From abaae30f42bdb603159326ad151864c7f0edf79c Mon Sep 17 00:00:00 2001 From: jwmueller Date: Wed, 11 Oct 2023 10:21:33 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@55b838944c7721c9078acbe408f98c5584efe0ba --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3315 -> 3315 bytes .../benchmarking/noise_generation.doctree | Bin 83507 -> 83507 bytes .../.doctrees/cleanlab/classification.doctree | Bin 298656 -> 298656 bytes master/.doctrees/cleanlab/count.doctree | Bin 297542 -> 297542 bytes .../cleanlab/datalab/datalab.doctree | Bin 164193 -> 164193 bytes .../guide/custom_issue_manager.doctree | Bin 28223 -> 28223 bytes .../cleanlab/datalab/guide/index.doctree | Bin 5915 -> 5915 bytes .../guide/issue_type_description.doctree | Bin 72704 -> 72704 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5502 -> 5502 bytes .../cleanlab/datalab/internal/data.doctree | Bin 70527 -> 70527 bytes .../datalab/internal/data_issues.doctree | Bin 69760 -> 69760 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 28921 -> 28921 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4562 -> 4562 bytes .../datalab/internal/issue_finder.doctree | Bin 62637 -> 62637 bytes .../internal/issue_manager/duplicate.doctree | Bin 73417 -> 73417 bytes .../internal/issue_manager/imbalance.doctree | Bin 71121 -> 71121 bytes .../internal/issue_manager/index.doctree | Bin 3926 -> 3926 bytes .../issue_manager/issue_manager.doctree | Bin 82549 -> 82549 bytes .../internal/issue_manager/label.doctree | Bin 87552 -> 87552 bytes .../internal/issue_manager/noniid.doctree | Bin 89720 -> 89720 bytes .../internal/issue_manager/outlier.doctree | Bin 75773 -> 75773 bytes .../cleanlab/datalab/internal/report.doctree | Bin 31311 -> 31311 bytes .../datalab/optional_dependencies.doctree | Bin 3389 -> 3389 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 103244 -> 103244 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 346504 -> 346504 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48181 -> 48181 bytes .../cleanlab/experimental/index.doctree | Bin 5382 -> 5382 bytes .../experimental/label_issues_batched.doctree | Bin 161811 -> 161811 bytes .../experimental/mnist_pytorch.doctree | Bin 492589 -> 492589 bytes master/.doctrees/cleanlab/filter.doctree | Bin 99001 -> 99001 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4550 -> 4550 bytes .../internal/label_quality_utils.doctree | Bin 19742 -> 19742 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 88865 -> 88865 bytes .../internal/multiannotator_utils.doctree | Bin 45614 -> 45614 bytes .../internal/multilabel_scorer.doctree | Bin 162815 -> 162815 bytes .../internal/multilabel_utils.doctree | Bin 33914 -> 33914 bytes .../cleanlab/internal/outlier.doctree | Bin 16196 -> 16196 bytes .../token_classification_utils.doctree | Bin 66017 -> 66017 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 208122 -> 208122 bytes .../cleanlab/internal/validation.doctree | Bin 33814 -> 33814 bytes .../cleanlab/models/fasttext.doctree | Bin 2403 -> 2403 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5060 -> 5060 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 103797 -> 103797 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 172727 -> 172727 bytes .../multilabel_classification/dataset.doctree | Bin 68153 -> 68153 bytes .../multilabel_classification/filter.doctree | Bin 90121 -> 90121 bytes .../multilabel_classification/index.doctree | Bin 5009 -> 5009 bytes .../multilabel_classification/rank.doctree | Bin 46635 -> 46635 bytes .../cleanlab/object_detection/filter.doctree | Bin 36016 -> 36016 bytes .../cleanlab/object_detection/index.doctree | Bin 3927 -> 3927 bytes .../cleanlab/object_detection/rank.doctree | Bin 151195 -> 151195 bytes .../cleanlab/object_detection/summary.doctree | Bin 32577 -> 32577 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 102110 -> 102110 bytes master/.doctrees/cleanlab/rank.doctree | Bin 117993 -> 117993 bytes .../cleanlab/regression/index.doctree | Bin 3801 -> 3801 bytes .../cleanlab/regression/learn.doctree | Bin 220237 -> 220237 bytes .../cleanlab/regression/rank.doctree | Bin 19619 -> 19619 bytes .../cleanlab/segmentation/filter.doctree | Bin 29078 -> 29078 bytes .../cleanlab/segmentation/index.doctree | Bin 3855 -> 3855 bytes .../cleanlab/segmentation/rank.doctree | Bin 53700 -> 53700 bytes .../cleanlab/segmentation/summary.doctree | Bin 67310 -> 67310 bytes .../token_classification/filter.doctree | Bin 29360 -> 29360 bytes .../token_classification/index.doctree | Bin 4017 -> 4017 bytes .../token_classification/rank.doctree | Bin 67499 -> 67499 bytes .../token_classification/summary.doctree | Bin 85041 -> 85041 bytes master/.doctrees/environment.pickle | Bin 1625313 -> 1625313 bytes master/.doctrees/index.doctree | Bin 41788 -> 41788 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28054 -> 28054 bytes .../.doctrees/nbsphinx/tutorials/audio.ipynb | 1208 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 300 +- .../datalab/datalab_quickstart.ipynb | 130 +- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 1724 ++++----- .../nbsphinx/tutorials/dataset_health.ipynb | 42 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 576 +-- .../.doctrees/nbsphinx/tutorials/image.ipynb | 3362 ++++++++--------- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- .../nbsphinx/tutorials/object_detection.ipynb | 146 +- .../nbsphinx/tutorials/outliers.ipynb | 336 +- .../nbsphinx/tutorials/regression.ipynb | 162 +- .../nbsphinx/tutorials/segmentation.ipynb | 1490 ++++---- .../nbsphinx/tutorials/tabular.ipynb | 130 +- .../.doctrees/nbsphinx/tutorials/text.ipynb | 166 +- .../tutorials/token_classification.ipynb | 189 +- master/.doctrees/tutorials/audio.doctree | Bin 326240 -> 326242 bytes .../datalab/datalab_advanced.doctree | Bin 198038 -> 198038 bytes .../datalab/datalab_quickstart.doctree | Bin 128787 -> 128787 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3058 -> 3058 bytes .../tutorials/datalab/tabular.doctree | Bin 107861 -> 107861 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 295170 -> 295170 bytes .../tutorials/dataset_health.doctree | Bin 404314 -> 404314 bytes master/.doctrees/tutorials/faq.doctree | Bin 143161 -> 146230 bytes master/.doctrees/tutorials/image.doctree | Bin 463183 -> 461909 bytes .../tutorials/indepth_overview.doctree | Bin 202107 -> 202107 bytes master/.doctrees/tutorials/index.doctree | Bin 3170 -> 3170 bytes .../tutorials/multiannotator.doctree | Bin 137341 -> 137341 bytes .../multilabel_classification.doctree | Bin 57571 -> 57571 bytes .../tutorials/object_detection.doctree | Bin 110976 -> 110976 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104010 -> 104010 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17248 -> 17248 bytes master/.doctrees/tutorials/regression.doctree | Bin 80921 -> 80921 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1976752 -> 1976752 bytes master/.doctrees/tutorials/tabular.doctree | Bin 59881 -> 59881 bytes master/.doctrees/tutorials/text.doctree | Bin 95043 -> 95043 bytes .../tutorials/token_classification.doctree | Bin 170870 -> 170792 bytes master/_sources/tutorials/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- master/_sources/tutorials/faq.ipynb | 12 + .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- master/_sources/tutorials/tabular.ipynb | 2 +- master/_sources/tutorials/text.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/audio.html | 2 +- master/tutorials/audio.ipynb | 1208 +++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 300 +- .../datalab/datalab_quickstart.ipynb | 130 +- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 20 +- master/tutorials/datalab/text.ipynb | 1724 ++++----- master/tutorials/dataset_health.ipynb | 42 +- master/tutorials/faq.html | 12 +- master/tutorials/faq.ipynb | 576 +-- master/tutorials/image.html | 74 +- master/tutorials/image.ipynb | 3362 ++++++++--------- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- master/tutorials/object_detection.ipynb | 146 +- master/tutorials/outliers.html | 4 +- master/tutorials/outliers.ipynb | 336 +- master/tutorials/regression.ipynb | 162 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1490 ++++---- master/tutorials/tabular.ipynb | 130 +- master/tutorials/text.html | 4 +- master/tutorials/text.ipynb | 166 +- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 189 +- versioning.js | 2 +- 154 files changed, 10645 insertions(+), 10645 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index dd53b0946..36be57d98 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 89be7db3801ede3a5d915adddcf50f37 +config: cf65d4f5317602c3d56b866305a7f86b tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index fd2beaf54c90d1c2ecd3776e323cd2570b5c096e..1ac246b228f4dce1c73a2d11ce8bb3517d6f6302 100644 GIT binary patch delta 172 zcmew?`B`#9IHN&ca!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ jlChCtvWeN`cE+0|YuY@4shfjjU6Us;d2gP^9m@y++6^`( delta 172 zcmew?`B`#9IHN&XUXo#9N@|vVTC$l*iitt8X=18Tnpvu)L86&?a$;JFd74R@acW|+ jNpft;>nDa<5W3e(O%IhuU~1-e&q6q2L6bn|{r z0d}%tvzG070D+ zveHf|Boy!UFGfBo#0 hCC~l>bB*ox5{x`t{QM|=EsU^zX75di)v{-gi^ delta 1570 zcmdno!@9YLbwfO(L0MjsVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL zVzNnca+;~J!RCHOHqv!XerO**eZC7L>t;>nDa<5W3e(O%IhuU~1-e&q6q2L6bn|{r z0d}%tvzG070D+ zveHf|Boy!UFGfBo#0 hCC~l>bB*ox5{x`t{QM|=EsU^zX75dhcB4z~aR diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index d32015d644f08cc22489fcd3e12e1d13d8a20b9e..5ccab5e65b105e8c3664db5502bf5cedb874bdb1 100644 GIT binary patch delta 4156 zcmbuC-%C_M6o8qTyZ%TwS4GoQkW30I-F0`>SSt)I(r~Zow$PT<-Mc*`31MQ35V9r( zMu-=j9un5fgfLKUbbO0_=^>C_!cc=SqcDgtA_^gzyFoqA@elaUch0$U?#zjg=fuZz zW<$i;9oDaFeOIGZuCN~Q>U9y#<96%S7rk|!TCXeO)@wX9TG$l{Ywl`S*i&N+lO=g5 z5o$2}ip^Z63PLGp)32%wOhYn}h{7K>JGWMUIu z{BB~cyMK0K(UQ$Oh|#dVD>M=^i5QC{8)M`)GG&-bAvUbHDUIk@Z({}-!g_T(xrg;~ z2U)^;Gjd5B>phlFeDYop-}enxSyn_2$t#ls51Ykg66-x!N5 z9x{dXu2zt9xUp}Cgp)idME%d(;bSuy@X53PZeno-R`HIQQUEQt$k3pCByl(c5Xhiz zFN#%1*HgKAoZ9#cCvk9RkOm;yKvi5Xt!N;k9nQifW2j&4P!yyw`RAB5GHQ~q=%mXC z|3oi619!XWn!FnXTTqND`PA45&4!bsv@3TDeDfo^7)0?Z#DCL41;=v1=D|E;nq5AC z=vfx9-y_7d@nv{)|KLU`_E zN4H7K!R2Gqh^L&uI^gUP_H?_nGPy8-SUB=@BwJ*%(q4I1bz-qxuvt*D sUpbE~+S;;eq0*-;AtobvIf%;l!IKk8^ni5vVmY$bcLz-ODZldn0G5;&;s5{u delta 4156 zcmbuC-Afcv6u`On&iavVu8O9qAej_aI_9d#T489BhC8O)LR(w=H4jQcn1u)-Yf@l@ zINY5iB0Cr z`-pn2H&}fo9OCq#?qnylX`9NXM|6 zFIt#mBv$2Nb72?J`Rld5RB5k;_VD)`V-$(nKb6ZL(7)ED&l=Xc_~k7Yt=i1QCcONe zW379C`mt!q)*ZxXSl<opx@ z1?$boB{8h`L_TrJdqI5PH&|s^5ji5SOb$G36_aVKx1p4Lzo6VZB;9H)2To^zs9C=|RTf|vuzdS2)Zh`szN&<16Sga}7EGRjs rTtpUaZCUkD=~7k@laag}MCAwI$th*vkaYQCIkMJw2h3hqe&zoGaT`N& diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 0bc4f84cc5ed7b6b5466eee33e9b268ed191f311..c2b522248402f991a3047ac2aa0898202a8ce9e8 100644 GIT binary patch delta 3495 zcmX>$Md;WRp$(pl26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW|J!!_mQk=`oVM-lg+c4m`Jw|q}6USH;btVS+?3uUMEpPvd+nh3Bj9} zO77z#M`y(5*D4c9_bAZLh|MhO9ZcleDWb*ALY~g$dckDc*<=_>rp|bidNOsUnO`F_ zY>!xmkZI=vn-ye+?FGj#%;d$2kK0@_U0dk6n@rbk@oOW~wTFV{kZI?$@bhHaX&bYJ zbe)?O6MV=F*RM$pWa|8zYD=chLm4Tg`w?7{tjl>tR*X1o<|w+%Lr$7?*z8?z98Qi- zgU$D@o#!M==j40We4Cd=*8x{RAhw;8N=I#4gyb_a9D>6Rp04vZp$ z=>>dD;@kZS84Cm`&~Mtr80JQSex{R*TdYae4-SAyHtgHgSeed~o?77AQ-zpDpq?uZp0n;z+Vq)9Q zrOO;ldP5ML+Z0wZAKG5;#4Jd9@WH~N(uQ;o07KqtGJl-p^!_=_tkZ#MR$x104>LFE zSss*tz$R@6nq)|(CxC&VuS13>UNZY^KYf)sjPzu?J@6%SI_bWJMcKjaH-9lplj&P< oeqH{TlSQ9oFN5s|>X+DFYRQtyMuGky2NrvElJ#!~c6(Zt04E_q!2kdN delta 3495 zcmX>$Md;WRp$(pl24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>29qlp_mQk=`oVM-lg+c4m`Jw|q}6USH;btVS+?3uUMEpPvd+nh3Bj9} zO77z#M`y(5*D4c9_bAZLh|MhO9ZcleDWb*ALY~g$dckDc*<=_>rp|bidNOsUnO`F_ zY>!xmkZI=vn-ye+?FGj#%;d$2kK0@_U0dk6n@rbk@oOW~wTFV{kZI?$@bhHaX&bYJ zbe)?O6MV=F*RM$pWa|8zYD=chLm4Tg`w?7{tjl>tR*X1o<|w+%Lr$7?*z8?z98Qi- zgU$D@o#!M==j40We4Cd=*8x{RAhw;8N=I#4gyb_a9D>6Rp04vZp$ z=>>dD;@kZS84Cm`&~Mtr80JQSex{R*TdYae4-SAyHtgHgSeed~o?77AQ-zpDpq?uZp0n;z+Vq)9Q zrOO;ldP5ML+Z0wZAKG5;#4Jd9@WH~N(uQ;o07KqtGJl-p^!_=_tkZ#MR$x104>LFE zSss*tz$R@6nq)|(CxC&VuS13>UNZY^KYf)sjPzu?J@6%SI_bWJMcKjaH-9lplj&P< oeqH{TlSQ9oFN5s|>X+DFYRQtyMuGky2NrvElJ#!~c6(Zt04J1Y=>Px# diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index a1bdb66de7f992180e8319ae972536f2ac3260a7..57e18ff216117073b7b38a839b5a07c3afb548df 100644 GIT binary patch delta 4258 zcmbW5Pe>F|9LIUjRd*fD$z&x$)(OgjXxl&P2K_Uke>)p&u?I73o!P-ycgv#O3M_RM z!Xj24GMFVwDrg?EhrL7FA4u%by6K@1x+r_|Qitl$shJJBzu#ewpWo;Ao%iF%o7w0q z+2|{I5kT%MYUGxZxOUs=QX^Vj#HT4Rg&9Qtz!-RF|eI9=A*N);Bmw zu&A1db}N}g3kP^{vfA84Gq?=FNZHa<1R{xS5lMy634vRwSZcFCNR`fsQXz!&(^Gaq zfRR}#3+mQSvXYfLYS;FGye3T?wE~&FdGsK0-iUXa4`4uAX-nt?e*(JN{2DY?Ds^1c zFeI}|t1j&aI@iJ-K<8K02Xszo0id(@vJ7;FqY0oh8h-+Gj$Ca7I^)*|3iu~MN@}Df zw1p0LeFCf}DH)}Ix^sZ6CYk8D!=IH($rXMdl?HPBE@E~$cKU3p{Chn=1+nRVeqWv(oS6ZV%X1Gw z-JYZ0<_m$O^6Dkvz91!Kno2K$HkV9N>2kX9J_+=$FC}0kSzi)qE;C&W*|#z|)?KPs z#84&O^(9;aEPZfvt2Q-*%X~KZUHI0h5_^7%cqL3Zx9O!^QYF{~j@;26cnAvb2EP?c8!>RR`GkPP~KPZKAq?R_%%o~&ikxQpj=${Gw+g)I>2Q$p=?#`H7S(HLx>821C zF*%HjSu)84&4=t@=OOz8$$DrmeJF%pl)d><57k3Y-MgUo^Lx0DpWo;Az30b|bMI!{ zx*4~=@S(cCtHDFpLu#ZptTehqZkN&!Q0u~tYO^cQ=uraUkSFX8*Q)`=ttjD!dY7k` zw3RrBXg8B-wCLi+$y$3W&0-sZk+P|^1Vj?qB$5iD7Xo)uvCLwEkP4j_rD6!_rKjzJ z03&l!4%DresT|Xy&3B@9>9Qf(hmPg{seTb{WWN;6zaUB zVn}9%R$V>_bgp;x0G(fzCZKal^#PqjS7e~GE7A{iMq-bF&hcw4Kxgd6ND==eNC}m6 z__xti-zUI&k`fX6XCM#AYLNYdxB0VDDY44$qtZy8-$jfrC+|Jy_Z7(e=u@Dx`e6}} ze3Og;$z^g1nDbd`8R#q;_W_+-kKO{ECni7hleA@OjDN2erXV^q%a%KJj zsN3`O+d?sr48D2^xGzWvnI@Mqpv@(dO`) f2)jW$!lxDZbOit0!Jl9MHK2c{moxia?8Scp?sj^9 diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index e1f486c827a62eb549155bc25d2cc26a78da0f78..3e7d666d822ec7cdc882ae39733be369a1f12112 100644 GIT binary patch delta 63 zcmdmghjITM#ti|C26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 TsmV#kMuy2IW}6!r_vZir)-4rF delta 63 zcmdmghjITM#ti|C24#6khJ`7qS^8X({GuCTYg0 TiOD9($!Vs>2Adlg_vZir*!UIi diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index b23a4e6e8c4756df1c828f5e5696f25c275dccc6..b25709e3564fd239a4bee134c708e644aeb454c9 100644 GIT binary patch delta 67 zcmbQOH(PH*G^0^oa!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ XlChCtvWc0w{^avwx|??~CW-<8>*y6i delta 67 zcmbQOH(PH*G^0^jUXo#9N@|vVTC$l*iitt8X=18Tnpvu)L86&?a$;JFd74R@acW|+ XNpfUv!ww4?G-Hm delta 67 zcmZqJ!P2mUWkV{XL0MjsVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL WVzNnca+;~JLGx6`?Nb>Uv!wt9R~69! diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 52612389f419eeca07ae397f976583f287b5518e..221a04d41c2c375df9e000228ca4594ed7e8707f 100644 GIT binary patch delta 172 zcmeyT^-pVqFQY+Ta!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ ilChCtvWeN`TEu}R diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 0f64f6565bb19dae8dd43befe2d47b4ec7c39d5a..48f8116ca6a551c3e8202c8178782c3d22afd694 100644 GIT binary patch delta 3528 zcmbuB?MqW}6vx@Tn`^NLw?c(1sX_0Wce}eSilRZTLUE(eqV{<2h>X%(;Sz#;>qrvL z3-LwaDvS!e!C44}pah{opuWl8iHfLDhOc^n*1g-L*T3T*@HyXezUTWp{EDMoag=)# zHZ#y&8NVzFVp`%eQrhq1B|(I&;X6B|c-vsb zxK0CGxG5U=(9}l*Rht{1n4fc0x(>hY?jU%p*@UXC%ShF&#ey?Q(*@O5i?3WacA))w z@BJ!D=Lr~UaN|t$-I~ao`wf<}&^G;4mpAGJZNdYofSy4f!KZ_IXk9 zT8MK#YN|$uFG{30h2NAh6R;_`FegR`CPm{NFcPw3*9i+@Ic2&A9jC4AHiJgvNT`_* z<+AQB>}d`Ytgg_|dhQRq-Tz@1Zk&&iEKlN>NQg+jY&VjuPU7)PtL&N>jlUpSoPz!o zA%YwGtJTR|w}oJ@MndP98)mz$=)e7x@RD@x%h>^u z)U~F4g&oWn?!ZjF9eY$O;R)sochQ5b>}FxUFhE$2t~dW)CRm#gG9%J_w^K+eqZWV6?`u>`5aG}4NJq;Ba1{X~5Y?1W+EXkJ&#Fp*gSyFe_ zMQpj9TEGmAYx_&#&a4F37ogn`eHJq|uJy79e4EyKIE0~%tAz7e(Jxg9e+v@=xLv{d z!v@onCo!>gfpkktK7dvQ&-|Ps$IAV7*f3At!=CXXXLx6&grN;uILCO{X$V&R17<0A AWB>pF delta 3528 zcmbuB?MqW}6vx@Tn`^NLw?c(1sX_1Bba&UJC>rFgP~0fAs6E{7L$oMe#Uu#wts_Y| zFT@vxt1v2X!C44}pah{opuWl8NlK_thOc^n*1g-L*T3T*@HyXezUTWp{EA~-ag2K< zngW>{mz&axn(}M1z$<(}4oPaWCaA3eNobKJO=;11EvQN|FUwje7=S+0cXlZ4?}Qce z8VzjcrfJ}POFs?FJG}VF`jn&6b@+K_H^E!oCd@l}%v9Z4EVz?2UC29X@rCEwHnd;v zzFS4{A7K&R}u<4MSeO^ra zZNxbr1gg>193|2l{BO#b3E1F0m=z)flcMo%7!5nI=ctXaoHAX5t`l~4n?a{>G~7mr za#?o=X4*u8)fE~#PXA%I`#wFa5(wGr&qNl1-*VXoJX!JCf>FUiop&^IWM zy4JNXvV*z8Etsu$VkU1VJi%PyHu|uG-7L%%1_{eC^cLPK1Z#7JB)*?oB55X3m|3G} z&MV;CbmO~^FRU-H}Q zBDUN`EntPl)xD)~t1BV)1?V@#n8k{Xt9RG~zD4Uj9Ki7UCBpfv=$9&p-$X(Hw<@@Q zIACV#7$!E)l5T0q2hgkF$)D5YSb1NMm=?%;*fmk)OmFOzFmysY=b8}Rro&bL0RLm0 Ai~s-t diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 84caf74107172bfa7b4835a3f665632912a4aefc..197ed673a777c16e4e774867813634e88968a63f 100644 GIT binary patch delta 2678 zcmZoz$kMQoWkV>VL0)o7MN)ZTrM_WuN~&p!MQW0Xv2lt~qN#<6xv62Qaf+FVSyHlL zYI2gXkzull+2&S8X3}*{HWY~6EXq8IiDdi0I!)LPaFC^QawC5O$r?8s3dpdKtPAMS zg30`mteZcHd}bzH_d~6W&9#z+&=(S$1p}EWG~s-32ZbgGg}aj<24G)^ zL>{Kl4U=M`D0IW}I9ZBPl*H!xq!Sdnfhlz*h2fBvafhs;2b3OpCu@Bd-ux?9ke$4o z4K!i%hSI}i)DfT*ZQ#khS*(5unXU)vj%~@5AkXCno?MeZEaKf=ty9QLgPSkxtR>TKg;S!Nf1UOw&)&%(-Ji~z@Q~;435m*^AKp1h zrrjXjsSgvl$g+EL?3+bo=C#;2Vw=~#zr{w5y>XN0OABw-_&$RyKSOjU{=Ozey4}FG L-}WPXjC&XXFAr|y delta 2678 zcmZoz$kMQoWkV>VL0MjsVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL zVzNnca+;~J!RA&*X3}*{HWY~6EXq8IiDdi0I!)LPaFC^QawC5O$r?8s3dpdKtPAMS zg30`mteZcHd}bzH_d~6W&9#z+&=(S$1p}EWG~s-32ZbgGg}aj<24G)^ zL>{Kl4U=M`D0IW}I9ZBPl*H!xq!Sdnfhlz*h2fBvafhs;2b3OpCu@Bd-ux?9ke$4o z4K!i%hSI}i)DfT*ZQ#khS*(5unXU)vj%~@5AkXCno?MeZEaKf=ty9QLgPSkxtR>TKg;S!Nf1UOw&)&%(-Ji~z@Q~;435m*^AKp1h zrrjXjsSgvl$g+EL?3+bo=C#;2Vw=~#zr{w5y>XN0OABw-_&$RyKSOjU{=Ozey4}FG L-}WPXjC&XXQ9X)q diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index a47a624bfc6b550ac8b26944714f3b10b15eeb29..aaf6c9904e75fbc94cc38f3e00a7afe21723fa7d 100644 GIT binary patch delta 724 zcmezQkn!h3#tpuV26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW}9mng~`x$fax9Sx+WiBDx2&t!M!=2)k}zEmqK;dk)yG2bDrc0X0min z&XW}0{7P1Ug*@H&wK+F0QF0~IZlLbTOO%8+FH@UAp8cEeYcG%`%jKIDy#A2sY6UO8 V&8Pju709s{lt8#PPs&ec1OV``=E(p6 delta 724 zcmezQkn!h3#tpuV24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>2AgXcg~`x$fax9Sx+WiBDx2&t!M!=2)k}zEmqK;dk)yG2bDrc0X0min z&XW}0{7P1Ug*@H&wK+F0QF0~IZlLbTOO%8+FH@UAp8cEeYcG%`%jKIDy#A2sY6UO8 V&8Pju709s{lt8#PPs&ec1OP~x?s)(J diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index ce75b2020e83591db5bb5154e2e1c4179681c37b..c61bb107cc0b5a5b706a444c638fda03bb21d213 100644 GIT binary patch delta 184 zcmcbld`WqOKchija!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ nlChCtvWeN|dd9iTMx^R8*PkrFE;TuW^(^^X%{T90li~&d^WQhd delta 184 zcmcbld`WqOKchieUXo#9N@|vVTC$l*iitt8X=18Tnpvu)L86&?a$;JFd74R@acW|+ nNpfOc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW}Dj?CD}>VHTj`R{A7L3736AU-JH$!opi@St>xJKlSiJLT)TxP@02Jc zM|1Y%nR3FLZ%C@KkfnR`OgRZQl67u=sN%#yvMyji6>L7N`;mz(os+X%c_+V|$-Ozp zFix0U6Ou^RIPqG}TA|%CHb)!~XC}*p%>qZ*dCAe)x%tAyiKK`5=84y`$tV*+;e6ns^ybZv1jtOO KAl+3@j0FH2T`L0s delta 1668 zcmZ4cl6mb*<_+PD24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>2AkU%CD}>VHTj`R{A7L3736AU-JH$!opi@St>xJKlSiJLT)TxP@02Jc zM|1Y%nR3FLZ%C@KkfnR`OgRZQl67u=sN%#yvMyji6>L7N`;mz(os+X%c_+V|$-Ozp zFix0U6Ou^RIPqG}TA|%CHb)!~XC}*p%>qZ*dCAe)x%tAyiKK`5=84y`$tV*+;e6ns^ybZv1jtOO KAl+3@j0FHrzdTO> diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index f45e7333c355b4ce0f4f321f23741e2e8b2608a1..40a52abd75b3f5f6723f1469a427c1c4e9e49d47 100644 GIT binary patch delta 2505 zcmX@Pm*wPMmJNZ726@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW}6!s)k)Viy+DSsYH|?s9+K??>1>&Nh^3HZos$*x7j0%`JHkSa&SjhD zb6c>IqqBeWG{Hn(@^o&KXCXaof&T2D{7XrAa*yJAvaAJajwVOrqRr|m*T@Rp<(sc) zHjw4h<(sv2jxv$#+RY03#-!^4hV1gqT1GF))cMME1(|-#w0KOWoys=Lm`M(u$p>O) zPre&2ym`696f)uyqFZ9KoLe>-{)Oqz@pwRnpJBT7ec~vvyTI=@1$OHN=}};}eaL0< z?B0Agd^72>wfR8IBTkZ2$n*j(#;Kdr(=)k9*1DOfGKjq=6y})ImpsES3qABAmcyMV{1FGVHC*(06G99M*si- delta 2505 zcmX@Pm*wPMmJNZ724#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>2Adlh)k)Viy+DSsYH|?s9+K??>1>&Nh^3HZos$*x7j0%`JHkSa&SjhD zb6c>IqqBeWG{Hn(@^o&KXCXaof&T2D{7XrAa*yJAvaAJajwVOrqRr|m*T@Rp<(sc) zHjw4h<(sv2jxv$#+RY03#-!^4hV1gqT1GF))cMME1(|-#w0KOWoys=Lm`M(u$p>O) zPre&2ym`696f)uyqFZ9KoLe>-{)Oqz@pwRnpJBT7ec~vvyTI=@1$OHN=}};}eaL0< z?B0Agd^72>wfR8IBTkZ2$n*j(#;Kdr(=)k9*1DOfGKjq=6y})ImpsES3qABAmcyMV{1FGVHC*(0LN%QF8}}l diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index d73f0234ec9b8288d0868b6688c923a47da4c3b4..6b23e3bd6c100c3cf517863d3846bfc8a954f76f 100644 GIT binary patch delta 2500 zcmcb(n&skZmJNZ726@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW}6!s)k)ViIZ>u`vM=*NlC1-2oc>*yk$>_bmO|2XFH~Q)nUn1Z3pqL$ zZ(hKy#!9-*M473Zy9FO`kfU?PWMk=nBx~H9DD#z*WL?0ZT|8M+-GgL}n-{9rkP$8m z)faF6pxa7D;sNTM{6Uv>v#-GkCX!t{8K(QKaSsJ{2b#Sh&+g3vR%^+#ck=|B*W}p= z4y|B^Wz3|9R-(*=$p+~>lmABxZ@%HuMMlm+m>{v)%`1}(zayJ4+2$0P{$V-O`rNW!n zl!@?@rF(Nj+fy>re?yz#X0z@%ZnEs1yl5gsO+&pr*4=NlIzO!$Z w{h3BqB|TyK0~SV(?cPj`$z)W6K-;GaurqRPui#+3MS5g`8bsTH4We6&0C~(OCIA2c delta 2500 zcmcb(n&skZmJNZ724#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>2Adlh)k)ViIZ>u`vM=*NlC1-2oc>*yk$>_bmO|2XFH~Q)nUn1Z3pqL$ zZ(hKy#!9-*M473Zy9FO`kfU?PWMk=nBx~H9DD#z*WL?0ZT|8M+-GgL}n-{9rkP$8m z)faF6pxa7D;sNTM{6Uv>v#-GkCX!t{8K(QKaSsJ{2b#Sh&+g3vR%^+#ck=|B*W}p= z4y|B^Wz3|9R-(*=$p+~>lmABxZ@%HuMMlm+m>{v)%`1}(zayJ4+2$0P{$V-O`rNW!n zl!@?@rF(Nj+fy>re?yz#X0z@%ZnEs1yl5gsO+&pr*4=NlIzO!$Z w{h3BqB|TyK0~SV(?cPj`$z)W6K-;GaurqRPui#+3MS5g`8bsTH4We6&00QShY5)KL diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 2e4de2aa1ff63ba75e10e725f30255b29bba40bc..c34ed25593833712bf5044e02ab0195649a3252c 100644 GIT binary patch delta 61 zcmca6cTH|XB%?uIa!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ QlChCtvWeN|PR6sm0EO@qyZ`_I delta 61 zcmca6cTH|XB%?uDUXo#9N@|vVTC$l*iitt8X=18Tnpvu)L86&?a$;JFd74R@acW|+ QNpf5GPB+dcW7Zx}h6=T3f`#kZN?e=X_33=FV^ zn|nhV$@22T&G*ArGm+!sg`1%nB-75dN$1J5(>LunGwC4|IH7y; zfgbM3b_K$l-)41_5wB1aHro|+kl|;9{Sup(6rCf(@5m+ul%-JUhDj9%D0G8CjUI(= zu&LWYp&KqW){q^O0-Gh{nWGkT!AO7u3){MpM06zXI?f?J) delta 2480 zcmey`!uqv^bwebhL0MjsVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL zVzNnca+;~J!RAgzW72g^zQ|QOIg|My$<~22UT0|_N8{YhDr~hZB5GPB+dcW7Zx}h6=T3f`#kZN?e=X_33=FV^ zn|nhV$@22T&G*ArGm+!sg`1%nB-75dN$1J5(>LunGwC4|IH7y; zfgbM3b_K$l-)41_5wB1aHro|+kl|;9{Sup(6rCf(@5m+ul%-JUhDj9%D0G8CjUI(= zu&LWYp&KqW){q^O0-Gh{nWGkT!AO7u3){MpM00dV>G5`Po diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index c6206c10ae635ec58c0cef4d069e9f7230557b02..2cafef73d648803d30d2ccb60ba0965dc0d2c1bc 100644 GIT binary patch delta 2753 zcmZoz!`iThb%Q6PL0)o7MN)ZTrM_WuN~&p!MQW0Xv2lt~qN#<6xv62Qaf+FVSyHlL zYI2gXkzull+2%?{Y0`B~HuTG#+|R-~*^GG)$yP!&H;|)o(&me-aV+HMoVNKZmk=vC zI_o!Y6WGg3md?pa@=wUpxOuCBgEUz>CvQ~{o-7?^%`ZKA$h6bO`zYylZZ`C@CtVjXT&Hg~58O|t&b=Ya zn8^s8xOtlmBQKC1mzxdaUXT-}af>&4SUsOHkASdNDOjdZoHd()!ZF6@ECl`4p-1imS z9NMqMPoC~GOQbeC&Tl2t^?K`gHaD$MVJFXSknW@n&NAfbPDm2koPIWmtQ_Ak8Kk@W zVgxzWU0lOtgIm0t7hKmTE46@iPhN1HW%GnPY~)m$K>HP52yPC4WlDOAna;?@*u2^P zt1{`q2G%;+{;S|-wV$hbNRG4ZK%3{1t_@^s-}V?`#&fD9TM5jX4b$x`7}>Tzuw>LF pGl?s_VBLPmiP4n2lrsIl8zblT4IYd~NslXNE0BM?VhH1XMgZ>nY&!q| delta 2753 zcmZoz!`iThb%Q6PL0MjsVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL zVzNnca+;~J!RAUvY0`B~HuTG#+|R-~*^GG)$yP!&H;|)o(&me-aV+HMoVNKZmk=vC zI_o!Y6WGg3md?pa@=wUpxOuCBgEUz>CvQ~{o-7?^%`ZKA$h6bO`zYylZZ`C@CtVjXT&Hg~58O|t&b=Ya zn8^s8xOtlmBQKC1mzxdaUXT-}af>&4SUsOHkASdNDOjdZoHd()!ZF6@ECl`4p-1imS z9NMqMPoC~GOQbeC&Tl2t^?K`gHaD$MVJFXSknW@n&NAfbPDm2koPIWmtQ_Ak8Kk@W zVgxzWU0lOtgIm0t7hKmTE46@iPhN1HW%GnPY~)m$K>HP52yPC4WlDOAna;?@*u2^P zt1{`q2G%;+{;S|-wV$hbNRG4ZK%3{1t_@^s-}V?`#&fD9TM5jX4b$x`7}>Tzuw>LF pGl?s_VBLPmiP4n2lrsIl8zblT4IYd~NslXNE0BM?VhH1XMgRteiL(Fz diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index d9dfacc5b2ee0b443806a66ad4fce583f6adb2d3..89fb7cb55a97fa7bd254bf506704afc75d33d966 100644 GIT binary patch delta 2692 zcmbW3%`0qS9LIZ@BP88i<`woEGScCX>rFwQeMtX{(&qv(z5x3h$YW$)! zDPyOo*B_wn^kZgS z3S2TNC=g=Ye-nzNF)p7f119kD;dIOkLHhEg5;S24Pg6}uX5heD@RP%3nE3h~EXCIu zc>18?tpY=jgTJLE7eh`!Pe&SR!)E9IT1Y-^eW;v&w~#8B>0B$sB)DORR3%Ce1T*9Y zw-F1cDvK~SpdgA)lK%#`(lCh^p=o#$>6{xmVRwS6c-SeLtZ_Mfj3lk&8sY@i$XaTi zyT5~&c}6sNn)$`vTTml?sI(ef&B^ROsv1cP7XGmJ7Rb^C(zm^`&+bblb*(F?X-q-? zRy-4NBatvI4`qR{SCoaL1BZF=5PQkN(T!6)Y@SRbKK`naJV__cx_O*CcxR@k_a?}T zzajm`3vhbRn{oc~PzJRocvyXGV()!4L87qvTFQP)`w7y(p4jk>>bE(hB%8U|6uM_2 o@gK~naT8(P<0199)z+)qNHcD>`nPs+&OVmUpE*I_=pvWo12MsJ?*IS* delta 2692 zcmeydhxNxE)(zf_24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>2AiuH=sJVGU_(CyqTyU3kO%ofYPTtASyIG)M zH5mzRV#BP>t)&fQcp9YheED)Fa$G!XvqNgFYXWl7IVTR$?|knUojeJ$G`@-fQrknCBo){WAP_f$#N q3d|GD+nt;kt;kE-+x5K}9m$K^?aG0Smq?EmXk(6l`{EeJtBe2`zmLNJ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 63bd3cdde20a7706fd855234fa3c1e3f4559b5a8..14cf1afb27f618ab283e444bed3b95c965bac0a1 100644 GIT binary patch delta 2757 zcmex+p5^a(mJPm)26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW}9mn6-n1MIgqt*vOV)blC1-2oX)St$Uk`lOCia+HwUt6u#&6`Xy=T{ z3GOVLUAbjQ*S&e7Ko1w`c1{%N+I(G_lZ>DR>YO}Fb}w000yXkYmY4S+U2`Do?9E0B zzgWo82?|}-%|BHe$nY&BZdf_;lg(vGP@NNF@*h@~DgPS6;In}+KoG?H#VXG%u z@sDIeyl*mvZkX+Vn4GwPxM8z=up5Q;+lB5X-+o|hN^HIq(Mo@;xY-n?ycEIawSugtFE zCQtW;wSt>PSFn;^dxAo1^M$plyyV#1Gr4{z_vSsj-N}gKiPu{vpE|-bdBG{x%_onE zkx^1XP1wBP)IlDSUB7wa^~I#?nmqCPgw0=`{8S~`K43VvPvc@_-M*5W(VBxC?cLkw gi!eHq7sJzaWf?iPFOXt9M@CEmTZG$zEy8z<04E!8%m4rY delta 2757 zcmex+p5^a(mJPm)24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>2AgXc6-n1MIgqt*vOV)blC1-2oX)St$Uk`lOCia+HwUt6u#&6`Xy=T{ z3GOVLUAbjQ*S&e7Ko1w`c1{%N+I(G_lZ>DR>YO}Fb}w000yXkYmY4S+U2`Do?9E0B zzgWo82?|}-%|BHe$nY&BZdf_;lg(vGP@NNF@*h@~DgPS6;In}+KoG?H#VXG%u z@sDIeyl*mvZkX+Vn4GwPxM8z=up5Q;+lB5X-+o|hN^HIq(Mo@;xY-n?ycEIawSugtFE zCQtW;wSt>PSFn;^dxAo1^M$plyyV#1Gr4{z_vSsj-N}gKiPu{vpE|-bdBG{x%_onE zkx^1XP1wBP)IlDSUB7wa^~I#?nmqCPgw0=`{8S~`K43VvPvc@_-M*5W(VBxC?cLkw gi!eHq7sJzaWf?iPFOXt9M@CEmTZG$zEy8z<0J*)5pa1{> diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 5c4a415d4e21f9e7373af1af2186469d2f54458a..229554a4b08256158b079b18319035e3e5f8b4e5 100644 GIT binary patch delta 1117 zcmX^Ah4K6s#tq(#26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW}B-S@3WDtYjU7(@Z`H3i^$W+#Pyv#jdwW&Ciif!CRel2nEU0eCM3(N&=QLR)$k<}90sx!wVYvVR delta 1117 zcmX^Ah4K6s#tq(#24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>2AiuH@3WDtYjU7(@Z`H3i^$W+#Pyv#jdwW&Ciif!CRel2nEU0eCM3(N&=QLR)$k<}90ssTFZRG#} diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 6e49dca5c941471f1c169fcb815cee34650d9c58..0fd01a262227374fc20ef6353be4e0cc7309f56e 100644 GIT binary patch delta 61 zcmdlhwO49G3zI=!a!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ QlChCtvWeN|ElizU0D>bElK=n! delta 61 zcmdlhwO49G3zI=vUXo#9N@|vVTC$l*iitt8X=18Tnpvu)L86&?a$;JFd74R@acW|+ QNpfOc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW|M0fkC3csb0O0^7Ls*ME@ZOUe4PC#6InW^@14lVHTfS`A?dn5DyD2^ z=9$1sj?T=@IzlRBxcH-D=H{0o1!U^{B;H0wRD$djl&UAwPEFZeWZGFH?@GFzn?EWB zkRBtO3)TM#ksgnQ>S3F|S_N2g|HIjAw*N);1le&3$`FAS0s#$$CNM!**aU?`H%6A+m%} delta 1231 zcmX@JjP1-awhg|F24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>29s+UkC3csb0O0^7Ls*ME@ZOUe4PC#6InW^@14lVHTfS`A?dn5DyD2^ z=9$1sj?T=@IzlRBxcH-D=H{0o1!U^{B;H0wRD$djl&UAwPEFZeWZGFH?@GFzn?EWB zkRBtO3)TM#ksgnQ>S3F|S_N2g|HIjAw*N);1le&3$`FAS0s#$$CNM!**aU?`H%6hL(}U diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 279cce634bf5c08dd02c562a46606f1880facd51..032dd9d7b8b9fff799b835253eb6837d5c8d8167 100644 GIT binary patch delta 11929 zcmbuFYfMx}6vs37-c?z4S(ZnkwpImgv1*ssA{s#qf}&`Guu$-U?gC;3>VsJEfvvGA zRY7sp!5XVl6>DM?w)Oak))XJLRuUSmqVz#DD!z)r8c8*FcDJ_a$NBdIAAjd}&Y3fF zhk+_*aFsLoPzH-Ea}+GGf3Tp!66Gi;v=+n{+GAs43ZiFQ<6}oyqY7gR;$q|Mj;KP1 zJtjKJ5gX_Hh&_^rI*b{vZY2TG36d{M(wSVRw9_gi_TbJSp9KhA;CfYGC+~H27?b5G zr#Wn@^Mr42XJv4p>y+7wM{rdJpU~v%6@J%=zJq#8lP+^uqCuJx_2#+S-Wdvvg`2F2 zG?^i%vnJAyf1kw0jNEQ1FP-oHk=_Qa$BLb&%tlvOaypPi>#EJy(%0 z+)X~q9S%CrPAdbQturTs&f~LEK<9SHmmqng$Oe*^=e_{zTu_n+I*Z>=1)Y-?0Cn<= z;jGM+Se^w+EsIBhg{l?Ex5_>8kCu)HotIbSf^}Y4nFcx=SM`9-@gFCE&Vf}ip!3nE zvq9(Y>&Al4i#5rh^FZwr(3!Mp4(J@mO(5B|btOm|w$BCY4A@ZtIwR_XLGs#e)Y;X5 zI_vkNdu927Zm_q8Lu0`X-EBh8q2IpZpfl)5wLIx+Jr)bxS>2~}{Ye|x*G;EBkvn`6K_OK&xR&c;sES$*#t(AoKLJXq(&t_z^k`WRi$z$brz&OJQ=Aer@S z9Z0TtF%lywQ(;{YT1Fi@X2n*NT)o*^$XZI*^{fW8_A;{7p!F?(whct{16eZgcq2Y( zG$xegfYzAT*l`eD`v%)9-(i|PfHi`~gW>F5d87NQPrC=RS)g@S1gitBKfTQ+$y-VM zzFiL*H&|GzywTI5MbRu9M2oC!6NvJ72Htb2dK3dM4YVbJEeGzb<}e$#WV1fBV=T-3 zKm5uRwhw67OFtKUDE%;j73<_*1pgbPZ3-KWS7M}wsZ7Oq5}jmyu>5x>Ge2sc$=;NI zwB`dfHG{ub#5$$b|DZ;m)xrX(dk!1c3yVTK%h)*izIihctcl7OvM+owIbXM$>3Mbw z^QWdtmMcF)o-{~AStS1o?qxsR!j{T!0B`w%HB!}9c1C`9yz-WMwh-;TU=4I}FMDJH zd%xkR$UdD|v-}C~&0YjJ4pz=hXILN4!aFA?#!=s9R*q&NBAo!Upvf)B>FZs5!TM0< zk8GMB*#7}HnJv?p)rvX?((-27pbQ zXHZNuQm-_k<01ll3>M92yrSr7S)c;EI(sV@0j|ogn3p}=Ur9&L3c;FaW4K}n!rD&# z&X-l24$+gHR(AB3$3A5f$C{Cj*>tyMzMEJUQE=t$;qWhuH6wr$E`@Z_X*`<2n? z9u{m6&1h71hGVU#%F9X%c=&L^8mR4xvK;$n=TQ4?r3t$w<#53oXy8NT0e1ElaB){i zr8`XZk)JgZcil!K)bSkN6{zaT5uoS!Qq)RtmvOpJ)@YDFTeAVn-^`6seKP(Gx6lyxBHUpjCbzfaV{W{ew`N1c_CcQ4b*ktz6RslmM zutJLP(<*_Zp*BP-CULO|2dWh8C2V~&>CRB?s=U%YTbW$2X3C1xz5|B4)}~FR&r`G# zpwDiW3pS8;Ow_*B%df8pFcc_SV0N04tED6B>(2S$EX_a>`I-*+dU+Zq0z?gyuGf2Y zK2)RWcu}=>9^*;yi_YJJ#UX=R9%_HTE|uTaMxhyq zC?VLDDdX#Nx-F>o7ftt6e#|)w(&bXVzYcg;BEjAO@8mpmh|Z6TH&}nZFI*QwpM~q5 j1H0U_ccwTu?MY7$|NC1LFqNg_z=kt@NJ?u>B`E6j7m zI2_K{VbQLSS(iN2ZccYURz?FlLGtBE28;WYc3OqR9^4h|y9l8R+^-wA$$Q=H=45%w zWsR8XI^pNzDh~;ApR&f{5!~e=Cp7tbh2MRmS3e(V(rt}MFiBIQ-f8Y@?+paTLMN-E zEmp|ss*d*O-zTxe_?@=W;)VK;^fqWcHrI8^YIa8?rvXW{9xHbH*{1-7>*Uj{d5V1D zI{7?jFz7rxy##c&&YBE5kIx7_dY4n$UCTx34(p3_emNPr6%=#Q=9!{gkdfX$Skd`P3)!nYwi6 zk>*RFbHG`2W)sif0G)JU8(8OqmOnw~n%3>0^Vp@^pmX$_DAW_rC$19goI?bzbbe06Jrzpz9g*^bgRvuR9PVGoM$2 zx9q}YB#W0Y(>fK!`4IAV!B~u)u6S9nXLh>?*y_=PKGWiYQEnl!^s@TrX$PbTK-crjJqrDfbi7xJET^6wS z8;^?Y(}*?8pYY!7MS$aA<=k?H_4F*fYjQ#y^=f9NXci*U2`~$q+=86G-o+QJFJ=75 zru&2a55L9yXkW$3A~?g?_|^3F};Q}!$nY}x{o zVxf4W(uj_W2(T6`n$LVqG1BrN1$cG#RxScum0vM0d$^C1hMpCIwa}(W#T1OSo%)PW z?x1qP2GfpFN`Lvk(0X@TugOXvPYBim_{vnpObb($0bnj9LOla}z>AzB4gFi?NrQ_t zCXmsgw4>Ws#7paktp^XUR($_GJ}cHMp=cH&(ou9Ir*UN&x)Sys%3<*2q{@TJD0B}C zHkf8MD!U`G)>HXqr3E~ExL{3m?TWGj`(|fT+a09|yCr3F!J4S=Bjq7>_7-q)R~Sck znd&P)Yb5Tvjb^Ch*}OAIHIgGx?SZvDn?!)>P*9#VRJHKCca-I{VUU^x_MSwPh#)9~ zbm|_fmV>*D3)VtD6V(*pdOT#CI?Yw~vzf2kqUKY|3^h!C-TA8^^mvv!1DJZ9r)wqZ z6Zsb@kDCkDkMc{^P2uwG7xD$PVT-z0zHk!kN#IK(uzXjahrYC~UR^D()ob?hbq#7J zFmZyP&Zp<9R`05JpH_QgS$LyR(>b*n==`1s>W9?3L(P;Qd=hNZo6?I-R$py3Fk}KN zq$q!_95@`Oca%?8Gx^sr(q(%kU`S*dauq6 z)tZ4jtF-eNPl8{Xin07)n`ZXD?VP@<6#}i--^WNqv0)d7bZ&d3{r$RBdQTgPW+0-3 zVppd0ug@8_qS{|H!!!9Y=PcNeL%9J4;9ZFXdlS5q^RNL1e=go&1NebRLnwU~X?Owb ha?g^BP)Fn+6!muvvd0?s$v4d<{>z)he|ejI{{oF~LstL* diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index a70f7fef05fb3b0cd268aa3e0fa154fbabf66c23..c2f6473fd26d1241020c03c7df5ad8b6dbe8694c 100644 GIT binary patch delta 1721 zcmdn`gK6szrVYW2wt2}Z6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IX6E`S`N_rl#rdU0$*GekvMWvA#CX(zR8uBTV2{}RpDB@rWSyHQu-7w@ ztP5yg^5jKa1te>n6dE!~fPb=%knrXm+z(mF)W2Cr$cK?ky_0(+B{nOIY$V;&P`88h z*Naz?YyajR$vqU={aMC|T)V-3e;~JxBKs|sdMUEMP$irq`-{~bDY8FaGnpd$b9F39 z&t|~1Gg-h&WV4;29|t)Jce8-idkHc$=53xEY)pD^Z3+$IBEzG+`TN5(HHydObk!9;-kmkSHW}IZ%ysnsi^S;ubX({GuCTYg0 ziOD9($!Vs>2Il%H`N_rl#rdU0$*GekvMWvA#CX(zR8uBTV2{}RpDB@rWSyHQu-7w@ ztP5yg^5jKa1te>n6dE!~fPb=%knrXm+z(mF)W2Cr$cK?ky_0(+B{nOIY$V;&P`88h z*Naz?YyajR$vqU={aMC|T)V-3e;~JxBKs|sdMUEMP$irq`-{~bDY8FaGnpd$b9F39 z&t|~1Gg-h&WV4;29|t)Jce8-idkHc$=53xEY)pD^Z3+$IBEzG+`TN5(HHydObk!9;-kmkSHW}IZ%ysnsi^S;ub@~ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 939fba5a23978aa1be542719414a3c93963103d1..5cc30e15005825a4f9640cc263daca93563e0721 100644 GIT binary patch delta 172 zcmZqEYSY>f&S;RAoKlfgURbGbn4FSonqrZfWMXWbVw7lVVPbA-m};D2W@46f&S+4Umt@?}x0b&)6)t%5G3 zSYgzGMp3HpToh6qVO$ufLa~)j@Bu0 z^DXHzZYf$?Hf*9iZqejP`;6TLUUHA4?iHU$&U;c;%w1M|?Vz)~u!n1yE3f!`vh1J2 zob!CBD=0k&UV*qA>YBiUH=Os%XMv+OsP4SH70bCm^hUw}UHRP3_Ii`rWo@wL!`!zd zGohX}_r8_7){hD^6?EN?Nu60(`-w4mKZZy=!d#Yfg!%&m+^p8R9XsF~O=~(7T z(d%bkHC3enZ09ruG-a&NgElDrnCSRUE}^ZHN7Q4amHv~yVa04psXwc93fsM7;&_?d z%DPSxdu442jBb#IevLURbE$3{`-LWG3Ve04Ctm10iemU6>kxOVv|T0qY#eKgqN=ML z*#;&^M(RCzv5#GIm=Q1zv;E*JNZdQkoa)jU_82>b{H8!T$(Ec@33}sSgO}WGYTq#X G?feglEk1?- delta 3370 zcmbuCPiqrV6veqOnS?Zvh#{JaU`;`hQku5;Q|l%!f>etLE)=E2=_E5jYPBwsMMbNi z3n^9@^+BU3RTvkA6rb>17^p(gN;N99%b>2h5sE@Zx-m)n1#;#C{LVRd-hKDJG1oli znrF_SNPcv)ObQu^-MyK>b+T2i)xx4>x~FbJDR8X zjW=Y7q@&5+6dVp;KOMZGnd2F6pa`$rzqO9u$ zjiT)FS!zew)EwPL*_l_g3uW)Urnk+rvi3%JhIOMQH{MYh8y%LMTA+UnYDY_^7sP61wvF)WRrw2T$ADJB1`(rIk>j`I^G z@=NDB3G9`%B`~%@3i>tXoy;dYUF;W{pds+p%N_@z^C<9ainW9bx;yR}jB@hI!@Xv+NOe3b{>zQkpG!p%RSxzlK@#x5#}X H?6>znGLvB* diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 41bbe5596bc0a0809c6735deca82033d97025266..74f98e3afa6a51b3868820fa920b2849f49a4744 100644 GIT binary patch delta 15013 zcmbuGYfzNe9meOpx8)+c;G$SD2&2I<>KLwuX+|SBikDPK!nJ}HRs+TfM5`c10%{}J zCZ?|Oq*@84Q8Y#|zJ>odO;IXNQ|m;c(O4ugRBOW6im66R1nGHSDt_pv^XxaiJkRfc zJC{AX9IA;pR16Fg5XEr^ec^Thrv;i>p(2{B9KJc;p% z1%)w73k%|6V+!LFy|t`gUX(sBXGeuYH$&Bb1IR(O%dFGm6_oArF86x{5_>D%ZnMn) zMGaMlnU&5-SlWU;%A6N`5KG&vbpJv{qR#aOhiKl$z#y|O>^0vUymeu2Z+o6@wudJ{ zH5iIz$m!$9UV!TH|4t_(FF{=$bUGg7G^a(!_~@Wby6A`YXtcL6N#{RL(}PWKd^sG* zXtOb?849Av>`%^wxG#Bc&bfxH(E$ zs|LV4e^^}%GM#H@gUo>nG*4$`2FP?)%?9%v*pLn~?{CVKXPVWUKgW1Sw`9xXyw=F7 zZ}ehFvtjE3kXg4aPM&G9?KeOk=QHJbc6B!X<~fjA_1n83GwR(nAT#+rm%P%fe%~Ls zT3NG`u)i40aqb5-K&0%@TY##yQ3dlWF-OSr?75lRjINF7W4FPYw*4UujP`g7@&U}6 zfRiWofy~ghN_i#U<7Tg#)Bk)yUTU|c zOATP2wU_UM%&A}P2bmkXu7gbXwRIpf>6-;0^U3ayK_>qve1P5j5M*|IHv`PG?RGQB zeEc5DboG7;GHd$gfO%FtxQa2!Phns~>5j@Y>^P&}IoNP8;3WZU7bx8q#G*jy%3wAi zFC}qEe1x@>`bV&x@gwOEeqmrm$Sdivn@Rd zeTe~TZ&k6M0P|tTEwnB=w}~AN#NhnF4i-SJU$f=FxY(HsgA)1YY;H$?{~!yZf&HvZ ze#C795(Zz&f9Ws?&p*b7QE?M11#3^jpx1?!ojU)*I^=ij!N7$!h*Hn655UZ+>;gLj z!s(MQ*e4*DNB)EPQ$!bAk5*h5lsLhPhu&co=$N_hv2TE+#g^#dSMpd;(=Md}+Z{4_ zzrW%~?GB{@>sTfUgWnIAE*gmiIu@&!hqjMZsCrR<;(*zji2z)Hz?N0b?Oyl`sqpW6Kg{IIo!? z!U&HOC)?;e1$eu+Ga_N7jsU~xT`R)aF<<##7`1EgFoadscq|OMP^XlF<4C9XC~e>* z@-dBK*@qugkXxrc%EF)(+$(v+DKUvXtF&Nxy+v`OD_OX#9|x8_vRk=?ZFm`6Xopel z4W(TEaHg31N~C86-c!MwiYHcryy*Vnnr*ffnQEQ(1jQnkvVoKB=q{k&{DV+$DxwDE31&9ynHo z!74t#PtBuct?DHC29Pi~B0p=i=L@x0p2mf2HO;uJE&(box|L5;`c&k+u(VugBbqX_ zws84w+w6uh+Bj^=@+mt?+m7r8R?Za@v>yZ4Bs*uJbyE5yEl0k`*80lgJ5#if!AnZ{ z3~dzuWfOCf_-hvyP!I3AvZyPLHF<6M%lvAuB z-wxX;2$uq24(tfNUZn+5+Da`DIMZynFqk=6I(q{5U>u2P5G&_7@ z5>3x_=+nUTZGBRwzC!*c@`#^tMNjdCpW3A(ziza~$BsYkntt3D{_*SjB46_VYqvhn z7yhXm`ZizqjvoEIFZ?av>ByJjL-qgsj*fh*IHW&zSFiFV|L$IWrTm`zXnq49=vRHH zUsIiN(Url)wc zFmzr&-Uy)0k;dy_BtuRloX+|Z&YN+D!PQs;`p30gZUsWZ!{bW~RnHjTVh5642O$q= zPBsn$Pm&?4j4bZVGu)Iq--wkTD?Vhvg~3RABF)H?uY~PFB8)5YOL{1R$yC4C7%Trd z=h0+}Iy&fu<;ENGg(OjjYfnh`&XS?9eA*_x!Zb;lo*W51-Fq> cCOgXH?|_3z7pFL!iPCV_!j@;G)1X8O|27&Mq`o0Sgi?TtEL()5vAvSsraFv&a>b6@;tx) z?OgWkvacb0UqkqT0v5C4 zOQtMdSQKAWRFW_y#@omq$cwTw3bs@`bTd@_H-H>ayUZp%UP0L|Z@J$qkl0(}cAG2x zU(`@_m|5eTfTb5_O?BI7IWd1_qf;VXyh-;B5+XdpkY4**Pj1 zs=;6^gHE43@d8wj|93hTc>(I`fYXs6r!X7<;k+N(qmka$WS##aOAj`^@l|jj zBhA+2Lr@T<=7W@6i2IWF#>}fo-YdKl(*rpFTz|s*-mJBVL%Y1Fu6_l7IhzHUf66Qk zLFB8=bDrmc`LC;AZJwQ91VRsprf}b5V|&^58noBdi)PrV6;ctkq==JK`aWCE)8b= z@=_9q#K%}m>A^6zRi0?=xs>t~_7+H8J&Jij>fvzqD^PkXilqWiCRVOrN3(R0`uTWv z5|pM*V!OZ!^U3Uakory>%Ll3N#Qqm>-qw~7VvcdFRm<=K{= zgucQ6wYO^7&w%-`;}%*MomtQJ2V!vka0?3{*RNSQFfMlH!k|L_Ih)(j-`~rEsDC$G zDL>-20SSYzs|0IL!l2iMm7Ti(!n)*l>w&<9Hi*(su@Aw_Y2`U~ z3WU?AU$Rd@E|2^N^QZ93YzRik6(zQ?`=k``NHF~8(tL2cWV7HoIO z@&7rN)%5sdG!-Y10n#L=C1Da)T zW_@u=E;yWAXkBzIQ3(r`F808>?wO;6@>}^@F#pD(BvN;#(g4On!YW}17{-PL%23`g zPJ}UPia6OudKBR8-p+`Gl{yRzqj!}EV@sy;zc3nC;9&@>ys=mqbgoIM1jmt1?of_{ zlgLN6ie*1)uY%ky22bx(7tqQ*Dsq@r9FU(i+VQ2@D^KG>ww$J2R2Kjh7u}jilloNTys)%fXv5ob zwBw`XyKS>uMr&iRDVs<6QQBr?H?VT99;f{jxF*>-3$2r~CujxoJ+{_Y9^aa(g$!I$ zs-|fp_#17^N#d_R($DF~NEz#P~Se6vgoqO7G_AaJJHaA7cgqICL{-K>oVkU~~S+WT6APjP;_JQWX;JI9Abt+}LL;gdlm3c1x;MVIwI4L7^1$-)_ z#xeSOfNKxerg8dq;5Huev|co@zuZgI!>A`w|Bw6XW#FKB8T)))SU?{(x$@xl6kaYskKRUFhGzN^>zl7COHzEpnCeLTN`5A`cP z)UU0{IPXjNV>JW&XQe_CTjbs2Z?$~);hx1q=%IyV39?YhP{ zIt-mRk2M0QKGJv{jAYP>gwttX!g*_oVQ@9hfc|lXNTzyKqhgR^f(FaXNN(!XiNINeZQ-KFNo4cvkNR7p~TyR?{ cb)sXX{2g#0>9SOZGf^5YnpJS9+A%5MzYhI7wEzGB diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 600ac9940c728207dc46d0375bdd104d1a18a465..23fa9ea80eb0d93e29cc41a75a48acfe53f2c2ae 100644 GIT binary patch delta 1169 zcmdnl%C@tWZG$(XL0)o7MN)ZTrM_WuN~&p!MQW0Xv2lt~qN#<6xv62Qaf+FVSyHlL zYI2gXkzull+2m@*gCuL3e!-s6aPwTI2khi&oqUgLE7>{)HnZ>~Fq5U-X!3edwast% z6IsdAzInaq3(|ua6j~sgwKuCsEMOwfX0Y}^=`u>RhscSLA8gv2zbbwsGuVKR7v7wp z!Ouyi-=hp9H@`BhAWysVq)^t)x2!iykY%~^rqIiW$)d5)CGc0Wl*J`M`>Usq&2 nDNC~c?Z6c0%1yF1P(n@HzS^5n(v&Q{hQNHyzulyfv6T@3Q#Nr8 delta 1169 zcmdnl%C@tWZG$(XL0MjsVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL zVzNnca+;~J!Q^VjgCuL3e!-s6aPwTI2khi&oqUgLE7>{)HnZ>~Fq5U-X!3edwast% z6IsdAzInaq3(|ua6j~sgwKuCsEMOwfX0Y}^=`u>RhscSLA8gv2zbbwsGuVKR7v7wp z!Ouyi-=hp9H@`BhAWysVq)^t)x2!iykY%~^rqIiW$)d5)CGc0Wl*J`M`>Usq&2 nDNC~c?Z6c0%1yF1P(n@HzS^5n(v&Q{hQNHyzulyfv6T@3IedLN diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index e66470c1e0e4784a5d5fc4ddf93f2887ed19e6ca..ada2dc330706de68074e8756a82a00f8d782ee7a 100644 GIT binary patch delta 172 zcmX@6d`x+RKchija!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ ilChCtvWeN|dd6;Ml66hCW^#?97j-P{0YD>Uu^ delta 172 zcmX@6d`x+RKchieUXo#9N@|vVTC$l*iitt8X=18Tnpvu)L86&?a$;JFd74R@acW|+ iNpf#?97j-P{1%EH>Hz diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 182fb12a71ba453dda305aa81a09b1b1caddec68..8a7af1e22912b596918a819529b6a749f3505a27 100644 GIT binary patch delta 536 zcmbO?i*ep8#to^A26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW}BxnGLx=r@_e?~$?sWNCu=dkA=yf(W`W6@S=N)Qxq)Pjo9DB=Vj)=< s(5>y89e8$=rL$!7e8Frsa_lUbJYSG?^Ja+*BXV?uqK1F-cJFjX0Ed#QJpcdz delta 536 zcmbO?i*ep8#to^A24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>2AiicGLx=r@_e?~$?sWNCu=dkA=yf(W`W6@S=N)Qxq)Pjo9DB=Vj)=< s(5>y89e8$=rL$!7e8Frsa_lUbJYSG?^Ja+*BXV?uqK1F-cJFjX02KSM0RR91 diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index d36d964a2d430c4d3c6429f0af570b883de005c0..a72d6d63939968beb923a21d7a4f3c421fe0c29e 100644 GIT binary patch delta 1862 zcmZ3ujdkHR)(z2&26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW|O-azmTkHx}h>-@Mb3FVs`ShPTtGIv5DJ?bk~9{2I_7g%ih?@aU!CV z0~Ccff8w3YMv)N`o9#v2nJ6^ELE;#tMjVi?CNC6WVIi^ktL#n+T(LPoaS5d^Sf~7w z0v7-yRAO_WIxD3{2xt{hYJ`>UVP*=`#CAhn77C4+XC}Z&wh>~R106KT&l_Ts-!`ys zR(4ksC(8wKlNBTdCkHsNPnN0V+x#V$v$q)5hoMgW%LG!Xy* delta 1862 zcmZ3ujdkHR)(z2&24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>29vuPzmTkHx}h>-@Mb3FVs`ShPTtGIv5DJ?bk~9{2I_7g%ih?@aU!CV z0~Ccff8w3YMv)N`o9#v2nJ6^ELE;#tMjVi?CNC6WVIi^ktL#n+T(LPoaS5d^Sf~7w z0v7-yRAO_WIxD3{2xt{hYJ`>UVP*=`#CAhn77C4+XC}Z&wh>~R106KT&l_Ts-!`ys zR(4ksC(8wKlNBTdCkHsNPnN0V+x#V$v$q)5hoMgU{SMx_7% diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index fb4e0c57119125080bbcd49f40e6867312c72eb0..693f3d16497577f52354cff9e7ab194b5ef3409a 100644 GIT binary patch delta 1936 zcmZ4YglXLqrVZ(g26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW}BxovXQQ9@&GpEpcCUWeYwYf=j5?OZ6+I&y^FzI$~z9`kpOrA?M72Y^zSQQmOTDX({GuCTYg0 ziOD9($!Vs>2AiidvXQQ9@&GpEpcCUWeYwYf=j5?OZ6+I&y^FzI$~z9`kpOrA?M72Y^zSQQmOTDZYcV=0!m8Rw$bgGO0qCW&RKH0fND8W@!x)TE3FR3f}| z#3RyMc7tq&_QURim_FD`SwRK`6+{q*l~^z@mF?q|d^>CYfZz9hYn`>%-kgPC_(Cu| zPzOe@)79c=ZfeaoIbCk6E6?q)n9Z)7I%}RK*J^T`T{er&;WW9O4s(vlX|eHr@JBji z$gCpqVS5mEj1*>Cxfp(4b{FNlMB5ZiD4H0RZE_UJ8)Ph!aQNvC*5k)uXCl60E~kTs52Bf~JG;3J-V6>193@PT4E(G|?0X%!hRibK^a zdh7Z6{eDczB3y$3mygZlfpe%+=OgoFK2*6rl3G529I2rrmyw=tD*vK9FOkmb$B1Dp z@AU9<-WW1#Pe$~2ndWEh;vFF;FP-lZb+1=xIMt5m!FrXz=^MC;$eedlEqzp(zc4Zi zTHF$rZoF(A*?S|yLJf(Iu;nTQpiKT)t3fsS4qgxhK8!O+r=l5 z!Cgl@VpwA+6S==xvOj&5%{5AI0BtgHXJaM1iA#-o_i+yCj*I({p&7KJn0sf$SXWW@ I|0<6A2i}_)7XSbN delta 4979 zcmbuD+e=hY6vkP{nQ?Ty%*E6~i?I~T+fipmtOt#<%uEu?QpudF;{=b`(bxMOdsr}tRRDe3L*%@N-UU{%J%U}zMVCH!0-FMwa(gWZ_a!mY(5a? zw*!C5=g4k$xf`-PPMgJL;hk2yJI7;l=ks=3p40Ae<#{ZgT({k6aXLNLTwd&fKguC< zMiq$**@duUq%?h&ix%fpcTv8Jv`y2Dq6r_`qDGM-A8Ha0@+z`F@;I*U6@`-MN-mfT zYO>Qf6;uW_p)p-SX8019rovQlUh-drDDpg^1N9*U61w>es(689Cm%%>Es!0lrAW{G zZ4Z=t5_5*2oDvyD4)e80(w*CftZ~R15rP>7fq3(^s3~X={l#ixESN>pS~6G^i>g=l zHi`9nhcP9~a191rIyMvg&Y@17K<3H>RJj64DIZ6U)WD(3NY6Kwe^H*7NPG2T#4wh( zd&OB_G?}SQLiBfu7H4YZJ3>ufI^QGeUaQjRX+`v4t&0D|4O~TJ);FP3KB~-L8X5ru zakPvo$4Pm6X#~ntEU;@yVec?vBgiddv{=}yCepx#FqA*>4`S{m+1o#;Ba=6CVwL-v zGpfb9(L{127~-GK;l;QK=@iYDEGLL-Wlnld4ry28P&34%Xn0L<57 z9b5317_XITwy-2ECfKdVCs|Rd2tq@<6-@H8Dv~;q!H8IY%XLwv^b4_cmUx{soC11j zieHX1mJW^hIE!+W$-PCau>UgA3LAK%&@DF6nj(0O4`HIuN}xXy=ik)|>u5+7Oe`7QHF+QGlx}g`hB4j>^PS!(S96G-jM-KPFdg((am?#_WC&>0Mi^S8kHc%mldsXCX z2iyr-r0fcOLw*f831vMoBhS@pC6BIx7bilQh!vkdL8>hRBfZuSw^PxBVW1z!U_0Wr zmyZO?Z;%)tMaQ4Q=?(Z0(u*G0M1OvQVthLc3nJ1z4Hrs(e}-r?F3t}~59d(sxUdfynoiq_xpzFqx{9*@ HSFzkbwbV+p diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 9a78b7752788657d2c40339c3d15c276db8004c5..b50b362b67df58a8c2590cf8f1deaa62177da966 100644 GIT binary patch delta 1226 zcmey>!St(xX+u1tL0)o7MN)ZTrM_WuN~&p!MQW0Xv2lt~qN#<6xv62Qaf+FVSyHlL zYI2gXkzull+2nr4U!-edO0v$)jJ$8i z2vbJhhRt*N=QELP-(*JK`pvI}TFA1qezTlt0GW2mO2m_?Q(HQTnLK~m$Sbjvqcdak zH?=+%@^s4RB=V4>Gh(u~xx{8!%gdyvAz++>buXS^&q1Em7yS4)t9vN2k)?a{1;391 hB!St(xX+u1tL0MjsVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL zVzNnca+;~J!Q_6%U!-edO0v$)jJ$8i z2vbJhhRt*N=QELP-(*JK`pvI}TFA1qezTlt0GW2mO2m_?Q(HQTnLK~m$Sbjvqcdak zH?=+%@^s4RB=V4>Gh(u~xx{8!%gdyvAz++>buXS^&q1Em7yS4)t9vN2k)?a{1;391 hB;>!otDHlD-I{7$6xdy?d6SvE zRMNo9xB07XD48w?>He(mB}|^(4+I4^zi>7s({7;d$-C}~Zoca(sZE~!dBuX87Zn^&{Zxw&?dB6;>s2I+R1qAWv}-J3S*lV|Oujr^N$Zc5Q0%ht(!w*@D^ ea#q{Se}|Dg>p>=L-gEb{B02WwY_(=w#s~lzkur(^ delta 1783 zcmaFZ%<{0AWkWHeZCPHDVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL zVzNnca+;~Jfw_K4esZyXaeir0a_VHqyLyxFG2S&G)s)GFECrLJnV*rYadRPy79+{J zfYwz{c4I3bM`QNn1ZjoMh3tB4;>!otDHlD-I{7$6xdy?d6SvE zRMNo9xB07XD48w?>He(mB}|^(4+I4^zi>7s({7;d$-C}~Zoca(sZE~!dBuX87Zn^&{Zxw&?dB6;>s2I+R1qAWv}-J3S*lV|Oujr^N$Zc5Q0%ht(!w*@D^ ea#q{Se}|Dg>p>=L-gEb{B02WwY_(=w#s~mCO+_96 diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 214404172b96f77fb9b1f5cf7a11126caf6b1527..941d60c4ffb64de83cdbc84c82988b2a6b93ad36 100644 GIT binary patch delta 7884 zcmbW6|4)@w9LIOg_1|y#Ijr`}O{Op3nK5 zvprK@!<5(Xg`KRda+L2bbM35;w>Zk3N#!ZdvP7%3JYh>xO5&;{i_==3oS0nZus9uM z)&z?qF!bcQ-WHvu@IR2uxwK}aDqD*gJ`5OJmI@wb~0WtIAAWG+-`mD;u_ zmr65LQ*@5JN-;%OtM`{Y3o1vK7D6>vt0T)^0GZ!Co((F$d}07p&Wrm1RHj?r0F_0F zJ)rW)DyO_swXD7ke#^l$CePC*Z!+T$$h53Mr(p5AT_E!*dp=la)W$}TnUYfrGPCon zATxSX4akgp9=S|>J1D#mouQ2{<$-mk6r*)+*jxfK?WJ45-r60lAk*c18D!Q}><5{w zG67^(?AQu2cU0RzW=;+EDyde}YU4p>kgFD~GrE2o$c$|`0WxdeYzCR`ef=PF@|`S@ zd3FD*0JF8FO1*KQ!%zC{rQKxHkd`)h*1sr z*8{cA7ecSvW*?ZL5Nz~OV&Z4bqz|KWq3?=;(FVo%q?ujJCuY9fMl4tcUk#cO|7$(z z(L-TQ<&i9CCD_{Y$O3*jpWFyRz?sTh&lq`pDY*rWpeAQR9>}|$L=O#OCX3lamhjbe z}jm1n8Gpm>&vFzeKG6qH9!Xp@5V-Esp1lyWHjeJl?hvd(Lcof;V zFv-G3ndO^lIKL1=7h)ff3;m4zEyS*`rFQn5g$DBB6*NdbyJo&K^aX{kI`D_PTDDWEYx%f#v};*BrTT6rxO+LPdxS-Cfg z)pt-cuiHhtwDCNK*W_o9()-XO-^M<3Qv*-#q~jQVPXBQajgy}}ZNsG>rz7Bk7t+Q2 z=t-K6p~X|rkHvf|7IaBJ&BZ3j=fQ=?QY-=sy+p&=P(BIc-XXdV?1RsQ|N0X(gCWlU z{C|k|ymT)ZLNgH|{JC-+87AKM2mMX{s$xP`z$3=#cHqe>)_o?+ouQG;FiR(;Pp@xp xYx;<<4(hV8>}!