": 87, "00000529": 87, "99995623": 87, "0000129": 87, "0000024": 87, "00001812": 87, "99994141": 87, "00001645": 87, "00002162": 87, "brussel": 87, "1996": 87, "00001172": 87, "00000821": 87, "00004661": 87, "0000618": 87, "99987167": 87, "99999061": 87, "00000201": 87, "00000195": 87, "00000408": 87, "00000135": 87, "2254": 87, "2907": 87, "19392": 87, "9962": 87, "8904": 87, "19303": 87, "12918": 87, "9256": 87, "11855": 87, "18392": 87, "20426": 87, "19402": 87, "14744": 87, "19371": 87, "4645": 87, "10331": 87, "9430": 87, "6143": 87, "18367": 87, "12914": 87, "todai": 87, "weather": 87, "march": 87, "scalfaro": 87, "northern": 87, "himself": 87, "said": 87, "germani": 87, "nastja": 87, "rysich": 87, "north": 87, "spla": 87, "fought": 87, "khartoum": 87, "govern": 87, "south": 87, "1983": 87, "autonomi": 87, "animist": 87, "region": 87, "moslem": 87, "arabis": 87, "mayor": 87, "antonio": 87, "gonzalez": 87, "garcia": 87, "revolutionari": 87, "parti": 87, "wednesdai": 87, "troop": 87, "raid": 87, "farm": 87, "stole": 87, "rape": 87, "women": 87, "spring": 87, "chg": 87, "hrw": 87, "12pct": 87, "princ": 87, "photo": 87, "moment": 87, "spokeswoman": 87, "rainier": 87, "told": 87, "reuter": 87, "danila": 87, "carib": 87, "w224": 87, "equip": 87, "radiomet": 87, "earn": 87, "19996": 87, "london": 87, "denom": 87, "sale": 87, "uk": 87, "jp": 87, "fr": 87, "maccabi": 87, "hapoel": 87, "haifa": 87, "tel": 87, "aviv": 87, "hospit": 87, "rever": 87, "roman": 87, "cathol": 87, "nun": 87, "admit": 87, "calcutta": 87, "week": 87, "ago": 87, "fever": 87, "vomit": 87, "allianc": 87, "embattl": 87, "kabul": 87, "salang": 87, "highwai": 87, "mondai": 87, "tuesdai": 87, "suprem": 87, "council": 87, "led": 87, "jumbish": 87, "milli": 87, "movement": 87, "warlord": 87, "abdul": 87, "rashid": 87, "dostum": 87, "dollar": 87, "exchang": 87, "3570": 87, "12049": 87, "born": 87, "1937": 87, "provinc": 87, "anhui": 87, "dai": 87, "came": 87, "shanghai": 87, "citi": 87, "prolif": 87, "author": 87, "teacher": 87, "chines": 87, "16764": 87, "1990": 87, "historian": 87, "alan": 87, "john": 87, "percival": 87, "taylor": 87, "di": 87, "20446": 87, "pace": 87, "bowler": 87, "ian": 87, "harvei": 87, "claim": 87, "victoria": 87, "15514": 87, "cotti": 87, "osc": 87, "foreign": 87, "minist": 87, "7525": 87, "sultan": 87, "specter": 87, "met": 87, "crown": 87, "abdullah": 87, "defenc": 87, "aviat": 87, "jeddah": 87, "saudi": 87, "agenc": 87, "2288": 87, "hi": 87, "customari": 87, "outfit": 87, "champion": 87, "damp": 87, "scalp": 87, "canada": 87, "reign": 87, "olymp": 87, "donovan": 87, "bailei": 87, "1992": 87, "linford": 87, "christi": 87, "britain": 87, "1984": 87, "1988": 87, "carl": 87, "lewi": 87, "ambigi": 87, "punctuat": 87, "chicago": 87, "digest": 87, "philadelphia": 87, "usda": 87, "york": 87, "token_issu": 87, "471": 87, "kean": 87, "year": 87, "contract": 87, "manchest": 87, "19072": 87, "societi": 87, "million": 87, "bite": 87, "deliv": 87, "19910": 87, "father": 87, "clarenc": 87, "woolmer": 87, "renam": 87, "uttar": 87, "pradesh": 87, "india": 87, "ranji": 87, "trophi": 87, "nation": 87, "championship": 87, "captain": 87, "1949": 87, "15658": 87, "19879": 87, "iii": 87, "brian": 87, "shimer": 87, "randi": 87, "jone": 87, "19104": 87}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [8, 0, 0, "-", "datalab"], [23, 0, 0, "-", "dataset"], [26, 0, 0, "-", "experimental"], [29, 0, 0, "-", "filter"], [30, 0, 0, "-", "internal"], [41, 0, 0, "-", "models"], [43, 0, 0, "-", "multiannotator"], [46, 0, 0, "-", "multilabel_classification"], [49, 0, 0, "-", "object_detection"], [52, 0, 0, "-", "outlier"], [53, 0, 0, "-", "rank"], [54, 0, 0, "-", "regression"], [58, 0, 0, "-", "segmentation"], [62, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [12, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[9, 0, 0, "-", "data"], [10, 0, 0, "-", "data_issues"], [13, 0, 0, "-", "issue_finder"], [11, 0, 0, "-", "issue_manager_factory"], [21, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[9, 2, 1, "", "Data"], [9, 5, 1, "", "DataFormatError"], [9, 5, 1, "", "DatasetDictError"], [9, 5, 1, "", "DatasetLoadError"], [9, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[10, 2, 1, "", "DataIssues"], [10, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[10, 3, 1, "", "collect_issues_from_issue_manager"], [10, 3, 1, "", "collect_statistics"], [10, 3, 1, "", "get_info"], [10, 3, 1, "", "get_issue_summary"], [10, 3, 1, "", "get_issues"], [10, 3, 1, "", "set_health_score"], [10, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[13, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"], [13, 3, 1, "", "list_default_issue_types"], [13, 3, 1, "", "list_possible_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[14, 0, 0, "-", "duplicate"], [15, 0, 0, "-", "imbalance"], [17, 0, 0, "-", "issue_manager"], [18, 0, 0, "-", "label"], [19, 0, 0, "-", "noniid"], [20, 0, 0, "-", "outlier"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[14, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[14, 3, 1, "", "collect_info"], [14, 6, 1, "", "description"], [14, 3, 1, "", "find_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_name"], [14, 6, 1, "", "issue_score_key"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "make_summary"], [14, 6, 1, "", "near_duplicate_sets"], [14, 3, 1, "", "report"], [14, 6, 1, "", "summary"], [14, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[15, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[15, 3, 1, "", "collect_info"], [15, 6, 1, "", "description"], [15, 3, 1, "", "find_issues"], [15, 6, 1, "", "info"], [15, 6, 1, "", "issue_name"], [15, 6, 1, "", "issue_score_key"], [15, 6, 1, "", "issues"], [15, 3, 1, "", "make_summary"], [15, 3, 1, "", "report"], [15, 6, 1, "", "summary"], [15, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[17, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[18, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 3, 1, "", "get_health_summary"], [18, 6, 1, "", "health_summary_parameters"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[19, 2, 1, "", "NonIIDIssueManager"], [19, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[20, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[20, 6, 1, "", "DEFAULT_THRESHOLDS"], [20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "ood"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[11, 7, 1, "", "REGISTRY"], [11, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[21, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[21, 3, 1, "", "get_report"], [21, 3, 1, "", "report"]], "cleanlab.dataset": [[23, 1, 1, "", "find_overlapping_classes"], [23, 1, 1, "", "health_summary"], [23, 1, 1, "", "overall_label_health_score"], [23, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[24, 0, 0, "-", "cifar_cnn"], [25, 0, 0, "-", "coteaching"], [27, 0, 0, "-", "label_issues_batched"], [28, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[24, 2, 1, "", "CNN"], [24, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[24, 6, 1, "", "T_destination"], [24, 3, 1, "", "__call__"], [24, 3, 1, "", "add_module"], [24, 3, 1, "", "apply"], [24, 3, 1, "", "bfloat16"], [24, 3, 1, "", "buffers"], [24, 3, 1, "", "children"], [24, 3, 1, "", "cpu"], [24, 3, 1, "", "cuda"], [24, 3, 1, "", "double"], [24, 6, 1, "", "dump_patches"], [24, 3, 1, "", "eval"], [24, 3, 1, "", "extra_repr"], [24, 3, 1, "", "float"], [24, 3, 1, "id0", "forward"], [24, 3, 1, "", "get_buffer"], [24, 3, 1, "", "get_extra_state"], [24, 3, 1, "", "get_parameter"], [24, 3, 1, "", "get_submodule"], [24, 3, 1, "", "half"], [24, 3, 1, "", "ipu"], [24, 3, 1, "", "load_state_dict"], [24, 3, 1, "", "modules"], [24, 3, 1, "", "named_buffers"], [24, 3, 1, "", "named_children"], [24, 3, 1, "", "named_modules"], [24, 3, 1, "", "named_parameters"], [24, 3, 1, "", "parameters"], [24, 3, 1, "", "register_backward_hook"], [24, 3, 1, "", "register_buffer"], [24, 3, 1, "", "register_forward_hook"], [24, 3, 1, "", "register_forward_pre_hook"], [24, 3, 1, "", "register_full_backward_hook"], [24, 3, 1, "", "register_load_state_dict_post_hook"], [24, 3, 1, "", "register_module"], [24, 3, 1, "", "register_parameter"], [24, 3, 1, "", "requires_grad_"], [24, 3, 1, "", "set_extra_state"], [24, 3, 1, "", "share_memory"], [24, 3, 1, "", "state_dict"], [24, 3, 1, "", "to"], [24, 3, 1, "", "to_empty"], [24, 3, 1, "", "train"], [24, 6, 1, "", "training"], [24, 3, 1, "", "type"], [24, 3, 1, "", "xpu"], [24, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[25, 1, 1, "", "adjust_learning_rate"], [25, 1, 1, "", "evaluate"], [25, 1, 1, "", "forget_rate_scheduler"], [25, 1, 1, "", "initialize_lr_scheduler"], [25, 1, 1, "", "loss_coteaching"], [25, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[27, 2, 1, "", "LabelInspector"], [27, 7, 1, "", "adj_confident_thresholds_shared"], [27, 1, 1, "", "find_label_issues_batched"], [27, 7, 1, "", "labels_shared"], [27, 7, 1, "", "pred_probs_shared"], [27, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[27, 3, 1, "", "get_confident_thresholds"], [27, 3, 1, "", "get_label_issues"], [27, 3, 1, "", "get_num_issues"], [27, 3, 1, "", "get_quality_scores"], [27, 3, 1, "", "score_label_quality"], [27, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[28, 2, 1, "", "CNN"], [28, 2, 1, "", "SimpleNet"], [28, 1, 1, "", "get_mnist_dataset"], [28, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[28, 3, 1, "", "__init_subclass__"], [28, 6, 1, "", "batch_size"], [28, 6, 1, "", "dataset"], [28, 6, 1, "", "epochs"], [28, 3, 1, "id0", "fit"], [28, 3, 1, "", "get_metadata_routing"], [28, 3, 1, "", "get_params"], [28, 6, 1, "", "loader"], [28, 6, 1, "", "log_interval"], [28, 6, 1, "", "lr"], [28, 6, 1, "", "momentum"], [28, 6, 1, "", "no_cuda"], [28, 3, 1, "id1", "predict"], [28, 3, 1, "id4", "predict_proba"], [28, 6, 1, "", "seed"], [28, 3, 1, "", "set_fit_request"], [28, 3, 1, "", "set_params"], [28, 3, 1, "", "set_predict_proba_request"], [28, 3, 1, "", "set_predict_request"], [28, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[28, 6, 1, "", "T_destination"], [28, 3, 1, "", "__call__"], [28, 3, 1, "", "add_module"], [28, 3, 1, "", "apply"], [28, 3, 1, "", "bfloat16"], [28, 3, 1, "", "buffers"], [28, 3, 1, "", "children"], [28, 3, 1, "", "cpu"], [28, 3, 1, "", "cuda"], [28, 3, 1, "", "double"], [28, 6, 1, "", "dump_patches"], [28, 3, 1, "", "eval"], [28, 3, 1, "", "extra_repr"], [28, 3, 1, "", "float"], [28, 3, 1, "", "forward"], [28, 3, 1, "", "get_buffer"], [28, 3, 1, "", "get_extra_state"], [28, 3, 1, "", "get_parameter"], [28, 3, 1, "", "get_submodule"], [28, 3, 1, "", "half"], [28, 3, 1, "", "ipu"], [28, 3, 1, "", "load_state_dict"], [28, 3, 1, "", "modules"], [28, 3, 1, "", "named_buffers"], [28, 3, 1, "", "named_children"], [28, 3, 1, "", "named_modules"], [28, 3, 1, "", "named_parameters"], [28, 3, 1, "", "parameters"], [28, 3, 1, "", "register_backward_hook"], [28, 3, 1, "", "register_buffer"], [28, 3, 1, "", "register_forward_hook"], [28, 3, 1, "", "register_forward_pre_hook"], [28, 3, 1, "", "register_full_backward_hook"], [28, 3, 1, "", "register_load_state_dict_post_hook"], [28, 3, 1, "", "register_module"], [28, 3, 1, "", "register_parameter"], [28, 3, 1, "", "requires_grad_"], [28, 3, 1, "", "set_extra_state"], [28, 3, 1, "", "share_memory"], [28, 3, 1, "", "state_dict"], [28, 3, 1, "", "to"], [28, 3, 1, "", "to_empty"], [28, 3, 1, "", "train"], [28, 6, 1, "", "training"], [28, 3, 1, "", "type"], [28, 3, 1, "", "xpu"], [28, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[29, 1, 1, "", "find_label_issues"], [29, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [29, 1, 1, "", "find_predicted_neq_given"], [29, 7, 1, "", "pred_probs_by_class"], [29, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[31, 0, 0, "-", "label_quality_utils"], [32, 0, 0, "-", "latent_algebra"], [33, 0, 0, "-", "multiannotator_utils"], [34, 0, 0, "-", "multilabel_scorer"], [35, 0, 0, "-", "multilabel_utils"], [36, 0, 0, "-", "outlier"], [37, 0, 0, "-", "token_classification_utils"], [38, 0, 0, "-", "util"], [39, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[31, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[32, 1, 1, "", "compute_inv_noise_matrix"], [32, 1, 1, "", "compute_noise_matrix_from_inverse"], [32, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [32, 1, 1, "", "compute_py"], [32, 1, 1, "", "compute_py_inv_noise_matrix"], [32, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[33, 1, 1, "", "assert_valid_inputs_multiannotator"], [33, 1, 1, "", "assert_valid_pred_probs"], [33, 1, 1, "", "check_consensus_label_classes"], [33, 1, 1, "", "compute_soft_cross_entropy"], [33, 1, 1, "", "find_best_temp_scaler"], [33, 1, 1, "", "format_multiannotator_labels"], [33, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[34, 2, 1, "", "Aggregator"], [34, 2, 1, "", "ClassLabelScorer"], [34, 2, 1, "", "MultilabelScorer"], [34, 1, 1, "", "exponential_moving_average"], [34, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [34, 1, 1, "", "get_label_quality_scores"], [34, 1, 1, "", "multilabel_py"], [34, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[34, 3, 1, "", "__call__"], [34, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[34, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [34, 6, 1, "", "NORMALIZED_MARGIN"], [34, 6, 1, "", "SELF_CONFIDENCE"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[34, 3, 1, "", "__call__"], [34, 3, 1, "", "aggregate"], [34, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[35, 1, 1, "", "get_onehot_num_classes"], [35, 1, 1, "", "int2onehot"], [35, 1, 1, "", "onehot2int"], [35, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[36, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[37, 1, 1, "", "color_sentence"], [37, 1, 1, "", "filter_sentence"], [37, 1, 1, "", "get_sentence"], [37, 1, 1, "", "mapping"], [37, 1, 1, "", "merge_probs"], [37, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[38, 1, 1, "", "append_extra_datapoint"], [38, 1, 1, "", "clip_noise_rates"], [38, 1, 1, "", "clip_values"], [38, 1, 1, "", "compress_int_array"], [38, 1, 1, "", "confusion_matrix"], [38, 1, 1, "", "csr_vstack"], [38, 1, 1, "", "estimate_pu_f1"], [38, 1, 1, "", "extract_indices_tf"], [38, 1, 1, "", "force_two_dimensions"], [38, 1, 1, "", "format_labels"], [38, 1, 1, "", "get_missing_classes"], [38, 1, 1, "", "get_num_classes"], [38, 1, 1, "", "get_unique_classes"], [38, 1, 1, "", "is_tensorflow_dataset"], [38, 1, 1, "", "is_torch_dataset"], [38, 1, 1, "", "num_unique_classes"], [38, 1, 1, "", "print_inverse_noise_matrix"], [38, 1, 1, "", "print_joint_matrix"], [38, 1, 1, "", "print_noise_matrix"], [38, 1, 1, "", "print_square_matrix"], [38, 1, 1, "", "remove_noise_from_class"], [38, 1, 1, "", "round_preserving_row_totals"], [38, 1, 1, "", "round_preserving_sum"], [38, 1, 1, "", "smart_display_dataframe"], [38, 1, 1, "", "subset_X_y"], [38, 1, 1, "", "subset_data"], [38, 1, 1, "", "subset_labels"], [38, 1, 1, "", "train_val_split"], [38, 1, 1, "", "unshuffle_tensorflow_dataset"], [38, 1, 1, "", "value_counts"], [38, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[39, 1, 1, "", "assert_indexing_works"], [39, 1, 1, "", "assert_nonempty_input"], [39, 1, 1, "", "assert_valid_class_labels"], [39, 1, 1, "", "assert_valid_inputs"], [39, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[42, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[42, 2, 1, "", "KerasWrapperModel"], [42, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[43, 1, 1, "", "convert_long_to_wide_dataset"], [43, 1, 1, "", "get_active_learning_scores"], [43, 1, 1, "", "get_active_learning_scores_ensemble"], [43, 1, 1, "", "get_label_quality_multiannotator"], [43, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [43, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[44, 0, 0, "-", "dataset"], [45, 0, 0, "-", "filter"], [47, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[44, 1, 1, "", "common_multilabel_issues"], [44, 1, 1, "", "multilabel_health_summary"], [44, 1, 1, "", "overall_multilabel_health_score"], [44, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[47, 1, 1, "", "get_label_quality_scores"], [47, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[48, 0, 0, "-", "filter"], [50, 0, 0, "-", "rank"], [51, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[48, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[50, 1, 1, "", "compute_badloc_box_scores"], [50, 1, 1, "", "compute_overlooked_box_scores"], [50, 1, 1, "", "compute_swap_box_scores"], [50, 1, 1, "", "get_label_quality_scores"], [50, 1, 1, "", "issues_from_scores"], [50, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[51, 1, 1, "", "visualize"]], "cleanlab.outlier": [[52, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[52, 3, 1, "", "fit"], [52, 3, 1, "", "fit_score"], [52, 3, 1, "", "score"]], "cleanlab.rank": [[53, 1, 1, "", "find_top_issues"], [53, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [53, 1, 1, "", "get_label_quality_ensemble_scores"], [53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_normalized_margin_for_each_label"], [53, 1, 1, "", "get_self_confidence_for_each_label"], [53, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[55, 0, 0, "-", "learn"], [56, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[55, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[55, 3, 1, "", "__init_subclass__"], [55, 3, 1, "", "find_label_issues"], [55, 3, 1, "", "fit"], [55, 3, 1, "", "get_aleatoric_uncertainty"], [55, 3, 1, "", "get_epistemic_uncertainty"], [55, 3, 1, "", "get_label_issues"], [55, 3, 1, "", "get_metadata_routing"], [55, 3, 1, "", "get_params"], [55, 3, 1, "", "predict"], [55, 3, 1, "", "save_space"], [55, 3, 1, "", "score"], [55, 3, 1, "", "set_fit_request"], [55, 3, 1, "", "set_params"], [55, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[56, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[57, 0, 0, "-", "filter"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[57, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[60, 1, 1, "", "common_label_issues"], [60, 1, 1, "", "display_issues"], [60, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[61, 0, 0, "-", "filter"], [63, 0, 0, "-", "rank"], [64, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[61, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[63, 1, 1, "", "get_label_quality_scores"], [63, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[64, 1, 1, "", "common_label_issues"], [64, 1, 1, "", "display_issues"], [64, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 67, 71, 72, 74, 75, 76, 79, 85, 86, 87], "count": [3, 76], "datalab": [4, 5, 6, 7, 8, 68, 69, 70, 71, 72, 76], "creat": [5, 68, 69, 76, 78], "your": [5, 65, 68, 69, 72, 74, 76], "own": 5, "issu": [5, 6, 7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 84, 85, 87], "manag": 5, "prerequisit": 5, "implement": 5, "issuemanag": [5, 68], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 68], "us": [5, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "guid": [6, 8], "type": [6, 7, 76], "custom": [6, 68], "can": [7, 69, 73, 74, 76, 78], "detect": [7, 69, 71, 72, 74, 76, 80, 81], "estim": [7, 76, 78], "each": 7, "label": [7, 18, 65, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "outlier": [7, 20, 36, 52, 71, 72, 75, 81], "Near": [7, 69, 71, 72, 75], "duplic": [7, 14, 69, 71, 72, 75], "non": 7, "iid": 7, "class": [7, 66, 76, 84], "imbal": [7, 15], "imag": [7, 75, 81], "specif": [7, 84], "option": 7, "paramet": [7, 76], "get": [8, 68, 69, 78, 79, 80, 84, 87], "start": [8, 73], "api": 8, "refer": 8, "data": [9, 65, 67, 68, 69, 71, 73, 74, 76, 78, 79, 80, 81, 83, 84, 85, 87], "data_issu": 10, "factori": 11, "intern": [12, 30], "issue_find": 13, "issue_manag": [16, 17], "noniid": 19, "report": [21, 75], "dataset": [23, 44, 65, 69, 72, 73, 74, 75, 76, 79, 80, 81, 83, 84, 86, 87], "cifar_cnn": 24, "coteach": 25, "experiment": 26, "label_issues_batch": 27, "mnist_pytorch": 28, "filter": [29, 45, 48, 57, 61, 76], "label_quality_util": 31, "latent_algebra": 32, "multiannotator_util": 33, "multilabel_scor": 34, "multilabel_util": 35, "token_classification_util": 37, "util": 38, "valid": [39, 75, 82], "fasttext": 40, "model": [41, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "kera": 42, "multiannot": [43, 78], "multilabel_classif": 46, "rank": [47, 50, 53, 56, 59, 63, 76], "object_detect": 49, "summari": [51, 60, 64], "regress": [54, 55, 56, 74, 83], "learn": [55, 69, 74, 76, 85], "segment": [58, 84], "token_classif": [62, 87], "cleanlab": [65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "document": 65, "quickstart": 65, "1": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "instal": [65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "2": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "find": [65, 67, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "common": [65, 66, 87], "3": [65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "handl": [65, 74], "error": [65, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "train": [65, 67, 74, 81, 83, 85, 86], "robust": [65, 76, 83, 85, 86], "noisi": [65, 76, 83, 85, 86], "4": [65, 67, 68, 69, 71, 72, 75, 76, 78, 80, 81, 83, 85, 86], "curat": [65, 73], "fix": [65, 74], "level": [65, 73, 76, 87], "5": [65, 67, 69, 71, 75, 76, 78, 83, 85], "improv": [65, 78], "via": [65, 76, 78], "mani": [65, 76], "other": [65, 78, 80, 83], "techniqu": 65, "contribut": 65, "easi": 65, "mode": 65, "how": [66, 74, 76, 78, 79, 87], "migrat": 66, "version": 66, "0": 66, "from": [66, 68, 69, 76, 83, 85, 86], "pre": [66, 67, 81], "function": [66, 68], "name": 66, "chang": 66, "modul": [66, 76], "new": 66, "remov": 66, "argument": [66, 68], "variabl": 66, "audio": 67, "speechbrain": 67, "depend": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "import": [67, 68, 69, 73, 75, 76, 78], "them": [67, 73, 76], "load": [67, 68, 69, 71, 72, 83, 85, 86], "featur": [67, 75, 81], "fit": 67, "linear": 67, "comput": [67, 71, 72, 75, 78, 82, 85], "out": [67, 68, 69, 71, 72, 75, 78, 82, 85], "sampl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "predict": [67, 68, 69, 71, 72, 75, 78, 79, 80, 82, 85], "probabl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "workflow": [68, 76], "audit": [68, 69], "requir": [68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "classifi": [68, 69], "instanti": 68, "object": [68, 80], "increment": 68, "search": 68, "specifi": 68, "nondefault": 68, "save": 68, "ad": 68, "A": 69, "unifi": 69, "all": [69, 76], "kind": [69, 80], "skip": [69, 73, 76, 78], "detail": [69, 73, 76, 78], "more": [69, 76, 83, 85, 86], "about": 69, "addit": 69, "inform": [69, 75], "tutori": [70, 73, 77], "tabular": [71, 85], "numer": 71, "categor": 71, "column": 71, "process": [71, 81, 83, 85], "select": [71, 85], "construct": 71, "k": [71, 75, 82], "nearest": 71, "neighbour": 71, "graph": 71, "text": [72, 86, 87], "format": [72, 74, 79, 80, 86], "defin": [72, 75, 83, 86], "fetch": [73, 75], "evalu": 73, "health": [73, 76], "8": [73, 76], "popular": 73, "faq": 74, "what": [74, 76, 82], "do": [74, 76], "i": [74, 76, 82], "infer": 74, "correct": 74, "exampl": [74, 75, 76, 81], "ha": 74, "flag": 74, "should": 74, "v": 74, "test": [74, 76, 81], "big": 74, "limit": 74, "memori": 74, "why": 74, "isn": 74, "t": 74, "cleanlearn": [74, 76], "work": [74, 76, 78, 87], "me": 74, "differ": [74, 80], "clean": [74, 76], "final": 74, "hyperparamet": 74, "tune": 74, "onli": 74, "one": [74, 76, 79, 84], "doe": [74, 78, 87], "take": 74, "so": 74, "long": 74, "ml": [74, 76], "run": 74, "identifi": [74, 80], "licens": 74, "open": 74, "sourc": 74, "under": 74, "an": 74, "answer": 74, "question": 74, "pytorch": [75, 81], "normal": 75, "fashion": 75, "mnist": 75, "prepar": 75, "fold": [75, 82], "cross": [75, 82], "embed": [75, 81], "7": [75, 76], "view": 75, "most": [75, 87], "like": 75, "sever": 75, "set": [75, 76], "dark": 75, "top": [75, 84], "low": 75, "The": 76, "centric": 76, "ai": 76, "machin": 76, "find_label_issu": 76, "line": 76, "code": 76, "visual": [76, 80, 81, 84], "twenti": 76, "lowest": 76, "qualiti": [76, 78, 79, 80, 84, 87], "see": 76, "now": 76, "let": 76, "": 76, "happen": 76, "we": 76, "merg": 76, "seafoam": 76, "green": 76, "yellow": 76, "too": 76, "you": 76, "re": 76, "6": 76, "One": 76, "score": [76, 78, 79, 80, 84, 87], "rule": 76, "overal": [76, 84], "accur": 76, "thi": 76, "directli": 76, "fulli": 76, "character": 76, "nois": 76, "matrix": [76, 79], "joint": 76, "prior": 76, "true": 76, "distribut": 76, "flip": 76, "rate": 76, "ani": 76, "again": 76, "support": 76, "lot": 76, "method": 76, "filter_bi": 76, "automat": 76, "everi": 76, "uniqu": 76, "num_label_issu": 76, "threshold": 76, "found": 76, "Not": 76, "sure": 76, "when": 76, "ensembl": 76, "multipl": [76, 78], "predictor": 76, "consensu": 78, "annot": 78, "initi": 78, "major": 78, "vote": 78, "better": 78, "statist": 78, "compar": 78, "inspect": 78, "potenti": [78, 83, 86], "retrain": 78, "further": 78, "multi": 79, "given": 79, "hot": 79, "binari": 79, "download": [80, 84, 87], "objectlab": 80, "timm": 81, "cifar10": 81, "some": 81, "pred_prob": [81, 84, 87], "wai": 83, "semant": 84, "which": 84, "ar": 84, "commonli": 84, "mislabel": [84, 87], "focus": 84, "scikit": 85, "token": 87, "word": 87, "sentenc": 87, "contain": 87, "particular": 87}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}})
\ No newline at end of file
+Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "outlier", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 66, 68, 69, 76, 78, 79], "helper": [1, 13, 27, 31, 33, 34, 35, 36, 37, 38, 50, 73, 75, 87], "method": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "ar": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "us": [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 65, 66, 68, 73, 77, 82], "benchmark": [1, 24, 65, 66, 68, 69, 76, 78, 79], "cleanlab": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82], "": [1, 2, 3, 7, 23, 24, 28, 31, 34, 36, 38, 43, 44, 48, 50, 51, 52, 53, 55, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "core": [1, 4, 27, 29, 57, 59, 84], "algorithm": [1, 2, 7, 25, 38, 43, 52, 61, 63, 65, 74, 76, 78, 87], "These": [1, 2, 3, 7, 26, 29, 30, 41, 43, 44, 47, 52, 56, 60, 61, 63, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "introduc": [1, 67, 74, 76], "synthet": [1, 78, 79, 84], "nois": [1, 2, 3, 23, 29, 32, 38, 44, 68, 69, 73, 78], "label": [1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 16, 17, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 73, 77, 81, 82], "classif": [1, 3, 7, 23, 27, 29, 32, 34, 35, 38, 43, 44, 45, 46, 47, 52, 53, 61, 62, 63, 64, 65, 66, 68, 69, 77, 78, 81, 82, 83, 84], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 27, 28, 29, 32, 34, 38, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 77, 78, 82, 85], "specif": [1, 3, 4, 6, 10, 13, 21, 26, 41, 45, 48, 51, 60, 64, 69, 72, 75, 76, 87], "thi": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "modul": [1, 3, 10, 11, 12, 13, 16, 21, 23, 24, 25, 26, 27, 28, 29, 38, 41, 43, 52, 53, 65, 74, 75, 79], "provid": [1, 2, 3, 4, 5, 7, 11, 13, 18, 23, 24, 25, 27, 28, 29, 32, 38, 42, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 82, 83, 84, 85, 86, 87], "gener": [1, 2, 3, 5, 7, 18, 21, 23, 34, 38, 39, 52, 53, 55, 60, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 86, 87], "valid": [1, 2, 3, 4, 7, 9, 23, 29, 30, 32, 33, 34, 38, 43, 45, 48, 53, 55, 56, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "matric": [1, 3, 32, 74], "which": [1, 2, 3, 4, 7, 9, 10, 11, 13, 17, 19, 21, 23, 24, 28, 29, 32, 34, 37, 38, 43, 44, 45, 48, 50, 52, 53, 55, 56, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "learn": [1, 2, 3, 7, 17, 25, 26, 27, 28, 29, 31, 33, 38, 41, 43, 45, 52, 54, 56, 59, 63, 65, 67, 68, 71, 72, 73, 77, 78, 83, 86], "i": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "possibl": [1, 2, 3, 7, 23, 24, 28, 29, 31, 32, 34, 45, 46, 47, 48, 50, 52, 53, 55, 61, 63, 64, 69, 74, 76, 78, 79, 80, 83, 84, 87], "noisi": [1, 2, 3, 23, 25, 28, 29, 32, 38, 44, 45, 47, 53, 55, 56, 57, 59, 60, 66, 68, 69, 71, 72, 74, 77, 78], "given": [1, 2, 3, 7, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 37, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 56, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "matrix": [1, 2, 3, 4, 7, 13, 23, 29, 31, 32, 35, 38, 39, 45, 50, 52, 53, 71, 81], "trace": [1, 68, 69, 76, 78, 79], "valu": [1, 2, 3, 4, 7, 9, 10, 13, 17, 19, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "more": [1, 2, 3, 4, 5, 7, 10, 13, 19, 23, 24, 27, 28, 31, 34, 38, 43, 44, 45, 46, 47, 48, 50, 53, 55, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 84, 87], "function": [1, 2, 3, 4, 5, 10, 11, 13, 18, 19, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 73, 74, 76, 78, 79, 80, 84, 85, 86, 87], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 7, 32, 38, 68, 69, 76, 78, 79], "py": [1, 3, 21, 24, 25, 29, 32, 34, 43, 68, 69, 76, 78, 79], "verbos": [1, 2, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 27, 29, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 68, 76, 78], "fals": [1, 2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 67, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81, 83, 84, 86], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65], "prior": [1, 2, 3, 23, 29, 32, 34], "repres": [1, 2, 3, 4, 5, 7, 9, 13, 19, 23, 27, 29, 32, 35, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "p": [1, 2, 3, 7, 23, 29, 31, 32, 38, 43, 51, 52, 53, 57, 69, 71, 72, 75, 76, 78, 87], "true_label": [1, 2, 3, 23, 32, 38, 76, 78], "k": [1, 2, 3, 4, 7, 9, 13, 14, 18, 19, 20, 23, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 68, 69, 74, 76, 78, 79, 80, 81, 84, 85, 87], "check": [1, 2, 4, 6, 7, 9, 13, 24, 27, 28, 33, 39, 42, 48, 55, 65, 67, 68, 69, 71, 74, 75, 76, 78, 79, 83, 85, 86], "learnabl": 1, "mean": [1, 2, 5, 9, 10, 17, 19, 25, 28, 32, 34, 50, 55, 69, 72, 74, 76, 78, 79, 81, 83, 86], "achiev": [1, 2, 24, 25, 28, 55, 78, 87], "better": [1, 4, 29, 43, 45, 53, 55, 56, 65, 67, 69, 71, 72, 74, 76, 79, 80, 81, 86, 87], "than": [1, 2, 3, 5, 7, 19, 20, 23, 29, 38, 42, 43, 48, 50, 52, 53, 55, 59, 63, 67, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 87], "random": [1, 2, 3, 5, 7, 27, 34, 43, 53, 55, 67, 68, 69, 71, 74, 75, 76, 78, 79, 81, 85], "perform": [1, 2, 5, 7, 19, 20, 24, 28, 34, 55, 65, 68, 74, 76, 78, 79, 82, 83, 85, 86], "averag": [1, 3, 17, 20, 23, 24, 28, 34, 36, 43, 44, 52, 53, 74, 78, 81], "amount": [1, 3, 75], "paramet": [1, 2, 3, 4, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 72, 75, 85, 86], "np": [1, 2, 3, 4, 5, 13, 23, 25, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 60, 61, 63, 64, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 84, 85, 86, 87], "ndarrai": [1, 2, 3, 4, 13, 18, 19, 23, 25, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 87], "an": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "arrai": [1, 2, 3, 4, 5, 9, 13, 19, 23, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "shape": [1, 2, 3, 4, 13, 23, 25, 27, 29, 31, 32, 33, 34, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 73, 74, 76, 79, 80, 81, 84, 87], "condit": [1, 2, 3, 32, 37, 38, 53, 75, 76, 87], "probabl": [1, 2, 3, 4, 7, 13, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 84, 87], "k_": [1, 2, 3, 32, 38], "k_y": [1, 2, 3, 32, 38], "contain": [1, 2, 3, 4, 9, 10, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86], "fraction": [1, 2, 3, 7, 15, 25, 32, 38, 43, 55, 71, 74], "exampl": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 78, 79, 80, 82, 83, 84, 85, 86, 87], "everi": [1, 2, 3, 4, 13, 24, 28, 29, 32, 37, 38, 45, 53, 55, 56, 67, 68, 69, 71, 72, 74, 75, 78, 80, 82, 84, 85, 87], "class": [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87], "other": [1, 2, 3, 4, 7, 13, 17, 23, 24, 26, 27, 28, 29, 32, 35, 38, 39, 41, 43, 44, 47, 52, 53, 55, 60, 67, 68, 69, 71, 72, 74, 75, 76, 79, 81, 84, 87], "assum": [1, 2, 3, 9, 29, 32, 36, 37, 38, 53, 57, 60, 74, 81, 84, 87], "column": [1, 2, 3, 4, 7, 9, 10, 23, 27, 29, 32, 34, 35, 37, 38, 43, 44, 45, 47, 48, 51, 52, 53, 55, 60, 61, 63, 64, 67, 68, 69, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "sum": [1, 2, 3, 19, 23, 32, 34, 38, 44, 45, 47, 50, 55, 68, 69, 74, 75, 76, 78, 79, 84, 87], "1": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 73, 74, 82], "each": [1, 2, 3, 4, 5, 6, 10, 11, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 38, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "true": [1, 2, 3, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "return": [1, 2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "type": [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 75, 79, 80, 84, 85, 87], "bool": [1, 2, 3, 4, 9, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 34, 37, 38, 43, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64], "is_valid": 1, "whether": [1, 3, 4, 7, 10, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 29, 38, 43, 44, 45, 47, 48, 64, 67, 69, 72, 73, 75, 76, 83, 86, 87], "generate_noisy_label": [1, 68, 69, 76, 78, 79], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 32, 34, 35, 36, 37, 38, 43, 45, 47, 50, 51, 52, 53, 55, 56, 61, 63, 64, 65, 67, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 84, 87], "perfect": [1, 2, 23, 55, 76, 80], "exactli": [1, 3, 7, 23, 24, 28, 29, 46, 52, 68, 69, 71, 72, 75, 76, 86], "yield": [1, 24, 28], "between": [1, 4, 7, 12, 13, 16, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 41, 43, 44, 47, 50, 52, 53, 55, 56, 59, 63, 64, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "below": [1, 3, 7, 23, 24, 27, 28, 29, 31, 34, 43, 44, 45, 50, 51, 59, 63, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "we": [1, 2, 3, 4, 5, 7, 10, 17, 24, 27, 28, 29, 34, 38, 39, 43, 50, 53, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "loop": [1, 3, 32, 38, 75], "implement": [1, 2, 3, 4, 6, 11, 17, 24, 25, 27, 28, 32, 38, 55, 65, 67, 68, 71, 81, 82, 85], "what": [1, 4, 6, 7, 13, 21, 23, 25, 27, 29, 43, 44, 48, 50, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "doe": [1, 2, 3, 7, 27, 28, 29, 34, 39, 50, 55, 57, 59, 63, 67, 68, 69, 71, 72, 75, 79, 83, 84, 86], "do": [1, 2, 4, 7, 23, 27, 28, 38, 39, 52, 53, 57, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "fast": 1, "explain": [1, 7], "python": [1, 2, 28, 42, 55, 68, 69, 73, 81], "pseudocod": [1, 82], "happen": [1, 7, 29, 45, 78, 84], "n": [1, 2, 3, 4, 5, 23, 24, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 67, 72, 73, 74, 75, 78, 79, 83, 84, 85, 86, 87], "without": [1, 2, 4, 7, 9, 13, 15, 24, 28, 47, 55, 65, 67, 72, 76, 80, 81, 86], "ani": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 33, 37, 38, 42, 43, 45, 47, 48, 50, 51, 53, 55, 57, 59, 60, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86], "distinct": [1, 38, 87], "natur": [1, 7, 78, 81], "number": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 84, 87], "0": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "count_joint": 1, "len": [1, 2, 3, 5, 23, 27, 32, 37, 38, 39, 52, 53, 55, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87], "y": [1, 2, 3, 4, 28, 32, 34, 38, 39, 42, 51, 55, 56, 67, 68, 69, 71, 74, 76, 78, 79, 81, 83, 86], "round": [1, 27, 29, 38, 55, 74, 83], "astyp": [1, 78], "int": [1, 2, 3, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 38, 44, 45, 47, 51, 52, 53, 55, 57, 59, 60, 61, 64, 67, 68, 75, 81], "rang": [1, 3, 5, 9, 32, 34, 36, 38, 55, 56, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 87], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 7, 9, 10, 13, 17, 23, 27, 29, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 86, 87], "pragma": 1, "cover": [1, 3, 66, 73], "choic": [1, 29, 75, 79, 81], "replac": [1, 37, 42, 53, 68, 69, 72, 73, 75, 78, 81, 85, 86], "generate_noise_matrix_from_trac": [1, 68, 69, 76, 78, 79], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 53, 67, 68, 69], "05": [1, 19, 37, 55, 61, 63, 73, 74, 76, 80], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 68, 69, 76, 78, 79], "none": [1, 2, 3, 4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 74, 75, 76, 78, 79, 84], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 7, 19, 28, 34, 55, 67, 68, 69, 71, 73, 76, 78, 79, 85], "max_it": [1, 67, 72, 81, 86], "10000": [1, 27, 73, 74], "x": [1, 2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 32, 34, 37, 38, 39, 42, 43, 45, 51, 52, 53, 55, 57, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "diagon": [1, 3, 4, 13, 29, 32, 38], "equal": [1, 3, 7, 9, 45, 50, 60, 82], "creat": [1, 2, 6, 13, 24, 27, 28, 29, 38, 55, 65, 67, 71, 72, 74, 75, 84, 86, 87], "impli": [1, 23, 44], "float": [1, 2, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 33, 34, 37, 38, 43, 44, 45, 47, 50, 51, 55, 59, 63, 67, 68, 69, 76, 78, 79], "entri": [1, 3, 4, 13, 23, 24, 28, 29, 31, 35, 38, 43, 44, 45, 48, 71, 72, 76, 79, 80, 85, 86], "maximum": [1, 7, 52, 60, 64, 84], "minimum": [1, 7, 15, 29, 31, 45, 50, 63], "noise_r": 1, "non": [1, 2, 3, 4, 6, 13, 19, 24, 28, 29, 50, 55, 68, 74, 76, 78, 80, 81], "default": [1, 2, 3, 4, 7, 11, 13, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 68, 74, 75, 84], "If": [1, 2, 3, 4, 7, 10, 13, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 45, 48, 50, 51, 52, 55, 56, 57, 59, 60, 63, 64, 65, 66, 67, 68, 71, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "have": [1, 2, 3, 4, 7, 13, 16, 19, 23, 24, 26, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 48, 50, 52, 53, 55, 56, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "all": [1, 2, 3, 4, 5, 7, 10, 13, 17, 21, 23, 24, 27, 28, 29, 32, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "necessari": [1, 2, 3, 5, 7, 37, 68], "In": [1, 2, 3, 7, 23, 24, 27, 28, 43, 44, 46, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87], "particular": [1, 4, 7, 10, 11, 13, 14, 15, 17, 19, 20, 24, 28, 38, 43, 47, 51, 55, 60, 64, 65, 67, 69, 72, 74, 78, 79, 81, 83, 85, 86], "satisfi": [1, 3, 23], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 22, 24, 25, 26, 27, 28, 29, 32, 38, 41, 42, 45, 52, 53, 55, 57, 65, 66, 67, 73, 74, 76, 82], "argument": [1, 2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 34, 39, 42, 43, 44, 45, 47, 50, 52, 53, 55, 59, 60, 61, 63, 69, 72, 73, 74, 75, 80, 83, 86, 87], "when": [1, 2, 3, 4, 7, 9, 11, 13, 18, 19, 24, 28, 29, 32, 34, 38, 42, 45, 47, 48, 50, 52, 53, 55, 56, 68, 69, 71, 72, 74, 75, 78, 82, 83, 84, 85, 86, 87], "The": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "rate": [1, 2, 3, 7, 25, 38, 67, 87], "set": [1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 48, 50, 52, 53, 55, 57, 59, 60, 68, 69, 71, 72, 74, 78, 79, 81, 82, 83, 84, 85, 86, 87], "note": [1, 2, 3, 5, 7, 24, 27, 28, 29, 34, 38, 43, 48, 50, 51, 52, 53, 55, 56, 60, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "you": [1, 2, 3, 4, 5, 7, 11, 13, 23, 24, 26, 27, 28, 29, 34, 41, 42, 43, 45, 48, 50, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "high": [1, 2, 13, 27, 29, 38, 50, 53, 55, 68, 69, 73, 75, 76, 80, 83, 84, 85, 86, 87], "mai": [1, 2, 3, 4, 7, 10, 16, 17, 23, 24, 26, 27, 28, 29, 32, 34, 38, 43, 44, 48, 50, 52, 53, 55, 57, 60, 64, 66, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87], "imposs": [1, 7, 76], "also": [1, 2, 3, 5, 7, 17, 23, 24, 27, 28, 29, 37, 42, 43, 52, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "low": [1, 7, 38, 43, 65, 68, 69, 72, 76, 80, 84], "zero": [1, 3, 4, 13, 24, 28, 31, 38, 39, 68, 75, 79, 80, 81], "forc": [1, 2, 3, 4, 28, 68, 87], "instead": [1, 2, 3, 7, 10, 13, 21, 23, 24, 27, 28, 29, 32, 38, 42, 43, 45, 47, 52, 53, 55, 56, 59, 61, 63, 66, 67, 71, 74, 75, 76, 79, 80, 81, 83, 84, 85, 86, 87], "onli": [1, 2, 3, 4, 7, 13, 18, 19, 23, 24, 27, 28, 29, 31, 32, 37, 38, 42, 43, 52, 53, 55, 57, 59, 63, 64, 65, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 86, 87], "guarante": [1, 3, 4, 12, 16, 24, 26, 28, 30, 32, 41, 66], "produc": [1, 2, 4, 7, 13, 34, 43, 53, 55, 57, 59, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "higher": [1, 4, 7, 23, 29, 31, 32, 34, 43, 44, 55, 69, 72, 74, 80], "opposit": [1, 87], "occur": [1, 3, 7, 23, 37, 50, 68, 69, 74, 75, 81], "small": [1, 3, 7, 23, 27, 34, 38, 44, 72, 73, 75, 79, 81, 86], "numpi": [1, 3, 4, 5, 7, 9, 27, 28, 34, 36, 37, 39, 42, 47, 50, 55, 56, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "max": [1, 29, 52, 53, 75, 81], "tri": [1, 24, 28, 82], "befor": [1, 2, 3, 24, 28, 38, 52, 55, 60, 72, 74, 76, 78, 81, 83, 85, 86], "option": [1, 2, 3, 4, 5, 6, 9, 10, 13, 18, 19, 23, 24, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 74, 75, 76, 83, 84, 85], "left": [1, 2, 29, 31, 36, 38, 45, 48, 51, 68, 69, 79, 80, 81, 84], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 24, 28, 33, 34, 43, 48, 50, 51, 52, 68, 69, 73, 78, 79, 80, 87], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 24, 28, 42, 74, 76, 84], "length": [1, 4, 9, 19, 23, 25, 29, 38, 45, 48, 52, 53, 55, 57, 60, 64, 67, 79, 81, 84, 85, 87], "must": [1, 2, 3, 4, 13, 23, 24, 25, 26, 28, 29, 32, 34, 35, 38, 41, 42, 43, 44, 45, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 71, 78, 82, 84, 87], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 7, 9, 23, 27, 29, 35, 38, 39, 43, 45, 51, 57, 59, 60, 61, 63, 64, 67, 74, 78, 79, 80, 84, 85, 86, 87], "ball": [1, 73], "bin": [1, 3, 45, 68, 69, 81], "ensur": [1, 2, 7, 24, 28, 38, 39, 50, 53, 55, 67, 68, 69, 72, 75, 76, 81, 82, 83, 85, 86], "most": [1, 3, 4, 5, 7, 13, 23, 27, 29, 34, 42, 43, 44, 45, 48, 50, 52, 53, 56, 59, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86], "least": [1, 7, 23, 27, 43, 44, 50, 53, 63, 74, 75, 78, 81, 84], "int_arrai": [1, 38], "can": [2, 3, 4, 5, 6, 10, 11, 13, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 71, 72, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "model": [2, 3, 4, 7, 13, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 37, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82, 84, 87], "For": [2, 3, 4, 5, 6, 7, 8, 13, 17, 22, 23, 24, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "regular": [2, 3, 27, 42], "multi": [2, 3, 7, 23, 24, 27, 28, 29, 33, 34, 35, 38, 39, 44, 45, 46, 47, 52, 53, 65, 74, 76, 77], "task": [2, 4, 23, 27, 32, 34, 35, 36, 38, 43, 45, 53, 55, 65, 67, 72, 73, 74, 76, 79, 81, 84, 86, 87], "cleanlearn": [2, 3, 7, 18, 24, 38, 42, 55, 56, 65, 66, 83, 85, 86], "wrap": [2, 24, 28, 42, 52, 55, 65, 68, 69, 71, 72, 76, 83, 85, 86], "instanc": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42, 52, 55, 60, 67, 68, 69, 71, 72, 75, 76, 85], "sklearn": [2, 3, 4, 7, 23, 28, 34, 38, 42, 52, 55, 56, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86], "classifi": [2, 3, 28, 34, 38, 43, 46, 52, 53, 65, 66, 67, 71, 72, 74, 78, 79, 81, 82, 84, 85, 86, 87], "adher": [2, 28, 55], "estim": [2, 3, 4, 6, 10, 17, 23, 27, 28, 29, 32, 38, 43, 44, 45, 50, 52, 55, 57, 59, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 77, 79, 80, 81, 82, 83, 84, 87], "api": [2, 3, 11, 42, 52, 55, 66, 74, 83], "defin": [2, 3, 4, 5, 7, 11, 17, 23, 24, 25, 27, 28, 29, 53, 55, 57, 68, 69, 71, 78, 81, 87], "four": [2, 7, 73, 76, 87], "clf": [2, 3, 4, 34, 55, 65, 71, 74, 76, 79, 85], "fit": [2, 3, 4, 7, 28, 42, 52, 55, 65, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87], "sample_weight": [2, 28, 55, 76], "predict_proba": [2, 4, 23, 28, 34, 42, 67, 68, 69, 71, 72, 74, 76, 78, 79, 81, 85], "predict": [2, 3, 4, 7, 13, 17, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 81, 83, 84, 86, 87], "score": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 27, 29, 31, 34, 36, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 81, 83, 85, 86], "data": [2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 34, 35, 38, 41, 42, 43, 44, 45, 46, 50, 52, 53, 54, 55, 60, 61, 62, 63, 64, 66, 70, 72, 75, 77, 82, 86], "e": [2, 3, 4, 7, 13, 17, 23, 24, 27, 28, 29, 32, 34, 35, 38, 39, 43, 44, 45, 46, 52, 53, 55, 57, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "featur": [2, 3, 4, 7, 13, 14, 18, 19, 20, 34, 38, 52, 55, 65, 68, 69, 71, 72, 76, 78, 83, 85], "element": [2, 3, 4, 23, 29, 31, 38, 43, 45, 53, 60, 61, 63, 67, 72, 74, 86, 87], "first": [2, 7, 19, 23, 27, 34, 38, 43, 44, 48, 53, 55, 67, 68, 71, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "index": [2, 7, 19, 23, 29, 36, 37, 38, 39, 44, 53, 55, 60, 63, 64, 67, 68, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "should": [2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 47, 48, 50, 52, 53, 55, 56, 60, 61, 63, 64, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "correspond": [2, 3, 4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "differ": [2, 4, 5, 7, 10, 12, 16, 19, 23, 24, 26, 27, 28, 29, 30, 34, 38, 39, 41, 43, 48, 50, 52, 55, 67, 68, 69, 71, 72, 75, 76, 78, 81, 82, 85], "sampl": [2, 3, 4, 7, 13, 15, 29, 31, 34, 45, 48, 53, 55, 56, 65, 66, 73, 74, 76, 77, 79, 80, 83, 84, 86, 87], "size": [2, 7, 24, 27, 28, 29, 34, 45, 50, 51, 55, 57, 59, 71, 74, 75, 76, 78, 79, 82, 84, 86], "here": [2, 4, 5, 7, 13, 27, 29, 32, 42, 43, 44, 45, 47, 48, 51, 52, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "re": [2, 4, 24, 28, 37, 43, 55, 65, 67, 68, 71, 72, 74, 83, 84, 85, 86, 87], "weight": [2, 7, 24, 25, 28, 34, 43, 50, 53, 55, 67, 68, 69, 72, 81, 86], "loss": [2, 25, 42, 53, 55, 75], "while": [2, 3, 7, 24, 27, 28, 33, 34, 38, 48, 51, 55, 65, 74, 75, 76, 78, 83], "train": [2, 3, 4, 7, 13, 24, 25, 28, 34, 38, 42, 43, 48, 52, 55, 56, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 84, 87], "support": [2, 3, 4, 9, 27, 34, 38, 39, 52, 53, 63, 65, 66, 67, 68, 69, 74, 75], "your": [2, 3, 4, 6, 7, 13, 23, 24, 26, 27, 28, 29, 34, 38, 41, 42, 43, 44, 45, 47, 52, 53, 55, 56, 57, 59, 60, 66, 67, 71, 73, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "recommend": [2, 4, 7, 10, 13, 27, 29, 43, 68, 69, 74, 75, 82, 83], "furthermor": 2, "correctli": [2, 3, 7, 23, 24, 28, 29, 32, 39, 44, 45, 50, 55, 57, 72, 74, 79, 80, 83, 84, 86], "clonabl": [2, 55], "via": [2, 4, 7, 10, 13, 17, 23, 25, 27, 28, 34, 38, 43, 48, 52, 53, 55, 56, 59, 63, 67, 68, 69, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "base": [2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 27, 28, 29, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87], "clone": [2, 55, 79], "intern": [2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 47, 55, 61, 66, 68, 74, 76, 78, 79, 81, 87], "multipl": [2, 3, 4, 9, 10, 23, 29, 37, 43, 44, 45, 47, 50, 55, 65, 68, 69, 74, 75, 77, 79, 80, 83], "g": [2, 3, 4, 7, 17, 23, 24, 28, 29, 35, 38, 45, 46, 52, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "manual": [2, 55, 67, 74, 81, 82, 83, 85, 86, 87], "pytorch": [2, 24, 25, 28, 55, 65, 67, 74, 77, 79, 84], "call": [2, 3, 4, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 24, 28, 34, 38, 42, 52, 55, 67, 68, 69, 72, 74, 75, 76, 81, 82, 84, 86, 87], "__init__": [2, 25, 55, 75], "independ": [2, 3, 7, 44, 55, 82, 87], "compat": [2, 24, 27, 28, 42, 55, 56, 59, 63, 65, 74, 82, 83, 85, 86], "neural": [2, 25, 42, 52, 55, 67, 74, 75, 79, 81], "network": [2, 24, 25, 28, 42, 52, 55, 67, 72, 74, 75, 79, 81, 86], "typic": [2, 24, 28, 52, 55, 67, 69, 71, 72, 75, 81, 82, 85, 86], "initi": [2, 3, 10, 24, 28, 43, 55, 72, 74, 85, 86], "insid": [2, 28, 55, 74, 76], "There": [2, 3, 65, 76, 78, 79], "two": [2, 3, 7, 19, 23, 24, 27, 28, 35, 38, 48, 50, 51, 66, 68, 69, 71, 72, 74, 75, 76, 79, 83, 84, 86, 87], "new": [2, 5, 11, 17, 24, 27, 28, 33, 37, 38, 43, 55, 67, 68, 71, 72, 73, 74, 81, 82, 86, 87], "notion": 2, "confid": [2, 3, 7, 17, 23, 27, 29, 32, 34, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 59, 63, 65, 76, 78, 79, 80, 82, 84, 85, 87], "packag": [2, 4, 5, 6, 7, 8, 12, 22, 26, 29, 30, 38, 41, 48, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "prune": [2, 3, 29, 45, 55, 66, 80], "everyth": [2, 76], "els": [2, 68, 73, 74, 75, 78, 79], "mathemat": [2, 3, 7, 32], "keep": [2, 10, 11, 38, 65, 68, 73, 74, 84], "belong": [2, 3, 7, 23, 29, 31, 32, 44, 45, 46, 47, 52, 53, 57, 61, 63, 64, 75, 76, 79, 81, 84, 87], "2": [2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 45, 47, 52, 53, 55, 56, 60, 61, 63, 64, 73, 74, 82], "error": [2, 3, 4, 7, 10, 24, 28, 29, 31, 32, 36, 38, 44, 45, 47, 48, 50, 53, 55, 57, 59, 60, 63, 66, 67, 68, 69, 71, 72, 73, 77, 85], "erron": [2, 3, 23, 29, 32, 38, 44, 45, 53, 55, 56, 57, 81, 83], "import": [2, 3, 4, 5, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 27, 34, 36, 37, 43, 47, 50, 55, 56, 61, 63, 64, 65, 71, 72, 74, 79, 80, 81, 83, 84, 85, 86, 87], "linear_model": [2, 4, 23, 38, 55, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logisticregress": [2, 3, 4, 23, 38, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logreg": 2, "cl": [2, 11, 55, 65, 74, 76, 83, 85, 86], "pass": [2, 3, 4, 7, 9, 10, 11, 13, 18, 21, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 52, 53, 55, 61, 65, 67, 68, 69, 72, 73, 74, 76, 78, 80, 81, 83, 86], "x_train": [2, 68, 69, 76, 78, 79, 83, 85], "labels_maybe_with_error": 2, "had": [2, 3, 55, 80], "issu": [2, 3, 4, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 41, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 70, 77, 78, 82, 83, 86], "pred": [2, 29, 38, 82, 83, 85, 86], "x_test": [2, 68, 69, 76, 79, 83, 85], "might": [2, 43, 55, 60, 68, 69, 74, 75, 85, 86], "case": [2, 3, 10, 23, 34, 43, 55, 67, 68, 69, 71, 73, 75, 76, 81, 83, 85, 86, 87], "standard": [2, 3, 4, 23, 29, 42, 44, 45, 47, 53, 55, 65, 68, 69, 71, 73, 76, 85], "adapt": [2, 24, 26, 38, 41, 55, 81], "skorch": [2, 55, 65, 74], "kera": [2, 41, 55, 65, 74], "scikera": [2, 42, 55, 74], "open": [2, 27, 65, 73, 80, 87], "doesn": [2, 55, 65], "t": [2, 3, 7, 24, 25, 27, 28, 29, 34, 36, 37, 47, 52, 53, 55, 61, 63, 64, 65, 68, 69, 73, 75, 76, 79, 80, 87], "alreadi": [2, 4, 13, 24, 27, 28, 32, 42, 43, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 85, 86], "exist": [2, 4, 7, 9, 24, 27, 28, 37, 42, 48, 50, 52, 55, 65, 66, 68, 69, 72, 78, 79, 86, 87], "made": [2, 4, 13, 55, 72, 75, 78, 80, 82, 83, 85, 86], "easi": [2, 32, 55, 68, 69, 73, 74, 76, 79], "inherit": [2, 5, 25, 55], "baseestim": [2, 28, 55], "yourmodel": [2, 55], "def": [2, 5, 11, 24, 28, 42, 55, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "self": [2, 3, 4, 5, 9, 10, 11, 13, 24, 25, 27, 28, 29, 34, 52, 53, 55, 68, 73, 75, 79, 84, 85, 87], "refer": [2, 7, 24, 28, 44, 45, 47, 48, 50, 55, 59, 60, 68, 69, 71, 72, 74, 75, 76, 82, 83], "origin": [2, 4, 7, 28, 29, 37, 38, 42, 44, 45, 48, 51, 52, 55, 56, 59, 61, 63, 68, 71, 72, 74, 75, 76, 80, 81, 83, 85, 86, 87], "total": [2, 3, 23, 27, 38, 44, 64, 74, 75, 84], "state": [2, 3, 4, 24, 25, 28, 33, 55, 76, 79, 80, 87], "art": [2, 25, 76, 79], "northcutt": [2, 3, 23, 52, 53], "et": [2, 3, 23, 25, 52, 53], "al": [2, 3, 23, 25, 52, 53], "2021": [2, 3, 23, 52, 53], "weak": 2, "supervis": [2, 7, 68, 69, 74, 78], "find": [2, 4, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 26, 27, 28, 29, 33, 37, 38, 41, 48, 52, 53, 55, 57, 61, 63, 66, 68, 77, 82], "uncertainti": [2, 7, 31, 52, 55, 74, 81, 83], "It": [2, 3, 4, 5, 7, 9, 10, 13, 17, 21, 24, 28, 29, 32, 34, 36, 43, 50, 55, 65, 68, 69, 74, 75, 76, 79, 82], "work": [2, 3, 5, 7, 9, 23, 24, 27, 28, 29, 32, 37, 38, 39, 42, 43, 53, 55, 65, 66, 68, 69, 73, 81, 83, 86], "includ": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 37, 38, 41, 43, 44, 47, 48, 52, 53, 55, 59, 60, 61, 63, 65, 66, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 87], "deep": [2, 26, 28, 41, 42, 55, 72], "see": [2, 3, 4, 10, 23, 24, 27, 28, 29, 34, 38, 42, 44, 45, 47, 48, 52, 53, 55, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "subfield": 2, "theori": [2, 76], "machin": [2, 26, 41, 55, 68, 69, 73, 78], "across": [2, 3, 4, 5, 7, 10, 13, 17, 23, 27, 34, 44, 52, 68, 69, 71, 72, 73, 74, 75, 76, 80, 82], "varieti": [2, 85, 86], "like": [2, 3, 4, 5, 7, 11, 13, 23, 24, 27, 28, 29, 32, 38, 42, 43, 44, 47, 48, 50, 53, 55, 56, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "pu": [2, 