>e&X{;{fX*QQ@qD$<>Hjw9E=5S^7w6CSQ#h1cV|5n-{sVx0n8^SD delta 7884 zcmbW6|4)@w9LIOgOF%xbQM z!RSE_GwsG0WaKP*%%jBA*j=W`))!{GTZX!dR?3*oL{RA5hvo0*{Rh0?ulMKke9q^b z?V0kLro5&v>?EPCYO8H$xwA6f{M` zI9#g|6V!TgSzcs`&d>(vW&kIYYJ=Zd2q}bSwcq#(BCgat{&owZtkOP>%!Mkg(%Kf~ zQfa1UiO!K%sg~$!?cS27LFMSuLa4@SZDiSVAoIINvq9yTj}3szd2t_r%5>Z7pt2~b z2UH$Tamp(-+nQV8w;W7k@;rU=CNmC!Oxs#?3Kp;51u~zo=Yw@dZE6IWt8;2WW_Dg8 z$c)}x12W^DMJ^NH4hk$gFq12r_Fb_Jd4T zxe{bn>~Mk19n}iR%&Ea%CDmG5Z9K>fs;>p>jNZKsWX3ie2bnc*G=og{zJ8E7`F0k_ zyt4mgfZ5torCoow!%zC{rQc->n>WZawbqsakawf)Ai(QuzYX?u{h_<^JiRkl4!;C4 zz3x-;OzoRaFUU*n?v>~1HNN#pCCF^*Jqj{^JeCSFdq4jNRHkV=L1oTKWL_<&hCyEA z*B=HVC%H&-dzJ-2O4aQ#YI&EM!VtBho{h3-#aC0IeK4oC{=U_WvW==T8_XgVV%7rw z^+2ujg)nN$?0qW~f{i{*Ec}d>^kH-^^j$G9+N7Evx3UZQ#LAZ|#D-kzc!E_ zBNXOj9?61Mg3_Kx7Vt~?nMraT-Sj%eT^Sem;aQ#6BPw`Wg9Kh+SJp?d%yF4dlZsXpnq%-GB>&_Ic8u%%?3-@7y-? zx(xcHe9O7eyB~tEc6FlGk5A{)QhBUivaY{eKx2TGiPc-g8=t4O@>(vmC%`R}us4eB z?x0p)w~Kbkm+c#HRe133*XY$C>8?MJTi&5z!H}Gpn(2JDr-O#^(=D_UD?vBmzqHXv z0~A6XZnARG#&Z~6m!CO8??I1zg?;9xCZ60$$1(hz{^K4RCqH}ohD$$2N5BOyq>K5H z6Eqz|i>IC+i}_Y8=#qY#i%pQvgA0$PSOgY&k%qIOd=kdJLv$b52cHT5^(SftL!A5h z{}Ata>0U5|ZX!bXbM+cBOuX+8`kVY!#e}SYM~u_$z>`(1`%IQQLnE1KmQG5aUfcna+@-F?zBS%X)G& zo+e#Wqh!(MKDLLf1h-WDq(UFYUT$(fAg__2KR zLFpdS?VH>vS-$y;TpF1=8I^*_)cH$Ao~%?5zj=k0I3GD76u;TeaxPhRMowPfA-K8K zei8>c_C{`A;Gs>Hy}^^`i}P)c@hf2_$6ko;#2^bY?Vg(=yjefuH8)vyZ=RbXO_ser hljrA&Z1%{yO_ra1HqXz?5GLKlimXwaCpNV*0sx+$(N_Qf delta 1480 zcmbQ%!8EOdX+tohZCPHDVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL zVzNnca+;~Jfw_K4esZyXaeir0a_VHpAi2rw821{GYRY6q)_}>cna+@-F?zBS%X)G& zo+e#Wqh!(MKDLLf1h-WDq(UFYUT$(fAg__2KR zLFpdS?VH>vS-$y;TpF1=8I^*_)cH$Ao~%?5zj=k0I3GD76u;TeaxPhRMowPfA-K8K zei8>c_C{`A;Gs>Hy}^^`i}P)c@hf2_$6ko;#2^bY?Vg(=yjefuH8)vyZ=RbXO_ser hljrA&Z1%{yO_ra1HqXz?5GLKlimXwaCpNV*0sxRv;adOz diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 2ef7cd92bb2578a4b110bfd2afe48679a5e6ce87..7d70ed78a33fd4710bc220659029c170e952ccbc 100644 GIT binary patch delta 61 zcmaDX^jK(vAEQBDa!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ QlChCtvWeN|I>x8$0E8A3x&QzG delta 61 zcmaDX^jK(vAEQB8UXo#9N@|vVTC$l*iitt8X=18Tnpvu)L86&?a$;JFd74R@acW|+ QNpfx8$0EXcdUH||9 diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 27444fc8a0d130dafdc486b891c00959c5b8bbc6..3db5d22655f2a63e7a529b181393330a5105e013 100644 GIT binary patch delta 172 zcmX@2enfqPH={vba!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ flChCtvWeN|YR1KEB!_)0RdnmqH0L6C^SB+?N(oND-!uNC}J*s<%xeD;q7{h(Ii&8kBLv zJE?5K=m$xXZgeXm?2FL+VMhL7zchu)ekfKE8vPJ;A20p=p7#fQ&gYzW?m34yH)NU{ zGL6)O{e;gSR=a|cD#hmyxcr`g>U22#)rVak=O&jDaQNL$x9U>@KGjjJ_?&JMfk|nI zHul0c_AKk}QWUy_P3LU2p-?aB-w=`}33ya?yP{t{T|u_7348YvjI)i+I=^H|lMFm3 zbLFYQ+Tmr=6dA1D%icCv5%pu?6en0M#U%XsSMIC&JY@Rjs_`mRUx zweI~B`D~T+jT~u89MJ|c^C6El&E7|R-v#>ew_S))TA&a7e2O?#|7m(_B?M4)(|8e- zb8)a9BDyT>8ehqw5XulMOz>RrBZ&RAsQ$GUFjr%de_jmxjQB@OU^A|C{nN#5a0ln- zqh*jZqPCaAX`EV5-CF^e!?pP7n=2t`#NS~D1vhb8{#IJ$gdgakvGRK^xP&+ZqWr!Z zD5S|6$e`>R&3A5r6i&{2x5GFNr2<{eKi9)w#1Rv9^Fs&WI&Q;Kffn=V5y;5jFm1on z@1?Mcz6nD%Ii70atszJwpN?anpOBM@xDjmrnJ-C+q{zL-2<4FtuDd1{c4_ H>$Cp>D^T;Y delta 3988 zcmbuC|4UO*6u>!_(@dk4OQ8lb6C^R;a+}I1qzIcyqy$C@wQtYR%0_D`5r{=pgIe71 zPAXH7evl;TMz(GOAg@zUS#d4Is?e9n32o^yEf!>0LR z)2IiO$Z?-N6bQCesD76t;86TdZ*Yt13f3rISC!wZ2C7ttS{d~E9e%&+tW-!BOi4qu zF$UY&vy8jTQRq%KleNu;LK{fmrm!?gpxVc7m-We~E67$hsdO*HI9u7A<4cA#$)Nf~ zwmdahJF-HWB7?R2*xPywqCSmm-!r}eX7=i66wyx+f=z}x z5QC!2ZEW^rSiYxZkzR<@8F0^ZdJMP|XNnEDub!m_+^@TD8gQG=sRrDuE(8p?^Dp`g zxC^5Vh}qI#OAbk2`HG#A9I`HMVO_EQO!)}*R3piY=hB25O2|a-OH>4w7avEswE=DF zA3~Cmp@n?;Y|Y7LGVsX6em_1fzj(!H>-3)&A9JML%$&T2T4OD2^HdvR;oDOO=(`@# z*ShylM>Ze&SQ;)vFh*$=s_Y3@Ga`!3R#zwJhh(jtBE=TpR~`cKnat09Q0n+_C0 zDHjLpA)?E|uJPp@3ZMkB!UWF+KZ@92OX^?i0dqB$_~%yGZ^S=V1U0zQ^-niogF84s zA1i?gBWk4-PT|yg>J4RpIb2JhzPTJiM*JNL*l`o5fA+v%#1Rv9^TUVWI&Q;Kfm(U=2&Cn2n6}^P z_hMK>-*iGIIhJhUY8X<;r=tbpB2X9NxaqymrA0lEO{aU{6ZQeOc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW|O-aZ<4NQqK@O{t4z#fSO?TO{r3VU{>j}!T$__v9?6kqImCz~$|dCJ zF5P@rrG=ejotr1>L^6@AYw|>$s?AgMKai0|$ZOn+W;oKB{l;;whdv~#ZeA~NlK>1EA9P8v$uye-&9j69t!Sy9Kx(z(6Bka3M5 zSz4z9weoG>vW)2>Fqpw8RNal)-N`Vor!yTwIQSMc2Q0y z4e}iVHfZ}5A*Sz^WI1NChl|MeP+z7Oq?cE~lE)3K{dg$TMm2J5cbcwS%_O&-qn62u WjRO6*nwd7pkfYymJFuqM!w3Knt1?{x delta 1757 zcmdmflxzD@t_{(Q24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>29vuPZ<4NQqK@O{t4z#fSO?TO{r3VU{>j}!T$__v9?6kqImCz~$|dCJ zF5P@rrG=ejotr1>L^6@AYw|>$s?AgMKai0|$ZOn+W;oKB{l;;whdv~#ZeA~NlK>1EA9P8v$uye-&9j69t!Sy9Kx(z(6Bka3M5 zSz4z9weoG>vW)2>Fqpw8RNal)-N`Vor!yTwIQSMc2Q0y z4e}iVHfZ}5A*Sz^WI1NChl|MeP+z7Oq?cE~lE)3K{dg$TMm2J5cbcwS%_O&-qn62u WjRO6*nwd7pkfYymJFuqM!w3LjKSc2W diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index a6a55a50d419ca5f675ea9862e6e9b51ca679720..5de82a7a3c31b990dd9e028434bd5c5d4eee1721 100644 GIT binary patch delta 1241 zcmdlvg=OaymJPm)26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW}9mng-F*m`J!C<^z|H!tedr&UonwvDNH;6LYx?FrLO;j~sTrGV#CDNo=Zww&Bwmwg=SGX({GuCTYg0 ziOD9($!Vs>2AgXcg-F*m`J!C<^z|H!tedr&UonwvDNH;6LYx?FrLO;j~sTrGV#CDNo=Zww&Bwmwg=SGYnK$+CTyN?HLrsl-6h)>#WAKc0sz+J{>=aY delta 808 zcmeA?z}k6$b%QsfL0MjsVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL zVzNnca+;~J!RBg4e$sVKp1_{9S%vup6Up`gb(T)v$hMvwjZewZlsdh@hEZtpUlHNW z`kdOV6d57DS%QByS)m1Yh4|(|!KY*e8^nmse?<(~$oItNE7G?lDbOBjCeTcl_Q?)H hijyZ?W!YnK$+CTyN?HLrsl-6h)>#WAKc0swpB2QUBt diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index b2b229ee900e5ae5b1ea957e5581efbc9935d392..70d42e608f245b3557d6cd78f1e133654c34d52c 100644 GIT binary patch delta 172 zcmbQJK2d!`A)`TFa!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ jlChCtvWeN|g^XUTBOc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW}C|yImytqfys@TWVr$Osz&!HJuFMP*sYacR|N5vix7yL7UEVAbZuG6lh8**UpDgnRRef*kVf W1?zrUWbH`0-H=qowfV@FbVdLh%X({GuCTYg0 ziOD9($!Vs>2Aj(nImytqfys@TWVr$Osz&!HJuFMP*sYacR|N5vix7yL7UEVAbZuG6lh8**UpDgnRRef*kVf W1?zrUWbH`0-H=qowfV@FbVdO3Wb_aK diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 01eb76db7f372bdce71016ccf242b5876d0aeb74..1416890959bffa40e656ee7f93b56cf50c45cb17 100644 GIT binary patch delta 531 zcmdlmlW7AGc{3X1C8ty*l^0g(8z!funxrWPBm71K%e3pEz=9_o2%;N$8|1CIE delta 184 zcmcaEcU^8nJflHbUXo#9N@|vVTC$l*iitt8X=18Tnpvu)L86&?a$;JFd74R@acW|+ nNpfrWPBm71K%e3pEz=9_o2%;N$8i3K`8 diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index b468a594bc63e51bc59f4c2cd7a2f8fa2f2342ed..8bed33cfb3a6c02b1aa49bb5ff84b7e60b909875 100644 GIT binary patch delta 1813 zcmbO|mvi=9&JFI226@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW|PYq-;u0ox}Y4B|K=x5ouu0b);j&K4-^07-z*!*vl*h@lC6*|?E#bd zRkSyUvVUYJTf6?|uly`b6lh-|R8PKkgT>cHDbT&SUE%;G+P_QZlNarvfH&AICbxnT z+w&9^$<)4?U*!y$TEPzQR!^ox`#i0+lxY90yN;F21lP|ivDwiihlc{~u8v3C$sfEZA?hOvP3GIu+$vT)!g+1~AqnoNI{ PNY)0fU$z75mwAi;C3hps delta 1813 zcmbO|mvi=9&JFI224#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>29wJf-;u0ox}Y4B|K=x5ouu0b);j&K4-^07-z*!*vl*h@lC6*|?E#bd zRkSyUvVUYJTf6?|uly`b6lh-|R8PKkgT>cHDbT&SUE%;G+P_QZlNarvfH&AICbxnT z+w&9^$<)4?U*!y$TEPzQR!^ox`#i0+lxY90yN;F21lP|ivDwiihlc{~u8v3C$sfEZA?hOvP3GIu+$vT)!g+1~AqnoNI{ PNY)0fU$z75mwAi;ey%oO diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 13c8fed0328cbc042d86fec675e3b5404b781e85..028ceba662c28e0222105d5c4d17421eeae43916 100644 GIT binary patch delta 539 zcmX^3kMZC?#tpuV26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW|M0fw~($Wk?99HnxZy8X67NojfqUDlUrEVlVfH2U3)9a|^ delta 539 zcmX^3kMZC?#tpuV24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>29s+Uw~($Wk?99HnxZy8X67NojfqUDlUrEVlVfH2U3jfk$P diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 224c515dc8963a74e111755965f749ff25b83bd1..7b7870b9d677357d7e2ab96d83413b3f3855500a 100644 GIT binary patch delta 1349 zcmcaNm+jtMwhg|F26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW|M0fkC3csb0O0t*a<1OOdBvc~`b delta 1349 zcmcaNm+jtMwhg|F24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>29s+UkC3csb0O0t*a<1OUgk!Giz* diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index a0715eea5ad67b76abaf265a9a4beedb334e9f41..c8d0d1ffc21c224890c4328aead0fc87e28e0149 100644 GIT binary patch delta 1999 zcmaDkll|pP_6_cg26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW|PYqcayGZqP_0sex_0uvUE=FXJXx)#@;DFw(jXRry02>M@y8DV?yNS z2+8+s||4$L8hHL8i8cm$*sMHOr5TJC1jE9>EsF4 z2qs6T!=#-en|Ca`AxM_yO*?a*US1bPGL3k?pD6jAtSZFZeQKOxK@t5aL`%Hs1FH;pUW99lIM`^KttBal4HLvs9xL- Jtl8Ew0st15bqfFh delta 1999 zcmaDkll|pP_6_cg24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>29wJfcayGZqP_0sex_0uvUE=FXJXx)#@;DFw(jXRry02>M@y8DV?yNS z2+8+s||4$L8hHL8i8cm$*sMHOr5TJC1jE9>EsF4 z2qs6T!=#-en|Ca`AxM_yO*?a*US1bPGL3k?pD6jAtSZFZeQKOxK@t5aL`%Hs1FH;pUW99lIM`^KttBal4HLvs9xL- Jtl8Ew0sv|piZ1{F diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 95b778a52ff3b2d699307171619964d9d67774cd..c4849c59494c126fe5c1126abd48a93f7557fc61 100644 GIT binary patch delta 182 zcmca9dsB8pFrz_Ua!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ plChCtvWeN|X2uRiLsE5_PoBUiIyr*HaB>s#1oCumj$moz0sx&`I12y( delta 182 zcmca9dsB8pFrz_PUXo#9N@|vVTC$l*iitt8X=18Tnpvu)L86&?a$;JFd74R@acW|+ pNpfs#1oCumj$moz0stXzIrjhn diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 63bfbce359dda8dffebec71c60c1dced6cc43bfc..76e75437d88b8fe025e677712f1d9584fc650dbd 100644 GIT binary patch delta 4130 zcmbuC-AmI^7{@tho72(UGP4(D&KX#k1$sCky@-?(3 z4#hJL`UzJ8bexoZd-d|vt`a(>JXr^F^9mCXu#@^5ekovN&b*|8kyd+F4`)5T>Nddtcz|3! z2=5_{I<%Q^e>pkYhi%M+un~0Styf|nRd`lB{KDe#PL#y316Ppg7OW&a64tZ2t+*e! z7yc`!X4Wd4+y;t>wMuv%mY^DX*h##l?hU_Av?YM*-ZpY&P8~=Egc4LG18!`W? z^%LVMT)_stxJo>MLIK7L3~dq)KF=oD!9GmI$0pku{CN#CQy=;`iNp0=z&{d=TW> fLIR8@@NEMLvKzYJ delta 4130 zcmbuC-%FEG7{@tho13HQGP57boLgXF(#&_8BPt<;oLb@LtQEGk?L`-C%-ljmyO5Za zl<|s(sEn{*AjI$>XH--WK_FJ>MP3LKqO0gCh%Smcn?ZDW9{+&P^LgIyIp;a&UCbI5 zvxdxBWJ|@)H6+53=sr2*kiwEJWDiF6%Z`Z47IZj6K{@P{CAl#Y3`wDoY;UwF*HKO! zN@QE;CtL~8aZ>T`H7et~is`ueR4vHOD~v)w4-M4+Qo+czh9wP*v^OmnL8KCE)6uJ~ z0Z_~y8f&u`342LR6n9W_XH%UpswA==-g24pb+`)xN9pQ_QwJgAbS^!MVdT#%aUiL` z76h$Koa!fJptDpN0+M^C+-g`tWw+8mXVY{w=(NS@_j@OR&d>Lc1D(r{Zv)q}WcCBF z+uy_9?4W1Sczp!|`6E!jIz!hY|h1H}-!bVoR754%6 z!hhwo%wC1l+dvVqW(m&$GvTO-O}cQ6_;Jc_$SyL}j*H2Wb}atC@sDSj4r~&CBj#VV z0b)LlE7*V!SBWQ3D8P7u5q}ls z8{99{JvXHfEP%M4}v^f fNPzJKzHJ~uc5}BXSugzYd=M3WwVC2mJ=OdHMv6~- diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 3c5c6401c143dbfdc1743815b3c43ef5cad5cac1..c0c5e69665e269b3244d84f10625638c92fe7a6a 100644 GIT binary patch delta 517 zcmZ2HlX3A(#tpHI26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW|Mmv?~tx3pU-3SL#7@wtjp&M-u!{ZpOYLr50kFxzi|HMi~RqXN!Gdf mzpyR~$+{;07mnGyLn4}tfC1^8FQsZgx}EuaL7UyYV;KRmU8B4J delta 517 zcmZ2HlX3A(#tpHI24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>29tXk?~tx3pU-3SL#7@wtjp&M-u!{ZpOYLr50kFxzi|HMi~RqXN!Gdf mzpyR~$+{;07mnGyLn4}tfC1^8FQsZgx}EuaL7UyYV;KSc7pZ^% diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 5e170915a4708bf81e11bdd7f9ccc6157c28f39d..230461844b9d06531f265382a1bafbca015796b1 100644 GIT binary patch delta 535 zcmbRCm~q-;#tq(#26@RT6-niVmHLLsDXFF@7O6=l#>Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW|ONKSCOtMP}zI(0;YN7YGmEKk2!-3w?eEHn7om7J-Jp3O@7OkM~>#$ l$+o=0n}4%!Wg$!VW?SBSY~<)n+PqezgpXvMn*)_y{Qzn0r?vn9 delta 535 zcmbRCm~q-;#tq(#24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>29v89SCOtMP}zI(0;YN7YGmEKk2!-3w?eEHn7om7J-Jp3O@7OkM~>#$ l$+o=0n}4%!Wg$!VW?SBSY~<)n+PqezgpXvMn*)_y{Q%(Gt$F|e diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 2fda9bb57d0a205efd309f9876e328a6e6cc5907..0fed6423e48969ec390023cab3d4f8012f92fc23 100644 GIT binary patch delta 184 zcmeB|>zCUQ&S;RAoKlfgURbGbn4FSonqrZfWMXWbVw7lVVPbA-m};D2W@46zCUQ&S+4UmtOc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW|PYqACaypP|$tz1*S|gtOM$tyn$suSyloy3QYdST0oBG;?11w0<7fd zEZ=;9$D1slmT%s~m(N79otpy%4Y)|xwNZK&AIZ8VZ6qX({GuCTYg0 ziOD9($!Vs>29wJfACaypP|$tz1*S|gtOM$tyn$suSyloy3QYdST0oBG;?11w0<7fd zEZ=;9$D1slmT%s~m(N79otpy%4Y)|xwNZK&AIZ8VZ6q delta 1011 zcmaFY%kr+5WrHuHL0MjsVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL zVzNnca+;~J!Q@)T*CcD2uE@$5wD}cN7wPtaw8l(g-9VO|F_UfB3Q5*E`JqhAWIul4 z%|7gktmNvJ*euAqk#z5Z?B49hKbMI-d-sV;Z0;9oC(qu=Al6$jOL{F|3659Ndvyp{t u-IHH(3U8L;pG=0MA@+-G_7Pr4dO!h#80319%{`);(d4*3dvicx0wVw|xToy^ delta 537 zcmdn+lyL(Pc{3W66$jOL{F|3659Ndvyp{t u-IHH(3U8L;pG=0MA@+-G_7Pr4dO!h#80319%{`);(d4*3dvicx0wVy@BCW9i diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 8d5a6bf4caac4365b59bd71382bbaff7c26123a2..73422a7cc6f6fac215a9723de54f6bf27f60ade6 100644 GIT binary patch delta 184 zcmdlezfpceI-@~ea!N%~d10l#VRA~UX^KT^l8Lc#iczAeg^9VTVXAS8nTc6avSDg+ qlChCtvWeN|>5Ll~jY!pHu0PqIRc`Vg7VF8Em}ilxee)icuUr5h139Mv delta 184 zcmdlezfpceI-@~ZUXo#9N@|vVTC$l*iitt8X=18Tnpvu)L86&?a$;JFd74R@acW|+ qNpf5Ll~jY!pHu0PqIRc`Vg7VF8Em}ilxee)icuUr78JUf#B diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 5b91e1fcb073a021a26cf09cce774e0db113fd93..3c5d5992d8cdde84af6e40caba570ef217299ded 100644 GIT binary patch delta 766 zcmZ48&$7CoWrI7TL0)o7MN)ZTrM_WuN~&p!MQW0Xv2lt~qN#<6xv62Qaf+FVSyHlL zYI2gXkzull+2nG@UnFbVypZV%8CE57q;KY7Rb?jGzR8Ik*GbppI4@%J0nXd3Wa*rI zfKz+3pMWG2`MRZqmr|g+NbD#FxpqrzzAk@)j0ggT7|`Dmo9&e@Rg-M@X2*Fe$+9zd VbNd42RFdrjCW`d!j%Oc|iKZ4N=B9?J#wlhdW=YA0 zsmV#kMuy2IW}9mnnMv0**^oVUGcWUO@^nr%W!+D*LqS#oH403g$W}nI=FNuew^>Qn z1+=n$^KRZFWcjjwv!1|0Ci3j86Ye6@&h4TdWZL;oLXfNw%Go?yj**`nf97nq(EAfh zj?TEr4T8d(ulAIZ6-p4@ulxSjkY~4?guwO=9!4cHEeC1$;A6aFO^)rLEWp40fEQyS FBLL7YHedh% delta 1012 zcmdlugLUH!)(yUl24#6khJ`7qS^8X({GuCTYg0 ziOD9($!Vs>2AgXcnMv0**^oVUGcWUO@^nr%W!+D*LqS#oH403g$W}nI=FNuew^>Qn z1+=n$^KRZFWcjjwv!1|0Ci3j86Ye6@&h4TdWZL;oLXfNw%Go?yj**`nf97nq(EAfh zj?TEr4T8d(ulAIZ6-p4@ulxSjkY~4?guwO=9!4cHEeC1$;A6aFO^)rLEWp40fEQyS FBLKe$K|}xm diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 7c550c125695d7ccdd4d2e3d925af1f64f8aa9f0..e196fd1c944740295d13d14949aedd9a07430eda 100644 GIT binary patch delta 70939 zcmeEv30zgx_J0TNJp%}Wq9B6eEKUpx3W$IrDj?vjpdcU$2V_tb2NYCPP*m(9%hVh) zwJgWVTdAoHrezLgnwhDUm6}uLP)`5v-sj${)c^IW*L$yiPd^`7(;n7dd+oi~-us+$ z&pwrU_Ni1|v3^mFg}T+=*{LHYq!i>$^zum^k>)p|Q(8)g_U%XbCi`{j(9zE)t^El9 z4*n^rK53~b?R|YxJNPd=o+g{~yc90Xb(M1p#!t%j9+~vg@%mF-Y<+w@e7pm_{Q^4# z7?L{FFEXe7t>t&DELXt8WqEh6{L#7W|L-oxYeY`!STDnm9a4UG8x3>) z+=cpvh12R%@zXlJ!Oy?BA-7XKLywMuhBg_FhHGj)hno50@^i*yBxjBF%E%s(Ho?$f zbOWI|@-(-uEN@MD+hu3N%29QNb`*9)XlJPC=;@G}m6n{Hm7L-=G9xQLZA>L?9;NfN zD)*o*Ev-Ea$pNm0l>v1O-u{xIIJgBhsuH|WlqW3=xAHWs$n-M!s;-8Y@*3LPSqd7H zoSkX7=GV&bMXr5WXf zi5^Vth3BF6;k@Roq9d}<0BQ2R(6zKF*K>2z;>GpllU zT6M+R-QXC|)NpN7OTmT0Dy>~m`Q{*feXH^&hH1eKXk&(6tX2N7iV?~A$z#*<4Tmz^ zV60k{`=;!M#>4hjRvti_)2g=x)^*ObD^77nX{*Aa^Q0hG!<{akRz5y2H4j&@DqyZ*w&KuSTUv77+L^1fGQdsH49NB9QwMGYs~UQw zw=fLLwV~Iote8FzGW6(A*w?CD^Qqd8YGE=V{H&$nx?f8}YJdyxC&S&2K8BLfK887+ zYN8hI4^x9Z4ZgXp4cY0=g63YRSnGSG(%gBP4@}EyL1%jFn;QJHT@1y!bqpS(-GoQH zTeFtoidw(s&pgaf+@-m_-NQjLGC2>u-rD4uS{I_)rnK@U#g*RJrr2Nv)MgIX_~%2b zviuQF^0*NhIjrw#cdEXg)=QP?tqiL&+iIT5+`Zc99GyHW%}}8>cw|JQ;>N7v#z44} zQc9ZM&9E@r&oTsO@>J8TZ;o2FG=-hRwMO8`6fkaY zY?!WkS*RwxBUPV=)Rs!s+d{SZ#6vB#P&wCv)es9+FlxBk*FsJ3|5{DgJyE0?|I4x? zd(?1?aBtCUb)tnj>inZR#6o>+e_icvp^o=$speRyGr|&el!f}HXRKOcq3*31qXwI) zuY?c2R0n}7;(h;>^}8vmpG9apWQiJYp#nA?QdJ8TlD9=||B(9Xw3=+8LMd2{uu#2A zK2-xORO-_&tFtUrp2I~omQh8_^}d?q&`a%Y5l*^4NsY5m#kDu9oh;N$yVh#Qht%#` zYLtbdfC6=>g<94yN$qB#)>QRYBQ4a{dXv;KoGN0~Z@ulO23mv%r!P}yTBsveW~hsS3@n-vHYFtNDFoH(p@#lOr3ioHc*YWP}W2Ht6eOV&gqWYU!#h8EjwqUyQEsi z!MR$C*Q1N@BPMglD!%WoERuxmXtC?nMh_GahI>Ss2-7u$*nqr|g zdNfpX%~X=@>Zxi!GnE?l>~OV%nMym-dX_rSObsrKSEr~w%w*xXJt=C8nVMd-x~@9b zOuZ5uaa0{|re1wF>1lO>nc88n`%xWdrrta*d|tbR+W!Rt}# z=G_epb<10tOJT(F|1V?hC#1( zq1|V#91L-Hnp2O(K+p(Qx-TUxN7HA&1J>cA%?-y2c|%co3$%z$@BfW@*+TN)sFy8S z|BZUt;`m4F9eTm488v*)D#mc;MEyV7(Lw)Ifo;dT{fd)SQ-bO)71C&32dk!rm8)ET zo8R3uCjZR$SWNKiHu;50{>OX_(uG#kWj#hIh7kQ5)MCNO&()&l?+8H#|3#0C$MJW9 z4gZpUhMPwN4dd^4k%NPky_q zFob^GfZD274pjV{P@B(yzsI(JlI|?l`*q!^iHFrt8qOx=Gq1YBTo$AMby~q<)L(Cf zA$6BZ;u+!BTVnY7tznk+=-<^Fbj(*srQ_{&|Hz+MjQxM7HEfUYf2TEUkMo~tjiKs7 zsDZ^a)n@wNGwlDVqZRy%jiGG|ge*GdXVvbX51fC{oMRW%Keb70oB50W8Sf$_7+QSP zj?Oq)**#oCesxOt3$~4In*ZZ%qhskpGfU^~ZJ-UKg`ez>gTP;A_)(fr8 z8<0nRo*m=;o6JD7-V{;{YbP}}Ae#F}wisB2f%#W52s_FAYZ;{OX`vMr*;)Ud$^XxG z6P)Niwu*K{_Q(Rs4z?fr3Q5}q2ijdFG~`E!%swQBTc?_$2zK88mp2kMpDg%kN20$L zQ~jf1MFTUf>yvwXUC=*Rfh_ayKQR`&4*8A7BI_4$^*QV0uWYS<8At!YIr;xH1^rbl z#;%P1HH*>SFRgqYJzM!-FdMsDdu%q#cHp;;Pj(6UUoaaT-)`+d!^c}Urc8r?!@%{f zKRX2eWgNxF>_9uK<}_%7kVJKs3M2WM^Sd!rOr>!0A68y12|3rhb=LjAf^iMP>dlKVsXV6(KtP`pF*_$?n z{uRc3OBzU49dVP*9&34Q+COtjwV0MYBlPE*)<;>?%5*eKM=l7Xs~zM2GDQE^maM;r z|FTD~{#+yb{+2NQf5EiuIkv~9{Vh`iiDRsrvWEhQf46=L)Fn%|AigepXby3 zp+O3rV%6Lre()bKJbP~VvEj{6YyJlf&z{i!Qw>ke4OZ=c?}_3c4n_RatveDw==uBl zK6@K{CW`fwSbS&eiZ*mEU+)*?(*YpnV|yfnM- ziw9EU9z480vxJ!J%@9-HQ1u6@*!>TWB?o$0Z_@UW?6!T>HC)LZE)nYRr`Rm>f}!eK zQ)1^9hMosvXmb;Gwqs>_JpQ4pnV+iAPA028F-bg}U}}>XCb${4t$CU+_S%fsnoJMr zyU%Q;ossb8=lGijk3R0p4arZkDfhg!D|^J3aucDk_m|L!-yPy1UE1tn?MR#7x3a7L z@TeA4;Av65Q>Gphg=kv20I#3zi?(hjeDXjECNQ zhQ{*=)ZEF+mkL{2x8n~~vj?u|-6ySEk@pnS8wG4%Kzln{g;m=eu%6>@F__L^*c&^K zd&%^$@?W->*qc<3d+E3LlK)=owmiJ}&krc}n%m>9`df4rdk67xSN-+7s#e7!FVoR8 ze^c~vpZ)25R-{{Z@>Q-7`f5y8)2GZbWxyhl()UF+VzI}H4dOP8g?sChf< zW|aD|^~gUvG-U5x|M9NFTaS3a?j36<`n5>@aUb&Y^nY6)vbW_Q_hDV@h9o^>-GX|5 z#dc?Zc#HPe8Jq082Y<_cU7U-zA3nBredJBne|h6=nQi~C^)maO#jp0V55;9!*QH-M zNBJ*K!;ia~f7#);ox`w?mHc1oYWnJgwWne6H`;Tb{7Lm+J6B8l#=4(&p!v&lwg0oj zn|+ezf2Gf9W?P+iwKsRQ1J(b@j%QyV`qhqaMC*>@5P0AV*3JJmll!lY_{Y7^J{)8^ za%W$gdffZE4)m8A`+eWVX+rb!LUZ~LY^~WB#vZ%CpWp%opW_Cu-F53m2sKPk?)>T{ z+dtpI{YU+PeOvCaA3XL0_Eo{ZnIEJpi|Uv^)p2&N-_LH;f4TSjZ-fVb=h?x!Ld~W# zVY)2xtEqFKm+f^|>zt14?cIFBv|uq^Y) z;%>UzRM1^lLB%gM<*`q3}y20COrrXFIDTvS&S+)0}iQ&3g$jrV&%QENo z)a6ooPu&C|fUfn>70`+d8<~dp(tSe(J#^RTOi!JRIo=~Ak$kS?p30qv7@V<|5cJ~(tFcv&MLy^*4uLidw(lj&o|JC%k%J6K{dMR$d! zB_r{OG~Gm9d*7t?G+>mjvEWPg={j#Kb+8FeHNi;?c1N}+o>1GhL762N}Ad)My&xsk(kNHec7IYP7BnDVe%Z>OUL&&1-b+XbB@%7K6N( zi431*04vPWC6h9iXBa@Urt6y0#L>Dwv|$c}mqzP`(0ikSWn}9H(6{4(MN9g+bSoPr zotyx2={XG3{2Y*(Wgw5|=mt^hBw#hp>zpY)mkDNqd_Py0Km%A&!0OY8JP7Vg2l;Lu zG`<9lDR_*oKjDMVP3XrTp#1(ZNOEfi$c;C3P82#8VrcX1u%6i&)8<9)< zdiy66N3dlPJFxTZ0U_}#P!k1Z&`xA62l%N6|?5J-@&rC#OSEi_Q zZT!|klSv@IV772cbe@qXS(ov|!;3-gXFfw-Q2#6=&odM8!~>^+Y@P?wtFOKe9c1LQjO2}r zm=3aIjydsmM*6U}Hkg5SEj9pqY6hIPfEm!WL^q6vFg19+8%vOQU?IpM-Sn>1dM3!> zXq8s)N=9y60Fu}1G7F?Vb03~}0V5+=|D;8uTb*WuJU7mqw~UdW6qxf0r63Qniq7@Z zH>FZW7GnU=#Zp}{otp=2!DM|X9V~<3CDs?6X6ZZA=s6(QmV-PzM@KYk5wJOPbxCxF zxp$3n-4Z$l6C3xJ>)Zr7IT_3yhxLwBZ$9$9%xqFPA2UG}8>K@2(i*)S-{%a6wSRG6-?3W zqpPDB#y)JW<}-|ah+Lh6~ovYJL+nNu@^_w%?xAjFQ_{i#-5f}-(whiB3nJ~j9;VR zKcJv~#hC1=QuP|c*h7ozeTI!;n5_%`u!pQv7lyHCcGPAJV^4mlz6@i}3aB9rWB18w zG{e|+qdJ6P>=H^H$uM>+p^jx3JE2yKiW$nSFppvEtV&(NFm_s@u45Sc{R8!7hOys1 zQ1>uwIKvJyjO|m^lMG|Occ6aDuzZHyVAynqS=GazVGOIuFt(#n-5555{Thhs$xyz= z`ZFw-iMuh3{homu$1oOhs>2w@;zw0w7z+*60*0}lFHlPu#(ug$UC1!@vjysMhD~7D z3k(~_uvdYNE7#@YSEVYaR9d%GM;rSs(KQrk$1F@nRZDd{u*UaWraSSwe{PC4+UT7P zwv+AHuT7n%u95m|79upDi_3LAsYVovAGAWZm-gm}{TG>S$cOU6*J=YwcvkaIWDE-Eb4C+pWtqp~ZW287B0n zH+8BB9rw0wj0wH{j_#fb75C|4OlaDEOy*j--@T`sWI_uLSWv5j7IfYronS?wH%*H3 zuB!DR^tQPLy{CStt0yqj(fHg)OmBvg^T)dPg-P_~$GUxg%-aYClxf)8vSPG8u8TDl zoBE0FLlnCrNbg3GmDV+l$tQI6tf*Hf^yc}Kh$tNc;8i0(gZI2m@E-1q2sP``OQ)dl z#;5hn7i&|)&yk|dDP1;;KI>5WX$bF}g5w=M4S}a#b3CH!dK5SJtZuU~!r1u>44{9Z zG5A?A8#-j8uSvtd(tSWJYhpMc#7(JkKpl;~M!g=B%_<|-b*8LupjFlslggibgA}8j zkO|>$68Y9at_A18I~idfCOrH-eF3>v_kc9&BJ}QMyn9jC%IaUyd-qxwns-_E8BIC~ zgYinfzk*7-eg=ajUWE#G0?djdlRVm zHn>`x4)JT?kGgm0+~=qWQF;<>K8-rA{)D{ix|ydW#Op59`7Sir5iT~R=k7wf{96>| z(M=ynpWj3Dop~PFQt!iTeT_~J;LLx}Y?BT6F7DK3in8dC{uBk}nXQAJfl5VVO+EUY zm3}Yzt~Cp>PpD6~to1!fUWb;a>L9IXVV3e>^aVYn*)1V;79q{DgA@~FETu>gbg_rv zprqd{3^5kT`UihZ`+Jnx7+rwfNFxfYfntN3pxCuFP~U~FW^J%Taig1dkZ$h=X^K6h zZ?;A@Y*-r8t2H5*(*}a34iKDJg>J$AWfVR04D9=*BY4NZ2M?Q=k+kYMc&loIw{tSO z3jG>DKm7n_x!{CS>QCjXM{OEd2Pqtvm^%|YoR+k;E>i4XVM@`!87bNfWGPOfj5(9x z8zWqhB5s%|#bFnu$ZyNkoD5%ZbA_-=JE&Re3PFpe5MXbVNZ&UFuZtUa0m)(x+aL`k zhb+;N&baH}5|ZiJ2Kw`V&@+xU)PF@u%h7o3vT9R6BdE}R1uU?p5vscxWi~K&UT$=w zF{Fp0p-gfUNT08zXX~VCU%I|2gi~rmShpF3<*QL9cap^B5Da=2Wxm%Of{fR6Ic#&5 zLpghN+U)maOZZ4{V>eHI*dOx|XL`St{uW)*n~l9-CXC&+4J!8XGZ}kh8&vLA7dGWu z-E0ftPj#VgN;?Sl^wC^5fNcdwQh8qp8hJylj)ZyE&3M^cZ}UfW3-Q%ormxpCQ!+>3 zx@~BW>Mw3Hjl6mtm|?EKVtmV&;s;^iRaoqx9|TRWLBKbi&K)7RbPa+T9U*9Y4g$Vc z-QNjkV3xJ?rIot#rQ5TvX2*K`!CL3H1M2p6-vHx`^U8ufiRae+GHxwCCzBRiR?~Yf) zpy$dTO!jEn6)9rsBL(KdrR3^{T&KH1_fWbPBGxvp4%bV6v^Ta7w6>%B-7ybdaDZyu zdzF11>UP3X7|Ca zT%~D^Ah;e4g}WG^?XCCyqq@4s>c6KK1+$t9;-E;070SL7he}_tg#ZpSjHcHBZ*yPp zbnbe0I`bh8S+L{JqC@V8BgggEcM%xsXncEs{u2|rVUQkS7UNRISiR2Jd5C_sNpv+{ zztx1kG*rLBgr+9yi%jVCBs~Hvo;M{~e@N&IP8kg;c%0o}smk z2h#O}tTk?jEd7guhF%-3kF=&AZeit(TdVKGPB230LY}^-Fo3q4#wLH@7`>+;3@{dt z)z4wjcAS1ZAg%fVWiA@8Ph!j)1^NmGXHC>E5vccJ%tAN-DW!%-HP15!73zHiM%FS; zouZ#=LhXz6^G)c+VobSOf*I4%!5pPlFY7xQrQbKE+qX*8+f)6m% z(b%L^Uur^klovG?Zv%oWEDUOQEWIW-H)qZ3vBUg#iMNFh2t7Xe|7Y4OfnOAJy;D&~3-` z@0gg!jx#H8`Ew^&4|7yKsejjmc0Hwcu+q4xr}bA%+|;vdg5YVRzr@Ja&^G7v%S`Br zuk~dDee<S&CYMK~2l zA1Gpgm4^1JA;y`|_4eWdQ-Vkb@uZ3CUt4^|#J%ez-ZpXdE+PgZFYHh~(aKswzi<g1`@LYz{rkBJ3qwi3$fk~7+Ok8e49g;*(D+*f!v*93nHtl)=rG%!4 zu>wPD(Tw?Ggz=kH5suC2*myC_xFk&+Y@#>6Bz7`(9wj#7v=h}?EVeQ(O&7n?@n zh*g+nH8#!?7n#ugqnYC_IfGhpULHloxoFF%vuMkAxy*5aIvQJ#VSdTc_s5Dj#^Gr6 zI5EshLzfqbV@znHNg_sk_B|AcWA~*Lavx<~EEK&3hB_MCOcm#u(D#bOVu8MLMxPc> z6OHtu3wknPx`;UwsA;Nxe+IJvqm8X+idZ%|`rRz?O%sYabCU@zngc`QWPf1`#5XwE zFQYL_QM=zfu`^>=q>6)#`{#=TK^Q$MFgyVFEEGpG=w%RBFnFj^T+QIvDses_C8mqP z#*oD#R<7~=5F*8{)%RuB1XXl8-n3i>E@di%tVR2F=sOtKFJmfm`n!#KZ)4DM=4+gO zX|sN$vC~R%kVYFj}ayCOAG*Zg8{&=FC1ORr60Kl#g0NDKj0J}T@ zU^fQ@_MP{bg+Apl_40|4x90DxT#0I*vD0Cpt+ z!0rP8*ku3!y9od=*^pfUL@E6IKT70>{{ZadA53=aA0_iMe`H_>{$R4x{v>eOSwFgx z9rQ=p@l*aNNB--@QO^8$A350Bev}PA*hiu4R3G`+kv=GPo)5oZhxwq`Nj_xk7$4LG z+W3YT8NhyBcvz)s<@&@E$=r{IRkl>yy5UrREdHc%XJV|7hG5NPe`e!PnmU4fc8Se( z%x9?ZlCH6p+LwxUiEcX9#dKKFx2ePXhvogK8M1whKWS=jItpvLsM9czP6sVVCu1~1O z^LiI6HHDh&5y$Y6RKZ(?2VZzAD|quBQmlE5;&*+lyDE5N&8!OE>W5UahnAcTrwTQ- z8kJU!8U?C|Wz>>pR1;=aqkHN4#i4g4pzZE3sjMbWIpy#$b5`Z80tvMob4gSoQ+Xzq*rjS zdq^?&dq~x5rBQ6$SE%)?QSK(HNE2GM(UNNJrGJFtW4S_=f621_CCmPoEXQB6oE~8n znaX#5glA&8{*vYXOP0qkSxtV)YW_=>CugDmS({B&w)tf;uV1nvA7NFf(bcG!YE)b` zs&6%_Kc`If<4L({!ok(3_-fS9YE)u1YIrp&r5ZJ&8Z}a*2J+@tsOi;&YBg%UkLDa~ z@~Ti5R--DbQDml!DSO2vLFR!$-EwDg{1}g1oOxFq@H1BbeTZMe>BW8GI1RL+nEhfu zGk$Qt*jorBxA!3CpfSDto|q`}MY?u*Gul%sIg!UCM@M7G`{FeLcey?vAiICn4Y46b z9v0n=dp-~sSqqb?-43ZCxqd9#8%vIe?vjvTeC87|R*#3l4t)wq+$9muBc2u|qsQlB zf>f79FIan~YJfd(0csL0JSX-Lf{Z85iGw5|%;!2X9ST=qr)oc>~g6d zE6;(B{vfs%I&ZrnzHBYz(KKtR3&nkk%e%X`#S$AK(Fo21MP_p<3ePZ>+DXoeP+(kH zSBkL_x*D%|NLv+Q3Ze91@@^{2#&23leQoglxchrGm2vvM+g_qCN~K!l@ijY)2WedD zCyf(iAFWt#qf19gv=R!94FjYfoP`iAbC&?go`(0A6k}u`$=h1!OOyLceS~y6vI|8+ zYDX0VBqyWY0LfVv!i~*_Nt;>-6OA92NYku@Av9>V)Jy1YTs2!#1R+N&bN6h?mL8N! zc19>P(^?qCdjVXB}Uxm@~2@H4)(Li*ZTh&QfZEh+YbO3$A(7gaGqwlRLaMS8``jzwRvC7YzKp2UeWI;Q~zotA3Qrq84n!bs!s&!l)kNHY3u>;6a`;2rMQN7h! zDOqAMp2egdXW1aR?xZ&^J1g}Sgd&39HYCno`K2TqTYV{gA{4QC5Vm7af&j3`Kmb@I z2*4si05$^vut*SqMS=h<5CmX>AOL&Z17L;**mEABSRe?{PXjCv1jPbD02T-W#MIFs ziv&TkNDyEGRh^Rt@*t^5T#W}}qvHOlx_qm1t~%J@(%eWjBhZ?`2M1dZ!gOD?xKu8?Nr9M7G->AQKovaP`Qk6EXw$!O=WyrQO0)_ zWjuT-<9muSzNIMRJBl(MSCsMnL>b>sl=0m}8Q)Bl^1VbEe@dy8ZzRh2KBA0oBg*(L zqKvz78TJrGta`SGDC1j*GQNW-;~R)FzJDm=+lMk9OO)}=LmA&Yl<}=Y8Q(dS@o1uq zZyU<^uAz)?8p?PiQO36nWqij_#y1RQJd7=4+l3-jtl5D1NEvsLGVURz+(AmYf0T0f zDC6Ey%AKQ>`$j2ujZ*FzrQ9(}`Epyv-J+CxMJeAMlyaXaC~!!z@4OTPZ^D$5pj7Sn`KX>h+$q>Z(+m9L`JKHO@^FC+EBrhormDOZl4Mu1OGc zK^mlS9+)`0E=V3&D$ZPx!T=gylzIYWUX*%EY#~!?^rAEVa((*rqT~yK-FH$Hz>x2x zK>%C6lLm@BnF~2ymICO|0=X6wU(&>vFkUB9jmuDGG7Y;d4bT#|&=R*}Q^10SvZQfa zQQ~(fV*h%%wv-e5#1k#m$u#te)J{mCxmTnhk?pkA4s`Y^2KJdNl8?sds4?v4$~LtB zq*#;gpAbbmRV#pJ3FIlNh9g114qJEo%14F4TK1Q(VuDGa&#p=-03p|;1g&%&PO<7< zz9xlhj9wa}^+c5B_PykT)G^;nJvCvhCfxkJ&HzKMqw{=e<#kMf zzI6Gz6ax_a0|(_lNIgVf*1U9D_=D7eyw8e~Y*G^?+<^UjY4i= zw)|f7U@$uA)E8nain%FC8oQtu4QmVbh0jG7x_U#>*T^23V{Sflxry%ar8_sJAzJOl zwDJ~epMOiL0shikQg?u}wIU%K9Vteub}KVOb2@wnLtyts(UwB*N|GjeMYB-yU8yayEV#={K7Ci} zr-|Rt#L@TQU12o&o)itR@1BGsLDrsqnz-|QDIEN1_oWn#f3WJ7gr`aFNgmYpf#d*L zmj_a+#Pb~OMfK~+Z7BBv7Pkh&?dmVGmqkrWy9$ z8j9lYTg$EJ%q>w*HE+~#qUc+ajC6U{awfnjYdH%bQiq!IXqiqP1)$T*&D6S!o)EEI8 z11frwhbT3pBuTD~GE(j2i2$eU%khb3kveCEvs6xbS;_G_>pAxbh?pjr^z!lxxVEiaywe)AlKC7*)*+*j0oORL!uMn zu`^ESkPQ0PNzMTnT!({wb>s|*D?2HY@-9mCskeuHGxPW^pyIl6f>1!8)rD>atdS*; z)IGeOSkvYS>mXfSF zW&w4sFONWltLn=cTEaD2&dAzkML+kzbho>ux#Z_Gd4-$YQRqth+~m;`JJwY%6);BxK=UFlK-ITr;bHk7jgK4=JM z>`EaX9BlExSm;WwjpUI4(;8u(K!!%G18jB`=`(w&7kBI@@g)R)x_Ux zVsyMGIkc7BDA5h5T%;llki#(j+eH!x*q?kw@N*thUC z=xQL=@9$d54Y9AR;VE|q=<6xRitIRDwI#a_vKt-z340stEkz3TNAKP9hjU)>gbrSG z%M;VKH??dfM~dDoOI_O2S#Ch@)=(OoVi#}P)k^M-M0TxZJX}Sw3>4DB)^azIozJVy zSr#XHkOEDzyUKR7va@7oF>)c*Z-c^lN-qlYkvr0)AnbQGw~-}@bA3%snLH3n^5!te zZncpev>bl4+#5MEI>Sj~+d}0+8q`+q1+c2E91U=}tsDgq*iMeta)eVmU%6wA)ZB6A zZZ4!l?c|xKb~6kmI$KGnh7^6zwP5L!96z577!Qi=qv& zDEx3FW}=mTvP^FTD>kOyETr20a*~#CK@@p3!g@QW7lMKFZc2Sx8H?4ekUsV2YPahs z57bgFHtCBZ9cXGaeE4ujv%*U?quh&r)F^E_$#E!XN++)KflhLSrt>-qX$K3&2FMN& z4-eo5ULPR$)Wn;4=aE;SYzuKvpxj&IZ_~296DT`q3cdEw{XL}+=7l@KxrYXSJ^&s# zyf6I4yNTjR!-Hf|Vmo3b!U>BFO>U|< z*U+MHUe11=ibvs>I++t~>@3^iaArqmIZ7+*kXBZG1IlV0EIZ+dCNx-%z!A;tU`$i# zbU9ca2++NY91pOvi<~0z*J-}gGP;EzMoOoo5KKup)(OE3mrjA9h<(y&T_`4wbgC65 zj{_(T!&=L;-e$wylU61mgbnB_J8IlJT7l-_*%+sD3%kmF#BgRcE7~&@P2R-z6q6Dq zfAfBW3-y|CSU1@pnJT-<{k2TCw7ZuaMqc4^9gSg6c>@r1C56i&NVprP}=$KSgAR~o%(bKBP0So5>9auW?k{Z-(dJo zMNjDZZG>DytD|`|*>}+DaG{_c7z^PP*#l#Qm(@noY*!CCNMm@>v_2@jXryFoZ`zme zguV||b)h9a5mj)upO*Y`PwWQ6N$7=GC!CUcVf_!M?EqS;utzi-7Ae<&P>sZ_5KcQH zc@Eboc>t)~D4y{^lsr_+*iWlW0#Q+BiH9ll_j)2st(H4X=ukQ=!F(7{tusbRY&%4lgb< znuaN;>%Fnq&p6~FPHiwoa-|iq7~(uZ_9F%M4pC&f&*q76(#OfewG{bugmvPTv6##F z)WGurvNKXQ>H}8~r@}sF_b5i!UBaS_AzNST*7|*A8?C?@niFL81WDUUV#QD!^{G$Wp0PyVx z%6$Qn2gzV-sn|P`N#hi?0sFlHZ+thslFQc6hI1PGQqV z3_GjXI1Ir@4jmkZ(ZKHAF{k8ZK)5nRu1&=QlzNntDA&_OdQF7M&4yk~lsjo$S>xVM z#N^3Ku+;l&d*ksF;!!UWGnj$DL^*-IEj-ovrEWB326i5VBY+r1!;-N-;t3mRe1xnvAbq_>6m1$x?WG z6m=~R(PBJaFM=)O@e)6$P623%-{gtm=C!F}t)!>;v9hx!c}FW|?pV2%#@MGZ4vm%D zqNICc<#3IEP~-0!kH)OXQ=BY~nV*jyh<e2I(SNz)l{%&&&4oW|sS)yp;8JSm1au?5*kD%GC6OXPZV@>R)&;wB*~jG)9x znDrxQ^CY=1zsgdbW9WTf4BAWEq$Xy+j-c4d@&HZl9z(-_!g$727w#gB=;Vs8YsvK8 zWbEj9B_6*>(4i2aF_$%oq0n|H9GROwEd0qr3@$GBq-zz}6xvKdR2M;EQ{*@;pH~dU z^+3MwUYC4n`C#m|BIwc-xxXg$i_zv8`>AqMYOn)K(1NKv2~EYsg!A&LFde((P(w7s z@M$zMskT>D``QW>6=4GB;;x#QpF6)$gxyvEohp)tX~LeGaK{{soy20f9fb3Wp*YVO zqY3X7V@;YxKGU#upG6C&VTzhX!gNH&vnYEyCi7WLi$pCkT-=6Q-Es1u!bP$y#8RUf z@*pvmrAT8bI?>gOPBp0cC?}jb&w!3xgn*lM_JbL6YuqKaE`gWFQBDbFsW>`Nf^!A- z)R#J5OT`z#p);`vcA~_Nbh#$HS1Q+&*pq7NGcnYl3L4tXfgATOgVnmxz%ooi z-RPMzIYLYH0)F=`0M4@X1F2rkc4Jd>#-y1;rEcUq2lGuN4WA=-71>j7>ML3u=+;ge z<5i7eKUZ$9F}7~%AJIn)apru1T$GvtVvi5 z_gwfSrnqU0A;oG7U|@TfW?X-fvu(6=*n>8}C3K(x1AZjs88BIoq&*sNtc0&5QJ+do z-ASydhFTsT6zr@-q?|;TE0H6Kx-7!>HJWBFLJZCxNmSctNzsWmbZ3$5hTChGD!Gf$ zp9WRQg8()Gi0m#~4b+liO~h9;D3%Zn712sUAW=kj38{)$svay=ZOU3KH*3hA9#k*( zeBz08pLCzH{K{#S>R4Q*sj-9DeHz|_TP(ZdD()Zy3G^KUzGU+hz$9u3kic(h7WR6y zfQfOI0{BhGo7JQ%A4>V1#o21o7amGS&`MTMXL^HyJo=1*MEZ$=402h5%K2gK)W}CG zf4YyQa(>YHVm0Z}hf;pLcf6XkW?xHQFRDNVIELHEKp`DqAcQV3(3j+;sGOe#9FKam z@?QNc1@NuJgKEPn-^8{IiK27s!8J>O4$>DYF0IAzlYK|8vZou=|oc*=t#>Lh@#gS7)qZ2B$y`8M=O8& zVF7#|+*+;p9S^1KNkR4fYSLW~rGXT;9QDkkYzC%LIRl}zo`I3H4aE=nB+RWK3Kk>#T5jpSlX$-_f*c6*e*cWcv(u zQT{ae8Qh2Y(~)Q7$pF1q%d-HEu9g=9jC@v}2k^tQh#4nSw>8))Os1kWm=!0}hil{^ z0BzPHq@PT4)?$A&nJ%xz#4wp6*WsLEGHqRl^RmfQ?>TIfCex(nIP;6=a0E7)dOy#Z z8=sfcKsl}F)VTFL$*J{nXG{&QFUXz%;V)oWNTAXeFqb9JCodr0PayXf5xXZ)=8M=1 zC(xD`kuQPjZ9pjrG-(5FzY^%w1}K<79XIlnGdH3Q33PNLCNN)Wwh1eaFC}aO)0ft7 zk_X%JOYEVTIdJi{V5=Nqm!3Q}DJwZ8Eel5pzBGI@+UZMgXuxd?ZVh~CoCXeVK|te6 z?Y81v(3fUz#p2;hUu=a%d@153oFe$rs+VxJ;Y)Teqw&5p;borkkOrE+f~%XsH1`#` z2*7q5bQ(k(9Xg1!D~2n zoJt|DqjRTH`RmyJPo;yeqa&u0-*$P1(34)<4r}$KMmu2oo-})hyc(eOPI)%KOFKEU z-W#~)WDnn!JCV;m#fetG0n_#*-7Yy#f7+^4sE2TN-ZCBK8d4x+c;LFqx{wHHPUqG$J_xj|(6E^Hn| z1@GdpHHa>~%bET6apvxQoaw(Gy%R(W_jB3p{b+m;CB6qI4x-oJgPDS;@%uQy4Wha4 zqlPfL`97A?FbY0^Qo`u@1Gs+;qb474@bm|AF{lOyFtl?DF9uM%5wn@9+l?+4EdN-=RTIFV`WP}20zcE*N(|g0z@B|R{>l;F0TYw z@QJ(@!2g8&JiwU~@+wh5gj#Jo8bGnZ@0-r&#R=gbz5^4Tfc^!cN7o2(G3;1FpP5BZECQ{R{IJNI9l$}T;&&f+|`So=a(=&>Ce-1rY zo|A{tR7H`HV&&KJa)6L;u>0;shHub|z39p}@aqgJ_?BOCAO02-S_UPaht?T%=e)cW zfG)r+8Pw?_G|Iq3M)D$n-0x%pkT1!L0ajh&8M<7CDjD>d1}0tMNorli*esxVSJ6`i zbnGfjP(VYjVFE3ni`UTm1yuOGTm?}3y1WA5rR(xSTOMaru$EL%sHAusuD&Qz(QP@L z_Wyu8hXVTi2XtKl<=ucf1ti_%)RLPRJ_Xd`7P`EEw%+1Y$Za&LfIhe_7vlCb@<%yR zVQ~tK|IQE!lVJR-?+DT&Z>2riy30+Gru9#9sV$FXwlWR2(zLts6#D!O_PkxG*B#ja zaO#fy6hOgUxe}npJ$aFqV-L%*hwE%EH;UdkiKFwb6m%cTVw-qhUI38%0D5($D-Rg8 zs7R>*;UFlpadWy@P@)0O2}&tIwv|EvqP0>5@U*qE3?NXaEC)EDQx*VZ=y?)BR2G9; zA}UJ(a3#v9Lz40&Kngx&YOCGGG8ONT<4rh7sI@XchZ%ed%~BKtlDXO_A-Fz`w^2d? zmf9#u0C#MZ41hFSWi-G?wvc&~Qw^mpK-U^de*mhX^aZ$}Q6Y9pPf(?HN+LqJZ|syV z3cCY@%^Sp1TrDM9NzTejO3AKN3u%VEl7K{~?Uhu3ZZ(x4fTEhHv5?N!R7L>AI4C0l zUU5*80h}E!^_<+8XMi*dR@m2e-!t4{l!jM%>uh zjg&Mk$2OK@o0g+pW1b_RF_MPRlE!eB5IWfyhUB-5yIIoR!4cRtPno(w7 zb_T{1yu}i{g+A$^xK}k%yy;$$To*+&X{zLCMeJuO_A`S%S_Ez?B~5;S$q$f2?P~I< zX3#5y1~!92eTkYWJpfKOgXz+#PjjWe!nPOi(B<)TrInIQHCrf+Ao6LUOa|D{LMZ}h z+ftcbgYQGWWR-jwMady>ovWToUrgWW8n=CJb*E+F&@*& zwhe}QIxTCX6lf*gVI|$+PUuB3ZIw2-+L+u{iBQ;%1`2JDr$$~%KXPxUu*(mhcFH7x z7u&%v!l|wo8W2vUUg-4jDsN?sE#C(@VyB}zQc{qTNGHAF(&6;2w~_-e*axl?PVf8h ze8Ik)+U$#w9Zn6}!%MT}V7dpg`7rNh1$w$&I z{>nsvSN)kX=LPU2=L3`p$dD4qsZRrW0|x~0GT#eQ ziXn^Y%=5j|8Ql<0-Gh}G0Q-ZLnEyIy`n6P7S*%W3&XbSb|y6)UK&1f#aCu3`|%&cNr6wQBema zQOci~izA|N%In4(c)FW17S;C)=Z4)Ijv*aRt-5m?Jk=e;FPwA{+`i)?Fz%ps1V(l^ z_3D8!8BVYCz?ei&^i;-bdTeG@ZH^`fcTEp}y4q8*Lz4SFd0`p76n5!(q!-T~9Lepv zDU#RMAWG}cD9q{M^nnKKqA^W`(~M|tpS#gq*10#=dUJ1O3S{kKct@;_QM%x+>|Bh} z8o)6YbNWPzk5ys;*2gNn0Dg#7;sCnGL5Yd9Ax`OpTeYv_l%SeJH0K?W@Wd0dE6WE_ z@{3k2Xiy);7rX2^eUuo06Maxkck0s@Ger(-am3BBUSQrmaD4_@O@Z1tAPC$(%WIYs4T0#{=;g2O` zGfbISql7I%p{(H0-gLGPE)+es3$-Y87!=4MM_0@!C}kK-TSB7}71fq!=*2ShVwyCh zibN%Z0+TQ=lu%3(y0C=aOoDTjQ2XJ$o(;n>mP)8)GA5!DdNmn+UP3-8T)!15N*O56 zRM;+<=BJ{2gXwrG{3w{ZjlkdwrdLP68*xFF#=)F4tnq_zg{SxfIE{q+4x-5;l?k?% z1CDZ6nx^RMQ@v42M_gs~8HLHyk3JZsOaq8b$Kds&L+Mb>k9uXGL;UF73|PsJda4L{ z;%Skpcq{Rm>wJ+wr}LEnihowZd#RWNGnIizG9gpx1MprZl!+(zESM*rW@afv08VEq z@c@CNv0BB`ve5`laP2gj=j)lR46$WJtJ|0bw~<{m+V*#ce3G$@ia6? z8LXw;#ZvClQreG2;2BT$xyk^55xH=#czPvQVRuoaMLq|``Mj{B`N}XP@g2w8GH)DYDt$dp=?u_hJc?Fn z)_C-iO5cx1<5h|;;NZ;yv|6R66O;g*7GaJGpeDsg5)XAB_YG`Qa^YBL?`&Z7M3nC)lL?de!JXHnS5AY~-ATZl3vY0N?;0^qfUaLq_^coM!9Nf}R~qDVUMBs^ve zDF!GphN288I*^tcU>Up+W|6akw#f3WI1SbzPza0~9ZT&&;GVOWEV16mw zD3rP_gOx_oqGd`4fcKUuspOra=*jnK49StS;AwbE5?y#2Mogk+%Taa`&0LP5l|+}8 zV>IA4VFh|LnqFUlVx#HK3e2?8l(iB%b)lUrk)aE@uYzg%Q_(8evOn!uh1T~c?`M#* zKdpKOCMlvCtCgbg;U>)v5 zbJsx6KJ@Jxgpqw{+FE5dK-YEH>-C|}*I{byLy6D96n$vPbEs$l>7U00KY$iI4@Ve4 zC!WXH7(o5kqnQI}(|U}|0d#*oG#fxUFDUDURC0Y08B*!l7nK;1y=Yh7f{Lf;Taw2H zWf1riHYigxen;9|tnWnaH)1cEN{2TpMdz5D+_5x!0BQ_We!Gbq2az05aFQa6Nmev7GiiCpM!R zO>8`={2lm9e$`&(0sg*=O-DYfsVTkwuHprpS66GF;xF-xk5*?ybs^TmFk1h<;t6o{ zeWkZJj1}LKiayliU4;W!pNG+V2b6;VPko@A11LJE90M45NcliZ>`9|f>RVC2!^+db zFypnu@M*vfA7W%myfnW-6!Z~dn&Pwg0Pu#7l#LJ%J*tR;mcI>oozu6aMIU4S9!Byp z$rn$HDZSe77Oxu~vSP1}brr5KJ>sz>`TMGR`x*9 z@Ee>C0Q!8Zv}7>;ywZ@tN&l~_`wonv+Wr7;Lb98k)ZO%uo&X6w5Tr;4X(B}tX%dnU zNCrqk3Lp<$uq%rY1g}pN1QijKBEo_N!Se8lQf!Dm1QbCK0TB@d@psPs<{shq&z!lR zduQg(?9A-!?43KOT%i=z!#}&;#&qq~Us;Y0YR+lbE~lOVGRHAp-F(({1u#l&Z{`@S7M*h)qd8Cil{Om19p~xtjbi5uu2<@(?5Ae^>Pl7> z?Hw&t{zcbDTK@5iu3ss9{fBFFK#_Xl5?yH&sShsEWnHDZ^|EVEC_iRP->CTo)XB)+ zKWQf&c7VRiDplp5t_>72uDE^*sPtP`>C4l>WqrNWySF)dE8kyq)mo{NuhC|xRNq~5 z{XyZYzg;f`R4$om&35Xtjr%RxM`xVu0BdOgwK@&3UZG$IT9X|7Sg)_OD#*0b)s;YN zCHb-j)>aC;n^?ot+90bZjh_j!UUcfBJ^QJ_!B$W8ZLqa0AYaXNSc@oxJFW2)${Smi z>U*bk2aVHQCa9$$R(~4Tv+C%wx;XNAanvTS)R9Qfi&&{@lgk=RB^p@P+Z1+K))uEO z6F*pu4W&JFai}#tV7LkkqpA&8>%*);6t0C?PdfM!WM8J*Q|-u7Z-!g71mq(U(izsuo09eN?8~ni|koEp}TYDV%Xz&r$GstRf0$J=UuMgVeLp)=UcV zG1fo|`pmK+#=3>Z>2yZF)?=+nTq@T3mBJHo)(#4T?b==(b$!&(_O zgJ;xeSjmi<7WH#$dBhc=_GQqAJVQliT74+cNo*Ft&ZYh<+1AYt z{b0BLlm6kw_IduxkpHzW&7;%>PU%N`&(eSR1b-ON*_TaR|GBs{t~zh_*>vA zAYcSNSdC@;4QVif;9pb)y8-OI zr0jfTHxp z(TzriLwag4yI*gUvPUAjj{yHUOCMW5fdaq)fg->_ffB$Vfl`2Xh{zs72K3Hgo0L5X z+2sNifGUA%z%+gQ=~+&P%#7(20N`PPM*xot%mX~Za35EE0br4VQZJur z7MrBK1o=-3{2TBr1OK~hKL>c;fL`^LCS|{X>{S9U1J($v1*`+``DZ=kbt$q5utmTR zcvIjlz;=Om0q+UC5BQJ3F2KhEyBX;C+at0UMLrYw9PpLE0l+s5GkJ5&$F6b6fZiO3 zP0Buk@;?Y11Dr76wSR*A%pwi0=tDVUK+p1=N!g3B#Pb3Qa6#Z1z(s-Q0G9-w2mCpL z-^ZgD`U2#t6j=qhCh!X2rje$euL1%E)&qhBUI#b?HUmNgwt69!$XkFgf$e|@25E9e z+sAD{Z=YzBvOh%mSb>iK@dCR6i40yn%RP{WQe;0MMc@lSn!o`-hQK#~EP+FSMhwy# zjw+sGfGh5`o0_D33==dLI00zMFrN3eRy0O)Xk$RHdOoK*b9OsqcQBx{JDHSy9<%E# z@O%CDZ^DAHZv3ZSRJH9&6$-B=-z{^O-O^);Xu+TWz?U}WDW5CXUzz{h_mWUv&8 z01Opy1MU>y78113y9D9^cMBu|Mhc_=Mhm1f(D8qdNEV6|2s8#13giNc8FUkf7Jvx` z^xBu2l-(NHwm@6JWCLFNW=OdayCa}dpfjLKpc|k@peJCOz^#B80{s9p1-R`7Z9(rW zkwK9A1cn0UFmM-L_FNjHX&yA7SN35}=_mb%qx@qAboM-xvPU9&zQ7m)FU@a(NCAq} z2^0aI6es~K5hw*Hfk}XW3zP$v3QPq&$Kcg9uYoL=BGUmY1ZDzWV33xnRQFW|^vbR_ zDSIx;uMv0<@T$Ng8oc&8k;hSFgTQ>i>jK|P20#5<93j7=Jrogj+w*h?o zEr)EEA}awq1YQEXC$Jju0fRKfrJC(Bpf|^VO^W(5&=ub;z|CE#{HI=#&5*qUTLJq8 z-U56supRKF05^%DxgHSs0B}%X7vNh1Ui)LnAtUyufWrd&07nHr2mHXG+qrO4V_NQU z1A6U$GAa8TWSxksko(1dapF3!DU85I7CEC~y{VN#H!-Pl4aP zkgFn>0M`Vr0B#y(R`wboP#}O>70}uTF|^|IL@BlJ6j+Z z&{&{3AV;7Tps7F`Kyv|aJ4j2B4uIAIw*cA*bOq!K^Z?u}&>PS}pf8}4zyLsJugL9? zt^(YUi9W^d0^Ed&pr^oaKyQJOfIb4;mWd|mCr|(wV1Rl*g$y)ebK54GW{?24Y9bgS zzzv!R?hq&k3=^0N7%or)7$Gnn;2kA06Ea3%Hejs49Kbk%2LMF^4+F*vJO-E`-~*J_ z10DYhAhr})1eh$a1W+#UG@w#oDWFPV8K6dB1z?)MiyFN43=wXOMVob|z#70Tf!6@{ z32Xq&5!eK{Ux3?d(M%r{*amo*p__gm<~xwbAoX{@=9!eu&A4a|^98us7Qq66{{ZR) zxY-t!cv67dX%Q?D*b7j4|G$IJFi%q+6e=xs=!IWI)T%G4FYEYuM3<9ydm&AV2i*dz*Y_V{tq_` zqjh_eMK?O)XIlu~F`!rWU6Zl{si6>M?-U3Iye|*}_)s7euuC8U;Qg-%HzcFE?iPpv zd@2wR*ej3(*e{R*_*@_z@TEW&;6Odl@z)q~P>SRNz7=Q=I3&Q$)2OP41=;|P3bX_K zAkYEuqrfd1y!Hu^t|)R+paz zSzsjKioh7aUjhYyzXgf_0n{i9`&0>_fj}t(?f=0dlTgGdP!4bjOa+7r)BwT-rUN1c zW&+#-vjNc>^#0E+^yuS^l_C!S;sv;g9+gNG;AVLQ4F!CF6oCbRG=W8c41pyC{QDpS6~I8nZS#H76LB=S_!NH z3Ty-1BJeh#i@>{pZUXNO#QpysA|IkiFM*E$w+ieA^cC0x=r6DzaGSsvfZGKQ00t9y zv2%U{87f5%0q$gw2l{A>3^$-pi6czPK8Et61Wo|P2%G|p75IgL_WyAr=TM}Gfg3g2 z#WY3>onSyOw3Ji23z17GKgod3o?=q=6=YX1=!T7d1F8&Ad0KvrN!o$b28|XsO&}OB zLx7t`Qi+)Yp@3Ne5rF#y+<-X@x*23F-~kPM{OM{xB>4%*e?*`m;4y(zz&wErz=FN&{2VjH1U4Yj|^Z8$|{Rqe#Qe-q>i@;dG zR)Ipmn*!qjZ!>h^{g)qNrK-MbKyT8WCS^~$9moIsBITIiLxHJ)T>>?L|1!vgaonWrr;-1Yz*4{|fn|Wx0xJM#1YQK36L=YLUSQ4bwEna)E{ME_A{PZV z04@n^0{kh!ZCq&{R|U2Kt_i#ixQW_1V(q!HD@_tOhVOsq?eQKYNQ!(2a0q+^2ocx~ zumtu1!UXmMA_TqwLhq69sw#$^>o&OcLk^m?Cf+ph92}U@C(=+)p2AjRyJtohJErVS*U~ zBLFi6MgwLEj0N1sFqqery9l6V%r&4t_yZ z4e0VOa!R+cehB4XHlVX#F)8~|WUm#N2k^co@&shPKpkMC0Jr0&I&TtCfXxhJxRP6F zj7n@Xplk7#N!iO#{vC#1Tz;h&vcrg;;60PFUqbc=0;>W45m*cONMIe{V+QH5f$H?B z0lkR5^(i|4Z^i`sO}@Pq@VUTSfG-8M0}cr61RNCj0PwBAF2ErM-BrYQG{*nG9yOxt z^#i9m@ut~}362}k**}?-{TZ@P3494SE$}tqi~u)XrwwsV;Jf;}jVXPC>|GlIsbyxV{-AMG_s+rk8~4BdHxI82aeKu^$+QxiDbgYu~cbauK) z*|EsZ6i5JMGZgR)xT_C7|28qA=a6esb{ZyVCXfkeA=FyK+iGXr0nJ> ze=|c@u0s2JaQ)TEh@PM`r-pHUJ|^g9Kxg+bDZ4$gdkJ&`+{&QuY;*p--8Vt&shUz*64-X=^SMSq@k!@B(0!z{`L&4E$V!y%w;}fL`bZld?A=`wfB3 zfUOK(J%??Ox24ECfE@xm0Uro_2>3|gzkp8!J_YP!;O8dn{eUkFa6P^DS0-s6K>jxZ z-vYi9I1Kn+;0M5QffImJ0zU)J2%H6+XDHGCKl}!{2&w-;c!^W|l!bj6*;ftd&3nzH z?7xv6IM$SJKx6cgIs}{mOCS^wLBWe1CJOct1;!E0BFOhu6zfm*-}fqMb71ZD%~2+RdMDDV*AQ3iev z#C{Cm1JD^&uj~_&zX17*1fB#uC7=M$2rLCG6Ic#dDewYdmB7n@HC~amkaYs<0j~>e z0&EfR1Kt#P3$R__UBG(+?*sm0z-#Y1+;30wwT75EEqQ-N8v056Tw z;U6Rt3R$mV4MM6^CFY7i;+D+U?RX4m;@*nr~p(6R0F2*=da)8W>1IA zG@utc%cSht$etrG7x19KLx4vG9s~FU<^vWA)bZy}yWe7wB`ESV13&F!{~PeE0bQ+S zCS@;2_DX>l0ILLE2CNZS3s|Q?U(v0Hyw1W8580alTMX!hZZ#=;8?xUPcn7dUU?<=M zhCw{X4*?$;&~yB_;3hi$b^dPT?=kuIUchGpp98)UH~{!Y;9J0V4E#WmeHie)0lm;; zCT0IfWBiZaPa-F2jNr7uFMx9bzXC1@{0_Jza2aq_;4i>UnG@UrN7 zIV9hSd`ln{5Fro=@CZZ$;soLWNeuj8lid)IYCtbDeO!B!pMm^rlW#Wy@be55_@M*}GZDBgJEgc$HwA8WO<_C& zH<6|kH(I8^t#>JKyH*O^3Y5Zh-gzld607P?GNpQ{bDw6!>;5 z1-|V{fp4!;;MAe5QhbF)fxprz@V68N{x+h(r*;bY2z+v*6rXM=@Hv12 zAGH+tn4mC2jVQMI(G%V)imfj6Z1&+|tG%mh3|{U$i8>##;$qvjF34+HSw3+w9Z(%_ z$Wr6RTVbwFH`+Y5ZZ}wLettn~Gm9SAXC->Xd)?qFvcz(^dR}i$>7ie$P@<=;nN{cO zvlG=qo}~Nr7O(a+2?`0Lig&r54;yaFjl8^!YVN<$_Vq{6H?HSKuFcmclT@y4 zMbq=IU2Lm~t4S<&#cH+Rwo=sNHmyvf8|`hjl2J5pPWRintG!(oJ^K1Rydg+gg#e{<)vNExvuo49=ph6eR=G59!%#!a~>q|;Fj@pmbORoXjdMT@Sv0jy?M}v2Qzsvn+N4Q zxXd$*;ISGWr0^h@2fuMf43D+q!JRw^D8C4roQW<7lQ0^xzw-< zD~I|+m|bBdp{s&eb@ZSsmS(~yTk8Cv?nhTTO<$=FRalMijC-zHUJ{(8(x+NZr#|me zvAGk1lTQVd~1T zrWBrC8I~HvGf?NA4@(Xh?f-UVSOe}?`EWpZQhXbpb42gLnnLQ6xn&i-)rh(zfOgTDMMZsq;Z1Tig_)w&h0~~qyBlqCMd5fd z|NjERA8(m|3oYJ$mL5XGbBiyTF<%hRW3g6W@IdY^8i`t8s;c|Rk?P-?7arJ3zi!tT ztA?Hki*?{aQS~SYPp2+{uZ{~(LUxMkQ5YVr7W_@GKJKA97lyZ`P+1tBncRa{KAKl( zJT0xDx~8zEj6Q{8>esY~e_dhtmAK$JRHRyE{Om|p=YDg<`VY?tAK9I{1@5>lJT-`~ zK~?3}@LUIv`Lfl91|f|pbK|z~<^i4k-)#&3tPyqJyYVn3r>gG`hqnlr`f}Kj@G$C5 zH~e&Xiy*#iRSSO(Zx+mBwQ5`tz2~>`NVw%+c{==98~vVE>KbBbj5E=xuWD(Z*_iB1 z3f2kbPK!uEnP@dP#~Bl%xz^WC^@wt|^LI;+_&JAqux-{qBAddH{t?ZBrt=c(`bA{w zx0%whv%i5e*T1iS#JIlHjci_BM52BxDQ)Hbx%BR3ekE+6-BV4ii)b9&Q`d1pa!8*4 z)4GU?mO-<5X6f4_vh>S2>Ey97o8H2(J=q!V&{x~F*l_%cQUA^z5$=QpzWDY<-l2E1 zk}BEXTB%cCMm+!t%8f`hDqH20!742cO{K@?y|IF0y9;Cx4;0|Xz?IC=Duj=f`1bD2P zd#5ulO|vh!1|2nW8D9u@_F7BF8BOE&O^Pg-pUgi8d=YwI>|b78SyEh6QH37~)ZNjF zZq%tdb^3WZGF!i7(3inPFY4(|uWKt+-pi4VDXh92nHR+KQ9J*LY@DFy=&G)qTvk(1 zSXDo>S~}scxP{)OweT)yjK9~Pk-IwTx1CWBc^SPzl0E!$#OJ!RY)a+il0hYOuu}J# z`B4dZ+OawGs8er_GA_VV=&e&(RWiP;xSrI`wo$Q|EP~7OaZp)URXBxqe?5uT>i?&; zYU4+AKKv~|YVTV8f;8Gc3%5lj(8j%&S8V;^sI~$3`jd`Eorn+TUrE*W9_oyuX0cDX z=hGfV?>~$1x4InFyOVxLnXjShIx4gweN9zxE$Ln64tIh{WvCucgk`j-&$Egvrc~C_ z39|CudI|kUW`Jmi{%0x8^4*KOQ-6y)YTT*Z?P85PD~NxoslCvR#!}@nZn(E>ZH|U;>4I+BRUOTy_Om~rgC%;C9 z_6xn7jIZ4EM#-<-A=LNcr(e4>D4hM;eKQt4b$5JnoSt*|6q#IasRz~QgYMSBoL8&n zzCP3X;V>NQd&W~2n4A%`WvZ>fBi}KNy~XR zm93^t@ar;Xl7HI;w=l$ z;5rrPW4XRsR&{L=A3Y-qXn)lO!|O$Vwx;%>^~hgAD5omtd*ZOPWc6-MNNRm$%XpJk z6_@I7E1EM`c1WEkIa<%$Dz2_7m`2}W#gjP0TjxnhLG}2+F0Y+ZP&~P?x>~lHN9|wl zjON}e_tbe3<4{35ebR=I_cPEd(&{{^w6e*IJPq}$3vtm#zU@oGDIy=YtY+DG^9- z_Pgh}Cm99ORNgU9qFUg0Iyqy-aaxQH@sZWFQ>GMF(H#5mg6L%lJ3Vo9{nJMUobcpO zAqvT=Et{E+vN! zi)pQ2w?!x572BOjbaLYRG`=iOWe3{yrmtZ!sZ{XHu$U|-XVud8&BkGlcz>(AVt(yT zeNARO6_cx9!sSa-8+SU>XciCiEE1L57Za^cFQIp?Gw`W@|Kl-D{qH{&1$~{#@EvNeNpsv+v6)|j#J;-qC~+0`tI$7i|kJRymj&4r#Sg`S2g#l^#JHVTojV#uRRt2Tr=*(F-WakoDdfU=+Iz3P*E#2&dUE)w zCx;t~#l>!m466gihM;>ho`p=4p?+FO|jWA2spO2$2?-9)oVe|%SD}YvK!{I3Nc-U6_Q9=8LtA+j zS=0X3^4pY`ss*`YM-NXMkvY1&w448!QF-kD?=HuGMDFkcf74H`hW+j~n&!3k7JN*7 zKJc+GFKtMNR;vw7``b1ZYSEq$dpA>2u57y9-obRRwWsM&2mcC9^cG6V_bDL&$!k%n zQK$vPn^r!pdYg*FnhB!mPV3I5&r7O;U7rLmyZY72ORJ6hUe`d~zvSKRPuh>+!G}HEY;7qjE>2+4Aqo zXkxM->1UcYs-Dn{T+K=|)5%Ov)9}!SP`tCzzLro<%T=+iU1=jzzOfN>aiP-PEalbJMiU>ZXsiW~Sf}FTu-{Us#ihpEii5{ETL_s;gMr zv}%+Wo$M_(V3|+Vw`ZB_)73$0eIP!xr;fqLwY=2Xrtk3Fu{mQ*yE=NC3i9fi>b0*c z_)vZWboKJ~?M?PMEllB|^-Xb^fkFck>MvkM5>)~M6E#-=?Ty;wbbbWHhq4NSe- zwXpP#dwHqrgE1JBI&5rqDlE=cwPoNBbOp`&qXQu~Un4X%?jJTTf1J;^4*kLv?!=zNL;^`p^W85+A*nwg_gN2Zx#^SuRM>U_k`_ZO@=Am0~rtiiVH`62d21%}5S>(TkM z9_JR_HN2#Cw^ENw2VT;8+NhS#?a*f0sKlhrTC9!AyIEIjWur#F6|Du>r~<9N*4svn zdp72REy7S_X}!s>_jcyMtKMC(q`Kz-^{LBGN>Xx z_T}}n-qG6HgiUYP*J5l`|D}DkBpWqk$Q>>G0rkl)t&fdLG&*TvHY#)SlUg?$Rg^SB z3${_E$9=RMMinvBD_{J%s7(@@& z3>#&B=Z+R_qxJ+J&_Zq0hdZWf<2hBts^9;Vqn2kAp1q!;`P-_CjMV#X=RG zd%pU@*R|b%nr(>rK!R?2lqa+Wsq0d>tz>tv;>j~5zi zgRPW%)|&NNs+IB#-4~!uwo(HF-aI`_8(<{^-umg5*4|2m%)9@pHrh&M#^?N`wYE~D ziY}bc(yUbe-0(bYtd$x+@9hZF?TKMBTih0wH!=CHY^s*=#SIi4swV`SLKj7W#a1{g zi;mO~JgJe{z6pf&sG@-oV(NY|lhT)AbNTjhA;wf(UYlk&73$Nvg~9++_XSyWG}6Ag z=|Hg`iek&--z%zOY3AQ6j^4Rz*OF>Cx35$vTV<_oeTbNcq z7oz87y3mmvp@HdAi6?zGN^qeqadw`(A$lX4ZLkZXy@%`{YDw`1yQXv`%uvs?e+p}o zhL*6!{4cMR?HPZ0rEF{Z%PVC&;NP#5W{k6INDE)G|5uM}<{zv2TUYy3GOw|BF$K(Q z`MWHu(P<%#n-_gs*Diw68}fO>jErsdf1nrsh$^OpJ45K#HDPXsO_TH;?M#@dmFE}* z*AqILj%?P)#8h#)Bi*Pfw4@bP1SiV)*3QM`a=Z>-3#gKQrjUc7wC;%gLle=TPmxxIwi2uw9aA&Yh-z$C8-4{6Ezo=JEeeHHaNr z{%af5RtW#)9U$Vry;avgu+#pwY2!|3o7SIT8yq`K{#Os$-!$)fBVmZXfj?*?J0kyT z8=1F@<<13HKtc`rbcdY_`D_%bP@|bbE1UcJAGSn}P!~r$COpRenF7D>O#h${vgn;} zgrOL0c02HI=?L_xlTe%1))SilCg0;XZG(TiYp^N&TYG}tj6CWIW)tjI=s&6_+~|5+ zyW0Gi`zxO5pKcxOZtVY6pLE|KG&6lSr=EWPv8|!Bwv8~%q%WklMTA`y{>hzl-PDn9Dahp%D(Neg9x*0-(JvjD|1BmOWEW(j zdky~jh4XirDGPA_Grc-1)-H$6fBo0a{y(W}={puYsF-BE?fq>A+h&=-0vK-OQ`63o z-|+n6>4ZHy@TjAc_~!qob~Jk|<55Td1s%;Ec=-!Enre=;Po^Wcg*K+F_Zso=E)OOC z>N)ctxDfx1iwJwF=uwyJQC@z_`sXhv?9r`1y~~HFizVy5`JsbZk4(LcKP303_j{r( zu>7dY%lMOskGlL%TV2xI+co$_*N{E)`3wDi+0K_=q5Zbw&F^%?|G(M$uXa9r#P(6= z3-xVJPyNEaYU*Tmp}g*PB9%?GbEb8l*>^XEzh9S*{NWSQuMP)$#`!;LI6}Pa`59C9B-eE!YeD~l9=Z|yh2!h54i0AAC=gU7kIP3+0 ze>6DsOtF11eOt%S#L$%dskX<+}`oQ&ByPaTiuK7`;i_+`LnM;{wtK6D4%A_t!6Z=TyUk>j!7nqXg!t2c%(Z zJ^7|xP3!6!V+t?xqJ-=AxJ|Y`u}3HF3E5QkguN$SpM$qeTC}qZ{oCkj@=O;~_>M;W zQ6d&7W!}FfjCaJ%elw4*>&v*8C!Rjxp$%>Wcvzl29dG)!EJ%L}-eXbyUwRVF7GRz2 zffpqBgEV**2cZfV+TF{}jf%PpDV0L^#I^zx-j&fGHniQq!75vsLL8Xp6cgU zaW`9`W!yXB5Az>^k^Rj(K$53@eRlBH2rB`_a*EcKApL3&mEx+WSwO?Cg_H zziHrS9kmaj&2QnGDVA@8Jp4k>KkrdLvVgz%n%6e<*=M{SSpZvo{{Fg;dwdsidBeU2 z1>CZCB6h|9TXuo}x)p(a$nB9m{Abz&zniVbK3^TdAck?qYqh;DufO zzj)j5+s-8a4u9lV_n&{q;^J7wzZMIFDV;@!oDE~>MQ4MX(3$o*8y=V0$727-ZRsCe zT0JtOfAFM>ZQWsC1ZK99+SrgyU78ri(ua-lC#R8N0{Qy^tD5E@(Gey!GwHy_5X@<4 z7)>kvfR!=ng+`Fh8{weZmuYcytBWDqyr8LJsUWjY3O_Q$M;qX8*#OxmrkSneb}^LL zmCmO8E{3Vq0^1A?XqlHYvb>CcbQlKEg0fXiXEl8)nn9O%3Uknc+~4ZsHU0 zcEN!(v76x@IcGSixVC2>r)H(5L>lsFV5H#+P3U2mU>`6vkS6zlIWNz2P$;jb;XAtA z!@x4I&sRS(*+(Y(4^0+pU3*ef4AX_tRGMO#NS8DRmFA`z3TRNep@^;w2k&^AVG89B zHx$ynRKrw?&Bki!%#v)$M&f(J3{I^QP#TnB2o?%xeuiN`buTp3r>U8SWEzwW?0%*p zky0iyo@VGv+ol@oSBx^$AT`SnPLD4Ff6E#}OIpIn+XW!+W+6kVwkvJ4XK813)0iTV$0mRbXf9Txvz(l4O`K8;>E~G>$sfv} zV&o9kuRL+WG>|vhIQz$oHE2I02Qqzl)4ERw*?*Lw0WF+maHSoLe1;iRof&9V6ATzV zIRhrEvLW`IX-J|QGk|d=H_b%iM5fiC2+@<8%>wx>>oi{P3Pzrt2a?z8G20L>gwV7C zLp?qBLNI72n-gi#7*@AAAR}2Lcy1#jSFkSUxrGvtpOk|<-B)ZtC5$}HEcSefp_pD| zBf4<17*6|*sAZI1OWWCE2O2dODc>6f`N6pcBK!hGeVRMZFqC|mSyw4FETN6)b@RSb zLv4Ywj9~6OD7sRu1;{s^4eFEySOH#S(=Jhx`clq92u?D?c`ZzGr!$Pa$YxtqnPC~F zvq7n{2wUL+3@<&KDs`f3i;(1tOppT}H_W5qlYlj!f}#eRAQ;EGbBD<=j&8G=RZ=Q- zrp4tD9AoKN%} zx^}h(e%giqOpJD&G1+IkHT#-kzG6CDo=djJ?IE85zc2 znbRs5#@^4;Rx^yf0;FwW7<Qu4RuoL@y-=_?p{qEnGqfHK?JB5zJOCx+hB4tFf7J_G*RM&M6=2K;uZQZ92b#*s_5-U@TCwFY;Ak=4uv z>kPRT^xCtANDCUf-jHWO4?S-vu%HPW4OcDbpv^2nubWWx;7LO}=CjnMelMWn8b28t zn0LQm@Dv#8O6Rv44hsRad)puFG4sh6SzWxa)a`~ZgaC7x+0e|6${LHg%ti90pI$-5 zIZea{=CoH0Ed++Tnpf{IBwNsGudxz1*Yvs}#ey1k8?r2D@g75_1-h5 zWuE$xp_ahNYUbxYHYDjNd3<7cPZ&dAe`47C2aOF~r%=*cifXn$YKXNIJK|HrAr!kj z6u;(&Unn%EerBj;N12xmIdtZjVKBA70xu!`3z*L7FTsPKS&OzEhq_x%Kv4Hf2=4y` z0o=|SlyL%r4{kwl_yh#+-^Jd;D!xkaI+~F%spMRn)kI!(R0}f(U zO8Lg{Aw{;uRDh2=j9lBn+I_!;0>jRTmbn9O*PXJzgBB~U>D^49euoq}cdfGvUhq)r zbdUK&XCa6QgYIyJz39X_a^x61Vh_E;QBoT&sBo}9=IC~`T>H%>JYsB0|eJ@ zVD&iJOpIerUJ^dT_`(S|6O(>~Xu%T<@YsjafM<~R$}QwQ`aO7X+dZhm9VoK$2MC_M z1Ho&P(Rc9ThmqG*R?0oYn?et>+kH&IKh|faERz#WZK$e?4~WO9Y8*NMrviez1QbONJpN6)Lnw~^JjDmO{PuHT8wkQ zEN&4dn2Qwg{vXr!F74?91#$lHrS?@&U1>bDTw4Xz9ha>3h%-rTy6yz&dKuDT&XBe^ zjW*zjQjcD)3c=me(6WIG1jo9gJe*iY(&`>a{Ix51jT?Z6V@o=H-vGRo)xleK1_f{j z|C}2N$U2Jx5^6v&rUeq?6w`#Z)`TFeC34hphoILqjQ5sfShMF&#_~ME1JX?;mYz81 zffT(DT2;o0$AfBnB1PT9d?oXnR3M2A1BPNyL85`DH3mc)-_8-r2z zs#UP0TCGs`MNwZM+EG9})`nrNA@y&qPjWXp&>Hs8r5E((R_NXa(kfBVdqx}NopcO( z^8@F;wh(mr0)@722SJ0YR?h+FPY;^j9@2|fA-&Wdy*r+5P8a{!!a$P0&HVkhf( zyxbXr=y0^FK^F+JonRL}5#mw`a|Z831eDIDtDU6k=G9$A`Hv37kP3SzlYa-1&NUSs zbBgJdO(@R=b`1hJs|ydJ(R%;ZW$n#NJ!6bw`_S+B9UU~GBgl& zl}N$Mkt-kyysUaw)5ft}qmK2_jvu1Yj&|l}dW%7Sv4oCIl z%u9!hbwm_`4WzcISDv%^n+&m&Jp>K1#hn7+sZru!d)gpadmNV;;dCw^y)x4dPHVzw z(NAEgtGTQ|gd53Gud!mf1$}&+ILv~I6U1T*S}{?aE6{h}T4xe2MoQ?