38], "input": [2, 3, 4, 7, 13, 19, 23, 24, 27, 28, 32, 34, 37, 38, 39, 42, 55, 65, 66, 69, 72, 73, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "discret": [2, 29, 32, 38, 52, 53, 57, 59, 60], "vector": [2, 3, 4, 7, 13, 29, 32, 34, 35, 38, 52, 53, 65, 67, 68, 69, 71, 72, 75, 76, 79, 80, 81, 84, 86, 87], "would": [2, 3, 4, 24, 27, 28, 29, 38, 45, 55, 65, 68, 74, 75, 76, 81, 83, 86, 87], "obtain": [2, 4, 7, 13, 29, 43, 45, 48, 53, 56, 67, 69, 72, 74, 78, 80, 82, 84, 87], "been": [2, 23, 29, 32, 37, 38, 43, 44, 48, 50, 52, 53, 55, 67, 68, 71, 74, 76, 78, 79, 80, 81, 84, 87], "dure": [2, 13, 52, 55, 67, 71, 72, 74, 76, 79, 82, 83, 85, 86, 87], "denot": [2, 3, 32, 34, 38, 45, 52, 53, 63], "tild": 2, "paper": [2, 7, 43, 52, 61, 63, 73, 76, 78, 81, 83, 87], "cv_n_fold": [2, 3, 55, 86], "5": [2, 3, 4, 14, 15, 17, 18, 19, 20, 21, 23, 28, 29, 31, 33, 34, 38, 43, 44, 47, 48, 51, 55, 56, 63, 68, 72, 73, 74, 79, 80, 81, 82, 84, 86, 87], "converge_latent_estim": [2, 3], "pulearn": [2, 38], "find_label_issues_kwarg": [2, 7, 55, 66, 74, 76], "label_quality_scores_kwarg": [2, 7], "low_memori": [2, 45, 61, 74], "clean": [2, 50, 53, 55, 56, 65, 68, 69, 73, 83, 85, 86], "even": [2, 3, 23, 27, 31, 32, 38, 55, 67, 74, 76, 78, 79, 80], "messi": [2, 55, 76], "ridden": [2, 55], "autom": [2, 55, 65, 69, 73, 74], "robust": [2, 32, 55, 69, 74], "prone": [2, 55], "out": [2, 3, 4, 7, 13, 20, 24, 28, 29, 34, 42, 45, 46, 48, 52, 53, 55, 56, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87], "current": [2, 3, 7, 10, 11, 17, 24, 28, 29, 34, 43, 50, 55, 68, 69, 74, 78], "intend": [2, 10, 11, 12, 13, 21, 30, 43, 59, 63, 67, 68, 69, 72, 76], "A": [2, 3, 4, 5, 7, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 28, 29, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 50, 51, 52, 53, 55, 57, 59, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78, 80, 82, 85, 86, 87], "follow": [2, 3, 7, 11, 23, 24, 27, 28, 34, 36, 43, 44, 48, 50, 52, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "experiment": [2, 24, 25, 27, 28, 45, 66, 74], "wrapper": [2, 4, 42, 67, 83, 85, 86], "around": [2, 4, 50, 68, 69, 80, 81, 87], "fasttext": [2, 41], "store": [2, 4, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 52, 55, 71, 72, 73, 84, 85, 86, 87], "along": [2, 34, 45, 63, 68, 69, 74, 75, 81], "dimens": [2, 36, 38, 57, 60, 74, 75, 81, 84], "select": [2, 6, 19, 43, 53, 75, 78, 81], "split": [2, 3, 4, 7, 9, 27, 34, 37, 38, 55, 67, 68, 69, 71, 72, 73, 75, 76, 79, 82, 85, 87], "cross": [2, 3, 7, 23, 29, 32, 33, 34, 45, 48, 53, 55, 56, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "fold": [2, 3, 23, 29, 32, 55, 67, 71, 73, 74, 80, 84, 85], "By": [2, 23, 44, 45, 55, 68, 84], "need": [2, 3, 7, 23, 24, 27, 28, 29, 44, 45, 47, 52, 55, 65, 67, 68, 69, 72, 74, 76, 78, 79, 80, 84, 86], "holdout": [2, 3, 55], "comput": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 43, 44, 45, 47, 50, 52, 53, 55, 56, 57, 59, 65, 66, 68, 69, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86], "them": [2, 3, 4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 43, 52, 55, 66, 68, 69, 71, 72, 74, 75, 78, 79, 81, 83, 84, 85, 86, 87], "numer": [2, 3, 4, 7, 10, 17, 34, 50, 52, 55, 60, 65, 66, 67, 68, 69, 70, 72, 75, 76, 78, 81, 83, 85, 86], "consist": [2, 3, 24, 28, 38, 43, 84, 87], "latent": [2, 3, 32], "thei": [2, 3, 12, 16, 19, 24, 25, 26, 28, 29, 30, 38, 42, 45, 50, 53, 55, 56, 59, 63, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 83, 86, 87], "relat": [2, 3, 10, 14, 15, 19, 20, 32, 38, 44, 55, 69], "close": [2, 3, 7, 27, 32, 52, 67, 68, 69, 71, 72, 74, 75, 76, 80], "form": [2, 3, 7, 24, 25, 28, 32, 37, 38, 53, 55, 74], "equival": [2, 3, 24, 28, 32, 52, 81], "iter": [2, 3, 23, 24, 28, 29, 38, 44, 45, 55, 78, 84], "enforc": [2, 24, 28, 38], "perfectli": [2, 23, 44, 76], "certain": [2, 3, 4, 13, 24, 28, 42, 55, 68, 69, 73, 81], "dict": [2, 3, 4, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 63, 68, 69, 74, 75, 87], "keyword": [2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 31, 34, 37, 42, 43, 45, 52, 53, 55, 61, 63, 68], "filter": [2, 3, 7, 27, 37, 44, 46, 47, 49, 58, 59, 60, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 79, 80, 83, 84, 85, 86, 87], "find_label_issu": [2, 3, 7, 27, 29, 44, 45, 47, 48, 50, 55, 57, 59, 60, 61, 63, 64, 65, 66, 74, 79, 80, 83, 84, 85, 86, 87], "particularli": [2, 65, 78, 81], "filter_bi": [2, 3, 27, 29, 45, 66, 74], "frac_nois": [2, 29, 45, 61, 74], "min_examples_per_class": [2, 29, 45, 74, 76], "impact": [2, 7, 68, 69, 75], "ml": [2, 4, 7, 55, 65, 68, 69, 71, 72, 75, 78, 85, 86], "accuraci": [2, 25, 53, 67, 74, 75, 76, 78, 81, 83, 84, 85, 86], "n_job": [2, 27, 29, 45, 57, 59, 61, 74, 81, 84], "disabl": [2, 24, 28, 29, 81], "process": [2, 3, 5, 13, 27, 29, 37, 43, 45, 57, 59, 61, 67, 68, 78, 82, 86], "caus": [2, 29, 34, 68, 69], "rank": [2, 3, 23, 27, 29, 34, 44, 45, 46, 48, 49, 52, 54, 58, 60, 61, 62, 64, 65, 66, 68, 69, 73, 74, 79, 80, 81, 83, 84, 85, 86, 87], "get_label_quality_scor": [2, 27, 29, 34, 43, 45, 47, 48, 50, 53, 56, 59, 61, 63, 66, 76, 79, 80, 83, 84, 87], "adjust_pred_prob": [2, 7, 47, 52, 53, 76], "control": [2, 4, 6, 7, 13, 27, 29, 36, 43, 52, 55, 61, 63, 68, 69, 73, 74], "how": [2, 3, 4, 7, 10, 11, 13, 17, 23, 24, 25, 27, 28, 32, 38, 43, 44, 47, 48, 50, 52, 53, 55, 59, 63, 65, 68, 69, 71, 72, 73, 75, 80, 81, 82, 83, 84, 85, 86], "much": [2, 7, 23, 27, 29, 55, 74, 76, 78, 81], "output": [2, 3, 4, 7, 13, 24, 25, 28, 32, 38, 42, 43, 44, 48, 50, 52, 55, 59, 60, 63, 64, 65, 66, 67, 68, 72, 73, 74, 75, 80, 81, 82, 83, 86], "print": [2, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 38, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 66, 67, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "suppress": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60, 84, 87], "statement": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60], "big": [2, 27, 45, 55, 76], "limit": [2, 4, 13, 27, 45, 80, 84, 87], "memori": [2, 24, 27, 28, 45, 51, 57, 59, 68, 84], "label_issues_batch": [2, 26, 45, 74], "find_label_issues_batch": [2, 27, 45, 74], "pred_prob": [2, 3, 4, 7, 13, 18, 20, 23, 27, 29, 31, 32, 33, 34, 35, 38, 39, 43, 44, 45, 47, 48, 51, 52, 53, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86], "threshold": [2, 3, 5, 7, 14, 15, 17, 20, 27, 50, 51, 52, 53, 59, 63, 68, 80, 81, 84, 87], "inverse_noise_matrix": [2, 3, 7, 32, 38, 66, 76], "label_issu": [2, 27, 29, 45, 48, 55, 57, 66, 67, 72, 74, 75, 76, 83, 85, 86], "clf_kwarg": [2, 3, 7, 55], "clf_final_kwarg": [2, 55], "validation_func": [2, 3, 7], "correct": [2, 7, 23, 27, 29, 31, 43, 44, 45, 47, 48, 50, 53, 55, 56, 59, 63, 65, 67, 71, 72, 75, 76, 78, 80, 82, 83], "result": [2, 3, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 27, 28, 29, 31, 38, 45, 47, 48, 53, 55, 56, 57, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 85, 86, 87], "identifi": [2, 3, 4, 5, 7, 9, 13, 21, 23, 27, 29, 45, 48, 53, 55, 56, 57, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79, 81, 83, 84, 85, 86, 87], "final": [2, 7, 55, 71, 80, 82, 83, 85], "remain": [2, 55, 66, 75, 83, 85, 86, 87], "datasetlik": [2, 38, 55], "beyond": [2, 4, 5, 6, 8, 22, 65, 84], "pd": [2, 3, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 33, 42, 43, 44, 55, 63, 67, 68, 69, 71, 72, 74, 76, 78, 83, 85, 86, 87], "datafram": [2, 3, 4, 5, 9, 10, 14, 15, 17, 18, 19, 20, 23, 27, 33, 38, 39, 42, 43, 44, 55, 60, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 86, 87], "scipi": [2, 10, 38], "spars": [2, 4, 7, 10, 13, 38, 39, 71], "csr_matrix": [2, 4, 10, 13], "torch": [2, 24, 25, 28, 67, 72, 73, 75, 81, 86], "util": [2, 4, 13, 21, 24, 25, 28, 30, 43, 55, 65, 66, 67, 68, 69, 74, 75, 76, 81], "tensorflow": [2, 38, 42, 65, 67, 74], "object": [2, 4, 9, 10, 13, 21, 24, 25, 27, 28, 34, 38, 39, 42, 45, 48, 49, 50, 51, 52, 55, 63, 65, 67, 69, 71, 75, 76, 77, 83, 86], "list": [2, 3, 4, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 35, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 59, 60, 61, 63, 64, 66, 67, 68, 69, 73, 75, 76, 79, 80, 83, 86, 87], "index_list": 2, "subset": [2, 3, 4, 13, 23, 27, 29, 38, 53, 60, 64, 67, 71, 72, 74, 75, 79, 80, 81, 82, 83, 85, 86, 87], "wa": [2, 3, 9, 11, 27, 38, 43, 44, 50, 52, 64, 67, 68, 69, 71, 72, 74, 76, 79, 80, 82, 84, 85, 86, 87], "abl": [2, 3, 7, 55, 67, 74, 76, 78, 79], "format": [2, 3, 4, 7, 9, 24, 27, 28, 29, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 48, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 71, 73, 75, 78, 83, 84, 85, 87], "make": [2, 3, 24, 27, 28, 34, 42, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "sure": [2, 27, 29, 34, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 85, 86], "shuffl": [2, 7, 38, 67, 75, 79, 81], "ha": [2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 24, 28, 32, 34, 37, 38, 43, 48, 50, 55, 61, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "batch": [2, 27, 38, 42, 43, 57, 59, 74, 75, 81], "order": [2, 7, 23, 24, 28, 29, 32, 33, 34, 36, 38, 43, 44, 45, 48, 52, 53, 57, 60, 61, 63, 64, 66, 67, 68, 69, 72, 73, 74, 75, 76, 80, 83, 84, 86, 87], "destroi": [2, 38], "oper": [2, 24, 27, 28, 38, 42, 53, 65, 72, 81, 85, 86], "eg": [2, 7, 38, 48, 68, 69, 74], "repeat": [2, 38, 43, 78, 81], "appli": [2, 24, 28, 29, 34, 35, 37, 38, 47, 52, 61, 67, 68, 71, 75, 78, 79, 81, 82, 83, 84, 85, 86], "array_lik": [2, 3, 23, 29, 38, 45, 52, 56], "some": [2, 3, 4, 7, 11, 17, 23, 24, 26, 28, 29, 32, 37, 38, 41, 43, 44, 45, 47, 48, 52, 53, 55, 57, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "seri": [2, 3, 27, 38, 39, 55, 63], "row": [2, 3, 4, 10, 13, 23, 27, 29, 31, 32, 36, 38, 43, 44, 45, 47, 52, 53, 55, 60, 61, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 81, 85, 87], "rather": [2, 3, 19, 23, 38, 42, 43, 50, 59, 63, 78, 82, 84, 86, 87], "leav": [2, 29], "per": [2, 3, 10, 23, 27, 29, 34, 37, 43, 44, 45, 47, 50, 53, 56, 57, 59, 63, 69, 74, 80, 87], "determin": [2, 3, 7, 13, 17, 19, 23, 27, 29, 34, 38, 43, 45, 48, 50, 53, 59, 63, 68, 78, 81, 83], "cutoff": [2, 3, 81], "consid": [2, 3, 4, 7, 10, 13, 18, 19, 20, 23, 24, 28, 29, 38, 43, 50, 52, 53, 56, 59, 63, 67, 69, 71, 72, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86], "section": [2, 3, 5, 7, 66, 71, 75], "3": [2, 3, 4, 5, 23, 24, 28, 29, 32, 33, 34, 35, 36, 37, 38, 42, 45, 52, 53, 55, 56, 61, 63, 73, 74, 82], "equat": [2, 3, 32], "advanc": [2, 3, 4, 6, 13, 50, 52, 63, 66, 69, 70, 76], "user": [2, 3, 4, 11, 13, 21, 24, 28, 29, 50, 52, 53, 55, 59, 63, 76], "specifi": [2, 3, 4, 7, 10, 13, 21, 24, 27, 28, 29, 34, 37, 43, 44, 45, 48, 50, 52, 53, 55, 56, 64, 66, 67, 69, 72, 74, 75, 78, 80, 83, 86], "automat": [2, 3, 4, 19, 23, 65, 71, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "greater": [2, 3, 4, 6, 7, 20, 27, 36, 38, 50, 69, 73, 74, 87], "count": [2, 17, 19, 23, 27, 29, 32, 38, 44, 45, 66, 74, 75], "observ": [2, 3, 32, 67, 68, 69, 78, 81, 83], "mislabel": [2, 7, 23, 27, 29, 32, 43, 44, 45, 48, 50, 53, 59, 61, 63, 65, 67, 71, 72, 74, 75, 76, 79, 80, 83, 85, 86], "one": [2, 3, 4, 7, 19, 23, 24, 27, 28, 29, 34, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 78, 81, 82, 83, 85, 86, 87], "get_label_issu": [2, 27, 55, 76, 83, 85, 86], "either": [2, 3, 5, 7, 24, 27, 28, 29, 43, 45, 50, 52, 53, 57, 59, 69, 79, 80], "boolean": [2, 5, 7, 17, 27, 29, 37, 43, 45, 48, 53, 55, 57, 59, 60, 65, 67, 69, 72, 74, 75, 80, 83, 84, 86], "label_issues_mask": [2, 29, 53, 55, 66], "indic": [2, 3, 4, 5, 7, 10, 17, 23, 27, 28, 29, 31, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "its": [2, 4, 6, 7, 13, 24, 27, 28, 29, 36, 37, 45, 48, 52, 53, 55, 57, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86, 87], "return_indices_ranked_bi": [2, 27, 29, 45, 61, 66, 74, 76, 79, 85, 86], "significantli": [2, 75, 76, 78, 82], "reduc": [2, 27, 29, 38, 67, 74], "time": [2, 7, 24, 27, 28, 38, 43, 66, 68, 73, 74, 75, 76, 80, 81, 83, 84, 85, 86, 87], "take": [2, 4, 7, 13, 23, 24, 28, 33, 34, 38, 42, 53, 71, 75, 78, 85, 87], "run": [2, 4, 5, 6, 8, 13, 19, 22, 24, 27, 28, 55, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "skip": [2, 7, 24, 28, 55, 67, 74, 79, 87], "slow": [2, 3], "step": [2, 5, 19, 34, 74, 75, 76, 78, 82], "caution": [2, 4, 74], "previous": [2, 4, 10, 38, 52, 55, 66, 67, 68, 71, 72, 78, 82, 85], "assign": [2, 5, 14, 15, 17, 18, 19, 20, 33, 34, 38, 55, 68, 71, 74, 75, 83, 84, 85, 87], "individu": [2, 10, 19, 24, 28, 43, 47, 50, 53, 55, 61, 63, 66, 69, 71, 74, 78, 79, 80, 85, 87], "still": [2, 27, 28, 38, 52, 74, 75, 81, 85], "extra": [2, 24, 28, 38, 42, 43, 44, 55, 72, 74, 75, 78, 81], "receiv": [2, 7, 24, 28, 44, 47, 48, 55, 57, 61, 69, 80], "overwritten": [2, 55], "callabl": [2, 3, 34, 37, 42, 47], "x_val": 2, "y_val": 2, "map": [2, 3, 27, 28, 33, 37, 38, 51, 53, 55, 60, 67, 68, 69, 74, 75, 76, 79, 87], "appropri": [2, 7, 13, 45, 53, 68, 71, 79, 80], "earli": [2, 75], "stop": [2, 75], "x_valid": 2, "y_valid": 2, "could": [2, 17, 23, 38, 52, 68, 71, 75, 79, 83, 85, 87], "f": [2, 5, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "ignor": [2, 24, 28, 37, 42, 55, 60, 64, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "allow": [2, 23, 24, 27, 28, 31, 38, 43, 51, 52, 55, 57, 59, 67, 74, 75, 82, 84, 86], "access": [2, 7, 10, 24, 28, 55, 69, 75, 79], "hyperparamet": [2, 47, 52, 75], "purpos": [2, 68, 69, 74, 79, 83], "want": [2, 4, 23, 27, 39, 43, 45, 55, 68, 72, 73, 75, 78, 80, 81, 82, 84, 86, 87], "explicitli": [2, 28, 55], "yourself": [2, 4, 27, 69], "altern": [2, 7, 34, 38, 42, 43, 53, 66, 67, 71, 72, 74, 75, 76, 78, 79, 81, 83, 86], "same": [2, 3, 4, 5, 7, 9, 11, 19, 24, 27, 28, 29, 38, 42, 43, 45, 52, 53, 55, 59, 60, 63, 64, 65, 68, 69, 71, 72, 74, 75, 80, 81, 82, 83, 84, 85, 86], "effect": [2, 7, 24, 28, 43, 52, 55, 71, 72, 74, 81], "offer": [2, 4, 67, 68, 69, 72, 74, 76, 79, 86], "after": [2, 3, 4, 10, 14, 15, 17, 18, 19, 20, 24, 28, 38, 43, 55, 68, 72, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86], "attribut": [2, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 52, 55, 68, 85], "label_issues_df": [2, 55, 75], "similar": [2, 7, 23, 24, 28, 36, 38, 43, 47, 48, 50, 52, 55, 59, 63, 68, 69, 71, 72, 74, 75, 76, 80, 81, 84], "document": [2, 3, 4, 7, 11, 23, 24, 27, 28, 29, 34, 37, 42, 44, 45, 47, 50, 52, 55, 59, 60, 61, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "descript": [2, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 38, 48, 55, 68, 69], "were": [2, 3, 4, 23, 28, 44, 50, 63, 67, 71, 72, 74, 76, 78, 80, 82, 84, 85, 86], "present": [2, 3, 4, 7, 9, 10, 15, 23, 38, 52, 60, 65, 71, 74, 75, 81, 85], "actual": [2, 3, 4, 23, 43, 44, 53, 69, 74, 76, 87], "num_class": [2, 23, 27, 38, 42, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 85, 86], "uniqu": [2, 38, 60, 68, 74, 79, 81], "given_label": [2, 4, 23, 32, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86, 87], "normal": [2, 3, 19, 29, 31, 34, 37, 38, 53, 74, 76, 81], "trick": [2, 74], "distribut": [2, 3, 4, 7, 13, 19, 20, 23, 28, 29, 33, 43, 52, 53, 65, 68, 69, 71, 72, 75, 81], "account": [2, 23, 43, 47, 52, 53, 72, 74, 76, 78, 79, 81, 83, 86], "word": [2, 3, 37, 63, 64, 74], "remov": [2, 7, 23, 24, 28, 29, 55, 65, 72, 73, 74, 75, 81, 83, 85, 86], "so": [2, 3, 5, 7, 11, 19, 23, 24, 27, 28, 29, 38, 43, 44, 50, 53, 55, 59, 63, 67, 68, 69, 72, 75, 76, 81, 84], "proportion": [2, 7, 29], "just": [2, 3, 4, 7, 10, 23, 25, 27, 38, 42, 53, 55, 57, 65, 66, 67, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86], "procedur": 2, "get": [2, 3, 4, 10, 24, 25, 28, 29, 34, 37, 38, 43, 45, 47, 52, 53, 55, 56, 57, 65, 67, 72, 73, 74, 75, 76, 81, 82, 83, 85, 86], "detect": [2, 4, 5, 6, 10, 11, 13, 17, 20, 36, 46, 48, 49, 50, 51, 52, 53, 54, 55, 58, 62, 65, 68, 70, 75, 77, 79, 83, 84, 85, 86, 87], "arg": [2, 9, 17, 24, 25, 28, 34, 38, 53, 55], "kwarg": [2, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 42, 55, 57, 59, 61, 74], "test": [2, 7, 19, 28, 34, 42, 55, 65, 68, 69, 71, 72, 75, 82, 83, 85, 86, 87], "expect": [2, 3, 24, 28, 29, 34, 43, 52, 53, 55, 72, 74, 76, 78, 79, 80, 83, 85, 86, 87], "class_predict": 2, "evalu": [2, 7, 24, 25, 27, 28, 55, 67, 68, 69, 74, 75, 76, 78, 82, 83, 84, 85, 86], "simpli": [2, 23, 53, 68, 69, 71, 72, 74, 76, 83, 84, 86, 87], "quantifi": [2, 4, 5, 7, 10, 29, 47, 52, 55, 65, 69, 71, 72, 75, 76, 80], "save_spac": [2, 7, 55], "potenti": [2, 7, 23, 29, 37, 45, 48, 53, 55, 57, 59, 66, 67, 68, 69, 71, 72, 73, 75, 76, 79, 80, 84, 85, 87], "cach": [2, 72, 75, 81, 86], "panda": [2, 4, 5, 9, 14, 15, 17, 18, 19, 20, 23, 38, 39, 42, 43, 44, 66, 67, 68, 69, 71, 72, 73, 76, 78, 83, 84, 85, 86], "unlik": [2, 29, 31, 34, 42, 44, 45, 47, 63, 68, 78, 79, 81, 83], "both": [2, 4, 7, 13, 19, 23, 24, 28, 29, 38, 43, 45, 53, 57, 59, 64, 65, 68, 74, 75, 76, 78, 87], "mask": [2, 27, 29, 37, 38, 45, 48, 53, 55, 57, 59, 60, 65, 73, 74, 78, 80, 84, 87], "prefer": [2, 53, 61], "plan": 2, "subsequ": [2, 3, 24, 28, 72, 74, 75, 76, 80, 86], "invok": [2, 24, 28, 76, 82], "scratch": [2, 55], "To": [2, 4, 5, 6, 7, 8, 10, 13, 19, 22, 24, 27, 28, 29, 42, 43, 45, 47, 51, 52, 53, 55, 56, 57, 59, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "share": [2, 53, 55], "mostli": [2, 38, 50, 55], "longer": [2, 33, 37, 55, 66, 72, 74, 80, 86], "info": [2, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 44, 55, 63, 68, 69, 73, 74, 87], "about": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 21, 23, 25, 27, 31, 43, 44, 47, 55, 60, 63, 67, 68, 71, 72, 73, 74, 75, 76, 78, 81], "docstr": [2, 23, 24, 28, 38, 55, 73, 76], "unless": [2, 24, 28, 55, 74], "our": [2, 3, 7, 42, 43, 53, 55, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "is_label_issu": [2, 55, 67, 68, 69, 71, 72, 75, 76, 83, 86], "entir": [2, 7, 19, 27, 29, 32, 44, 45, 50, 53, 55, 57, 59, 60, 65, 68, 69, 74, 80, 81, 82, 84, 87], "accur": [2, 3, 4, 7, 13, 23, 27, 29, 43, 44, 45, 48, 53, 55, 56, 57, 59, 60, 66, 69, 71, 72, 74, 75, 78, 83], "label_qu": [2, 43, 55, 76, 78, 83, 86], "measur": [2, 23, 43, 44, 55, 65, 73, 74, 76, 78, 79, 84, 85, 87], "qualiti": [2, 3, 4, 5, 7, 10, 23, 27, 29, 31, 34, 43, 44, 45, 47, 48, 50, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 83, 85, 86], "lower": [2, 4, 5, 7, 10, 20, 27, 34, 43, 44, 47, 50, 53, 55, 56, 59, 63, 67, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 86, 87], "eas": 2, "comparison": [2, 24, 28, 76, 78, 83], "against": [2, 24, 28, 68, 71, 74, 78, 79], "predicted_label": [2, 4, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86], "ad": [2, 24, 28, 69, 78, 83], "precis": [2, 45, 48, 74, 76, 84, 87], "definit": [2, 5, 55, 71, 85], "accessor": [2, 55], "describ": [2, 7, 43, 52, 53, 55, 61, 63, 76, 78, 79, 80, 82, 87], "precomput": [2, 32, 55, 73], "clear": [2, 55, 72, 83, 86], "save": [2, 4, 13, 24, 27, 28, 51, 55, 74, 80, 84, 87], "space": [2, 7, 52, 55, 71, 73, 75], "place": [2, 24, 28, 38, 55, 78, 85], "larg": [2, 27, 55, 74, 81, 84, 87], "deploi": [2, 55, 74], "care": [2, 7, 24, 28, 55, 74, 76], "avail": [2, 4, 5, 9, 13, 21, 28, 55, 76, 78, 80, 83], "cannot": [2, 4, 9, 13, 38, 82, 87], "anymor": 2, "classmethod": [2, 14, 15, 17, 18, 19, 20, 28, 34, 55], "__init_subclass__": [2, 28, 55], "set_": [2, 28, 55], "_request": [2, 28, 55], "pep": [2, 28, 55], "487": [2, 28, 55], "look": [2, 4, 5, 13, 24, 28, 38, 55, 60, 68, 69, 71, 74, 76, 78, 79, 80, 81, 84, 85, 87], "inform": [2, 4, 5, 7, 10, 13, 21, 24, 28, 38, 43, 44, 48, 55, 60, 63, 64, 65, 67, 68, 71, 72, 76, 78, 81, 84, 87], "__metadata_request__": [2, 28, 55], "infer": [2, 28, 38, 55, 60, 64, 75, 78, 79, 83, 85, 86], "signatur": [2, 24, 28, 55], "accept": [2, 24, 28, 53, 55, 68, 69], "metadata": [2, 28, 55, 87], "through": [2, 4, 5, 28, 55, 67, 69, 72, 73, 78, 81, 83, 86], "develop": [2, 6, 28, 55, 74, 76, 87], "request": [2, 28, 55, 69, 72, 73, 79, 85, 86, 87], "those": [2, 3, 7, 27, 28, 29, 42, 43, 45, 55, 59, 63, 64, 65, 67, 74, 75, 80, 84], "http": [2, 4, 5, 6, 7, 8, 22, 24, 25, 27, 28, 31, 38, 52, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "www": [2, 28, 55, 81], "org": [2, 24, 25, 28, 38, 52, 55, 74, 76, 87], "dev": [2, 28, 55], "0487": [2, 28, 55], "get_metadata_rout": [2, 28, 55], "rout": [2, 28, 55], "pleas": [2, 24, 28, 42, 55, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "guid": [2, 5, 28, 55, 66, 75], "mechan": [2, 24, 28, 55], "metadatarequest": [2, 28, 55], "encapsul": [2, 13, 28, 50, 55], "get_param": [2, 28, 42, 55], "subobject": [2, 28, 55], "param": [2, 7, 24, 28, 42, 52, 55], "name": [2, 4, 5, 7, 9, 10, 23, 24, 28, 33, 34, 38, 42, 43, 44, 51, 55, 60, 64, 67, 69, 72, 73, 75, 76, 79, 84, 86, 87], "set_fit_request": [2, 28, 55], "union": [2, 3, 4, 9, 27, 28, 34, 38, 39, 45, 51, 55, 59, 63], "str": [2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 32, 34, 37, 38, 42, 43, 44, 48, 50, 51, 53, 55, 60, 64, 67, 68, 78, 79, 87], "unchang": [2, 24, 28, 55, 87], "relev": [2, 13, 19, 28, 55, 75], "enable_metadata_rout": [2, 28, 55], "set_config": [2, 28, 55], "meta": [2, 28, 55], "rais": [2, 4, 9, 10, 24, 28, 31, 34, 55, 74], "alia": [2, 24, 28, 55], "metadata_rout": [2, 28, 55], "retain": [2, 28, 38, 55], "chang": [2, 24, 27, 28, 31, 55, 63, 67, 68, 72, 74, 80, 81, 86, 87], "version": [2, 4, 5, 6, 7, 8, 12, 16, 22, 24, 26, 28, 30, 31, 38, 41, 42, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "sub": [2, 28, 50, 55], "pipelin": [2, 28, 55], "otherwis": [2, 7, 23, 24, 27, 28, 29, 35, 37, 38, 45, 52, 55, 57, 59, 60, 64, 72, 74, 86], "updat": [2, 10, 24, 27, 28, 55, 66, 68, 75], "set_param": [2, 28, 42, 55], "simpl": [2, 24, 28, 29, 43, 53, 55, 68, 69, 71, 72, 75, 78, 81, 83, 85, 86], "well": [2, 3, 7, 24, 28, 31, 32, 43, 45, 53, 55, 60, 63, 64, 66, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81], "nest": [2, 24, 28, 55, 61, 63, 64, 87], "latter": [2, 24, 28, 55, 81], "compon": [2, 28, 55], "__": [2, 28, 55], "set_score_request": [2, 55], "structur": [3, 52, 71, 85], "unobserv": 3, "less": [3, 4, 7, 27, 34, 43, 52, 53, 57, 59, 63, 71, 73, 74, 75, 76, 80, 87], "channel": [3, 67, 76], "character": 3, "flip": 3, "nm": 3, "invers": [3, 7, 23, 32, 38, 44, 69, 73, 86], "inv": 3, "confident_joint": [3, 17, 23, 29, 38, 44, 45, 66, 74, 76], "un": 3, "under": [3, 7, 24, 28, 44, 52, 81], "joint": [3, 23, 29, 32, 38, 44, 45, 73], "num_label_issu": [3, 27, 29, 45, 60, 64, 66], "estimation_method": [3, 27], "off_diagon": 3, "multi_label": [3, 23, 29, 38, 39, 45, 79], "don": [3, 65, 69, 76, 80], "statis": 3, "compute_confident_joint": [3, 23, 29, 38, 45, 76], "off": [3, 29, 38, 50, 75, 76, 80, 81], "j": [3, 4, 13, 23, 24, 28, 29, 45, 48, 51, 52, 61, 63, 64, 68, 69, 76, 84, 87], "confident_learn": [3, 29, 45, 76], "off_diagonal_calibr": 3, "calibr": [3, 29, 38, 43, 78], "cj": [3, 32, 38], "axi": [3, 32, 34, 57, 60, 67, 68, 69, 74, 75, 76, 78, 79, 81, 83, 84], "bincount": [3, 68, 69, 76, 78, 79], "alwai": [3, 7, 24, 28, 38, 67, 76, 83, 85, 86], "estimate_issu": 3, "over": [3, 7, 24, 27, 28, 50, 57, 59, 69, 71, 73, 74, 75, 76, 81, 83, 85], "As": [3, 5, 65, 68, 69, 72, 76, 83, 87], "add": [3, 4, 5, 10, 24, 28, 42, 51, 67, 68, 69, 72, 74, 75, 76, 79, 86], "approach": [3, 23, 27, 29, 71, 76, 79, 81, 83, 85], "custom": [3, 5, 8, 24, 27, 28, 34, 37, 53, 72, 76, 86], "know": [3, 68, 69, 74, 76, 78], "cut": [3, 50, 65, 76], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 81, 87], "underestim": 3, "few": [3, 65, 74, 78, 79, 80, 81, 87], "4": [3, 4, 14, 15, 17, 18, 19, 20, 33, 34, 37, 47, 48, 50, 51, 53, 56, 63, 73, 74, 79, 84, 87], "detail": [3, 11, 23, 24, 28, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 59, 60, 61, 65, 66, 67, 79, 81, 87], "num_issu": [3, 5, 27, 67, 68, 69, 71, 72, 75, 76], "calibrate_confident_joint": 3, "up": [3, 19, 29, 34, 43, 73, 74, 80, 83, 86, 87], "p_": [3, 23, 29], "pair": [3, 7, 23, 29, 76], "v": [3, 7, 27, 44, 45, 47, 53, 68, 69, 79, 81, 82], "rest": [3, 4, 5, 6, 7, 8, 22, 44, 45, 47, 55, 68, 69, 71, 72, 75, 76, 78, 83, 85, 86], "fashion": [3, 57, 85], "2x2": 3, "incorrectli": [3, 23, 44, 45, 48, 71, 87], "calibrated_cj": 3, "c": [3, 7, 37, 45, 53, 65, 67, 68, 69, 71, 72, 74, 76, 79, 81, 82, 83, 85], "whose": [3, 4, 7, 13, 20, 24, 28, 32, 37, 43, 47, 50, 56, 59, 63, 64, 67, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 84, 87], "truli": [3, 81, 84], "estimate_joint": [3, 23, 76], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 45, 76, 80, 82, 84, 87], "return_indices_of_off_diagon": 3, "frequenc": [3, 19, 43, 44, 60, 81], "done": [3, 7, 55, 68, 74, 76, 79, 81, 82], "overfit": [3, 7, 48, 67, 68, 69, 71, 72, 75, 82, 85], "classifict": 3, "singl": [3, 4, 19, 23, 24, 28, 34, 35, 38, 43, 44, 50, 51, 52, 53, 63, 67, 68, 74, 76, 79, 80, 85], "baselin": [3, 24, 29, 81, 83, 86], "proxi": 3, "tupl": [3, 24, 28, 32, 33, 35, 37, 38, 43, 45, 51, 59, 61, 63, 64, 67, 87], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 27, 32, 43, 57, 59, 65, 74, 75, 84, 86], "practic": [3, 69, 75, 76, 81, 83, 85, 86], "complet": [3, 67, 68, 69, 71, 72, 75, 76, 80], "gist": 3, "cj_ish": 3, "guess": [3, 32, 76, 78], "8": [3, 4, 5, 33, 34, 35, 37, 47, 61, 63, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "parallel": [3, 29, 61, 73], "again": [3, 42, 81, 85], "simplifi": [3, 11], "understand": [3, 6, 23, 44, 69, 76, 83, 84, 87], "100": [3, 24, 28, 53, 68, 69, 71, 73, 74, 75, 76, 79, 84, 85, 86, 87], "optim": [3, 24, 25, 28, 42, 75, 78], "speed": [3, 29, 73, 74, 83, 86], "dtype": [3, 18, 19, 24, 28, 37, 38, 47, 63, 67, 80], "enumer": [3, 24, 28, 67, 68, 69, 75, 87], "s_label": 3, "confident_bin": 3, "6": [3, 4, 28, 34, 38, 63, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "num_confident_bin": 3, "argmax": [3, 29, 53, 57, 60, 67, 74, 76, 81, 84], "elif": 3, "estimate_lat": 3, "py_method": [3, 32], "cnt": [3, 32], "1d": [3, 27, 29, 34, 35, 38, 39, 47, 56, 67, 85], "eqn": [3, 32], "margin": [3, 29, 32, 34, 53], "marginal_p": [3, 32], "shorthand": [3, 10], "proport": [3, 7, 23, 44, 76, 82], "poorli": [3, 32, 85], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 76], "variabl": [3, 5, 11, 38, 55, 56, 67, 68, 71, 76, 79, 83], "exact": [3, 32, 68, 69, 71, 75, 85], "within": [3, 4, 12, 24, 25, 28, 30, 45, 50, 59, 61, 63, 68, 69, 75, 80, 84], "percent": 3, "often": [3, 23, 32, 44, 74, 76, 82, 84], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 7, 38, 39, 67, 68, 71, 72, 74, 75, 80, 81, 86], "wai": [3, 4, 42, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 82, 85, 86], "pro": 3, "con": 3, "pred_proba": [3, 82], "combin": [3, 23, 68, 73, 74, 75, 76, 82, 83], "becaus": [3, 32, 38, 50, 74, 76, 78, 80], "littl": [3, 27, 73, 80, 87], "uniform": [3, 53, 73, 74, 76], "20": [3, 5, 64, 67, 69, 73, 75, 76, 84, 87], "Such": [3, 75, 81], "bound": [3, 18, 24, 28, 48, 50, 51, 80], "reason": [3, 17, 24, 28], "comment": [3, 37, 87], "end": [3, 24, 28, 51], "file": [3, 4, 9, 26, 27, 41, 51, 67, 68, 71, 72, 73, 74, 80, 81, 84, 85, 87], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 76], "handl": [3, 4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 66, 68, 69, 76, 84, 85, 87], "five": [3, 48, 51, 76, 80], "estimate_cv_predicted_prob": [3, 76], "estimate_noise_matric": 3, "get_confident_threshold": [3, 27], "amongst": [3, 7], "confident_threshold": [3, 7, 17, 27, 52], "unifi": 4, "audit": [4, 6, 9, 10, 13, 67, 70, 71, 72, 75, 76, 80], "kind": [4, 5, 67, 68, 71, 72, 73, 75, 76], "addit": [4, 5, 6, 7, 8, 10, 21, 22, 24, 28, 34, 39, 43, 61, 67, 68, 72, 75, 76, 78, 81, 82, 85, 86], "depend": [4, 5, 6, 7, 8, 9, 10, 22, 26, 29, 31, 38, 41, 45, 52, 55, 56, 65], "instal": [4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 42, 57, 59], "pip": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "development": [4, 5, 6, 8, 22], "git": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "github": [4, 5, 6, 8, 22, 24, 25, 38, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "com": [4, 5, 6, 8, 22, 24, 25, 27, 31, 38, 52, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "egg": [4, 5, 6, 8, 22, 65, 73], "label_nam": [4, 5, 7, 9, 65, 67, 68, 69, 71, 72, 75, 76], "image_kei": [4, 75], "interfac": [4, 65, 74, 76], "librari": [4, 7, 28, 48, 52, 65, 68, 72, 73, 74, 86], "goal": 4, "track": [4, 10, 11, 65, 68, 73, 74, 76], "intermedi": [4, 6, 69], "statist": [4, 7, 10, 17, 19, 23, 43, 44, 69, 72, 75, 76], "convert": [4, 9, 24, 28, 35, 39, 43, 50, 59, 63, 66, 67, 72, 73, 75, 78, 79, 80, 86], "hug": [4, 9, 75], "face": [4, 9, 13, 73, 75, 79], "kei": [4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 34, 43, 44, 50, 52, 68, 69, 74, 75, 76, 78, 80], "string": [4, 7, 9, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 28, 38, 43, 44, 56, 60, 63, 64, 71, 72, 74, 78, 79, 86, 87], "dictionari": [4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 33, 38, 43, 44, 47, 48, 50, 51, 68, 69, 71, 72, 76, 78, 79, 80], "path": [4, 9, 24, 27, 28, 51, 67, 68, 74, 80], "local": [4, 9, 24, 25, 28, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "text": [4, 5, 7, 9, 14, 15, 17, 18, 19, 20, 34, 52, 61, 63, 64, 65, 68, 69, 70, 73, 74, 76, 77, 78, 81], "txt": [4, 9, 87], "csv": [4, 9, 71, 72, 83, 85, 86], "json": [4, 9], "hub": [4, 9, 81], "imag": [4, 6, 23, 28, 48, 50, 51, 52, 57, 59, 60, 65, 68, 69, 73, 74, 77, 78, 79, 80, 82, 84], "point": [4, 5, 19, 24, 28, 68, 69, 74, 76, 78], "field": [4, 7, 24, 28], "themselv": [4, 83, 85, 86], "cleanvis": [4, 7], "level": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 37, 61, 63, 69, 75, 77, 84], "load_dataset": [4, 9, 75], "glue": 4, "sst2": 4, "properti": [4, 9, 10], "has_label": [4, 9], "class_nam": [4, 9, 23, 44, 51, 60, 64, 65, 73, 76, 80, 84, 87], "empti": [4, 9, 32, 43, 69, 79], "find_issu": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 65, 67, 68, 69, 71, 72, 75, 76], "knn_graph": [4, 7, 13, 14, 19, 20, 71], "issue_typ": [4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 67, 68, 69, 71, 72, 75, 76], "sort": [4, 13, 27, 29, 34, 36, 43, 45, 48, 50, 53, 59, 61, 63, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "common": [4, 10, 13, 69, 70, 73, 74, 76, 79, 80, 84], "real": [4, 13, 65, 68, 69, 74, 76, 78, 79, 83, 84], "world": [4, 13, 65, 68, 69, 74, 76, 78, 83, 84], "interact": [4, 13, 74], "embed": [4, 7, 13, 52, 65, 67, 68, 69, 71, 72, 76, 86], "thereof": [4, 13], "insight": [4, 13, 78], "act": [4, 7, 50, 68], "issuefind": [4, 13, 21], "logic": [4, 11, 27, 29, 57, 59, 84], "best": [4, 13, 33, 43, 53, 68, 69, 71, 74, 78, 79, 81, 83, 85, 86, 87], "2d": [4, 13, 27, 34, 35, 37, 38, 43, 67, 79, 85], "num_exampl": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 44, 67, 68, 69, 71, 72, 75, 76], "represent": [4, 7, 13, 24, 28, 35, 45, 65, 67, 68, 69, 72, 74, 75, 76, 81, 86], "num_featur": [4, 13, 24, 28, 42], "distanc": [4, 7, 13, 19, 20, 36, 50, 52, 71, 81], "nearest": [4, 7, 13, 18, 19, 20, 36, 52, 69, 72, 81], "neighbor": [4, 7, 13, 18, 19, 20, 36, 52, 68, 69, 71, 72, 75, 81], "graph": [4, 7, 10, 13, 19], "squar": [4, 13, 38, 55, 73, 83], "csr": [4, 13], "evenli": [4, 13], "omit": [4, 13, 50, 51, 75, 80], "itself": [4, 13, 24, 28, 80], "duplic": [4, 6, 12, 13, 16, 17, 24, 28, 65, 68, 76], "explicit": [4, 13], "precend": [4, 13], "construct": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42], "neither": [4, 7, 11, 13, 80], "nor": [4, 7, 11, 13], "collect": [4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 43, 78, 87], "unspecifi": [4, 13, 29, 45], "interest": [4, 13, 17, 60, 64, 72, 76, 84, 85, 86, 87], "constructor": [4, 7, 13, 18], "issuemanag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21], "respons": [4, 13, 17, 55, 56, 73, 83, 87], "random_st": [4, 67, 68, 69, 75, 76, 79, 81, 85], "lab": [4, 14, 15, 17, 18, 19, 20, 27, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79], "nearestneighbor": [4, 7, 52, 71, 81], "comprehens": [4, 65, 75], "nbr": 4, "n_neighbor": [4, 7, 52], "metric": [4, 7, 14, 19, 38, 42, 52, 67, 71, 72, 75, 76, 83, 85, 86], "euclidean": [4, 7, 50, 52, 71], "kneighbors_graph": [4, 71], "mode": [4, 24, 27, 28, 71, 81], "4x4": 4, "float64": [4, 19, 24, 28, 63], "compress": [4, 7, 38, 57, 59], "toarrai": 4, "NOT": [4, 27, 72, 86], "23606798": 4, "41421356": 4, "configur": [4, 13, 34], "suppos": [4, 48, 81, 83, 85, 86], "who": [4, 50, 71, 76, 85, 87], "manag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 68], "clean_learning_kwarg": [4, 7, 18], "labelissuemanag": [4, 7, 11, 18], "prune_method": [4, 66], "prune_by_noise_r": [4, 29, 45, 76], "report": [4, 5, 8, 12, 14, 15, 17, 18, 19, 20, 23, 44, 64, 65, 67, 68, 69, 71, 72, 76, 87], "include_descript": [4, 14, 15, 17, 18, 19, 20, 21], "show_summary_scor": [4, 21], "summari": [4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 42, 44, 49, 58, 59, 61, 62, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 80, 84, 87], "show": [4, 19, 24, 28, 33, 38, 51, 60, 64, 69, 71, 72, 73, 74, 75, 76, 78, 81, 83, 84, 85, 87], "top": [4, 23, 27, 29, 38, 45, 48, 51, 53, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 83, 86, 87], "suffer": [4, 7, 10, 17, 45, 53, 64, 87], "onc": [4, 17, 23, 24, 28, 68, 74, 76, 79, 80, 85], "familiar": 4, "usag": [4, 27, 42], "found": [4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 28, 38, 65, 67, 68, 69, 71, 72, 74, 75, 81, 83, 85, 86, 87], "issue_summari": [4, 7, 10, 68], "overal": [4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 34, 43, 44, 47, 50, 55, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 80, 87], "sever": [4, 5, 7, 9, 10, 17, 24, 27, 28, 29, 47, 50, 52, 53, 59, 63, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 85, 86, 87], "dataissu": [4, 10, 13, 21], "outlier": [4, 6, 11, 12, 16, 17, 30, 53, 65, 68, 69, 76, 77], "someth": [4, 5, 24, 28, 53], "123": [4, 68, 69], "456": [4, 67, 86], "nearest_neighbor": 4, "7": [4, 34, 35, 42, 61, 63, 67, 68, 69, 71, 72, 73, 74, 78, 79, 80, 81, 83, 84, 85, 86, 87], "9": [4, 14, 15, 17, 18, 19, 20, 34, 35, 47, 61, 63, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "distance_to_nearest_neighbor": [4, 68, 69, 71, 72, 75, 76], "789": 4, "get_issu": [4, 7, 10, 67, 69, 71, 72, 75], "issue_nam": [4, 5, 7, 10, 11, 14, 15, 17, 18, 19, 20, 68, 69], "focu": [4, 10, 72, 84, 87], "full": [4, 7, 10, 27, 51, 75, 87], "summar": [4, 10, 14, 15, 17, 18, 19, 20, 23, 44, 60, 64, 65, 84], "valueerror": [4, 9, 10, 31, 34, 74], "specific_issu": [4, 10], "exhibit": [4, 7, 10, 60, 69, 72, 75, 76, 80], "lie": [4, 7, 36, 52, 53, 67, 68, 69, 71, 72, 75, 76, 86], "directli": [4, 11, 13, 21, 27, 42, 43, 69, 72, 79, 80, 83, 86], "compar": [4, 43, 52, 63, 68, 69, 71, 76], "get_issue_summari": [4, 10, 69], "get_info": [4, 10, 69], "yet": [4, 10, 73, 78], "static": [4, 13], "list_possible_issue_typ": [4, 13], "regist": [4, 5, 11, 13, 24, 28, 68], "registri": [4, 11, 13], "list_default_issue_typ": [4, 13], "folder": [4, 67, 68, 75], "load": [4, 9, 27, 51, 73, 74, 75, 76, 80, 81, 84, 87], "futur": [4, 7, 17, 24, 28, 43, 65, 68], "overwrit": [4, 68], "separ": [4, 23, 34, 47, 68, 69, 74, 75, 80, 82], "rememb": [4, 74, 76], "part": [4, 7, 24, 28, 29, 48, 50, 67, 68, 73, 84, 87], "ident": [4, 7, 17, 38, 72, 86], "walk": 5, "alongsid": [5, 24, 28, 68, 74], "pre": [5, 7, 24, 28, 68, 69], "runtim": [5, 24, 27, 28, 55, 57, 59, 67, 74, 75], "issue_manager_factori": [5, 11, 68], "myissuemanag": [5, 11], "decor": [5, 11], "start": [5, 24, 25, 28, 65, 71, 79, 87], "ll": [5, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "thing": [5, 28, 76, 83, 86], "next": [5, 43, 65, 67, 71, 72, 78, 80, 83, 85, 86, 87], "dummi": 5, "randint": [5, 34, 68, 69], "mark": [5, 66, 80, 81, 83], "regard": [5, 69, 76], "rand": [5, 34, 68, 69], "is_": [5, 7, 68], "_issu": [5, 7, 68], "issue_score_kei": [5, 14, 15, 17, 18, 19, 20, 68], "whole": [5, 19, 24, 28, 69], "make_summari": [5, 14, 15, 17, 18, 19, 20, 68], "popul": 5, "verbosity_level": [5, 14, 15, 17, 18, 19, 20], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 27, 60, 64, 74, 79], "intermediate_arg": 5, "min": [5, 34, 50, 63, 68, 74, 81], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 7, 8, 10, 12, 14, 15, 18, 19, 20, 68], "instanti": [5, 13, 27, 42, 52, 67, 69, 71, 86], "477762": 5, "286455": 5, "term": [5, 7, 32, 38, 67, 68, 69, 71, 72, 75, 76], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 14, 20, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "003042": 5, "058117": 5, "11": [5, 42, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "121908": 5, "15": [5, 36, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "169312": 5, "17": [5, 67, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 68, 73, 76], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "search": [6, 7, 15, 19, 37, 55, 74, 82], "nondefault": 6, "Near": 6, "iid": [6, 19, 69, 72, 75, 76], "imbal": [6, 12, 16, 47, 52, 53], "togeth": [6, 7, 32, 68, 69, 71, 72, 75, 76, 83, 86, 87], "built": [6, 34], "own": [6, 24, 26, 28, 41, 47, 48, 57, 61, 67, 69, 71, 72, 75, 78, 79, 83, 84, 85, 86, 87], "prerequisit": 6, "basic": [6, 28, 42, 81], "page": [7, 69, 74, 76], "variou": [7, 10, 26, 39, 41, 65, 68, 69, 71, 72, 73, 76, 78, 80, 85], "sai": [7, 24, 28, 79, 84], "why": [7, 72], "matter": [7, 23, 44], "three": [7, 23, 43, 44, 55, 60, 67, 68, 69, 71, 73, 76, 78, 82, 83, 84, 85, 87], "_score": 7, "flag": [7, 17, 19, 29, 34, 44, 45, 48, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86], "badli": [7, 50, 87], "code": [7, 24, 28, 32, 38, 42, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "issue_scor": 7, "outlier_scor": [7, 20, 68, 69, 71, 72, 75, 76, 81], "atyp": [7, 52, 68, 69, 71, 72, 75, 76, 81], "datapoint": [7, 29, 34, 38, 53, 56, 65, 67, 68, 69, 71, 72, 74, 82, 83, 85, 86], "is_issu": [7, 17], "is_outlier_issu": [7, 68, 69, 71, 72, 75, 76], "annot": [7, 23, 33, 43, 44, 45, 47, 48, 50, 51, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 77, 80, 84], "transform": [7, 34, 36, 38, 52, 53, 69, 72, 75, 81, 85, 86, 87], "dissimilar": [7, 71, 72], "preced": 7, "cosin": [7, 52, 81], "incorrect": [7, 50, 53, 56, 67, 68, 69, 71, 72, 75, 76, 80, 83, 85], "due": [7, 27, 29, 53, 57, 59, 67, 68, 69, 71, 72, 75, 76], "appear": [7, 23, 33, 44, 45, 48, 56, 69, 71, 72, 75, 83, 84], "likelihood": [7, 27, 29, 45, 50, 52, 53, 57, 61], "now": [7, 27, 66, 67, 69, 78, 80, 81, 83, 85, 86, 87], "u": [7, 67, 68, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 86, 87], "token": [7, 37, 59, 60, 61, 62, 63, 64, 74, 76, 77], "etc": [7, 17, 24, 28, 32, 42, 43, 61, 65, 68, 69, 72, 74, 75, 76], "calcul": [7, 19, 27, 34, 43, 47, 48, 50, 52, 55, 59, 73, 75], "hamper": [7, 73, 75], "analyt": [7, 65, 78], "lead": [7, 50, 53, 75, 80], "draw": [7, 68, 69], "conclus": 7, "try": [7, 27, 29, 42, 43, 57, 59, 65, 69, 74, 76, 84], "veri": [7, 23, 44, 48, 50, 68, 69, 71, 72, 75, 76, 78, 81, 83, 86], "rare": [7, 29, 68, 69, 71, 72, 74, 75, 76], "anomal": [7, 53, 68, 69, 71, 72, 75, 76], "articl": [7, 27, 74], "ai": [7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 81, 83, 85, 86, 87], "blog": 7, "unexpect": [7, 24, 28], "consequ": 7, "inspect": [7, 67, 69, 75, 76, 80, 83, 86], "neg": [7, 50, 68, 69, 73], "affect": [7, 24, 28, 57, 63, 72, 74], "extrem": [7, 68, 69, 71, 72, 74, 75, 76], "rel": [7, 23, 43, 44, 52, 68, 69, 71, 72, 75, 76, 81], "record": [7, 24, 28, 67, 71, 83], "abbrevi": 7, "misspel": 7, "typo": [7, 64], "resolut": 7, "video": [7, 73], "audio": [7, 68, 69, 74, 77], "minor": [7, 37], "variat": 7, "translat": 7, "d": [7, 36, 71, 72, 76, 79, 85, 87], "constant": [7, 55], "median": 7, "question": [7, 17, 65, 76], "nearli": [7, 17, 69, 71, 72, 75], "awar": [7, 66, 76], "presenc": [7, 76], "signific": [7, 69, 72, 75, 76], "violat": [7, 69, 72, 75, 76], "assumpt": [7, 69, 72, 75, 76], "changepoint": [7, 69, 72, 75, 76], "shift": [7, 69, 72, 75, 76], "drift": [7, 69, 72, 75, 76], "autocorrel": [7, 69, 72, 75, 76], "almost": [7, 69, 72, 75, 76], "adjac": [7, 69, 72, 75, 76], "tend": [7, 23, 32, 69, 72, 75, 76, 84, 87], "sequenti": [7, 24, 28, 42, 75], "gap": 7, "group": [7, 19, 73, 80, 87], "b": [7, 14, 15, 17, 18, 19, 20, 23, 37, 38, 63, 71, 72, 73, 76, 82, 85, 87], "x1": [7, 48, 51, 80], "x2": [7, 48, 51, 80], "10th": 7, "100th": 7, "90": [7, 63, 71, 76, 82, 85], "similarli": [7, 24, 28, 68, 71, 74, 75, 80], "math": [7, 75], "behind": [7, 52, 76], "fundament": 7, "proper": [7, 38, 43, 48, 72, 75, 78, 80, 85], "closer": [7, 50, 80], "scenario": [7, 53, 68, 69], "underli": [7, 52, 61, 63, 87], "stem": [7, 52, 81], "evolv": 7, "influenc": 7, "accordingli": 7, "emploi": [7, 79, 81], "partit": [7, 82], "ahead": 7, "good": [7, 24, 28, 42, 44, 50, 53, 57, 59, 60, 65, 75], "fix": [7, 43, 72, 76, 83, 86], "problem": [7, 27, 34, 60, 65, 68, 69, 72, 74, 75], "deploy": [7, 76, 83, 85, 86], "overlook": [7, 50, 80], "fact": 7, "thu": [7, 23, 28, 44, 67, 71, 72, 76, 82, 85, 87], "diagnos": [7, 69, 74], "rarest": 7, "q": [7, 80], "fall": [7, 50, 59, 63, 76, 81], "subpar": 7, "special": [7, 37], "techniqu": 7, "smote": 7, "asymmetr": [7, 23], "properli": [7, 27, 33, 38, 39, 57, 74, 79, 81, 83, 84], "too": [7, 29, 34, 52, 74, 75, 80], "dark": [7, 84], "bright": [7, 87], "blurri": [7, 75], "abnorm": [7, 75], "exert": 7, "possible_issue_typ": 7, "label_kwarg": 7, "outlier_kwarg": 7, "near_dupl": [7, 11, 14, 68, 69, 71, 72, 75, 76], "near_duplicate_kwarg": 7, "non_iid": [7, 11, 19, 69, 71, 72, 75, 76], "non_iid_kwarg": 7, "health_summary_paramet": [7, 18], "health_summari": [7, 18, 23, 65, 73], "health_summary_kwarg": 7, "tandem": [7, 73], "view": [7, 24, 28, 29, 59, 61, 63, 65, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "sensit": 7, "ood_kwarg": 7, "outofdistribut": [7, 20, 52, 81], "outsid": 7, "knn": [7, 10, 19, 52, 71, 81], "outlierissuemanag": [7, 11, 20, 68], "nearduplicateissuemanag": [7, 11, 14], "noniidissuemanag": [7, 11, 19, 71], "num_permut": [7, 19], "permut": [7, 19], "significance_threshold": [7, 19], "signic": 7, "noniid": [7, 12, 16], "class_imbalance_kwarg": 7, "classimbalanceissuemanag": [7, 15], "data_issu": [8, 12, 13, 21, 68], "issue_find": [8, 12], "factori": [8, 12, 13], "datalab": [9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 65, 67, 75, 78, 85, 86], "except": [9, 42, 53, 68, 69, 75, 78], "dataformaterror": 9, "with_traceback": 9, "tb": 9, "__traceback__": 9, "datasetdicterror": 9, "datasetdict": 9, "usual": [9, 21, 75, 78, 83], "datasetloaderror": 9, "dataset_typ": 9, "fail": [9, 71], "hold": 9, "is_avail": [9, 75], "serv": [10, 13, 78], "central": [10, 87], "repositori": 10, "being": [10, 23, 24, 28, 29, 34, 37, 38, 53, 71, 76, 83, 84, 85], "basi": 10, "collect_statist": 10, "reus": [10, 17, 75], "avoid": [10, 24, 27, 28, 29, 36, 38, 45, 48, 55, 57, 59, 68, 69, 74], "recomput": [10, 86], "weighted_knn_graph": 10, "issue_manager_that_computes_knn_graph": 10, "collect_issues_from_issue_manag": 10, "set_health_scor": 10, "health": [10, 18, 23, 44, 65], "get_data_statist": 10, "concret": 11, "subclass": [11, 24, 28, 52, 68], "my_issu": 11, "stabl": [12, 16, 26, 30, 38, 41, 52, 66], "instati": 13, "public": [13, 76, 80, 84, 87], "creation": [13, 28], "execut": [13, 24, 28, 68, 74, 80], "coordin": [13, 48, 50, 51, 80, 87], "behavior": [13, 23, 24, 28], "At": [13, 74], "associ": [13, 24, 28, 78], "get_available_issue_typ": 13, "10": [14, 18, 19, 24, 25, 52, 53, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "_": [14, 17, 18, 19, 34, 37, 38, 67, 68, 73, 75, 76, 79, 85], "classvar": [14, 15, 17, 18, 19, 20], "short": [14, 15, 17, 18, 19, 20, 37, 38], "item": [14, 15, 17, 18, 19, 20, 38, 68, 69, 75, 76, 78, 79], "some_info_kei": [14, 15, 17, 18, 19, 20], "additional_info_kei": [14, 15, 17, 18, 19, 20], "near_duplicate_set": [14, 68, 69, 71, 72, 75, 76], "occurr": [14, 15, 17, 19, 20, 37], "collect_info": [14, 15, 17, 18, 19, 20], "near_duplicate_scor": [14, 68, 69, 71, 72, 75, 76], "info_to_omit": [14, 15, 17, 18, 19, 20], "compos": [14, 15, 17, 18, 19, 20, 24, 28, 72, 81, 86], "is_x_issu": [14, 15, 17, 18, 19, 20], "x_score": [14, 15, 17, 18, 19, 20], "val_a": [14, 15, 17, 18, 19, 20], "val_b1": [14, 15, 17, 18, 19, 20], "val_b2": [14, 15, 17, 18, 19, 20], "report_str": [14, 15, 17, 18, 19, 20, 21], "class_imbal": 15, "class_imbalance_scor": 15, "bleed": [16, 26], "edg": [16, 26, 50, 65, 76, 87], "sharp": [16, 26], "abc": 17, "believ": [17, 84], "priori": [17, 76], "global": 17, "anoth": [17, 23, 27, 37, 50, 53, 71, 72, 74, 76, 78, 81, 86], "abstract": 17, "applic": [18, 43, 76, 78, 79, 87], "typevar": [18, 24, 28, 50, 51], "_scalartype_co": 18, "covari": [18, 55, 83], "get_health_summari": 18, "summary_dict": 18, "label_scor": [18, 67, 68, 69, 71, 72, 75, 76], "simplified_kolmogorov_smirnov_test": 19, "neighbor_histogram": 19, "non_neighbor_histogram": 19, "kolmogorov": 19, "smirnov": 19, "largest": [19, 27, 34, 53, 57, 59, 84], "empir": [19, 33, 43], "cumul": 19, "ecdf": 19, "histogram": [19, 71, 83], "absolut": 19, "25": [19, 24, 34, 36, 73, 75, 76, 78, 79, 80, 87], "dimension": [19, 38, 67, 76, 81], "trial": 19, "non_iid_scor": [19, 69, 72, 75, 76], "default_threshold": 20, "37037": 20, "q3_avg_dist": 20, "iqr_avg_dist": 20, "median_outlier_scor": 20, "ood": [20, 52, 53, 68, 69, 72, 75, 76, 81], "exclud": [21, 60, 64, 68, 87], "get_report": 21, "overview": [23, 67, 69, 71, 72, 75, 78, 80, 81, 83, 85, 86, 87], "modifi": [23, 24, 27, 28, 38, 74, 76], "help": [23, 24, 28, 65, 66, 67, 68, 71, 72, 73, 74, 78, 79, 83, 84, 85, 86, 87], "rank_classes_by_label_qu": [23, 69], "merg": [23, 37, 65, 73, 74, 87], "find_overlapping_class": [23, 74, 76], "ascend": [23, 36, 44, 75, 76], "problemat": [23, 44, 60, 64, 67, 80, 87], "unnorm": [23, 44, 76], "abov": [23, 24, 27, 28, 38, 43, 50, 53, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "model_select": [23, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 83, 85, 86], "cross_val_predict": [23, 28, 67, 68, 69, 71, 72, 76, 78, 82, 83, 85, 86], "get_data_labels_from_dataset": 23, "yourfavoritemodel": [23, 76], "cv": [23, 34, 67, 68, 69, 71, 76, 78, 85], "df": [23, 38, 64, 67], "overall_label_qu": [23, 44], "col": 23, "prob": [23, 37, 76, 82], "divid": [23, 44, 53], "label_nois": [23, 44], "human": [23, 73, 84, 87], "clearli": [23, 53, 75, 80, 84], "num": [23, 44, 73, 76], "overlap": [23, 65, 73, 74, 76], "ontolog": 23, "publish": [23, 87], "therefor": [23, 53], "vehicl": [23, 73], "truck": [23, 73, 81, 84], "intuit": [23, 44], "car": [23, 73, 80, 84], "frequent": [23, 43, 71, 74, 83, 85], "confus": [23, 24, 28, 29, 38, 86, 87], "characterist": 23, "l": [23, 24, 28, 48, 50, 51], "class1": 23, "class2": 23, "relationship": 23, "arbitrari": [23, 59, 63, 68, 81, 83], "match": [23, 24, 28, 29, 43, 44, 53, 68, 69, 73, 75, 80, 82, 84], "dog": [23, 38, 44, 46, 60, 73, 74, 81, 82, 87], "cat": [23, 38, 44, 46, 73, 74, 81, 82], "captur": [23, 67, 80, 81, 84], "co": [23, 24, 25], "noisy_label": [23, 68, 69, 79], "overlapping_class": 23, "descend": [23, 24, 28, 34, 44], "overall_label_health_scor": [23, 44, 76], "suggest": [23, 43, 44, 50, 72, 74, 75, 83, 86], "half": [23, 24, 28, 44, 73, 87], "health_scor": [23, 44], "classes_by_label_qu": [23, 69], "cnn": [24, 28, 75], "cifar": [24, 25, 73, 81], "teach": [24, 25], "bhanml": 24, "blob": 24, "master": [24, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "call_bn": 24, "bn": 24, "input_channel": 24, "n_output": 24, "dropout_r": 24, "top_bn": 24, "architectur": [24, 28, 72, 86], "shown": [24, 51, 68, 74, 78, 81, 82, 84, 87], "forward": [24, 25, 28, 75, 78], "overridden": [24, 28], "although": [24, 28, 52, 71, 85], "recip": [24, 28], "afterward": [24, 28], "sinc": [24, 28, 31, 39, 44, 59, 63, 74, 78, 79, 80, 82, 87], "former": [24, 28], "hook": [24, 28, 73], "silent": [24, 27, 28], "t_destin": [24, 28], "__call__": [24, 28, 34], "add_modul": [24, 28], "child": [24, 28], "fn": [24, 28], "recurs": [24, 28, 34], "submodul": [24, 28], "children": [24, 28, 87], "nn": [24, 25, 28, 75], "init": [24, 28, 76], "doc": [24, 28, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "no_grad": [24, 28, 75, 81], "init_weight": [24, 28], "linear": [24, 28, 72, 75, 86], "fill_": [24, 28], "net": [24, 28, 67, 73, 75], "in_featur": [24, 28], "out_featur": [24, 28], "bia": [24, 28, 72, 75, 86], "tensor": [24, 25, 28, 67, 75, 81], "requires_grad": [24, 28], "bfloat16": [24, 28], "cast": [24, 28, 67], "buffer": [24, 28], "datatyp": [24, 28], "direct": [24, 28], "member": [24, 28, 68], "xdoctest": [24, 28], "undefin": [24, 28], "var": [24, 28], "buf": [24, 28], "20l": [24, 28], "1l": [24, 28], "5l": [24, 28], "immedi": [24, 28, 81], "cpu": [24, 28, 29, 67, 75], "move": [24, 28, 34, 66, 73], "cuda": [24, 28, 67, 75], "devic": [24, 28, 67, 75], "gpu": [24, 28, 67, 72, 86], "live": [24, 28], "copi": [24, 28, 55, 67, 68, 69, 71, 74, 79, 82, 83, 85], "doubl": [24, 28], "dump_patch": [24, 28], "eval": [24, 28, 75, 79, 81], "dropout": [24, 28], "batchnorm": [24, 28], "grad": [24, 28], "extra_repr": [24, 28], "line": [24, 28, 65, 68, 73, 78, 81, 87], "get_buff": [24, 28], "target": [24, 25, 28, 55, 56, 81, 83], "throw": [24, 28], "get_submodul": [24, 28], "explan": [24, 28], "fulli": [24, 28, 42, 74], "qualifi": [24, 28], "referenc": [24, 28], "attributeerror": [24, 28], "invalid": [24, 28], "resolv": [24, 28, 87], "get_extra_st": [24, 28], "state_dict": [24, 28], "set_extra_st": [24, 28], "build": [24, 28, 75, 84], "pickleabl": [24, 28], "serial": [24, 28], "backward": [24, 28, 75], "break": [24, 28, 75], "pickl": [24, 28, 80], "get_paramet": [24, 28], "let": [24, 28, 52, 53, 67, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "net_b": [24, 28], "net_c": [24, 28], "conv": [24, 28], "conv2d": [24, 28, 75], "16": [24, 28, 34, 59, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 86, 87], "33": [24, 28, 73, 80], "kernel_s": [24, 28], "stride": [24, 28], "200": [24, 28, 53, 73, 80, 87], "diagram": [24, 28, 82], "degre": [24, 28, 83], "queri": [24, 28, 69, 75], "named_modul": [24, 28], "o": [24, 28, 36, 37, 67, 68, 69, 73, 74, 76, 79, 80, 87], "transit": [24, 28], "ipu": [24, 28], "load_state_dict": [24, 28], "strict": [24, 28, 34], "persist": [24, 28], "strictli": [24, 28], "namedtupl": [24, 28], "missing_kei": [24, 28], "unexpected_kei": [24, 28], "miss": [24, 28, 38, 48, 50, 71, 74, 80, 83, 85], "runtimeerror": [24, 28], "idx": [24, 28, 38, 39, 68, 74, 75, 76, 78, 80, 81], "named_buff": [24, 28], "prefix": [24, 28, 67, 87], "prepend": [24, 28], "running_var": [24, 28], "named_children": [24, 28], "conv4": [24, 28], "conv5": [24, 28], "memo": [24, 28], "remove_dupl": [24, 28], "named_paramet": [24, 28], "register_backward_hook": [24, 28], "deprec": [24, 28, 31], "favor": [24, 28], "register_full_backward_hook": [24, 28], "removablehandl": [24, 28], "register_buff": [24, 28], "running_mean": [24, 28], "register_forward_hook": [24, 28], "posit": [24, 28, 38, 73, 81], "won": [24, 28, 68, 69, 74, 79], "inplac": [24, 28, 78], "register_forward_pre_hook": [24, 28], "gradient": [24, 28, 71, 75, 83], "respect": [24, 28, 76], "grad_input": [24, 28], "grad_output": [24, 28], "technic": [24, 28], "caller": [24, 28], "register_load_state_dict_post_hook": [24, 28], "post": [24, 28], "incompatible_kei": [24, 28], "modif": [24, 28], "thrown": [24, 28], "clearn": [24, 28], "register_modul": [24, 28], "register_paramet": [24, 28], "requires_grad_": [24, 28], "autograd": [24, 28], "freez": [24, 28, 67, 72, 86], "finetun": [24, 28], "gan": [24, 28], "share_memori": [24, 28], "share_memory_": [24, 28], "destin": [24, 28], "keep_var": [24, 28], "shallow": [24, 28], "howev": [24, 28, 38, 67, 71, 72, 75, 78, 82, 84, 85, 86], "releas": [24, 28, 66, 74, 81], "design": [24, 28], "ordereddict": [24, 28], "detach": [24, 28, 75], "non_block": [24, 28], "memory_format": [24, 28], "channels_last": [24, 28], "Its": [24, 28, 34, 44, 50], "complex": [24, 28], "integr": [24, 28, 65], "asynchron": [24, 28], "host": [24, 28], "pin": [24, 28, 72, 73, 86], "desir": [24, 28, 37, 51], "4d": [24, 28], "ignore_w": [24, 28], "determinist": [24, 28, 67], "1913": [24, 28], "3420": [24, 28], "5113": [24, 28], "2325": [24, 28], "env": [24, 28], "torch_doctest_cuda1": [24, 28], "gpu1": [24, 28], "1914": [24, 28], "5112": [24, 28], "2324": [24, 28], "float16": [24, 28], "cdoubl": [24, 28], "3741": [24, 28], "2382": [24, 28], "5593": [24, 28], "4443": [24, 28], "complex128": [24, 