#@8EuiP7wnI zhPs*y3&kP}>Qp2yw4fV{#kVZz^y#d#SX%OXQEX=}oGC^NxLQfwiv_RUY;gvSUWy`5 z&W240qs-My#3vZsU=*Kc$y_JF=CkIBOBhp{FLty8?7C3w$>97&Vs8eInZ#ZUHmYEw z(fqhoV_ek?pt(<=A8sE<9oL@_TMG*HK#lyegxOt-rD=P7OG3T*P_-=2AEy*bujv_=Hu%`94&tD zZ;sR1=fu0zBG_6sE}90@=I2rNkHHvOuMJ{TfuXMS?oP3_dEQ15UO1!8=QoMlE$G%Q z;vNe+bE{ZxK`|QEw8od%`15Rcwu?Bla1@QZBhXufal)-uNAlT$YBxP?IZ~AFU{!;x zX5PD#845#b_p?$P^U~MFSr$>yZgHj0u4b6sY8@-M06XWr+LvJ59DDaN z#))H3UKKa#*uWpq4V?GFH8F)_gyHfvM_d4K6QqGHFA5C*Tl`K_PCdb;4oE%C0N zgWIY9U9p)i$hwD-WjS7&AjRvfV}fMhg_y6{OE`+Y(ahQw+*U57xy_li$x=&!p|0k^ ziUd32=zUdcXQ!i)Rirozy53pBV!#vha*>W%xFOZ0mn_^nZqiK)SM-oxv2YL6lI-mD zY+u!uiYy66*OgXS64dvV-m!3R)t3fZ(BX}wpDYPRHIX`6O4!j%!mx22R=1E&TewdK zN);9~ytQ=Sk|3^)gmL9*{o6^ImITjrkk$w^zo)e?a8)}L5l77G@J`YeVW=5f@}fU* zYTMdH`jNKZwysmS@=c~OT_vp7ci39kRl+(2)Ur;ccbAfN+Wbim>4*j087W=1qEQki z9Lr#i?=6`vsAsIy%TDKx?IV?1xYhbf(=F(le$pI)zHzs<4)@L7=~M#L*x-TT?ma+i zFEG^A{KP=k4;+mdEG^Md+PqC_XAVk~>R3dnNfMS{p2}sYlZO5|&4x zmX-Pa84^}oMw^?>g6Zh!h1t>@7IasMwAq3d&1GGDyB#_Y*Z4+yuRRKEJ)dFOrT`c5&U1KNYG4s{GO-pjk@-ZqWU`<$Dx|5F4Cvh!=1xyY*uiSo zw6+z|f(p7-6ScNq%9;Vx(v0;_v1V`@8%&@%bQ!ZePGgrDX>Pkh8lcnW6)RaQn8+Np znrRWV77dDABTXh{9g04)h7}D|FIotrtLtG2OV>%&Eo`()qRiLDAoGo9r5QTYJa4^( z#hPbBmqnP@Y>+lp<)MryfyXfbSP%n%MKAzZ_yT~%E}~=}xQMdnQH!XmJY*4N;PDD1 zVZjOj7O4PWVG02DbEp6;J^{dj696nS0l>l%01@meACN^P09ZHzfW;yJSRf)wk3xWA zAqW5#e*j>y2LKj$0ANuE02XopVDSb3OVKRS0E&ef09cFxfCU%;lG#-@Ad4*kux~g6 zu%H3}izooFZ~_2}B>=EM0sxC50I(1O0E-_0u;2jziyQ#3umJ#z833@4vH-AP0RW2> z03b|I#2^b20I&!F01FQQu-E_q3k(3Tr~m*92>`Ho000XH0I)y+0E+@dsXPP_CGq=z z0CxEgCcF8MQuwt$QnEXLFxiFwP;l9GKZcUs^+!4Ji~cBA-138R=QsSw!LIkC9QfTn z3S}4j$j5H=L9r`+*af@K2gNS)A!9fBpwej5>r$_F1)!43H9OD89!uqRlvLhCYf&2) z`vv%u#*K-wI@JYh7W*>?f6}xB3fv_%GBBH=DHjd(?6e+Kv`eaOU_(p?Rk3*uK0Yk( z#|@F~6Z}cjCeq1Wl6wy}0!%W#F(eb&pUL=>#-lTgKeh>284npsJhRf!7q)eB{Pil6eV zM0Kh}b*@B3RHC|7qOR3LnMJ6c&B`+EIwNh=%}Ug*O4PpkdP+8&W!n3ds1GYq2P#pA zDp4PEs;CK{_+{EBm4rttQOrn~YHU&?WhLrBBVER3bD4Ii67_Ki?Y8=;tgy z&cgUV)XL^RPv-w~Rxb-n@2u!bR7@o*t`ZeriR#BG)UOwlP)Rtj5;eFIl~{>Nu0*9& zqJ~wXMpUBGbt=J9eMTjrR*6~=s2c}cyvnpim8kMc6j>?ruy>@Pg2Ekxnx*dK`U#%7 zIQg#B|8H3R_QHQDqz!weu{vl@G5e&xR($_Hske|vwcmr7gL?Ghds4E(H|gr74QWq_ zjNfUQtwAfzgNiBEEb;s)J*8L{YU9Vdm)Ra*~?)R z_c;Q1cWz2E9fWu@IQLbBt*a?3bg5eq^E9VwuJ zqL{yHD#tqrljz<%y4JXq-|Z~ZS0!>a^7$55xr{U~Z7q)#6y^@0K9vzbm_t$6mP^ehV4~Q5SbDvMagllMUtxd*!M2!VJ3czI;N6CUk#Y^YstpLxK=$ z-n(C(Y>#X4t{=(FzR|Y2bm?<+o6BdiXx{UY?4(e;))<;EK9@fbX0cWt!-X`)rVfRk zkgL$=j?jin;06@~1)(TZ+(e?0FD?d>t@n5EOF;0oWn{z??w<<_rQbUl4%# zf&kNWzVdSR`BR^~y`AjwPiE8BDl93-YjQpHo+n+pDv92aADLYu@%S2&lX1hfRmA*ER6hMVdNf+ksm9J{8VA&hYBNiEsXp~VdT#) z8To<2$j=ic{5WCc&nlJhvxJc!C5-$eVdMu1Be!8AjuAzydUlL3@>7J7A0mwW3}NI) z2qQm17`Z!PA}bk4@T}#82QP;$PW%ier_;wXTr!&4Mu)wF!D2lk$bX6 zc48<(#q7jj59tP0qsysw59k*4ix)-m?U3EsJ&S*9frPcmk4n*ph@8zDlFjg0C z`CbkH|J3(#du+6|e~>!>4Eh0s7fUOC!1@W*S_Un;Cby!1 zQAPZ^Yv00vPRC$VcMO`#WDlp0jrK=EVFnnT51$&=y~MIx<^QbkYW zsHdqaDQP;xS!XPilnkBWsx!nY50~QerIQmm*HR=@SRgAC04~VNWIczco@2VAr0NWB z@~owVKG0!76IrHMRgsZxfU4x_sp{+5lBzvi5!4kawuz!5X_$kxWqx|n0}e`iA)Xu@ zl?;FaM`gUkF50wUo60FVBSdEuS5eY+MmwDW75&IZk{i-cS*eaPhC3+}0ggK8EEkkoiR*j40K>!a9MGt@M>^f_g7IoP*6a1MbndI=*i@I4<&P^6TXU* zF3-~CVv~pDPV|(EQdO7d(6ssr9C%v|$!>7QPP$=066uVak_#}f1_ygb`s3) zyzE82eViLw=XV4Z*HnfG5%fh(=oY~mIrE{qQ)siEZm>0L)iNy) zlpQEVu@?8FUR;r<(qGT;6xH>$W|-eZR&>LRpblQj2voSzOUcv|uF-S$s%};EOCKzE zyPH@`epZ*4)mGXF9cgcEWt7ZrcD2pD^bI}MTj>SC5^p72;)0iKs`ybrUBwd<3VSE- zDlUInm-7k1<=hZD(#1MT9tujXtK+gE4Y(-|0iOLk_&GEXZ+={wJr_Sm&AG*Rl}Bw58z=>`z*r^HI^9$j-Jr&daB z+J6hj8Js313J<}U-3@_BUiO0yljw#Y7VEy$q^Z(N;*b2-q&*#!I`nQ8wVuUe=}Wts zD!q}&shQFlAeMn3TGUL5kb+n(jaU{px<3q>LkwzrVZXl; zCmE#OZ85<8~t#nG;gcK zp`gOHT;~tkD&2LR*HNdI=)u@_iVMUk?RW>TZ>RLs#asB`k$-!|5#rGHN^hONUC;J* zd&Nap=#>ZN?q91S!cYdGmeES zVLIa-ol%H82#Rfk{Rej{4m7!e>Rv_ny?HtNcq;CDUu*#N6G?P7;%n%QFZIM3u#kjEcsPYL zG!nahA?*OrQ+0kwv!q^16$rInSQQFsXD^<^GfL?XDldv>{2)q6)HC+gd-6&aW_#^X zvQp6siz2T$A(}3Y#N6x^tu&*ap=uS233A~eU8{~cvg3mu?burxp_e+8_Vhv?Ko^QOKPwk_)BeicIn0g^i>0>pIVhr6y zY{i(eUiz?l#VZbafirX?$d2bmP#BK|sgMrEEAhIxlyX@U1187@%IRzEw1v?$^a2W8 zp9-ILXJ5q?dG`0U8rovr7CQCAmWQ$EXSJ)PIv<{k15Is()uU{HQq3(bFL!uGfprhz z%~_@=Y}sGwhyt?vV|C*EXLSDI{z^OWofDLJfYbyf7T|>h-sma=ICJO#ZWS*Kz_M6a zF_5Q-8wg*FmvfkzQ7C;okQ>`i19_I{L2wnhct7joHk4NkFKyFw*|n1W9s&O zf3+6nCM&gckw{#G#m#{>Br9!ouA+1AC1dgAB{=Ggl00h(3y0#|#zk0aSmDJJb&@RenfD|0*IxuxS^c+~?dgu%3Cfp#>F03(7Njdbxns~olaBIx%gPRGFax~ z*xqdU!+i+B?zcQCyVxABbecC(NkpDABYB=48A<`|HsL_ID?=H`G2F=W-rPJJO->oD z@T+`8A5v71nb?EVDLWGfp>(`Kt8^7+ldlGo#TO|wSk!F#P^Y}JICE5%5{d$!%feJm z#=B=Q@wOD54dZUh+A-bML)GcPHCIpSkfBzytW0f57zI_^Qt~KFR-SyGp8RAk#+fCr zSdHs+%YxmOTyoG^Z7C;5X)CiQH?+mQsby2Rk1^?JMDaQ-r$e5R-L1PBPx6FbB5txA zs4!otN(Y{K;IYI|hg`HUhNk5z-6WoVrA>p*Is?<3nci#piU;k>R%=+4kD=T=_{TBy zS{^n?o^_+1(udHk7uU(&mGszBS&v3~mTk7egHhDgd^n6Tc)JLF8H4xjIdvRBPy7Z? z3`?(0Wou=T1{Wyqy5w!Wn0W!ym4v`%dFY3?!feh}vE#qDx^ zt6hgt>|~|CF87Y1lv|k62yh_=X~rOzeOpbT3zKn_=au;UEJ3R&@Q%5xehh`TMB&Jc zld8V^htcCxFuAzgkFJ*CTw$b1UX_Dr*+3k(!sue5(odJR zj?tGI=cx)_TiS_TXyH_zgr;I`>P82qqU%_6L+hk>3|~om4Xy595nNrRq9Ux}T--$$ z^9$$ai*VrTM#qbkBwg537w(*kxszP1w1jYeF%;)HV|3x&Vr)yn6gUm1@nBjs4NFuo z3De;m2UE^;tmphq?_@nOOx%H*-gfh$DT@_F$RXbu$^a>c>6yk-w52QO-KtQdk#4wb zo&g=XC_~SDe}>Ww5yWOQVdWz!cP3V;k@Ue#Tqy9@#mDKX_&%683;Uo(Q)c0`$loA` zzryV0n_0N(oJ#U+rM=9a2-9Z8(B>?xRYPYhArj}5=qa%bx7Qi-bOwST4&*ck2FQ~w z(78ClIFL_?Qj=0{)~IE>`{zj(=}BIj17jXScjv$l=6urmSQl`hDN%e7(tN4}8{!P6 z&@x?kw?wHW^HxrI^p)KuTEK5I>YgKJo zFg$m3n$=s1rl7f4Z*UJaSLq^!vN~SU>%g$K)fq4A4Ci@DBb~8BXP__rbjIsCW6?aN zozB>!Gq~Mcng_cHC7)94ZJ|_Dsjjr>FosJJN0DDV9R@T&5t z#X=4iF2s!H#hiOkOdu^Agqe{?9m-%ZdGur%T)8~DPzJ-}X|L0=GI)BnXpvsRPnHtq zeg+@z!}Yl8(Wh=6U0tNK75u5`d5m z#tAlrW-W#r9>QvEt|!GHI?(OKN^OL#Jt~wiVIU2tPzC^O29OYW#5@0bQtXK>5x9;e zI7Dq|1;LSMLw5+NSYQ&*_@Q0ZDf)8j ztvhXbLh(inZa)Jv=>h|>#5h|4JjC%vCFzO>(kZO+QBL+DioX3(bqLoAEu!<9e%pa8xOZmm@O&IeNVl%V#0CF!mQ z(maY=hI;%dhk;pC%0MoyXCRXH0u14Ew>BoogX!XjnPQnPe7gEok_J4GwqunCRFVci zkPf8q<*28PIeEEautU^-_)46B3uxs^oMXC^<0>4ay3@c_2!wT~L#vd@0KHc$vjGmT zRu%!IKcmbCxb_Tu#-0?h1}BA{RI~=GVo&;LjWP(J`C7R2J!$S*9Fcm`rL|ZXdQz`- zxT@$$Ti4;rtS8la7AK{iH0fE+{OVcUg7u`{&vE9a=ae*1ZtFQUc0EsWe7({EOM~b0 ziXTAN=dmr!q>|^cmd&J3pNGFcle{;;cb`dF8*m&(@MZ(@&7@izQOZo3v=L#inRI+3 z6r4$IHu03RHlYnO>F_2jV6oJ2Gj^O<8nPM8SX#eX8R*EP*NIp;5b;{LRq5`Oky~KjK9(lD$WtEBL8F%tvuQ>1UQ&tx9JfQKRy26KG6vwlc4Zbof3q?P z;GkJyzkb{QWeiy>+W#_7>HP|Jv{qE~3fkF9Y3goeuFkJXS9ZfEX}E{;%l0Ux5PQF& zECAT>hEl4h@}#l@`1-)0H_>$6vxmvZ^Gclkk4Bf`7xCD7Dj#yz4Vqc8iDjC zZ)0oCq|~=D)|vFy+bBJg{NF*RWzsY6pt+gk_%8Z9lg7V``_@dl_%3Jm+sm1|_i|>) zK8#K#E!xLrH}|3OnUwqpgXTLHYpklu=4Z!1oQU>tc0Ss<2`5ol4l?M@UnnKkMVb7gHeGb79 zo~)kjJ=LhNHdg4HL`D<9!Prx)3Mj5*hf`hSctS1)?&W2F$F%VA|6!2ZL^ zT!2BJaO(6Y%5>~(8Ao8}S@g;g<#B-MqsmHvOGlLz01H1=)&hilraT95@-t%REW7E0~)RH2(@lDuRw&K^H{OpsQFwBk259jD7@7 z`Ch32sQ!bp9AMiI$|6VZXOyv)lu@{>2AB?>m#FBb(v|jIL)amLzPyH^i=g};p-u$J z*EzN1I;KwqHNJr%kD#qLIMwMU8Wlkw-c+U_Y})H5rI*V56m1-BAkZ%ab_scBIJLiV5KOZRJUT@pqJRfGT&D#d?lC zEXN+Mv$fnPdi@w~&pT4+Jt*6e4&7500;JxDULEQ3eMT)VQp-TN2vidl{FhwnM z)C00i#oOe19R?C^ul6@!1rMazs%kV+YV|bK$@dE3gBZ$ z$oi676}1IGmnv#M0IH(K1Dw;TPEKl1P$f=kGF-XuoYXLtg#pp$bp}&hH8omI&CVV= zET>!xq8ZNW5F|R`tPTf=sH%nn6jeoyL3FmNIszcZMNJ2I$wf^CaCha*DXu)jNuBCe z4VnhgnrdnafK*)_29Q}@&2Z%L$2jAyP9gIo+gc@N#m8cW~64P zTPn$5>#Pt0wF1SjSXbN4~CTYq*cMgImw&+IACOD+O7f_N(5nk2G=xGuh#IOr08TVS z*Y%@5jnsZBJ6^y-mkp-NP1RJY+F134D6p|Q8DL{$wFsa^6Ln4%J)+4f`8tYHJHd3W z_^I(&zWY&-pSl>y_WG&w0Qxmm7m`2wIg>L@RU;Uqn_)`!Bgf{L?fvMf=IVI8u-mM# z+uRQQDW-+m9088WE!6HRJJdj@9fQf&U+qiYEmal*32doO0@%W{n3U(D)Gm- z7ghwQqaFEC$Q6ej&6S3Rs(3;@09IW{X9Cn*fPsOqoNtS0t<)U7P=8jazg}o`YhLJ}*1XVtt<^C|8Wy5X1b8`wDMJBmIC!=V zFVwv)uVPkPp5%U8UVVN$p5$yhbpkRBYtO0A+w%tY59MXP7pfLR7S)00d%FWhqL8|E zRA&I}>!{8Ghz(Oq0lo<1NfJ7#Q$T&(iI*82&YACo^R{&Ctd6O|JE)ko1<|^xwJ?HP z{MF6|JaSn`b-Spe^#rq7g4xm3vVkRm>*&->tXVv_kqM1d)Jjd3$4tz_Em0xmNAL!o zh)@eqec!IUW8dkDSzSm?yYW7FvKwY#AsM>!{vF#LQx9r)$K)=g$R3!Mh4fMnOiPSJ zPqjeTV+*TlOEkH7>w1LHm7b~-lHBXb3(JgDS?KdnB+uTl7w^~2y?A|fqV(~M!m?gS zAL_s<8Y@L1&4}jxb0?b1I`rmRZ|SWTLe?^d55(FSH4G86(=lo@0M}S7>mz7ztQrfj zK30tcxE8C%0d$Ll5+i71oZ1$#wQu9p(5e%3;~g>NvB&0=mkyxR6GCGe&_@lzL3?f= zH3s0bKB%UM`ov?g7(`p+)vf?H;-TIk8r7GBulvHHc_>W52^tSTULB}93{%Jl!8%+JPJrpj-zUk^n2|fEU`)whlCOfI1!Es{!f^ zM?FTy3ihQ#nJ73sK}GCfklKU?%8=~4f$C&ES!0&0F{^(t?Hz{bZwERtNKMy6RxNuY zd}pXh!v?D@ac8h-Fiatx?hl6Prc?0{)R<28iLlaiDocbxrjtXGI?=Y6yT^I_x)@Ca0?t9Br2zrJgiR6}_m|NVN^Z zS$#%g0c}ekj#Q@s#Aaajwxt6ZP^~RRW@13v(z}`HrMA>lgWD5Bi#0VsW#JYqd|wTr z6JykNH24`A@1@3&ZHQdgDDaKG@t~yXpxr?RTrKfZ* zfb)rfL7v(lU_>5_D~4XmQ&~Jq&F4A|$yW!0dNCg!NDR4;=Jn=`hK~b%NAnC`1!^Lw z2?e~A{RKQj<1ri*kKu(K9-}59Nzho{mic2LOQLVbsvQ98k3-Q(Gq6QPxcKD6P}Kfw))taDv(zzM#nJ#KEFT=*ciTKM5-r3*SJOFxsdC$0<-LjMArInuXB^ItVI+qZdYt3SlE*bgK{w zhEdW~4t7t)Oz%cji{RLGqo^X}>qajWVUg-a^^1|D8_h08Q@YXj#c(USQT#L*V>dES zgZTwh^XX7Gn8r-Uavw}Lr(@>~CgTisK7jj7xXZz`d?ps!9I7@;?FKM#7R)_|KAwfS zmP0ACq3%T5F&oR^L~1$*6^*2dIcjHsPv^k;Mp8nFIv3zn36?>Pe2r>&RTk-h^*xcu zSFV9{^@v?P8X2cL(Q+eJLXF-xVx~+bx49UtsgyAn{WXN%n2WV<2;H8GN`~O;%IJ(C zbZ{P~U-ba=iR0pPI!eKUh5 zFMz)iO*EGWb397>;- zAtmnQ7op5h8ofyE4)Dq%SY;@=JPxx8rOd}sQ7C=zIE-aHsU|2fo}x@BI**o`&?$He z%!CYi6jTmN$fL4y7+D^DU#<>yw8R?FmSa>*Y78w~ho?01==H_en)1l60J9=#eGPEP_mFSm&RJ0NuIgoa)MAHXSz$&C1NGn&NKiW{0)oK?OC|C_^XhXYJ zWA|%AZJt5OHuU^6&}e!F^8{M^Lot447#@- znq^S#^XhsbpFB4pLq0vTL5-2}Vg99!skl&VLOvVS0pL&As21w{HngQ!Y)iqLa1PC< zgPYXDGEd*2H63c~(1=3bz}EHCW-NH4sQ(tV9N^p*SlB4){erp@;PMOVGZK4quQasc zRkb4>*@{^_ijueCd^?JM+@|gTc;Q9$U4V%%sc!&u*sgwwUqA9Ps~-TIF=JplQ{2ny z+i==YPOG4nEohff^q_M+*y|9lsOuoV`HK2Az!$HodjOX0P+wq~cB(UFo~cF*1-_}) zpesAE>vW}#uc^HO=DmhBA&S)3QGFC0dL1?sMT6@(L{siAjC>Sr*`>Y;FsiP@7V_Go zMgbqWM_nbew+>4m>Vtt0EPMmgCW>}{fgW*wQ*EawdZ=Q&wXqi}Onnn(ltKsI#6pxp zgWtk5ihUWUhU9t<_`26yYFClH%vef$o|PI>mHG~TRQfhdCZ*yX^*;W-i!(UN z`mX8^oYz=wuNp#!cdGTws01I08&2!rSN#AEzpwU|hO-izP|-&sUQ74@yYX;(?*nx| zz>^=UrvZxgt49D54yYgMiT!BQF|jH2J*Yk{3^!jr2ulWR^${kc%u8!MfI>fp2UC1X ztW6s~RyRSMcvzJLJ%4lZKP|SP#h+lc9!|;;^%-FrZ9D?EU>f-!#WpmJ4e2oY=BV0> zu|8GTO6+~jQXi^&N%W;VpCaQl%Kc0|1km|&^&^>!>$G8p=T3pg(2LV(`Y|k#)Aa7R zd`#`8m(h&o-4L7OTfVU5%}=T0bw(39)M?+} zU#lkpYJH;~7vjt}zQKFKdg?xO-%X0Aq;FxXapt<;;XVK`@Qm7o!NF(Mx(rS_r#b@C z?DOhQJzpETTVHBR#TV3fWv)ls06KL6CN-sz6ldOck##=jkE6UM(s&BFtlricgX#5V z684-c>NhBP{8e-s;O_tH>b?V`sJ1_Vn~-F)le(K8(i0#70)!%+&_qzA%L7D~5CX{n zNk{=-1Q#q=SPVh%swfC5A}B?L1q*`Z=@V%-L>~ecP((yT1VQ|rbHBMq`290y?&sdA zJ2N{wd*|M>bhAdW$2sQ>s~p^Nq% zsD=hx^mHQFS`kpB>O!m~6e1kfWD4cYE&7gfSR-hh<}yVs548r-xSmy4r`0p0h!;l{ z@k&FI=+zJ_O}*l@hEjVwp57h)WSVW2 z`YqXdn8Mvnt>-A@rdabs^aTIxqdEt_I_>M-PX(k}F=~7&P0&gGluCQH6V`Bkn$?BI z^%`DDqeXP$YwZ~d6Ef&i>ZJb4u-1f^@LZaWD!HR3zj0P=jyfaN{!IFWOH@pjHGl$b z@dLrSq+B_d5UvIAYcr=K#gVm4QVolK)~((`YT-YC*RpdX-< zzyLsJfkA+-0)qkF1%?883XA|0G7Qy~k4HoLYB7gjf0MGuB71-U{})Ri+du&i;3k1d zfWZPKfFS~<0Pir7X^;^D<$zHFGXbLoY5-#dW&_3v)B(l|%mqwn1nPZc9%P~vxd$*w zU;$tnrrCDl{_A=x@Ch$1mNe2Ei*?tP}v;n>8t4+#&2H9%_ zo(HTGSP$3$;Ooyu$jegX6~I;jKj1Zi*8w{O-U7TW@DAWV0`CJp6xhu`=igqDeJJv= zz$bvu1r7qfWT@fYu?UC8VFP-195E^TD9V2;@EzcU0k8c7W3~0t6mEUN^a}Dr{d+nAcX@7?aS__;2v|->DlhiCjRD-U62ZeFd%n`ZMUd34!#NF0Ipz z2J}J)nUo!j?3)Eb0k;77{11Z+l_HUV;Q}teNCB=8K?}WAAOY|%fn>l~fmFb40vQZ+ z{@*T=jUpa_=71uBJU}tS2>wL!0aFaeEzM3?2sa>0Xqer1H3J;7Vs`ZPyXz=<}Iz+`v&yx z_^(M(n*}<1w*c2}q4ImYB3mH)1hxSV2)qvXL|_NtGXbsvLvuYS@Gjtx!25u&40!Di zA%~6FdjLlS_5+Ryd;<8EL24G$a*rF(TmOSe*#egRw%I1Bhw;CC&BUly#fdn2%s7SwDmy@x|M`r z8Y2ibpm&F5Qg$fHhckH5tO6ubibMjU8AkH)6$6Mdpl2CpQg%GD69kd~NdhT=rUL02 zyml&!t`?JxA{hqsGO|p{ZjS66fjmHSf!2Urfwq8_0__2<1-zXgZA7{N+6i{0`%~T+ydz(!1b2sQ|v9kHI@ka3XBHy7Z?i|Ai!0ZXp(^f z9>7foy!Ir>U?VnHWuj?@2yi7Pf?)z&e~Dm(KsjKPz)Zksff~RVf!P4>IFUNYc!9Zq z2?Fx~69w)8OcGcCm@M!hV2XebP}&G|{?|inDY67GU0@lYT;MT4rNDAPmB0!>jle3v zEP-b=c2!lTR zpW>9RbH(p|Q1;UXboOeKvcE+3vjT?!YXpu0)(U*fK=+^PM2@4#ivm9aHVB*oY!dhd z@Up;Jz^ekk1GWlW0BqBspZ{4hRc3iJW|B+wu5v%rmjUj%Lf z{3>t@;5UI`fZqXp|2GoyhZGqNxF|3da7kc1;4c9W;BSFRfB>q1g=4A&&_tk=fsX%R zk!dL65GV&Y1!e-m1Zn^g0NZX0fPh%0B#oe6mW~cLBLP~FAmNxA;YD}VZcZRd4G@g$Y=xlk~qes?C(&1oWKdd zc!86E2?9Se(D6S}C$4tsDK=u;? z9RW`YbOx*t=mvONpeJCpKyQ9Clh*55k$!+R0s{bR1-JqxO|nj4FyKXjp@0nnBLJHO zZUwx28(;tR){lX_Dn)JsY!#RQ*d|Z}cuin3;0=ZaeEjk|tF)?b8PL0Qmr2>vZo&Eg zjz~Escu!y^;C+D_z<(L!%~x8+M+WpV_L`J^C(7?ywy@d8Hy zi2~mOk_CknbyjamZ$Y?3j8Zbtn zEnu8Ld%$>sPJjslT>ujqZs5Ju15j*$b_ad`mYAeni2SJneF0?xHvpyy39Rgzjbpp2m<_Jsx+{IANTgoj0&@$#5&>#FgCS{i( z`#ydC>j_FB_j3{5YQO_DMsrwbK+jV6y<%+opAXML+?zFxHpC z-xXL3_>aJPzy|^w03R|)0}ZrJdkpAB>}yQX^?wT{IAHSaZGcY%UI%<8umf;VU>D$! zz`KC21l|W6X3#A|d`)Bg|LZX$dcD5oR3-1qeVE|50iFGWN!cGG`=r2UfKvir08R^h z1vn${b>sE#tjIAGIVbQP;Jm;Izy*PmfIkI(23!_61Gpma8{oRz`TD0f_BgHHfp_D4%9PXJ?p{9f#~JfkZ$KgS70y*WVUK^c?a`%1*}wtpu_F`2x)V zZ5gCF5ZcD}2J{>|nv~rd<*#SZ4TN;Q9rs_|jOYn^aB2*1V@FI-Xh3K8F)6z+fNuo81soSR0XQk}6X3MKFMzWQ{q_G3zd_DJ z8h;R8;1s`DVP8b{WdnNmUNI^AZ)68fFy))j7=5H60uF#B5C({(;KeecAZ{rV1Be$$ z03-`E1*9?XD;jn>Aj^PW&m5Don;|<_Adg}2QoFTCK8myxC;)U6=mh8@&=t@_gL?K~ z)+8^#k7195k7j4kD>KHV?6JrmFK|0xqCgQ~vOo!-RGLU?pI+ zz%zg~0?z~1c}3PkHVAA4ye#kvV5@*1@S4EufE@yF0p1pP2k;*QUi*E>heqt(fV~X- zMu@!+@Ua2C!#*`B`!i&JA#e!rKY_!5qXNeO-%a2r3VIpeLw=AVKLSn({0ulF@GIb) z!0&(y0v7?71^xnD=P{cW;H6PI{ewh;0igm;K)65zAX>l$h!uzfBnl(}QUp=~86K}$ zlT1jC6ln&?703g$X7KRmk`HKSKz}anIaSEn9guy!0iE5&r0lLb+iUj_>8Zu;Ezk$h zU*HD7K!HJk!2-7ch6xM@j1ssNFb3eI6&(v1&%$rp*tY{F8qjM#$)xOJWKR*83a|yH z0m=m`0969jfLZ+c>pt7;*^oK|dZBYn%ASktc>?nR_X^wxctGGmfKOl%V6i|0fBtm% zEfraYB9Afft3LMQfF}*;)mmXv_DW>07I+4*M&NnCI)U|o4I1{R&{K z0lm;|CS`9&_8S6k0(J`Q0=&!6jpz6t-~$7Cjvsoiqw`d@S$@;B$e4 zfG-8U0({NDZxh)^0N)tU3;oWd?C)ue|IzzFefL>k<^&A@EBH zl;XnYwuFvdaV?=7AS>&eDG4_DvcDlW*!Bu zqDJ9X1g?%oDXuX_ftwAYz!gR)a7_^k{GTcX{@;)S|C2|dan}4t9Hsc5Fbe$F3kCkO zgu;X%ua5jb1ts~pFa>`2OMxH9QsBp~6!`Hf1%9kZfuHM9;3sJm`1u(HeojV#pLS8; zXIK>YSrr9-SVV!J0a4(`G!*Euh?gTj5um`o@+t6-cMANIoC5#!roca-De#Y83jAA^ z0{>*Cz&|`G@Q+0b{9B9y|2m?;zcwiF&jAYk5%?~fQhXEZp?EiveAh@RzQdxxU+EM) z2!#lIX(uc~;ENlj_;N#muK^VJtfj!`1ceecrq~)tFLkdfwtCVV*++`4&dzSJ=*M|J zwKHPHt354(oZ)mb^}d!TPPW3G{jRlzY+bLhxQ-n??b=k9PhCp0=y7#cl4_e56vA`v zc`ZkkSWai3tF0xy>`UvC2Kx4sSDu0UAiC(Cskf~O-405VPQ>-w7R@fP98;g%q`>43{1xZFs zwXSz=XiOHV!Bef)&h?U-qAv7F9~N`5KGu;wdm&zv=3nOjTD( zyM5!ewu$YfYb>rqr+;R#r7`PHb*#)vQu_vByI#G9;|e2%PxxZ3iZ*;gks-0jULo^!3sd60XJtArU=gm>&@`o@{Yg9ILUc+i{&t$EO% z2eCZp&V#u;n8$-u9$YM@!6Y6Fz=a@WwO4;-hl~r!p)EdU3aw`Q*TjZ*zUvcJ!;xg-N$*E+uW2-Zo8g#l@ zg;!Y3L-<n7pRE3pGEhEgWu#(YeL7X~v$Qeg7;VUmSgV6B3GlQlt zREI09W_a5@PpvEo&Q=*SEr&y2gsIs4DZ$CAFvJR>vUjTSl~y{v*gdDx%A}XFS5#Wr zA$%pKp6?H&T1oUG^s!2-*vsDybMf6kp$}60r9dfOQ40K>K!Lv#D9lITHKP=N8BpLa z0}4e5{AEBX{uZFX-vShP*%bKhg+i?kwLbOEOe;Q}R|5BVJa;@;YB0{MKvWJyP~YT2KP*~pNGE~nv}}-PrfKAF`bG@kph)j z99BS|*1gp1bU1fa+;eq!2MRM+hqt8g&EvfO8=^lo)Q_E-P9obaW z7Z}kZPgA%lT3s}Ynzp;vrdJeACiDLV8y~|PG?|v>sjexiDWgxJnA$X*=ig8iaVb8S??9_n=1(Ch z>dbE;asDHBM2ziCO#*k_9+4KrH>9d^TSQ(6kNI-crY51yDRcAoh}Ho&`M=&C@o_V1 zx_9#tN={Q>ABo5hnD%`5(TH$rN;l$EM1If+p26auB3cFWSgo2EM4kIq9*wa4t4~FI z*IswdN{vJek98zD^erwOGn-Q!$-z3ITnomeM)G7e@{bXMVp`ko>|6@$ZXv=CtW-?=THv}J5n4GA^O(4 z7CVmn74`4h8R<$)tfMJ>Q6uzWR#GL$Tb(-jMPza?=hmuYxuMzq)`ub|PM}s`7j=$G zr|?qes7wm`I!DC?jP!rsIVv$ay*d!3Q z^&p)_0V5mg%)MpC;vM8{#W zNG{9gL1j@@(F{8L^(0!W|DV>X%^%S9@VAc9`_}9J(dhUr+8&)qJ9jc~*v2E#9Reo% zlaEE8NQm%~RNH&0Wr~`mKIK|OM-+8`7U^$$F}i;@-Fum@sp>T@tSNm>jpenZ4$MPb zi6)h)`aB$-nctXa6<5rttfdQN<-Z#x>>s%ULtIyP_RV7o4^bw;a<{xR}@f355 z#-7H)(YMr2uPM{bKCQ#XG+6BL^a3uS;pL02KsQtxViSGC={JYl|QCU?{TvA=_ zsi~M&LVG}?V@6SBWf}ddLNaVdN!3*PB&#YW(b3jLMJ2i8g1KO=D)7-NQvYU6{bQ2c zpVbEOk7$*-&>fr0W4^HB>1CB3J~>NhN=@N9+_3pSNJ!N!pMfsH4>avP*4}JAkmC;c|{roI;Cu8agpF1974L*08?n%q% z<`y5h9mo2`?xb7wT%z=agV)KU&*jF|vZ`w*@!2!RL&vKw7||&Dvo&iU)`ZYp46$ zqFdL1t&UWOehfm1`IHE>soBTl?i3VAR|Vg>lT^Lm;oyu_$7wM-Bt%u$&X`eDMRV-M z3!;t^cDdu}{->7;IN{EvLKIR|o4M4Zy)KZf3#jrF?hrr@VDSleG|%#cyBR`??!t?f zcK^>O-2R_W#1v1brX+`tifyO6+M)~asvVAGx;XJe8(%i3asqAYLF*k-yajdH7DR6e|eYq9Tn6rWd7RtEDFQc#-~u2u{J&}V6fk}HhyC%wffk@m5`g* zo!2sIN?G}2`m8HGW!2UC%?Q|uyqA5?g5;_HR_h-2i z&OSkHGwQqQO59af^7`p}X+5UzrS%x!OY6R(=Oc|iKZ4N=B9?J#wlhdW=YA0 TsmV#kMuy2IW}D|QE?5Wv(Nq;_ delta 63 zcmdmUjA_p?rVTla24#6khJ`7qS^8X({GuCTYg0 TiOD9($!Vs>2Ak(FE?5Wv)E^cN diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index e6fe28cd1afffff4711eb496242199ec4f188102..37888c2d91f2e18469ace45f5ac0388230a518b3 100644 GIT binary patch delta 63 zcmbPsn{nE0#tn-Z4f2vxDw4_zEA\n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -3023,10 +2977,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:54.670140Z", - "iopub.status.busy": "2023-10-06T06:41:54.669781Z", - "iopub.status.idle": "2023-10-06T06:41:54.865356Z", - "shell.execute_reply": "2023-10-06T06:41:54.864585Z" + "iopub.execute_input": "2023-10-11T10:13:50.648555Z", + "iopub.status.busy": "2023-10-11T10:13:50.648181Z", + "iopub.status.idle": "2023-10-11T10:13:50.853163Z", + "shell.execute_reply": "2023-10-11T10:13:50.852446Z" } }, "outputs": [ @@ -3057,10 +3011,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:54.868428Z", - "iopub.status.busy": "2023-10-06T06:41:54.868067Z", - "iopub.status.idle": "2023-10-06T06:41:54.874369Z", - "shell.execute_reply": "2023-10-06T06:41:54.873751Z" + "iopub.execute_input": "2023-10-11T10:13:50.856553Z", + "iopub.status.busy": "2023-10-11T10:13:50.855985Z", + "iopub.status.idle": "2023-10-11T10:13:50.861797Z", + "shell.execute_reply": "2023-10-11T10:13:50.861237Z" }, "nbsphinx": "hidden" }, @@ -3097,31 +3051,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0151ebd127904b58993879d5948d5543": { + "02c6f0a42df84df08d778dec1af0af70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_893a3906fd80400ca06dc6cd60f2b3de", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f48ba079fc754c11a1107f624273ab52", - "value": 60000.0 + "layout": "IPY_MODEL_24b068c742324f13b546986aa15688c8", + "placeholder": "​", + "style": "IPY_MODEL_dd5165334aab40bca65fd1c56bacd6ab", + "value": " 9617/10000 [00:01<00:00, 5829.69 examples/s]" + } + }, + "04f0dec9e2024f9bb55309f482e2a808": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "01671bb1af594ed1aaa264189721e161": { + "0530e34526e74f2c8fbe18160e0b98e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3173,74 +3139,59 @@ "width": null } }, - "01e5ca03fde34295afdc0a7e47a2ef9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "02c6bb29d5ff429b98a5f4e28b2cf996": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "06e0d153463d4e80ac2cf34d0073219c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "081f2419fe27464c80a27551ae122f4c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "07c235f5a12e433d8548139c3d2c1f06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4bce7cb5562b49e0959b06ac4e948878", - "placeholder": "​", - "style": "IPY_MODEL_b1f260c53b9d4190b0baabdf94245266", - "value": " 9635/10000 [00:01<00:00, 6219.23 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "084e5989bff34f99aa0927df9c33f5ca": { + "08ee3f3b655547bb9197afb0fa6d9a50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3253,33 +3204,18 @@ "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", - "bar_style": "success", + "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_57e1fb2ec7574a57ab84f5d0169fdb2a", - "max": 4.0, + "layout": "IPY_MODEL_d5ee54a9268e40848992e8fdd001cc30", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6492f686e3414d2e939e0347a87261fa", - "value": 4.0 - } - }, - "09ff6a5101a3425b88b0b796dbc19348": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_149c237e59304d11be5fe2c969ac65c6", + "value": 60000.0 } }, - "0a31e565c6164dbb95f9063af7c30476": { + "0a1b3634ed6f45689c55a69c4d358c70": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3327,11 +3263,11 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "0a6f675ca92c4491843d1bfc2dbe2f73": { + "0d97dd203dd749c98e492df740ad1a8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3347,7 +3283,7 @@ "description_width": "" } }, - "0c8cb9f8e6f44b4f9b398fba6dc63327": { + "145b49eab7524442b9a18a49e4da466d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3399,7 +3335,23 @@ "width": null } }, - "0ed3644c553146f9858ec34a1abe66b4": { + "149c237e59304d11be5fe2c969ac65c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "166290f12ec64720ade2b151369625b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3447,50 +3399,11 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "0ff7ecbba50441bc8acd04172d7878b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1f32673a5bb342c4a558461413b1fa3c", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cbf0b1dba3ea49f9bc102d0106f59e4c", - "value": 26421880.0 - } - }, - "1403b860563b4f118bf69a9385ce03be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "141ba5460c0f40ae9e6e898595d1fb04": { + "17df8f0b127748528def3ab9ee066e9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3505,43 +3418,124 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8df648fe80e042d38fca49b6a6c14155", + "layout": "IPY_MODEL_2bfcc1ba222b46b6bd22c53a26bb8ffb", "placeholder": "​", - "style": "IPY_MODEL_986fe4a4df6047c1a0fbc3c3f144db88", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_824581c27bd54707a1dbd7054941396b", + "value": " 4/4 [00:00<00:00, 622.74it/s]" } }, - "1749e0a97a9d40e7af24b6322bc38eb7": { - "model_module": "@jupyter-widgets/controls", + "17fa1cfef36c4838b2af5ae5c56a2199": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "18ddedcb5c2b45d68ea020d85ec2957a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ee84a0ddb0ff453e9e2ad203d1ec2fbe", + "placeholder": "​", + "style": "IPY_MODEL_b7132a8576a84832a293b379c8146ccb", + "value": "Downloading data: 100%" } }, - "1d6ba9ad5a0f477d86aedd8503d4c816": { + "19cb56bcbce449d8a8e650440d90bb26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c234ef001e8d4a52810d7d8c57e71a06", + "IPY_MODEL_4a49bfbbc62f4d5a9f3a2ef5f3f9ca7d", + "IPY_MODEL_02c6f0a42df84df08d778dec1af0af70" + ], + "layout": "IPY_MODEL_17fa1cfef36c4838b2af5ae5c56a2199" + } + }, + "1a1751cab1284fadad8950d60cfbfa98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "1dad32857f1c40f8bd6a8ff6199a5f6e": { + "1cb3c5ccdcc1482b90ef1579f97a7836": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3557,15 +3551,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a90b395968c14dd4abbfab66088619d0", - "max": 4.0, + "layout": "IPY_MODEL_081f2419fe27464c80a27551ae122f4c", + "max": 3126.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_81e899abc48143ac841fa8aeea8b4f3e", - "value": 4.0 + "style": "IPY_MODEL_796d3a9dc21b498daed15f7910c37dd4", + "value": 3126.0 } }, - "1f32673a5bb342c4a558461413b1fa3c": { + "1d93bcd956e048a1b0dc39e0cc356c0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3617,22 +3611,7 @@ "width": null } }, - "211746264aba474384ebf63383ca003f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "225f13c4665d424ba2ccb424d13ca2af": { + "1da917103e2146f699b66ecb90c8713d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3684,131 +3663,37 @@ "width": null } }, - "24f3a69463c344eba134c96c15bc0098": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6e878ffb2ec546d394990efba924591a", - "placeholder": "​", - "style": "IPY_MODEL_8b462027ddf74098832001a78cd07634", - "value": "Generating train split: 99%" - } - }, - "275368c326b449d88566e43cc460e9ba": { + "22752480604c4f99b5b0e8acafbf27fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_88e8534545094e0c963ec575e95cc2c2", - "placeholder": "​", - "style": "IPY_MODEL_ea678bebcfe2498db2895163b2459f58", - "value": "Downloading builder script: 100%" - } - }, - "299aa0eff6144b94bd17d873f2c8bddc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e22d4c4bce3a4b53bbf0e20cf57c81c8", - "placeholder": "​", - "style": "IPY_MODEL_cc34bb1b87524f388a8f46f998078cb5", - "value": "Downloading readme: 100%" - } - }, - "2ab3efb6c5f74a3b9c54005bd8c52d15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fa6b9ac9d98f4610b25acf9fd34c9cd7", - "placeholder": "​", - "style": "IPY_MODEL_f0746106a8244eb2b9f15cf3186ffbdc", - "value": " 29.5k/29.5k [00:00<00:00, 2.51MB/s]" - } - }, - "2cf14236d6b348139bccc29262556a4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b032fe5407d6402e8cddcea0f75f7348", - "max": 3126.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a6f675ca92c4491843d1bfc2dbe2f73", - "value": 3126.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "2ea284ff7eb44f8188972e764cbd7aad": { + "2316e73fd848478997624e289f885e78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "33a7dbc094c8467593b70492a7889c6b": { + "23d89cb0f39d4026a7fc0feb189966db": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3845,116 +3730,22 @@ "margin": null, "max_height": null, "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "33cdde96c6f94e74a90cf9782fe2ac0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_141ba5460c0f40ae9e6e898595d1fb04", - "IPY_MODEL_5b0141868e224c45b9f34eb14dc3f503", - "IPY_MODEL_52af8bc7ba71495497d942d3f8e3108a" - ], - "layout": "IPY_MODEL_70e3f1da8b574e20a73dcdae80a663cd" - } - }, - "36c9785b3d5a4a58b55da86ab88f4ae8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_43905303f8a343f6b2c4fa023c32ef73", - "placeholder": "​", - "style": "IPY_MODEL_01e5ca03fde34295afdc0a7e47a2ef9e", - "value": " 4/4 [00:00<00:00, 2.79it/s]" - } - }, - "3839a58bc40e4985b854b28e76751270": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "395122d8162d4902b5e474611ff95663": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a9b572fd134640c68524b7c36e53f49b", - "placeholder": "​", - "style": "IPY_MODEL_f8dbc859491a483fb708ff57979ea23a", - "value": "Downloading data: 100%" - } - }, - "39dfc68b4a464b0c915ba7dcbf4be31e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3af7a267f69a4179ade464518a83d144": { + "24b068c742324f13b546986aa15688c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4006,29 +3797,23 @@ "width": null } }, - "3d1ef15b6e96488fa1467ed33fb0ff16": { + "24f0dd9fe7aa4e5293b12229a20826bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_24f3a69463c344eba134c96c15bc0098", - "IPY_MODEL_473606641293409c9166005473f7da63", - "IPY_MODEL_6e799b868e8e41e9a23eb44a07f7c964" - ], - "layout": "IPY_MODEL_0a31e565c6164dbb95f9063af7c30476" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3d2f71a9f6e54418a5ed89f8ec45fc54": { + "27158263426e4326bea37b17780b13a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4080,94 +3865,7 @@ "width": null } }, - "3d962587604c4d2d930b18b9acf54dc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3dad4a6558ae4c9ba3e9317d48a97e26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3f68f8498be148848fa2ce1649ebb5ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "40669995d2a94598a3210f2767d0824b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f1730c6c7a2f4151a5cdf5407e4bfe64", - "placeholder": "​", - "style": "IPY_MODEL_d627e1e57e1e427ca521fa53addedeb0", - "value": "Computing checksums: 100%" - } - }, - "41c4d9d3f4e54674ac4ada871fa5db02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a1c89a6b82d94910956cd2087b93b293", - "placeholder": "​", - "style": "IPY_MODEL_3d962587604c4d2d930b18b9acf54dc7", - "value": "Extracting data files: 100%" - } - }, - "43905303f8a343f6b2c4fa023c32ef73": { + "273a11e90a6f44a2a5e0214019a7a7a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4215,116 +3913,27 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "43bf3282121448eab75d01ed88496868": { + "27dc7709d9104ae6936c712c3cd1c1b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "458c0bc485a74f8a91020cf3173f7842": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6064f73b972b4f819f9643eb378c10a1", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e55c8a9a601342c59a6b69e5b81457c8", - "value": 10000.0 - } - }, - "45f3cb23469e4510b7b2871daf17b8bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d2c75f018c34465b8bead430756a9676", - "placeholder": "​", - "style": "IPY_MODEL_1d6ba9ad5a0f477d86aedd8503d4c816", - "value": " 4.83k/4.83k [00:00<00:00, 385kB/s]" - } - }, - "473606641293409c9166005473f7da63": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_53dd8fadf0554a00bf9f5548e1973730", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_51f97d1b43a24a748b73657754fb41de", - "value": 60000.0 - } - }, - "4b483079a604407d89f71f81b11d8637": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bf73b96ae84a47bf93e41030dcd65a86", - "placeholder": "​", - "style": "IPY_MODEL_09ff6a5101a3425b88b0b796dbc19348", - "value": " 4/4 [00:00<00:00, 613.94it/s]" - } - }, - "4bce7cb5562b49e0959b06ac4e948878": { + "29a57bb372844662ba5b50a6816b3bd4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4376,7 +3985,7 @@ "width": null } }, - "4d06d70cfcf5403db9768c1b6c7ea1c0": { + "2b4ea11a7ca8411f9ad4e2dd06db4666": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4428,44 +4037,81 @@ "width": null } }, - "51f97d1b43a24a748b73657754fb41de": { + "2bcf4863514e44b8a54f1b2b2b38c784": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_76e624e1df7a4932b1c44bb698fdc4bb", + "IPY_MODEL_819cea03472b44a6b15101d9083a8a21", + "IPY_MODEL_17df8f0b127748528def3ab9ee066e9c" + ], + "layout": "IPY_MODEL_7a75183b24834208b5c28167acb72c73" } }, - "52af8bc7ba71495497d942d3f8e3108a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "2bfcc1ba222b46b6bd22c53a26bb8ffb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4d06d70cfcf5403db9768c1b6c7ea1c0", - "placeholder": "​", - "style": "IPY_MODEL_1749e0a97a9d40e7af24b6322bc38eb7", - "value": " 4.42M/4.42M [00:00<00:00, 51.3MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "53dd8fadf0554a00bf9f5548e1973730": { + "2cedd620897b4b7ebc38cd3c6a65c91a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4517,7 +4163,7 @@ "width": null } }, - "55bb3ed2b93c43e7a7ae7956e7f5f072": { + "2ef5a77a55d94c78baa40ea1709dd540": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4569,7 +4215,7 @@ "width": null } }, - "56f725efc02d44f1804d80151899ae54": { + "3217c5f2a83e4d2386c96aee450e0cf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4617,11 +4263,11 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "57e1fb2ec7574a57ab84f5d0169fdb2a": { + "33a2accde46c479ba6a9d32efc0fc132": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4673,7 +4319,7 @@ "width": null } }, - "5b0141868e224c45b9f34eb14dc3f503": { + "34579b0fd42f402bb5c668d10306f0da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4689,15 +4335,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ba99985ebb204af4b9a7a5e34c7001df", - "max": 4422102.0, + "layout": "IPY_MODEL_29a57bb372844662ba5b50a6816b3bd4", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a1ff33a9b7424d4196eaf869f54b8886", - "value": 4422102.0 + "style": "IPY_MODEL_27dc7709d9104ae6936c712c3cd1c1b3", + "value": 60000.0 } }, - "5b328adcfdb04550831822d926e1628f": { + "34cfef4161174003ab992c33ffe64ff2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4712,13 +4358,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_eb1b6a4da22f46cca0dc4fbf6e861449", + "layout": "IPY_MODEL_90c772d5b71c46528baae9d8e8bed162", "placeholder": "​", - "style": "IPY_MODEL_3dad4a6558ae4c9ba3e9317d48a97e26", - "value": " 59928/60000 [00:15<00:00, 4121.17 examples/s]" + "style": "IPY_MODEL_22752480604c4f99b5b0e8acafbf27fc", + "value": "Downloading data: 100%" } }, - "5c56933ef85d473fb2f83c90fb87f0c0": { + "34ef2aacc2d64a75a1a39629a4f0e6d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4731,18 +4377,18 @@ "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", - "bar_style": "success", + "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ed46963891574900a7eacc41e84d9997", - "max": 5148.0, + "layout": "IPY_MODEL_23d89cb0f39d4026a7fc0feb189966db", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2ea284ff7eb44f8188972e764cbd7aad", - "value": 5148.0 + "style": "IPY_MODEL_885869664c2e4787a4f4538b02c6691c", + "value": 60000.0 } }, - "5c607a84f1444542bbaac679854e1b01": { + "3553c2ef58114f9a936ebd6f09229d99": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4794,59 +4440,28 @@ "width": null } }, - "5fe5a726a00c4ddfb55ecc5914ef0075": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "358723d13f4d4aed9dfba7bfe0e6ae9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_938305ce640b4005af8098ad5810cb69", + "placeholder": "​", + "style": "IPY_MODEL_66754249067e42eba1fe8b066b45d7f9", + "value": " 5.15k/5.15k [00:00<00:00, 393kB/s]" } }, - "602f58878fac4e29aa493c675525722c": { + "35ea246fcb374a8f8d74af458959e93c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4861,13 +4476,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_996e2db5825d4518ad2d4d4fabeddd88", + "layout": "IPY_MODEL_dc1561fff54643499c0bab20c7c6093b", "placeholder": "​", - "style": "IPY_MODEL_43bf3282121448eab75d01ed88496868", - "value": "Downloading data files: 100%" + "style": "IPY_MODEL_5f968fc6c31f475992e1f89598bd44ec", + "value": " 59804/60000 [00:10<00:00, 5734.26 examples/s]" + } + }, + "388810db058f44f69ede67c3d5f7dbbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6064f73b972b4f819f9643eb378c10a1": { + "3969ba13cf6a45338e795850a8e1032d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4919,90 +4549,7 @@ "width": null } }, - "61ec067de744480d8ec2a0377c775341": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_41c4d9d3f4e54674ac4ada871fa5db02", - "IPY_MODEL_f0a52bca034c4b199170aba6ea2feed4", - "IPY_MODEL_36c9785b3d5a4a58b55da86ab88f4ae8" - ], - "layout": "IPY_MODEL_55bb3ed2b93c43e7a7ae7956e7f5f072" - } - }, - "6492f686e3414d2e939e0347a87261fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "65e6ffb8c15c4a60a0a38431a50015e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6accb71036214df9a1e0c4bb745d49c7", - "placeholder": "​", - "style": "IPY_MODEL_8b5993c5101e4900b60d25ede6ecc165", - "value": "Downloading data: 100%" - } - }, - "697051b9e4d64222acc5a77f918bd133": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed65830d599646469908fff377873260", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ecdc5d2b0971466ca6fe10b3be15b802", - "value": 29515.0 - } - }, - "6accb71036214df9a1e0c4bb745d49c7": { + "3d99f62fdbaf4890a678133e7ce0ef9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5054,50 +4601,7 @@ "width": null } }, - "6b2a8b54141a4c1da3515dd6dff7308d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_40669995d2a94598a3210f2767d0824b", - "IPY_MODEL_084e5989bff34f99aa0927df9c33f5ca", - "IPY_MODEL_4b483079a604407d89f71f81b11d8637" - ], - "layout": "IPY_MODEL_0c8cb9f8e6f44b4f9b398fba6dc63327" - } - }, - "6e799b868e8e41e9a23eb44a07f7c964": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_01671bb1af594ed1aaa264189721e161", - "placeholder": "​", - "style": "IPY_MODEL_3839a58bc40e4985b854b28e76751270", - "value": " 59530/60000 [00:09<00:00, 6186.86 examples/s]" - } - }, - "6e878ffb2ec546d394990efba924591a": { + "43ce4d5c01d64a389be2ab17db643203": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5149,7 +4653,7 @@ "width": null } }, - "70e3f1da8b574e20a73dcdae80a663cd": { + "44726a05265b410094fdc31944fb6346": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5201,59 +4705,83 @@ "width": null } }, - "711309b7eaec4fa9848d2982dada90af": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "471ad93953614f17a2204c72fc743424": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b46973d78b6044c58cb0b065af3fcc29", + "IPY_MODEL_a2500082713c4f7f8bacbfe37165c6c3", + "IPY_MODEL_bfab3a07981d46538b94c07a77879d04" + ], + "layout": "IPY_MODEL_43ce4d5c01d64a389be2ab17db643203" + } + }, + "497ba684a54b4c55bd282633189297b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4a49bfbbc62f4d5a9f3a2ef5f3f9ca7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6232384e32c45ab857e6b0db2473592", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0d97dd203dd749c98e492df740ad1a8a", + "value": 10000.0 + } + }, + "4ac0611cc2004f7c8c23b1e186519907": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "7a34bc51e4234e16ad880c8ee0b61ddd": { + "4ee876d61a494dc28b9583d4708b305b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5305,7 +4833,7 @@ "width": null } }, - "7d776926d19d4afab5af0ead9d7b6983": { + "50abbeda51104b988a414f28699f1791": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5320,13 +4848,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e3ef29165bd24e338053cea5836afaf0", + "layout": "IPY_MODEL_0530e34526e74f2c8fbe18160e0b98e4", "placeholder": "​", - "style": "IPY_MODEL_83d091ebb83c4976985f8f4ba4a6b137", + "style": "IPY_MODEL_554202939b2b4468aa9c983ecb8e5ad5", "value": "100%" } }, - "7f8cd140bc134cf39b86db70c064a59e": { + "554202939b2b4468aa9c983ecb8e5ad5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5341,7 +4869,7 @@ "description_width": "" } }, - "802b59b6da604b728597ee0f2a195e02": { + "5597552515a443568a713cf452505e3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5356,7 +4884,7 @@ "description_width": "" } }, - "81137cb7597c46a5b79a3203f847fbd3": { + "563ceae2befe4a29a553ec515c85e0c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5371,29 +4899,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5fe5a726a00c4ddfb55ecc5914ef0075", + "layout": "IPY_MODEL_e2aa2b8d04584980b4e7e38f64155397", "placeholder": "​", - "style": "IPY_MODEL_06e0d153463d4e80ac2cf34d0073219c", - "value": " 5.15k/5.15k [00:00<00:00, 317kB/s]" + "style": "IPY_MODEL_b7f742808e984130b2831853efdbf512", + "value": " 4/4 [00:02<00:00, 1.64it/s]" } }, - "81e899abc48143ac841fa8aeea8b4f3e": { + "5a3be28d1bdc4bb388e481945cc539ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1d93bcd956e048a1b0dc39e0cc356c0d", + "placeholder": "​", + "style": "IPY_MODEL_eeac3e7eb46e4f4db75e49018cc7279b", + "value": " 4/4 [00:00<00:00, 3.13it/s]" } }, - "83d091ebb83c4976985f8f4ba4a6b137": { + "5c5ae74d2d4d447a84b93007bd3b2b8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5408,29 +4941,23 @@ "description_width": "" } }, - "88b15f4b3fc74d1b8e47fc1ac4dfec47": { + "5d1aa9f1bf2e48669873e27852771e57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_275368c326b449d88566e43cc460e9ba", - "IPY_MODEL_d9d7e77f20bf4053961273f33bc63c4a", - "IPY_MODEL_45f3cb23469e4510b7b2871daf17b8bf" - ], - "layout": "IPY_MODEL_8f8de057b1db42989765dfa7441e5f4b" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "88e8534545094e0c963ec575e95cc2c2": { + "5e952e88c4024945980510045e4997cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5482,7 +5009,22 @@ "width": null } }, - "893a3906fd80400ca06dc6cd60f2b3de": { + "5f968fc6c31f475992e1f89598bd44ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "61a6ba883fed4813be9bee47c29a5390": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5534,7 +5076,7 @@ "width": null } }, - "8b462027ddf74098832001a78cd07634": { + "644e9b5bc6e549918989726d11f1bc13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5549,7 +5091,7 @@ "description_width": "" } }, - "8b5993c5101e4900b60d25ede6ecc165": { + "66754249067e42eba1fe8b066b45d7f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5564,7 +5106,7 @@ "description_width": "" } }, - "8df648fe80e042d38fca49b6a6c14155": { + "672a93126ff84ec7852eed6b656e6a4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5616,7 +5158,7 @@ "width": null } }, - "8f8de057b1db42989765dfa7441e5f4b": { + "68df7f3bcc1a424486c93b6c16877d82": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5668,66 +5210,95 @@ "width": null } }, - "8f95920e837c4278a3189a10686934d1": { + "6923ecab36614f488946e77b0400211d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f494146fe5f3418ca4c7a070154e390c", - "IPY_MODEL_2cf14236d6b348139bccc29262556a4d", - "IPY_MODEL_ac24325460954081b244544fcfd0818b" - ], - "layout": "IPY_MODEL_b19e6a8b56e4417db6319cd03a94e7aa" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "90b11b854c844458a3b8e8e2cdc39e57": { + "6dbf3b48842240b5b06517d7bf644f66": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a7d4ee8fd3804fdeaae465aa22298ae1", - "IPY_MODEL_0151ebd127904b58993879d5948d5543", - "IPY_MODEL_5b328adcfdb04550831822d926e1628f" - ], - "layout": "IPY_MODEL_c0b88fdeba9f4356a33834c8891a5427" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7312f9eb9add43b497eac7c249001dd1", + "placeholder": "​", + "style": "IPY_MODEL_644e9b5bc6e549918989726d11f1bc13", + "value": " 4.42M/4.42M [00:00<00:00, 73.1MB/s]" } }, - "986fe4a4df6047c1a0fbc3c3f144db88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "706cab8691894b17b3ca83148edf9537": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "996e2db5825d4518ad2d4d4fabeddd88": { + "7312f9eb9add43b497eac7c249001dd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5779,7 +5350,29 @@ "width": null } }, - "9d04baaef43d42a9a4031bfd73162284": { + "73d6fe322f2a4c548931f5375ca2ebbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78dc3a36d4f444f794b7814f03b576b1", + "IPY_MODEL_d3ea63f59e1e4289a55637d86e510018", + "IPY_MODEL_358723d13f4d4aed9dfba7bfe0e6ae9e" + ], + "layout": "IPY_MODEL_ef03d83b67ce4ca1be2d788de0af6fa8" + } + }, + "73f87714f172420daeb7476f1dd6d1de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5794,35 +5387,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_225f13c4665d424ba2ccb424d13ca2af", + "layout": "IPY_MODEL_a3e66fb9df094a46aaff7d1f086a1dcc", "placeholder": "​", - "style": "IPY_MODEL_d3c91085dc2f4e358b8d9ba7171edc86", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_2316e73fd848478997624e289f885e78", + "value": "Extracting data files: 100%" } }, - "9d0d44d31d0a4b36bf059e3a5cba53c6": { + "741d83c0dfda4c599feb62df18e918fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "757358d2997a4b5c9b5e1fa73341d87f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "76e624e1df7a4932b1c44bb698fdc4bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7d776926d19d4afab5af0ead9d7b6983", - "IPY_MODEL_dcb24aca340942299d0c1bec3d240773", - "IPY_MODEL_f0c85a2d35574d3ba0aa5e316dd4ce1c" - ], - "layout": "IPY_MODEL_5c607a84f1444542bbaac679854e1b01" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3553c2ef58114f9a936ebd6f09229d99", + "placeholder": "​", + "style": "IPY_MODEL_f71b33e0c6034a90b7b7d994f3fc8119", + "value": "Computing checksums: 100%" } }, - "a1c89a6b82d94910956cd2087b93b293": { + "77fbac9f50694f019e7e07768d9277c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5874,45 +5497,65 @@ "width": null } }, - "a1ff33a9b7424d4196eaf869f54b8886": { + "786ab11d0340413abf874f6acb9000a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1da917103e2146f699b66ecb90c8713d", + "placeholder": "​", + "style": "IPY_MODEL_388810db058f44f69ede67c3d5f7dbbb", + "value": " 26.4M/26.4M [00:00<00:00, 89.6MB/s]" + } + }, + "78dc3a36d4f444f794b7814f03b576b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ee876d61a494dc28b9583d4708b305b", + "placeholder": "​", + "style": "IPY_MODEL_e4d9b1c9f75a48e59721fe7195d5d1d3", + "value": "Downloading data: 