28], "6122": [24, 28], "1150": [24, 28], "to_empti": [24, 28], "storag": [24, 28], "dst_type": [24, 28], "xpu": [24, 28], "zero_grad": [24, 28, 75], "set_to_non": [24, 28], "context": [24, 28, 80], "noisili": [25, 76], "han": 25, "2018": 25, "cifar_cnn": [25, 26], "loss_coteach": 25, "y_1": 25, "y_2": 25, "forget_r": 25, "class_weight": 25, "logit": [25, 42, 75], "decim": [25, 38], "quickli": [25, 67, 71, 72, 74, 75, 79, 81, 84, 85, 87], "forget": [25, 34, 87], "rate_schedul": 25, "epoch": [25, 28, 74, 75], "initialize_lr_schedul": 25, "lr": [25, 28], "001": [25, 53, 74], "250": [25, 68, 69, 76, 80], "epoch_decay_start": 25, "80": [25, 71, 73, 79, 83, 85], "schedul": 25, "adjust": [25, 29, 47, 52, 53, 65, 76], "beta": 25, "adam": 25, "adjust_learning_r": 25, "alpha_plan": 25, "beta1_plan": 25, "forget_rate_schedul": 25, "num_gradu": 25, "expon": 25, "tell": [25, 72, 75, 76, 86], "train_load": [25, 28], "model1": [25, 76], "optimizer1": 25, "model2": [25, 76], "optimizer2": 25, "dataload": [25, 75, 81], "parser": 25, "parse_arg": 25, "num_iter_per_epoch": 25, "print_freq": 25, "topk": 25, "top1": 25, "top5": 25, "test_load": 25, "offici": [26, 41, 87], "wish": [26, 41, 81, 84, 87], "mnist_pytorch": 26, "coteach": [26, 66], "mini": [27, 57, 59, 74], "With": [27, 72, 76, 78, 83, 84, 86, 87], "approxim": [27, 52, 78], "low_self_confid": [27, 29, 45], "self_confid": [27, 29, 34, 45, 47, 53, 61, 63, 74, 76, 79, 85, 86], "conveni": [27, 67, 72, 86], "script": 27, "labelinspector": [27, 74], "adj_confident_thresholds_shar": 27, "labels_shar": 27, "pred_probs_shar": 27, "labels_fil": [27, 74], "pred_probs_fil": [27, 74], "batch_siz": [27, 28, 57, 59, 74, 75, 81, 84], "quality_score_kwarg": 27, "num_issue_kwarg": 27, "return_mask": 27, "variant": [27, 43, 84], "read": [27, 31, 69, 74, 76, 81, 87], "zarr": [27, 74], "memmap": [27, 84], "pythonspe": 27, "mmap": [27, 74], "hdf5": 27, "further": [27, 44, 45, 47, 50, 59, 60, 67, 74], "yourfil": 27, "r": [27, 55, 68, 69, 83, 84], "npy": [27, 73, 74, 84], "mmap_mod": [27, 84], "tip": [27, 29, 42, 74], "save_arrai": 27, "your_arrai": 27, "disk": [27, 73, 74], "npz": [27, 87], "maxim": [27, 43, 57, 59, 84], "multiprocess": [27, 29, 45, 57, 59, 74, 75, 84], "linux": [27, 57, 59], "physic": [27, 29, 57, 59, 80, 84], "psutil": [27, 29, 57, 59, 84], "demonstr": [27, 68, 72, 74, 75, 76, 78, 79, 80, 83, 84], "labels_arrai": [27, 39], "predprob": 27, "pred_probs_arrai": 27, "back": [27, 51, 68, 74, 80, 81], "store_result": 27, "becom": [27, 81], "verifi": [27, 74, 78, 81], "long": [27, 43, 52, 78], "enough": [27, 38, 74], "chunk": [27, 82], "ram": [27, 73], "faster": [27, 52, 55, 57, 59, 74, 76], "end_index": 27, "labels_batch": 27, "pred_probs_batch": 27, "update_confident_threshold": 27, "batch_result": 27, "score_label_qu": 27, "indices_of_examples_with_issu": [27, 74], "shortcut": 27, "encount": [27, 29, 57], "1000": [27, 67, 72, 73, 74, 81], "aggreg": [27, 34, 43, 47, 50, 53, 63, 74, 76, 78], "get_num_issu": 27, "fetch": [27, 67, 69], "seen": [27, 74, 81, 87], "far": [27, 43], "get_quality_scor": 27, "label_quality_scor": [27, 47, 50, 53, 56, 76, 80, 83], "method1": 27, "method2": 27, "normalized_margin": [27, 29, 34, 45, 47, 53, 61, 63], "low_normalized_margin": [27, 29, 45], "issue_indic": [27, 50, 75], "update_num_issu": 27, "split_arr": 27, "arr": [27, 74], "chunksiz": 27, "convnet": 28, "bespok": [28, 42], "get_mnist_dataset": 28, "loader": [28, 75], "download": [28, 67, 74, 75, 81], "mnist": [28, 65, 67, 73], "get_sklearn_digits_dataset": 28, "handwritten": 28, "digit": [28, 67, 73], "last": [28, 34, 48, 51, 68, 69, 74, 78, 87], "sklearn_digits_test_s": 28, "hard": [28, 73, 81], "simplenet": 28, "64": [28, 71, 75, 76, 80, 85], "log_interv": 28, "50": [28, 73, 74, 76, 78, 80, 81], "01": [28, 53, 55, 67, 75, 76, 79, 80, 83], "momentum": 28, "no_cuda": 28, "test_batch_s": [28, 75], "templat": 28, "enabl": 28, "flexibli": 28, "among": [28, 43, 76], "test_set": 28, "Be": 28, "overrid": 28, "train_idx": [28, 38, 81], "train_label": [28, 81, 86], "scikit": [28, 38, 52, 65, 67, 68, 69, 71, 72, 74, 77, 83, 86], "set_predict_proba_request": 28, "set_predict_request": 28, "encourag": [29, 45, 53, 56], "multilabel_classif": [29, 44, 45, 47, 53, 74, 79], "pred_probs_by_class": 29, "prune_count_matrix_col": 29, "rank_by_kwarg": [29, 45, 53, 76], "num_to_remove_per_class": [29, 45], "bad": [29, 45, 50, 53, 72, 74, 86], "seem": [29, 76, 79], "fewer": [29, 38, 80], "aren": 29, "confidence_weighted_entropi": [29, 34, 45, 47, 53, 61, 63], "label_issues_idx": [29, 53], "entropi": [29, 31, 33, 34, 52, 53], "prune_by_class": [29, 45, 76], "predicted_neq_given": [29, 45, 76], "prune_counts_matrix": 29, "smallest": [29, 53], "unus": 29, "number_of_mislabeled_examples_in_class_k": 29, "delet": [29, 65, 74, 86], "thread": [29, 45], "window": [29, 73], "shorter": [29, 48], "find_predicted_neq_given": 29, "find_label_issues_using_argmax_confusion_matrix": 29, "latent_algebra": [30, 66], "label_quality_util": 30, "multilabel_util": [30, 79], "multilabel_scor": [30, 47], "token_classification_util": [30, 87], "get_normalized_entropi": 31, "min_allowed_prob": 31, "wikipedia": 31, "activ": [31, 33, 43, 65, 78], "towardsdatasci": 31, "cheatsheet": 31, "ec57bc067c0b": 31, "clip": [31, 38, 67], "behav": 31, "unnecessari": [31, 74], "slightli": [31, 85, 86], "interv": [31, 34, 81], "herein": 32, "inexact": 32, "cours": 32, "propag": 32, "throughout": [32, 38, 55, 67, 78, 84, 87], "compute_ps_py_inv_noise_matrix": 32, "compute_py_inv_noise_matrix": 32, "compute_inv_noise_matrix": 32, "easili": [32, 66, 67, 69, 71, 72, 76, 78, 79, 81, 82, 83, 84, 85, 86], "increas": [32, 50, 52, 53, 67, 68, 74, 78, 79, 87], "dot": [32, 63, 74], "compute_noise_matrix_from_invers": 32, "compute_pi": 32, "true_labels_class_count": 32, "compute_pyx": 32, "pyx": 32, "multiannot": 33, "assert_valid_inputs_multiannot": 33, "labels_multiannot": [33, 43], "ensembl": [33, 34, 43, 53, 71, 74, 79, 81, 83, 85], "allow_single_label": 33, "annotator_id": 33, "assert_valid_pred_prob": 33, "pred_probs_unlabel": [33, 43], "format_multiannotator_label": [33, 43, 78], "lexicograph": [33, 38], "formatted_label": [33, 38], "old": [33, 38, 66, 73], "th": [33, 37, 38, 43, 45, 48, 50, 51, 52, 61, 63, 64, 72, 79, 80, 87], "check_consensus_label_class": 33, "consensus_label": [33, 43, 78], "consensus_method": [33, 43], "consensu": [33, 43, 65, 77, 87], "establish": [33, 83, 86], "compute_soft_cross_entropi": 33, "soft": [33, 73], "find_best_temp_scal": 33, "coarse_search_rang": [33, 55, 74], "fine_search_s": [33, 55, 74], "temperatur": [33, 34, 50, 59, 63], "scale": [33, 36, 73, 74, 81, 84, 85], "factor": [33, 34, 57, 59], "minim": [33, 50, 81], "temp_scale_pred_prob": 33, "temp": 33, "sharpen": [33, 73], "smoothen": 33, "classlabelscor": 34, "enum": 34, "get_self_confidence_for_each_label": [34, 53], "get_normalized_margin_for_each_label": [34, 53], "get_confidence_weighted_entropy_for_each_label": [34, 53], "75": [34, 68, 69, 73, 78, 79, 80, 83, 87], "from_str": 34, "scorer": 34, "exponential_moving_averag": [34, 47], "alpha": [34, 47, 50, 68, 69, 76, 79, 83], "exponenti": 34, "ema": 34, "s_1": 34, "s_k": 34, "ema_k": 34, "accord": [34, 45, 71, 72, 76, 87], "formula": [34, 36], "_t": 34, "cdot": 34, "s_t": 34, "qquad": 34, "leq": 34, "_1": 34, "give": [34, 53, 76, 78, 84], "recent": [34, 87], "success": 34, "previou": [34, 75, 80], "discount": 34, "s_ema": 34, "175": [34, 76, 80], "softmin": [34, 47, 50, 59, 63], "underflow": 34, "nan": [34, 43, 71, 78, 83, 85], "possible_method": 34, "aggregated_scor": 34, "multilabelscor": 34, "base_scor": 34, "base_scorer_kwarg": 34, "aggregator_kwarg": [34, 47], "n_sampl": 34, "n_label": 34, "binari": [34, 38, 45, 47, 76, 87], "worst": [34, 78], "class_label_quality_scor": 34, "get_class_label_quality_scor": 34, "42": [34, 73, 80, 87], "452": 34, "new_scor": 34, "575": 34, "get_label_quality_scores_per_class": [34, 47], "ml_scorer": 34, "multilabel_pi": 34, "binar": [34, 35], "second": [34, 36, 38, 53, 68, 74, 76, 87], "get_cross_validated_multilabel_pred_prob": 34, "reformat": [34, 67], "wider": 34, "strategi": 34, "splitter": 34, "kfold": [34, 75], "multiclass": [34, 38, 43, 79], "onevsrestclassifi": [34, 79], "randomforestclassifi": [34, 76, 79], "n_split": [34, 75, 79], "stack_compl": 35, "pred_prob_slic": 35, "extend": [35, 75, 81, 87], "get_onehot_num_class": 35, "onehot": 35, "encod": [35, 51, 57, 60, 71, 72, 74, 83, 84, 85, 86], "multilabel": [35, 79], "int2onehot": [35, 79], "hot": [35, 45, 51, 57, 60, 71, 73, 74, 83, 84, 85], "onehot2int": [35, 79], "onehot_matrix": 35, "transform_distances_to_scor": 36, "exp": [36, 52, 53, 68], "dt": 36, "right": [36, 48, 51, 72, 79, 80, 81, 86], "num_neighbor": 36, "slice": 36, "ood_features_scor": [36, 52, 81], "95122942": 36, "83945702": 36, "token_classif": [37, 61, 63, 64, 74], "get_sent": [37, 87], "sentenc": [37, 61, 63, 64, 72, 86], "readabl": 37, "filter_sent": [37, 87], "lambda": [37, 67, 68, 78], "long_sent": 37, "headlin": 37, "process_token": 37, "charact": [37, 38], "s1": 37, "s2": 37, "processed_token": 37, "rule": [37, 73], "alecnlcb": 37, "entiti": [37, 65, 74, 87], "mapped_ent": 37, "unique_ident": 37, "loc": [37, 68, 69, 75, 87], "merge_prob": 37, "probs_merg": 37, "55": [37, 73, 80, 83], "0125": [37, 63], "0375": 37, "075": 37, "025": 37, "color_sent": 37, "color": [37, 60, 68, 69, 71, 76, 79, 81, 83, 84], "red": [37, 51, 68, 69, 73, 76, 79, 80, 81, 84], "colored_sent": 37, "termcolor": 37, "31msentenc": 37, "0m": 37, "ancillari": 38, "remove_noise_from_class": 38, "class_without_nois": 38, "any_other_class": 38, "choos": [38, 53, 71, 74, 76, 83, 85], "tradition": 38, "clip_noise_r": 38, "clip_valu": 38, "new_sum": 38, "preserv": 38, "value_count": [38, 74], "fill": 38, "wherea": [38, 45, 82], "come": [38, 68, 69, 74, 84], "major": [38, 43, 66, 75, 81], "versu": [38, 76], "value_counts_fill_missing_class": 38, "get_missing_class": 38, "round_preserving_sum": 38, "obviou": 38, "cgdeboer": 38, "iteround": 38, "round_preserving_row_tot": 38, "reach": 38, "estimate_pu_f1": 38, "prob_s_eq_1": 38, "claesen": 38, "f1": [38, 72, 76], "confusion_matrix": 38, "BE": 38, "print_square_matrix": 38, "left_nam": 38, "top_nam": 38, "titl": [38, 68, 69, 76, 79, 81], "short_titl": 38, "round_plac": 38, "pretti": [38, 76], "print_noise_matrix": [38, 76], "print_inverse_noise_matrix": 38, "print_joint_matrix": [38, 76], "joint_matrix": 38, "compress_int_arrai": 38, "num_possible_valu": 38, "train_val_split": 38, "holdout_idx": 38, "subset_x_i": 38, "extract": [38, 52, 67, 72, 78, 81, 84, 86], "subset_label": 38, "subset_data": 38, "extract_indices_tf": 38, "allow_shuffl": 38, "turn": [38, 65, 80], "unshuffle_tensorflow_dataset": 38, "shuffledataset": 38, "histori": 38, "pre_x": 38, "buffer_s": 38, "is_torch_dataset": 38, "is_tensorflow_dataset": 38, "csr_vstack": 38, "csr_matric": 38, "append": [38, 67, 73, 75, 76, 78, 79, 81, 87], "bottom": [38, 48, 51, 80], "vstack": [38, 73, 74, 75, 76, 78, 79], "append_extra_datapoint": 38, "to_data": 38, "from_data": 38, "taken": 38, "One": [38, 52, 74], "get_num_class": 38, "label_matrix": 38, "canon": 38, "num_unique_class": 38, "get_unique_class": 38, "format_label": 38, "smart_display_datafram": 38, "displai": [38, 51, 60, 64, 67, 72, 76, 86, 87], "jupyt": [38, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "notebook": [38, 43, 67, 69, 73, 74, 76, 78, 79, 80, 84, 87], "consol": 38, "force_two_dimens": 38, "html": [38, 52, 71, 74, 76], "assert_valid_input": 39, "allow_missing_class": 39, "allow_one_class": 39, "assert_valid_class_label": 39, "assert_nonempty_input": 39, "assert_indexing_work": 39, "length_x": 39, "labels_to_arrai": 39, "labellik": 39, "keraswrappermodel": [42, 65], "keraswrappersequenti": 42, "tf": [42, 67], "legaci": 42, "lack": 42, "keraswrapp": 42, "huggingface_keras_imdb": 42, "unit": [42, 87], "model_kwarg": [42, 55], "compile_kwarg": 42, "sparsecategoricalcrossentropi": 42, "layer": [42, 67, 72, 81, 86], "dens": [42, 72, 86], "my_keras_model": 42, "from_logit": 42, "compil": 42, "declar": 42, "apply_softmax": 42, "analysi": 43, "analyz": [43, 65, 76, 78, 79], "get_label_quality_multiannot": [43, 78], "vote": 43, "crowdsourc": [43, 65, 78], "dawid": [43, 78], "skene": [43, 78], "analog": [43, 73, 78], "chosen": [43, 53, 78], "crowdlab": [43, 78], "unlabel": [43, 78, 81, 84], "decid": [43, 72, 73, 78, 83, 86, 87], "get_active_learning_scor": [43, 78], "activelab": [43, 78], "priorit": [43, 50, 80, 84, 87], "showcas": 43, "main": 43, "best_qual": 43, "quality_method": 43, "calibrate_prob": 43, "return_detailed_qu": 43, "return_annotator_stat": 43, "return_weight": 43, "label_quality_score_kwarg": 43, "necessarili": [43, 72, 76], "did": [43, 44, 67, 71, 76, 78, 83, 85, 86], "id": [43, 68, 75, 78], "majority_vot": 43, "ti": 43, "broken": [43, 73], "highest": [43, 68, 75, 82], "0th": 43, "consensus_quality_scor": [43, 78], "annotator_agr": [43, 78], "reman": 43, "1st": 43, "2nd": [43, 57], "3rd": 43, "consensus_label_suffix": 43, "consensus_quality_score_suffix": 43, "suffix": 43, "emsembl": 43, "weigh": [43, 73], "agreement": [43, 78], "agre": 43, "prevent": 43, "overconfid": [43, 82], "wrong": [43, 48, 50, 66, 68, 69, 72, 74, 76, 80, 86], "detailed_label_qu": [43, 78], "annotator_stat": [43, 78], "model_weight": 43, "annotator_weight": 43, "warn": [43, 68], "labels_info": 43, "num_annot": [43, 78], "deriv": [43, 78], "quality_annotator_1": 43, "quality_annotator_2": 43, "quality_annotator_m": 43, "lowest": [43, 69, 75, 78, 79, 80, 84], "annotator_qu": [43, 78], "num_examples_label": [43, 78], "agreement_with_consensu": [43, 78], "worst_class": [43, 78], "trustworthi": [43, 78, 83], "get_label_quality_multiannotator_ensembl": 43, "func": 43, "weigtht": 43, "budget": 43, "retrain": [43, 83, 86], "active_learning_scor": 43, "improv": [43, 69, 73, 74, 75, 76, 83, 84, 85, 86], "active_learning_scores_unlabel": 43, "get_active_learning_scores_ensembl": 43, "henc": [43, 67, 68, 78], "get_majority_vote_label": [43, 78], "event": 43, "lastli": [43, 71], "convert_long_to_wide_dataset": 43, "labels_multiannotator_long": 43, "wide": [43, 67, 85, 86], "suitabl": [43, 71, 85], "labels_multiannotator_wid": 43, "common_multilabel_issu": 44, "mutual": [44, 79], "exclus": [44, 79], "vice": 44, "versa": 44, "rank_classes_by_multilabel_qu": 44, "overall_multilabel_health_scor": 44, "multilabel_health_summari": 44, "classes_by_multilabel_qu": 44, "inner": [45, 59], "find_multilabel_issues_per_class": 45, "per_class_label_issu": 45, "label_issues_list": 45, "labels_list": 45, "pred_probs_list": [45, 53, 75, 76], "anim": [46, 81], "rat": 46, "predat": 46, "pet": 46, "reptil": 46, "manner": [47, 78, 83, 85, 86], "box": [48, 50, 51, 73, 80], "object_detect": [48, 50, 51, 80], "return_indices_ranked_by_scor": [48, 80], "overlapping_label_check": [48, 50], "suboptim": [48, 50], "locat": [48, 50, 80, 84, 87], "bbox": [48, 51, 80], "image_nam": 48, "y1": [48, 51, 80], "y2": [48, 51, 80], "later": [48, 52, 86, 87], "mmdetect": [48, 80], "corner": [48, 51, 80], "swap": [48, 50, 60, 64], "penal": [48, 50], "concern": [48, 50, 65, 69], "aggregation_weight": 50, "imperfect": [50, 74], "chose": [50, 78, 80], "imperfectli": [50, 80], "dirti": [50, 53, 56, 83], "subtyp": 50, "badloc": 50, "nonneg": 50, "issues_from_scor": [50, 59, 60, 63, 64, 80, 84, 87], "compute_overlooked_box_scor": 50, "high_probability_threshold": 50, "auxiliary_input": 50, "vari": [50, 69], "iou": 50, "heavili": 50, "auxiliarytypesdict": 50, "pred_label": [50, 86], "pred_label_prob": 50, "pred_bbox": 50, "lab_label": 50, "lab_bbox": 50, "similarity_matrix": 50, "min_possible_similar": 50, "scores_overlook": 50, "compute_badloc_box_scor": 50, "low_probability_threshold": 50, "scores_badloc": 50, "compute_swap_box_scor": 50, "accident": [50, 71, 72, 86], "scores_swap": 50, "pool_box_scores_per_imag": 50, "box_scor": 50, "image_scor": [50, 59, 84], "visual": [51, 68, 69, 75, 83, 85, 87], "prediction_threshold": 51, "overlai": [51, 80], "figsiz": [51, 68, 69, 75, 76, 79, 81], "save_path": [51, 80], "blue": [51, 73, 76, 80], "overlaid": 51, "side": [51, 73, 80], "figur": [51, 76, 79, 81, 83], "extens": [51, 76, 78], "png": [51, 80], "pdf": [51, 52], "ep": 51, "svg": 51, "plot": [51, 68, 69, 76, 79, 81, 83, 84], "matplotlib": [51, 68, 69, 75, 76, 79, 80, 81, 83], "Of": 52, "li": 52, "smaller": [52, 79, 80], "find_top_issu": [52, 53, 81], "reli": [52, 67, 68, 69, 72, 80, 81, 86], "dist_metr": 52, "dim": [52, 75, 84], "subtract": [52, 53], "renorm": [52, 53, 74], "least_confid": 52, "sum_": 52, "log": [52, 53, 66], "softmax": [52, 59, 63, 75], "literatur": 52, "gen": 52, "liu": 52, "lochman": 52, "zach": 52, "openaccess": 52, "thecvf": 52, "content": [52, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "cvpr2023": 52, "liu_gen_pushing_the_limits_of_softmax": 52, "based_out": 52, "distribution_detection_cvpr_2023_pap": 52, "fit_scor": [52, 81], "ood_predictions_scor": 52, "categor": [52, 68, 69, 70, 83, 85], "pretrain": [52, 67, 72, 81, 86], "adjust_confident_threshold": 52, "probabilist": [52, 67, 68, 69, 71, 72, 81, 82, 85], "order_label_issu": [53, 66], "whichev": [53, 82], "argsort": [53, 72, 75, 76, 81, 83, 86], "max_": 53, "get_label_quality_ensemble_scor": [53, 74, 76], "weight_ensemble_members_bi": 53, "custom_weight": 53, "log_loss_search_t_valu": 53, "0001": [53, 73], "scheme": 53, "log_loss_search": 53, "log_loss": [53, 72], "1e0": 53, "1e1": 53, "1e2": 53, "2e2": 53, "quality_scor": [53, 81], "forth": 53, "top_issue_indic": 53, "rank_bi": [53, 66], "weird": [53, 64], "minu": 53, "prob_label": 53, "max_prob_not_label": 53, "idea": 53, "AND": [53, 72], "corrupt": [55, 83], "linearregress": [55, 74, 83], "y_with_nois": 55, "n_boot": [55, 74], "include_aleatoric_uncertainti": [55, 74], "sole": [55, 68, 78, 81, 85], "larger": [55, 57, 59, 73, 74, 75], "bootstrap": [55, 74, 83], "resampl": [55, 67, 74], "epistem": [55, 74, 81, 83], "aleator": [55, 74, 83], "model_final_kwarg": 55, "coars": 55, "thorough": [55, 74], "fine": [55, 67, 72, 81, 86], "grain": 55, "grid": 55, "get_epistemic_uncertainti": 55, "varianc": [55, 76], "epistemic_uncertainti": 55, "get_aleatoric_uncertainti": 55, "residu": [55, 56, 74], "deviat": [55, 83], "ie": 55, "aleatoric_uncertainti": 55, "outr": 56, "contin": 56, "raw": [56, 65, 66, 69, 73, 75, 78, 80, 81], "aka": [56, 67, 76, 87], "00323821": 56, "33692597": 56, "00191686": 56, "semant": [57, 59, 60, 77], "segment": [57, 59, 60, 77], "pixel": [57, 59, 60, 81, 84], "h": [57, 59, 60, 84], "height": [57, 59, 60, 84], "w": [57, 59, 60, 84], "width": [57, 59, 60, 84], "labels_one_hot": [57, 60, 84], "stream": [57, 81, 87], "downsampl": [57, 59, 84], "shrink": [57, 59], "divis": [57, 59, 68], "segmant": [59, 60], "num_pixel_issu": [59, 84], "product": [59, 74, 75], "pixel_scor": [59, 84], "display_issu": [59, 60, 61, 63, 64, 84, 87], "highlight": [60, 64, 68, 69, 71, 84], "enter": 60, "legend": [60, 68, 69, 79, 80, 83, 84], "colormap": 60, "background": 60, "person": [60, 74, 80, 84, 87], "common_label_issu": [60, 64, 84, 87], "ambigu": [60, 64, 67, 72, 73, 76, 86, 87], "systemat": [60, 64, 78], "misunderstood": [60, 64], "issues_df": [60, 75], "filter_by_class": [60, 84], "class_index": 60, "issues_subset": [60, 64], "95": [61, 63, 71, 73, 76, 83], "token_score_method": 63, "sentence_score_method": 63, "sentence_score_kwarg": 63, "compris": [63, 64], "token_scor": [63, 87], "converg": 63, "toward": 63, "_softmin_sentence_scor": 63, "sentence_scor": [63, 87], "token_info": 63, "70": [63, 71, 76, 83], "02": [63, 68, 69, 76, 80, 83], "03": [63, 73, 76, 80, 87], "04": [63, 80, 83], "08": [63, 76, 80, 87], "commonli": [64, 66, 68, 69, 79, 87], "filter_by_token": [64, 87], "But": [64, 76, 87], "restrict": [64, 74], "reliabl": [65, 67, 74, 78, 84, 85], "thousand": 65, "imagenet": [65, 73], "popular": [65, 78, 80], "centric": [65, 77], "capabl": 65, "minut": [65, 67, 71, 72, 73, 78, 79, 80, 83, 84, 85, 86, 87], "conda": 65, "feature_embed": [65, 81], "Then": [65, 74, 75, 83, 85, 86], "your_dataset": [65, 67, 68, 69, 71, 72, 75], "column_name_of_label": [65, 67, 68, 69, 71, 72, 75], "plagu": [65, 69], "untrain": 65, "\u30c4": 65, "label_issues_info": [65, 69], "sklearn_compatible_model": 65, "framework": [65, 79, 80], "complianc": 65, "tag": [65, 79, 87], "sequenc": 65, "recognit": [65, 67, 74, 87], "train_data": [65, 81, 83, 85, 86], "gotten": 65, "test_data": [65, 76, 79, 81, 83, 85, 86], "deal": [65, 69], "tutori": [65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "faq": [65, 77], "feel": [65, 67, 69, 74], "free": [65, 67, 69, 74, 76], "ask": [65, 74], "slack": [65, 74], "project": [65, 83], "welcom": 65, "commun": [65, 74], "guidelin": [65, 80], "piec": 65, "studio": [65, 69, 74], "platform": [65, 74], "tabular": [65, 68, 69, 70, 74, 77, 78], "automl": [65, 74], "foundat": 65, "smart": [65, 74], "edit": [65, 74], "easier": [65, 76], "unreli": [65, 67, 71, 72, 85], "older": 66, "outlin": 66, "substitut": 66, "v2": [66, 71, 85], "get_noise_indic": 66, "psx": 66, "sorted_index_method": 66, "order_label_error": 66, "label_errors_bool": 66, "latent_estim": 66, "num_label_error": 66, "learningwithnoisylabel": 66, "neatli": 66, "organ": [66, 71, 73, 85, 87], "reorgan": 66, "baseline_method": 66, "incorpor": [66, 76], "research": [66, 76], "polyplex": 66, "terminologi": 66, "label_error": 66, "quickstart": [67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "spoken": 67, "500": [67, 81, 87], "english": [67, 73], "pronunci": 67, "wav": 67, "huggingfac": [67, 68, 69, 75], "voxceleb": 67, "speech": [67, 87], "your_pred_prob": [67, 68, 69, 71, 72], "tensorflow_io": 67, "26": [67, 68, 73, 75, 76, 78, 80], "huggingface_hub": 67, "12": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "branch": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "reproduc": [67, 71, 76, 78], "command": 67, "wget": [67, 80, 84, 87], "navig": 67, "link": [67, 73, 80], "browser": 67, "jakobovski": 67, "archiv": [67, 87], "v1": 67, "tar": [67, 81], "gz": [67, 81], "mkdir": [67, 87], "spoken_digit": 67, "xf": 67, "6_nicolas_32": 67, "data_path": 67, "listdir": 67, "nondeterminist": 67, "file_nam": 67, "endswith": 67, "file_path": 67, "join": [67, 74, 75], "39": [67, 68, 72, 73, 74, 75, 80, 83, 84, 86, 87], "7_george_26": 67, "0_nicolas_24": 67, "0_nicolas_6": 67, "listen": 67, "display_exampl": 67, "click": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "expand": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "pulldown": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "colab": [67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "tfio": 67, "pathlib": 67, "ipython": 67, "load_wav_16k_mono": 67, "filenam": 67, "khz": 67, "file_cont": 67, "io": [67, 73], "read_fil": 67, "sample_r": 67, "decode_wav": 67, "desired_channel": 67, "squeez": 67, "int64": [67, 78], "rate_in": 67, "rate_out": 67, "16000": 67, "wav_file_nam": 67, "audio_r": 67, "wav_file_exampl": 67, "plai": [67, 73, 74], "button": 67, "wav_file_name_exampl": 67, "7_jackson_43": 67, "hear": 67, "extractor": 67, "encoderclassifi": 67, "spkrec": 67, "xvect": 67, "feature_extractor": 67, "from_hparam": 67, "run_opt": 67, "uncom": 67, "wav_audio_file_path": 67, "head": [67, 69, 71, 72, 73, 75, 76, 78, 83, 85, 86], "torchaudio": 67, "extract_audio_embed": 67, "emb": [67, 75], "signal": 67, "encode_batch": 67, "embeddings_list": [67, 75], "embeddings_arrai": 67, "512": [67, 75], "14": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "196308": 67, "319454": 67, "47899": 67, "289091": 67, "817013": 67, "892642": 67, "24": [67, 73, 76, 78, 80], "898056": 67, "2561927": 67, "559636": 67, "5597174": 67, "6206665": 67, "285249": 67, "21": [67, 68, 69, 73, 76, 80, 87], "709625": 67, "5033684": 67, "913807": 67, "819826": 67, "1831462": 67, "208761": 67, "08425": 67, "321053": 67, "005463": 67, "216175": 67, "478231": 67, "682177": 67, "053815": 67, "2424726": 67, "091422": 67, "78335106": 67, "039538": 67, "23": [67, 73, 75, 76, 80], "569181": 67, "19": [67, 72, 73, 75, 76, 81, 83, 84, 86], "76109": 67, "1258249": 67, "75323": 67, "3508852": 67, "598273": 67, "237118": 67, "2500": 67, "leverag": [67, 72, 74, 76, 78, 86], "tune": [67, 72, 73, 81, 86], "computation": [67, 72, 86], "intens": [67, 72, 86], "held": [67, 71, 72, 73, 80, 81, 82, 85], "straightforward": [67, 71, 85], "benefit": [67, 82, 84, 85], "tol": 67, "num_crossval_fold": [67, 71, 78, 85], "decreas": [67, 74], "never": [67, 76, 79, 81, 82], "accuracy_scor": [67, 72, 76, 85, 86], "cv_accuraci": 67, "9772": 67, "probabilit": [67, 86], "9976": 67, "176": [67, 73, 76, 79], "006548": 67, "2318": 67, "008296": 67, "986": 67, "010476": 67, "1946": 67, "012922": 67, "516": 67, "013263": 67, "investig": 67, "100049": 67, "998728": 67, "998785": 67, "980984": 67, "998247": 67, "18": [67, 72, 73, 76, 80, 81, 83, 84, 86], "identified_label_issu": [67, 72], "lowest_quality_label": [67, 72, 76, 83, 86], "sort_valu": [67, 69, 71, 72, 75, 76, 78], "469": 67, "1871": 67, "1955": 67, "2132": 67, "worth": [67, 76], "iloc": [67, 71, 72, 83, 85, 86], "6_yweweler_14": 67, "6_yweweler_36": 67, "6_yweweler_35": 67, "6_theo_27": 67, "4_george_31": 67, "6_nicolas_8": 67, "sound": 67, "quit": [67, 81], "22": [67, 68, 73, 75, 76, 79, 80, 87], "blindli": [67, 74, 83, 85, 86], "trust": [67, 74, 76, 78, 82, 83, 85, 86], "address": [68, 69, 72, 74, 86], "underneath": 68, "hood": 68, "alert": 68, "introduct": 68, "mayb": [68, 69, 72], "examin": [68, 69, 71, 85], "your_feature_matrix": [68, 69], "toi": [68, 69, 73, 75, 76, 78], "train_test_split": [68, 69, 81, 85, 86], "inf": [68, 69], "mid": [68, 69], "bins_map": [68, 69], "create_data": [68, 69], "y_bin": [68, 69], "y_i": [68, 69], "y_bin_idx": [68, 69], "y_train": [68, 69, 76, 83], "y_test": [68, 69, 76, 83], "y_train_idx": [68, 69], "y_test_idx": [68, 69], "test_siz": [68, 69, 85, 86], "slide": [68, 69, 73], "decis": [68, 69, 85], "boundari": [68, 