100%" } }, - "a6e342b828e64febb10a1251f5430c2e": { + "796d3a9dc21b498daed15f7910c37dd4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_299aa0eff6144b94bd17d873f2c8bddc", - "IPY_MODEL_dcc4169587cc4e7cbb69d72332762952", - "IPY_MODEL_c0bfb68de22b46efbfa5f581a47933cf" - ], - "layout": "IPY_MODEL_56f725efc02d44f1804d80151899ae54" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a7d4ee8fd3804fdeaae465aa22298ae1": { + "79cb24b03b314bd9b4a24286e52af192": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5927,13 +5570,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dd35b2659196472b91de4048656a837e", + "layout": "IPY_MODEL_ae1868ea77924c86b4556cf2f6b90e52", "placeholder": "​", - "style": "IPY_MODEL_bce4ac39b60447bfa844d74ac2161a62", + "style": "IPY_MODEL_4ac0611cc2004f7c8c23b1e186519907", "value": "Map (num_proc=2): 100%" } }, - "a90b395968c14dd4abbfab66088619d0": { + "7a75183b24834208b5c28167acb72c73": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5985,7 +5628,23 @@ "width": null } }, - "a9b572fd134640c68524b7c36e53f49b": { + "7b57e0729c014ac59243e20cb836fc63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "803f8bed0ae04d9ead2231ca4d73178c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6037,80 +5696,115 @@ "width": null } }, - "ac24325460954081b244544fcfd0818b": { + "805d3d17423c4ddcbefd8dd36e9a4dba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "819cea03472b44a6b15101d9083a8a21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e0854f59becb4f83a0f529dfeca13598", - "placeholder": "​", - "style": "IPY_MODEL_b01da0aad7404edcbcca0b57a9c1401b", - "value": " 3.13k/3.13k [00:00<00:00, 231kB/s]" + "layout": "IPY_MODEL_3969ba13cf6a45338e795850a8e1032d", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24f0dd9fe7aa4e5293b12229a20826bb", + "value": 4.0 } }, - "aca71be19594459c8da95aff7ff51804": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "824581c27bd54707a1dbd7054941396b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "86acdfafd7c2440b8b365a0194c97131": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "879878209ae04f39a9d431f4b1a30527": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b04504a2f2de44fcab6fc2fce8399663", + "IPY_MODEL_34ef2aacc2d64a75a1a39629a4f0e6d2", + "IPY_MODEL_35ea246fcb374a8f8d74af458959e93c" + ], + "layout": "IPY_MODEL_273a11e90a6f44a2a5e0214019a7a7a0" + } + }, + "885869664c2e4787a4f4538b02c6691c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b01da0aad7404edcbcca0b57a9c1401b": { + "8c1c8c6c4bb8498589a2934f7f1761b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6125,7 +5819,7 @@ "description_width": "" } }, - "b032fe5407d6402e8cddcea0f75f7348": { + "90c772d5b71c46528baae9d8e8bed162": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6177,7 +5871,29 @@ "width": null } }, - "b19e6a8b56e4417db6319cd03a94e7aa": { + "919b65c98a2d49adb86d4a2bf0a272ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b25dd42728a44b93aec814ad5963e5cb", + "IPY_MODEL_1cb3c5ccdcc1482b90ef1579f97a7836", + "IPY_MODEL_a12b7f6c88674c529d7e301e81c947f7" + ], + "layout": "IPY_MODEL_2cedd620897b4b7ebc38cd3c6a65c91a" + } + }, + "92886bb5677f4e5eb198b9643ed0580e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6229,7 +5945,7 @@ "width": null } }, - "b1e011a63af64416954348b761a09179": { + "938305ce640b4005af8098ad5810cb69": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6275,82 +5991,13 @@ "overflow_x": null, "overflow_y": null, "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b1f260c53b9d4190b0baabdf94245266": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b202b5782f4046dbaf753b232947ca7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b4a8cc673f994ad59d178c8f1a49bf1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9d04baaef43d42a9a4031bfd73162284", - "IPY_MODEL_697051b9e4d64222acc5a77f918bd133", - "IPY_MODEL_2ab3efb6c5f74a3b9c54005bd8c52d15" - ], - "layout": "IPY_MODEL_3d2f71a9f6e54418a5ed89f8ec45fc54" - } - }, - "b924ade4081d43b3a0948cc65ebae993": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ba99985ebb204af4b9a7a5e34c7001df": { + "96df8fd2c9c14b769cc09eabf25c383b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6402,22 +6049,111 @@ "width": null } }, - "bce4ac39b60447bfa844d74ac2161a62": { + "9a2f3f65748042e4b3bff278de0563ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d853464533a64c64a4dd7a29cf5a5dc8", + "IPY_MODEL_ce459a8fd5c0462a8bb9b13626151fa0", + "IPY_MODEL_563ceae2befe4a29a553ec515c85e0c4" + ], + "layout": "IPY_MODEL_e8606e4cac274bfe913056b0397bd948" + } + }, + "9adc889157114a6383e4faae7ff4243d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "bd24d985acfa47e197b655c7f68578e7": { + "a12b7f6c88674c529d7e301e81c947f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44726a05265b410094fdc31944fb6346", + "placeholder": "​", + "style": "IPY_MODEL_8c1c8c6c4bb8498589a2934f7f1761b2", + "value": " 3.13k/3.13k [00:00<00:00, 283kB/s]" + } + }, + "a2500082713c4f7f8bacbfe37165c6c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_68df7f3bcc1a424486c93b6c16877d82", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9adc889157114a6383e4faae7ff4243d", + "value": 4833.0 + } + }, + "a2fbe6194dc045f98f9da9aa1977e5de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27158263426e4326bea37b17780b13a7", + "placeholder": "​", + "style": "IPY_MODEL_b2ecbc9908234c64ae2bd6fd5d12eabb", + "value": "Downloading data: 100%" + } + }, + "a3a9386b54904ed5869204356c2e0134": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6469,7 +6205,7 @@ "width": null } }, - "bf73b96ae84a47bf93e41030dcd65a86": { + "a3e66fb9df094a46aaff7d1f086a1dcc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6521,7 +6257,29 @@ "width": null } }, - "c0b88fdeba9f4356a33834c8891a5427": { + "a4ba8fa1a1c5413e89c0b3c2d5aaf479": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a2fbe6194dc045f98f9da9aa1977e5de", + "IPY_MODEL_cbe5ce7a3561449c8d9154f6543ff007", + "IPY_MODEL_786ab11d0340413abf874f6acb9000a6" + ], + "layout": "IPY_MODEL_672a93126ff84ec7852eed6b656e6a4b" + } + }, + "ae1868ea77924c86b4556cf2f6b90e52": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6569,32 +6327,11 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "c0bfb68de22b46efbfa5f581a47933cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3af7a267f69a4179ade464518a83d144", - "placeholder": "​", - "style": "IPY_MODEL_3f68f8498be148848fa2ce1649ebb5ed", - "value": " 8.85k/8.85k [00:00<00:00, 695kB/s]" - } - }, - "c437635a9efc4c7b8911bc6bd29b2eb1": { + "ae2857cdae43496fa9ad91d297073afa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6646,7 +6383,7 @@ "width": null } }, - "c8ea3ac570de4717a8baa2dc0f70fdca": { + "b04504a2f2de44fcab6fc2fce8399663": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6661,66 +6398,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_33a7dbc094c8467593b70492a7889c6b", + "layout": "IPY_MODEL_77fbac9f50694f019e7e07768d9277c2", "placeholder": "​", - "style": "IPY_MODEL_1403b860563b4f118bf69a9385ce03be", - "value": "Generating test split: 96%" - } - }, - "c962710431744861ba0cfcdf2a0b6887": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_65e6ffb8c15c4a60a0a38431a50015e6", - "IPY_MODEL_0ff7ecbba50441bc8acd04172d7878b4", - "IPY_MODEL_eb8f2aef4fed42bdbd16f931b651bf30" - ], - "layout": "IPY_MODEL_aca71be19594459c8da95aff7ff51804" - } - }, - "cbf0b1dba3ea49f9bc102d0106f59e4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cc34bb1b87524f388a8f46f998078cb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_5597552515a443568a713cf452505e3c", + "value": "Generating train split: 100%" } }, - "cc5f570c26ae470893c6517163c57717": { + "b18d294539ef4003899854dbace1578b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6772,7 +6456,28 @@ "width": null } }, - "d2c75f018c34465b8bead430756a9676": { + "b25dd42728a44b93aec814ad5963e5cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e8c9ac67500948dba7a4ce77d9e6b184", + "placeholder": "​", + "style": "IPY_MODEL_5c5ae74d2d4d447a84b93007bd3b2b8e", + "value": "Downloading metadata: 100%" + } + }, + "b2719169a30d4a0eaa54f728311d2238": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6824,22 +6529,110 @@ "width": null } }, - "d3c91085dc2f4e358b8d9ba7171edc86": { + "b2ecbc9908234c64ae2bd6fd5d12eabb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b46973d78b6044c58cb0b065af3fcc29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a1b3634ed6f45689c55a69c4d358c70", + "placeholder": "​", + "style": "IPY_MODEL_d8bb136a377140638356501c2007f737", + "value": "Downloading builder script: 100%" + } + }, + "b7132a8576a84832a293b379c8146ccb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b7f742808e984130b2831853efdbf512": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b805d3385e7c4d14a13c357ea74f04f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b937c984956f4e769733f07751dbd4fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_50abbeda51104b988a414f28699f1791", + "IPY_MODEL_34579b0fd42f402bb5c668d10306f0da", + "IPY_MODEL_f42074798a8f44648a3c1c5616a0cfa5" + ], + "layout": "IPY_MODEL_96df8fd2c9c14b769cc09eabf25c383b" } }, - "d3dc5fb6429b4b9e9cdc023e95bd3a36": { + "b9d8f35c3ed340a4b5c41249c6362afe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6891,22 +6684,135 @@ "width": null } }, - "d627e1e57e1e427ca521fa53addedeb0": { + "baebf91f7dd54566adea94c752d57aed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d2638b9baf554491b1981a22a7baec58", + "placeholder": "​", + "style": "IPY_MODEL_757358d2997a4b5c9b5e1fa73341d87f", + "value": " 29.5k/29.5k [00:00<00:00, 2.57MB/s]" + } + }, + "be0fa222992a4b689ffc715aa577a154": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_18ddedcb5c2b45d68ea020d85ec2957a", + "IPY_MODEL_ffea52f1c7e74fbf95e14092cadb4991", + "IPY_MODEL_6dbf3b48842240b5b06517d7bf644f66" + ], + "layout": "IPY_MODEL_e9ec2060710c42b681b93ce4b6180716" + } + }, + "bfab3a07981d46538b94c07a77879d04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_145b49eab7524442b9a18a49e4da466d", + "placeholder": "​", + "style": "IPY_MODEL_d46d1f1270bb49ffa5dbe36f6f20ea45", + "value": " 4.83k/4.83k [00:00<00:00, 401kB/s]" + } + }, + "c150ef391de14b0bbed383ea10049561": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73f87714f172420daeb7476f1dd6d1de", + "IPY_MODEL_cb172118b0794216a2f931552a89631d", + "IPY_MODEL_5a3be28d1bdc4bb388e481945cc539ea" + ], + "layout": "IPY_MODEL_b9d8f35c3ed340a4b5c41249c6362afe" + } + }, + "c234ef001e8d4a52810d7d8c57e71a06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_33a2accde46c479ba6a9d32efc0fc132", + "placeholder": "​", + "style": "IPY_MODEL_04f0dec9e2024f9bb55309f482e2a808", + "value": "Generating test split: 96%" + } + }, + "c7b9ec42f0aa4003bed07f0cc434f7f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a3a9386b54904ed5869204356c2e0134", + "placeholder": "​", + "style": "IPY_MODEL_fc0184bcee27403a9a76e1a145c64fa9", + "value": "Downloading readme: 100%" } }, - "d9d7e77f20bf4053961273f33bc63c4a": { + "cb172118b0794216a2f931552a89631d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -6922,15 +6828,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c437635a9efc4c7b8911bc6bd29b2eb1", - "max": 4833.0, + "layout": "IPY_MODEL_ae2857cdae43496fa9ad91d297073afa", + "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b924ade4081d43b3a0948cc65ebae993", - "value": 4833.0 + "style": "IPY_MODEL_5d1aa9f1bf2e48669873e27852771e57", + "value": 4.0 } }, - "dcb24aca340942299d0c1bec3d240773": { + "cbe5ce7a3561449c8d9154f6543ff007": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -6946,15 +6852,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bd24d985acfa47e197b655c7f68578e7", - "max": 60000.0, + "layout": "IPY_MODEL_166290f12ec64720ade2b151369625b8", + "max": 26421880.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_02c6bb29d5ff429b98a5f4e28b2cf996", - "value": 60000.0 + "style": "IPY_MODEL_fe462236c0ae4f83bf9bdde5c92a4fdd", + "value": 26421880.0 } }, - "dcc4169587cc4e7cbb69d72332762952": { + "ce459a8fd5c0462a8bb9b13626151fa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -6970,37 +6876,39 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ea4f0fd3d84b4419a1e7ab3de48f0683", - "max": 8845.0, + "layout": "IPY_MODEL_b2719169a30d4a0eaa54f728311d2238", + "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b202b5782f4046dbaf753b232947ca7f", - "value": 8845.0 + "style": "IPY_MODEL_7b57e0729c014ac59243e20cb836fc63", + "value": 4.0 } }, - "dd03d22ba98a413d90adc537006b8f39": { + "ced9532ca7354d94b4cf3f0b478729b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_395122d8162d4902b5e474611ff95663", - "IPY_MODEL_5c56933ef85d473fb2f83c90fb87f0c0", - "IPY_MODEL_81137cb7597c46a5b79a3203f847fbd3" - ], - "layout": "IPY_MODEL_7a34bc51e4234e16ad880c8ee0b61ddd" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d99f62fdbaf4890a678133e7ce0ef9d", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_741d83c0dfda4c599feb62df18e918fe", + "value": 8845.0 } }, - "dd35b2659196472b91de4048656a837e": { + "d2638b9baf554491b1981a22a7baec58": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7052,59 +6960,46 @@ "width": null } }, - "e0854f59becb4f83a0f529dfeca13598": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "d3ea63f59e1e4289a55637d86e510018": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_706cab8691894b17b3ca83148edf9537", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_86acdfafd7c2440b8b365a0194c97131", + "value": 5148.0 + } + }, + "d46d1f1270bb49ffa5dbe36f6f20ea45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "e22d4c4bce3a4b53bbf0e20cf57c81c8": { + "d5ee54a9268e40848992e8fdd001cc30": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7156,7 +7051,80 @@ "width": null } }, - "e3ef29165bd24e338053cea5836afaf0": { + "d6b87f3b419d486b98d7d3ac3c80c263": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b18d294539ef4003899854dbace1578b", + "placeholder": "​", + "style": "IPY_MODEL_805d3d17423c4ddcbefd8dd36e9a4dba", + "value": " 59766/60000 [00:17<00:00, 4354.66 examples/s]" + } + }, + "d853464533a64c64a4dd7a29cf5a5dc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ef5a77a55d94c78baa40ea1709dd540", + "placeholder": "​", + "style": "IPY_MODEL_497ba684a54b4c55bd282633189297b3", + "value": "Downloading data files: 100%" + } + }, + "d8bb136a377140638356501c2007f737": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "db2efafd173f4bcea5a3f5fab45315e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dc1561fff54643499c0bab20c7c6093b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7208,23 +7176,22 @@ "width": null } }, - "e55c8a9a601342c59a6b69e5b81457c8": { + "dd5165334aab40bca65fd1c56bacd6ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "e7438ef5064241a096a740028a60f36c": { + "e2aa2b8d04584980b4e7e38f64155397": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7276,7 +7243,44 @@ "width": null } }, - "ea4f0fd3d84b4419a1e7ab3de48f0683": { + "e426ac8581ba43e8be7e6691e756322a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_79cb24b03b314bd9b4a24286e52af192", + "IPY_MODEL_08ee3f3b655547bb9197afb0fa6d9a50", + "IPY_MODEL_d6b87f3b419d486b98d7d3ac3c80c263" + ], + "layout": "IPY_MODEL_3217c5f2a83e4d2386c96aee450e0cf6" + } + }, + "e4d9b1c9f75a48e59721fe7195d5d1d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e6232384e32c45ab857e6b0db2473592": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7328,22 +7332,29 @@ "width": null } }, - "ea678bebcfe2498db2895163b2459f58": { + "e81ddb9fe8a240bfa8c6f23fb404bcd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_34cfef4161174003ab992c33ffe64ff2", + "IPY_MODEL_fada51ce9cc04800b91e06adb2ff8c2a", + "IPY_MODEL_baebf91f7dd54566adea94c752d57aed" + ], + "layout": "IPY_MODEL_92886bb5677f4e5eb198b9643ed0580e" } }, - "eb1b6a4da22f46cca0dc4fbf6e861449": { + "e8606e4cac274bfe913056b0397bd948": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7395,44 +7406,7 @@ "width": null } }, - "eb8f2aef4fed42bdbd16f931b651bf30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d3dc5fb6429b4b9e9cdc023e95bd3a36", - "placeholder": "​", - "style": "IPY_MODEL_7f8cd140bc134cf39b86db70c064a59e", - "value": " 26.4M/26.4M [00:00<00:00, 87.2MB/s]" - } - }, - "ecdc5d2b0971466ca6fe10b3be15b802": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ed46963891574900a7eacc41e84d9997": { + "e8c9ac67500948dba7a4ce77d9e6b184": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7484,7 +7458,7 @@ "width": null } }, - "ed65830d599646469908fff377873260": { + "e9ec2060710c42b681b93ce4b6180716": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7536,28 +7510,29 @@ "width": null } }, - "ee90d27a499c4b08a0059997fe0526e5": { + "eaa30426591f4d24adf70288ff7f338f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ef0beb6a96ea4882a90d42ffeefa8826", - "placeholder": "​", - "style": "IPY_MODEL_211746264aba474384ebf63383ca003f", - "value": " 4/4 [00:03<00:00, 1.18it/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7b9ec42f0aa4003bed07f0cc434f7f7", + "IPY_MODEL_ced9532ca7354d94b4cf3f0b478729b8", + "IPY_MODEL_fca68101da93472d858358f3965f6fdc" + ], + "layout": "IPY_MODEL_2b4ea11a7ca8411f9ad4e2dd06db4666" } }, - "ef0beb6a96ea4882a90d42ffeefa8826": { + "ee84a0ddb0ff453e9e2ad203d1ec2fbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7609,23 +7584,7 @@ "width": null } }, - "ef9144b755a247b0af470acee04b17f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f0746106a8244eb2b9f15cf3186ffbdc": { + "eeac3e7eb46e4f4db75e49018cc7279b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7640,52 +7599,7 @@ "description_width": "" } }, - "f0a52bca034c4b199170aba6ea2feed4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_711309b7eaec4fa9848d2982dada90af", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ef9144b755a247b0af470acee04b17f1", - "value": 4.0 - } - }, - "f0c85a2d35574d3ba0aa5e316dd4ce1c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b1e011a63af64416954348b761a09179", - "placeholder": "​", - "style": "IPY_MODEL_802b59b6da604b728597ee0f2a195e02", - "value": " 60000/60000 [00:50<00:00, 1215.06it/s]" - } - }, - "f1730c6c7a2f4151a5cdf5407e4bfe64": { + "ef03d83b67ce4ca1be2d788de0af6fa8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7737,81 +7651,119 @@ "width": null } }, - "f48ba079fc754c11a1107f624273ab52": { + "f42074798a8f44648a3c1c5616a0cfa5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e952e88c4024945980510045e4997cb", + "placeholder": "​", + "style": "IPY_MODEL_6923ecab36614f488946e77b0400211d", + "value": " 60000/60000 [00:55<00:00, 1101.17it/s]" + } + }, + "f71b33e0c6034a90b7b7d994f3fc8119": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f494146fe5f3418ca4c7a070154e390c": { + "fada51ce9cc04800b91e06adb2ff8c2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cc5f570c26ae470893c6517163c57717", - "placeholder": "​", - "style": "IPY_MODEL_39dfc68b4a464b0c915ba7dcbf4be31e", - "value": "Downloading metadata: 100%" + "layout": "IPY_MODEL_803f8bed0ae04d9ead2231ca4d73178c", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a1751cab1284fadad8950d60cfbfa98", + "value": 29515.0 } }, - "f4eaccaf8aea4d86b3d8bc23ac879bd2": { + "fc0184bcee27403a9a76e1a145c64fa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fca68101da93472d858358f3965f6fdc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c8ea3ac570de4717a8baa2dc0f70fdca", - "IPY_MODEL_458c0bc485a74f8a91020cf3173f7842", - "IPY_MODEL_07c235f5a12e433d8548139c3d2c1f06" - ], - "layout": "IPY_MODEL_0ed3644c553146f9858ec34a1abe66b4" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fee3cfbfdf2641c8a24007b480271e04", + "placeholder": "​", + "style": "IPY_MODEL_b805d3385e7c4d14a13c357ea74f04f1", + "value": " 8.85k/8.85k [00:00<00:00, 885kB/s]" } }, - "f8dbc859491a483fb708ff57979ea23a": { + "fe462236c0ae4f83bf9bdde5c92a4fdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "fa6b9ac9d98f4610b25acf9fd34c9cd7": { + "fee3cfbfdf2641c8a24007b480271e04": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7863,26 +7815,28 @@ "width": null } }, - "faa996b8481c4a60b9f6e0666aec6bf8": { + "ffea52f1c7e74fbf95e14092cadb4991": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_602f58878fac4e29aa493c675525722c", - "IPY_MODEL_1dad32857f1c40f8bd6a8ff6199a5f6e", - "IPY_MODEL_ee90d27a499c4b08a0059997fe0526e5" - ], - "layout": "IPY_MODEL_e7438ef5064241a096a740028a60f36c" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_61a6ba883fed4813be9bee47c29a5390", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_db2efafd173f4bcea5a3f5fab45315e2", + "value": 4422102.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 7cca43c56..c6e4ed944 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:00.752111Z", - "iopub.status.busy": "2023-10-06T06:42:00.751554Z", - "iopub.status.idle": "2023-10-06T06:42:01.984932Z", - "shell.execute_reply": "2023-10-06T06:42:01.984222Z" + "iopub.execute_input": "2023-10-11T10:13:57.120429Z", + "iopub.status.busy": "2023-10-11T10:13:57.119967Z", + "iopub.status.idle": "2023-10-11T10:13:58.448393Z", + "shell.execute_reply": "2023-10-11T10:13:58.447584Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:01.989913Z", - "iopub.status.busy": "2023-10-06T06:42:01.988485Z", - "iopub.status.idle": "2023-10-06T06:42:02.244041Z", - "shell.execute_reply": "2023-10-06T06:42:02.243312Z" + "iopub.execute_input": "2023-10-11T10:13:58.452554Z", + "iopub.status.busy": "2023-10-11T10:13:58.451781Z", + "iopub.status.idle": "2023-10-11T10:13:58.721718Z", + "shell.execute_reply": "2023-10-11T10:13:58.720904Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:02.248272Z", - "iopub.status.busy": "2023-10-06T06:42:02.247996Z", - "iopub.status.idle": "2023-10-06T06:42:02.342896Z", - "shell.execute_reply": "2023-10-06T06:42:02.342171Z" + "iopub.execute_input": "2023-10-11T10:13:58.726058Z", + "iopub.status.busy": "2023-10-11T10:13:58.725553Z", + "iopub.status.idle": "2023-10-11T10:13:58.842660Z", + "shell.execute_reply": "2023-10-11T10:13:58.841926Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:02.346599Z", - "iopub.status.busy": "2023-10-06T06:42:02.345796Z", - "iopub.status.idle": "2023-10-06T06:42:02.593217Z", - "shell.execute_reply": "2023-10-06T06:42:02.592597Z" + "iopub.execute_input": "2023-10-11T10:13:58.846228Z", + "iopub.status.busy": "2023-10-11T10:13:58.845632Z", + "iopub.status.idle": "2023-10-11T10:13:59.105478Z", + "shell.execute_reply": "2023-10-11T10:13:59.104826Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:02.596603Z", - "iopub.status.busy": "2023-10-06T06:42:02.596008Z", - "iopub.status.idle": "2023-10-06T06:42:02.624699Z", - "shell.execute_reply": "2023-10-06T06:42:02.624096Z" + "iopub.execute_input": "2023-10-11T10:13:59.109808Z", + "iopub.status.busy": "2023-10-11T10:13:59.109055Z", + "iopub.status.idle": "2023-10-11T10:13:59.143034Z", + "shell.execute_reply": "2023-10-11T10:13:59.142328Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:02.627929Z", - "iopub.status.busy": "2023-10-06T06:42:02.627213Z", - "iopub.status.idle": "2023-10-06T06:42:04.260009Z", - "shell.execute_reply": "2023-10-06T06:42:04.259249Z" + "iopub.execute_input": "2023-10-11T10:13:59.146701Z", + "iopub.status.busy": "2023-10-11T10:13:59.146192Z", + "iopub.status.idle": "2023-10-11T10:14:00.902837Z", + "shell.execute_reply": "2023-10-11T10:14:00.902026Z" } }, "outputs": [ @@ -471,10 +471,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:04.263601Z", - "iopub.status.busy": "2023-10-06T06:42:04.262984Z", - "iopub.status.idle": "2023-10-06T06:42:04.284428Z", - "shell.execute_reply": "2023-10-06T06:42:04.283750Z" + "iopub.execute_input": "2023-10-11T10:14:00.908526Z", + "iopub.status.busy": "2023-10-11T10:14:00.907016Z", + "iopub.status.idle": "2023-10-11T10:14:00.930887Z", + "shell.execute_reply": "2023-10-11T10:14:00.930271Z" }, "scrolled": true }, @@ -599,10 +599,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:04.287522Z", - "iopub.status.busy": "2023-10-06T06:42:04.286971Z", - "iopub.status.idle": "2023-10-06T06:42:05.384581Z", - "shell.execute_reply": "2023-10-06T06:42:05.383764Z" + "iopub.execute_input": "2023-10-11T10:14:00.934811Z", + "iopub.status.busy": "2023-10-11T10:14:00.934288Z", + "iopub.status.idle": "2023-10-11T10:14:02.173518Z", + "shell.execute_reply": "2023-10-11T10:14:02.172623Z" }, "id": "AaHC5MRKjruT" }, @@ -721,10 +721,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.387922Z", - "iopub.status.busy": "2023-10-06T06:42:05.387552Z", - "iopub.status.idle": "2023-10-06T06:42:05.404111Z", - "shell.execute_reply": "2023-10-06T06:42:05.403317Z" + "iopub.execute_input": "2023-10-11T10:14:02.177637Z", + "iopub.status.busy": "2023-10-11T10:14:02.177188Z", + "iopub.status.idle": "2023-10-11T10:14:02.197229Z", + "shell.execute_reply": "2023-10-11T10:14:02.196542Z" }, "id": "Wy27rvyhjruU" }, @@ -773,10 +773,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.407759Z", - "iopub.status.busy": "2023-10-06T06:42:05.407182Z", - "iopub.status.idle": "2023-10-06T06:42:05.496270Z", - "shell.execute_reply": "2023-10-06T06:42:05.495456Z" + "iopub.execute_input": "2023-10-11T10:14:02.200738Z", + "iopub.status.busy": "2023-10-11T10:14:02.200356Z", + "iopub.status.idle": "2023-10-11T10:14:02.305073Z", + "shell.execute_reply": "2023-10-11T10:14:02.304176Z" }, "id": "Db8YHnyVjruU" }, @@ -883,10 +883,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.500111Z", - "iopub.status.busy": "2023-10-06T06:42:05.499558Z", - "iopub.status.idle": "2023-10-06T06:42:05.712588Z", - "shell.execute_reply": "2023-10-06T06:42:05.711891Z" + "iopub.execute_input": "2023-10-11T10:14:02.309252Z", + "iopub.status.busy": "2023-10-11T10:14:02.308684Z", + "iopub.status.idle": "2023-10-11T10:14:02.536286Z", + "shell.execute_reply": "2023-10-11T10:14:02.535535Z" }, "id": "iJqAHuS2jruV" }, @@ -923,10 +923,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.717185Z", - "iopub.status.busy": "2023-10-06T06:42:05.715897Z", - "iopub.status.idle": "2023-10-06T06:42:05.739941Z", - "shell.execute_reply": "2023-10-06T06:42:05.739310Z" + "iopub.execute_input": "2023-10-11T10:14:02.540203Z", + "iopub.status.busy": "2023-10-11T10:14:02.539674Z", + "iopub.status.idle": "2023-10-11T10:14:02.567501Z", + "shell.execute_reply": "2023-10-11T10:14:02.566798Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -988,10 +988,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.743364Z", - "iopub.status.busy": "2023-10-06T06:42:05.742943Z", - "iopub.status.idle": "2023-10-06T06:42:05.756906Z", - "shell.execute_reply": "2023-10-06T06:42:05.756295Z" + "iopub.execute_input": "2023-10-11T10:14:02.571057Z", + "iopub.status.busy": "2023-10-11T10:14:02.570585Z", + "iopub.status.idle": "2023-10-11T10:14:02.585321Z", + "shell.execute_reply": "2023-10-11T10:14:02.584593Z" }, "id": "0lonvOYvjruV" }, @@ -1138,10 +1138,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.760342Z", - "iopub.status.busy": "2023-10-06T06:42:05.759825Z", - "iopub.status.idle": "2023-10-06T06:42:05.857424Z", - "shell.execute_reply": "2023-10-06T06:42:05.856396Z" + "iopub.execute_input": "2023-10-11T10:14:02.588832Z", + "iopub.status.busy": "2023-10-11T10:14:02.588443Z", + "iopub.status.idle": "2023-10-11T10:14:02.709322Z", + "shell.execute_reply": "2023-10-11T10:14:02.708447Z" }, "id": "MfqTCa3kjruV" }, @@ -1222,10 +1222,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.861184Z", - "iopub.status.busy": "2023-10-06T06:42:05.860689Z", - "iopub.status.idle": "2023-10-06T06:42:06.007412Z", - "shell.execute_reply": "2023-10-06T06:42:06.006687Z" + "iopub.execute_input": "2023-10-11T10:14:02.713270Z", + "iopub.status.busy": "2023-10-11T10:14:02.712728Z", + "iopub.status.idle": "2023-10-11T10:14:02.888185Z", + "shell.execute_reply": "2023-10-11T10:14:02.887162Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1285,10 +1285,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.010972Z", - "iopub.status.busy": "2023-10-06T06:42:06.010325Z", - "iopub.status.idle": "2023-10-06T06:42:06.016716Z", - "shell.execute_reply": "2023-10-06T06:42:06.016089Z" + "iopub.execute_input": "2023-10-11T10:14:02.892225Z", + "iopub.status.busy": "2023-10-11T10:14:02.891729Z", + "iopub.status.idle": "2023-10-11T10:14:02.897298Z", + "shell.execute_reply": "2023-10-11T10:14:02.896610Z" }, "id": "0rXP3ZPWjruW" }, @@ -1326,10 +1326,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.020764Z", - "iopub.status.busy": "2023-10-06T06:42:06.019509Z", - "iopub.status.idle": "2023-10-06T06:42:06.026888Z", - "shell.execute_reply": "2023-10-06T06:42:06.026283Z" + "iopub.execute_input": "2023-10-11T10:14:02.900624Z", + "iopub.status.busy": "2023-10-11T10:14:02.900002Z", + "iopub.status.idle": "2023-10-11T10:14:02.906040Z", + "shell.execute_reply": "2023-10-11T10:14:02.905353Z" }, "id": "-iRPe8KXjruW" }, @@ -1384,10 +1384,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.030143Z", - "iopub.status.busy": "2023-10-06T06:42:06.029649Z", - "iopub.status.idle": "2023-10-06T06:42:06.075198Z", - "shell.execute_reply": "2023-10-06T06:42:06.074522Z" + "iopub.execute_input": "2023-10-11T10:14:02.909279Z", + "iopub.status.busy": "2023-10-11T10:14:02.908924Z", + "iopub.status.idle": "2023-10-11T10:14:02.961199Z", + "shell.execute_reply": "2023-10-11T10:14:02.960379Z" }, "id": "ZpipUliyjruW" }, @@ -1438,10 +1438,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.078772Z", - "iopub.status.busy": "2023-10-06T06:42:06.078400Z", - "iopub.status.idle": "2023-10-06T06:42:06.131252Z", - "shell.execute_reply": "2023-10-06T06:42:06.130571Z" + "iopub.execute_input": "2023-10-11T10:14:02.964680Z", + "iopub.status.busy": "2023-10-11T10:14:02.964248Z", + "iopub.status.idle": "2023-10-11T10:14:03.022389Z", + "shell.execute_reply": "2023-10-11T10:14:03.021659Z" }, "id": "SLq-3q4xjruX" }, @@ -1510,10 +1510,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.134879Z", - "iopub.status.busy": "2023-10-06T06:42:06.134329Z", - "iopub.status.idle": "2023-10-06T06:42:06.229121Z", - "shell.execute_reply": "2023-10-06T06:42:06.228107Z" + "iopub.execute_input": "2023-10-11T10:14:03.025803Z", + "iopub.status.busy": "2023-10-11T10:14:03.025268Z", + "iopub.status.idle": "2023-10-11T10:14:03.134328Z", + "shell.execute_reply": "2023-10-11T10:14:03.133401Z" }, "id": "g5LHhhuqFbXK" }, @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.232711Z", - "iopub.status.busy": "2023-10-06T06:42:06.232283Z", - "iopub.status.idle": "2023-10-06T06:42:06.333271Z", - "shell.execute_reply": "2023-10-06T06:42:06.332395Z" + "iopub.execute_input": "2023-10-11T10:14:03.138905Z", + "iopub.status.busy": "2023-10-11T10:14:03.138390Z", + "iopub.status.idle": "2023-10-11T10:14:03.263066Z", + "shell.execute_reply": "2023-10-11T10:14:03.262155Z" }, "id": "p7w8F8ezBcet" }, @@ -1605,10 +1605,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.337092Z", - "iopub.status.busy": "2023-10-06T06:42:06.336564Z", - "iopub.status.idle": "2023-10-06T06:42:06.550977Z", - "shell.execute_reply": "2023-10-06T06:42:06.550309Z" + "iopub.execute_input": "2023-10-11T10:14:03.267338Z", + "iopub.status.busy": "2023-10-11T10:14:03.266800Z", + "iopub.status.idle": "2023-10-11T10:14:03.492781Z", + "shell.execute_reply": "2023-10-11T10:14:03.491850Z" }, "id": "WETRL74tE_sU" }, @@ -1643,10 +1643,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.554148Z", - "iopub.status.busy": "2023-10-06T06:42:06.553782Z", - "iopub.status.idle": "2023-10-06T06:42:06.783468Z", - "shell.execute_reply": "2023-10-06T06:42:06.782697Z" + "iopub.execute_input": "2023-10-11T10:14:03.497643Z", + "iopub.status.busy": "2023-10-11T10:14:03.496183Z", + "iopub.status.idle": "2023-10-11T10:14:03.737406Z", + "shell.execute_reply": "2023-10-11T10:14:03.736450Z" }, "id": "kCfdx2gOLmXS" }, @@ -1808,10 +1808,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.786661Z", - "iopub.status.busy": "2023-10-06T06:42:06.786239Z", - "iopub.status.idle": "2023-10-06T06:42:06.795369Z", - "shell.execute_reply": "2023-10-06T06:42:06.794757Z" + "iopub.execute_input": "2023-10-11T10:14:03.741218Z", + "iopub.status.busy": "2023-10-11T10:14:03.740736Z", + "iopub.status.idle": "2023-10-11T10:14:03.751095Z", + "shell.execute_reply": "2023-10-11T10:14:03.750463Z" }, "id": "-uogYRWFYnuu" }, @@ -1865,10 +1865,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.798677Z", - "iopub.status.busy": "2023-10-06T06:42:06.798291Z", - "iopub.status.idle": "2023-10-06T06:42:07.024806Z", - "shell.execute_reply": "2023-10-06T06:42:07.024085Z" + "iopub.execute_input": "2023-10-11T10:14:03.754393Z", + "iopub.status.busy": "2023-10-11T10:14:03.753995Z", + "iopub.status.idle": "2023-10-11T10:14:03.987407Z", + "shell.execute_reply": "2023-10-11T10:14:03.986506Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1915,10 +1915,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:07.028317Z", - "iopub.status.busy": "2023-10-06T06:42:07.027866Z", - "iopub.status.idle": "2023-10-06T06:42:08.356236Z", - "shell.execute_reply": "2023-10-06T06:42:08.355530Z" + "iopub.execute_input": "2023-10-11T10:14:03.991521Z", + "iopub.status.busy": "2023-10-11T10:14:03.990842Z", + "iopub.status.idle": "2023-10-11T10:14:05.577534Z", + "shell.execute_reply": "2023-10-11T10:14:05.576748Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index b5255c166..94c10718b 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:14.489469Z", - "iopub.status.busy": "2023-10-06T06:42:14.489142Z", - "iopub.status.idle": "2023-10-06T06:42:15.635757Z", - "shell.execute_reply": "2023-10-06T06:42:15.635069Z" + "iopub.execute_input": "2023-10-11T10:14:11.825429Z", + "iopub.status.busy": "2023-10-11T10:14:11.825151Z", + "iopub.status.idle": "2023-10-11T10:14:13.048562Z", + "shell.execute_reply": "2023-10-11T10:14:13.047720Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.640608Z", - "iopub.status.busy": "2023-10-06T06:42:15.639168Z", - "iopub.status.idle": "2023-10-06T06:42:15.644290Z", - "shell.execute_reply": "2023-10-06T06:42:15.643681Z" + "iopub.execute_input": "2023-10-11T10:14:13.053084Z", + "iopub.status.busy": "2023-10-11T10:14:13.052428Z", + "iopub.status.idle": "2023-10-11T10:14:13.057100Z", + "shell.execute_reply": "2023-10-11T10:14:13.056428Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.647692Z", - "iopub.status.busy": "2023-10-06T06:42:15.647450Z", - "iopub.status.idle": "2023-10-06T06:42:15.658588Z", - "shell.execute_reply": "2023-10-06T06:42:15.657967Z" + "iopub.execute_input": "2023-10-11T10:14:13.060478Z", + "iopub.status.busy": "2023-10-11T10:14:13.060232Z", + "iopub.status.idle": "2023-10-11T10:14:13.070814Z", + "shell.execute_reply": "2023-10-11T10:14:13.070192Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.661692Z", - "iopub.status.busy": "2023-10-06T06:42:15.661014Z", - "iopub.status.idle": "2023-10-06T06:42:15.721692Z", - "shell.execute_reply": "2023-10-06T06:42:15.720944Z" + "iopub.execute_input": "2023-10-11T10:14:13.074078Z", + "iopub.status.busy": "2023-10-11T10:14:13.073727Z", + "iopub.status.idle": "2023-10-11T10:14:13.136814Z", + "shell.execute_reply": "2023-10-11T10:14:13.136073Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.725638Z", - "iopub.status.busy": "2023-10-06T06:42:15.725217Z", - "iopub.status.idle": "2023-10-06T06:42:15.751469Z", - "shell.execute_reply": "2023-10-06T06:42:15.750769Z" + "iopub.execute_input": "2023-10-11T10:14:13.140864Z", + "iopub.status.busy": "2023-10-11T10:14:13.140185Z", + "iopub.status.idle": "2023-10-11T10:14:13.165307Z", + "shell.execute_reply": "2023-10-11T10:14:13.164597Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.755148Z", - "iopub.status.busy": "2023-10-06T06:42:15.754635Z", - "iopub.status.idle": "2023-10-06T06:42:15.761117Z", - "shell.execute_reply": "2023-10-06T06:42:15.760485Z" + "iopub.execute_input": "2023-10-11T10:14:13.168773Z", + "iopub.status.busy": "2023-10-11T10:14:13.168208Z", + "iopub.status.idle": "2023-10-11T10:14:13.174909Z", + "shell.execute_reply": "2023-10-11T10:14:13.174285Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.765237Z", - "iopub.status.busy": "2023-10-06T06:42:15.764705Z", - "iopub.status.idle": "2023-10-06T06:42:15.803048Z", - "shell.execute_reply": "2023-10-06T06:42:15.802052Z" + "iopub.execute_input": "2023-10-11T10:14:13.178319Z", + "iopub.status.busy": "2023-10-11T10:14:13.177924Z", + "iopub.status.idle": "2023-10-11T10:14:13.214257Z", + "shell.execute_reply": "2023-10-11T10:14:13.213498Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.806871Z", - "iopub.status.busy": "2023-10-06T06:42:15.806549Z", - "iopub.status.idle": "2023-10-06T06:42:15.841392Z", - "shell.execute_reply": "2023-10-06T06:42:15.840675Z" + "iopub.execute_input": "2023-10-11T10:14:13.218276Z", + "iopub.status.busy": "2023-10-11T10:14:13.217701Z", + "iopub.status.idle": "2023-10-11T10:14:13.254925Z", + "shell.execute_reply": "2023-10-11T10:14:13.254173Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.844584Z", - "iopub.status.busy": "2023-10-06T06:42:15.844317Z", - "iopub.status.idle": "2023-10-06T06:42:17.522519Z", - "shell.execute_reply": "2023-10-06T06:42:17.521774Z" + "iopub.execute_input": "2023-10-11T10:14:13.258799Z", + "iopub.status.busy": "2023-10-11T10:14:13.258315Z", + "iopub.status.idle": "2023-10-11T10:14:15.021004Z", + "shell.execute_reply": "2023-10-11T10:14:15.020194Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.526337Z", - "iopub.status.busy": "2023-10-06T06:42:17.525524Z", - "iopub.status.idle": "2023-10-06T06:42:17.537152Z", - "shell.execute_reply": "2023-10-06T06:42:17.536497Z" + "iopub.execute_input": "2023-10-11T10:14:15.025841Z", + "iopub.status.busy": "2023-10-11T10:14:15.024979Z", + "iopub.status.idle": "2023-10-11T10:14:15.034493Z", + "shell.execute_reply": "2023-10-11T10:14:15.033801Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.540244Z", - "iopub.status.busy": "2023-10-06T06:42:17.539782Z", - "iopub.status.idle": "2023-10-06T06:42:17.556604Z", - "shell.execute_reply": "2023-10-06T06:42:17.555911Z" + "iopub.execute_input": "2023-10-11T10:14:15.037919Z", + "iopub.status.busy": "2023-10-11T10:14:15.037346Z", + "iopub.status.idle": "2023-10-11T10:14:15.055490Z", + "shell.execute_reply": "2023-10-11T10:14:15.054819Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.560258Z", - "iopub.status.busy": "2023-10-06T06:42:17.559870Z", - "iopub.status.idle": "2023-10-06T06:42:17.568259Z", - "shell.execute_reply": "2023-10-06T06:42:17.567554Z" + "iopub.execute_input": "2023-10-11T10:14:15.059126Z", + "iopub.status.busy": "2023-10-11T10:14:15.058570Z", + "iopub.status.idle": "2023-10-11T10:14:15.069052Z", + "shell.execute_reply": "2023-10-11T10:14:15.068401Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.571912Z", - "iopub.status.busy": "2023-10-06T06:42:17.571512Z", - "iopub.status.idle": "2023-10-06T06:42:17.574930Z", - "shell.execute_reply": "2023-10-06T06:42:17.574243Z" + "iopub.execute_input": "2023-10-11T10:14:15.072472Z", + "iopub.status.busy": "2023-10-11T10:14:15.072093Z", + "iopub.status.idle": "2023-10-11T10:14:15.076415Z", + "shell.execute_reply": "2023-10-11T10:14:15.075778Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.577828Z", - "iopub.status.busy": "2023-10-06T06:42:17.577443Z", - "iopub.status.idle": "2023-10-06T06:42:17.583304Z", - "shell.execute_reply": "2023-10-06T06:42:17.582674Z" + "iopub.execute_input": "2023-10-11T10:14:15.079613Z", + "iopub.status.busy": "2023-10-11T10:14:15.079247Z", + "iopub.status.idle": "2023-10-11T10:14:15.084863Z", + "shell.execute_reply": "2023-10-11T10:14:15.084239Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.586678Z", - "iopub.status.busy": "2023-10-06T06:42:17.586172Z", - "iopub.status.idle": "2023-10-06T06:42:17.590466Z", - "shell.execute_reply": "2023-10-06T06:42:17.589826Z" + "iopub.execute_input": "2023-10-11T10:14:15.088118Z", + "iopub.status.busy": "2023-10-11T10:14:15.087739Z", + "iopub.status.idle": "2023-10-11T10:14:15.091897Z", + "shell.execute_reply": "2023-10-11T10:14:15.091263Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.593673Z", - "iopub.status.busy": "2023-10-06T06:42:17.593163Z", - "iopub.status.idle": "2023-10-06T06:42:17.600145Z", - "shell.execute_reply": "2023-10-06T06:42:17.599501Z" + "iopub.execute_input": "2023-10-11T10:14:15.095018Z", + "iopub.status.busy": "2023-10-11T10:14:15.094663Z", + "iopub.status.idle": "2023-10-11T10:14:15.100964Z", + "shell.execute_reply": "2023-10-11T10:14:15.100337Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.603540Z", - "iopub.status.busy": "2023-10-06T06:42:17.603046Z", - "iopub.status.idle": "2023-10-06T06:42:17.640047Z", - "shell.execute_reply": "2023-10-06T06:42:17.639256Z" + "iopub.execute_input": "2023-10-11T10:14:15.104236Z", + "iopub.status.busy": "2023-10-11T10:14:15.103874Z", + "iopub.status.idle": "2023-10-11T10:14:15.148266Z", + "shell.execute_reply": "2023-10-11T10:14:15.147483Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.643804Z", - "iopub.status.busy": "2023-10-06T06:42:17.643497Z", - "iopub.status.idle": "2023-10-06T06:42:17.651284Z", - "shell.execute_reply": "2023-10-06T06:42:17.650617Z" + "iopub.execute_input": "2023-10-11T10:14:15.152634Z", + "iopub.status.busy": "2023-10-11T10:14:15.152105Z", + "iopub.status.idle": "2023-10-11T10:14:15.159365Z", + "shell.execute_reply": "2023-10-11T10:14:15.158722Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 6d0bdd24d..09e88c44d 