69], "frame": [68, 69], "x_out": [68, 69], "tini": [68, 69], "concaten": [68, 69, 82], "y_out": [68, 69], "y_out_bin": [68, 69], "y_out_bin_idx": [68, 69], "exact_duplicate_idx": [68, 69], "x_duplic": [68, 69], "y_duplic": [68, 69], "y_duplicate_idx": [68, 69], "noisy_labels_idx": [68, 69, 79], "scatter": [68, 69, 76, 79, 83], "black": [68, 69, 73, 83], "cyan": [68, 69], "pyplot": [68, 69, 75, 76, 79, 81, 83], "plt": [68, 69, 75, 76, 79, 81, 83], "plot_data": [68, 69, 76, 79, 83], "fig": [68, 69, 73, 75, 81, 83], "ax": [68, 69, 75, 81, 83], "subplot": [68, 69, 75, 81], "set_titl": [68, 69, 75, 81], "set_xlabel": [68, 69], "x_1": [68, 69], "fontsiz": [68, 69, 75, 76, 79], "set_ylabel": [68, 69], "x_2": [68, 69], "set_xlim": [68, 69], "set_ylim": [68, 69], "linestyl": [68, 69], "circl": [68, 69, 76, 79], "misclassifi": [68, 69], "zip": [68, 69, 75, 80, 87], "label_err": [68, 69], "180": [68, 69, 80], "marker": [68, 69], "facecolor": [68, 69], "edgecolor": [68, 69], "linewidth": [68, 69, 81], "dup": [68, 69], "first_legend": [68, 69], "align": [68, 69], "title_fontproperti": [68, 69], "semibold": [68, 69], "second_legend": [68, 69], "45": [68, 69, 73, 75, 76, 80], "gca": [68, 69], "add_artist": [68, 69], "tight_layout": [68, 69], "ideal": [68, 69], "logist": [68, 69, 72, 78, 81, 86], "regress": [68, 69, 72, 77, 78, 81, 86], "remaind": 68, "modal": [68, 69, 74, 78], "regardless": [68, 69], "132": [68, 69, 76, 80], "9091": [68, 69], "77": [68, 69, 71, 73, 80, 85], "006939": [68, 69], "007830": [68, 69], "40": [68, 69, 72, 73, 75], "014826": [68, 69], "107": [68, 69, 76, 79], "021220": [68, 69], "120": [68, 69], "026403": [68, 69], "notic": [68, 76, 78, 80], "5221": [68, 69], "126": [68, 69, 76, 80], "046465": [68, 69], "130": [68, 69], "068695": [68, 69], "129": [68, 69], "127": [68, 69], "076251": [68, 69], "128": [68, 69, 73, 75], "083941": [68, 69], "2465": [68, 69], "is_near_duplicate_issu": [68, 69, 71, 72, 75, 76], "131": [68, 69, 84], "000000e": [68, 69], "00": [68, 69, 71, 73, 75, 84, 85], "463180e": [68, 69], "07": [68, 69, 76, 80], "51": [68, 69, 71, 73, 76, 80], "857172e": [68, 69], "859087e": [68, 69], "30": [68, 73, 74, 75, 79, 84, 87], "3293": 68, "025076": 68, "026534": 68, "050766": 68, "051025": 68, "home": [68, 72, 73, 75, 81, 86], "runner": [68, 72, 75, 81, 86], "219": [68, 80], "userwarn": 68, "249": [68, 76, 80], "228": [68, 80], "34": [68, 73, 76, 78, 80, 81, 87], "54": [68, 73, 76, 80], "039117": 68, "53": [68, 71, 73, 79, 80, 85], "044594": 68, "105": 68, "105121": 68, "133588": [68, 69], "43": [68, 73, 75, 76, 80, 86, 87], "168035": 68, "125": 68, "090878": 68, "37": [68, 73], "169462": 68, "109": [68, 80], "194566": 68, "35": [68, 73, 78, 79, 80, 87], "196302": 68, "206314": 68, "average_ood_scor": 68, "32933380816554325": 68, "52": [68, 73, 80, 87], "085049e": 68, "087324e": 68, "89": [68, 71, 80, 83], "92": [68, 73, 76, 80], "574261e": 68, "583757e": 68, "91": [68, 73, 80, 85], "314215e": 68, "341292e": 68, "specfi": 68, "new_lab": 68, "scoring_funct": 68, "div": 68, "rem": 68, "inv_scal": 68, "49": [68, 73, 76, 80], "superstitionissuemanag": 68, "unlucki": 68, "superstit": 68, "to_seri": 68, "issues_mask": 68, "summary_scor": 68, "32": [68, 73, 76, 78, 80], "9242": 68, "is_superstition_issu": 68, "superstition_scor": 68, "047581": 68, "090635": 68, "129591": 68, "65": [68, 80], "164840": 68, "demo": [69, 71, 79, 85], "discov": [69, 87], "lurk": [69, 75, 76], "thoroughli": 69, "preprocess": [69, 71, 81, 83, 85, 86], "review": [69, 71, 72, 73, 74, 76, 80, 83, 84, 85, 86, 87], "8218": 69, "is_non_iid_issu": [69, 72, 75, 76], "810274": 69, "826147": 69, "849587": 69, "855359": 69, "855485": 69, "821750488732925": 69, "auto": [69, 73, 74, 83, 85, 86], "conceptu": 69, "909091": 69, "522080": 69, "246459": 69, "821750": 69, "betweeen": 69, "864232": 69, "586131": 69, "235095": 69, "970324": 69, "825563": 69, "548979": 69, "221560": 69, "890575": 69, "533367": 69, "622256": 69, "199185": 69, "755724": 69, "499498": [69, 73], "179601": 69, "948362": 69, "632385": 69, "292800": 69, "878267": 69, "examples_w_issu": [69, 74], "inde": [69, 72], "miscellan": [69, 87], "206897": 69, "041667": 69, "793103": 69, "071429": 69, "103448": 69, "928571": 69, "053333": 69, "101266": 69, "946667": 69, "portion": 69, "huge": [69, 76], "worri": 69, "critic": 69, "highli": [69, 75], "sql": [71, 85], "databas": [71, 85], "excel": [71, 85], "parquet": [71, 85], "student": [71, 83, 85, 87], "grade": [71, 83, 85], "900": [71, 83, 85], "exam": [71, 83, 85], "letter": [71, 85, 87], "hundr": [71, 85], "histgradientboostingclassifi": 71, "reflect": [71, 72, 78, 80, 81, 83, 85, 86], "standardscal": [71, 81, 85], "possibli": [71, 85], "grades_data": [71, 85], "read_csv": [71, 72, 83, 85, 86], "stud_id": [71, 85], "exam_1": [71, 83, 85], "exam_2": [71, 83, 85], "exam_3": [71, 83, 85], "letter_grad": [71, 85], "f48f73": [71, 85], "0bd4e7": [71, 85], "81": [71, 72, 80, 83, 85, 87], "great": [71, 73, 85], "particip": [71, 85], "cb9d7a": [71, 85], "61": [71, 80, 85], "94": [71, 73, 76, 80, 83, 85], "78": [71, 73, 76, 80, 83, 85], "9acca4": [71, 85], "48": [71, 73, 76, 80, 85], "x_raw": [71, 85], "cat_featur": 71, "x_encod": [71, 85], "get_dummi": [71, 83, 85], "drop_first": [71, 85], "numeric_featur": [71, 85], "scaler": [71, 81, 85], "x_process": [71, 85], "fit_transform": [71, 85], "bring": [71, 72, 75, 78, 83, 85, 86], "byod": [71, 72, 75, 78, 83, 85, 86], "boost": [71, 74, 78, 83], "xgboost": [71, 74, 83], "think": [71, 74, 79, 84, 87], "carefulli": [71, 72, 75, 85], "nonzero": 71, "suspici": [71, 85], "tabl": [71, 73, 78, 85], "357": 71, "294": [71, 80], "46": [71, 73, 76, 80], "941": 71, "6578": 71, "000005": [71, 72, 75], "886": 71, "000059": 71, "709": 71, "000104": 71, "723": 71, "000169": 71, "689": 71, "000181": 71, "7154": 71, "012085": 71, "061510": 71, "115512": 71, "124391": 71, "214163": 71, "2169": 71, "915": 71, "168": [71, 76], "691": 71, "185": [71, 73, 80, 87], "582": 71, "issue_result": 71, "000842": 71, "555944": 71, "004374": 71, "sorted_issu": 71, "73": [71, 73, 79, 80, 83], "86": [71, 73, 75, 76, 80, 83], "deserv": 71, "outlier_result": 71, "sorted_outli": 71, "56": [71, 83], "96": [71, 73, 76, 79, 80, 83], "lt": [71, 72, 73, 75, 78, 84], "style": [71, 84], "font": 71, "18px": 71, "ff00ff": 71, "bac": 71, "unintend": [71, 72], "mistak": [71, 72, 75, 85, 86], "duplicate_result": 71, "690": 71, "246": [71, 80], "58": [71, 73, 76, 80], "perhap": [71, 76, 78], "twice": 71, "67": [71, 73, 80, 83], "wari": [71, 72, 74], "intent": [72, 86], "servic": [72, 86], "onlin": [72, 86], "bank": [72, 73, 86], "banking77": [72, 86], "oo": [72, 86], "000": [72, 73, 75, 86, 87], "categori": [72, 75, 86], "scope": [72, 86], "dive": 72, "your_featur": 72, "sentence_transform": [72, 86], "sentencetransform": [72, 86], "payment": [72, 86], "cancel_transf": [72, 86], "transfer": [72, 86], "fund": [72, 86], "cancel": [72, 86], "transact": [72, 86], "my": [72, 86], "revert": [72, 86], "morn": [72, 86], "realis": [72, 86], "yesterdai": [72, 86], "rent": [72, 86], "realli": [72, 78, 84, 86], "tomorrow": [72, 86], "raw_text": [72, 86], "card_about_to_expir": [72, 86], "lost_or_stolen_phon": [72, 86], "change_pin": [72, 86], "getting_spare_card": [72, 86], "apple_pay_or_google_pai": [72, 86], "visa_or_mastercard": [72, 86], "card_payment_fee_charg": [72, 86], "beneficiary_not_allow": [72, 86], "supported_cards_and_curr": [72, 86], "utter": [72, 86], "continu": [72, 75, 78, 83, 85, 86, 87], "suit": [72, 73, 86], "electra": [72, 86], "discrimin": [72, 86], "googl": [72, 86], "text_embed": 72, "No": [72, 74, 86], "google_electra": [72, 86], "pool": [72, 74, 81, 86], "checkpoint": [72, 81, 86], "electramodel": [72, 86], "discriminator_predict": [72, 86], "dense_predict": [72, 86], "bertforsequenceclassif": [72, 86], "bertforpretrain": [72, 86], "400": [72, 86], "data_dict": [72, 76, 78], "84": [72, 73, 80], "41": [72, 73, 80, 83], "38": [72, 73, 80, 84], "9580": 72, "981": 72, "974": 72, "000150": 72, "982": [72, 73], "000220": 72, "971": 72, "000511": 72, "980": [72, 73], "000948": 72, "9122": 72, "994": 72, "676322": 72, "999": [72, 73], "693868": 72, "697240": 72, "433": 72, "700874": 72, "989": 72, "713590": 72, "0656": 72, "148": 72, "006237": 72, "160": 72, "514": 72, "006485": 72, "546": 72, "481": 72, "008165": 72, "0000": [72, 73, 76], "313": [72, 80], "564102": 72, "572258": 72, "28": [72, 73, 75, 76, 78, 87], "574915": 72, "31": [72, 73, 78, 80], "575507": 72, "575874": 72, "791943": 72, "258507": 72, "698864": 72, "183013": 72, "771059": 72, "to_numpi": [72, 83, 86], "data_with_suggested_label": 72, "suggested_label": 72, "charg": [72, 86], "cash": [72, 86], "holidai": [72, 86], "sent": [72, 86, 87], "card": [72, 73, 86], "mine": [72, 86], "expir": [72, 86], "me": [72, 86], "withdraw": 72, "monei": 72, "whoever": [72, 86], "outlier_issu": [72, 75], "lowest_quality_outli": 72, "OR": 72, "636c65616e6c616220697320617765736f6d6521": 72, "phone": [72, 73], "gone": 72, "gt": [72, 78, 87], "samp": 72, "br": 72, "press": [72, 87], "nonsens": 72, "sens": 72, "detriment": 72, "duplicate_issu": 72, "fee": 72, "pai": 72, "go": [72, 73, 76], "shortlist": [72, 83, 86], "curat": [72, 77], "mnist_test_set": 73, "imagenet_val_set": 73, "tench": 73, "goldfish": 73, "white": [73, 87], "shark": 73, "tiger": 73, "hammerhead": 73, "electr": 73, "rai": 73, "stingrai": 73, "cock": 73, "hen": 73, "ostrich": 73, "brambl": 73, "goldfinch": 73, "hous": 73, "finch": 73, "junco": 73, "indigo": 73, "bunt": 73, "american": [73, 87], "robin": 73, "bulbul": 73, "jai": 73, "magpi": 73, "chickade": 73, "dipper": 73, "kite": 73, "bald": 73, "eagl": 73, "vultur": 73, "grei": 73, "owl": 73, "fire": 73, "salamand": 73, "smooth": 73, "newt": 73, "spot": [73, 80], "axolotl": 73, "bullfrog": 73, "tree": 73, "frog": [73, 81], "tail": 73, "loggerhead": 73, "sea": 73, "turtl": 73, "leatherback": 73, "mud": 73, "terrapin": 73, "band": 73, "gecko": 73, "green": [73, 87], "iguana": 73, "carolina": 73, "anol": 73, "desert": 73, "grassland": 73, "whiptail": 73, "lizard": 73, "agama": 73, "frill": 73, "neck": 73, "allig": 73, "gila": 73, "monster": 73, "european": 73, "chameleon": 73, "komodo": 73, "dragon": 73, "nile": 73, "crocodil": 73, "triceratop": 73, "worm": 73, "snake": 73, "ring": 73, "eastern": 73, "hog": 73, "nose": 73, "kingsnak": 73, "garter": 73, "water": 73, "vine": 73, "night": 73, "boa": 73, "constrictor": 73, "african": 73, "rock": 73, "indian": 73, "cobra": 73, "mamba": 73, "saharan": 73, "horn": 73, "viper": 73, "diamondback": 73, "rattlesnak": 73, "sidewind": 73, "trilobit": 73, "harvestman": 73, "scorpion": 73, "yellow": 73, "garden": 73, "spider": 73, "barn": 73, "southern": 73, "widow": 73, "tarantula": 73, "wolf": 73, "tick": 73, "centiped": 73, "grous": 73, "ptarmigan": 73, "ruf": 73, "prairi": 73, "peacock": 73, "quail": 73, "partridg": 73, "parrot": 73, "macaw": 73, "sulphur": 73, "crest": 73, "cockatoo": 73, "lorikeet": 73, "coucal": 73, "bee": 73, "eater": 73, "hornbil": 73, "hummingbird": 73, "jacamar": 73, "toucan": 73, "duck": [73, 86], "breast": 73, "mergans": 73, "goos": 73, "swan": 73, "tusker": 73, "echidna": 73, "platypu": 73, "wallabi": 73, "koala": 73, "wombat": 73, "jellyfish": 73, "anemon": 73, "brain": 73, "coral": 73, "flatworm": 73, "nematod": 73, "conch": 73, "snail": 73, "slug": 73, "chiton": 73, "chamber": 73, "nautilu": 73, "dung": 73, "crab": 73, "fiddler": 73, "king": 73, "lobster": 73, "spini": 73, "crayfish": 73, "hermit": 73, "isopod": 73, "stork": 73, "spoonbil": 73, "flamingo": 73, "heron": 73, "egret": 73, "bittern": 73, "crane": 73, "bird": [73, 81], "limpkin": 73, "gallinul": 73, "coot": 73, "bustard": 73, "ruddi": 73, "turnston": 73, "dunlin": 73, "redshank": 73, "dowitch": 73, "oystercatch": 73, "pelican": 73, "penguin": 73, "albatross": 73, "whale": 73, "killer": 73, "dugong": 73, "lion": 73, "chihuahua": 73, "japanes": 73, "chin": 73, "maltes": 73, "pekinges": 73, "shih": 73, "tzu": 73, "charl": 73, "spaniel": 73, "papillon": 73, "terrier": 73, "rhodesian": 73, "ridgeback": 73, "afghan": [73, 87], "hound": 73, "basset": 73, "beagl": 73, "bloodhound": 73, "bluetick": 73, "coonhound": 73, "tan": 73, "walker": 73, "foxhound": 73, "redbon": 73, "borzoi": 73, "irish": 73, "wolfhound": 73, "italian": 73, "greyhound": 73, "whippet": 73, "ibizan": 73, "norwegian": 73, "elkhound": 73, "otterhound": 73, "saluki": 73, "scottish": 73, "deerhound": 73, "weimaran": 73, "staffordshir": 73, "bull": 73, "bedlington": 73, "border": 73, "kerri": 73, "norfolk": 73, "norwich": 73, "yorkshir": 73, "wire": 73, "fox": 73, "lakeland": 73, "sealyham": 73, "airedal": 73, "cairn": 73, "australian": 73, "dandi": 73, "dinmont": 73, "boston": 73, "miniatur": 73, "schnauzer": 73, "giant": 73, "tibetan": 73, "silki": 73, "coat": [73, 75], "wheaten": 73, "west": 73, "highland": 73, "lhasa": 73, "apso": 73, "flat": 73, "retriev": 73, "curli": 73, "golden": 73, "labrador": 73, "chesapeak": 73, "bai": 73, "german": [73, 87], "shorthair": 73, "pointer": 73, "vizsla": 73, "setter": 73, "gordon": 73, "brittani": 73, "clumber": 73, "springer": 73, "welsh": 73, "cocker": 73, "sussex": 73, "kuvasz": 73, "schipperk": 73, "groenendael": 73, "malinoi": 73, "briard": 73, "kelpi": 73, "komondor": 73, "sheepdog": 73, "shetland": 73, "colli": 73, "bouvier": 73, "de": 73, "flandr": 73, "rottweil": 73, "shepherd": 73, "dobermann": 73, "pinscher": 73, "swiss": [73, 87], "mountain": 73, "bernes": 73, "appenzel": 73, "sennenhund": 73, "entlebuch": 73, "boxer": 73, "bullmastiff": 73, "mastiff": 73, "french": 73, "bulldog": 73, "dane": 73, "st": 73, "bernard": 73, "huski": 73, "alaskan": 73, "malamut": 73, "siberian": 73, "dalmatian": 73, "affenpinsch": 73, "basenji": 73, "pug": 73, "leonberg": 73, "newfoundland": 73, "pyrenean": 73, "samoi": 73, "pomeranian": 73, "chow": 73, "keeshond": 73, "griffon": 73, "bruxelloi": 73, "pembrok": 73, "corgi": 73, "cardigan": 73, "poodl": 73, "mexican": 73, "hairless": 73, "tundra": 73, "coyot": 73, "dingo": 73, "dhole": 73, "wild": 73, "hyena": 73, "kit": 73, "arctic": 73, "tabbi": 73, "persian": 73, "siames": 73, "egyptian": 73, "mau": 73, "cougar": 73, "lynx": 73, "leopard": 73, "snow": 73, "jaguar": 73, "cheetah": 73, "brown": [73, 84], "bear": 73, "polar": 73, "sloth": 73, "mongoos": 73, "meerkat": 73, "beetl": 73, "ladybug": 73, "ground": [73, 76, 78, 83], "longhorn": 73, "leaf": 73, "rhinocero": 73, "weevil": 73, "fly": 73, "ant": 73, "grasshopp": 73, "cricket": 73, "stick": 73, "insect": 73, "cockroach": 73, "manti": 73, "cicada": 73, "leafhopp": 73, "lacew": 73, "dragonfli": 73, "damselfli": 73, "admir": 73, "ringlet": 73, "monarch": 73, "butterfli": 73, "gossam": 73, "wing": 73, "starfish": 73, "urchin": 73, "cucumb": 73, "cottontail": 73, "rabbit": 73, "hare": 73, "angora": 73, "hamster": 73, "porcupin": 73, "squirrel": 73, "marmot": 73, "beaver": 73, "guinea": 73, "pig": 73, "sorrel": 73, "zebra": 73, "boar": 73, "warthog": 73, "hippopotamu": 73, "ox": 73, "buffalo": 73, "bison": 73, "bighorn": 73, "sheep": 73, "alpin": 73, "ibex": 73, "hartebeest": 73, "impala": 73, "gazel": 73, "dromedari": 73, "llama": 73, "weasel": 73, "mink": 73, "polecat": 73, "foot": 73, "ferret": 73, "otter": 73, "skunk": 73, "badger": 73, "armadillo": 73, "toed": 73, "orangutan": 73, "gorilla": 73, "chimpanze": 73, "gibbon": 73, "siamang": 73, "guenon": 73, "pata": 73, "monkei": 73, "baboon": 73, "macaqu": 73, "langur": 73, "colobu": 73, "probosci": 73, "marmoset": 73, "capuchin": 73, "howler": 73, "titi": 73, "geoffroi": 73, "lemur": 73, "indri": 73, "asian": 73, "eleph": 73, "bush": 73, "snoek": 73, "eel": 73, "coho": 73, "salmon": 73, "beauti": 73, "clownfish": 73, "sturgeon": 73, "garfish": 73, "lionfish": 73, "pufferfish": 73, "abacu": 73, "abaya": 73, "academ": 73, "gown": 73, "accordion": 73, "acoust": 73, "guitar": 73, "aircraft": 73, "carrier": 73, "airlin": 73, "airship": 73, "altar": 73, "ambul": 73, "amphibi": 73, "clock": [73, 87], "apiari": 73, "apron": 73, "wast": 73, "assault": 73, "rifl": 73, "backpack": 73, "bakeri": 73, "balanc": 73, "beam": 73, "balloon": 73, "ballpoint": 73, "pen": 73, "aid": 73, "banjo": 73, "balust": 73, "barbel": 73, "barber": 73, "chair": [73, 80], "barbershop": 73, "baromet": 73, "barrel": 73, "wheelbarrow": 73, "basebal": 73, "basketbal": 73, "bassinet": 73, "bassoon": 73, "swim": 73, "cap": 73, "bath": 73, "towel": 73, "bathtub": 73, "station": 73, "wagon": 73, "lighthous": 73, "beaker": 73, "militari": 73, "beer": 73, "bottl": 73, "glass": 73, "bell": 73, "cot": 73, "bib": 73, "bicycl": [73, 84], "bikini": 73, "binder": 73, "binocular": 73, "birdhous": 73, "boathous": 73, "bobsleigh": 73, "bolo": 73, "tie": 73, "poke": 73, "bonnet": 73, "bookcas": 73, "bookstor": 73, "bow": 73, "brass": 73, "bra": 73, "breakwat": 73, "breastplat": 73, "broom": 73, "bucket": 73, "buckl": 73, "bulletproof": 73, "vest": 73, "butcher": 73, "shop": 73, "taxicab": 73, "cauldron": 73, "candl": 73, "cannon": 73, "cano": 73, "mirror": [73, 80], "carousel": 73, "tool": [73, 76, 78], "carton": 73, "wheel": 73, "teller": 73, "cassett": 73, "player": 73, "castl": 73, "catamaran": 73, "cd": 73, "cello": 73, "mobil": [73, 87], "chain": 73, "fenc": [73, 84], "mail": 73, "chainsaw": 73, "chest": 73, "chiffoni": 73, "chime": 73, "china": 73, "cabinet": 73, "christma": 73, "stock": 73, "church": 73, "movi": 73, "theater": 73, "cleaver": 73, "cliff": 73, "dwell": 73, "cloak": 73, "clog": 73, "cocktail": 73, "shaker": 73, "coffe": 73, "mug": 73, "coffeemak": 73, "coil": 73, "lock": 73, "keyboard": 73, "confectioneri": 73, "ship": [73, 81], "corkscrew": 73, "cornet": 73, "cowboi": 73, "boot": 73, "hat": 73, "cradl": 73, "crash": 73, "helmet": 73, "crate": 73, "infant": 73, "bed": 73, "crock": 73, "pot": 73, "croquet": 73, "crutch": 73, "cuirass": 73, "dam": 73, "desk": 73, "desktop": 73, "rotari": 73, "dial": 73, "telephon": 73, "diaper": 73, "watch": 73, "dine": 73, "dishcloth": 73, "dishwash": 73, "disc": 73, "brake": 73, "dock": 73, "sled": 73, "dome": 73, "doormat": 73, "drill": 73, "rig": 73, "drum": 73, "drumstick": 73, "dumbbel": 73, "dutch": 73, "oven": 73, "fan": 73, "locomot": 73, "entertain": 73, "center": 73, "envelop": 73, "espresso": 73, "powder": 73, "feather": 73, "fireboat": 73, "engin": [73, 84], "screen": 73, "sheet": 73, "flagpol": 73, "flute": 73, "footbal": 73, "forklift": 73, "fountain": 73, "poster": 73, "freight": 73, "fry": 73, "pan": 73, "fur": 73, "garbag": 73, "ga": 73, "pump": 73, "goblet": 73, "kart": 73, "golf": 73, "cart": 73, "gondola": 73, "gong": 73, "grand": 73, "piano": 73, "greenhous": 73, "grill": 73, "groceri": 73, "guillotin": 73, "barrett": 73, "hair": 73, "sprai": 73, "hammer": 73, "dryer": 73, "hand": [73, 76], "handkerchief": 73, "drive": 73, "harmonica": 73, "harp": 73, "harvest": 73, "hatchet": 73, "holster": 73, "honeycomb": 73, "hoop": 73, "skirt": 73, "horizont": 73, "bar": 73, "hors": [73, 81, 86], "drawn": 73, "hourglass": 73, "ipod": 73, "cloth": 73, "iron": 73, "jack": 73, "lantern": 73, "jean": 73, "jeep": 73, "shirt": [73, 75], "jigsaw": 73, "puzzl": 73, "pull": 73, "rickshaw": 73, "joystick": 73, "kimono": 73, "knee": 73, "pad": 73, "knot": 73, "ladl": 73, "lampshad": 73, "laptop": 73, "lawn": 73, "mower": 73, "knife": 73, "lifeboat": 73, "lighter": 73, "limousin": 73, "ocean": 73, "liner": 73, "lipstick": 73, "slip": 73, "shoe": 73, "lotion": 73, "speaker": 73, "loup": 73, "sawmil": 73, "magnet": 73, "compass": 73, "bag": [73, 75, 81, 82], "mailbox": 73, "tight": 73, "tank": 73, "manhol": 73, "maraca": 73, "marimba": 73, "maypol": 73, "maze": 73, "cup": [73, 80], "medicin": 73, "megalith": 73, "microphon": 73, "microwav": 73, "milk": 73, "minibu": 73, "miniskirt": 73, "minivan": 73, "missil": 73, "mitten": 73, "mix": 73, "bowl": 73, "modem": 73, "monasteri": 73, "monitor": 73, "mope": 73, "mortar": 73, "mosqu": 73, "mosquito": 73, "scooter": 73, "bike": 73, "tent": 73, "mous": [73, 74], "mousetrap": 73, "van": 73, "muzzl": 73, "nail": 73, "brace": 73, "necklac": 73, "nippl": 73, "obelisk": 73, "obo": 73, "ocarina": 73, "odomet": 73, "oil": 73, "oscilloscop": 73, "overskirt": 73, "bullock": 73, "oxygen": 73, "packet": 73, "paddl": 73, "padlock": 73, "paintbrush": 73, "pajama": 73, "palac": [73, 87], "parachut": 73, "park": 73, "bench": 73, "meter": 73, "passeng": 73, "patio": 73, "payphon": 73, "pedest": 73, "pencil": 73, "perfum": 73, "petri": 73, "dish": 73, "photocopi": 73, "plectrum": 73, "pickelhaub": 73, "picket": 73, "pickup": 73, "pier": 73, "piggi": 73, "pill": 73, "pillow": 73, "ping": 73, "pong": 73, "pinwheel": 73, "pirat": 73, "pitcher": 73, "plane": 73, "planetarium": 73, "plastic": 73, "plate": 73, "rack": 73, "plow": 73, "plunger": 73, "polaroid": 73, "camera": 73, "pole": [73, 84], "polic": 73, "poncho": 73, "billiard": 73, "soda": 73, "potter": 73, "power": [73, 76, 87], "prayer": 73, "rug": 73, "printer": 73, "prison": 73, "projectil": 73, "projector": 73, "hockei": 73, "puck": 73, "punch": 73, "purs": 73, "quill": 73, "quilt": 73, "race": 73, "racket": 73, "radiat": 73, "radio": 73, "telescop": 73, "rain": 73, "recreat": 73, "reel": 73, "reflex": 73, "refriger": 73, "remot": 73, "restaur": 73, "revolv": 73, "rotisseri": 73, "eras": 73, "rugbi": 73, "ruler": 73, "safe": 73, "safeti": 73, "salt": 73, "sandal": [73, 75], "sarong": 73, "saxophon": 73, "scabbard": 73, "school": 73, "bu": [73, 84], "schooner": 73, "scoreboard": 73, "crt": 73, "screw": 73, "screwdriv": 73, "seat": 73, "belt": 73, "sew": 73, "shield": 73, "shoji": 73, "basket": 73, "shovel": 73, "shower": 73, "curtain": 73, "ski": 73, "sleep": 73, "door": 73, "slot": 73, "snorkel": 73, "snowmobil": 73, "snowplow": 73, "soap": 73, "dispens": 73, "soccer": [73, 87], "sock": 73, "solar": 73, "thermal": 73, "collector": 73, "sombrero": 73, "soup": 73, "heater": 73, "shuttl": 73, "spatula": 73, "motorboat": 73, "web": 73, "spindl": 73, "sport": [73, 87], "spotlight": 73, "stage": 73, "steam": 73, "arch": 73, "bridg": 73, "steel": 73, "stethoscop": 73, "scarf": 73, "stone": 73, "wall": [73, 84], "stopwatch": 73, "stove": 73, "strainer": 73, "tram": 73, "stretcher": 73, "couch": 73, "stupa": 73, "submarin": 73, "sundial": 73, "sunglass": 73, "sunscreen": 73, "suspens": 73, "mop": 73, "sweatshirt": 73, "swimsuit": 73, "swing": 73, "switch": 73, "syring": 73, "lamp": 73, "tape": 73, "teapot": 73, "teddi": 73, "televis": [73, 87], "tenni": 73, "thatch": 73, "roof": 73, "front": 73, "thimbl": 73, "thresh": 73, "throne": 73, "tile": 73, "toaster": 73, "tobacco": 73, "toilet": 73, "totem": 73, "tow": 73, "tractor": 73, "semi": 73, "trailer": 73, "trai": 73, "trench": 73, "tricycl": 73, "trimaran": 73, "tripod": 73, "triumphal": 73, "trolleybu": 73, "trombon": 73, "tub": 73, "turnstil": 73, "typewrit": 73, "umbrella": 73, "unicycl": 73, "upright": 73, "vacuum": 73, "cleaner": 73, "vase": 73, "vault": 73, "velvet": 73, "vend": 73, "vestment": 73, "viaduct": 73, "violin": 73, "volleybal": 73, "waffl": 73, "wallet": 73, "wardrob": 73, "sink": 73, "wash": 73, "jug": 73, "tower": 73, "whiskei": 73, "whistl": 73, "wig": 73, "shade": [73, 84], "windsor": 73, "wine": 73, "wok": 73, "wooden": 73, "spoon": 73, "wool": 73, "rail": 73, "shipwreck": 73, "yawl": 73, "yurt": 73, "websit": 73, "comic": 73, "book": 73, "crossword": 73, "traffic": [73, 80, 84], "sign": [73, 84, 87], "light": [73, 75, 80, 84], "dust": 73, "jacket": [73, 80], "menu": 73, "guacamol": 73, "consomm": 73, "trifl": 73, "ic": 73, "cream": 73, "pop": 73, "baguett": 73, "bagel": 73, "pretzel": 73, "cheeseburg": 73, "mash": 73, "potato": 73, "cabbag": 73, "broccoli": 73, "cauliflow": 73, "zucchini": 73, "spaghetti": 73, "squash": 73, "acorn": 73, "butternut": 73, "artichok": 73, "pepper": 73, "cardoon": 73, "mushroom": 73, "granni": 73, "smith": 73, "strawberri": 73, "orang": 73, "lemon": 73, "pineappl": 73, "banana": 73, "jackfruit": 73, "custard": 73, "appl": 73, "pomegran": 73, "hai": 73, "carbonara": 73, "chocol": 73, "syrup": 73, "dough": 73, "meatloaf": 73, "pizza": 73, "pie": 73, "burrito": 73, "eggnog": 73, "alp": 73, "bubbl": 73, "reef": 73, "geyser": 73, "lakeshor": 73, "promontori": 73, "shoal": 73, "seashor": 73, "vallei": 73, "volcano": 73, "bridegroom": 73, "scuba": 73, "diver": 73, "rapese": 73, "daisi": 73, "ladi": 73, "slipper": 73, "corn": 73, "rose": 73, "hip": 73, "chestnut": 73, "fungu": 73, "agar": 73, "gyromitra": 73, "stinkhorn": 73, "earth": 73, "star": 73, "wood": 73, "bolet": 73, "ear": 73, "cifar10_test_set": 73, "airplan": [73, 81], "automobil": [73, 81], "deer": [73, 81], "cifar100_test_set": 73, "aquarium_fish": 73, "babi": 73, "boi": 73, "camel": 73, "caterpillar": 73, "cattl": [73, 87], "cloud": 73, "dinosaur": 73, "dolphin": 73, "flatfish": 73, "forest": 73, "girl": 73, "kangaroo": 73, "lawn_mow": 73, "man": 73, "maple_tre": 73, "motorcycl": [73, 84], "oak_tre": 73, "orchid": 73, "palm_tre": 73, "pear": 73, "pickup_truck": 73, "pine_tre": 73, "plain": 73, "poppi": 73, "possum": 73, "raccoon": 73, "road": [73, 84], "rocket": 73, "seal": 73, "shrew": 73, "skyscrap": 73, "streetcar": 73, "sunflow": 73, "sweet_pepp": 73, "trout": 73, "tulip": 73, "willow_tre": 73, "woman": [73, 80], "caltech256": 73, "ak47": 73, "bat": 73, "glove": 73, "birdbath": 73, "blimp": 73, "bonsai": 73, "boom": 73, "breadmak": 73, "buddha": 73, "bulldoz": 73, "cactu": 73, "cake": 73, "tire": 73, "cartman": 73, "cereal": 73, "chandeli": 73, "chess": 73, "board": 73, "chimp": 73, "chopstick": 73, "coffin": 73, "coin": 73, "comet": 73, "cormor": 73, "globe": 73, "diamond": 73, "dice": 73, "doorknob": 73, "drink": 73, "straw": 73, "dumb": 73, "eiffel": 73, "elk": 73, "ewer": 73, "eyeglass": 73, "fern": 73, "fighter": 73, "jet": [73, 83], "extinguish": 73, "hydrant": 73, "firework": 73, "flashlight": 73, "floppi": 73, "fri": 73, "frisbe": 73, "galaxi": 73, "giraff": 73, "goat": 73, "gate": 73, "grape": 73, "pick": 73, "hamburg": 73, "hammock": 73, "harpsichord": 73, "hawksbil": 73, "helicopt": 73, "hibiscu": 73, "homer": 73, "simpson": 73, "horsesho": 73, "air": 73, "skeleton": 73, "ibi": 73, "cone": 73, "iri": 73, "jesu": 73, "christ": 73, "joi": 73, "kayak": 73, "ketch": 73, "ladder": 73, "lath": 73, "licens": 73, "lightbulb": 73, "lightn": 73, "mandolin": 73, "mar": 73, "mattress": 73, "megaphon": 73, "menorah": 73, "microscop": 73, "minaret": 73, "minotaur": 73, "motorbik": 73, "mussel": 73, "neckti": 73, "octopu": 73, "palm": 73, "pilot": 73, "paperclip": 73, "shredder": 73, "pci": 73, "peopl": [73, 80], "pez": 73, "picnic": 73, "pram": 73, "prai": 73, "pyramid": 73, "rainbow": 73, "roulett": 73, "saddl": 73, "saturn": 73, "segwai": 73, "propel": 73, "sextant": 73, "music": 73, "skateboard": 73, "smokestack": 73, "sneaker": 73, "boat": 73, "stain": 73, "steer": 73, "stirrup": 73, "superman": 73, "sushi": 73, "armi": [73, 87], "sword": 73, "tambourin": 73, "teepe": 73, "court": 73, "theodolit": 73, "tomato": 73, "tombston": 73, "tour": 73, "pisa": 73, "treadmil": 73, "fork": 73, "tweezer": 73, "unicorn": 73, "vcr": 73, "waterfal": 73, "watermelon": 73, "weld": 73, "windmil": 73, "xylophon": 73, "yarmulk": 73, "yo": 73, "toad": 73, "twenty_news_test_set": 73, "alt": 73, "atheism": 73, "comp": 73, "graphic": [73, 84], "misc": [73, 87], "sy": 73, "ibm": 73, "pc": 73, "hardwar": 73, "mac": 73, "forsal": 73, "rec": 73, "sci": 73, "crypt": 73, "electron": 73, "med": 73, "soc": 73, "religion": 73, "christian": [73, 87], "talk": [73, 87], "polit": 73, "gun": 73, "mideast": 73, "amazon": 73, "neutral": 73, "imdb_test_set": 73, "all_class": 73, "20news_test_set": 73, "_load_classes_predprobs_label": 73, "dataset_nam": 73, "labelerror": 73, "url_bas": 73, "5392f6c71473055060be3044becdde1cbc18284d": 73, "url_label": 73, "original_test_label": 73, "_original_label": 73, "url_prob": 73, "cross_validated_predicted_prob": 73, "_pyx": 73, "num_part": 73, "datatset": 73, "bytesio": 73, "allow_pickl": 73, "pred_probs_part": 73, "url": 73, "_of_": 73, "nload": 73, "imdb": 73, "ve": [73, 76, 78, 80], "interpret": [73, 74, 76], "capit": 73, "50000": 73, "medic": [73, 87], "doctor": 73, "836": 73, "736842": 73, "282": [73, 80], "76": [73, 76, 79, 80, 83], "714286": 73, "265": [73, 79], "400000": 73, "782": 73, "74": [73, 80, 83, 85], "628571": 73, "620": 73, "36": [73, 87], "72": [73, 76, 79, 83, 85], "500000": 73, "995": 73, "522": 73, "038462": 73, "996": 73, "480": 73, "074074": 73, "997": 73, "716": 73, "998": 73, "722": 73, "466": 73, "987": 73, "44": [73, 75, 79, 80], "00088": 73, "435": 73, "876": 73, "00076": 73, "638": 73, "639": 73, "00072": 73, "681": 73, "00070": 73, "499495": 73, "183": 73, "717": 73, "00000": 73, "499496": 73, "499497": 73, "715": 73, "714": 73, "499499": 73, "729": 73, "499500": 73, "772": 73, "82": [73, 76, 80], "29780": 73, "256": [73, 74, 80], "29": [73, 75, 78, 79, 80, 84, 87], "780": 73, "254": [73, 80], "359223": 73, "333333": 73, "640777": 73, "184": [73, 76], "282609": 73, "341176": 73, "253333": 73, "658824": 73, "337349": 73, "246575": 73, "662651": 73, "248": 73, "330000": 73, "355769": 73, "670000": 73, "251": [73, 80], "112": 73, "252": 73, "253": [73, 80], "058824": 73, "167": [73, 76, 80, 87], "255": [73, 75], "190": [73, 76, 80], "66": 73, "002216": 73, "000974": 73, "59": [73, 80], "88": [73, 75, 76, 79, 80, 83, 85], "000873": 73, "79": [73, 80], "000739": 73, "32635": 73, "47": [73, 75, 80], "32636": 73, "32637": 73, "32638": 73, "32639": 73, "32640": 73, "420": 73, "002242": 73, "997758": 73, "002088": 73, "001045": 73, "997912": 73, "002053": 73, "997947": 73, "001980": 73, "000991": 73, "998020": 73, "001946": 73, "002915": 73, "998054": 73, "001938": 73, "002904": 73, "998062": 73, "001020": 73, "998980": 73, "001018": 73, "002035": 73, "998982": 73, "999009": 73, "0003": 73, "0002": 73, "27": [73, 76, 80, 87], "71": [73, 80, 85], "071": 73, "067269": 73, "929": 73, "046": 73, "057312": 73, "954": 73, "035": 73, "032096": 73, "965": 73, "031": 73, "012232": 73, "969": 73, "022": 73, "025896": 73, "978": 73, "020": [73, 76], "013092": 73, "018": 73, "013065": 73, "016": 73, "031496": 73, "984": 73, "013": 73, "020833": 73, "012": 73, "010020": 73, "988": 73, "0073": 73, "0020": 73, "0016": 73, "0015": 73, "0014": 73, "0013": 73, "0012": 73, "0010": 73, "0008": 73, "0007": 73, "0006": 73, "0005": 73, "0004": 73, "284": [73, 80], "97": [73, 74, 76, 80, 83, 85, 87], "452381": 73, "459770": 73, "518868": 73, "460784": 73, "446602": 73, "57": 73, "68": [73, 76, 80, 85], "103774": 73, "030612": 73, "049020": 73, "98": [73, 74, 83], "110092": 73, "99": [73, 76, 85], "0034": 73, "0032": 73, "0026": 73, "0025": 73, "4945": 73, "4946": 73, "85": [73, 80, 83], "4947": 73, "4948": 73, "83": [73, 76, 80, 83, 85, 87], "4949": 73, "4950": 73, "25000": 73, "708": 73, "601": 73, "05664": 73, "048495": 73, "94336": 73, "04808": 73, "056159": 73, "95192": 73, "1309": 73, "05236": 73, "309": 73, "7532": 73, "532": 73, "034483": 73, "009646": 73, "965517": 73, "030457": 73, "020513": 73, "969543": 73, "028061": 73, "035443": 73, "971939": 73, "025316": 73, "005168": 73, "974684": 73, "049751": 73, "979487": 73, "019920": 73, "042802": 73, "980080": 73, "017677": 73, "005115": 73, "982323": 73, "012987": 73, "005236": 73, "987013": 73, "012723": 73, "025126": 73, "987277": 73, "010989": 73, "008264": 73, "989011": 73, "010283": 73, "027778": 73, "989717": 73, "009677": 73, "990323": 73, "007614": 73, "010127": 73, "992386": 73, "005051": 73, "994949": 73, "005025": 73, "994975": 73, "005013": 73, "994987": 73, "001859": 73, "001328": 73, "000929": 73, "000664": 73, "186": [73, 76], "187": 73, "188": [73, 76, 79], "189": [73, 76], "9996437": 73, "437": 73, "228667": 73, "287149": 73, "192393": 73, "230267": 73, "807607": 73, "142732": 73, "132872": 73, "155587": 73, "146413": 73, "844413": 73, "203006": 73, "154384": 73, "025728": 73, "019687": 73, "974272": 73, "298801": 73, "029891": 73, "217015": 73, "021709": 73, "58589": 73, "005861": 73, "574": 73, "405": 73, "snippet": 74, "nlp": [74, 87], "mind": [74, 76], "number_of_class": 74, "total_number_of_data_point": 74, "drop": [74, 78, 83, 86], "feed": 74, "alphabet": 74, "labels_proper_format": 74, "your_classifi": 74, "issues_datafram": 74, "class_predicted_for_flagged_exampl": 74, "class_predicted_for_all_exampl": 74, "grant": 74, "datataset": 74, "fair": [74, 76], "game": 74, "speedup": [74, 81], "flexibl": 74, "tempfil": 74, "mkdtemp": 74, "sped": 74, "anywai": 74, "pred_probs_merg": 74, "merge_rare_class": 74, "count_threshold": 74, "class_mapping_orig2new": 74, "heath_summari": 74, "num_examples_per_class": 74, "rare_class": 74, "num_classes_merg": 74, "other_class": 74, "labels_merg": 74, "new_c": 74, "merged_prob": 74, "keepdim": 74, "hstack": [74, 75, 76, 78], "new_class": 74, "original_class": 74, "num_check": 74, "ones_array_ref": 74, "isclos": 74, "though": [74, 76, 87], "successfulli": 74, "meaning": [74, 81], "virtuou": [74, 78], "cycl": [74, 78], "jointli": 74, "junk": 74, "clutter": 74, "unknown": 74, "caltech": 74, "intersect": 74, "combined_boolean_mask": 74, "mask1": 74, "mask2": 74, "gradientboostingclassifi": [74, 76], "true_error": [74, 76, 79], "101": [74, 80], "102": [74, 79, 80], "104": [74, 80], "model_to_find_error": 74, "model_to_return": 74, "cl0": 74, "randomizedsearchcv": 74, "expens": 74, "param_distribut": 74, "learning_r": [74, 76], "max_depth": [74, 76], "magnitud": 74, "coeffici": [74, 83], "optin": 74, "environ": [74, 76], "rerun": [74, 76], "cell": [74, 76], "On": [74, 76, 80], "unabl": [74, 76], "render": [74, 76], "nbviewer": [74, 76], "cleanlearningcleanlearn": [74, 76], "linearregressionlinearregress": 74, "assist": 74, "streamlin": 74, "ux": 74, "agpl": 74, "compani": 74, "commerci": 74, "alter": 74, "email": 74, "discuss": 74, "anywher": 74, "60": [75, 76], "excess": 75, "torchvis": [75, 81], "tensordataset": 75, "stratifiedkfold": [75, 79], "tqdm": 75, "fashion_mnist": 75, "0a671f063342996f19779d38c0ab4abef9c64f757b35af8134b331c294d7ba48": 75, "num_row": 75, "60000": 75, "pil": 75, "transformed_dataset": 75, "with_format": 75, "unsqueez": 75, "num_proc": 75, "cpu_count": 75, "torch_dataset": 75, "quick": [75, 79], "super": 75, "relu": 75, "batchnorm2d": 75, "maxpool2d": 75, "lazylinear": 75, "flatten": 75, "get_test_accuraci": 75, "testload": [75, 81], "energi": 75, "trainload": [75, 81], "n_epoch": 75, "patienc": 75, "criterion": 75, "crossentropyloss": 75, "adamw": 75, "best_test_accuraci": 75, "start_epoch": 75, "running_loss": 75, "best_epoch": 75, "end_epoch": 75, "3f": [75, 83], "acc": [75, 76], "time_taken": 75, "compute_embed": 75, "compute_pred_prob": 75, "train_batch_s": 75, "num_work": 75, "worker": [75, 87], "train_id_list": 75, "test_id_list": 75, "train_id": 75, "test_id": 75, "embeddings_model": 75, "ntrain": 75, "trainset": 75, "testset": 75, "pin_memori": 75, "fold_embed": 75, "fold_pred_prob": 75, "finish": 75, "483": 75, "775": 75, "045": 75, "329": [75, 80], "215": [75, 80], "663": 75, "57it": 75, "83it": 75, "492": 75, "87": [75, 80, 83, 85, 86], "095": 75, "897": 75, "415": 75, "464": 75, "03it": 75, "22it": 75, "476": 75, "942": 75, "327": [75, 80], "755": 75, "527": 75, "38it": 75, "76it": 75, "reorder": 75, "vision": 75, "low_inform": 75, "odd_aspect_ratio": 75, "odd_siz": 75, "grayscal": 75, "exce": 75, "max_preval": 75, "7797": 75, "3818": 75, "3486": 75, "310": 75, "166": 75, "9667": 75, "27080": 75, "715920": 75, "4156": 75, "718073": 75, "40378": 75, "721143": 75, "25316": 75, "725187": 75, "30820": 75, "731430": 75, "9410": 75, "19228": 75, "dress": 75, "32657": 75, "000007": 75, "53564": 75, "000010": 75, "pullov": 75, "21282": 75, "000021": 75, "54078": 75, "000022": [75, 87], "0262": 75, "54565": 75, "9762": 75, "47139": 75, "258": 75, "30968": 75, "30659": 75, "000026": 75, "0425": 75, "57620": 75, "647848": 75, "7475": 75, "663768": 75, "27513": 75, "672686": 75, "41556": 75, "674473": 75, "14509": 75, "675285": 75, "04246606876652691": 75, "069238": 75, "970188": 75, "997795": 75, "928584": 75, "999650": 75, "12076": 75, "trouser": 75, "11262": 75, "000028": 75, "plot_label_issue_exampl": 75, "ncol": [75, 81], "nrow": [75, 81], "ceil": 75, "axes_list": 75, "label_issue_indic": 75, "gl": 75, "sl": 75, "fontdict": 75, "imshow": [75, 81], "cmap": [75, 83], "grai": 75, "subplots_adjust": 75, "hspace": 75, "outsiz": 75, "outlier_issues_df": 75, "depict": [75, 79, 80, 81, 82, 84], "plot_outlier_issues_exampl": 75, "n_comparison_imag": 75, "sample_from_class": 75, "number_of_sampl": 75, "non_outlier_indic": 75, "isnul": 75, "non_outlier_indices_excluding_curr": 75, "sampled_indic": 75, "label_scores_of_sampl": 75, "top_score_indic": 75, "top_label_indic": 75, "sampled_imag": 75, "get_image_given_label_and_sampl": 75, "image_from_dataset": 75, "corresponding_label": 75, "comparison_imag": 75, "images_to_plot": 75, "idlist": 75, "iterrow": 75, "especi": [75, 83, 85, 86], "near_duplicate_issu": 75, "closest": 75, "counterpart": 75, "near_duplicate_issues_df": 75, "plot_near_duplicate_issue_exampl": 75, "seen_id_pair": 75, "get_image_and_given_label_and_predicted_label": 75, "duplicate_imag": 75, "nd_set": 75, "challeng": 75, "dark_issu": 75, "reveal": [75, 84], "dark_scor": 75, "dark_issues_df": 75, "is_dark_issu": 75, "34848": 75, "203922": 75, "50270": 75, "204588": 75, "3936": 75, "213098": 75, "733": 75, "217686": 75, "8094": 75, "230118": 75, "plot_image_issue_exampl": 75, "difficult": 75, "disproportion": 75, "lowinfo_issu": 75, "low_information_scor": 75, "lowinfo_issues_df": 75, "is_low_information_issu": 75, "53050": 75, "067975": 75, "40875": 75, "089929": 75, "9594": 75, "092601": 75, "34825": 75, "107744": 75, "37530": 75, "108516": 75, "lot": 75, "depth": 76, "survei": [76, 87], "focus": [76, 78], "scienc": 76, "multivariate_norm": [76, 78, 79], "make_data": [76, 78], "cov": [76, 78, 79], "avg_trac": [76, 79], "test_label": [76, 79, 81, 86], "py_tru": 76, "noise_matrix_tru": 76, "noise_marix": 76, "s_test": 76, "noisy_test_label": 76, "purpl": 76, "val": 76, "namespac": 76, "exec": 76, "markerfacecolor": [76, 79], "markeredgecolor": [76, 79, 83], "markers": [76, 79, 83], "markeredgewidth": [76, 79, 83], "realist": 76, "6000": 76, "638483e": 76, "897052e": 76, "548986e": 76, "924634e": 76, "374580e": 76, "4643": 76, "147": [76, 80], "050286": 76, "065420": 76, "109420": 76, "111687": 76, "115403": 76, "3312": 76, "007136": 76, "119": [76, 80], "033725": 76, "103": [76, 80], "033738": 76, "238": [76, 80], "037825": 76, "236": [76, 80], "037843": 76, "222": 76, "614915": 76, "122": [76, 80], "624422": 76, "625965": 76, "626079": 76, "118": 76, "627675": 76, "695174": 76, "323529": 76, "522929": 76, "013722": 76, "675606": 76, "646438": 76, "anyth": 76, "enhanc": [76, 78, 80], "magic": 76, "liter": 76, "identif": 76, "x27": 76, "logisticregressionlogisticregress": 76, "ever": 76, "truth": [76, 78, 83], "092": 76, "040": 76, "024": 76, "004": 76, "surpris": 76, "arxiv": 76, "ab": 76, "1705": 76, "01936": 76, "ton": 76, "yourfavoritemodel1": 76, "merged_label": 76, "merged_test_label": 76, "newli": [76, 78], "yourfavoritemodel2": 76, "yourfavoritemodel3": 76, "cl3": 76, "takeawai": 76, "That": [76, 79], "randomli": 76, "my_test_pred_prob": 76, "my_test_pr": 76, "issues_test": 76, "corrected_test_label": 76, "pretend": 76, "cl_test_pr": 76, "69": [76, 83], "fairli": 76, "label_acc": 76, "percentag": 76, "offset": 76, "nquestion": 76, "overestim": 76, "answer": 76, "experienc": 76, "06": [76, 80, 87], "62": [76, 80, 83], "knowledg": 76, "quantiti": [76, 83], "prioiri": 76, "known": 76, "versatil": 76, "label_issues_indic": 76, "213": [76, 80], "212": [76, 85], "218": [76, 80], "152": 76, "197": [76, 80], "196": [76, 80], "170": 76, "214": 76, "164": [76, 79], "198": [76, 80], "191": [76, 80], "63": [76, 80], "121": [76, 86], "117": [76, 83], "206": [76, 80], "115": [76, 80], "193": [76, 87], "194": 76, "201": [76, 80], "174": 76, "163": 76, "150": [76, 78, 80], "169": 76, "151": [76, 80], "precision_scor": 76, "recall_scor": 76, "f1_score": 76, "true_label_issu": 76, "filter_by_list": 76, "718750": [76, 78], "807018": 76, "912": 76, "733333": 76, "800000": 76, "721311": 76, "792793": 76, "908": 76, "676923": 76, "765217": 76, "892": 76, "567901": 76, "702290": 76, "844": 76, "gaug": 76, "label_issues_count": 76, "155": [76, 80], "156": 76, "172": [76, 79], "157": 76, "easiest": 76, "modular": 76, "penalti": 76, "l2": 76, "model3": 76, "n_estim": 76, "cv_pred_probs_1": 76, "cv_pred_probs_2": 76, "cv_pred_probs_3": 76, "label_quality_scores_best": 76, "cv_pred_probs_ensembl": 76, "label_quality_scores_bett": 76, "superior": [76, 82], "workflow": [77, 83], "speechbrain": 77, "timm": 77, "glad": 78, "multiannotator_label": 78, "300": [78, 87], "noisier": 78, "111": [78, 83], "local_data": [78, 79], "true_labels_train": [78, 79], "noise_matrix_bett": 78, "noise_matrix_wors": 78, "transpos": [78, 81], "dropna": 78, "zfill": 78, "row_na_check": 78, "notna": 78, "reset_index": 78, "a0001": 78, "a0002": 78, "a0003": 78, "a0004": 78, "a0005": 78, "a0006": 78, "a0007": 78, "a0008": 78, "a0009": 78, "a0010": 78, "a0041": 78, "a0042": 78, "a0043": 78, "a0044": 78, "a0045": 78, "a0046": 78, "a0047": 78, "a0048": 78, "a0049": 78, "a0050": 78, "na": 78, "60856743": 78, "41693214": 78, "40908785": 78, "87147629": 78, "64941785": 78, "10774851": 78, "0524466": 78, "71853246": 78, "37169848": 78, "66031048": 78, "multiannotator_util": 78, "crude": 78, "straight": 78, "majority_vote_label": 78, "736157": 78, "757738": 78, "782255": 78, "715585": 78, "824273": 78, "quality_annotator_a0001": 78, "quality_annotator_a0002": 78, "quality_annotator_a0003": 78, "quality_annotator_a0004": 78, "quality_annotator_a0005": 78, "quality_annotator_a0006": 78, "quality_annotator_a0007": 78, "quality_annotator_a0008": 78, "quality_annotator_a0009": 78, "quality_annotator_a0010": 78, "quality_annotator_a0041": 78, "quality_annotator_a0042": 78, "quality_annotator_a0043": 78, "quality_annotator_a0044": 78, "quality_annotator_a0045": 78, "quality_annotator_a0046": 78, "quality_annotator_a0047": 78, "quality_annotator_a0048": 78, "quality_annotator_a0049": 78, "quality_annotator_a0050": 78, "070551": 78, "216064": 78, "119178": 78, "alongisd": 78, "244982": 78, "208333": 78, "295978": 78, "294118": 78, "324194": 78, "310345": 78, "355315": 78, "346154": 78, "439728": 78, "480000": 78, "a0031": 78, "523205": 78, "580645": 78, "a0034": 78, "535313": 78, "607143": 78, "a0021": 78, "607002": 78, "a0015": 78, "609527": 78, "678571": 78, "a0011": 78, "621101": 78, "692308": 78, "wors": 78, "improved_consensus_label": 78, "majority_vote_accuraci": 78, "cleanlab_label_accuraci": 78, "8581081081081081": 78, "9797297297297297": 78, "besid": 78, "sorted_consensus_quality_scor": 78, "worst_qual": 78, "better_qu": 78, "worst_quality_accuraci": 78, "better_quality_accuraci": 78, "9893238434163701": 78, "improved_pred_prob": 78, "treat": [78, 79, 83, 87], "analzi": 78, "copyright": 79, "advertis": 79, "violenc": 79, "nsfw": 79, "ranked_label_issu": [79, 85, 86], "multioutput": 79, "multioutputclassifi": 79, "celeba": 79, "make_multilabel_data": 79, "boxes_coordin": 79, "box_multilabel": 79, "make_multi": 79, "bx1": 79, "by1": 79, "bx2": 79, "by2": 79, "label_list": 79, "ur": 79, "upper": 79, "inidx": 79, "logical_and": 79, "tolist": 79, "inv_d": 79, "labels_idx": 79, "true_labels_test": 79, "dict_unique_label": 79, "get_color_arrai": 79, "dcolor": 79, "aa4400": 79, "55227f": 79, "55a100": 79, "00ff00": 79, "007f7f": 79, "386b55": 79, "0000ff": 79, "simplic": 79, "advis": 79, "y_onehot": 79, "single_class_label": 79, "stratifi": [79, 82], "kf": 79, "train_index": 79, "test_index": 79, "clf_cv": 79, "x_train_cv": 79, "x_test_cv": 79, "y_train_cv": 79, "y_test_cv": 79, "y_pred_cv": 79, "saw": 79, "num_to_displai": 79, "09": [79, 80], "275": 79, "267": 79, "225": 79, "171": 79, "234": 79, "165": 79, "227": [79, 80], "262": [79, 80], "263": [79, 80], "266": [79, 80], "139": 79, "143": [79, 80], "216": [79, 80], "159": [79, 80], "despit": [79, 87], "suspect": 79, "888": 79, "8224": 79, "9632": 79, "968": 79, "6512": 79, "0444": 79, "774": 79, "labels_binary_format": 79, "labels_list_format": 79, "surround": 80, "scene": 80, "coco": 80, "everydai": 80, "has_label_issu": 80, "insal": 80, "nc": [80, 84, 87], "s3": [80, 84, 87], "amazonaw": [80, 84, 87], "objectdetectionbenchmark": 80, "tutorial_obj": 80, "pkl": 80, "example_imag": 80, "unzip": [80, 87], "begin": 80, "detectron2": 80, "image_path": 80, "rb": 80, "image_to_visu": 80, "seg_map": 80, "334": 80, "float32": 80, "bboxes_ignor": 80, "290": 80, "286": 80, "285": 80, "224": 80, "231": 80, "293": 80, "235": 80, "289": [80, 83], "281": 80, "271": 80, "280": 80, "277": 80, "93": [80, 83, 87], "279": 80, "287": 80, "299": 80, "276": 80, "307": 80, "321": 80, "326": 80, "330": 80, "333": 80, "261": 80, "319": 80, "257": 80, "295": 80, "283": 80, "243": 80, "303": 80, "316": 80, "247": 80, "323": 80, "328": 80, "226": 80, "232": 80, "239": 80, "240": 80, "209": 80, "242": 80, "202": 80, "230": 80, "220": 80, "229": 80, "217": [80, 87], "237": 80, "207": 80, "204": 80, "205": 80, "223": 80, "153": 80, "149": 80, "140": 80, "244": [80, 87], "124": 80, "268": 80, "273": 80, "108": 80, "110": 80, "136": [80, 87], "145": 80, "173": 80, "297": 80, "317": 80, "192": 80, "332": 80, "324": 80, "203": 80, "320": 80, "314": 80, "199": 80, "291": 80, "000000481413": 80, "jpg": 80, "42398": 80, "44503": 80, "337": [80, 86], "29968": 80, "336": 80, "21005": 80, "9978472": 80, "forgot": 80, "drew": 80, "label_issue_idx": 80, "num_examples_to_show": 80, "113": [80, 83], "candid": 80, "97489622": 80, "70610878": 80, "98764951": 80, "88899237": 80, "99085805": 80, "issue_idx": 80, "95569726e": 80, "03354841e": 80, "57510169e": 80, "58447666e": 80, "39755858e": 80, "suppli": 80, "issue_to_visu": 80, "000000009483": 80, "955697261680538e": 80, "addition": [80, 84], "visibl": 80, "missmatch": 80, "likelei": 80, "agnost": 80, "vaidat": 80, "inconsist": 80, "000000395701": 80, "033548411774308e": 80, "armchair": 80, "tv": 80, "000000154004": 80, "38300759625496356": 80, "foreground": 80, "000000448410": 80, "0008575101690203273": 80, "crowd": 80, "alon": 80, "explor": [80, 81], "resembl": [80, 81], "contribut": 80, "000000499768": 80, "9748962231208227": 80, "000000521141": 80, "8889923658893665": 80, "000000143931": 80, "9876495074395957": 80, "train_feature_embed": 81, "ood_train_feature_scor": 81, "test_feature_embed": 81, "ood_test_feature_scor": 81, "ood_train_predictions_scor": 81, "train_pred_prob": 81, "ood_test_predictions_scor": 81, "test_pred_prob": 81, "pylab": 81, "rcparam": 81, "baggingclassifi": 81, "therebi": 81, "rescal": 81, "transform_norm": 81, "totensor": 81, "root": 81, "animal_class": 81, "non_animal_class": 81, "animal_idx": 81, "isin": 81, "test_idx": 81, "toronto": 81, "edu": 81, "kriz": 81, "5000": 81, "plot_imag": 81, "visualize_outli": 81, "txt_class": 81, "img": [81, 83], "npimg": 81, "show_label": 81, "data_subset": 81, "hidden": 81, "resnet50": 81, "corpu": 81, "2048": 81, "embed_imag": 81, "create_model": 81, "rwightman": 81, "v0": 81, "rsb": 81, "resnet50_a1_0": 81, "14fe96d1": 81, "pth": 81, "strang": 81, "odd": 81, "train_ood_features_scor": 81, "top_train_ood_features_idx": 81, "fun": 81, "negat": 81, "homogen": 81, "bottom_train_ood_features_idx": 81, "test_ood_features_scor": 81, "top_ood_features_idx": 81, "inevit": 81, "trade": 81, "5th": 81, "percentil": 81, "fifth_percentil": 81, "plt_rang": 81, "hist": 81, "train_outlier_scor": 81, "ylabel": 81, "axvlin": 81, "test_outlier_scor": 81, "sorted_idx": 81, "ood_features_indic": 81, "revisit": 81, "unusu": 81, "return_invers": 81, "train_feature_embeddings_sc": 81, "test_feature_embeddings_sc": 81, "train_pred_label": 81, "9702": 81, "train_ood_predictions_scor": 81, "test_ood_predictions_scor": 81, "mainli": [81, 87], "auxiliari": [81, 84], "lost": 81, "unsuit": 82, "ok": [82, 87], "convention": 82, "aforement": 82, "hypothet": 82, "contrast": 82, "tradit": 82, "disjoint": 82, "out_of_sample_pred_probs_for_a": 82, "out_of_sample_pred_probs_for_b": 82, "out_of_sample_pred_probs_for_c": 82, "out_of_sample_pred_prob": 82, "price": 83, "incom": 83, "ag": 83, "histgradientboostingregressor": 83, "r2_score": 83, "student_grades_r": 83, "final_scor": 83, "true_final_scor": 83, "homework": 83, "3d": 83, "hue": 83, "mpl_toolkit": 83, "mplot3d": 83, "axes3d": 83, "errors_idx": 83, "add_subplot": 83, "z": 83, "colorbar": 83, "errors_mask": 83, "feature_column": 83, "predicted_column": 83, "x_train_raw": 83, "x_test_raw": 83, "categorical_featur": [83, 85], "randomforestregressor": 83, "629763": 83, "521450": 83, "954607": 83, "547234": 83, "338296": 83, "754531": 83, "619090": 83, "312295": 83, "806626": 83, "784048": 83, "identified_issu": [83, 86], "659": 83, "367": 83, "560": 83, "318": 83, "305": 83, "688": 83, "657": 83, "view_datapoint": 83, "concat": 83, "consum": [83, 86], "baseline_model": [83, 86], "preds_og": 83, "r2_og": 83, "838": 83, "robustli": [83, 85, 86], "acceler": [83, 86], "found_label_issu": 83, "preds_cl": 83, "r2_cl": 83, "925": 83, "effort": [83, 85, 86], "favorit": 83, "64404888e": 83, "06755306e": 83, "05302732e": 83, "66635743e": 83, "53166364e": 83, "synthia": 84, "semantic_segment": 84, "imagesegment": 84, "given_mask": 84, "predicted_mask": 84, "set_printopt": [84, 87], "sky": 84, "sidewalk": 84, "veget": 84, "terrain": 84, "rider": 84, "pred_probs_filepath": 84, "1088": 84, "1920": 84, "label_filepath": 84, "synthia_class": 84, "maunal": 84, "100000": 84, "244800": 84, "system": 84, "leftmost": 84, "area": 84, "middl": [84, 87], "infact": 84, "rightmost": 84, "discrep": 84, "4997436": 84, "128276": 84, "27it": 84, "3263230": 84, "783379": 84, "275110": 84, "255792": 84, "78225": 84, "55990": 84, "54315": 84, "33591": 84, "24645": 84, "21054": 84, "15045": 84, "14171": 84, "13832": 84, "13498": 84, "11490": 84, "9149": 84, "8769": 84, "6999": 84, "6031": 84, "5011": 84, "mistakenli": 84, "class_issu": 84, "aim": [84, 87], "domin": 84, "extratreesclassifi": 85, "extratre": 85, "labelencod": [85, 86], "labels_raw": 85, "interg": [85, 86], "tress": 85, "928": 85, "911": 85, "cheat": 85, "0pt": 85, "864": 85, "498": 85, "labels_train": 85, "labels_test": 85, "acc_og": [85, 86], "783068783068783": 85, "acc_cl": [85, 86], "8095238095238095": 85, "earlier": [86, 87], "raw_label": 86, "raw_train_text": 86, "raw_test_text": 86, "raw_train_label": 86, "raw_test_label": 86, "encond": 86, "train_text": 86, "test_text": 86, "858043": 86, "545888": 86, "826290": 86, "965814": 86, "791937": 86, "646": 86, "390": 86, "628": 86, "702": 86, "863": 86, "135": 86, "735": 86, "print_as_df": 86, "inverse_transform": 86, "fight": 86, "bunch": 87, "conll": 87, "2003": 87, "love": 87, "n_i": 87, "optional_list_of_ordered_class_nam": 87, "deepai": 87, "conll2003": 87, "rm": 87, "tokenclassif": 87, "2023": 87, "2400": 87, "52e0": 87, "1a00": 87, "871": 87, "connect": 87, "443": 87, "await": 87, "982975": 87, "960k": 87, "959": 87, "94k": 87, "21mb": 87, "mb": 87, "directori": 87, "inflat": 87, "137": 87, "17045998": 87, "16m": 87, "octet": 87, "26m": 87, "8mb": 87, "bert": 87, "read_npz": 87, "filepath": 87, "corrsespond": 87, "iob2": 87, "given_ent": 87, "entity_map": 87, "readfil": 87, "sep": 87, "startswith": 87, "docstart": 87, "isalpha": 87, "isupp": 87, "indices_to_preview": 87, "nsentenc": 87, "eu": 87, "reject": 87, "boycott": 87, "british": 87, "lamb": 87, "00030412": 87, "00023826": 87, "99936208": 87, "00007009": 87, "00002545": 87, "99998795": 87, "00000401": 87, "00000218": 87, "00000455": 87, "00000131": 87, "00000749": 87, "99996115": 87, "00001371": 87, "0000087": 87, "00000895": 87, "99998936": 87, "00000382": 87, "00000178": 87, "00000366": 87, "00000137": 87, "99999101": 87, "00000266": 87, "00000174": 87, "0000035": 87, "00000109": 87, "99998768": 87, "00000482": 87, "00000202": 87, "00000438": 87, "0000011": 87, "00000465": 87, "99996392": 87, "00001105": 87, "0000116": 87, "00000878": 87, "99998671": 87, "00000364": 87, "00000213": 87, "00000472": 87, "00000281": 87, "99999073": 87, "00000211": 87, "00000159": 87, "00000442": 87, "00000115": 87, "peter": 87, "blackburn": 87, "00000358": 87, "00000529": 87, "99995623": 87, "0000129": 87, "0000024": 87, "00001812": 87, "99994141": 87, "00001645": 87, "00002162": 87, "brussel": 87, "1996": 87, "00001172": 87, "00000821": 87, "00004661": 87, "0000618": 87, "99987167": 87, "99999061": 87, "00000201": 87, "00000195": 87, "00000408": 87, "00000135": 87, "2254": 87, "2907": 87, "19392": 87, "9962": 87, "8904": 87, "19303": 87, "12918": 87, "9256": 87, "11855": 87, "18392": 87, "20426": 87, "19402": 87, "14744": 87, "19371": 87, "4645": 87, "10331": 87, "9430": 87, "6143": 87, "18367": 87, "12914": 87, "todai": 87, "weather": 87, "march": 87, "scalfaro": 87, "northern": 87, "himself": 87, "said": 87, "germani": 87, "nastja": 87, "rysich": 87, "north": 87, "spla": 87, "fought": 87, "khartoum": 87, "govern": 87, "south": 87, "1983": 87, "autonomi": 87, "animist": 87, "region": 87, "moslem": 87, "arabis": 87, "mayor": 87, "antonio": 87, "gonzalez": 87, "garcia": 87, "revolutionari": 87, "parti": 87, "wednesdai": 87, "troop": 87, "raid": 87, "farm": 87, "stole": 87, "rape": 87, "women": 87, "spring": 87, "chg": 87, "hrw": 87, "12pct": 87, "princ": 87, "photo": 87, "moment": 87, "spokeswoman": 87, "rainier": 87, "told": 87, "reuter": 87, "danila": 87, "carib": 87, "w224": 87, "equip": 87, "radiomet": 87, "earn": 87, "19996": 87, "london": 87, "denom": 87, "sale": 87, "uk": 87, "jp": 87, "fr": 87, "maccabi": 87, "hapoel": 87, "haifa": 87, "tel": 87, "aviv": 87, "hospit": 87, "rever": 87, "roman": 87, "cathol": 87, "nun": 87, "admit": 87, "calcutta": 87, "week": 87, "ago": 87, "fever": 87, "vomit": 87, "allianc": 87, "embattl": 87, "kabul": 87, "salang": 87, "highwai": 87, "mondai": 87, "tuesdai": 87, "suprem": 87, "council": 87, "led": 87, "jumbish": 87, "milli": 87, "movement": 87, "warlord": 87, "abdul": 87, "rashid": 87, "dostum": 87, "dollar": 87, "exchang": 87, "3570": 87, "12049": 87, "born": 87, "1937": 87, "provinc": 87, "anhui": 87, "dai": 87, "came": 87, "shanghai": 87, "citi": 87, "prolif": 87, "author": 87, "teacher": 87, "chines": 87, "16764": 87, "1990": 87, "historian": 87, "alan": 87, "john": 87, "percival": 87, "taylor": 87, "di": 87, "20446": 87, "pace": 87, "bowler": 87, "ian": 87, "harvei": 87, "claim": 87, "victoria": 87, "15514": 87, "cotti": 87, "osc": 87, "foreign": 87, "minist": 87, "7525": 87, "sultan": 87, "specter": 87, "met": 87, "crown": 87, "abdullah": 87, "defenc": 87, "aviat": 87, "jeddah": 87, "saudi": 87, "agenc": 87, "2288": 87, "hi": 87, "customari": 87, "outfit": 87, "champion": 87, "damp": 87, "scalp": 87, "canada": 87, "reign": 87, "olymp": 87, "donovan": 87, "bailei": 87, "1992": 87, "linford": 87, "christi": 87, "britain": 87, "1984": 87, "1988": 87, "carl": 87, "lewi": 87, "ambigi": 87, "punctuat": 87, "chicago": 87, "digest": 87, "philadelphia": 87, "usda": 87, "york": 87, "token_issu": 87, "471": 87, "kean": 87, "year": 87, "contract": 87, "manchest": 87, "19072": 87, "societi": 87, "million": 87, "bite": 87, "deliv": 87, "19910": 87, "father": 87, "clarenc": 87, "woolmer": 87, "renam": 87, "uttar": 87, "pradesh": 87, "india": 87, "ranji": 87, "trophi": 87, "nation": 87, "championship": 87, "captain": 87, "1949": 87, "15658": 87, "19879": 87, "iii": 87, "brian": 87, "shimer": 87, "randi": 87, "jone": 87, "19104": 87}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [8, 0, 0, "-", "datalab"], [23, 0, 0, "-", "dataset"], [26, 0, 0, "-", "experimental"], [29, 0, 0, "-", "filter"], [30, 0, 0, "-", "internal"], [41, 0, 0, "-", "models"], [43, 0, 0, "-", "multiannotator"], [46, 0, 0, "-", "multilabel_classification"], [49, 0, 0, "-", "object_detection"], [52, 0, 0, "-", "outlier"], [53, 0, 0, "-", "rank"], [54, 0, 0, "-", "regression"], [58, 0, 0, "-", "segmentation"], [62, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [12, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[9, 0, 0, "-", "data"], [10, 0, 0, "-", "data_issues"], [13, 0, 0, "-", "issue_finder"], [11, 0, 0, "-", "issue_manager_factory"], [21, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[9, 2, 1, "", "Data"], [9, 5, 1, "", "DataFormatError"], [9, 5, 1, "", "DatasetDictError"], [9, 5, 1, "", "DatasetLoadError"], [9, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[10, 2, 1, "", "DataIssues"], [10, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[10, 3, 1, "", "collect_issues_from_issue_manager"], [10, 3, 1, "", "collect_statistics"], [10, 3, 1, "", "get_info"], [10, 3, 1, "", "get_issue_summary"], [10, 3, 1, "", "get_issues"], [10, 3, 1, "", "set_health_score"], [10, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[13, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"], [13, 3, 1, "", "list_default_issue_types"], [13, 3, 1, "", "list_possible_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[14, 0, 0, "-", "duplicate"], [15, 0, 0, "-", "imbalance"], [17, 0, 0, "-", "issue_manager"], [18, 0, 0, "-", "label"], [19, 0, 0, "-", "noniid"], [20, 0, 0, "-", "outlier"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[14, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[14, 3, 1, "", "collect_info"], [14, 6, 1, "", "description"], [14, 3, 1, "", "find_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_name"], [14, 6, 1, "", "issue_score_key"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "make_summary"], [14, 6, 1, "", "near_duplicate_sets"], [14, 3, 1, "", "report"], [14, 6, 1, "", "summary"], [14, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[15, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[15, 3, 1, "", "collect_info"], [15, 6, 1, "", "description"], [15, 3, 1, "", "find_issues"], [15, 6, 1, "", "info"], [15, 6, 1, "", "issue_name"], [15, 6, 1, "", "issue_score_key"], [15, 6, 1, "", "issues"], [15, 3, 1, "", "make_summary"], [15, 3, 1, "", "report"], [15, 6, 1, "", "summary"], [15, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[17, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[18, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 3, 1, "", "get_health_summary"], [18, 6, 1, "", "health_summary_parameters"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[19, 2, 1, "", "NonIIDIssueManager"], [19, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[20, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[20, 6, 1, "", "DEFAULT_THRESHOLDS"], [20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "ood"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[11, 7, 1, "", "REGISTRY"], [11, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[21, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[21, 3, 1, "", "get_report"], [21, 3, 1, "", "report"]], "cleanlab.dataset": [[23, 1, 1, "", "find_overlapping_classes"], [23, 1, 1, "", "health_summary"], [23, 1, 1, "", "overall_label_health_score"], [23, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[24, 0, 0, "-", "cifar_cnn"], [25, 0, 0, "-", "coteaching"], [27, 0, 0, "-", "label_issues_batched"], [28, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[24, 2, 1, "", "CNN"], [24, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[24, 6, 1, "", "T_destination"], [24, 3, 1, "", "__call__"], [24, 3, 1, "", "add_module"], [24, 3, 1, "", "apply"], [24, 3, 1, "", "bfloat16"], [24, 3, 1, "", "buffers"], [24, 3, 1, "", "children"], [24, 3, 1, "", "cpu"], [24, 3, 1, "", "cuda"], [24, 3, 1, "", "double"], [24, 6, 1, "", "dump_patches"], [24, 3, 1, "", "eval"], [24, 3, 1, "", "extra_repr"], [24, 3, 1, "", "float"], [24, 3, 1, "id0", "forward"], [24, 3, 1, "", "get_buffer"], [24, 3, 1, "", "get_extra_state"], [24, 3, 1, "", "get_parameter"], [24, 3, 1, "", "get_submodule"], [24, 3, 1, "", "half"], [24, 3, 1, "", "ipu"], [24, 3, 1, "", "load_state_dict"], [24, 3, 1, "", "modules"], [24, 3, 1, "", "named_buffers"], [24, 3, 1, "", "named_children"], [24, 3, 1, "", "named_modules"], [24, 3, 1, "", "named_parameters"], [24, 3, 1, "", "parameters"], [24, 3, 1, "", "register_backward_hook"], [24, 3, 1, "", "register_buffer"], [24, 3, 1, "", "register_forward_hook"], [24, 3, 1, "", "register_forward_pre_hook"], [24, 3, 1, "", "register_full_backward_hook"], [24, 3, 1, "", "register_load_state_dict_post_hook"], [24, 3, 1, "", "register_module"], [24, 3, 1, "", "register_parameter"], [24, 3, 1, "", "requires_grad_"], [24, 3, 1, "", "set_extra_state"], [24, 3, 1, "", "share_memory"], [24, 3, 1, "", "state_dict"], [24, 3, 1, "", "to"], [24, 3, 1, "", "to_empty"], [24, 3, 1, "", "train"], [24, 6, 1, "", "training"], [24, 3, 1, "", "type"], [24, 3, 1, "", "xpu"], [24, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[25, 1, 1, "", "adjust_learning_rate"], [25, 1, 1, "", "evaluate"], [25, 1, 1, "", "forget_rate_scheduler"], [25, 1, 1, "", "initialize_lr_scheduler"], [25, 1, 1, "", "loss_coteaching"], [25, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[27, 2, 1, "", "LabelInspector"], [27, 7, 1, "", "adj_confident_thresholds_shared"], [27, 1, 1, "", "find_label_issues_batched"], [27, 7, 1, "", "labels_shared"], [27, 7, 1, "", "pred_probs_shared"], [27, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[27, 3, 1, "", "get_confident_thresholds"], [27, 3, 1, "", "get_label_issues"], [27, 3, 1, "", "get_num_issues"], [27, 3, 1, "", "get_quality_scores"], [27, 3, 1, "", "score_label_quality"], [27, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[28, 2, 1, "", "CNN"], [28, 2, 1, "", "SimpleNet"], [28, 1, 1, "", "get_mnist_dataset"], [28, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[28, 3, 1, "", "__init_subclass__"], [28, 6, 1, "", "batch_size"], [28, 6, 1, "", "dataset"], [28, 6, 1, "", "epochs"], [28, 3, 1, "id0", "fit"], [28, 3, 1, "", "get_metadata_routing"], [28, 3, 1, "", "get_params"], [28, 6, 1, "", "loader"], [28, 6, 1, "", "log_interval"], [28, 6, 1, "", "lr"], [28, 6, 1, "", "momentum"], [28, 6, 1, "", "no_cuda"], [28, 3, 1, "id1", "predict"], [28, 3, 1, "id4", "predict_proba"], [28, 6, 1, "", "seed"], [28, 3, 1, "", "set_fit_request"], [28, 3, 1, "", "set_params"], [28, 3, 1, "", "set_predict_proba_request"], [28, 3, 1, "", "set_predict_request"], [28, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[28, 6, 1, "", "T_destination"], [28, 3, 1, "", "__call__"], [28, 3, 1, "", "add_module"], [28, 3, 1, "", "apply"], [28, 3, 1, "", "bfloat16"], [28, 3, 1, "", "buffers"], [28, 3, 1, "", "children"], [28, 3, 1, "", "cpu"], [28, 3, 1, "", "cuda"], [28, 3, 1, "", "double"], [28, 6, 1, "", "dump_patches"], [28, 3, 1, "", "eval"], [28, 3, 1, "", "extra_repr"], [28, 3, 1, "", "float"], [28, 3, 1, "", "forward"], [28, 3, 1, "", "get_buffer"], [28, 3, 1, "", "get_extra_state"], [28, 3, 1, "", "get_parameter"], [28, 3, 1, "", "get_submodule"], [28, 3, 1, "", "half"], [28, 3, 1, "", "ipu"], [28, 3, 1, "", "load_state_dict"], [28, 3, 1, "", "modules"], [28, 3, 1, "", "named_buffers"], [28, 3, 1, "", "named_children"], [28, 3, 1, "", "named_modules"], [28, 3, 1, "", "named_parameters"], [28, 3, 1, "", "parameters"], [28, 3, 1, "", "register_backward_hook"], [28, 3, 1, "", "register_buffer"], [28, 3, 1, "", "register_forward_hook"], [28, 3, 1, "", "register_forward_pre_hook"], [28, 3, 1, "", "register_full_backward_hook"], [28, 3, 1, "", "register_load_state_dict_post_hook"], [28, 3, 1, "", "register_module"], [28, 3, 1, "", "register_parameter"], [28, 3, 1, "", "requires_grad_"], [28, 3, 1, "", "set_extra_state"], [28, 3, 1, "", "share_memory"], [28, 3, 1, "", "state_dict"], [28, 3, 1, "", "to"], [28, 3, 1, "", "to_empty"], [28, 3, 1, "", "train"], [28, 6, 1, "", "training"], [28, 3, 1, "", "type"], [28, 3, 1, "", "xpu"], [28, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[29, 1, 1, "", "find_label_issues"], [29, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [29, 1, 1, "", "find_predicted_neq_given"], [29, 7, 1, "", "pred_probs_by_class"], [29, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[31, 0, 0, "-", "label_quality_utils"], [32, 0, 0, "-", "latent_algebra"], [33, 0, 0, "-", "multiannotator_utils"], [34, 0, 0, "-", "multilabel_scorer"], [35, 0, 0, "-", "multilabel_utils"], [36, 0, 0, "-", "outlier"], [37, 0, 0, "-", "token_classification_utils"], [38, 0, 0, "-", "util"], [39, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[31, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[32, 1, 1, "", "compute_inv_noise_matrix"], [32, 1, 1, "", "compute_noise_matrix_from_inverse"], [32, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [32, 1, 1, "", "compute_py"], [32, 1, 1, "", "compute_py_inv_noise_matrix"], [32, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[33, 1, 1, "", "assert_valid_inputs_multiannotator"], [33, 1, 1, "", "assert_valid_pred_probs"], [33, 1, 1, "", "check_consensus_label_classes"], [33, 1, 1, "", "compute_soft_cross_entropy"], [33, 1, 1, "", "find_best_temp_scaler"], [33, 1, 1, "", "format_multiannotator_labels"], [33, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[34, 2, 1, "", "Aggregator"], [34, 2, 1, "", "ClassLabelScorer"], [34, 2, 1, "", "MultilabelScorer"], [34, 1, 1, "", "exponential_moving_average"], [34, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [34, 1, 1, "", "get_label_quality_scores"], [34, 1, 1, "", "multilabel_py"], [34, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[34, 3, 1, "", "__call__"], [34, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[34, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [34, 6, 1, "", "NORMALIZED_MARGIN"], [34, 6, 1, "", "SELF_CONFIDENCE"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[34, 3, 1, "", "__call__"], [34, 3, 1, "", "aggregate"], [34, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[35, 1, 1, "", "get_onehot_num_classes"], [35, 1, 1, "", "int2onehot"], [35, 1, 1, "", "onehot2int"], [35, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[36, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[37, 1, 1, "", "color_sentence"], [37, 1, 1, "", "filter_sentence"], [37, 1, 1, "", "get_sentence"], [37, 1, 1, "", "mapping"], [37, 1, 1, "", "merge_probs"], [37, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[38, 1, 1, "", "append_extra_datapoint"], [38, 1, 1, "", "clip_noise_rates"], [38, 1, 1, "", "clip_values"], [38, 1, 1, "", "compress_int_array"], [38, 1, 1, "", "confusion_matrix"], [38, 1, 1, "", "csr_vstack"], [38, 1, 1, "", "estimate_pu_f1"], [38, 1, 1, "", "extract_indices_tf"], [38, 1, 1, "", "force_two_dimensions"], [38, 1, 1, "", "format_labels"], [38, 1, 1, "", "get_missing_classes"], [38, 1, 1, "", "get_num_classes"], [38, 1, 1, "", "get_unique_classes"], [38, 1, 1, "", "is_tensorflow_dataset"], [38, 1, 1, "", "is_torch_dataset"], [38, 1, 1, "", "num_unique_classes"], [38, 1, 1, "", "print_inverse_noise_matrix"], [38, 1, 1, "", "print_joint_matrix"], [38, 1, 1, "", "print_noise_matrix"], [38, 1, 1, "", "print_square_matrix"], [38, 1, 1, "", "remove_noise_from_class"], [38, 1, 1, "", "round_preserving_row_totals"], [38, 1, 1, "", "round_preserving_sum"], [38, 1, 1, "", "smart_display_dataframe"], [38, 1, 1, "", "subset_X_y"], [38, 1, 1, "", "subset_data"], [38, 1, 1, "", "subset_labels"], [38, 1, 1, "", "train_val_split"], [38, 1, 1, "", "unshuffle_tensorflow_dataset"], [38, 1, 1, "", "value_counts"], [38, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[39, 1, 1, "", "assert_indexing_works"], [39, 1, 1, "", "assert_nonempty_input"], [39, 1, 1, "", "assert_valid_class_labels"], [39, 1, 1, "", "assert_valid_inputs"], [39, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[42, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[42, 2, 1, "", "KerasWrapperModel"], [42, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[43, 1, 1, "", "convert_long_to_wide_dataset"], [43, 1, 1, "", "get_active_learning_scores"], [43, 1, 1, "", "get_active_learning_scores_ensemble"], [43, 1, 1, "", "get_label_quality_multiannotator"], [43, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [43, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[44, 0, 0, "-", "dataset"], [45, 0, 0, "-", "filter"], [47, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[44, 1, 1, "", "common_multilabel_issues"], [44, 1, 1, "", "multilabel_health_summary"], [44, 1, 1, "", "overall_multilabel_health_score"], [44, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[47, 1, 1, "", "get_label_quality_scores"], [47, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[48, 0, 0, "-", "filter"], [50, 0, 0, "-", "rank"], [51, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[48, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[50, 1, 1, "", "compute_badloc_box_scores"], [50, 1, 1, "", "compute_overlooked_box_scores"], [50, 1, 1, "", "compute_swap_box_scores"], [50, 1, 1, "", "get_label_quality_scores"], [50, 1, 1, "", "issues_from_scores"], [50, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[51, 1, 1, "", "visualize"]], "cleanlab.outlier": [[52, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[52, 3, 1, "", "fit"], [52, 3, 1, "", "fit_score"], [52, 3, 1, "", "score"]], "cleanlab.rank": [[53, 1, 1, "", "find_top_issues"], [53, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [53, 1, 1, "", "get_label_quality_ensemble_scores"], [53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_normalized_margin_for_each_label"], [53, 1, 1, "", "get_self_confidence_for_each_label"], [53, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[55, 0, 0, "-", "learn"], [56, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[55, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[55, 3, 1, "", "__init_subclass__"], [55, 3, 1, "", "find_label_issues"], [55, 3, 1, "", "fit"], [55, 3, 1, "", "get_aleatoric_uncertainty"], [55, 3, 1, "", "get_epistemic_uncertainty"], [55, 3, 1, "", "get_label_issues"], [55, 3, 1, "", "get_metadata_routing"], [55, 3, 1, "", "get_params"], [55, 3, 1, "", "predict"], [55, 3, 1, "", "save_space"], [55, 3, 1, "", "score"], [55, 3, 1, "", "set_fit_request"], [55, 3, 1, "", "set_params"], [55, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[56, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[57, 0, 0, "-", "filter"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[57, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[60, 1, 1, "", "common_label_issues"], [60, 1, 1, "", "display_issues"], [60, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[61, 0, 0, "-", "filter"], [63, 0, 0, "-", "rank"], [64, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[61, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[63, 1, 1, "", "get_label_quality_scores"], [63, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[64, 1, 1, "", "common_label_issues"], [64, 1, 1, "", "display_issues"], [64, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 67, 71, 72, 74, 75, 76, 79, 85, 86, 87], "count": [3, 76], "datalab": [4, 5, 6, 7, 8, 68, 69, 70, 71, 72, 76], "creat": [5, 68, 69, 76, 78], "your": [5, 65, 68, 69, 72, 74, 76], "own": 5, "issu": [5, 6, 7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 84, 85, 87], "manag": 5, "prerequisit": 5, "implement": 5, "issuemanag": [5, 68], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 68], "us": [5, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "guid": [6, 8], "type": [6, 7, 76], "custom": [6, 68], "can": [7, 69, 73, 74, 76, 78], "detect": [7, 69, 71, 72, 74, 76, 80, 81], "estim": [7, 76, 78], "each": 7, "label": [7, 18, 65, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "outlier": [7, 20, 36, 52, 71, 72, 75, 81], "Near": [7, 69, 71, 72, 75], "duplic": [7, 14, 69, 71, 72, 75], "non": 7, "iid": 7, "class": [7, 66, 76, 84], "imbal": [7, 15], "imag": [7, 75, 81], "specif": [7, 84], "option": 7, "paramet": [7, 76], "get": [8, 68, 69, 78, 79, 80, 84, 87], "start": [8, 73], "api": 8, "refer": 8, "data": [9, 65, 67, 68, 69, 71, 73, 74, 76, 78, 79, 80, 81, 83, 84, 85, 87], "data_issu": 10, "factori": 11, "intern": [12, 30], "issue_find": 13, "issue_manag": [16, 17], "noniid": 19, "report": [21, 75], "dataset": [23, 44, 65, 69, 72, 73, 74, 75, 76, 79, 80, 81, 83, 84, 86, 87], "cifar_cnn": 24, "coteach": 25, "experiment": 26, "label_issues_batch": 27, "mnist_pytorch": 28, "filter": [29, 45, 48, 57, 61, 76], "label_quality_util": 31, "latent_algebra": 32, "multiannotator_util": 33, "multilabel_scor": 34, "multilabel_util": 35, "token_classification_util": 37, "util": 38, "valid": [39, 75, 82], "fasttext": 40, "model": [41, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "kera": 42, "multiannot": [43, 78], "multilabel_classif": 46, "rank": [47, 50, 53, 56, 59, 63, 76], "object_detect": 49, "summari": [51, 60, 64], "regress": [54, 55, 56, 74, 83], "learn": [55, 69, 74, 76, 85], "segment": [58, 84], "token_classif": [62, 87], "cleanlab": [65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "document": 65, "quickstart": 65, "1": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "instal": [65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "2": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "find": [65, 67, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "common": [65, 66, 87], "3": [65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "handl": [65, 74], "error": [65, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "train": [65, 67, 74, 81, 83, 85, 86], "robust": [65, 76, 83, 85, 86], "noisi": [65, 76, 83, 85, 86], "4": [65, 67, 68, 69, 71, 72, 75, 76, 78, 80, 81, 83, 85, 86], "curat": [65, 73], "fix": [65, 74], "level": [65, 73, 76, 87], "5": [65, 67, 69, 71, 75, 76, 78, 83, 85], "improv": [65, 78], "via": [65, 76, 78], "mani": [65, 76], "other": [65, 78, 80, 83], "techniqu": 65, "contribut": 65, "easi": 65, "mode": 65, "how": [66, 74, 76, 78, 79, 87], "migrat": 66, "version": 66, "0": 66, "from": [66, 68, 69, 76, 83, 85, 86], "pre": [66, 67, 81], "function": [66, 68], "name": 66, "chang": 66, "modul": [66, 76], "new": 66, "remov": 66, "argument": [66, 68], "variabl": 66, "audio": 67, "speechbrain": 67, "depend": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "import": [67, 68, 69, 73, 75, 76, 78], "them": [67, 73, 76], "load": [67, 68, 69, 71, 72, 83, 85, 86], "featur": [67, 75, 81], "fit": 67, "linear": 67, "comput": [67, 71, 72, 75, 78, 82, 85], "out": [67, 68, 69, 71, 72, 75, 78, 82, 85], "sampl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "predict": [67, 68, 69, 71, 72, 75, 78, 79, 80, 82, 85], "probabl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "workflow": [68, 76], "audit": [68, 69], "requir": [68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "classifi": [68, 69], "instanti": 68, "object": [68, 80], "increment": 68, "search": 68, "specifi": 68, "nondefault": 68, "save": 68, "ad": 68, "A": 69, "unifi": 69, "all": [69, 76], "kind": [69, 80], "skip": [69, 73, 76, 78], "detail": [69, 73, 76, 78], "more": [69, 76, 83, 85, 86], "about": 69, "addit": 69, "inform": [69, 75], "tutori": [70, 73, 77], "tabular": [71, 85], "numer": 71, "categor": 71, "column": 71, "process": [71, 81, 83, 85], "select": [71, 85], "construct": 71, "k": [71, 75, 82], "nearest": 71, "neighbour": 71, "graph": 71, "text": [72, 86, 87], "format": [72, 74, 79, 80, 86], "defin": [72, 75, 83, 86], "fetch": [73, 75], "evalu": 73, "health": [73, 76], "8": [73, 76], "popular": 73, "faq": 74, "what": [74, 76, 82], "do": [74, 76], "i": [74, 76, 82], "infer": 74, "correct": 74, "exampl": [74, 75, 76, 81], "ha": 74, "flag": 74, "should": 74, "v": 74, "test": [74, 76, 81], "big": 74, "limit": 74, "memori": 74, "why": 74, "isn": 74, "t": 74, "cleanlearn": [74, 76], "work": [74, 76, 78, 87], "me": 74, "differ": [74, 80], "clean": [74, 76], "final": 74, "hyperparamet": 74, "tune": 74, "onli": 74, "one": [74, 76, 79, 84], "doe": [74, 78, 87], "take": 74, "so": 74, "long": 74, "ml": [74, 76], "run": 74, "identifi": [74, 80], "licens": 74, "open": 74, "sourc": 74, "under": 74, "an": 74, "answer": 74, "question": 74, "pytorch": [75, 81], "normal": 75, "fashion": 75, "mnist": 75, "prepar": 75, "fold": [75, 82], "cross": [75, 82], "embed": [75, 81], "7": [75, 76], "view": 75, "most": [75, 87], "like": 75, "sever": 75, "set": [75, 76], "dark": 75, "top": [75, 84], "low": 75, "The": 76, "centric": 76, "ai": 76, "machin": 76, "find_label_issu": 76, "line": 76, "code": 76, "visual": [76, 80, 81, 84], "twenti": 76, "lowest": 76, "qualiti": [76, 78, 79, 80, 84, 87], "see": 76, "now": 76, "let": 76, "": 76, "happen": 76, "we": 76, "merg": 76, "seafoam": 76, "green": 76, "yellow": 76, "too": 76, "you": 76, "re": 76, "6": 76, "One": 76, "score": [76, 78, 79, 80, 84, 87], "rule": 76, "overal": [76, 84], "accur": 76, "thi": 76, "directli": 76, "fulli": 76, "character": 76, "nois": 76, "matrix": [76, 79], "joint": 76, "prior": 76, "true": 76, "distribut": 76, "flip": 76, "rate": 76, "ani": 76, "again": 76, "support": 76, "lot": 76, "method": 76, "filter_bi": 76, "automat": 76, "everi": 76, "uniqu": 76, "num_label_issu": 76, "threshold": 76, "found": 76, "Not": 76, "sure": 76, "when": 76, "ensembl": 76, "multipl": [76, 78], "predictor": 76, "consensu": 78, "annot": 78, "initi": 78, "major": 78, "vote": 78, "better": 78, "statist": 78, "compar": 78, "inspect": 78, "potenti": [78, 83, 86], "retrain": 78, "further": 78, "multi": 79, "given": 79, "hot": 79, "binari": 79, "download": [80, 84, 87], "objectlab": 80, "timm": 81, "cifar10": 81, "some": 81, "pred_prob": [81, 84, 87], "wai": 83, "semant": 84, "which": 84, "ar": 84, "commonli": 84, "mislabel": [84, 87], "focus": 84, "scikit": 85, "token": 87, "word": 87, "sentenc": 87, "contain": 87, "particular": 87}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}})
\ No newline at end of file
diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html
index 08cc95edd..da00afa59 100644
--- a/master/tutorials/audio.html
+++ b/master/tutorials/audio.html
@@ -1482,7 +1482,7 @@ 5. Use cleanlab to find label issues