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:22.813418Z", - "iopub.status.busy": "2023-10-06T06:42:22.812982Z", - "iopub.status.idle": "2023-10-06T06:42:24.046280Z", - "shell.execute_reply": "2023-10-06T06:42:24.045557Z" + "iopub.execute_input": "2023-10-11T10:14:21.271618Z", + "iopub.status.busy": "2023-10-11T10:14:21.271368Z", + "iopub.status.idle": "2023-10-11T10:14:22.578137Z", + "shell.execute_reply": "2023-10-11T10:14:22.577377Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:24.049763Z", - "iopub.status.busy": "2023-10-06T06:42:24.049226Z", - "iopub.status.idle": "2023-10-06T06:42:24.411655Z", - "shell.execute_reply": "2023-10-06T06:42:24.410950Z" + "iopub.execute_input": "2023-10-11T10:14:22.582014Z", + "iopub.status.busy": "2023-10-11T10:14:22.581420Z", + "iopub.status.idle": "2023-10-11T10:14:22.974677Z", + "shell.execute_reply": "2023-10-11T10:14:22.973899Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:24.415251Z", - "iopub.status.busy": "2023-10-06T06:42:24.414971Z", - "iopub.status.idle": "2023-10-06T06:42:24.432546Z", - "shell.execute_reply": "2023-10-06T06:42:24.431900Z" + "iopub.execute_input": "2023-10-11T10:14:22.978649Z", + "iopub.status.busy": "2023-10-11T10:14:22.978310Z", + "iopub.status.idle": "2023-10-11T10:14:22.996898Z", + "shell.execute_reply": "2023-10-11T10:14:22.996247Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:24.435846Z", - "iopub.status.busy": "2023-10-06T06:42:24.435276Z", - "iopub.status.idle": "2023-10-06T06:42:27.295634Z", - "shell.execute_reply": "2023-10-06T06:42:27.294969Z" + "iopub.execute_input": "2023-10-11T10:14:23.000361Z", + "iopub.status.busy": "2023-10-11T10:14:22.999988Z", + "iopub.status.idle": "2023-10-11T10:14:26.108245Z", + "shell.execute_reply": "2023-10-11T10:14:26.107525Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:27.298756Z", - "iopub.status.busy": "2023-10-06T06:42:27.298515Z", - "iopub.status.idle": "2023-10-06T06:42:29.217234Z", - "shell.execute_reply": "2023-10-06T06:42:29.216520Z" + "iopub.execute_input": "2023-10-11T10:14:26.112155Z", + "iopub.status.busy": "2023-10-11T10:14:26.111886Z", + "iopub.status.idle": "2023-10-11T10:14:28.201149Z", + "shell.execute_reply": "2023-10-11T10:14:28.200375Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:29.220473Z", - "iopub.status.busy": "2023-10-06T06:42:29.220211Z", - "iopub.status.idle": "2023-10-06T06:42:29.238406Z", - "shell.execute_reply": "2023-10-06T06:42:29.237629Z" + "iopub.execute_input": "2023-10-11T10:14:28.204772Z", + "iopub.status.busy": "2023-10-11T10:14:28.204276Z", + "iopub.status.idle": "2023-10-11T10:14:28.222625Z", + "shell.execute_reply": "2023-10-11T10:14:28.221712Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:29.241923Z", - "iopub.status.busy": "2023-10-06T06:42:29.241437Z", - "iopub.status.idle": "2023-10-06T06:42:30.906896Z", - "shell.execute_reply": "2023-10-06T06:42:30.905889Z" + "iopub.execute_input": "2023-10-11T10:14:28.225653Z", + "iopub.status.busy": "2023-10-11T10:14:28.225263Z", + "iopub.status.idle": "2023-10-11T10:14:29.944519Z", + "shell.execute_reply": "2023-10-11T10:14:29.943502Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:30.911116Z", - "iopub.status.busy": "2023-10-06T06:42:30.910015Z", - "iopub.status.idle": "2023-10-06T06:42:33.760685Z", - "shell.execute_reply": "2023-10-06T06:42:33.759969Z" + "iopub.execute_input": "2023-10-11T10:14:29.949244Z", + "iopub.status.busy": "2023-10-11T10:14:29.948159Z", + "iopub.status.idle": "2023-10-11T10:14:33.032286Z", + "shell.execute_reply": "2023-10-11T10:14:33.031520Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:33.764037Z", - "iopub.status.busy": "2023-10-06T06:42:33.763407Z", - "iopub.status.idle": "2023-10-06T06:42:33.770524Z", - "shell.execute_reply": "2023-10-06T06:42:33.769866Z" + "iopub.execute_input": "2023-10-11T10:14:33.036284Z", + "iopub.status.busy": "2023-10-11T10:14:33.035595Z", + "iopub.status.idle": "2023-10-11T10:14:33.042204Z", + "shell.execute_reply": "2023-10-11T10:14:33.041481Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:33.773710Z", - "iopub.status.busy": "2023-10-06T06:42:33.773130Z", - "iopub.status.idle": "2023-10-06T06:42:33.778251Z", - "shell.execute_reply": "2023-10-06T06:42:33.777579Z" + "iopub.execute_input": "2023-10-11T10:14:33.045437Z", + "iopub.status.busy": "2023-10-11T10:14:33.044886Z", + "iopub.status.idle": "2023-10-11T10:14:33.049900Z", + "shell.execute_reply": "2023-10-11T10:14:33.049197Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:33.781434Z", - "iopub.status.busy": "2023-10-06T06:42:33.780878Z", - "iopub.status.idle": "2023-10-06T06:42:33.784883Z", - "shell.execute_reply": "2023-10-06T06:42:33.784163Z" + "iopub.execute_input": "2023-10-11T10:14:33.053058Z", + "iopub.status.busy": "2023-10-11T10:14:33.052676Z", + "iopub.status.idle": "2023-10-11T10:14:33.056643Z", + "shell.execute_reply": "2023-10-11T10:14:33.055929Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 55162ce12..f36e17395 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:38.827543Z", - "iopub.status.busy": "2023-10-06T06:42:38.827182Z", - "iopub.status.idle": "2023-10-06T06:42:40.040059Z", - "shell.execute_reply": "2023-10-06T06:42:40.039358Z" + "iopub.execute_input": "2023-10-11T10:14:38.145177Z", + "iopub.status.busy": "2023-10-11T10:14:38.144663Z", + "iopub.status.idle": "2023-10-11T10:14:39.457951Z", + "shell.execute_reply": "2023-10-11T10:14:39.457164Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:40.043489Z", - "iopub.status.busy": "2023-10-06T06:42:40.042901Z", - "iopub.status.idle": "2023-10-06T06:42:42.806381Z", - "shell.execute_reply": "2023-10-06T06:42:42.805383Z" + "iopub.execute_input": "2023-10-11T10:14:39.461839Z", + "iopub.status.busy": "2023-10-11T10:14:39.461266Z", + "iopub.status.idle": "2023-10-11T10:14:40.735125Z", + "shell.execute_reply": "2023-10-11T10:14:40.733964Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:42.810112Z", - "iopub.status.busy": "2023-10-06T06:42:42.809500Z", - "iopub.status.idle": "2023-10-06T06:42:42.814515Z", - "shell.execute_reply": "2023-10-06T06:42:42.813892Z" + "iopub.execute_input": "2023-10-11T10:14:40.740507Z", + "iopub.status.busy": "2023-10-11T10:14:40.739041Z", + "iopub.status.idle": "2023-10-11T10:14:40.744547Z", + "shell.execute_reply": "2023-10-11T10:14:40.743918Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:42.817301Z", - "iopub.status.busy": "2023-10-06T06:42:42.816940Z", - "iopub.status.idle": "2023-10-06T06:42:42.824678Z", - "shell.execute_reply": "2023-10-06T06:42:42.824079Z" + "iopub.execute_input": "2023-10-11T10:14:40.748660Z", + "iopub.status.busy": "2023-10-11T10:14:40.747375Z", + "iopub.status.idle": "2023-10-11T10:14:40.756836Z", + "shell.execute_reply": "2023-10-11T10:14:40.756183Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:42.827618Z", - "iopub.status.busy": "2023-10-06T06:42:42.827242Z", - "iopub.status.idle": "2023-10-06T06:42:43.565874Z", - "shell.execute_reply": "2023-10-06T06:42:43.565212Z" + "iopub.execute_input": "2023-10-11T10:14:40.760217Z", + "iopub.status.busy": "2023-10-11T10:14:40.759720Z", + "iopub.status.idle": "2023-10-11T10:14:41.538167Z", + "shell.execute_reply": "2023-10-11T10:14:41.537478Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:43.571115Z", - "iopub.status.busy": "2023-10-06T06:42:43.570393Z", - "iopub.status.idle": "2023-10-06T06:42:43.577522Z", - "shell.execute_reply": "2023-10-06T06:42:43.576854Z" + "iopub.execute_input": "2023-10-11T10:14:41.543364Z", + "iopub.status.busy": "2023-10-11T10:14:41.542867Z", + "iopub.status.idle": "2023-10-11T10:14:41.549933Z", + "shell.execute_reply": "2023-10-11T10:14:41.549377Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:43.580727Z", - "iopub.status.busy": "2023-10-06T06:42:43.580208Z", - "iopub.status.idle": "2023-10-06T06:42:43.586587Z", - "shell.execute_reply": "2023-10-06T06:42:43.585970Z" + "iopub.execute_input": "2023-10-11T10:14:41.552749Z", + "iopub.status.busy": "2023-10-11T10:14:41.552299Z", + "iopub.status.idle": "2023-10-11T10:14:41.556872Z", + "shell.execute_reply": "2023-10-11T10:14:41.556335Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:43.590034Z", - "iopub.status.busy": "2023-10-06T06:42:43.589424Z", - "iopub.status.idle": "2023-10-06T06:42:44.269421Z", - "shell.execute_reply": "2023-10-06T06:42:44.268565Z" + "iopub.execute_input": "2023-10-11T10:14:41.559649Z", + "iopub.status.busy": "2023-10-11T10:14:41.559200Z", + "iopub.status.idle": "2023-10-11T10:14:42.239478Z", + "shell.execute_reply": "2023-10-11T10:14:42.238623Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:44.273021Z", - "iopub.status.busy": "2023-10-06T06:42:44.272395Z", - "iopub.status.idle": "2023-10-06T06:42:44.405290Z", - "shell.execute_reply": "2023-10-06T06:42:44.404566Z" + "iopub.execute_input": "2023-10-11T10:14:42.243666Z", + "iopub.status.busy": "2023-10-11T10:14:42.243094Z", + "iopub.status.idle": "2023-10-11T10:14:42.361450Z", + "shell.execute_reply": "2023-10-11T10:14:42.360722Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:44.408457Z", - "iopub.status.busy": "2023-10-06T06:42:44.408222Z", - "iopub.status.idle": "2023-10-06T06:42:44.415389Z", - "shell.execute_reply": "2023-10-06T06:42:44.414802Z" + "iopub.execute_input": "2023-10-11T10:14:42.365097Z", + "iopub.status.busy": "2023-10-11T10:14:42.364684Z", + "iopub.status.idle": "2023-10-11T10:14:42.372504Z", + "shell.execute_reply": "2023-10-11T10:14:42.371871Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:44.418415Z", - "iopub.status.busy": "2023-10-06T06:42:44.417886Z", - "iopub.status.idle": "2023-10-06T06:42:44.848994Z", - "shell.execute_reply": "2023-10-06T06:42:44.848316Z" + "iopub.execute_input": "2023-10-11T10:14:42.375717Z", + "iopub.status.busy": "2023-10-11T10:14:42.375160Z", + "iopub.status.idle": "2023-10-11T10:14:42.832948Z", + "shell.execute_reply": "2023-10-11T10:14:42.832163Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:44.852327Z", - "iopub.status.busy": "2023-10-06T06:42:44.851732Z", - "iopub.status.idle": "2023-10-06T06:42:45.232990Z", - "shell.execute_reply": "2023-10-06T06:42:45.232396Z" + "iopub.execute_input": "2023-10-11T10:14:42.837046Z", + "iopub.status.busy": "2023-10-11T10:14:42.836548Z", + "iopub.status.idle": "2023-10-11T10:14:43.241324Z", + "shell.execute_reply": "2023-10-11T10:14:43.240529Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:45.236497Z", - "iopub.status.busy": "2023-10-06T06:42:45.236024Z", - "iopub.status.idle": "2023-10-06T06:42:45.673157Z", - "shell.execute_reply": "2023-10-06T06:42:45.672573Z" + "iopub.execute_input": "2023-10-11T10:14:43.244865Z", + "iopub.status.busy": "2023-10-11T10:14:43.244361Z", + "iopub.status.idle": "2023-10-11T10:14:43.717249Z", + "shell.execute_reply": "2023-10-11T10:14:43.716536Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:45.678207Z", - "iopub.status.busy": "2023-10-06T06:42:45.677552Z", - "iopub.status.idle": "2023-10-06T06:42:46.217025Z", - "shell.execute_reply": "2023-10-06T06:42:46.216410Z" + "iopub.execute_input": "2023-10-11T10:14:43.720695Z", + "iopub.status.busy": "2023-10-11T10:14:43.720189Z", + "iopub.status.idle": "2023-10-11T10:14:44.297358Z", + "shell.execute_reply": "2023-10-11T10:14:44.296598Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:46.224090Z", - "iopub.status.busy": "2023-10-06T06:42:46.223470Z", - "iopub.status.idle": "2023-10-06T06:42:46.761043Z", - "shell.execute_reply": "2023-10-06T06:42:46.760415Z" + "iopub.execute_input": "2023-10-11T10:14:44.306826Z", + "iopub.status.busy": "2023-10-11T10:14:44.306266Z", + "iopub.status.idle": "2023-10-11T10:14:44.877281Z", + "shell.execute_reply": "2023-10-11T10:14:44.876617Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:46.766294Z", - "iopub.status.busy": "2023-10-06T06:42:46.765658Z", - "iopub.status.idle": "2023-10-06T06:42:47.009286Z", - "shell.execute_reply": "2023-10-06T06:42:47.008592Z" + "iopub.execute_input": "2023-10-11T10:14:44.880925Z", + "iopub.status.busy": "2023-10-11T10:14:44.880266Z", + "iopub.status.idle": "2023-10-11T10:14:45.169266Z", + "shell.execute_reply": "2023-10-11T10:14:45.168623Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:47.012459Z", - "iopub.status.busy": "2023-10-06T06:42:47.012212Z", - "iopub.status.idle": "2023-10-06T06:42:47.241149Z", - "shell.execute_reply": "2023-10-06T06:42:47.240568Z" + "iopub.execute_input": "2023-10-11T10:14:45.173068Z", + "iopub.status.busy": "2023-10-11T10:14:45.172641Z", + "iopub.status.idle": "2023-10-11T10:14:45.403753Z", + "shell.execute_reply": "2023-10-11T10:14:45.403119Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:47.245512Z", - "iopub.status.busy": "2023-10-06T06:42:47.245037Z", - "iopub.status.idle": "2023-10-06T06:42:47.249301Z", - "shell.execute_reply": "2023-10-06T06:42:47.248618Z" + "iopub.execute_input": "2023-10-11T10:14:45.409774Z", + "iopub.status.busy": "2023-10-11T10:14:45.409332Z", + "iopub.status.idle": "2023-10-11T10:14:45.413869Z", + "shell.execute_reply": "2023-10-11T10:14:45.413295Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index ead06f972..a782b4946 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:49.931678Z", - "iopub.status.busy": "2023-10-06T06:42:49.931182Z", - "iopub.status.idle": "2023-10-06T06:42:52.302575Z", - "shell.execute_reply": "2023-10-06T06:42:52.301897Z" + "iopub.execute_input": "2023-10-11T10:14:48.248522Z", + "iopub.status.busy": "2023-10-11T10:14:48.248060Z", + "iopub.status.idle": "2023-10-11T10:14:50.766490Z", + "shell.execute_reply": "2023-10-11T10:14:50.765725Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:52.306349Z", - "iopub.status.busy": "2023-10-06T06:42:52.305724Z", - "iopub.status.idle": "2023-10-06T06:42:52.686477Z", - "shell.execute_reply": "2023-10-06T06:42:52.685783Z" + "iopub.execute_input": "2023-10-11T10:14:50.770556Z", + "iopub.status.busy": "2023-10-11T10:14:50.769989Z", + "iopub.status.idle": "2023-10-11T10:14:51.193239Z", + "shell.execute_reply": "2023-10-11T10:14:51.192424Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:52.690278Z", - "iopub.status.busy": "2023-10-06T06:42:52.689676Z", - "iopub.status.idle": "2023-10-06T06:42:52.694547Z", - "shell.execute_reply": "2023-10-06T06:42:52.693875Z" + "iopub.execute_input": "2023-10-11T10:14:51.197965Z", + "iopub.status.busy": "2023-10-11T10:14:51.197528Z", + "iopub.status.idle": "2023-10-11T10:14:51.208067Z", + "shell.execute_reply": "2023-10-11T10:14:51.204570Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:52.697643Z", - "iopub.status.busy": "2023-10-06T06:42:52.697164Z", - "iopub.status.idle": "2023-10-06T06:43:04.860852Z", - "shell.execute_reply": "2023-10-06T06:43:04.860235Z" + "iopub.execute_input": "2023-10-11T10:14:51.216010Z", + "iopub.status.busy": "2023-10-11T10:14:51.214804Z", + "iopub.status.idle": "2023-10-11T10:14:57.872879Z", + "shell.execute_reply": "2023-10-11T10:14:57.871995Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ccf6571d3adb4741985552a78e4d8fa2", + "model_id": "2187a5317f1445fc9127f6334a669a11", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:04.864200Z", - "iopub.status.busy": "2023-10-06T06:43:04.863735Z", - "iopub.status.idle": "2023-10-06T06:43:04.870788Z", - "shell.execute_reply": "2023-10-06T06:43:04.870167Z" + "iopub.execute_input": "2023-10-11T10:14:57.876489Z", + "iopub.status.busy": "2023-10-11T10:14:57.876055Z", + "iopub.status.idle": "2023-10-11T10:14:57.883665Z", + "shell.execute_reply": "2023-10-11T10:14:57.883007Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:04.873511Z", - "iopub.status.busy": "2023-10-06T06:43:04.873258Z", - "iopub.status.idle": "2023-10-06T06:43:05.471458Z", - "shell.execute_reply": "2023-10-06T06:43:05.470758Z" + "iopub.execute_input": "2023-10-11T10:14:57.887146Z", + "iopub.status.busy": "2023-10-11T10:14:57.886624Z", + "iopub.status.idle": "2023-10-11T10:14:58.513974Z", + "shell.execute_reply": "2023-10-11T10:14:58.513288Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:05.475311Z", - "iopub.status.busy": "2023-10-06T06:43:05.474490Z", - "iopub.status.idle": "2023-10-06T06:43:06.043140Z", - "shell.execute_reply": "2023-10-06T06:43:06.042378Z" + "iopub.execute_input": "2023-10-11T10:14:58.517518Z", + "iopub.status.busy": "2023-10-11T10:14:58.517258Z", + "iopub.status.idle": "2023-10-11T10:14:59.113315Z", + "shell.execute_reply": "2023-10-11T10:14:59.112513Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:06.046277Z", - "iopub.status.busy": "2023-10-06T06:43:06.045883Z", - "iopub.status.idle": "2023-10-06T06:43:06.051186Z", - "shell.execute_reply": "2023-10-06T06:43:06.050582Z" + "iopub.execute_input": "2023-10-11T10:14:59.117272Z", + "iopub.status.busy": "2023-10-11T10:14:59.116673Z", + "iopub.status.idle": "2023-10-11T10:14:59.122344Z", + "shell.execute_reply": "2023-10-11T10:14:59.121714Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:06.054063Z", - "iopub.status.busy": "2023-10-06T06:43:06.053689Z", - "iopub.status.idle": "2023-10-06T06:43:20.764569Z", - "shell.execute_reply": "2023-10-06T06:43:20.763956Z" + "iopub.execute_input": "2023-10-11T10:14:59.125452Z", + "iopub.status.busy": "2023-10-11T10:14:59.124992Z", + "iopub.status.idle": "2023-10-11T10:15:12.338984Z", + "shell.execute_reply": "2023-10-11T10:15:12.338203Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:20.768030Z", - "iopub.status.busy": "2023-10-06T06:43:20.767585Z", - "iopub.status.idle": "2023-10-06T06:43:22.576120Z", - "shell.execute_reply": "2023-10-06T06:43:22.575517Z" + "iopub.execute_input": "2023-10-11T10:15:12.342679Z", + "iopub.status.busy": "2023-10-11T10:15:12.342160Z", + "iopub.status.idle": "2023-10-11T10:15:13.939999Z", + "shell.execute_reply": "2023-10-11T10:15:13.939181Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:22.579152Z", - "iopub.status.busy": "2023-10-06T06:43:22.578776Z", - "iopub.status.idle": "2023-10-06T06:43:22.855276Z", - "shell.execute_reply": "2023-10-06T06:43:22.854690Z" + "iopub.execute_input": "2023-10-11T10:15:13.943281Z", + "iopub.status.busy": "2023-10-11T10:15:13.942871Z", + "iopub.status.idle": "2023-10-11T10:15:14.237154Z", + "shell.execute_reply": "2023-10-11T10:15:14.236479Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:22.858774Z", - "iopub.status.busy": "2023-10-06T06:43:22.858378Z", - "iopub.status.idle": "2023-10-06T06:43:23.678242Z", - "shell.execute_reply": "2023-10-06T06:43:23.677668Z" + "iopub.execute_input": "2023-10-11T10:15:14.240534Z", + "iopub.status.busy": "2023-10-11T10:15:14.240195Z", + "iopub.status.idle": "2023-10-11T10:15:15.103691Z", + "shell.execute_reply": "2023-10-11T10:15:15.103046Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:23.681478Z", - "iopub.status.busy": "2023-10-06T06:43:23.681071Z", - "iopub.status.idle": "2023-10-06T06:43:24.014813Z", - "shell.execute_reply": "2023-10-06T06:43:24.014150Z" + "iopub.execute_input": "2023-10-11T10:15:15.108620Z", + "iopub.status.busy": "2023-10-11T10:15:15.107416Z", + "iopub.status.idle": "2023-10-11T10:15:15.457851Z", + "shell.execute_reply": "2023-10-11T10:15:15.457219Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:24.018005Z", - "iopub.status.busy": "2023-10-06T06:43:24.017443Z", - "iopub.status.idle": "2023-10-06T06:43:24.297178Z", - "shell.execute_reply": "2023-10-06T06:43:24.296603Z" + "iopub.execute_input": "2023-10-11T10:15:15.461313Z", + "iopub.status.busy": "2023-10-11T10:15:15.460828Z", + "iopub.status.idle": "2023-10-11T10:15:15.753304Z", + "shell.execute_reply": "2023-10-11T10:15:15.752651Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:24.300543Z", - "iopub.status.busy": "2023-10-06T06:43:24.300054Z", - "iopub.status.idle": "2023-10-06T06:43:24.452368Z", - "shell.execute_reply": "2023-10-06T06:43:24.451646Z" + "iopub.execute_input": "2023-10-11T10:15:15.756626Z", + "iopub.status.busy": "2023-10-11T10:15:15.756115Z", + "iopub.status.idle": "2023-10-11T10:15:15.910302Z", + "shell.execute_reply": "2023-10-11T10:15:15.909590Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:24.456293Z", - "iopub.status.busy": "2023-10-06T06:43:24.455637Z", - "iopub.status.idle": "2023-10-06T06:44:12.619311Z", - "shell.execute_reply": "2023-10-06T06:44:12.618417Z" + "iopub.execute_input": "2023-10-11T10:15:15.914207Z", + "iopub.status.busy": "2023-10-11T10:15:15.913659Z", + "iopub.status.idle": "2023-10-11T10:16:11.565422Z", + "shell.execute_reply": "2023-10-11T10:16:11.564466Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:12.622903Z", - "iopub.status.busy": "2023-10-06T06:44:12.622485Z", - "iopub.status.idle": "2023-10-06T06:44:14.166267Z", - "shell.execute_reply": "2023-10-06T06:44:14.165380Z" + "iopub.execute_input": "2023-10-11T10:16:11.570126Z", + "iopub.status.busy": "2023-10-11T10:16:11.569548Z", + "iopub.status.idle": "2023-10-11T10:16:13.183899Z", + "shell.execute_reply": "2023-10-11T10:16:13.183075Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:14.170824Z", - "iopub.status.busy": "2023-10-06T06:44:14.170017Z", - "iopub.status.idle": "2023-10-06T06:44:14.391897Z", - "shell.execute_reply": "2023-10-06T06:44:14.391122Z" + "iopub.execute_input": "2023-10-11T10:16:13.188631Z", + "iopub.status.busy": "2023-10-11T10:16:13.187699Z", + "iopub.status.idle": "2023-10-11T10:16:13.537046Z", + "shell.execute_reply": "2023-10-11T10:16:13.536202Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:14.396218Z", - "iopub.status.busy": "2023-10-06T06:44:14.395691Z", - "iopub.status.idle": "2023-10-06T06:44:14.400242Z", - "shell.execute_reply": "2023-10-06T06:44:14.399044Z" + "iopub.execute_input": "2023-10-11T10:16:13.541469Z", + "iopub.status.busy": "2023-10-11T10:16:13.540788Z", + "iopub.status.idle": "2023-10-11T10:16:13.545347Z", + "shell.execute_reply": "2023-10-11T10:16:13.544614Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:14.403794Z", - "iopub.status.busy": "2023-10-06T06:44:14.403371Z", - "iopub.status.idle": "2023-10-06T06:44:14.413607Z", - "shell.execute_reply": "2023-10-06T06:44:14.412909Z" + "iopub.execute_input": "2023-10-11T10:16:13.548582Z", + "iopub.status.busy": "2023-10-11T10:16:13.548159Z", + "iopub.status.idle": "2023-10-11T10:16:13.560156Z", + "shell.execute_reply": "2023-10-11T10:16:13.558936Z" }, "nbsphinx": "hidden" }, @@ -1017,43 +1017,29 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "150c8d8ad66d493b9f1037d6d305bd3c": { + "2187a5317f1445fc9127f6334a669a11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "424d34a394bb4874930a352fed327b8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_486e6072aa0e48bfa66c430b66b5f0b8", - "placeholder": "​", - "style": "IPY_MODEL_7ca17c532434424c8ada5df20f3a2c67", - "value": " 170498071/170498071 [00:04<00:00, 41576700.02it/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_843ceb611bc74db8a334d03975a66956", + "IPY_MODEL_9ca7b1c3a96b4d019fd43271debf17c1", + "IPY_MODEL_f9b27459060f414e9f8c796ddb711d9c" + ], + "layout": "IPY_MODEL_265106b7b67b47578424ade6aa125e14" } }, - "486e6072aa0e48bfa66c430b66b5f0b8": { + "265106b7b67b47578424ade6aa125e14": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1105,7 +1091,22 @@ "width": null } }, - "594942b396154d7ea39098412ed5ab6d": { + "7239fe90d76743afa44528ef490f4cd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "843ceb611bc74db8a334d03975a66956": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1120,13 +1121,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f5a463a192734f3b816fa4226f433b20", + "layout": "IPY_MODEL_f5e1643e798e40fca4aebc0ca34c4cf7", "placeholder": "​", - "style": "IPY_MODEL_150c8d8ad66d493b9f1037d6d305bd3c", + "style": "IPY_MODEL_7239fe90d76743afa44528ef490f4cd5", "value": "100%" } }, - "778adb2c672d42b38ad9a9dbde1f066d": { + "98de8f3a440f4d61aa012aa6c7a4afbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1142,22 +1143,31 @@ "description_width": "" } }, - "7ca17c532434424c8ada5df20f3a2c67": { + "9ca7b1c3a96b4d019fd43271debf17c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ddbba9dd2f7e4ba2b538ec7f3c57db09", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_98de8f3a440f4d61aa012aa6c7a4afbf", + "value": 170498071.0 } }, - "85bb3bc369df46a18567269e9470a462": { + "bb23ca25827842429d4d3f3ca044e55f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1209,7 +1219,22 @@ "width": null } }, - "8c4316e45d8b4109afcea3b3b1ecaf09": { + "bb78051e21e14dc58ad638173ad1aed4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ddbba9dd2f7e4ba2b538ec7f3c57db09": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1261,53 +1286,7 @@ "width": null } }, - "ccf6571d3adb4741985552a78e4d8fa2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_594942b396154d7ea39098412ed5ab6d", - "IPY_MODEL_ebc831a19e104c85a17c4d65ce3c62f8", - "IPY_MODEL_424d34a394bb4874930a352fed327b8b" - ], - "layout": "IPY_MODEL_8c4316e45d8b4109afcea3b3b1ecaf09" - } - }, - "ebc831a19e104c85a17c4d65ce3c62f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_85bb3bc369df46a18567269e9470a462", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_778adb2c672d42b38ad9a9dbde1f066d", - "value": 170498071.0 - } - }, - "f5a463a192734f3b816fa4226f433b20": { + "f5e1643e798e40fca4aebc0ca34c4cf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1358,6 +1337,27 @@ "visibility": null, "width": null } + }, + "f9b27459060f414e9f8c796ddb711d9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bb23ca25827842429d4d3f3ca044e55f", + "placeholder": "​", + "style": "IPY_MODEL_bb78051e21e14dc58ad638173ad1aed4", + "value": " 170498071/170498071 [00:02<00:00, 72669604.58it/s]" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 020d5c7bf..b2f2a4e9c 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:20.188807Z", - "iopub.status.busy": "2023-10-06T06:44:20.188323Z", - "iopub.status.idle": "2023-10-06T06:44:21.435886Z", - "shell.execute_reply": "2023-10-06T06:44:21.435171Z" + "iopub.execute_input": "2023-10-11T10:16:18.972969Z", + "iopub.status.busy": "2023-10-11T10:16:18.972511Z", + "iopub.status.idle": "2023-10-11T10:16:20.274981Z", + "shell.execute_reply": "2023-10-11T10:16:20.274212Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:21.439404Z", - "iopub.status.busy": "2023-10-06T06:44:21.438796Z", - "iopub.status.idle": "2023-10-06T06:44:21.464741Z", - "shell.execute_reply": "2023-10-06T06:44:21.464035Z" + "iopub.execute_input": "2023-10-11T10:16:20.279070Z", + "iopub.status.busy": "2023-10-11T10:16:20.278677Z", + "iopub.status.idle": "2023-10-11T10:16:20.305714Z", + "shell.execute_reply": "2023-10-11T10:16:20.305003Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:21.467841Z", - "iopub.status.busy": "2023-10-06T06:44:21.467347Z", - "iopub.status.idle": "2023-10-06T06:44:21.470959Z", - "shell.execute_reply": "2023-10-06T06:44:21.470297Z" + "iopub.execute_input": "2023-10-11T10:16:20.309499Z", + "iopub.status.busy": "2023-10-11T10:16:20.309086Z", + "iopub.status.idle": "2023-10-11T10:16:20.312780Z", + "shell.execute_reply": "2023-10-11T10:16:20.312076Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:21.474127Z", - "iopub.status.busy": "2023-10-06T06:44:21.473568Z", - "iopub.status.idle": "2023-10-06T06:44:21.751928Z", - "shell.execute_reply": "2023-10-06T06:44:21.751138Z" + "iopub.execute_input": "2023-10-11T10:16:20.315961Z", + "iopub.status.busy": "2023-10-11T10:16:20.315631Z", + "iopub.status.idle": "2023-10-11T10:16:20.410714Z", + "shell.execute_reply": "2023-10-11T10:16:20.409898Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:21.755435Z", - "iopub.status.busy": "2023-10-06T06:44:21.754920Z", - "iopub.status.idle": "2023-10-06T06:44:22.091374Z", - "shell.execute_reply": "2023-10-06T06:44:22.090668Z" + "iopub.execute_input": "2023-10-11T10:16:20.414708Z", + "iopub.status.busy": "2023-10-11T10:16:20.414304Z", + "iopub.status.idle": "2023-10-11T10:16:20.773326Z", + "shell.execute_reply": "2023-10-11T10:16:20.772563Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:22.094691Z", - "iopub.status.busy": "2023-10-06T06:44:22.094223Z", - "iopub.status.idle": "2023-10-06T06:44:22.376398Z", - "shell.execute_reply": "2023-10-06T06:44:22.375739Z" + "iopub.execute_input": "2023-10-11T10:16:20.777081Z", + "iopub.status.busy": "2023-10-11T10:16:20.776566Z", + "iopub.status.idle": "2023-10-11T10:16:21.063336Z", + "shell.execute_reply": "2023-10-11T10:16:21.062687Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:22.379782Z", - "iopub.status.busy": "2023-10-06T06:44:22.379486Z", - "iopub.status.idle": "2023-10-06T06:44:22.384898Z", - "shell.execute_reply": "2023-10-06T06:44:22.384197Z" + "iopub.execute_input": "2023-10-11T10:16:21.067100Z", + "iopub.status.busy": "2023-10-11T10:16:21.066628Z", + "iopub.status.idle": "2023-10-11T10:16:21.072122Z", + "shell.execute_reply": "2023-10-11T10:16:21.071554Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:22.388039Z", - "iopub.status.busy": "2023-10-06T06:44:22.387598Z", - "iopub.status.idle": "2023-10-06T06:44:22.395712Z", - "shell.execute_reply": "2023-10-06T06:44:22.395000Z" + "iopub.execute_input": "2023-10-11T10:16:21.074893Z", + "iopub.status.busy": "2023-10-11T10:16:21.074440Z", + "iopub.status.idle": "2023-10-11T10:16:21.081812Z", + "shell.execute_reply": "2023-10-11T10:16:21.081267Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:22.398657Z", - "iopub.status.busy": "2023-10-06T06:44:22.398277Z", - "iopub.status.idle": "2023-10-06T06:44:22.401521Z", - "shell.execute_reply": "2023-10-06T06:44:22.400860Z" + "iopub.execute_input": "2023-10-11T10:16:21.084812Z", + "iopub.status.busy": "2023-10-11T10:16:21.084361Z", + "iopub.status.idle": "2023-10-11T10:16:21.087410Z", + "shell.execute_reply": "2023-10-11T10:16:21.086872Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:22.404233Z", - "iopub.status.busy": "2023-10-06T06:44:22.403998Z", - "iopub.status.idle": "2023-10-06T06:44:36.706587Z", - "shell.execute_reply": "2023-10-06T06:44:36.705934Z" + "iopub.execute_input": "2023-10-11T10:16:21.090213Z", + "iopub.status.busy": "2023-10-11T10:16:21.089763Z", + "iopub.status.idle": "2023-10-11T10:16:36.213624Z", + "shell.execute_reply": "2023-10-11T10:16:36.212898Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.710552Z", - "iopub.status.busy": "2023-10-06T06:44:36.709835Z", - "iopub.status.idle": "2023-10-06T06:44:36.718214Z", - "shell.execute_reply": "2023-10-06T06:44:36.717653Z" + "iopub.execute_input": "2023-10-11T10:16:36.217947Z", + "iopub.status.busy": "2023-10-11T10:16:36.217420Z", + "iopub.status.idle": "2023-10-11T10:16:36.227342Z", + "shell.execute_reply": "2023-10-11T10:16:36.226624Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.721133Z", - "iopub.status.busy": "2023-10-06T06:44:36.720716Z", - "iopub.status.idle": "2023-10-06T06:44:36.724780Z", - "shell.execute_reply": "2023-10-06T06:44:36.724226Z" + "iopub.execute_input": "2023-10-11T10:16:36.230618Z", + "iopub.status.busy": "2023-10-11T10:16:36.230039Z", + "iopub.status.idle": "2023-10-11T10:16:36.234621Z", + "shell.execute_reply": "2023-10-11T10:16:36.233913Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.727576Z", - "iopub.status.busy": "2023-10-06T06:44:36.727161Z", - "iopub.status.idle": "2023-10-06T06:44:36.731008Z", - "shell.execute_reply": "2023-10-06T06:44:36.730471Z" + "iopub.execute_input": "2023-10-11T10:16:36.237432Z", + "iopub.status.busy": "2023-10-11T10:16:36.237055Z", + "iopub.status.idle": "2023-10-11T10:16:36.241156Z", + "shell.execute_reply": "2023-10-11T10:16:36.240442Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.733921Z", - "iopub.status.busy": "2023-10-06T06:44:36.733491Z", - "iopub.status.idle": "2023-10-06T06:44:36.737030Z", - "shell.execute_reply": "2023-10-06T06:44:36.736471Z" + "iopub.execute_input": "2023-10-11T10:16:36.245201Z", + "iopub.status.busy": "2023-10-11T10:16:36.244553Z", + "iopub.status.idle": "2023-10-11T10:16:36.248400Z", + "shell.execute_reply": "2023-10-11T10:16:36.247715Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.739788Z", - "iopub.status.busy": "2023-10-06T06:44:36.739349Z", - "iopub.status.idle": "2023-10-06T06:44:36.749619Z", - "shell.execute_reply": "2023-10-06T06:44:36.749053Z" + "iopub.execute_input": "2023-10-11T10:16:36.251451Z", + "iopub.status.busy": "2023-10-11T10:16:36.250809Z", + "iopub.status.idle": "2023-10-11T10:16:36.261470Z", + "shell.execute_reply": "2023-10-11T10:16:36.260779Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.752678Z", - "iopub.status.busy": "2023-10-06T06:44:36.752182Z", - "iopub.status.idle": "2023-10-06T06:44:36.961281Z", - "shell.execute_reply": "2023-10-06T06:44:36.960683Z" + "iopub.execute_input": "2023-10-11T10:16:36.264543Z", + "iopub.status.busy": "2023-10-11T10:16:36.264169Z", + "iopub.status.idle": "2023-10-11T10:16:36.475717Z", + "shell.execute_reply": "2023-10-11T10:16:36.475081Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.964329Z", - "iopub.status.busy": "2023-10-06T06:44:36.963897Z", - "iopub.status.idle": "2023-10-06T06:44:37.147426Z", - "shell.execute_reply": "2023-10-06T06:44:37.146834Z" + "iopub.execute_input": "2023-10-11T10:16:36.478871Z", + "iopub.status.busy": "2023-10-11T10:16:36.478371Z", + "iopub.status.idle": "2023-10-11T10:16:36.664946Z", + "shell.execute_reply": "2023-10-11T10:16:36.664310Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:37.150574Z", - "iopub.status.busy": "2023-10-06T06:44:37.150124Z", - "iopub.status.idle": "2023-10-06T06:44:38.005164Z", - "shell.execute_reply": "2023-10-06T06:44:38.004524Z" + "iopub.execute_input": "2023-10-11T10:16:36.668419Z", + "iopub.status.busy": "2023-10-11T10:16:36.667655Z", + "iopub.status.idle": "2023-10-11T10:16:37.547694Z", + "shell.execute_reply": "2023-10-11T10:16:37.546993Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:38.009559Z", - "iopub.status.busy": "2023-10-06T06:44:38.008466Z", - "iopub.status.idle": "2023-10-06T06:44:38.126282Z", - "shell.execute_reply": "2023-10-06T06:44:38.125673Z" + "iopub.execute_input": "2023-10-11T10:16:37.551659Z", + "iopub.status.busy": "2023-10-11T10:16:37.550946Z", + "iopub.status.idle": "2023-10-11T10:16:37.678064Z", + "shell.execute_reply": "2023-10-11T10:16:37.677350Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:38.130026Z", - "iopub.status.busy": "2023-10-06T06:44:38.129553Z", - "iopub.status.idle": "2023-10-06T06:44:38.141898Z", - "shell.execute_reply": "2023-10-06T06:44:38.141346Z" + "iopub.execute_input": "2023-10-11T10:16:37.681349Z", + "iopub.status.busy": "2023-10-11T10:16:37.680929Z", + "iopub.status.idle": "2023-10-11T10:16:37.693007Z", + "shell.execute_reply": "2023-10-11T10:16:37.692356Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 568140485..dff96ea6a 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:43.095134Z", - "iopub.status.busy": "2023-10-06T06:44:43.094899Z", - "iopub.status.idle": "2023-10-06T06:44:45.505572Z", - "shell.execute_reply": "2023-10-06T06:44:45.504646Z" + "iopub.execute_input": "2023-10-11T10:16:42.879562Z", + "iopub.status.busy": "2023-10-11T10:16:42.879290Z", + "iopub.status.idle": "2023-10-11T10:16:45.171421Z", + "shell.execute_reply": "2023-10-11T10:16:45.170196Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:45.509351Z", - "iopub.status.busy": "2023-10-06T06:44:45.508947Z", - "iopub.status.idle": "2023-10-06T06:45:45.764466Z", - "shell.execute_reply": "2023-10-06T06:45:45.763493Z" + "iopub.execute_input": "2023-10-11T10:16:45.176121Z", + "iopub.status.busy": "2023-10-11T10:16:45.175449Z", + "iopub.status.idle": "2023-10-11T10:17:46.462708Z", + "shell.execute_reply": "2023-10-11T10:17:46.461482Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:45.768835Z", - "iopub.status.busy": "2023-10-06T06:45:45.768189Z", - "iopub.status.idle": "2023-10-06T06:45:46.906225Z", - "shell.execute_reply": "2023-10-06T06:45:46.905522Z" + "iopub.execute_input": "2023-10-11T10:17:46.468279Z", + "iopub.status.busy": "2023-10-11T10:17:46.466743Z", + "iopub.status.idle": "2023-10-11T10:17:47.703296Z", + "shell.execute_reply": "2023-10-11T10:17:47.702514Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:46.910342Z", - "iopub.status.busy": "2023-10-06T06:45:46.909626Z", - "iopub.status.idle": "2023-10-06T06:45:46.914175Z", - "shell.execute_reply": "2023-10-06T06:45:46.913586Z" + "iopub.execute_input": "2023-10-11T10:17:47.708935Z", + "iopub.status.busy": "2023-10-11T10:17:47.708287Z", + "iopub.status.idle": "2023-10-11T10:17:47.714808Z", + "shell.execute_reply": "2023-10-11T10:17:47.714115Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:46.917128Z", - "iopub.status.busy": "2023-10-06T06:45:46.916692Z", - "iopub.status.idle": "2023-10-06T06:45:46.921191Z", - "shell.execute_reply": "2023-10-06T06:45:46.920520Z" + "iopub.execute_input": "2023-10-11T10:17:47.717978Z", + "iopub.status.busy": "2023-10-11T10:17:47.717499Z", + "iopub.status.idle": "2023-10-11T10:17:47.723159Z", + "shell.execute_reply": "2023-10-11T10:17:47.722398Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:46.924775Z", - "iopub.status.busy": "2023-10-06T06:45:46.924240Z", - "iopub.status.idle": "2023-10-06T06:45:46.928457Z", - "shell.execute_reply": "2023-10-06T06:45:46.927789Z" + "iopub.execute_input": "2023-10-11T10:17:47.726282Z", + "iopub.status.busy": "2023-10-11T10:17:47.725847Z", + "iopub.status.idle": "2023-10-11T10:17:47.732041Z", + "shell.execute_reply": "2023-10-11T10:17:47.729495Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:46.931629Z", - "iopub.status.busy": "2023-10-06T06:45:46.931206Z", - "iopub.status.idle": "2023-10-06T06:45:46.934510Z", - "shell.execute_reply": "2023-10-06T06:45:46.933862Z" + "iopub.execute_input": "2023-10-11T10:17:47.742692Z", + "iopub.status.busy": "2023-10-11T10:17:47.742200Z", + "iopub.status.idle": "2023-10-11T10:17:47.747083Z", + "shell.execute_reply": "2023-10-11T10:17:47.746497Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:46.937427Z", - "iopub.status.busy": "2023-10-06T06:45:46.936856Z", - "iopub.status.idle": "2023-10-06T06:46:57.007851Z", - "shell.execute_reply": "2023-10-06T06:46:57.006953Z" + "iopub.execute_input": "2023-10-11T10:17:47.750396Z", + "iopub.status.busy": "2023-10-11T10:17:47.749938Z", + "iopub.status.idle": "2023-10-11T10:18:51.614820Z", + "shell.execute_reply": "2023-10-11T10:18:51.613672Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "336d03a0c73b4578928d5bc19103d16f", + "model_id": "d24024213fa24b41a523a4e18640be86", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e84dbe083ff345a8a028e51f15dfc8bd", + "model_id": "ee1410e8ee504c9298c084a53ee9f179", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:46:57.012078Z", - "iopub.status.busy": "2023-10-06T06:46:57.011627Z", - "iopub.status.idle": "2023-10-06T06:46:57.970367Z", - "shell.execute_reply": "2023-10-06T06:46:57.969674Z" + "iopub.execute_input": "2023-10-11T10:18:51.619344Z", + "iopub.status.busy": "2023-10-11T10:18:51.618768Z", + "iopub.status.idle": "2023-10-11T10:18:52.599476Z", + "shell.execute_reply": "2023-10-11T10:18:52.598567Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:46:57.974184Z", - "iopub.status.busy": "2023-10-06T06:46:57.973503Z", - "iopub.status.idle": "2023-10-06T06:47:00.848809Z", - "shell.execute_reply": "2023-10-06T06:47:00.848132Z" + "iopub.execute_input": "2023-10-11T10:18:52.603006Z", + "iopub.status.busy": "2023-10-11T10:18:52.602342Z", + "iopub.status.idle": "2023-10-11T10:18:55.732067Z", + "shell.execute_reply": "2023-10-11T10:18:55.731136Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:00.852016Z", - "iopub.status.busy": "2023-10-06T06:47:00.851751Z", - "iopub.status.idle": "2023-10-06T06:47:39.439716Z", - "shell.execute_reply": "2023-10-06T06:47:39.439030Z" + "iopub.execute_input": "2023-10-11T10:18:55.735974Z", + "iopub.status.busy": "2023-10-11T10:18:55.735410Z", + "iopub.status.idle": "2023-10-11T10:19:35.144920Z", + "shell.execute_reply": "2023-10-11T10:19:35.144291Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 12899/4997436 [00:00<00:38, 128983.97it/s]" + " 0%| | 12761/4997436 [00:00<00:39, 127597.34it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 25932/4997436 [00:00<00:38, 129768.90it/s]" + " 1%| | 25581/4997436 [00:00<00:38, 127944.19it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 39095/4997436 [00:00<00:37, 130613.48it/s]" + " 1%| | 38462/4997436 [00:00<00:38, 128333.00it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 52247/4997436 [00:00<00:37, 130965.97it/s]" + " 1%| | 51440/4997436 [00:00<00:38, 128900.03it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 65399/4997436 [00:00<00:37, 131161.96it/s]" + " 1%|▏ | 64331/4997436 [00:00<00:38, 128376.89it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 78559/4997436 [00:00<00:37, 131308.05it/s]" + " 2%|▏ | 77170/4997436 [00:00<00:38, 127739.59it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 91690/4997436 [00:00<00:37, 130906.43it/s]" + " 2%|▏ | 89958/4997436 [00:00<00:38, 127781.33it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 104871/4997436 [00:00<00:37, 131188.54it/s]" + " 2%|▏ | 102737/4997436 [00:00<00:38, 127552.31it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 118022/4997436 [00:00<00:37, 131284.82it/s]" + " 2%|▏ | 115569/4997436 [00:00<00:38, 127787.56it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 131212/4997436 [00:01<00:37, 131471.00it/s]" + " 3%|▎ | 128358/4997436 [00:01<00:38, 127815.76it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 144366/4997436 [00:01<00:36, 131489.46it/s]" + " 3%|▎ | 141140/4997436 [00:01<00:38, 127792.15it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 157516/4997436 [00:01<00:36, 131268.13it/s]" + " 3%|▎ | 154077/4997436 [00:01<00:37, 128266.59it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 170670/4997436 [00:01<00:36, 131349.36it/s]" + " 3%|▎ | 166904/4997436 [00:01<00:37, 128054.23it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 183829/4997436 [00:01<00:36, 131420.39it/s]" + " 4%|▎ | 179914/4997436 [00:01<00:37, 128667.98it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 197074/4997436 [00:01<00:36, 131728.56it/s]" + " 4%|▍ | 192782/4997436 [00:01<00:37, 128593.83it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 210272/4997436 [00:01<00:36, 131801.59it/s]" + " 4%|▍ | 205784/4997436 [00:01<00:37, 129020.44it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 223453/4997436 [00:01<00:36, 131780.55it/s]" + " 4%|▍ | 218687/4997436 [00:01<00:37, 128867.00it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 236632/4997436 [00:01<00:36, 131747.67it/s]" + " 5%|▍ | 231721/4997436 [00:01<00:36, 129305.47it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 249860/4997436 [00:01<00:35, 131904.30it/s]" + " 5%|▍ | 244687/4997436 [00:01<00:36, 129408.26it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 263055/4997436 [00:02<00:35, 131916.54it/s]" + " 5%|▌ | 257767/4997436 [00:02<00:36, 129821.28it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 276260/4997436 [00:02<00:35, 131954.65it/s]" + " 5%|▌ | 270750/4997436 [00:02<00:36, 129558.26it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 289466/4997436 [00:02<00:35, 131984.32it/s]" + " 6%|▌ | 283707/4997436 [00:02<00:36, 129296.59it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 302665/4997436 [00:02<00:35, 131921.13it/s]" + " 6%|▌ | 296757/4997436 [00:02<00:36, 129653.26it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 315858/4997436 [00:02<00:35, 131921.75it/s]" + " 6%|▌ | 309723/4997436 [00:02<00:36, 129527.22it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 329071/4997436 [00:02<00:35, 131982.18it/s]" + " 6%|▋ | 322711/4997436 [00:02<00:36, 129628.45it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 342288/4997436 [00:02<00:35, 132034.31it/s]" + " 7%|▋ | 335747/4997436 [00:02<00:35, 129845.24it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 355546/4997436 [00:02<00:35, 132196.61it/s]" + " 7%|▋ | 348732/4997436 [00:02<00:35, 129604.34it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 368805/4997436 [00:02<00:34, 132312.57it/s]" + " 7%|▋ | 361693/4997436 [00:02<00:35, 129500.60it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 382037/4997436 [00:02<00:34, 132304.34it/s]" + " 7%|▋ | 374753/4997436 [00:02<00:35, 129826.75it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 395268/4997436 [00:03<00:34, 132302.86it/s]" + " 8%|▊ | 387830/4997436 [00:03<00:35, 130106.58it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 408499/4997436 [00:03<00:34, 132212.09it/s]" + " 8%|▊ | 400841/4997436 [00:03<00:35, 129732.30it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 421721/4997436 [00:03<00:34, 132187.85it/s]" + " 8%|▊ | 413941/4997436 [00:03<00:35, 130107.16it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 435023/4997436 [00:03<00:34, 132435.13it/s]" + " 9%|▊ | 426953/4997436 [00:03<00:35, 130084.21it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 448267/4997436 [00:03<00:34, 132432.08it/s]" + " 9%|▉ | 439962/4997436 [00:03<00:35, 129730.29it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 461513/4997436 [00:03<00:34, 132438.31it/s]" + " 9%|▉ | 452988/4997436 [00:03<00:34, 129885.71it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 474770/4997436 [00:03<00:34, 132475.10it/s]" + " 9%|▉ | 466063/4997436 [00:03<00:34, 130142.08it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 488018/4997436 [00:03<00:34, 132359.90it/s]" + " 10%|▉ | 479078/4997436 [00:03<00:34, 129913.55it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 501255/4997436 [00:03<00:33, 132282.98it/s]" + " 10%|▉ | 492083/4997436 [00:03<00:34, 129950.44it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 514506/4997436 [00:03<00:33, 132349.17it/s]" + " 10%|█ | 505086/4997436 [00:03<00:34, 129969.85it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 527741/4997436 [00:04<00:33, 132247.27it/s]" + " 10%|█ | 518084/4997436 [00:04<00:34, 129627.77it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 540966/4997436 [00:04<00:33, 132185.50it/s]" + " 11%|█ | 531048/4997436 [00:04<00:34, 129085.51it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 554185/4997436 [00:04<00:33, 132168.19it/s]" + " 11%|█ | 543958/4997436 [00:04<00:34, 128757.00it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 567402/4997436 [00:04<00:33, 131977.96it/s]" + " 11%|█ | 556904/4997436 [00:04<00:34, 128961.89it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 580600/4997436 [00:04<00:33, 131895.25it/s]" + " 11%|█▏ | 569801/4997436 [00:04<00:34, 128795.10it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 593794/4997436 [00:04<00:33, 131906.81it/s]" + " 12%|█▏ | 582681/4997436 [00:04<00:34, 128439.20it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 606985/4997436 [00:04<00:33, 131866.25it/s]" + " 12%|█▏ | 595526/4997436 [00:04<00:34, 128186.14it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 620172/4997436 [00:04<00:33, 131865.72it/s]" + " 12%|█▏ | 608398/4997436 [00:04<00:34, 128341.23it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 633359/4997436 [00:04<00:33, 131746.22it/s]" + " 12%|█▏ | 621247/4997436 [00:04<00:34, 128383.29it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 646535/4997436 [00:04<00:33, 131748.23it/s]" + " 13%|█▎ | 634175/4997436 [00:04<00:33, 128648.80it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 659747/4997436 [00:05<00:32, 131857.92it/s]" + " 13%|█▎ | 647049/4997436 [00:05<00:33, 128671.93it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 672974/4997436 [00:05<00:32, 131979.90it/s]" + " 13%|█▎ | 659917/4997436 [00:05<00:33, 128331.75it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 686182/4997436 [00:05<00:32, 132007.50it/s]" + " 13%|█▎ | 672751/4997436 [00:05<00:33, 128299.02it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 699383/4997436 [00:05<00:32, 131915.95it/s]" + " 14%|█▎ | 685637/4997436 [00:05<00:33, 128464.80it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 712575/4997436 [00:05<00:32, 131849.91it/s]" + " 14%|█▍ | 698484/4997436 [00:05<00:33, 128435.67it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 725761/4997436 [00:05<00:32, 131740.94it/s]" + " 14%|█▍ | 711524/4997436 [00:05<00:33, 129020.25it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 738936/4997436 [00:05<00:32, 131543.62it/s]" + " 14%|█▍ | 724427/4997436 [00:05<00:33, 128730.02it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 752125/4997436 [00:05<00:32, 131644.27it/s]" + " 15%|█▍ | 737334/4997436 [00:05<00:33, 128827.60it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 765338/4997436 [00:05<00:32, 131785.69it/s]" + " 15%|█▌ | 750354/4997436 [00:05<00:32, 129235.39it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 778561/4997436 [00:05<00:31, 131914.84it/s]" + " 15%|█▌ | 763278/4997436 [00:05<00:32, 128798.42it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 791807/4997436 [00:06<00:31, 132074.72it/s]" + " 16%|█▌ | 776277/4997436 [00:06<00:32, 129152.69it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 805045/4997436 [00:06<00:31, 132162.33it/s]" + " 16%|█▌ | 789265/4997436 [00:06<00:32, 129366.55it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 818286/4997436 [00:06<00:31, 132233.24it/s]" + " 16%|█▌ | 802203/4997436 [00:06<00:32, 129365.45it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 831510/4997436 [00:06<00:31, 132083.53it/s]" + " 16%|█▋ | 815140/4997436 [00:06<00:32, 129146.51it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 844759/4997436 [00:06<00:31, 132202.46it/s]" + " 17%|█▋ | 828055/4997436 [00:06<00:32, 128597.81it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 857999/4997436 [00:06<00:31, 132258.88it/s]" + " 17%|█▋ | 841040/4997436 [00:06<00:32, 128967.36it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 871225/4997436 [00:06<00:31, 131844.91it/s]" + " 17%|█▋ | 853938/4997436 [00:06<00:32, 128882.04it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 884410/4997436 [00:06<00:31, 131826.06it/s]" + " 17%|█▋ | 866827/4997436 [00:06<00:32, 128539.04it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 897593/4997436 [00:06<00:31, 131818.62it/s]" + " 18%|█▊ | 879801/4997436 [00:06<00:31, 128893.52it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 910802/4997436 [00:06<00:30, 131897.61it/s]" + " 18%|█▊ | 892691/4997436 [00:06<00:31, 128761.48it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 924017/4997436 [00:07<00:30, 131968.48it/s]" + " 18%|█▊ | 905627/4997436 [00:07<00:31, 128936.29it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 937214/4997436 [00:07<00:30, 131843.64it/s]" + " 18%|█▊ | 918629/4997436 [00:07<00:31, 129257.52it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 950410/4997436 [00:07<00:30, 131875.15it/s]" + " 19%|█▊ | 931555/4997436 [00:07<00:31, 129117.74it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 963627/4997436 [00:07<00:30, 131960.84it/s]" + " 19%|█▉ | 944467/4997436 [00:07<00:31, 128864.39it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 976844/4997436 [00:07<00:30, 132021.51it/s]" + " 19%|█▉ | 957354/4997436 [00:07<00:31, 128745.05it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 990089/4997436 [00:07<00:30, 132145.79it/s]" + " 19%|█▉ | 970342/4997436 [00:07<00:31, 129080.69it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1003304/4997436 [00:07<00:30, 131977.32it/s]" + " 20%|█▉ | 983251/4997436 [00:07<00:31, 128797.96it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1016505/4997436 [00:07<00:30, 131984.04it/s]" + " 20%|█▉ | 996164/4997436 [00:07<00:31, 128893.29it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1029717/4997436 [00:07<00:30, 132020.78it/s]" + " 20%|██ | 1009084/4997436 [00:07<00:30, 128981.20it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1042920/4997436 [00:07<00:29, 131975.56it/s]" + " 20%|██ | 1022004/4997436 [00:07<00:30, 129042.46it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1056122/4997436 [00:08<00:29, 131986.28it/s]" + " 21%|██ | 1034909/4997436 [00:08<00:30, 128952.80it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1069377/4997436 [00:08<00:29, 132152.33it/s]" + " 21%|██ | 1047805/4997436 [00:08<00:30, 128827.16it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1082615/4997436 [00:08<00:29, 132218.28it/s]" + " 21%|██ | 1060865/4997436 [00:08<00:30, 129355.18it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1095849/4997436 [00:08<00:29, 132251.99it/s]" + " 21%|██▏ | 1073801/4997436 [00:08<00:30, 129239.58it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1109075/4997436 [00:08<00:29, 132248.66it/s]" + " 22%|██▏ | 1086890/4997436 [00:08<00:30, 129730.90it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1122300/4997436 [00:08<00:29, 132225.93it/s]" + " 22%|██▏ | 1099866/4997436 [00:08<00:30, 129736.23it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1135523/4997436 [00:08<00:29, 132019.31it/s]" + " 22%|██▏ | 1112840/4997436 [00:08<00:29, 129636.21it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1148726/4997436 [00:08<00:29, 131974.28it/s]" + " 23%|██▎ | 1125804/4997436 [00:08<00:29, 129435.87it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1161999/4997436 [00:08<00:29, 132197.47it/s]" + " 23%|██▎ | 1138748/4997436 [00:08<00:29, 128665.60it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1175224/4997436 [00:08<00:28, 132212.12it/s]" + " 23%|██▎ | 1151665/4997436 [00:08<00:29, 128812.65it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1188446/4997436 [00:09<00:28, 131754.15it/s]" + " 23%|██▎ | 1164548/4997436 [00:09<00:29, 128757.32it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1201622/4997436 [00:09<00:28, 131581.20it/s]" + " 24%|██▎ | 1177467/4997436 [00:09<00:29, 128882.73it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1214809/4997436 [00:09<00:28, 131666.21it/s]" + " 24%|██▍ | 1190356/4997436 [00:09<00:29, 128698.11it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1227976/4997436 [00:09<00:28, 131612.43it/s]" + " 24%|██▍ | 1203227/4997436 [00:09<00:29, 128553.21it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1241162/4997436 [00:09<00:28, 131685.10it/s]" + " 24%|██▍ | 1216083/4997436 [00:09<00:29, 128150.45it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1254331/4997436 [00:09<00:28, 131613.27it/s]" + " 25%|██▍ | 1228939/4997436 [00:09<00:29, 128270.76it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1267493/4997436 [00:09<00:28, 131137.37it/s]" + " 25%|██▍ | 1241767/4997436 [00:09<00:29, 128248.59it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1280608/4997436 [00:09<00:28, 131026.58it/s]" + " 25%|██▌ | 1254698/4997436 [00:09<00:29, 128561.79it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1293820/4997436 [00:09<00:28, 131349.63it/s]" + " 25%|██▌ | 1267555/4997436 [00:09<00:29, 128390.71it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1307006/4997436 [00:09<00:28, 131500.11it/s]" + " 26%|██▌ | 1280395/4997436 [00:09<00:29, 127938.18it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1320157/4997436 [00:10<00:28, 131118.52it/s]" + " 26%|██▌ | 1293408/4997436 [00:10<00:28, 128590.46it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1333351/4997436 [00:10<00:27, 131362.83it/s]" + " 26%|██▌ | 1306268/4997436 [00:10<00:28, 128459.39it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1346576/4997436 [00:10<00:27, 131624.59it/s]" + " 26%|██▋ | 1319192/4997436 [00:10<00:28, 128690.88it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1359861/4997436 [00:10<00:27, 131987.72it/s]" + " 27%|██▋ | 1332062/4997436 [00:10<00:28, 128662.87it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1373183/4997436 [00:10<00:27, 132354.01it/s]" + " 27%|██▋ | 1344991/4997436 [00:10<00:28, 128848.93it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1386461/4997436 [00:10<00:27, 132479.94it/s]" + " 27%|██▋ | 1357877/4997436 [00:10<00:28, 128678.51it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1399711/4997436 [00:10<00:27, 132483.91it/s]" + " 27%|██▋ | 1370934/4997436 [00:10<00:28, 129240.89it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1412960/4997436 [00:10<00:27, 131831.36it/s]" + " 28%|██▊ | 1383859/4997436 [00:10<00:28, 129029.71it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1426144/4997436 [00:10<00:27, 131395.51it/s]" + " 28%|██▊ | 1396887/4997436 [00:10<00:27, 129400.21it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1439390/4997436 [00:10<00:27, 131710.60it/s]" + " 28%|██▊ | 1409931/4997436 [00:10<00:27, 129709.05it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1452651/4997436 [00:11<00:26, 131975.28it/s]" + " 28%|██▊ | 1422903/4997436 [00:11<00:27, 129550.93it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1465850/4997436 [00:11<00:26, 131569.12it/s]" + " 29%|██▊ | 1435884/4997436 [00:11<00:27, 129626.62it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1479089/4997436 [00:11<00:26, 131810.80it/s]" + " 29%|██▉ | 1448852/4997436 [00:11<00:27, 129640.52it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1492271/4997436 [00:11<00:26, 131799.39it/s]" + " 29%|██▉ | 1461817/4997436 [00:11<00:27, 129623.58it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1505452/4997436 [00:11<00:26, 131682.57it/s]" + " 30%|██▉ | 1474780/4997436 [00:11<00:27, 129184.62it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1518621/4997436 [00:11<00:26, 131682.77it/s]" + " 30%|██▉ | 1487699/4997436 [00:11<00:27, 128832.87it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1531857/4997436 [00:11<00:26, 131882.67it/s]" + " 30%|███ | 1500788/4997436 [00:11<00:27, 129444.22it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1545046/4997436 [00:11<00:26, 131880.94it/s]" + " 30%|███ | 1513733/4997436 [00:11<00:27, 128960.03it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1558261/4997436 [00:11<00:26, 131957.58it/s]" + " 31%|███ | 1526728/4997436 [00:11<00:26, 129251.84it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1571457/4997436 [00:11<00:26, 131734.12it/s]" + " 31%|███ | 1539670/4997436 [00:11<00:26, 129298.20it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1584631/4997436 [00:12<00:25, 131578.53it/s]" + " 31%|███ | 1552710/4997436 [00:12<00:26, 129625.16it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1597789/4997436 [00:12<00:25, 130932.29it/s]" + " 31%|███▏ | 1565880/4997436 [00:12<00:26, 130244.23it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1610890/4997436 [00:12<00:25, 130953.67it/s]" + " 32%|███▏ | 1578905/4997436 [00:12<00:26, 129801.42it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1624050/4997436 [00:12<00:25, 131145.08it/s]" + " 32%|███▏ | 1591920/4997436 [00:12<00:26, 129903.20it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1637165/4997436 [00:12<00:25, 131108.79it/s]" + " 32%|███▏ | 1604911/4997436 [00:12<00:26, 129285.07it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1650277/4997436 [00:12<00:25, 130945.50it/s]" + " 32%|███▏ | 1617880/4997436 [00:12<00:26, 129404.06it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1663372/4997436 [00:12<00:25, 130416.54it/s]" + " 33%|███▎ | 1630870/4997436 [00:12<00:25, 129549.04it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1676506/4997436 [00:12<00:25, 130690.91it/s]" + " 33%|███▎ | 1643826/4997436 [00:12<00:25, 129357.42it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1689678/4997436 [00:12<00:25, 130996.21it/s]" + " 33%|███▎ | 1656763/4997436 [00:12<00:25, 129310.31it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1702830/4997436 [00:12<00:25, 131150.05it/s]" + " 33%|███▎ | 1669695/4997436 [00:12<00:25, 129128.47it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1715946/4997436 [00:13<00:25, 131127.78it/s]" + " 34%|███▎ | 1682609/4997436 [00:13<00:25, 129071.74it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1729060/4997436 [00:13<00:24, 131021.40it/s]" + " 34%|███▍ | 1695562/4997436 [00:13<00:25, 129205.27it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1742284/4997436 [00:13<00:24, 131384.90it/s]" + " 34%|███▍ | 1708602/4997436 [00:13<00:25, 129558.94it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1755435/4997436 [00:13<00:24, 131420.36it/s]" + " 34%|███▍ | 1721679/4997436 [00:13<00:25, 129919.86it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1768619/4997436 [00:13<00:24, 131543.38it/s]" + " 35%|███▍ | 1734802/4997436 [00:13<00:25, 130308.36it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1781774/4997436 [00:13<00:24, 131314.38it/s]" + " 35%|███▍ | 1747833/4997436 [00:13<00:24, 129999.33it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1794914/4997436 [00:13<00:24, 131335.84it/s]" + " 35%|███▌ | 1760834/4997436 [00:13<00:25, 128986.95it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1808099/4997436 [00:13<00:24, 131486.10it/s]" + " 35%|███▌ | 1773735/4997436 [00:13<00:25, 128482.05it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1821292/4997436 [00:13<00:24, 131617.32it/s]" + " 36%|███▌ | 1786683/4997436 [00:13<00:24, 128774.44it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1834454/4997436 [00:13<00:24, 131476.34it/s]" + " 36%|███▌ | 1799562/4997436 [00:13<00:24, 128753.65it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1847630/4997436 [00:14<00:23, 131559.12it/s]" + " 36%|███▋ | 1812529/4997436 [00:14<00:24, 129024.21it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1860811/4997436 [00:14<00:23, 131632.29it/s]" + " 37%|███▋ | 1825433/4997436 [00:14<00:24, 128999.80it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1874019/4997436 [00:14<00:23, 131763.92it/s]" + " 37%|███▋ | 1838371/4997436 [00:14<00:24, 129111.27it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1887196/4997436 [00:14<00:23, 131714.46it/s]" + " 37%|███▋ | 1851283/4997436 [00:14<00:24, 128908.52it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1900413/4997436 [00:14<00:23, 131849.10it/s]" + " 37%|███▋ | 1864313/4997436 [00:14<00:24, 129323.07it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1913628/4997436 [00:14<00:23, 131937.20it/s]" + " 38%|███▊ | 1877255/4997436 [00:14<00:24, 129350.30it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1926827/4997436 [00:14<00:23, 131951.19it/s]" + " 38%|███▊ | 1890191/4997436 [00:14<00:24, 129340.40it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1940023/4997436 [00:14<00:23, 131701.66it/s]" + " 38%|███▊ | 1903126/4997436 [00:14<00:23, 129278.82it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1953194/4997436 [00:14<00:23, 131568.51it/s]" + " 38%|███▊ | 1916054/4997436 [00:14<00:23, 128953.19it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1966351/4997436 [00:14<00:23, 131562.13it/s]" + " 39%|███▊ | 1928950/4997436 [00:14<00:23, 128939.81it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1979508/4997436 [00:15<00:22, 131413.02it/s]" + " 39%|███▉ | 1941845/4997436 [00:15<00:23, 128706.27it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1992650/4997436 [00:15<00:22, 131143.40it/s]" + " 39%|███▉ | 1954793/4997436 [00:15<00:23, 128933.70it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2005765/4997436 [00:15<00:23, 128013.28it/s]" + " 39%|███▉ | 1967687/4997436 [00:15<00:23, 128808.25it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2018583/4997436 [00:15<00:23, 126973.67it/s]" + " 40%|███▉ | 1980568/4997436 [00:15<00:23, 128542.98it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2031292/4997436 [00:15<00:24, 121783.43it/s]" + " 40%|███▉ | 1993423/4997436 [00:15<00:23, 128309.73it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2043603/4997436 [00:15<00:24, 122160.82it/s]" + " 40%|████ | 2006255/4997436 [00:15<00:23, 128216.31it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2056633/4997436 [00:15<00:23, 124527.00it/s]" + " 40%|████ | 2019080/4997436 [00:15<00:23, 128223.77it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2069692/4997436 [00:15<00:23, 126305.02it/s]" + " 41%|████ | 2032008/4997436 [00:15<00:23, 128536.29it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2082761/4997436 [00:15<00:22, 127597.17it/s]" + " 41%|████ | 2044862/4997436 [00:15<00:22, 128402.35it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2095863/4997436 [00:15<00:22, 128611.77it/s]" + " 41%|████ | 2057718/4997436 [00:15<00:22, 128445.10it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2108940/4997436 [00:16<00:22, 129251.08it/s]" + " 41%|████▏ | 2070563/4997436 [00:16<00:22, 128022.52it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2122076/4997436 [00:16<00:22, 129876.52it/s]" + " 42%|████▏ | 2083366/4997436 [00:16<00:22, 127792.18it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2135072/4997436 [00:16<00:22, 129653.80it/s]" + " 42%|████▏ | 2096146/4997436 [00:16<00:22, 127487.15it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2148178/4997436 [00:16<00:21, 130070.80it/s]" + " 42%|████▏ | 2108899/4997436 [00:16<00:22, 127463.94it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2161308/4997436 [00:16<00:21, 130436.91it/s]" + " 42%|████▏ | 2121768/4997436 [00:16<00:22, 127827.29it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2174388/4997436 [00:16<00:21, 130541.37it/s]" + " 43%|████▎ | 2134620/4997436 [00:16<00:22, 128032.03it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2187446/4997436 [00:16<00:21, 130548.88it/s]" + " 43%|████▎ | 2147424/4997436 [00:16<00:22, 127851.03it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2200520/4997436 [00:16<00:21, 130603.68it/s]" + " 43%|████▎ | 2160211/4997436 [00:16<00:22, 127853.00it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2213582/4997436 [00:16<00:21, 130100.88it/s]" + " 43%|████▎ | 2172997/4997436 [00:16<00:22, 127071.02it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2226594/4997436 [00:16<00:21, 129971.53it/s]" + " 44%|████▎ | 2185865/4997436 [00:16<00:22, 127547.27it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2239614/4997436 [00:17<00:21, 130038.05it/s]" + " 44%|████▍ | 2198621/4997436 [00:17<00:21, 127394.52it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2252671/4997436 [00:17<00:21, 130193.34it/s]" + " 44%|████▍ | 2211362/4997436 [00:17<00:21, 126818.61it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2265691/4997436 [00:17<00:21, 129763.60it/s]" + " 45%|████▍ | 2224103/4997436 [00:17<00:21, 126991.27it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2278678/4997436 [00:17<00:20, 129793.23it/s]" + " 45%|████▍ | 2236832/4997436 [00:17<00:21, 127075.59it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2291682/4997436 [00:17<00:20, 129864.71it/s]" + " 45%|████▌ | 2249611/4997436 [00:17<00:21, 127285.17it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2304669/4997436 [00:17<00:20, 129716.56it/s]" + " 45%|████▌ | 2262340/4997436 [00:17<00:21, 126764.35it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2317729/4997436 [00:17<00:20, 129978.41it/s]" + " 46%|████▌ | 2275018/4997436 [00:17<00:21, 126513.71it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2330728/4997436 [00:17<00:20, 129764.02it/s]" + " 46%|████▌ | 2287786/4997436 [00:17<00:21, 126859.11it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2343900/4997436 [00:17<00:20, 130345.96it/s]" + " 46%|████▌ | 2300496/4997436 [00:17<00:21, 126928.39it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2357040/4997436 [00:17<00:20, 130657.90it/s]" + " 46%|████▋ | 2313309/4997436 [00:17<00:21, 127285.03it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2370272/4997436 [00:18<00:20, 131152.65it/s]" + " 47%|████▋ | 2326038/4997436 [00:18<00:21, 127019.77it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2383450/4997436 [00:18<00:19, 131336.52it/s]" + " 47%|████▋ | 2339051/4997436 [00:18<00:20, 127946.57it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2396584/4997436 [00:18<00:19, 131099.75it/s]" + " 47%|████▋ | 2351985/4997436 [00:18<00:20, 128361.68it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2409695/4997436 [00:18<00:19, 131095.37it/s]" + " 47%|████▋ | 2364832/4997436 [00:18<00:20, 128391.60it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2422805/4997436 [00:18<00:19, 130830.79it/s]" + " 48%|████▊ | 2377672/4997436 [00:18<00:20, 128283.60it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2435952/4997436 [00:18<00:19, 131019.07it/s]" + " 48%|████▊ | 2390676/4997436 [00:18<00:20, 128805.49it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2449087/4997436 [00:18<00:19, 131115.89it/s]" + " 48%|████▊ | 2403609/4997436 [00:18<00:20, 128959.70it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2462199/4997436 [00:18<00:19, 130984.18it/s]" + " 48%|████▊ | 2416552/4997436 [00:18<00:19, 129098.52it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2475298/4997436 [00:18<00:19, 130683.29it/s]" + " 49%|████▊ | 2429529/4997436 [00:18<00:19, 129295.75it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488378/4997436 [00:18<00:19, 130715.82it/s]" + " 49%|████▉ | 2442459/4997436 [00:18<00:19, 129175.42it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2501479/4997436 [00:19<00:19, 130799.84it/s]" + " 49%|████▉ | 2455458/4997436 [00:19<00:19, 129416.47it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2514564/4997436 [00:19<00:18, 130812.47it/s]" + " 49%|████▉ | 2468497/4997436 [00:19<00:19, 129704.20it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2527646/4997436 [00:19<00:18, 130712.12it/s]" + " 50%|████▉ | 2481468/4997436 [00:19<00:19, 129416.66it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2540718/4997436 [00:19<00:18, 130394.82it/s]" + " 50%|████▉ | 2494472/4997436 [00:19<00:19, 129599.65it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2553768/4997436 [00:19<00:18, 130425.12it/s]" + " 50%|█████ | 2507435/4997436 [00:19<00:19, 129606.37it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2566814/4997436 [00:19<00:18, 130432.81it/s]" + " 50%|█████ | 2520396/4997436 [00:19<00:19, 129496.36it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2579858/4997436 [00:19<00:18, 130369.72it/s]" + " 51%|█████ | 2533370/4997436 [00:19<00:19, 129564.58it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2592896/4997436 [00:19<00:18, 130055.28it/s]" + " 51%|█████ | 2546327/4997436 [00:19<00:19, 128746.69it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2605983/4997436 [00:19<00:18, 130296.78it/s]" + " 51%|█████ | 2559203/4997436 [00:19<00:18, 128552.09it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2619013/4997436 [00:19<00:18, 130176.86it/s]" + " 51%|█████▏ | 2572059/4997436 [00:19<00:18, 127876.60it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2632050/4997436 [00:20<00:18, 130232.69it/s]" + " 52%|█████▏ | 2584848/4997436 [00:20<00:18, 127605.00it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2645074/4997436 [00:20<00:18, 130164.35it/s]" + " 52%|█████▏ | 2597689/4997436 [00:20<00:18, 127841.18it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2658179/4997436 [00:20<00:17, 130427.21it/s]" + " 52%|█████▏ | 2610474/4997436 [00:20<00:18, 127736.89it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2671272/4997436 [00:20<00:17, 130573.93it/s]" + " 52%|█████▏ | 2623249/4997436 [00:20<00:18, 127689.34it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2684330/4997436 [00:20<00:17, 130546.21it/s]" + " 53%|█████▎ | 2636019/4997436 [00:20<00:18, 127569.38it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2697385/4997436 [00:20<00:17, 130383.07it/s]" + " 53%|█████▎ | 2648786/4997436 [00:20<00:18, 127595.43it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2710424/4997436 [00:20<00:17, 130197.60it/s]" + " 53%|█████▎ | 2661546/4997436 [00:20<00:18, 127395.30it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2723465/4997436 [00:20<00:17, 130257.89it/s]" + " 54%|█████▎ | 2674286/4997436 [00:20<00:18, 127088.34it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2736648/4997436 [00:20<00:17, 130726.67it/s]" + " 54%|█████▍ | 2686996/4997436 [00:20<00:18, 126904.25it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2749721/4997436 [00:20<00:17, 130643.41it/s]" + " 54%|█████▍ | 2699687/4997436 [00:20<00:18, 126610.26it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2762838/4997436 [00:21<00:17, 130797.60it/s]" + " 54%|█████▍ | 2712349/4997436 [00:21<00:18, 125773.85it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2775918/4997436 [00:21<00:17, 130594.52it/s]" + " 55%|█████▍ | 2725322/4997436 [00:21<00:17, 126948.27it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2789004/4997436 [00:21<00:16, 130671.55it/s]" + " 55%|█████▍ | 2738178/4997436 [00:21<00:17, 127425.02it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2802112/4997436 [00:21<00:16, 130792.02it/s]" + " 55%|█████▌ | 2750958/4997436 [00:21<00:17, 127534.50it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2815272/4997436 [00:21<00:16, 131030.97it/s]" + " 55%|█████▌ | 2763713/4997436 [00:21<00:17, 127084.33it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2828417/4997436 [00:21<00:16, 131152.98it/s]" + " 56%|█████▌ | 2776423/4997436 [00:21<00:17, 127071.58it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2841533/4997436 [00:21<00:16, 131119.69it/s]" + " 56%|█████▌ | 2789133/4997436 [00:21<00:17, 127076.85it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2854646/4997436 [00:21<00:16, 130829.42it/s]" + " 56%|█████▌ | 2801842/4997436 [00:21<00:17, 126861.09it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2867765/4997436 [00:21<00:16, 130933.21it/s]" + " 56%|█████▋ | 2814556/4997436 [00:21<00:17, 126940.49it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2880859/4997436 [00:21<00:16, 130701.42it/s]" + " 57%|█████▋ | 2827251/4997436 [00:21<00:17, 126921.72it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2893930/4997436 [00:22<00:16, 130296.83it/s]" + " 57%|█████▋ | 2839944/4997436 [00:22<00:17, 126542.49it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2907021/4997436 [00:22<00:16, 130476.50it/s]" + " 57%|█████▋ | 2852703/4997436 [00:22<00:16, 126852.44it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2920069/4997436 [00:22<00:15, 130274.62it/s]" + " 57%|█████▋ | 2865389/4997436 [00:22<00:16, 126746.38it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2933097/4997436 [00:22<00:15, 130189.92it/s]" + " 58%|█████▊ | 2878169/4997436 [00:22<00:16, 127057.56it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2946163/4997436 [00:22<00:15, 130328.58it/s]" + " 58%|█████▊ | 2890967/4997436 [00:22<00:16, 127330.36it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2959196/4997436 [00:22<00:15, 130245.72it/s]" + " 58%|█████▊ | 2903703/4997436 [00:22<00:16, 127334.82it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2972221/4997436 [00:22<00:15, 130153.82it/s]" + " 58%|█████▊ | 2916437/4997436 [00:22<00:16, 127299.65it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2985237/4997436 [00:22<00:15, 130127.56it/s]" + " 59%|█████▊ | 2929168/4997436 [00:22<00:16, 127235.77it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2998378/4997436 [00:22<00:15, 130508.74it/s]" + " 59%|█████▉ | 2941892/4997436 [00:22<00:16, 126966.06it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3011511/4997436 [00:22<00:15, 130752.30it/s]" + " 59%|█████▉ | 2954680/4997436 [00:22<00:16, 127236.43it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3024597/4997436 [00:23<00:15, 130780.14it/s]" + " 59%|█████▉ | 2967404/4997436 [00:23<00:16, 126873.64it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3037714/4997436 [00:23<00:14, 130893.24it/s]" + " 60%|█████▉ | 2980211/4997436 [00:23<00:15, 127226.59it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3050804/4997436 [00:23<00:14, 130672.66it/s]" + " 60%|█████▉ | 2992934/4997436 [00:23<00:15, 126770.92it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3063889/4997436 [00:23<00:14, 130722.74it/s]" + " 60%|██████ | 3005612/4997436 [00:23<00:15, 126742.70it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3076962/4997436 [00:23<00:14, 128458.30it/s]" + " 60%|██████ | 3018287/4997436 [00:23<00:15, 126055.90it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3090064/4997436 [00:23<00:14, 129214.92it/s]" + " 61%|██████ | 3031026/4997436 [00:23<00:15, 126450.11it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3103151/4997436 [00:23<00:14, 129704.02it/s]" + " 61%|██████ | 3043697/4997436 [00:23<00:15, 126524.82it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3116220/4997436 [00:23<00:14, 129996.76it/s]" + " 61%|██████ | 3056538/4997436 [00:23<00:15, 127084.31it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3129363/4997436 [00:23<00:14, 130420.57it/s]" + " 61%|██████▏ | 3069446/4997436 [00:23<00:15, 127677.62it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3142536/4997436 [00:23<00:14, 130810.23it/s]" + " 62%|██████▏ | 3082215/4997436 [00:23<00:15, 126928.77it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3155636/4997436 [00:24<00:14, 130864.08it/s]" + " 62%|██████▏ | 3095031/4997436 [00:24<00:14, 127293.82it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3168724/4997436 [00:24<00:13, 130826.85it/s]" + " 62%|██████▏ | 3107873/4997436 [00:24<00:14, 127626.48it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3181851/4997436 [00:24<00:13, 130956.66it/s]" + " 62%|██████▏ | 3120637/4997436 [00:24<00:14, 127587.33it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3195001/4997436 [00:24<00:13, 131115.70it/s]" + " 63%|██████▎ | 3133397/4997436 [00:24<00:14, 127022.75it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3208114/4997436 [00:24<00:13, 131051.74it/s]" + " 63%|██████▎ | 3146125/4997436 [00:24<00:14, 127097.08it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3221220/4997436 [00:24<00:13, 130790.57it/s]" + " 63%|██████▎ | 3159048/4997436 [00:24<00:14, 127732.85it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3234326/4997436 [00:24<00:13, 130868.94it/s]" + " 63%|██████▎ | 3171849/4997436 [00:24<00:14, 127812.65it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3247451/4997436 [00:24<00:13, 130980.52it/s]" + " 64%|██████▎ | 3184689/4997436 [00:24<00:14, 127985.87it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3260550/4997436 [00:24<00:13, 130808.33it/s]" + " 64%|██████▍ | 3197494/4997436 [00:24<00:14, 128001.83it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3273632/4997436 [00:24<00:13, 130652.05it/s]" + " 64%|██████▍ | 3210295/4997436 [00:24<00:13, 127672.46it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3286698/4997436 [00:25<00:13, 130638.33it/s]" + " 64%|██████▍ | 3223063/4997436 [00:25<00:13, 127636.32it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3299762/4997436 [00:25<00:13, 130359.84it/s]" + " 65%|██████▍ | 3235827/4997436 [00:25<00:13, 127612.77it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3312799/4997436 [00:25<00:12, 130199.16it/s]" + " 65%|██████▌ | 3248589/4997436 [00:25<00:13, 127222.89it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3325832/4997436 [00:25<00:12, 130237.04it/s]" + " 65%|██████▌ | 3261312/4997436 [00:25<00:13, 126688.51it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3338856/4997436 [00:25<00:12, 130136.70it/s]" + " 66%|██████▌ | 3274065/4997436 [00:25<00:13, 126936.79it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3351904/4997436 [00:25<00:12, 130237.58it/s]" + " 66%|██████▌ | 3286849/4997436 [00:25<00:13, 127203.18it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3364956/4997436 [00:25<00:12, 130318.79it/s]" + " 66%|██████▌ | 3299632/4997436 [00:25<00:13, 127386.05it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3378049/4997436 [00:25<00:12, 130499.78it/s]" + " 66%|██████▋ | 3312463/4997436 [00:25<00:13, 127658.30it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3391100/4997436 [00:25<00:12, 130481.99it/s]" + " 67%|██████▋ | 3325409/4997436 [00:25<00:13, 128195.85it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3404149/4997436 [00:25<00:12, 130418.42it/s]" + " 67%|██████▋ | 3338229/4997436 [00:25<00:12, 128133.13it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3417191/4997436 [00:26<00:12, 130247.83it/s]" + " 67%|██████▋ | 3351077/4997436 [00:26<00:12, 128232.45it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3430216/4997436 [00:26<00:12, 130195.70it/s]" + " 67%|██████▋ | 3363901/4997436 [00:26<00:12, 127494.36it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3443236/4997436 [00:26<00:11, 130170.90it/s]" + " 68%|██████▊ | 3376729/4997436 [00:26<00:12, 127725.10it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3456254/4997436 [00:26<00:11, 130065.49it/s]" + " 68%|██████▊ | 3389591/4997436 [00:26<00:12, 127990.37it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3469276/4997436 [00:26<00:11, 130108.85it/s]" + " 68%|██████▊ | 3402391/4997436 [00:26<00:12, 127848.04it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3482296/4997436 [00:26<00:11, 130133.60it/s]" + " 68%|██████▊ | 3415177/4997436 [00:26<00:12, 127739.54it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3495341/4997436 [00:26<00:11, 130227.00it/s]" + " 69%|██████▊ | 3427983/4997436 [00:26<00:12, 127833.04it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3508364/4997436 [00:26<00:11, 130194.62it/s]" + " 69%|██████▉ | 3440767/4997436 [00:26<00:12, 126917.51it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3521384/4997436 [00:26<00:11, 130109.77it/s]" + " 69%|██████▉ | 3453628/4997436 [00:26<00:12, 127418.18it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3534529/4997436 [00:26<00:11, 130508.74it/s]" + " 69%|██████▉ | 3466372/4997436 [00:26<00:12, 127318.83it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3547609/4997436 [00:27<00:11, 130594.52it/s]" + " 70%|██████▉ | 3479181/4997436 [00:27<00:11, 127544.02it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3560762/4997436 [00:27<00:10, 130872.09it/s]" + " 70%|██████▉ | 3491937/4997436 [00:27<00:11, 127379.17it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3573878/4997436 [00:27<00:10, 130957.07it/s]" + " 70%|███████ | 3504870/4997436 [00:27<00:11, 127960.03it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3587020/4997436 [00:27<00:10, 131093.89it/s]" + " 70%|███████ | 3517667/4997436 [00:27<00:11, 127588.52it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3600130/4997436 [00:27<00:10, 131083.95it/s]" + " 71%|███████ | 3530478/4997436 [00:27<00:11, 127741.55it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3613239/4997436 [00:27<00:10, 130965.73it/s]" + " 71%|███████ | 3543253/4997436 [00:27<00:11, 127419.36it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3626336/4997436 [00:27<00:10, 130875.66it/s]" + " 71%|███████ | 3556090/4997436 [00:27<00:11, 127700.32it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3639424/4997436 [00:27<00:10, 130850.07it/s]" + " 71%|███████▏ | 3568976/4997436 [00:27<00:11, 128045.86it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3652569/4997436 [00:27<00:10, 131025.72it/s]" + " 72%|███████▏ | 3581781/4997436 [00:27<00:11, 128014.05it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3665695/4997436 [00:27<00:10, 131092.44it/s]" + " 72%|███████▏ | 3594583/4997436 [00:27<00:10, 127625.80it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3678805/4997436 [00:28<00:10, 130852.73it/s]" + " 72%|███████▏ | 3607465/4997436 [00:28<00:10, 127980.25it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3692023/4997436 [00:28<00:09, 131246.27it/s]" + " 72%|███████▏ | 3620475/4997436 [00:28<00:10, 128612.98it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3705240/4997436 [00:28<00:09, 131520.57it/s]" + " 73%|███████▎ | 3633337/4997436 [00:28<00:10, 128308.06it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3718428/4997436 [00:28<00:09, 131626.09it/s]" + " 73%|███████▎ | 3646169/4997436 [00:28<00:10, 128173.99it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3731641/4997436 [00:28<00:09, 131774.77it/s]" + " 73%|███████▎ | 3659036/4997436 [00:28<00:10, 128320.69it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3744819/4997436 [00:28<00:09, 131700.20it/s]" + " 73%|███████▎ | 3671869/4997436 [00:28<00:10, 128226.94it/s]" ] }, { @@ -2826,7 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3757990/4997436 [00:28<00:09, 131577.34it/s]" + " 74%|███████▎ | 3684770/4997436 [00:28<00:10, 128459.26it/s]" ] }, { @@ -2834,7 +2834,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3771148/4997436 [00:28<00:09, 130721.78it/s]" + " 74%|███████▍ | 3697617/4997436 [00:28<00:10, 128375.85it/s]" ] }, { @@ -2842,7 +2842,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3784222/4997436 [00:28<00:09, 130477.09it/s]" + " 74%|███████▍ | 3710490/4997436 [00:28<00:10, 128477.77it/s]" ] }, { @@ -2850,7 +2850,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3797300/4997436 [00:28<00:09, 130563.45it/s]" + " 75%|███████▍ | 3723338/4997436 [00:29<00:09, 128020.27it/s]" ] }, { @@ -2858,7 +2858,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3810357/4997436 [00:29<00:09, 130077.82it/s]" + " 75%|███████▍ | 3736372/4997436 [00:29<00:09, 128710.24it/s]" ] }, { @@ -2866,7 +2866,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3823478/4997436 [00:29<00:09, 130414.28it/s]" + " 75%|███████▌ | 3749244/4997436 [00:29<00:09, 128021.86it/s]" ] }, { @@ -2874,7 +2874,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3836666/4997436 [00:29<00:08, 130849.28it/s]" + " 75%|███████▌ | 3762048/4997436 [00:29<00:09, 127885.93it/s]" ] }, { @@ -2882,7 +2882,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3849752/4997436 [00:29<00:08, 130832.64it/s]" + " 76%|███████▌ | 3774970/4997436 [00:29<00:09, 128282.09it/s]" ] }, { @@ -2890,7 +2890,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3862910/4997436 [00:29<00:08, 131054.87it/s]" + " 76%|███████▌ | 3787799/4997436 [00:29<00:09, 128004.58it/s]" ] }, { @@ -2898,7 +2898,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3876073/4997436 [00:29<00:08, 131224.50it/s]" + " 76%|███████▌ | 3800600/4997436 [00:29<00:09, 127364.86it/s]" ] }, { @@ -2906,7 +2906,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3889244/4997436 [00:29<00:08, 131368.55it/s]" + " 76%|███████▋ | 3813479/4997436 [00:29<00:09, 127786.46it/s]" ] }, { @@ -2914,7 +2914,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3902382/4997436 [00:29<00:08, 131193.10it/s]" + " 77%|███████▋ | 3826259/4997436 [00:29<00:09, 127434.78it/s]" ] }, { @@ -2922,7 +2922,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3915502/4997436 [00:29<00:08, 131071.54it/s]" + " 77%|███████▋ | 3839076/4997436 [00:29<00:09, 127651.92it/s]" ] }, { @@ -2930,7 +2930,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3928610/4997436 [00:29<00:08, 131031.91it/s]" + " 77%|███████▋ | 3852025/4997436 [00:30<00:08, 128198.44it/s]" ] }, { @@ -2938,7 +2938,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3941714/4997436 [00:30<00:08, 130779.73it/s]" + " 77%|███████▋ | 3864921/4997436 [00:30<00:08, 128422.16it/s]" ] }, { @@ -2946,7 +2946,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3954816/4997436 [00:30<00:07, 130850.37it/s]" + " 78%|███████▊ | 3877824/4997436 [00:30<00:08, 128601.02it/s]" ] }, { @@ -2954,7 +2954,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3967974/4997436 [00:30<00:07, 131067.54it/s]" + " 78%|███████▊ | 3890734/4997436 [00:30<00:08, 128748.54it/s]" ] }, { @@ -2962,7 +2962,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3981081/4997436 [00:30<00:07, 130825.02it/s]" + " 78%|███████▊ | 3903610/4997436 [00:30<00:08, 128244.65it/s]" ] }, { @@ -2970,7 +2970,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3994227/4997436 [00:30<00:07, 131011.22it/s]" + " 78%|███████▊ | 3916436/4997436 [00:30<00:08, 128174.54it/s]" ] }, { @@ -2978,7 +2978,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4007342/4997436 [00:30<00:07, 131048.81it/s]" + " 79%|███████▊ | 3929384/4997436 [00:30<00:08, 128561.00it/s]" ] }, { @@ -2986,7 +2986,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4020447/4997436 [00:30<00:07, 130187.67it/s]" + " 79%|███████▉ | 3942241/4997436 [00:30<00:08, 128278.40it/s]" ] }, { @@ -2994,7 +2994,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4033521/4997436 [00:30<00:07, 130348.99it/s]" + " 79%|███████▉ | 3955071/4997436 [00:30<00:08, 128282.52it/s]" ] }, { @@ -3002,7 +3002,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4046580/4997436 [00:30<00:07, 130417.90it/s]" + " 79%|███████▉ | 3967988/4997436 [00:30<00:08, 128544.67it/s]" ] }, { @@ -3010,7 +3010,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4059724/4997436 [00:30<00:07, 130721.98it/s]" + " 80%|███████▉ | 3980880/4997436 [00:31<00:07, 128653.37it/s]" ] }, { @@ -3018,7 +3018,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4072827/4997436 [00:31<00:07, 130810.33it/s]" + " 80%|███████▉ | 3993746/4997436 [00:31<00:07, 128122.24it/s]" ] }, { @@ -3026,7 +3026,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4085927/4997436 [00:31<00:06, 130863.26it/s]" + " 80%|████████ | 4006601/4997436 [00:31<00:07, 128248.40it/s]" ] }, { @@ -3034,7 +3034,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4099014/4997436 [00:31<00:06, 130157.26it/s]" + " 80%|████████ | 4019509/4997436 [00:31<00:07, 128494.16it/s]" ] }, { @@ -3042,7 +3042,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4112059/4997436 [00:31<00:06, 130242.69it/s]" + " 81%|████████ | 4032359/4997436 [00:31<00:07, 128321.42it/s]" ] }, { @@ -3050,7 +3050,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4125085/4997436 [00:31<00:06, 130141.75it/s]" + " 81%|████████ | 4045192/4997436 [00:31<00:07, 127042.81it/s]" ] }, { @@ -3058,7 +3058,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4138100/4997436 [00:31<00:06, 130116.04it/s]" + " 81%|████████ | 4057965/4997436 [00:31<00:07, 127244.26it/s]" ] }, { @@ -3066,7 +3066,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4151166/4997436 [00:31<00:06, 130276.78it/s]" + " 81%|████████▏ | 4070752/4997436 [00:31<00:07, 127426.18it/s]" ] }, { @@ -3074,7 +3074,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4164289/4997436 [00:31<00:06, 130560.97it/s]" + " 82%|████████▏ | 4083497/4997436 [00:31<00:07, 127187.94it/s]" ] }, { @@ -3082,7 +3082,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4177346/4997436 [00:31<00:06, 130382.33it/s]" + " 82%|████████▏ | 4096217/4997436 [00:31<00:07, 127123.22it/s]" ] }, { @@ -3090,7 +3090,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4190385/4997436 [00:31<00:06, 129905.02it/s]" + " 82%|████████▏ | 4108978/4997436 [00:32<00:06, 127266.35it/s]" ] }, { @@ -3098,7 +3098,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4203376/4997436 [00:32<00:06, 129732.84it/s]" + " 82%|████████▏ | 4121731/4997436 [00:32<00:06, 127341.56it/s]" ] }, { @@ -3106,7 +3106,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4216350/4997436 [00:32<00:06, 129454.73it/s]" + " 83%|████████▎ | 4134562/4997436 [00:32<00:06, 127627.72it/s]" ] }, { @@ -3114,7 +3114,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4229456/4997436 [00:32<00:05, 129932.19it/s]" + " 83%|████████▎ | 4147370/4997436 [00:32<00:06, 127759.71it/s]" ] }, { @@ -3122,7 +3122,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4242508/4997436 [00:32<00:05, 130105.57it/s]" + " 83%|████████▎ | 4160147/4997436 [00:32<00:06, 127141.72it/s]" ] }, { @@ -3130,7 +3130,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4255709/4997436 [00:32<00:05, 130674.02it/s]" + " 84%|████████▎ | 4172862/4997436 [00:32<00:06, 126899.87it/s]" ] }, { @@ -3138,7 +3138,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4268777/4997436 [00:32<00:05, 130592.74it/s]" + " 84%|████████▍ | 4185553/4997436 [00:32<00:06, 125420.78it/s]" ] }, { @@ -3146,7 +3146,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4281980/4997436 [00:32<00:05, 131020.25it/s]" + " 84%|████████▍ | 4198201/4997436 [00:32<00:06, 125731.76it/s]" ] }, { @@ -3154,7 +3154,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4295101/4997436 [00:32<00:05, 131075.10it/s]" + " 84%|████████▍ | 4210801/4997436 [00:32<00:06, 125807.44it/s]" ] }, { @@ -3162,7 +3162,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4308284/4997436 [00:32<00:05, 131298.91it/s]" + " 85%|████████▍ | 4223466/4997436 [00:32<00:06, 126055.81it/s]" ] }, { @@ -3170,7 +3170,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4321472/4997436 [00:32<00:05, 131469.80it/s]" + " 85%|████████▍ | 4236347/4997436 [00:33<00:05, 126874.10it/s]" ] }, { @@ -3178,7 +3178,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4334620/4997436 [00:33<00:05, 131421.50it/s]" + " 85%|████████▌ | 4249206/4997436 [00:33<00:05, 127385.04it/s]" ] }, { @@ -3186,7 +3186,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4347763/4997436 [00:33<00:04, 131377.69it/s]" + " 85%|████████▌ | 4262163/4997436 [00:33<00:05, 128035.18it/s]" ] }, { @@ -3194,7 +3194,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4360901/4997436 [00:33<00:04, 131198.26it/s]" + " 86%|████████▌ | 4274968/4997436 [00:33<00:05, 127964.98it/s]" ] }, { @@ -3202,7 +3202,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4374048/4997436 [00:33<00:04, 131277.27it/s]" + " 86%|████████▌ | 4287955/4997436 [00:33<00:05, 128531.70it/s]" ] }, { @@ -3210,7 +3210,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4387202/4997436 [00:33<00:04, 131354.08it/s]" + " 86%|████████▌ | 4300879/4997436 [00:33<00:05, 128740.34it/s]" ] }, { @@ -3218,7 +3218,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4400360/4997436 [00:33<00:04, 131417.43it/s]" + " 86%|████████▋ | 4313910/4997436 [00:33<00:05, 129208.08it/s]" ] }, { @@ -3226,7 +3226,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4413516/4997436 [00:33<00:04, 131458.62it/s]" + " 87%|████████▋ | 4326832/4997436 [00:33<00:05, 128975.28it/s]" ] }, { @@ -3234,7 +3234,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4426735/4997436 [00:33<00:04, 131676.58it/s]" + " 87%|████████▋ | 4339730/4997436 [00:33<00:05, 128693.04it/s]" ] }, { @@ -3242,7 +3242,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4439903/4997436 [00:33<00:04, 131236.49it/s]" + " 87%|████████▋ | 4352604/4997436 [00:33<00:05, 128704.19it/s]" ] }, { @@ -3250,7 +3250,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4453027/4997436 [00:33<00:04, 131088.31it/s]" + " 87%|████████▋ | 4365521/4997436 [00:34<00:04, 128839.38it/s]" ] }, { @@ -3258,7 +3258,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4466171/4997436 [00:34<00:04, 131190.87it/s]" + " 88%|████████▊ | 4378446/4997436 [00:34<00:04, 128957.46it/s]" ] }, { @@ -3266,7 +3266,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4479327/4997436 [00:34<00:03, 131300.41it/s]" + " 88%|████████▊ | 4391342/4997436 [00:34<00:04, 128948.31it/s]" ] }, { @@ -3274,7 +3274,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4492458/4997436 [00:34<00:03, 131097.67it/s]" + " 88%|████████▊ | 4404237/4997436 [00:34<00:04, 128630.30it/s]" ] }, { @@ -3282,7 +3282,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4505568/4997436 [00:34<00:03, 131044.99it/s]" + " 88%|████████▊ | 4417185/4997436 [00:34<00:04, 128881.64it/s]" ] }, { @@ -3290,7 +3290,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4518673/4997436 [00:34<00:03, 130995.08it/s]" + " 89%|████████▊ | 4430115/4997436 [00:34<00:04, 129003.67it/s]" ] }, { @@ -3298,7 +3298,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4531783/4997436 [00:34<00:03, 131023.18it/s]" + " 89%|████████▉ | 4443104/4997436 [00:34<00:04, 129266.07it/s]" ] }, { @@ -3306,7 +3306,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4544930/4997436 [00:34<00:03, 131153.75it/s]" + " 89%|████████▉ | 4456031/4997436 [00:34<00:04, 129146.74it/s]" ] }, { @@ -3314,7 +3314,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4558166/4997436 [00:34<00:03, 131513.33it/s]" + " 89%|████████▉ | 4468946/4997436 [00:34<00:04, 129105.70it/s]" ] }, { @@ -3322,7 +3322,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4571318/4997436 [00:34<00:03, 131485.85it/s]" + " 90%|████████▉ | 4481867/4997436 [00:34<00:03, 129134.04it/s]" ] }, { @@ -3330,7 +3330,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4584467/4997436 [00:34<00:03, 131242.73it/s]" + " 90%|████████▉ | 4494786/4997436 [00:35<00:03, 129148.18it/s]" ] }, { @@ -3338,7 +3338,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4597592/4997436 [00:35<00:03, 131068.62it/s]" + " 90%|█████████ | 4507701/4997436 [00:35<00:03, 128898.77it/s]" ] }, { @@ -3346,7 +3346,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4610699/4997436 [00:35<00:02, 130872.16it/s]" + " 90%|█████████ | 4520786/4997436 [00:35<00:03, 129480.84it/s]" ] }, { @@ -3354,7 +3354,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4623787/4997436 [00:35<00:02, 130631.30it/s]" + " 91%|█████████ | 4533735/4997436 [00:35<00:03, 128673.34it/s]" ] }, { @@ -3362,7 +3362,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4636851/4997436 [00:35<00:02, 130382.64it/s]" + " 91%|█████████ | 4546604/4997436 [00:35<00:03, 128505.64it/s]" ] }, { @@ -3370,7 +3370,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4649890/4997436 [00:35<00:02, 130220.59it/s]" + " 91%|█████████ | 4559456/4997436 [00:35<00:03, 128238.35it/s]" ] }, { @@ -3378,7 +3378,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4662933/4997436 [00:35<00:02, 130279.53it/s]" + " 91%|█████████▏| 4572413/4997436 [00:35<00:03, 128632.70it/s]" ] }, { @@ -3386,7 +3386,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4675962/4997436 [00:35<00:02, 130147.85it/s]" + " 92%|█████████▏| 4585277/4997436 [00:35<00:03, 128590.28it/s]" ] }, { @@ -3394,7 +3394,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4689031/4997436 [00:35<00:02, 130308.01it/s]" + " 92%|█████████▏| 4598137/4997436 [00:35<00:03, 128435.07it/s]" ] }, { @@ -3402,7 +3402,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4702120/4997436 [00:35<00:02, 130479.00it/s]" + " 92%|█████████▏| 4610981/4997436 [00:35<00:03, 128255.61it/s]" ] }, { @@ -3410,7 +3410,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4715203/4997436 [00:36<00:02, 130581.69it/s]" + " 93%|█████████▎| 4623807/4997436 [00:36<00:02, 127915.76it/s]" ] }, { @@ -3418,7 +3418,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4728262/4997436 [00:36<00:02, 130378.40it/s]" + " 93%|█████████▎| 4636796/4997436 [00:36<00:02, 128502.58it/s]" ] }, { @@ -3426,7 +3426,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4741310/4997436 [00:36<00:01, 130407.00it/s]" + " 93%|█████████▎| 4649647/4997436 [00:36<00:02, 128104.96it/s]" ] }, { @@ -3434,7 +3434,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4754402/4997436 [00:36<00:01, 130558.05it/s]" + " 93%|█████████▎| 4662578/4997436 [00:36<00:02, 128463.02it/s]" ] }, { @@ -3442,7 +3442,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4767461/4997436 [00:36<00:01, 130564.77it/s]" + " 94%|█████████▎| 4675427/4997436 [00:36<00:02, 128468.75it/s]" ] }, { @@ -3450,7 +3450,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4780518/4997436 [00:36<00:01, 130479.82it/s]" + " 94%|█████████▍| 4688275/4997436 [00:36<00:02, 128432.73it/s]" ] }, { @@ -3458,7 +3458,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4793567/4997436 [00:36<00:01, 130433.32it/s]" + " 94%|█████████▍| 4701119/4997436 [00:36<00:02, 128275.84it/s]" ] }, { @@ -3466,7 +3466,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4806668/4997436 [00:36<00:01, 130604.06it/s]" + " 94%|█████████▍| 4713947/4997436 [00:36<00:02, 128162.85it/s]" ] }, { @@ -3474,7 +3474,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4819729/4997436 [00:36<00:01, 129887.45it/s]" + " 95%|█████████▍| 4726764/4997436 [00:36<00:02, 127807.77it/s]" ] }, { @@ -3482,7 +3482,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4832758/4997436 [00:36<00:01, 130006.07it/s]" + " 95%|█████████▍| 4739546/4997436 [00:36<00:02, 127678.77it/s]" ] }, { @@ -3490,7 +3490,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4845783/4997436 [00:37<00:01, 130077.39it/s]" + " 95%|█████████▌| 4752338/4997436 [00:37<00:01, 127748.31it/s]" ] }, { @@ -3498,7 +3498,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4858834/4997436 [00:37<00:01, 130203.96it/s]" + " 95%|█████████▌| 4765113/4997436 [00:37<00:01, 127316.42it/s]" ] }, { @@ -3506,7 +3506,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4871855/4997436 [00:37<00:00, 130191.95it/s]" + " 96%|█████████▌| 4777845/4997436 [00:37<00:01, 127249.17it/s]" ] }, { @@ -3514,7 +3514,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4884875/4997436 [00:37<00:00, 130169.01it/s]" + " 96%|█████████▌| 4790571/4997436 [00:37<00:01, 127225.96it/s]" ] }, { @@ -3522,7 +3522,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4897893/4997436 [00:37<00:00, 130130.31it/s]" + " 96%|█████████▌| 4803320/4997436 [00:37<00:01, 127302.84it/s]" ] }, { @@ -3530,7 +3530,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4910923/4997436 [00:37<00:00, 130178.23it/s]" + " 96%|█████████▋| 4816051/4997436 [00:37<00:01, 127070.64it/s]" ] }, { @@ -3538,7 +3538,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4924004/4997436 [00:37<00:00, 130364.70it/s]" + " 97%|█████████▋| 4828789/4997436 [00:37<00:01, 127160.54it/s]" ] }, { @@ -3546,7 +3546,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4937049/4997436 [00:37<00:00, 130385.93it/s]" + " 97%|█████████▋| 4841619/4997436 [00:37<00:01, 127498.18it/s]" ] }, { @@ -3554,7 +3554,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4950088/4997436 [00:37<00:00, 130181.95it/s]" + " 97%|█████████▋| 4854383/4997436 [00:37<00:01, 127538.80it/s]" ] }, { @@ -3562,7 +3562,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4963107/4997436 [00:37<00:00, 130006.10it/s]" + " 97%|█████████▋| 4867276/4997436 [00:37<00:01, 127951.72it/s]" ] }, { @@ -3570,7 +3570,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4976165/4997436 [00:38<00:00, 130175.56it/s]" + " 98%|█████████▊| 4880077/4997436 [00:38<00:00, 127965.48it/s]" ] }, { @@ -3578,7 +3578,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4989183/4997436 [00:38<00:00, 130002.63it/s]" + " 98%|█████████▊| 4892874/4997436 [00:38<00:00, 127529.87it/s]" ] }, { @@ -3586,7 +3586,71 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997436/4997436 [00:38<00:00, 130927.69it/s]" + " 98%|█████████▊| 4905745/4997436 [00:38<00:00, 127879.70it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4918749/4997436 [00:38<00:00, 128522.27it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4931681/4997436 [00:38<00:00, 128757.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4944558/4997436 [00:38<00:00, 128694.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4957428/4997436 [00:38<00:00, 128348.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4970264/4997436 [00:38<00:00, 127022.11it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4982970/4997436 [00:38<00:00, 126848.39it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4995657/4997436 [00:38<00:00, 126109.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997436/4997436 [00:38<00:00, 128276.27it/s]" ] }, { @@ -3825,10 +3889,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:39.443366Z", - "iopub.status.busy": "2023-10-06T06:47:39.442705Z", - "iopub.status.idle": "2023-10-06T06:47:49.817388Z", - "shell.execute_reply": "2023-10-06T06:47:49.814757Z" + "iopub.execute_input": "2023-10-11T10:19:35.148300Z", + "iopub.status.busy": "2023-10-11T10:19:35.147632Z", + "iopub.status.idle": "2023-10-11T10:19:48.201026Z", + "shell.execute_reply": "2023-10-11T10:19:48.197594Z" } }, "outputs": [], @@ -3842,10 +3906,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:49.824505Z", - "iopub.status.busy": "2023-10-06T06:47:49.823545Z", - "iopub.status.idle": "2023-10-06T06:47:53.829402Z", - "shell.execute_reply": "2023-10-06T06:47:53.828476Z" + "iopub.execute_input": "2023-10-11T10:19:48.210210Z", + "iopub.status.busy": "2023-10-11T10:19:48.209525Z", + "iopub.status.idle": "2023-10-11T10:19:52.588224Z", + "shell.execute_reply": "2023-10-11T10:19:52.587532Z" } }, "outputs": [ @@ -3914,17 +3978,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:53.833842Z", - "iopub.status.busy": "2023-10-06T06:47:53.833175Z", - "iopub.status.idle": "2023-10-06T06:47:55.805247Z", - "shell.execute_reply": "2023-10-06T06:47:55.804550Z" + "iopub.execute_input": "2023-10-11T10:19:52.591451Z", + "iopub.status.busy": "2023-10-11T10:19:52.590941Z", + "iopub.status.idle": "2023-10-11T10:19:54.698010Z", + "shell.execute_reply": "2023-10-11T10:19:54.697195Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "939204745b0f4982a168c635c9281d65", + "model_id": "621df82686744ab7968be80cacbaaa44", "version_major": 2, "version_minor": 0 }, @@ -3954,10 +4018,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:55.808460Z", - "iopub.status.busy": "2023-10-06T06:47:55.808070Z", - "iopub.status.idle": "2023-10-06T06:47:56.078221Z", - "shell.execute_reply": "2023-10-06T06:47:56.077541Z" + "iopub.execute_input": "2023-10-11T10:19:54.702025Z", + "iopub.status.busy": "2023-10-11T10:19:54.701595Z", + "iopub.status.idle": "2023-10-11T10:19:54.983490Z", + "shell.execute_reply": "2023-10-11T10:19:54.982691Z" } }, "outputs": [], @@ -3971,10 +4035,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:56.082113Z", - "iopub.status.busy": "2023-10-06T06:47:56.081500Z", - "iopub.status.idle": "2023-10-06T06:48:02.736266Z", - "shell.execute_reply": "2023-10-06T06:48:02.735404Z" + "iopub.execute_input": "2023-10-11T10:19:54.987693Z", + "iopub.status.busy": "2023-10-11T10:19:54.987030Z", + "iopub.status.idle": "2023-10-11T10:20:02.233342Z", + "shell.execute_reply": "2023-10-11T10:20:02.232534Z" } }, "outputs": [ @@ -4047,10 +4111,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:02.739693Z", - "iopub.status.busy": "2023-10-06T06:48:02.739222Z", - "iopub.status.idle": "2023-10-06T06:48:02.866296Z", - "shell.execute_reply": "2023-10-06T06:48:02.865580Z" + "iopub.execute_input": "2023-10-11T10:20:02.236951Z", + "iopub.status.busy": "2023-10-11T10:20:02.236471Z", + "iopub.status.idle": "2023-10-11T10:20:02.347742Z", + "shell.execute_reply": "2023-10-11T10:20:02.347040Z" }, "nbsphinx": "hidden" }, @@ -4094,28 +4158,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "167054c5ebb941edb2e8f149ac55d5cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f6b3092af0d243ba8f2aa0acb24b6e9f", - "placeholder": "​", - "style": "IPY_MODEL_849dd948df6d4bc58467f68a4be9065e", - "value": " 300000/? [00:00<00:00, 4645437.97it/s]" - } - }, - "1f51d127129d407eb4fea986469e260a": { + "02f67f8acfd9447cb63ca4583c175be7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4167,50 +4210,52 @@ "width": null } }, - "2a00e8ffa1c943c99797d4c9a7c6e743": { + "05625dee20734c23884a88910b162bb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fd1fa443e127492db49e901ad4c28c70", - "placeholder": "​", - "style": "IPY_MODEL_76c397db97b04d698eca6926024ee5ad", - "value": " 300000/? [00:02<00:00, 111119.87it/s]" + "layout": "IPY_MODEL_7258609b786446f7b92392b9edc83a2e", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8ddf4726235b471287ba087aaca6f752", + "value": 244800.0 } }, - "336d03a0c73b4578928d5bc19103d16f": { + "124e688aaf6d4506b8acf07cfcb603eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c811b138be5640acb87fb8bf4ad643bc", - "IPY_MODEL_d2d1cab68d4042419767fd79062cadbc", - "IPY_MODEL_167054c5ebb941edb2e8f149ac55d5cc" - ], - "layout": "IPY_MODEL_33c3b72ddcbe43ac871f51a4cfd58d0f" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_853e4fd65b9a4a1e82439518d7e8b6ee", + "placeholder": "​", + "style": "IPY_MODEL_4218f4a8138146e4aa29e1f2d98bd1ae", + "value": " 30/30 [00:02<00:00, 15.64it/s]" } }, - "33c3b72ddcbe43ac871f51a4cfd58d0f": { + "2da8d09c7abd43419959ff3e8aaec28c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4262,7 +4307,22 @@ "width": null } }, - "36af193474584b6c9f78e08975253853": { + "4218f4a8138146e4aa29e1f2d98bd1ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "44e99e229f574e4b896a8ae16c47aa67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4278,7 +4338,89 @@ "description_width": "" } }, - "3995d9ac273343a7827b928b3898029b": { + "49b0de5cbc534b68bd1a55f5dfbb1126": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2da8d09c7abd43419959ff3e8aaec28c", + "placeholder": "​", + "style": "IPY_MODEL_79ac9db1e81c45de80f4c1900adef432", + "value": " 300000/? [00:01<00:00, 168383.75it/s]" + } + }, + "5005d98454ac4da68bc69e8f2e99fe54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56d164ebb05d483cad178ef703a85fd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9e4b7b564abd401d805f0aea85492e0f", + "placeholder": "​", + "style": "IPY_MODEL_7b0fc80c49c84fd99f47403d4a8fa63d", + "value": "images processed using softmin: 100%" + } + }, + "584f4088c6fd4a7da7a4d15793cb6074": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e9f539aac0f34cbc9dd52c54314549e1", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44e99e229f574e4b896a8ae16c47aa67", + "value": 244800.0 + } + }, + "58769a21dd4345a5840de0747cdafb0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4330,7 +4472,7 @@ "width": null } }, - "4170a1cb9ad448ccbbedd42be8d03337": { + "5bb80d30b1b14a399bbdb989eedf2c7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4382,22 +4524,29 @@ "width": null } }, - "4e7fc62e2c2046b8a524b85d72fff8e2": { + "621df82686744ab7968be80cacbaaa44": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_56d164ebb05d483cad178ef703a85fd8", + "IPY_MODEL_b78305818de9464485dfc2b5332bb221", + "IPY_MODEL_124e688aaf6d4506b8acf07cfcb603eb" + ], + "layout": "IPY_MODEL_dffda93c9b9c4ff6bf057a27145e14c7" } }, - "533e126940914949aa0663b359502445": { + "7258609b786446f7b92392b9edc83a2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4449,31 +4598,7 @@ "width": null } }, - "5bff0fa4c7104836b4146c945096493e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e7e8ebd7bc2e4e2dad33f61ed20ab31b", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bf2e978e13464deca55856a6505714f0", - "value": 244800.0 - } - }, - "6ade89eb2c9b40798f092f048f711f99": { + "79ac9db1e81c45de80f4c1900adef432": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4488,7 +4613,7 @@ "description_width": "" } }, - "76c397db97b04d698eca6926024ee5ad": { + "7b0fc80c49c84fd99f47403d4a8fa63d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4503,7 +4628,7 @@ "description_width": "" } }, - "7774f79b49da4dd3b113649c658a529d": { + "853e4fd65b9a4a1e82439518d7e8b6ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4555,111 +4680,7 @@ "width": null } }, - "7cc834cabc334188a671202a5d7c7e90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7fabad8cda034a918af254fd5b01031f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "849dd948df6d4bc58467f68a4be9065e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "939204745b0f4982a168c635c9281d65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a33f40285b5e44a4b34a7fecec0e23d8", - "IPY_MODEL_d2bd249401614c7287e7502b0f213727", - "IPY_MODEL_c318c2d95ab347419437c8ea6c4d97e1" - ], - "layout": "IPY_MODEL_c32a77752484460aacf4d0e82f2b991b" - } - }, - "9d57faf7b78f46b79b9785abbce739a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a33f40285b5e44a4b34a7fecec0e23d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_533e126940914949aa0663b359502445", - "placeholder": "​", - "style": "IPY_MODEL_4e7fc62e2c2046b8a524b85d72fff8e2", - "value": "images processed using softmin: 100%" - } - }, - "b2971b7b51e14ed6a843818812633f43": { + "89cfdf73c4d945359adcceef37adebf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4711,7 +4732,7 @@ "width": null } }, - "bf2e978e13464deca55856a6505714f0": { + "8ddf4726235b471287ba087aaca6f752": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4727,7 +4748,22 @@ "description_width": "" } }, - "c318c2d95ab347419437c8ea6c4d97e1": { + "8f7130c6de834fcd86cfdb73e17e3e22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "91b407a811ee4ed8a27a89f44d6140bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4742,13 +4778,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d4d0c229f27f412eb7f99d20aa4b3107", + "layout": "IPY_MODEL_02f67f8acfd9447cb63ca4583c175be7", "placeholder": "​", - "style": "IPY_MODEL_6ade89eb2c9b40798f092f048f711f99", - "value": " 30/30 [00:02<00:00, 16.59it/s]" + "style": "IPY_MODEL_bf04f9c7993748be96def20f7a35fa44", + "value": "number of examples processed for checking labels: " } }, - "c32a77752484460aacf4d0e82f2b991b": { + "9e4b7b564abd401d805f0aea85492e0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4800,7 +4836,7 @@ "width": null } }, - "c811b138be5640acb87fb8bf4ad643bc": { + "a53260dd17754be08c522afb7425157a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4815,13 +4851,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4170a1cb9ad448ccbbedd42be8d03337", + "layout": "IPY_MODEL_cf637b7dcc8f419993311bb20c2c4eb3", "placeholder": "​", - "style": "IPY_MODEL_7cc834cabc334188a671202a5d7c7e90", + "style": "IPY_MODEL_8f7130c6de834fcd86cfdb73e17e3e22", "value": "number of examples processed for estimating thresholds: " } }, - "d2bd249401614c7287e7502b0f213727": { + "b78305818de9464485dfc2b5332bb221": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4837,39 +4873,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7774f79b49da4dd3b113649c658a529d", + "layout": "IPY_MODEL_f64482910bc44324bec013719c15a8ef", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9d57faf7b78f46b79b9785abbce739a3", + "style": "IPY_MODEL_5005d98454ac4da68bc69e8f2e99fe54", "value": 30.0 } }, - "d2d1cab68d4042419767fd79062cadbc": { + "bf04f9c7993748be96def20f7a35fa44": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1f51d127129d407eb4fea986469e260a", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36af193474584b6c9f78e08975253853", - "value": 244800.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "d4d0c229f27f412eb7f99d20aa4b3107": { + "cf637b7dcc8f419993311bb20c2c4eb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4921,7 +4948,65 @@ "width": null } }, - "e7e8ebd7bc2e4e2dad33f61ed20ab31b": { + "d02f8d91ca6f4b8782604de4f193d4da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d24024213fa24b41a523a4e18640be86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a53260dd17754be08c522afb7425157a", + "IPY_MODEL_05625dee20734c23884a88910b162bb0", + "IPY_MODEL_da08aae6f8c14e198ee8d7a934da6746" + ], + "layout": "IPY_MODEL_89cfdf73c4d945359adcceef37adebf6" + } + }, + "da08aae6f8c14e198ee8d7a934da6746": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_58769a21dd4345a5840de0747cdafb0e", + "placeholder": "​", + "style": "IPY_MODEL_d02f8d91ca6f4b8782604de4f193d4da", + "value": " 300000/? [00:00<00:00, 3780741.31it/s]" + } + }, + "dffda93c9b9c4ff6bf057a27145e14c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4973,50 +5058,7 @@ "width": null } }, - "e84dbe083ff345a8a028e51f15dfc8bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f2e79a4412aa4a79bcb06be5bcef27f4", - "IPY_MODEL_5bff0fa4c7104836b4146c945096493e", - "IPY_MODEL_2a00e8ffa1c943c99797d4c9a7c6e743" - ], - "layout": "IPY_MODEL_b2971b7b51e14ed6a843818812633f43" - } - }, - "f2e79a4412aa4a79bcb06be5bcef27f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3995d9ac273343a7827b928b3898029b", - "placeholder": "​", - "style": "IPY_MODEL_7fabad8cda034a918af254fd5b01031f", - "value": "number of examples processed for checking labels: " - } - }, - "f6b3092af0d243ba8f2aa0acb24b6e9f": { + "e9f539aac0f34cbc9dd52c54314549e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5068,7 +5110,29 @@ "width": null } }, - "fd1fa443e127492db49e901ad4c28c70": { + "ee1410e8ee504c9298c084a53ee9f179": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_91b407a811ee4ed8a27a89f44d6140bf", + "IPY_MODEL_584f4088c6fd4a7da7a4d15793cb6074", + "IPY_MODEL_49b0de5cbc534b68bd1a55f5dfbb1126" + ], + "layout": "IPY_MODEL_5bb80d30b1b14a399bbdb989eedf2c7c" + } + }, + "f64482910bc44324bec013719c15a8ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 5ac2fe1f4..a1c0b3634 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:06.705520Z", - "iopub.status.busy": "2023-10-06T06:48:06.705263Z", - "iopub.status.idle": "2023-10-06T06:48:08.476124Z", - "shell.execute_reply": "2023-10-06T06:48:08.475398Z" + "iopub.execute_input": "2023-10-11T10:20:06.426153Z", + "iopub.status.busy": "2023-10-11T10:20:06.424960Z", + "iopub.status.idle": "2023-10-11T10:20:08.312459Z", + "shell.execute_reply": "2023-10-11T10:20:08.311668Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.479839Z", - "iopub.status.busy": "2023-10-06T06:48:08.479307Z", - "iopub.status.idle": "2023-10-06T06:48:08.534683Z", - "shell.execute_reply": "2023-10-06T06:48:08.533985Z" + "iopub.execute_input": "2023-10-11T10:20:08.316573Z", + "iopub.status.busy": "2023-10-11T10:20:08.315903Z", + "iopub.status.idle": "2023-10-11T10:20:08.374318Z", + "shell.execute_reply": "2023-10-11T10:20:08.373580Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.538076Z", - "iopub.status.busy": "2023-10-06T06:48:08.537601Z", - "iopub.status.idle": "2023-10-06T06:48:08.683076Z", - "shell.execute_reply": "2023-10-06T06:48:08.682361Z" + "iopub.execute_input": "2023-10-11T10:20:08.378375Z", + "iopub.status.busy": "2023-10-11T10:20:08.377961Z", + "iopub.status.idle": "2023-10-11T10:20:08.421283Z", + "shell.execute_reply": "2023-10-11T10:20:08.420592Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.686539Z", - "iopub.status.busy": "2023-10-06T06:48:08.685870Z", - "iopub.status.idle": "2023-10-06T06:48:08.690722Z", - "shell.execute_reply": "2023-10-06T06:48:08.689927Z" + "iopub.execute_input": "2023-10-11T10:20:08.424814Z", + "iopub.status.busy": "2023-10-11T10:20:08.424331Z", + "iopub.status.idle": "2023-10-11T10:20:08.431600Z", + "shell.execute_reply": "2023-10-11T10:20:08.430958Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.693380Z", - "iopub.status.busy": "2023-10-06T06:48:08.693150Z", - "iopub.status.idle": "2023-10-06T06:48:08.704186Z", - "shell.execute_reply": "2023-10-06T06:48:08.703577Z" + "iopub.execute_input": "2023-10-11T10:20:08.434862Z", + "iopub.status.busy": "2023-10-11T10:20:08.434495Z", + "iopub.status.idle": "2023-10-11T10:20:08.446243Z", + "shell.execute_reply": "2023-10-11T10:20:08.445536Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.707660Z", - "iopub.status.busy": "2023-10-06T06:48:08.707308Z", - "iopub.status.idle": "2023-10-06T06:48:08.711447Z", - "shell.execute_reply": "2023-10-06T06:48:08.710865Z" + "iopub.execute_input": "2023-10-11T10:20:08.449490Z", + "iopub.status.busy": "2023-10-11T10:20:08.448897Z", + "iopub.status.idle": "2023-10-11T10:20:08.453400Z", + "shell.execute_reply": "2023-10-11T10:20:08.452778Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.714811Z", - "iopub.status.busy": "2023-10-06T06:48:08.714344Z", - "iopub.status.idle": "2023-10-06T06:48:09.510043Z", - "shell.execute_reply": "2023-10-06T06:48:09.509357Z" + "iopub.execute_input": "2023-10-11T10:20:08.456780Z", + "iopub.status.busy": "2023-10-11T10:20:08.456260Z", + "iopub.status.idle": "2023-10-11T10:20:09.291447Z", + "shell.execute_reply": "2023-10-11T10:20:09.290689Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:09.513901Z", - "iopub.status.busy": "2023-10-06T06:48:09.513515Z", - "iopub.status.idle": "2023-10-06T06:48:12.158603Z", - "shell.execute_reply": "2023-10-06T06:48:12.157675Z" + "iopub.execute_input": "2023-10-11T10:20:09.295697Z", + "iopub.status.busy": "2023-10-11T10:20:09.295072Z", + "iopub.status.idle": "2023-10-11T10:20:12.163392Z", + "shell.execute_reply": "2023-10-11T10:20:12.162218Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.163152Z", - "iopub.status.busy": "2023-10-06T06:48:12.162048Z", - "iopub.status.idle": "2023-10-06T06:48:12.177283Z", - "shell.execute_reply": "2023-10-06T06:48:12.176559Z" + "iopub.execute_input": "2023-10-11T10:20:12.168334Z", + "iopub.status.busy": "2023-10-11T10:20:12.167038Z", + "iopub.status.idle": "2023-10-11T10:20:12.182361Z", + "shell.execute_reply": "2023-10-11T10:20:12.181700Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.180755Z", - "iopub.status.busy": "2023-10-06T06:48:12.180380Z", - "iopub.status.idle": "2023-10-06T06:48:12.186704Z", - "shell.execute_reply": "2023-10-06T06:48:12.186081Z" + "iopub.execute_input": "2023-10-11T10:20:12.185611Z", + "iopub.status.busy": "2023-10-11T10:20:12.185132Z", + "iopub.status.idle": "2023-10-11T10:20:12.190973Z", + "shell.execute_reply": "2023-10-11T10:20:12.190303Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.189576Z", - "iopub.status.busy": "2023-10-06T06:48:12.189334Z", - "iopub.status.idle": "2023-10-06T06:48:12.197944Z", - "shell.execute_reply": "2023-10-06T06:48:12.197320Z" + "iopub.execute_input": "2023-10-11T10:20:12.194281Z", + "iopub.status.busy": "2023-10-11T10:20:12.193819Z", + "iopub.status.idle": "2023-10-11T10:20:12.203832Z", + "shell.execute_reply": "2023-10-11T10:20:12.203169Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.201032Z", - "iopub.status.busy": "2023-10-06T06:48:12.200795Z", - "iopub.status.idle": "2023-10-06T06:48:12.364588Z", - "shell.execute_reply": "2023-10-06T06:48:12.363817Z" + "iopub.execute_input": "2023-10-11T10:20:12.207186Z", + "iopub.status.busy": "2023-10-11T10:20:12.206721Z", + "iopub.status.idle": "2023-10-11T10:20:12.384041Z", + "shell.execute_reply": "2023-10-11T10:20:12.383160Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.367973Z", - "iopub.status.busy": "2023-10-06T06:48:12.367326Z", - "iopub.status.idle": "2023-10-06T06:48:12.371048Z", - "shell.execute_reply": "2023-10-06T06:48:12.370339Z" + "iopub.execute_input": "2023-10-11T10:20:12.387949Z", + "iopub.status.busy": "2023-10-11T10:20:12.387435Z", + "iopub.status.idle": "2023-10-11T10:20:12.390968Z", + "shell.execute_reply": "2023-10-11T10:20:12.390261Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.374095Z", - "iopub.status.busy": "2023-10-06T06:48:12.373702Z", - "iopub.status.idle": "2023-10-06T06:48:14.726368Z", - "shell.execute_reply": "2023-10-06T06:48:14.725347Z" + "iopub.execute_input": "2023-10-11T10:20:12.394163Z", + "iopub.status.busy": "2023-10-11T10:20:12.393777Z", + "iopub.status.idle": "2023-10-11T10:20:14.833454Z", + "shell.execute_reply": "2023-10-11T10:20:14.832244Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:14.730739Z", - "iopub.status.busy": "2023-10-06T06:48:14.730260Z", - "iopub.status.idle": "2023-10-06T06:48:14.749131Z", - "shell.execute_reply": "2023-10-06T06:48:14.748396Z" + "iopub.execute_input": "2023-10-11T10:20:14.837861Z", + "iopub.status.busy": "2023-10-11T10:20:14.837245Z", + "iopub.status.idle": "2023-10-11T10:20:14.854013Z", + "shell.execute_reply": "2023-10-11T10:20:14.853268Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:14.752786Z", - "iopub.status.busy": "2023-10-06T06:48:14.752371Z", - "iopub.status.idle": "2023-10-06T06:48:14.882905Z", - "shell.execute_reply": "2023-10-06T06:48:14.882206Z" + "iopub.execute_input": "2023-10-11T10:20:14.857412Z", + "iopub.status.busy": "2023-10-11T10:20:14.856850Z", + "iopub.status.idle": "2023-10-11T10:20:14.880967Z", + "shell.execute_reply": "2023-10-11T10:20:14.880339Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index 71a358b39..3ea30015a 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:22.941002Z", - "iopub.status.busy": "2023-10-06T06:48:22.940576Z", - "iopub.status.idle": "2023-10-06T06:48:25.588403Z", - "shell.execute_reply": "2023-10-06T06:48:25.587664Z" + "iopub.execute_input": "2023-10-11T10:20:20.225113Z", + "iopub.status.busy": "2023-10-11T10:20:20.224832Z", + "iopub.status.idle": "2023-10-11T10:20:23.000840Z", + "shell.execute_reply": "2023-10-11T10:20:23.000055Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.592265Z", - "iopub.status.busy": "2023-10-06T06:48:25.591688Z", - "iopub.status.idle": "2023-10-06T06:48:25.597061Z", - "shell.execute_reply": "2023-10-06T06:48:25.596400Z" + "iopub.execute_input": "2023-10-11T10:20:23.005118Z", + "iopub.status.busy": "2023-10-11T10:20:23.004408Z", + "iopub.status.idle": "2023-10-11T10:20:23.009263Z", + "shell.execute_reply": "2023-10-11T10:20:23.008581Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.599877Z", - "iopub.status.busy": "2023-10-06T06:48:25.599480Z", - "iopub.status.idle": "2023-10-06T06:48:25.603211Z", - "shell.execute_reply": "2023-10-06T06:48:25.602544Z" + "iopub.execute_input": "2023-10-11T10:20:23.012298Z", + "iopub.status.busy": "2023-10-11T10:20:23.011922Z", + "iopub.status.idle": "2023-10-11T10:20:23.015755Z", + "shell.execute_reply": "2023-10-11T10:20:23.015065Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.606008Z", - "iopub.status.busy": "2023-10-06T06:48:25.605766Z", - "iopub.status.idle": "2023-10-06T06:48:25.761219Z", - "shell.execute_reply": "2023-10-06T06:48:25.760521Z" + "iopub.execute_input": "2023-10-11T10:20:23.019137Z", + "iopub.status.busy": "2023-10-11T10:20:23.018583Z", + "iopub.status.idle": "2023-10-11T10:20:23.051361Z", + "shell.execute_reply": "2023-10-11T10:20:23.050531Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.764619Z", - "iopub.status.busy": "2023-10-06T06:48:25.764196Z", - "iopub.status.idle": "2023-10-06T06:48:25.769238Z", - "shell.execute_reply": "2023-10-06T06:48:25.768496Z" + "iopub.execute_input": "2023-10-11T10:20:23.055400Z", + "iopub.status.busy": "2023-10-11T10:20:23.054883Z", + "iopub.status.idle": "2023-10-11T10:20:23.060856Z", + "shell.execute_reply": "2023-10-11T10:20:23.060141Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.773611Z", - "iopub.status.busy": "2023-10-06T06:48:25.772275Z", - "iopub.status.idle": "2023-10-06T06:48:25.779157Z", - "shell.execute_reply": "2023-10-06T06:48:25.778471Z" + "iopub.execute_input": "2023-10-11T10:20:23.063969Z", + "iopub.status.busy": "2023-10-11T10:20:23.063574Z", + "iopub.status.idle": "2023-10-11T10:20:23.067856Z", + "shell.execute_reply": "2023-10-11T10:20:23.067280Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'cancel_transfer', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin'}\n" + "Classes: {'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'beneficiary_not_allowed', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'cancel_transfer'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.782746Z", - "iopub.status.busy": "2023-10-06T06:48:25.782367Z", - "iopub.status.idle": "2023-10-06T06:48:25.787825Z", - "shell.execute_reply": "2023-10-06T06:48:25.787126Z" + "iopub.execute_input": "2023-10-11T10:20:23.071118Z", + "iopub.status.busy": "2023-10-11T10:20:23.070562Z", + "iopub.status.idle": "2023-10-11T10:20:23.074611Z", + "shell.execute_reply": "2023-10-11T10:20:23.073912Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.791289Z", - "iopub.status.busy": "2023-10-06T06:48:25.790745Z", - "iopub.status.idle": "2023-10-06T06:48:25.797314Z", - "shell.execute_reply": "2023-10-06T06:48:25.796615Z" + "iopub.execute_input": "2023-10-11T10:20:23.078031Z", + "iopub.status.busy": "2023-10-11T10:20:23.077664Z", + "iopub.status.idle": "2023-10-11T10:20:23.081801Z", + "shell.execute_reply": "2023-10-11T10:20:23.081112Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.800846Z", - "iopub.status.busy": "2023-10-06T06:48:25.800314Z", - "iopub.status.idle": "2023-10-06T06:48:30.081084Z", - "shell.execute_reply": "2023-10-06T06:48:30.080427Z" + "iopub.execute_input": "2023-10-11T10:20:23.085131Z", + "iopub.status.busy": "2023-10-11T10:20:23.084690Z", + "iopub.status.idle": "2023-10-11T10:20:26.891533Z", + "shell.execute_reply": "2023-10-11T10:20:26.890816Z" } }, "outputs": [ @@ -470,7 +470,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.weight', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense_prediction.weight']\n", + "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.weight']\n", "- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] @@ -511,10 +511,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:30.085323Z", - "iopub.status.busy": "2023-10-06T06:48:30.084736Z", - "iopub.status.idle": "2023-10-06T06:48:30.088074Z", - "shell.execute_reply": "2023-10-06T06:48:30.087471Z" + "iopub.execute_input": "2023-10-11T10:20:26.895502Z", + "iopub.status.busy": "2023-10-11T10:20:26.894979Z", + "iopub.status.idle": "2023-10-11T10:20:26.898194Z", + "shell.execute_reply": "2023-10-11T10:20:26.897652Z" } }, "outputs": [], @@ -536,10 +536,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:30.091070Z", - "iopub.status.busy": "2023-10-06T06:48:30.090576Z", - "iopub.status.idle": "2023-10-06T06:48:30.093704Z", - "shell.execute_reply": "2023-10-06T06:48:30.093163Z" + "iopub.execute_input": "2023-10-11T10:20:26.901052Z", + "iopub.status.busy": "2023-10-11T10:20:26.900594Z", + "iopub.status.idle": "2023-10-11T10:20:26.903646Z", + "shell.execute_reply": "2023-10-11T10:20:26.903113Z" } }, "outputs": [], @@ -554,10 +554,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:30.096457Z", - "iopub.status.busy": "2023-10-06T06:48:30.095984Z", - "iopub.status.idle": "2023-10-06T06:48:32.851203Z", - "shell.execute_reply": "2023-10-06T06:48:32.850176Z" + "iopub.execute_input": "2023-10-11T10:20:26.906333Z", + "iopub.status.busy": "2023-10-11T10:20:26.905885Z", + "iopub.status.idle": "2023-10-11T10:20:29.690692Z", + "shell.execute_reply": "2023-10-11T10:20:29.689609Z" }, "scrolled": true }, @@ -580,10 +580,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.856226Z", - "iopub.status.busy": "2023-10-06T06:48:32.855166Z", - "iopub.status.idle": "2023-10-06T06:48:32.868208Z", - "shell.execute_reply": "2023-10-06T06:48:32.867548Z" + "iopub.execute_input": "2023-10-11T10:20:29.696101Z", + "iopub.status.busy": "2023-10-11T10:20:29.694721Z", + "iopub.status.idle": "2023-10-11T10:20:29.708080Z", + "shell.execute_reply": "2023-10-11T10:20:29.707445Z" } }, "outputs": [ @@ -684,10 +684,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.871131Z", - "iopub.status.busy": "2023-10-06T06:48:32.870885Z", - "iopub.status.idle": "2023-10-06T06:48:32.877262Z", - "shell.execute_reply": "2023-10-06T06:48:32.876563Z" + "iopub.execute_input": "2023-10-11T10:20:29.711789Z", + "iopub.status.busy": "2023-10-11T10:20:29.711254Z", + "iopub.status.idle": "2023-10-11T10:20:29.716905Z", + "shell.execute_reply": "2023-10-11T10:20:29.716284Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.880600Z", - "iopub.status.busy": "2023-10-06T06:48:32.880035Z", - "iopub.status.idle": "2023-10-06T06:48:32.884120Z", - "shell.execute_reply": "2023-10-06T06:48:32.883421Z" + "iopub.execute_input": "2023-10-11T10:20:29.720082Z", + "iopub.status.busy": "2023-10-11T10:20:29.719511Z", + "iopub.status.idle": "2023-10-11T10:20:29.724851Z", + "shell.execute_reply": "2023-10-11T10:20:29.724057Z" } }, "outputs": [ @@ -739,10 +739,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.888064Z", - "iopub.status.busy": "2023-10-06T06:48:32.887483Z", - "iopub.status.idle": "2023-10-06T06:48:32.891338Z", - "shell.execute_reply": "2023-10-06T06:48:32.890638Z" + "iopub.execute_input": "2023-10-11T10:20:29.727953Z", + "iopub.status.busy": "2023-10-11T10:20:29.727488Z", + "iopub.status.idle": "2023-10-11T10:20:29.731191Z", + "shell.execute_reply": "2023-10-11T10:20:29.730517Z" } }, "outputs": [], @@ -762,10 +762,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.894241Z", - "iopub.status.busy": "2023-10-06T06:48:32.893861Z", - "iopub.status.idle": "2023-10-06T06:48:32.903248Z", - "shell.execute_reply": "2023-10-06T06:48:32.902537Z" + "iopub.execute_input": "2023-10-11T10:20:29.734345Z", + "iopub.status.busy": "2023-10-11T10:20:29.733739Z", + "iopub.status.idle": "2023-10-11T10:20:29.743059Z", + "shell.execute_reply": "2023-10-11T10:20:29.742371Z" } }, "outputs": [ @@ -890,10 +890,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.906575Z", - "iopub.status.busy": "2023-10-06T06:48:32.906006Z", - "iopub.status.idle": "2023-10-06T06:48:33.207593Z", - "shell.execute_reply": "2023-10-06T06:48:33.206881Z" + "iopub.execute_input": "2023-10-11T10:20:29.746123Z", + "iopub.status.busy": "2023-10-11T10:20:29.745754Z", + "iopub.status.idle": "2023-10-11T10:20:30.014255Z", + "shell.execute_reply": "2023-10-11T10:20:30.013649Z" }, "scrolled": true }, @@ -932,10 +932,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:33.210599Z", - "iopub.status.busy": "2023-10-06T06:48:33.210169Z", - "iopub.status.idle": "2023-10-06T06:48:33.558244Z", - "shell.execute_reply": "2023-10-06T06:48:33.557661Z" + "iopub.execute_input": "2023-10-11T10:20:30.017653Z", + "iopub.status.busy": "2023-10-11T10:20:30.017034Z", + "iopub.status.idle": "2023-10-11T10:20:30.325313Z", + "shell.execute_reply": "2023-10-11T10:20:30.324685Z" }, "scrolled": true }, @@ -968,10 +968,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:33.561421Z", - "iopub.status.busy": "2023-10-06T06:48:33.560703Z", - "iopub.status.idle": "2023-10-06T06:48:33.565548Z", - "shell.execute_reply": "2023-10-06T06:48:33.564977Z" + "iopub.execute_input": "2023-10-11T10:20:30.328564Z", + "iopub.status.busy": "2023-10-11T10:20:30.328133Z", + "iopub.status.idle": "2023-10-11T10:20:30.333033Z", + "shell.execute_reply": "2023-10-11T10:20:30.332457Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index a0b33531f..67e4a6b53 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:39.062593Z", - "iopub.status.busy": "2023-10-06T06:48:39.062349Z", - "iopub.status.idle": "2023-10-06T06:48:41.080789Z", - "shell.execute_reply": "2023-10-06T06:48:41.079948Z" + "iopub.execute_input": "2023-10-11T10:20:35.372720Z", + "iopub.status.busy": "2023-10-11T10:20:35.372440Z", + "iopub.status.idle": "2023-10-11T10:20:36.884484Z", + "shell.execute_reply": "2023-10-11T10:20:36.883317Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-10-06 06:48:39-- https://data.deepai.org/conll2003.zip\r\n", + "--2023-10-11 10:20:35-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "143.244.50.91, 2400:52e0:1a01::992:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.50.91|:443... " + "185.93.1.244, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... " ] }, { @@ -103,7 +103,14 @@ "output_type": "stream", "text": [ "connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -116,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.05s \r\n", + "conll2003.zip 100%[===================>] 959.94K 6.21MB/s in 0.2s \r\n", "\r\n", - "2023-10-06 06:48:39 (18.7 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2023-10-11 10:20:35 (6.21 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -138,22 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-10-06 06:48:39-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.226.177, 52.216.102.19, 52.217.174.249, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.226.177|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2023-10-11 10:20:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.8.193, 52.217.136.137, 52.217.167.25, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.8.193|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,33 +168,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 1%[ ] 270.53K 1.26MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 26%[====> ] 4.30M 10.3MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 88%[================> ] 14.44M 22.9MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 25.5MB/s in 0.6s \r\n", + "pred_probs.npz 96%[==================> ] 15.71M 42.6MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 43.8MB/s in 0.4s \r\n", "\r\n", - "2023-10-06 06:48:40 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2023-10-11 10:20:36 (43.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -217,10 +188,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:41.084349Z", - "iopub.status.busy": "2023-10-06T06:48:41.083848Z", - "iopub.status.idle": "2023-10-06T06:48:42.231954Z", - "shell.execute_reply": "2023-10-06T06:48:42.231231Z" + "iopub.execute_input": "2023-10-11T10:20:36.889183Z", + "iopub.status.busy": "2023-10-11T10:20:36.888442Z", + "iopub.status.idle": "2023-10-11T10:20:38.125163Z", + "shell.execute_reply": "2023-10-11T10:20:38.124378Z" }, "nbsphinx": "hidden" }, @@ -231,7 +202,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -257,10 +228,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:42.235937Z", - "iopub.status.busy": "2023-10-06T06:48:42.235371Z", - "iopub.status.idle": "2023-10-06T06:48:42.240956Z", - "shell.execute_reply": "2023-10-06T06:48:42.240319Z" + "iopub.execute_input": "2023-10-11T10:20:38.129580Z", + "iopub.status.busy": "2023-10-11T10:20:38.129007Z", + "iopub.status.idle": "2023-10-11T10:20:38.134710Z", + "shell.execute_reply": "2023-10-11T10:20:38.134069Z" } }, "outputs": [], @@ -310,10 +281,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:42.244317Z", - "iopub.status.busy": "2023-10-06T06:48:42.243940Z", - "iopub.status.idle": "2023-10-06T06:48:42.248613Z", - "shell.execute_reply": "2023-10-06T06:48:42.248010Z" + "iopub.execute_input": "2023-10-11T10:20:38.138320Z", + "iopub.status.busy": "2023-10-11T10:20:38.137946Z", + "iopub.status.idle": "2023-10-11T10:20:38.142685Z", + "shell.execute_reply": "2023-10-11T10:20:38.142077Z" }, "nbsphinx": "hidden" }, @@ -331,10 +302,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:42.251798Z", - "iopub.status.busy": "2023-10-06T06:48:42.251295Z", - "iopub.status.idle": "2023-10-06T06:48:52.469139Z", - "shell.execute_reply": "2023-10-06T06:48:52.468465Z" + "iopub.execute_input": "2023-10-11T10:20:38.146010Z", + "iopub.status.busy": "2023-10-11T10:20:38.145652Z", + "iopub.status.idle": "2023-10-11T10:20:49.925919Z", + "shell.execute_reply": "2023-10-11T10:20:49.925051Z" } }, "outputs": [], @@ -408,10 +379,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:52.472915Z", - "iopub.status.busy": "2023-10-06T06:48:52.472368Z", - "iopub.status.idle": "2023-10-06T06:48:52.480311Z", - "shell.execute_reply": "2023-10-06T06:48:52.479695Z" + "iopub.execute_input": "2023-10-11T10:20:49.931392Z", + "iopub.status.busy": "2023-10-11T10:20:49.929842Z", + "iopub.status.idle": "2023-10-11T10:20:49.938772Z", + "shell.execute_reply": "2023-10-11T10:20:49.938131Z" }, "nbsphinx": "hidden" }, @@ -451,10 +422,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:52.482880Z", - "iopub.status.busy": "2023-10-06T06:48:52.482653Z", - "iopub.status.idle": "2023-10-06T06:48:53.043420Z", - "shell.execute_reply": "2023-10-06T06:48:53.042728Z" + "iopub.execute_input": "2023-10-11T10:20:49.942138Z", + "iopub.status.busy": "2023-10-11T10:20:49.941760Z", + "iopub.status.idle": "2023-10-11T10:20:50.546735Z", + "shell.execute_reply": "2023-10-11T10:20:50.545987Z" } }, "outputs": [], @@ -491,10 +462,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:53.047045Z", - "iopub.status.busy": "2023-10-06T06:48:53.046379Z", - "iopub.status.idle": "2023-10-06T06:48:53.053247Z", - "shell.execute_reply": "2023-10-06T06:48:53.052503Z" + "iopub.execute_input": "2023-10-11T10:20:50.550832Z", + "iopub.status.busy": "2023-10-11T10:20:50.550567Z", + "iopub.status.idle": "2023-10-11T10:20:50.557200Z", + "shell.execute_reply": "2023-10-11T10:20:50.556539Z" } }, "outputs": [ @@ -566,10 +537,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:53.056073Z", - "iopub.status.busy": "2023-10-06T06:48:53.055685Z", - "iopub.status.idle": "2023-10-06T06:48:55.478985Z", - "shell.execute_reply": "2023-10-06T06:48:55.477915Z" + "iopub.execute_input": "2023-10-11T10:20:50.560296Z", + "iopub.status.busy": "2023-10-11T10:20:50.560051Z", + "iopub.status.idle": "2023-10-11T10:20:53.164180Z", + "shell.execute_reply": "2023-10-11T10:20:53.162922Z" } }, "outputs": [], @@ -591,10 +562,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:55.483908Z", - "iopub.status.busy": "2023-10-06T06:48:55.482651Z", - "iopub.status.idle": "2023-10-06T06:48:55.492318Z", - "shell.execute_reply": "2023-10-06T06:48:55.491607Z" + "iopub.execute_input": "2023-10-11T10:20:53.169416Z", + "iopub.status.busy": "2023-10-11T10:20:53.168197Z", + "iopub.status.idle": "2023-10-11T10:20:53.179163Z", + "shell.execute_reply": "2023-10-11T10:20:53.178325Z" } }, "outputs": [ @@ -630,10 +601,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:55.495323Z", - "iopub.status.busy": "2023-10-06T06:48:55.494958Z", - "iopub.status.idle": "2023-10-06T06:48:55.516458Z", - "shell.execute_reply": "2023-10-06T06:48:55.515817Z" + "iopub.execute_input": "2023-10-11T10:20:53.182564Z", + "iopub.status.busy": "2023-10-11T10:20:53.181988Z", + "iopub.status.idle": "2023-10-11T10:20:53.204709Z", + "shell.execute_reply": "2023-10-11T10:20:53.203893Z" } }, "outputs": [ @@ -811,10 +782,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:55.519718Z", - "iopub.status.busy": "2023-10-06T06:48:55.519469Z", - "iopub.status.idle": "2023-10-06T06:48:55.563433Z", - "shell.execute_reply": "2023-10-06T06:48:55.562735Z" + "iopub.execute_input": "2023-10-11T10:20:53.209238Z", + "iopub.status.busy": "2023-10-11T10:20:53.207924Z", + "iopub.status.idle": "2023-10-11T10:20:53.252601Z", + "shell.execute_reply": "2023-10-11T10:20:53.251876Z" } }, "outputs": [ @@ -916,10 +887,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:55.566930Z", - "iopub.status.busy": "2023-10-06T06:48:55.566554Z", - "iopub.status.idle": "2023-10-06T06:48:55.578505Z", - "shell.execute_reply": "2023-10-06T06:48:55.577882Z" + "iopub.execute_input": "2023-10-11T10:20:53.256218Z", + "iopub.status.busy": "2023-10-11T10:20:53.255719Z", + "iopub.status.idle": "2023-10-11T10:20:53.268236Z", + "shell.execute_reply": "2023-10-11T10:20:53.267453Z" } }, "outputs": [ @@ -993,10 +964,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:55.581920Z", - "iopub.status.busy": "2023-10-06T06:48:55.581414Z", - "iopub.status.idle": "2023-10-06T06:48:57.688051Z", - "shell.execute_reply": "2023-10-06T06:48:57.687356Z" + "iopub.execute_input": "2023-10-11T10:20:53.272320Z", + "iopub.status.busy": "2023-10-11T10:20:53.271007Z", + "iopub.status.idle": "2023-10-11T10:20:55.580759Z", + "shell.execute_reply": "2023-10-11T10:20:55.579898Z" } }, "outputs": [ @@ -1168,10 +1139,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:57.691531Z", - "iopub.status.busy": "2023-10-06T06:48:57.691138Z", - "iopub.status.idle": "2023-10-06T06:48:57.697369Z", - "shell.execute_reply": "2023-10-06T06:48:57.696764Z" + "iopub.execute_input": "2023-10-11T10:20:55.584678Z", + "iopub.status.busy": "2023-10-11T10:20:55.584019Z", + "iopub.status.idle": "2023-10-11T10:20:55.589801Z", + "shell.execute_reply": "2023-10-11T10:20:55.589179Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index fbbc9b899d7b4bc6bd6a3f1c689a138204a10687..ea91c17cbf22182898947c85a5a10bb3faecaa6e 100644 GIT binary patch delta 8874 zcmeHL+pC;c74Kv|kceUrx#3IZ;~+@!nC#2iw?HeXEkrCyI4_kF(tTN*pdtqGR)`8k z6e~zd!v{VT`chDAEfP9tAA(OlRgo5yJgG0f*%b0#e>2~lcqY}^{sD71hvdxpX4c+o zt>0y>zui0bk9)^n|K(BfwOqcFzJ2YxXJsyIiswXH7Zr^sXC&)l$)+qhC#_^A``n$Q zKe}^tf}bPvJ4dIdKJ&33PbLp7zOKJ`_2idtA0Kv39(iPV=ATDS%pW^H{nyizi^GjC zbmwP=ttrPkaj82t>ki?}1=RIi~k}q0k z8h-xJ10XT37=fCth5eJWRr)lzcxKS?{9VQO!`KA8qV%_7ka-r zb{SsU?@sk(tWHGaRj`z$4K{0MJaci#lh5;OuT3v@z0=yTupU`7#MSw1A{*pn4)B^zgD z3O*OyLWW2(P$`_PQ8vwAzCFFv&A51qq>3r5Dfk$)utH@~b#Y$sT)x@8FquiNDn#i- zGKNBpG0UnfK2727Mhx-pq6U5U%A{|Eb>kHpVb$GnSD_8XUXuV3HmcX6hy za+QiWQpq)@B4P?w;5Md8KNe(Wg_Rj;_UsMmV53aJ*?`s{rXe*CU-CI4bQ#WoqVEow=n~;W|rDVFMzCM zLsZ%7MZqLV?KrMlGNZ%1aco1?q`3xFV~Ig|4vs{w13LHE2(BKG0wXYy^Mx!LG^ymH z2}TfpwPAdAL{}^PaQlzb{ij;d7a96i{OUJ(_gpWn_s%+dMl37LDWm_AGU!``XFy0P zA3$25srl_Uy8W(KMR{GKGyoUjy+N~5>LXL1#GLcc0>f+d5vscN8q8->z$yn!r2;k;w4aN&?g=5ktfK>uW zL2)&xteB%aUzqf$&DFQ`M$Ze`5z~YG|Gp|}rM-U_asy%uLEDo@-Ft~1TLB>)Cr1|)8@vZJ7 zE3~!hvW}ltcdkF(%G!OjwJx{f8}s%KJ+8)5&R#EV3-lltL`P%Qk3|3C$ujnCXy^0p}ZI5B*IDStE2Aes;4v zHAB?`h%HF@H|yi`;d3V1>eVECmdKMGNX;AK?0ph59A{7+Q~MiK(FZ-%?ib|>a{ z-=2PN(hKRcM7M)49QlgufP`#jhXzPq?5}@KbhY12@$haWE1n9w3`2c8@ znnm&khli{!Ox20Q5Nnm@0nlu2$_E6kk+pIFvBw)%D=Ubph@RA0o0y2!`X=w#}I)lEhJdXBjB=4d$3-phHD9G;WBGR}966ON~X$AAW!O=47@x;!2lW5r?1u0f;ka)FE9%AuL7{MGNh83NBq% znT(DVESH9BKLNw78m>yCHAn+r;CqvBRFBKU8O5yJ0QklCS}?d$(K)TyCANvRF)JpWfo^QB3n<2l(ZHuFqlK4@cqtb(3deFr z>n$WKVvI_QDXoDI4>qR=tP%!eV@iazZ8rMuKOf~(=Q>OPKvkH8BCMm0bLLGjG0nMz>0z`$wY_2Gg!kIlESiP6 zcqbp8bXvhjj5T7Tkru<6a#drrsUB8?Vn~Z_tI!2_T$o^chzWa&N@xwGMbb%eiMfIT z3rCE#K6qYDoCzj0lXD3p3s9RQVOYp8mXrc8c;7>A4xCn(Xv7@Oey)4ujFe}>A*^A* z$5ep>>H=F_VRW593uy}m0qVv96xR{DngFW=4R9E4Y-LqhGo}}qukZm2*{G0Qhfb?A z*Pm`B?Eq+f<8E&F)w`YFx%t;$FV`jyUH#DI7q9L-wOx~J*Cg9D2}bpG)NR)!A6(Kb zGPGTjY}X|JeSNi#pY59Df2?S>Ym)7nWV>#N%qg$e*q(EGYD9c@FrCWb?rYw6>YQ@9K;G* ziq?Tj!x=az4y;f}EFxUAgCZ)Oq@{_qm^jiq0Y!5k!g0qyL`&de#g&TshZ?X3XKI=em#fxO^l|HYOKI<5!D}1S{jCbxPEA zCo-^LjWMJOx?d?8FUc8Ga%Cg^aQzS6@#Wn&=iizwN|dZqN-n8HA?s+-Rj;)c+1f}; z9R1C#8F$K|5!Md3bGLiihcA8l?ANdE+_yEG` z54dS*3llpLy^c`@Q+06Cn>e7<$CppO(|v#TOrtA1h`*;h8o2MJa zvO8CI`{CJJ-H8jWyr%3kS1ScEdI$tn>9t5HQ!M}*Sssr59$9_+_4y~do|SVbN;GUG z1yiE;&J>%x)5#g)X<{&4KR{1QjI4bKDNrPo&HJir0C;i%rl+GAuD51=;|5}Q?N9T) z&$oh)ReGAg{Ef16u9p@!v(BCos|H&oMkY|~r6Ten3QNG+2;GX0mrvfFU+MZW7d76l z2t&zgW-6H}E6;$ZUQgVq>MZ-fIn^AAY+?{x@(ciIAY%CQz4?h{-*+#~7LBmO<#U~E zMxAEP76&2)(=CGo?LK7~_Ycj0JBgNV8Cemnb%sB zU+Q*ugFPT?D!URKTdz_fleJe4%;4aaVkF~-Pkj@E17bhlEwrji>0CT0jicwPl7t{y z>#Gp{fwFyX_DrKKd2?zSfPByCM!iO9n`W$$T9{@`fS;pMHCI7olJy1xU(hcWAZ$p` z=s;G=wn*fyPbMpZ-(VR+bQaQ18Gj5%d0@tRZP^4M-2=+x6YLy(4h)yX?R~cTpt3b? zV24*e)a^ai2(C7i&3I$Ib8BTolah2AK0AofEOL=5BH!eo6U*11>h`*YQ!ab*P8AQ| z0?mL;gv}LDX55*k+*UK!V_rcPXt^N^ev&NleIAm@MmW#=Zt~EmhVum3MqD)woQug; zpOv;XLyH2+334-5>CyPg14P&pg;dZEgMq`mfiDZ(t}PLY0qxxv=$HWy=8!W-G|)vx z{zfOo&agZn(0wDe81sp-q5ipMc<77A% z9v$!?Y>BrGNi72TY67f@6bxuhjhU3K)tJqxYe97L^x^e_YEDyk@{z-nO4HE6XTZQy zl^H&SRrRS@CuPCY3bbF>UP~t#C0vY?3G(O166cf@o)35%;L&*BNj^VYu&EUnh-LHS|fNGZprRS-wb|Absz2tFG3C#&oWq)I#Pmw0n5x7BhIm` zEtfVbRF+C43q2R;adkxt=~Jj78MBrGr)z@Pr2z9tpb3r;NMHjJ4GSQqUaxFpGw?KB zt+;DZ-3YQ zcy=mOn-rW##7iER1``R6q3DA5KBj)<#3n^*zS$f2u*y8l73O?}N8m1B_yG zwBXVXt61I_w7!v+8g9Sa`J*@g`is?;qLXHL_ieY*!=q{~P=N Nv>I7rHS((u{0E4277AHD6q}IDo#!1NoeF}F&(b1nIz>oQL`4FkWeN+e6cn#uBNl^wcDv;=zd84uvrD6irP0L7#vXn>rrY7x%{wy? zQ`QM{P*Nu0H7cti%Vd-Z5poPtKvZUN{K$Dz)@)gw2^Cr$|NUj0qpi| zH;dJ&er3CP`@VHtSb7siqc|HXLgU!2}Q$z$zUChGYqxbWW&a z#Qxw5w%i=0Q%q4Q73)Fyki7wrk`5}6tmA%gyuCZjkc}CVOG!ZH{fTw@sw-D_H-iV+!#w}nQ@;9O#M z1+xs=c%}Q3>+ES$g+Knnpsiq4mp9olXQi~$%Cz~mzjotlo}ZbY9V{$NwF6b84p^*A zbC q4Q8jhPv0naHC^549eYqs`fky7i$*QqE!sc7sQ)S&_QUV&?A~AMZ6zuI delta 1878 zcmeHHyJ}TI6y*$QjKNYt1rHa+CYU`ldtPFxg5cv?T7)omMJXk6ci_@g&>?CNWYl1*K1ZMGpm!CwT*pn_g0d33SFP$Y_T9@ z6G^e90MWV}xj07F6f@?`M#IYV)9L2RW^0|)*=XsELd-@5=19mT>X?j^*d5qzRt8c1 z+II8)V{0-fNr^QULgQudk}0#2GMErF^+(plc&gRGS5~)+0Zb+)l1^(E97~%}VSng_ zc-)+Tk|ZeLWF?~sGHR0`A(g;B1yx3;+xw&L`73d}|M^n%%^-cZ^;%pWWbZaUiG!`f zNRhlYlssB6UKMLWN39uR_Wq9)=TgztSqPyzTSZoB8LAwHg4u_D@BKl4^RYX(VIcLcOUl-+no_+!SiG%0JZ08wj|GN9+0sdhjz^@rER z)u|SuQ5;d3h_V*LMX8c?k$t_-Iktb#CtGvPE>KOUkckY{3a+8m=ac8(=MQmqPreE{ zNZHY*I2k;GJ>{UKd-3M&8?-pLI6qoinr%nP>qI&!G&xmFNLZXI2FPiWKH_dJeyaPi zC5{faHoOy$n&qKzMwRx$_}apyD`(GLTo`QSKWG|oZZtpJeg0PaHl(YYd=L)?8@@NN Xy@3sFdT(I={Wx|9=KJw?aen_VXObbX diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 2cc73a733bcc0709e2b7bd196a64941da57ce74d..99fe86fbcdffceb6b67b883e9d6a4f708a6344c5 100644 GIT binary patch delta 67 zcmbRIj(zew_6=7!4f2vxDw4_zEA7S(O~G?U zgHY?gIpyIu*WZjUSX>^y_*`yZ-t0Nv+g5)%?yT>POZ9Wtb}WuRULMvDgxAy;#dGV^ z;+gfY!@2b@;^qI@7vGw{*HF>h(LaBAcz*N9Uwb?1AFTFI4L7;{tLgf^2X5Y9|6%p4 z`bVpSdU;jX_phFPT5$VATDyMl?YFx9x8-zey?6D+HM{9u|E2dlzdmxuDfPz9cQ()c zR&QIkuJ#p^b02FS|3Yuaj`26f zt39#U@irg+U2m!0wNL$TBdo_YvNSMK7#1B5xZxC-&(vhCgrJ-onMwWlgNFuw_Ctq9 zXRP0H_b(TR-ZJW#HZ(~uD2@!;k)UaVR9UB6z%#C}E;> z%F*O})GTD`h#kMK_)z=0C+`2{;y^HAId@zeZ-ke@8zZupGG`Z&{PnR1?;IAMNp<_S z`#yukQ6gk;obc#`5P?}1@Z~^kj7jC#Ew1=b`?|M${>jCm;n6UoNQ_*Fl%kP_lO$C1 zK1u9-yw}o0>%Gxm7KeoU5Huk)TO#mELzLq_jN7%);At~#`@nk4*#nUf7M$*?I(}* z>Z^YGlJN^4{rL@($G_WKfBnx6{_DTFbLH4*E@x0g>9o(k?QW=fEdP@R5~#o z1c}u7Wd-_9~kWnOBqdoEfXbd?gM>0O3L@_zKcUN_9Z$Po+7`Rk9XrZy? z6u4oWWS26De6;J*>ML0L?2w_^bF?DYltS)Y9`1aHTe~CeeA#g4&iB3-KO(U_^;!Vz zSwx&!Fj2=80`Y`;Gy1^6YEOSa1+g*`Y6K5Ldtw;@A>bFMTqoY(>b8xJ-M{d@-q2-3 zwD2Y{?gf+7(@3;aF*DABrfT%~7Z<*a4b6^A#v2+I;@ajrAF3`IBu%7Y!sB-kL&!cv zRKVbr%+Yx^+Ew+j2cD2g9GD7*3tWXsT1v`14L0MX8+sP@@cz#%+|@f+xD(!<NJ1S=BZDf$_rG z94XJ>ZfdNz0c1{D#(T0BoAPoXl{A@~L_j)1YUZsEjs-=vP=>qi1jro=pY081hvv=3 z0~H+>Lfhu|XIAG8s39ObBxh63imS3j;FC!NKU&IYlS0A zQ>V(ipoaNZJ?CsNkxkx z&l55Q;Go1l_W0fuu_qk0=i6VD74tlP$r0jQBiX;72}a@({uL%SBZRx1a+ zGA?9=xTeFJEW~U+b+o$ZrKqZ#phlDp9`qYLv<1iMaRN=Ly~HQcxk+g*X!hp#ohP7H zxEQh(JcZ;u32LR&nnG=NVOL~Q)}VJd1YmZ;3Il%DnStpXsE!*81=z~EG1dmc+DHQ~ zDS(A?qRw)Ls|Tw?mwDNNs1u7^L3g1oMj^mGb9BnY8B0OU&~YHV@mWnu+w29T<~bV+ zS6)|$JwBtU;8IFXN?Vd>r_gG6mQWNzOP$8pi0&h5>CEQMS)^Xh*2#oc3d+_BaIFHZ z7@IuRBh>A~y#bdQg~KB|loZTal!KsHYoJn!BD@IDdt+6}<^_DQIX^>?22rSg1wFb|zgwRz-Z?>{@#| z?`C(mUEXzivT#2q0k4pyc`HmyXEp`i<%O-$4tRm1Jb?(ooko-hX zE;&jlx`AxGlY%B;GlO0QV;aMBZZ;lU*xog0Lv0O2mL=#E@I3P_p$bUmJQpmZZZ@FN z=S@1aQt;+)#~0o>oE=+{=D;5p&KyRbbri8}#Q|=wJ$~054oQSW)Mi@KSR!ywoDMuV zSP=s0N8tbvO}uK=QEzA|MuFMK}`)L(4x&;;yC@0(Uj76t)8x_zAh^ ztan1=h`FJfWEPl8!NsY19N=WR#8oJptssd)7dlADNSSttvJqJAaBm29f$+qcpsz!9 zWJUzY4$wu)_@bI(s}OR6twPA$eE8J<@`_$jS3Ip8W3o&V;wVL@9&m;tS>y}>e=z(} zwIZX{!ZS^tjvG5v74F1s#Yrg-w?17uttqN@mv+^mN)Y^VQ7VyeQ><-N+Jb{F#j)(S z&F{;Smuucqo%3#7sKcM>%`6 zw=^?6ZT@n4wP#R@e9QBy7Y@A!B}AXmjZxS$0ZgH=1E0BKN|Ny{Ufo}c@I9zV#sTQa zUFj@(k_hi762*OUuc)?9`~t`-gI7^5;5iaB!b$HZgK}kaM2A>k%JNi8|0#j@i0#9mhF2ro!b6$1fOWBIqge^-Gu}*uZExZi~ zoYv~_sIuTNuJZ`qM(g6twmdgitkSJ)MN1(OPpWUF(>j5z!meD0ErT`-7lQwAnJ^VS z^KcV`aoN(gzHE|;9HKDc`ar4##ODnRRT~`G9N%WK>k+2dg33TT5ZRir5v@5|T$scT zw6C;p_WT&Kx|5291*GOUudcYZ5PORY!t6vT8po-ZrY*Lu)4@HQO|%jz!r_1$w`p%n z5G*7+rE{ z^>A-6JMJ`7XNL52T*QXxlrdGH8ViabJqkeqLV(2%FA!&H|%fxa|Jo!IU$HaoJW&9Q5%Yf4d@J=aw) z7`D|*YfY4Au&|6ncNus#lB0yeH=R~6N+Qa1QjTy9`bX0l;Iu-9X*m9A)Uy>lIZsvM z3ZjufRAN|xISpzu9D;V{mEkTL%qyW=0g`8@;7L!H&I@oFHV@uYZAXtXYhyGu?|EBwcs>!EPsHXEvAy$&*h$m4 zEn09s5t~oMwoEGL6R}Pb&L?93b`aM|#lmE2J`w93oKM8&6S4V3Y%+J8~-cE`9$oWXL0k1*nA>3ol|c073UMN86&y*L~K40JNbW+nNPS1df UaPx`S|K&u?jJ|qDfA^{X0ImE6(f|Me delta 14978 zcmeHOYp7*q8D{UbVG<)Rb19uXdwDX3bUgFjFNM`)BXltxyP;Uacb%)FX$}P0)C>`& z7`lsPV2PyRuNWC<+l>%Pl(L$Lif)cp5Jcfb1qo5l+H0TjoTKe8s9&-1$MNi0d%fS~ zeV^xfpLgcSk#mn6IrrEjXOKe&J^esT`?lqvL=+@QmsnQG5~p-cjW-_Ocl%T8YT=mj(mQH65jJRRO)y#WD5z#B5xnl` zu=Gs(w)!)FSXWy~Oh_y;ZqonuSac+4}a4;e)i9P+Qawv;_)rhN1yB+f7>q)zwpzeODD%mCwo8r_|PU5 zC9%d*q6E{#doQp<%^YQl*yjGa+AzN9p1v3~2ln+}Is~G4f^@Nz3U6@99N@xJ_M9fE z!+87OsxS0vAG66(3dV#MP7&N;5?T}KsLDu@=IO8W*N@-$+3Lr=y08M-Tz{~C^|EQf&OO!`05gkdP>hp^0m*gcr(3DpQUw^T@QY z4W8OCK6!8dBfVkPCWRnrHp&X@*hoTYz(%AXNXqU}a%=xfy}A&aG&`TD$Tfx7WN~Y~ zc*q^NH7&ljUR=EGHvB4)REm3#l+A)TYMtYrY9}LSnd|AMlp)SJg`4nBSgQ<=Lbanixg0`_CYhA7Q@+`LU@%Fs%LcXfKG{T3QPGNarBP_>qfE--9t9t}$NHb|9WGqV zTcW!^K_s#fw-%KW(qwD2 z%EXJHSdt=#@u^4qR}bp!k&Gd60RY8g6t^O^h%Gof!zkWv<+6}q zn8>}9t~<)EtV)5KOFrFy$9qa~S7szCV2MnU(rBYlK8hhTg~`fE<^nMZzX-vV>ozqE zoTB6tXofOC0f>oE*udWRw5|S+eq#|nB8_+1K#^W$SuK=>{UKj!K7yz4%N~8={i=0^KE8LPD`=+ z>B3?8R*37su?1)`=w17sxh5402nDT+F>AcJpCUN_h{?%1ppdctNP`I(_<^QX<#MRg>O zM8>3)JV1sq@1qLXKmq~DjLJT73bcHI5jthg0)e_9l$%!DvZOM1)cJ^5~{ZCYvY(*xms5MK0zQHrFF%v!plN_bU zG=}vG(k-=1x7kv>gTIeH*#A`T@a(Hebaeq0l5@?|r2{)%ZnHNg-Bgf-grZQ=ASs2S z3S3Qfbh4Fk#6bX7gPns~LQN8sBHroH1hjxJJs1t7-m+Dk>O@H)x+Abx0Tj3lhDsK# zZ!0obk=06_C}#(@&C5=J&`N<<7MoIXN@&ou+(E%|9$c&KT(kt8M)1&$nWiZl45j7F zB2BdcZ2)2c?vRo~F^#Ut=JAC;=|g5AFVGCMJZ%yZp0-FNympG3}3N;v`sgM$+QR*Q^ilR>LfPHwdY=+&~8DbO{#XwdW-aI;Rq$>|m-fxgGD z(V%8!fK1~OL?)pyv(TpN3MN=FEX18|VRls0eCnD0mP<8RVk-(Q3vYu$#|B{w6CxpFdNqDDenh?O%gJCw2b4VLV~A zIw#MG^jT?%%rw~rCUN!XtYH^97FU*ADSGpdQ~h_=h2Xil>CgSmL%?$K$R(h=oan`D z01eP~yj702BdP8xp{hZ39I^}k71|kN6^ELVLBkD*WQ=|kB?c0fU@oQ^x+1NaS5~8! z5i}s}rew=LFYiP(lzEia@j+WYHyp%$ST_jV-|2fr`YLN=|Wm z*#jLFkqp`pJ#+Ku!DTWVS`DlrENQ9%l*n(5i-p1jl|yc<>c~p5yM4?KO;dBnnS-rM zbV*+Mym&+-5((D~E(Qm)DyZ;C0**41q;cp|~w#&qqMD#&UoMwRc-__Q@{qXk)oIq8W#c&M0QB`?A8I4b3mH_0SU@YUhy7j@s;7U!9No z0{BBqNrR%HhFT_qOvo*fnNy|{wv+l=0CxjDBZsku_R~lUA5s{qVIp%an!5y$vU5K` zzr-sTJkWuOe9PYWR7HG6icg;3NGig z87thxn)YgD0z$Z~E~mmVJ>QHKc9gnuvgkOSM>W8l7RWxU!B#mzTWJUqoO-JchYn4( z(tv70+SCH<8CZ7!c+P-AaD>`+wQIy+rNUJO*28-f07z(k>k^cdQ5h7~)#ubmoE_UX zr+9Vcy9%*acVl*{53xcBC5Wp?(VqBrOUc=&AxW)Iay+pX7rZAnIMfSFD?t+$3w_s0 zGNriAWhG7rff&^!fgfL?$EQI9HV+r(NtLz$J4Fm`70#zvtfg=en zh94qW_6%}NJa}idVMl3OU6na>>s_ z-G553&4_5whfEyR*767xh8s5-y$D6k!RfFHHyYr3K`2eU*G?QlZ4nOx47Z+yf=SM- z5x`i07ZEaV5vFFfqPCK89&8K3^Q_9txR2bH-Y1`&gu~oyk)qU7} zDmI^rtsPj-r(*5jo|;d^UVIiepNh?=V)Lokd@9!dy~}z&6n_l zSb@i|jv_eYg(w@x7MWRLRdiNIMMh^GkV|kx!DGjZWs&_}Rd>_r0orx{*ni;nqw3{* z-}~<4)qB1DK+1F9q$DoywRZfr#7(JugW+A|SvbFK1aEjv+3Pkvk|=rwU3N>V%$uTD zkra=?n}$aectcWD>$~jY?(b6D=D7rqAoCtc7EQM)@w(y`6izb*pW7pPG@bKUYZl)g z7pYtP#YZVF)zG|dj`MoFx+zJ5=r&EmtC_rl6gk1i*`(qjb?>`lO-6C&$JJ)DztP*| zYWC~RuDXV1b3ub%U*G03@ad|pwSGRP;O4U0TKv1gpL!xyJP0gl`RGQ5D z|C(b|6eE?rmE$gM`c?w z6f8T&7+rUEwRbH+nfnG#N7xQ1xR8ZhVJ6m5-}R7b9S%xNPF4MJ2D2*H-(VH};fjP# zf2}o7DYQhP7)q_$uliX_l`Q&p2_%kiB>!2NBWABaRqADzF*Eyp{|L(MEVRiScs(6N z6t0ZA)ztW1f9RFo!e61TvxAq%=#LmUT)nlYr`J3m~mm2k^-hhOvE{JYZT&+SPZ4@Ets&l59`j4iGfO0#9ixYfN zgLIe~G1`EOqu^b-K6#k=4%GW=YoEDA?RZfE5M zwXh>$aU>G@ToAK{1wm7E5S)+Z|Iwy)D6~d}!X_393!G3$jf8^r*|9Qf_j_FbAxy=- zf%Uzj6SjIISTI_(zF3qEk9F6qnVbMyQNc=U(D3BUCvZiJ$De!CbhzxY?wxCYoHV5nUqq$J^^f_L}N1w2J8{cqa_E=x-5D^$L*SDQn*P8{k=s-#W_re*Hjl zDwTfL1Xq)9Qmt(xHS+gVx~vcMr>@bE(f#7Drsa{|Y1Tny63I@(`BKW|WAvX+wU&?X zhq%^!RkogLngK_U-b^wk&7pM#!_|nE7DcP_>DLLl$)PnPiq^O^o0gUqq4jxpzwR+W z?n$Enz~$bR*27v~+t$j7fu8O@^z05o9!|5B-yR%F9><|6GDyGYOYuc_ErSAU#`D*a z9ck8=Wy9?9YwdkrV<=hMg$T;6+ozDXqfkEBK8m3Xc;ONDLVJ^A5z=FK+`!f`!zN!w z(6x7^(ZfR_&pNW>TXH7NS~E*5t4?qx94)XqUyeQvS7(2c-Inc&-97CO2MOt&ZmTe5 z=MZeW?RzS%okx-xaLdkX!gCK!9|IN9bNB4(!Z}-vq+X0$mNoyq(t)7>OizzCpwl0^ z*Zmt80i?!DK{dA=gPNTv4%xxbVs(@Q3l(;`Ubx!Ze@anQpI0jjXV4+IuUi;-p3< zQ$HtzZDUF<8kLoQmH=9<;tvN|%if(smS(UVM!@`IeMoDFST-ZJz#*0r4sq+`v2x`B zOsv4K+2cWc_>%$;vGGQH;8rRSD!ws=qZhHV{<4W|%3!%Vv^tj&52IW#SGzO*<52=Z zTh2XyHOPy$oFtfGJ?-k-i)~n)xy}1Z$)3oZ>(l}0)mR6P-io8;5*P&ADPamd-=Vyo4+;a3f2Ucjkd~_kSh2bo3%Q78F z`!Gp|WZEGR?u^f5U}qdI{}{LB(QyFo*e)>8TKmx|_}VJ|+acJ7QdC&W^jRGkz<=FSz6vJ7Kd}|pkgFMXs8f%~vb*chEbHMr z^Q^6>3dz_aHel^AT$lD1hT?mL`UGB!kV?H zADN4NOU=(s>p1mxrr5zO+o>@;?`F20Nk(QnyCXH*-W^HV=XOWIdy_%TAk(t#t=1HV5OUxZ z*|r0v?1%#oW;qUwVX`gaKv+V@%234oM;2!XaXWW_kagL#raxSp9Asiz*}-l7AvJ+K ziex*+B<~6VNg*sDB$!Rx2g8-guRBl+T?MOclIJ|NI6LAgI7sIeVL-*m^KS6vA{Yc@ zq3tRP#jp%MXSU>XPGt9R)IP^iG0?-ov=VrTkfa=Y=SE-t2|Plwaw1zdx?u>k;cT$a zf<($HkLs-DNhYPPzHYnGB$@r0KKmqhLDLk z#?9i`9QsK)w6M2L>{GVx3fjH^A`k%ZZlX*-+8 zvK=&4G^Y}(=$0x-M?8nYNyfnUgBS$)5wM?-E{8+80At7lj?`T_^kD&9IOSMszW{$B zTca%X-x_RSv+WYBU~gNu&l&60KaBNK8MY9z*I_-;4I0_!u-+SDjc>NSrZ(%7F|1)P zr6b`UT<>uHl5u`3!a3Xxv>f)GRMMH`X{oO_o4Y!pk{y8rRAz1aXrtQp#|etg&8Hua zLS_2qG6$zr|DBOMk!>emOdOrED=Oti!$1(}$tD<2xLi8{D|4d~@XOJ#Ess`%B+gJ`y}^GK1(9NvF)l-zAADbvl(@Gbc`*DeA{r40R8 z@MH@#VDjZ!5ufs$-e-&C{`LiiG6M9EyR`r$i%U@uZkAaR4YPZ44 z1X9zR1>J2ho2}<*<8t^ZgFU|-JnUWA4r9;}j5Zy6J0=~%?r(Q+aITPk+YUu=Ur&VU z+d+sB-q@4yq7_gXB3wvcS^+%#uE*kF`5jo}LaPhtD|f<;@G8R)==Cc>ORPcVtX+GD zB~M}on$SDAVR*Qkw(0%tn0~wr0uU&-|&y{zsl5ScBH}`J~<1r;8ZD(qX zgblRyepo|pb~GGnfk{?|G+fbB!{*?d7TgQaMaOM`0km~3EGG{{6f*mFA^LefVMFM_ zbx=>XMbLZG8j8iVE01oZSR+D6?@^dWc1Ms>=&kEPMI?)DY7y5~rj;qPBG0x!@VoUe z5#TTrsgoR!T6uN@%t$*N7HJ$^{wo+qANprJ(zKBWP@C8HQ7dd-haFyrL%bF_yqMvN zV$88L0hLV;A1U0lnR35|NiMfrFuZQvqiSALGECmX>zroDsvECeWYdE?%`LdOdHQ|G ze(rs!N_5Gp*JlVkud1RTsiIetJh~>E0^XH)1yPV~{9xfGSOqRqcAGlS3%sTZk|xO> zL+2I4EpR-CJSEAYz2gz+8~kE3{42y4=FQ(g^^ABTlvKD%?2qh{kuI65;+8By0Izy^ zSyJ4hXqu8&mvzH~w@tDldOTju$Lq0riZYKELV{1!6<*?a&7<;~p=dt0R~Kc?$2odt zya7wWB#;Uv|=2hoPx!4+48q9E`^@%X;56|Qv&vPb7k zSr7!DEa`@-DFzyw`A^pjiSxv2qlzAd^KgbJq7h6@@t|yOPEZX&mkdKRqqHfK-CmCm zeJskVCTW`P*1eMCmN*~Agw6@U)mz{Nh%W&u!@1(}Z4AOtyy|nyvR0+2b>pyUE(EK^D4S1h>BohKq-ROL&Fh?MR9He8G3$j^6#Momc?@yi=RnTZmy}m ze*A>%YT^ZPPwY6x^Oel1pxbss-wE;bbF3hGFjj3JspwsS!;4W<;1t=1Hjrg6Eq)32 zI8n)I_za9~Rqy##&2YGDZDJvXOw zm@;n6Hn*Ys6qcg8Aaa6&Zj92Z$cOjgnr`65w`oXN!gR0dSNsXWCurq|Pq)QYYnHmpbXC zPTFIuFr|cCLrU_`9e3Rk{%S5E_d#=TUMZPRh%Z0*;Sh2xfsDzg|6WE;lRMJrtHa3z z@?<8>!c$w=Pe+!MTi`fdTTWWZRlR9u1sMrv>BI_BOP1%+Cn^X}@bcgT1T!K9m85Xl z9r)XUj=+<60n`!LkEiz?f#Y~C)e*P~k6JncXYJ>5{4(zdsQLJ8@fYCl%>s|(*grAw z1baOlcoJWM-gwUv*uqAu2|k`;qxTZ=v6YS34>|%*vk|*G3_Qa|?0$(0Y-2-qG9LIB gHeyGHfo?Wpr#pdX*@&Hj1b)XxEAoOzE6EJ_AL}2=)c^nh delta 8707 zcmeHMdw5jUwP)>wB$MaNgrW!~lORG!0_QpB9Q=3*0i%XTD=2!Eo-=dCI6Q<4fs0p6 zA`K-4isS?~S_=vY-nM>1bL(8tQn^rUy*@x_MMVgRD39{+0a~oywfC6`lc~M)_x(QR zk2!nR+UvJod#%0Co)<6WY(J8d+1Pz`WLxG2k2rspCC&-k(IJsgPzftSNHuLK60{A$ z3~C`W64oM0M7GV45(-6BSi%Q$S^emhmuxueDDuyIls-T#*VM>-JhICVm2;s0U zn$D_+A4@x_UHEnG@rg{Q(aiMi^mOZ1S5cQyH?Xd}Zcyz>aA26` zO`)D`&)@YDA&1cUx<1ZFy9Yo=XBdz;dQU&((NUYBm(#T84)_$AqVw$@gGmhigVf3V z$sZ|8pBg5Y@e-ptrz_ikd3Np&@(Pc9EQ{+jXX4;b;{6gj8%BGmPa?)0=@c{LY^ zlIv{yP|5z>r8&2+u5O?Hr*{acMNkb&oEJ*V$Yd9$HrILi_1locZC-ch2=YKD(zpD>#aK9 za#9&+Yi?_5ThulXA#kE^e+}8_YQ$fw_V-Fi|8ajc`7LMUc1qvi9DVDCg0288)GObv zA+L6V6dedAKtcyJ@@^+%|A8Ki!TtG?`O}=%pJ@kcGRPG~KrMUUkx51#4?a?aLw{!s z4)!+&b~!EBmUn$X`XfTz!*b4Z*doQN@ZUHr{Kd4Vqn0;;C##EV+Drf+u~_5BeqZmVYvg@x+ZK&goBdP?LF6Pl*XREIt^Q%*#F9 zm+^Q6GMNLPu?P%^N8m!|8esj+E#|9E-94e*ceWPVubgQF@?bt|LolZk90`B_YfXZ_ zIGO&(b9W`^tCQ)^oDU}GTaxKhFWlkM`#8HVEP(CFJXXD^iaU_S9I&0HQ<#XKUXa$Z`5!?v-FozB~!al30f^ z?Qtppm%~6wVl{s`JHaacsusp3vDSRGjIl5-Ikn$saXFXoJgp2%wY498+z&T9C;!%) z%q+ON-$o1ge)~W{(ti8gl`WaSy&GbgWC@>HLlzhCP4}S!w&{`w3Y=$}i|MTspbtT1 z`^Jp%rG#J{aV8BP}1`s(GN9oMyCv^mjjop4s=h3_;u>|#Z%m1n)jX>^tf739|3*w0ls2&55V zG#Eve7V*s&EpH>2*ci-4m&2?42KCh=z;BWcVQ9RdCQh(S@kn!*z?+!Lsc7V z)eBfe-Lp0icO^YA4k%1v@RiPmqn_*&46Cw;mr%;uIL%uf-PZuU$z1Q%UN_szd)-X$ z)m|67SOZ%#$#OochO~HjJ=J@8JM2FjH^hO3!{{pwxO`qt(zKmx^1SF} zsgCx@cA6gP7kg_WOs^t`5ELtCUlaDU>-W`4aY#LLYzm%AymS zAxJWOc+MQi%nEo4xJ{Tm{(h7at#TSz0vq9Vw-0}~1pbFC_0gs(5PZ$PE;Taqj_2`r^l zc+L06CO!#x)|-#N*}38_cNQ&p3SJ|ve%=JWcnS>iB#!azztvCeU%(Q^;`67v^LcTm zSTv2+uY*+t&1D|lv>t4-*Y(J|yQ@cb?2YxX0?0wXo9_B&pphKr9td>62Dq=+K@|9o z*UE&ziyL4DxfmC?b0gF+sP!AMD`)+7qSyg09w!$Gfq6mVd%W7B)MqKxfW|D%~*8hShP#}#BR6GGfAgu{a zeaT=aui-lS%?`*47!grcL$Vf@1X&4-VM`YkF{m1rr3(g9;*QChVg(IbHgrQ$BIt>1 z+CfZ(91+c+Du$CC6U9(S3EQG=2X!T4X;x6O6h+23DD1B9A010)gX>sY6PixI0L4&6 zNf8Fi@`Lk+%)PISC(kw_5=LJVY+P@eW}2!Q4BH{gwDD;QLfpr6mz=JT(@x>Zp&?!J z*dnT#ICWa>gfZ23OiQEzeoy6QA;xz3Bhu)@}ASj2>>R!Fx)h8Yqg zSWH-XN-*xcq3DL7Taq2rY$a%@SYc+w2pWp2>Uu(KLlq3uk_|!C z6-mZ=wgn!e&| zIvd=jo7M!Z$?AZj3YM-(vMq$Mv?Q!FSq{tSm8d9+At!namSxZ~Y)Md6EY(oR(nE4c zmJKOlL}b-=+hV-O*pguy!Juea8g^O@m%JI#^l(Uvglt8VT;G%ZNoPacpL8a$QdC6& zdn4AOW+c_3Wm;M|WXU1h#71gJ_#KvHjJM6ajVSS?rTdq_O`2Pa>5|s9y3(!SuCvnx zkkw*l0qGe?=NDaf21dZOebPMvq}`<0)_!fDWapctW^-+y?6Rv~+b92Fm%g@7UfUdA zK~hc5qJ8i-z9m|Y_em|$$M7DdB{~9M`CFo| z@b3i-r@pQi{+S#-h2y$gqo>*9h3FZ4ME$5BdX|kIM1oksKvHo}X6V+NTF{|lf8XI20J diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index 97038ca08eb2bfe3782d999807953025a4c35c1c..91b989a47fdba4fcb6e723273d99b852eb159eee 100644 GIT binary patch delta 36552 zcmeHwd7PBRnLkxM-92172m>?B(LKWeGt4l&_W=SDj{t&#f`W?pp5lOlcRXEsLNZ`J$uOm|27{pXj@{xkeB zbk|#NJyp;BJoQxdi+44@c3bl!4-S{k^ZZNQOU}P+hV1!)?puMYsj9Cyx}}-A9H_pb z8LlS>o~tUdrx}m_>+p-F=QUGyd|S13)sVGNHXTKgG|yB*&(u^+(fZe$*Ccj&bd2TK z=55(_4c)UXNAWe=@mBDRDj^;X6=*W)j>6)wtmhDNd>M6eNIH6|RVz|Uke7L7?vG^o-(GUo2Db{5mggA@!_0{F`NnJ z2?JG8LJWuXTDB^Ox@zj4qXe$&irFQ0;=|3`gyB3{mx55WWj~NLS90CJS1pi0mL$#A zjcBono%nEVTT-<-%d{=iQY706Bn`tlwy$A+nk$2Wbfy11^SaiAE_K%UM?czrd~IH~ zJy(aAxL%-Xwr@FBVCa&jNxqGFDu!5TVkbVemapa}$Iidyb{gj3_*rA~)5iBu!_VZ8C{1X(e@Oz1J{Qwz-j9_jwPx*drDh z&NfaYZ z{Yw#d=4U+YV9y;zwu~-&i=%UHMc=~R^T>#7jozy$oI)$2PXg?u1?0!k*HU0>2AVq9 zJqtl^@v5LV|5UjC_=r%prf@=yV;fE-6WBMFlMyLhF*%_Yu+_^+9?1HfE=6h$XFE?J z|5VYhU5rws+FU+V1DmmeaNZ~#Z=hdH!lzaU5|(x;nN^X5P03ShD}avYP%K-u1jbVM z#7=0#BAZr`AB%6#wUg!nt}eDrX1AXy(1rJ6bg5S1s?{9*X0K^P=og;^`acPQe(|*& z{l%sZwrLH<6JN!6{8Pa>hrB?^^95-gIgF4O8UC+l%g!YiXI@LM8Q*t3ll#cn{x^@y zv($NH8GGs1bP{`CAo4cHBT3`;ThvqQ9EZKPE4Urmdu5;L(R4PN#>& zqsG@K3>$WlyJpNb+MD0`rJb91Ub(XqP%y}b-_b^P+=XN>O*LSYp7eU&E}*jm$I-?N zpUow8{Vz|O&ED@Nhtqe`jLaa@*n!hihqG5MBF$t9lP@9T`X6~zqLUi>_djTpJlk+F zIY8#}2Mg(u4Qxye>7kts{qvrhK=TcZ^n%~k)j%8%Od!kYp>$!%rNkuk{D%I$lch1| zH4GcJrh83lP3M}fHPaSkmZ2HN+g2DW_))v_On$u)3%Rjz|(N-%fxwWOJjZ)ArqB1hA)jT~*Xu92O8 zF`3MkUPo@DGaCEn{qq9a(-95zpbN;(M!Z!m>|kjBqt3!wLDBxSCLk ztJyc>rGJlc^{WV1zl?CT>lSi7{U|~erXu+4*Ac4FW5)zCqll$SYUBlkb#(H?e&=bO zwohc67Zbg3`3^Fh(m50RcbvH>&F43(Fk&b9E2Sr*!x}O-qeP918Br)%&92@}=4NM$ zwu$WJbJ1u`>>o2{4hHOBI!8c%?g)BxCG;<5`rmwN6TLM8e#^xEm*?J-cWu>#*Uw$I zPzy}MHdQs0OavXi>uX`;nWQ+tR#`aR@gnr;%P%AOT>nZB2tPwUaRo6O0EaihT1yAiH_9?j&n;!JY2 zi%%A_Xy||Li*_aM*2a`u)Fddk00S>3M&XmY$uWcmO?-Bl^ZDy;;Vbu&X9&GGnos7k zsPU`!lbM8GAJ1pAXl#mTx4KEt4nuM&>zBUQ#@Xky2)H%Ve@JR&)`L(FPc(70RrhF9 zncBLA-TNS%r|&g!rIp>m!93a|^g=~PR?6$f!=#zL`T&6MQDu6tNhpRlnj*#U-w#6u z|I#EB!-q`~x4(_APz>lIxc$*4p%cbbz}OSxtfN`rtgSiX_Qr3JOY&qk+wme6wXH@xVPqF36KJ#e@E{=1u6|zN*&qVRBmhr?{^n|GnRgV9PwE5uwfTmv}S7G{rCW&_cXKpIXaW> zof`@C(!cxph+18ZGZXqvgF?bp}204Cb{6OwVay`~OV4YaYOY*!yGYm)M_L>76Z) z`wIB4FK8)W^r`HT9Gyj%wG`J(=CHlZv|g}dyzWY7)7ic}J-X5o+_I~UE}}QL z2==@YU`nj&tisK0fI@F?5k_@3U+9g6bO$|^&<9(DbHOf|OsCUtVjl1=(Dw7m^a=hy zH*}e~;sy5B20Dk{*uu88P&@Jow(7K*{-PzaZ2!_C82FWzh=J=n=@$B5ErNmHYl#^6 z4SaoS0(ph6aV*<&F>N6?GN+3kJEmgBC)Tn(*U?2x0BCQG0OVQ$U}j;@G`eg!ozu#x z))nc!6?}rTT7}-5!1gqyI;qv#|JK*L>RRCpfyZX21dlbh4hnl?YyVQ#EA(J?saRl3 z|DiMHmMm;z40k<;Ytwar$j!zX2A!LtH@6Dqvp2%!yEZ+LqIaSPw;K;fjUUXWT8e%{ zOmt4RAR1dE_S(W{*GVsI6#|Ws2XxRmd|LCfUyWx3omf|ao9`B$_yWC`(6?JT<(k=L z$Iu@7`&L0YwEf~3`os8HBYWyts?(1Lo^>2YuOe@=Tc%Jw^FslF9XyWy7VhZYW9dZp z<`=09898(;l}FU)VmIRL&}u zG<{J>OYBYl>k4qrDY=NSC+7r$m*gVO`SU{hYq~xsIA>ih;+z%u3e|@$T=jhp*Zd;p z8Zr2t@!+>dgYV9 z@&`?6_Klce11uya@m@TMKSY!G4}j$?v~MLkPUm(>)yEYYXZs`dA9&L|d$j zjp#wILpxKXM?4tN#q-3oe8f%Zyx^uo5sm<4V3zL`X9+Xg!C$$tMVQ$NmRdBt|G?`i zIjabxJG*$P=*?DzbSBwQ(!M-u|F@97Lat`}&!)@imOOZ`rt8x?YIgC; zsNd=hbOM|EA9OOgy=0Kn#lylM*3ev*JY0M*s{epq!)9!t(=w|E-ae8%U3`vNT^_Z6 z7JFSYTv+K7&ZleX&+|eJzJ}S9sKG7lqx0#V^qqX9@gCnuTj;xd?$U^N&{G6WQ(0~! zojSTCa4L2`{Q`6!)+WRZZ4X~SXY-*%Byali%Tg3GnE}}QkquK=5&u)vjz6)Q$_2?oD{%iTj;8%dyEkLXzeQfh3)Szd#m7Ae! z+1g9#-qunxbaPv|8M+#;!1j_W`3U)bY0e1YHDaV9CsDxW7QU_m_FZhs<@DN06}5#u zc{!ANMX)lfR#0gA74S`;Z4(rF8WSm@&;x}%SJ3^0{@p_6YN%@D-M-hP|~bwp8@#wkQOvnDckoo!8NG=*jWmOQOLSw@2#c z*)P%GW$60$5_R(fKF4+KrRwIKb}qnm%iGJ;&0-GRpbOgv4b`*p`UbR&SlHb$>^%|e zI{*z{^8IzUP)eU|7cP8i1V?3i!QVlzrSv8AfT7AB7PrpWNk1U;O)<+knMTpdf!FsR z*wsp(6tkoEMku)>n$=hNtmbF`8c&GZsS3n&u>FjN$icj|n@%5hJm8O;R7UM-g_XC_ zFB3$;=%HtOIM{KMgb-EqR7ME>bR-+IgN}s`?5ev%~}D{~!7b zdd4K4^jJoGF$bZc&cGbFhN@jWHy+`v4Rm~@qAo2NW}bLjxaq${suT z`Ydu=u>)rI<>cyvCCb3vPn$_0dXWbJk4+M6xqnim4<>(;-b!8)kJMX}JfCj!B(if1w#~xNdCf? zTH?xlH(v9AlHrRZCr49Q5=~+8Ia= z7Z!C0C#C{n^G6Ev^6+oyO8Ude+`NqW9u{4~L??{we`~T?*}80`P%Z}t(U@Jyp?q(0 zq+H%Dd9W&eaKmrmqJA=2XcwB9!u=nSP5mUAF|w%*Stss0pkL_3DT8Jp>qUgC!Gz>zDbL>zg_6wWxHVgCQo zpV5s|1V65y5-F6^@fBXi$x|YJ#JYK^u@X&ph{4y<+oy1aLUyx9{*1Wef#$-&Khr6s zOo<$rQm#b4IfW~cSp;~BBm3P`L}U+8B5hEyj{9OzZ$+RE7C|w9`ZC-2R|Hz6-b{LG zIk*o6xS8}%gYXVkh4+mZ-ju0AS5BHLbS2gn0o?RyMHIiV0^pIX?JtP0?WqInn>4lB z`o1-iwJjy*k_g7t4;s_3u7ZX?Vkc!&=hs!p=n3qVZ0gj?+{OLeQ^>KEwW)5J?i7w8?JSer zmkK|qP1RF6wo_yG3LGdd%eF+Cf zg&1Ah8HtgPuMi{j5o#TS2{Ecz$!|tRYJKP7vc10oSm@W~L zejMQhBM(gLzxcG~XFGUr+9?!y1&S7p5{mrR$*JXZeV0(=>$=L=;iOSqk=IqUu3+a+ zNon+YF`p1r5hE!#DPEFlO@9T>6`PaL+J{R8NeSjNzi$UCd zP@8|ZWVFoL;&I{fuGE!T`ZG+rRGF_Ge0LW8_mbDLTcRgInOCf4`=}CSzFYw_B8n7S zNS|~GX8fotaugfX)b(`YG{K7#rbWD%!dLJjx(Hqb0t7EsfY>cStfR+F6MApnv{JqI zC3d)xDi0giOe#y{qseGc^}k`Dr4^yMGV` zl?2_#`t8)YbrtM!604h;`kP&rmm=$b&CJw1`p7h)L-t|1CD#AZLV8x}5TVaRa3AMz z_f0FPvs1q(^e59IAJU$i(&?*M50U~u!TTa9u$rAUJGGiUKRPvXpyQ0AQb*HwL`Sq0 z?!#9xicl(rXly~&idlT8l&ohR2eOXtj>tNqTaY!|9qE`2N2hKebV|3N>!j|8u7~3* z=!!mquKT7%bgh8#qfwEL`T7^2V@`>OKRFtHNq3}U)GwyaAnbrdYuKzssaBR>Mzd`D ze0*BDD0MX3z6C+i*A}Jf*i&Cd(EZCrsc});`UO#2Bb%|f*mmqA1?T@@|)Q@Rr;faO+Yrxys*S68&bYpjka(#u9Ydzb1LTVma$Nz&XJAsTJv!c69 zxdL?qT5NImpmP05Ozi>XD#&_YjQ6`Eyzc=(r2g35OHxO$S5~ANXdW4r*{S->2ptty z65Ia<>13a-NDXJ}m!<02fj0!zOwlB)06P^z|xYhY4+yIR1N!Z zX)6DBhB0=;kux@I4Ccg%GT`sK-6GLYHyWRx?PkxMoH~xREK4=9JC>&!|Nk$tpDb@- zYnG?XzblY=+j8_3P>v@{n&Oo$J~cJ*?~L6sJJ)1a?OZcv#R4*HSf2l5FRw^V{QI%Y zs6jfuEhJ-3c1pZlzIls~bwDcU1Cb5_Lk~#99b6jbXNU7w_DvHuy+S3)qX(>6H|sk& zCH6eYL?)k+nn@@0M3(H^;D)iZeE?bt1N1`uBY6XU5r<_F}t8=z?iM#AY)?&xWbrKtm|mD&`CW>@9Gh@ zY<`RYIFof19Zz64xv3R7!$L)FsJfmfJE#=aEW@)^*YIS+GELuN4aDJWn9myxaR@lvU`b5p~IjS&5sw1J2R`xYRS1s4pJjrxS69u?_;gDJL6v-#R^yAf32dcBC&q2%6!msDJhp8Pv3VC-7xGG;LY(RMYphf-}A5Ya}Oo zC{@=z&xh!078nEN*pN*-v_VeP$j+;WIBqyA^D5Z0Drn7PJ5Gb3nF(-rot~c18d#p~ zc!ml2wl&Ll9TUam0aS$@7_Q6?jjyRMy!mj=oSIfohiX90zpwe4W;&LJ>LEy(>#MHf zT5R)I(-BYRT}8*LaJm3|%{w`PXF4-E#}%vDCLot}0+l6HJ-Y6QEx0rF(Oj z4l24)Rc=7GAZoT2`kpG=nijfHA%*AeO)sqhJlR75zo)q_%A!#Ijl&1F%C(tn8Zu_} zr_8M+@5qX4h6WU)VM0+Twr>WiB%{jTvo)xc0@;{)lH?OW8mKs0^c_j2_?_2=9+=)sg~!fp5Z{z7WO<|b28Ye`jHNHXg;Lw{T=D85T^uElnY1# z2O8zQlQ2~jr(>(G$(Ef+oK)YoLqiF{f+5Z_NRDAzvZ@BA7eEkft{6c?Q=a{Ol`L^b29<;sWYEX@e?Xr2sfIKC@_Swx> zaCxc@J76DQ0fBNL>Z)b9x@JqTUbK)wI25GYB85P1RD9}?bj zOe4V26%7^@c9`3wSfD)9wF6I6aAwERBuT~53|KeG^Kcjl>}wWY{%Q>bsw!YL5~zF# zU0nsLEo>HJ*QJkW4TC`SLO1k7#n2!-{16P}9Y=NG2LueZrM|G?eXigvN%wL3M+dPq zAEFK~LDkK`F|`nfKjg>=1GHmUGE4;!1c~(_g0ST{8)E3NY`zzZR&}tF#>fj0tpt$l z*=JJS(=AIcl`U7paTeJzJt!|(4&jJsf#Um;;lu10v6@IYyi_V(NpvZfmjr&a%6lgv zi%Zw{Kgo$F=Sm19jVav$JB2L>_Ju7 z7OUG?vnX#?hpV!^FQmrhabit}bK~ebB-(>N$0Y((H6`2kbuD%aa~jkqm`%efA@;iN z`ii9(sw!Kyf=6Nz!hyNtdXfHmIMU{u2m(M6AhCN zpeaLLj?ETME_s0yC~go2INoOiL2BUXvW|03f#hl2<~~JQt3!+=t2#Ud)d)2cW+^3y zS@LqPp`CN#fKwP)hGYbq=Xg+Th!Skf8ppRJtjPt{B3=_ANaFdw*egsRQibRwv1PfS zC1GyBj3q3~iUdtI48@k`N+6e*y_^Xu-VUAR$JRB!}(aohb_;6JU#=3udf3XqJ63-P3FL8jA;GF2ht{ zKxM@ULrV*w19c@pl#ElpMquDzDc2iI5kgiy3R{48@inq3fiyw6s3b9Bd2h2i!VE50 zuRWa^e_YanBEhmG6=?@}KKwu_q7#SPE!l&#Zx?d<8hr%Fm$sGHd%QWIj@i3PMQ*vqHK82^a9K?n*d@>^WG5 zVuoHUS`fQ12sPP|W%!VAB3&FV_Hfc84B$hCBHI&Luj-%;C9+;gU`u4nhkih|0p7Z< zLo3Oyj2r}xH#@Mruso$6g$@tg@^S7Nv84Ib&!bX7GvQG z@l*+A&qU4uJZppGngrg2d}+2V$HJ8am|gy9`lNgUT!sDN)AYn#5WwG)aA03T{u17g zjZ~DcNUD$96<~oP`bF^ybU(aR-82vgSonxMfUBCYtgsRu5)>k7n3pY>W8VYE!pGKq z!wMWpk>HD9JR3Y2GUx~LQ#4ceH zamwWd`micHmiJD;*`Vc0SWz5%nUVp6gggMqg!>Onr1>29@R}9)kPGCf&tJ#$Q*b4G zE?u13pp=F5x9&)An>-u*Bga`nA6GIMkUBe%aYX@gSUMb7B=*4w$b89>+C`S|HPTug zEW0e9S#m0DbXBMvF&8`QE(+Rl83Cr;D~T+&24OP|AL6TVw+@EPMlkPdri5ury6{1k z)Z~yGMnLG;g0Gc8CJAm2{8RAy^#b{q&L7m zIE#191>KvY6Lu_g5^Xe+K$;VG_g0PBCIzsIR|&3m@e}5$a-Tl3oiQG}=On_>$RSPpcdE6|7{R@}hbAzOs zYasKYc)IFvyyBK1H&%8Ek{;NlLqb4@(!ljMIF)Qluw@9XY$LY7tuR!fg_JFJ!f-b$=DlFT;%XgzLhdQPRk?FTa_&35|zY< z<-M!p%=WlM@xizb<>6Cz5wf@?@$b{re4 z4RMK+h0Am-6EQarO|dT<=w@uZJXk+PmZ3VK;1$_G_=!kX*Wrv|Z%7tCe!Rt%1UHf@ zSdpr5qokpu;(njdg)YX{5O!H{85F_{Ih0`iWNfz;4lUpjvnm?_JX;?=A@&Fmt#BH_ z#D+*C2iQqAY7nNN12)pdty~J&0eEpu%``$dXK=p;k{S0S9bX-29B@?!YOxd6W_ppw zfQs_4onavMwV=`^Xk;4-0BLsQk7BhJz*WS439cAJ)&}+mTg(A$mTY;rI?S|Vp~}H& zhe@z}*%c}P*$;0=C>u=nrI%+DvmXD42pS&|38 zSAj2k?AdEG4LO9#r~% z-nPu-X@i9sKJGR%o{-k!%~ zByEO)tfZ7b9T!N+Qc1ENX%VegG4jEs&bb@b1s4ot?G>nVSq}KdD_n2~R}=;kvZkP` zlZL6lZqA|K)-0=Ot$wi^J9Hg#SbOe5Y3Zf}YF1QdB(QQtx}-XS)d4GaY?Wn+RYeI9 zm}6B@kxs>av8E$f!yXuRERcB6kh`)YUXC(zl5ZnL#q$cFsf{aEpkuKCjr5xXV`Mpn z9h)+DVy8v3-OxpVu0Rv(u#Iqm;Mc)Lv#}#RVCjm2nJ@u`t+)r#S`zG1J^*J+QXH;f zb4!7efKZ|Q0hYiqP>!NvK2ScMtd=Y2shu)j0lE&BC6DoY;=&Ql3Z*;>qudF*pWi$i=2L(?cvH58|)fr zX=(5jAhP@(N|e!|6_;E_5ojV{o_xffa&?fUbZXDrhHSDuzpZJ2+EtM2xBpf+WfQkr z@>DOji{OV^F6<=AaZnutA4(Q+fnCF{ek0SIOSlKI0Mfu_CJ?Zq)B{daHEyo3nMs%| z#&pLetjdmL)7Jwexg1+T0#1|QoN=X#_{9hN!2y!u#6M(FQL&$dq9oKHAnMgonB^fJ zM0Jx6hTzpxXZ_!rZAdkst^qkQLr3D;#FjPop^#R`-JFJxbc)!uzAdtst<_<(#n)y| zLUmnL$cC_%t*8pKcm~llv7zoE(X1hH6 zl7je@zpl&JYb#v+`%FJ+g%`nP0C`K?)`=_&G&a&f$O3^gZqN^2lT0SeWuVr<8YL69ScXrdYf`BUsvBa@0q7H$bT z$6FWJv9frfDk|uZa|RY5a43`WR20&AO3~IQffRw=rUZ!P;s(FKFiOp%Sz;dHo@ltZ z^KT^(*Yld54rhy3$@;JrsH;Ur2Ne)fkizZ~&tAqNn0UcxF|Sgch7}eM1prmqmM?O! zGBN?X>VOPZTNjoUr!e_G07OMa#fXMd8O3#U7g-gga1C79ixS2tf--&VZ=n(crHx2_ z8OUDXf?MoI;jUcd1WHRsR1KAlkU7)|f|V4Q8MwBHNhDQ*7WRvqZ%J??e^sdtR}~VN zmte>Oz{Q?6wj>nK!mhN81xNw5{-9bS2d@>0J_#8i8(}+^Y9YLYjYlnoi~ObI50>8M zv3`C@F7^Vb{TU)VdK z5UCUH`0*^T#^XNQ#72fFlFp$54GTb_u)(jB#$JGp2+=g*pGk1>qOd!1z)|=uA)G}9 zly8L_h&5HzFv2fJd8LQkp(s2Sj%yO=IDJ_ivd@0`VJ0_6FA+c>Q|^_`l5i1KtVja+ z(B-I$b#ap&_G@_ob*LbOL}DgdWa5Q)vCt(^tz3+f*tEQN0`_zfEOyq6hsCeHB=*rK z8H@c&N}o1V&p%YpKUB{jA2X?l7>DZl%g+%E)$S3wHMHZ)5vvvocx0epQ>T$It70P@B!?KE*F|ZL2>oa5hf&FWRu~ z9M8Eh7sv28fo9j z{1g9i%D!d%6aO``zUBNA|FyEdQ}`$T>q1BLoytG*A1dlw!9U@5fnFPteV)*Nn2sNI z=uM69yNta&Dm#zfFg^Zhr!4!!VcFW+%g}pG=bA43NK`XxI6OOsT|7FQKjISJJihOU zvHTZ=`Yy${{v}Nl+2NzIx6u2FL*5+?`B=q}cUKH~M9m(wu&YLA8-~Z@Zmwsa)@7Ic E53>w7Z2$lO delta 36844 zcmeHwd6-;9xp%70O!s6ZfvmH2&tzdHGnt%y30VjUkc1^6kQgu|IV)ijvXKNXl1*6* zAQzZO0qQ3~kWFI(N*fSOMA^4|di4rk4WeAQ>NQdB)hnRiuc~@xdRo)x`TqF){uy|l z$>}=P^;W(0?)ARa|8iITYxmXfe`KJ#bzPusjN;CzNobpqsfLyx>xmtEs&6}?pF~b# zCPwUsW*8=xp+5e`z%5hqt{Z4pVg^PMI%cE=ZfrV9sG(Ps#G&c1<9CryruKS#gd5f5 z-NdszU5#DC2~FK`eM56SUsG+@_6!VO94n<)*9dpiTYbCNgM>4 z>T9~CC6;NZp&rZe(t3&UW-R#X@O1v_r+iKteJ*sWnejM6C;>z*TdWrE4 ze|%s~KJ;we(NxpW9Mg1dE%4Pa38O^!)xdV$BJR?9iShPE18Z`D>APWQJ4WJprXN{e zq&aTrCYo=0L87r^caiIImHYT&v|U$Vc7_o~QS8~Fop@&Kn7)VEd5)_mvF?Xz5qoL9 z#CZNzj2A_!5$Ss1d#-P4Mg+QwLd$Se6(~&%Phu~vml$vM4vc4Oaj4o(gsB00YUIWt z5N9|}=s1>P7O5qzml&_<(+bubX>p=i0Vv)!T{rPH({|#>Fp@w`63v$LOY0@Z`{1^7 zYVwH*UIE{@e(al(YX?T;2BB{Fq3d`-q!+0rrI#45;hx<1yr%{l_{%aw7Ynw)9bh&$ z*25??yx1yIOIj~6-YMU{|4dpltZ+~vpBbf?ronc3WIS8cNQPJ29h$DPUE|1gCwkG! z_Pb;t+f+;5?$f1a*z%Q|{WbBrX?Z!w?RDgt)E?8>p>~Y+FZJa9K7C7O(!~Cyfh;-k z+v%5(L515I$x2#fbT}?MFpn&gPYavKTjHtf=*qgT*Kf|U-(5ylcehMn?=+J;6nuwi zE6IG(TzGyw8Iq-@+C2)MFv@5)uZ_Hd=JJ6=%LMj9JK4j(v~mhrfPV{*P9gs@5V$l| zf!nsBC73ZS_Lf5~Kk-{2U*P!V-YzEJ7km*Yox?uz$g02ls));@)5uM|@5^Ch^d|QF zY2>t&E&{7-rjx~#-8+vARkRL|?Vm?3uEK*ZadP@Ba+qycNd}3R$LEuqyC3T1t{y&} zd|GsnUjlaKiKoJsW|Ki#Al!2Vp0NiWJHLsHVdLkMm&B*T&7{6($GTf4vild1JLLBS zsy(N0!#NVwmaTI#9?3R*4C8!l31;P~8b|efwsHx{W4R~j(v9zdY|m2iOj*BXF-kYy zXYrxNvZ>1m-`&#jdioVN;i+X}6H2?3%&L16>e8pyRKQMLPOHog&5+2#6VuwT$hu3( zOQO9mRq~!_nZQ230_4qmub2Yz=FNre*sUxcRZ9}McoGEumqZMvTIGX@mI-XfYG7V; z7u(363jXEfRZ3ngsB6hELSAS1cNDwm3bHlxqw3Y8J8xiGCpo3-=vjHDtRok((_6_# z`erpFQ^{KL20MN^$#?Di)@b_UF>Kd)#AY8}Ksv}D*v8ArDQwkT;$?rqM>#fzZC^|t zpjBhpuGM5#=3UV!hGyynaw_>PA88i(v240cQO2`lI=P6v&t6+cj#GUsJ90fagH9XU zH6pLp>thED*b=NBaZ7dHUl--~T)$`6o^5+t00;ye)+3d;bf-jbU3?d6RD%S#vYpqE+4PuL6F$9v z4F-~pgt8IW6Ahp4{RBz68%K6Ge&Sj(lfEl(QqO*TE!H=w`<1zkbjtp&WC8|tWl8^=kkT{%u*ZOynItToXW#x&z}*L@)=~svF4J?AJN{uE?AR-GTsGi+ zUl`kUeEBYF*Ky2HqfUyv=RXHjFRbI3$zI93om#) zF`vv${OeB_&bbdvM~}#V@$ty^!hib^ zD13Uoq;RiZNL{;LO5LwL402vlFQ|Jlx^U{AiH}c>feJb@jGn^If1ftcVf8|Mj3@(h zu!y)F^^n_6<&LkT$QJH)e90o#Ao^0!rdEp}>L9A071hE3qe3cyGhsIM+ ztn2d*(E$!?Ct)dpb|XKb?ol7W`O)T=3T#Bu8SD zZaU;Z{vJxtXJG@KQ_dt0Wx9^5jqpC`6#8C+pw4$VPJ31FMTNPI^fXHU*dR3TQohP} z3Qy(f#|W)%ptKCG*>@x9%22Rhz%Z6UTH{mpPx=!n; z*(fNPXl$>Jo$P3ol>E{J`e}MzBd27tfWMk>$JYi@8x4@uyc3ty?=(m{E*pMz4Lg0D zaxR;t(|WqCIQ}(q{Hq#4PG;feQ)zA>xtkrGL7|lIBcrSNZ0}^pR63h>HFmwVuVuuJ zMkq(n+6+a|+EtCcsNUSzBLOp=Vx4UE61qsP=#?VG7bV2!8YLT@Y|vQ>eXmil(UTIJ z_uKT4LjQ~&oQ=LO8y}rUO@$81N$PrCG&V}=dRxqlz9!Ltk$X1(dwfRovX6`24P6k6 z!zIk9(W`{&v8xt@0$&!84v*7NR-Gw62yj_+&cr~twC z%%T5IHx$RZb1v2B)uKPy!2Ud!UexnSfVrvr)k|m6<@}YPkY5xh`*$ehT}~lO>4BUS zbNg~a%srZu#If&e`b+v^PKdeZ(1nY+$MF%Q!Mju-jo%kZ7sqqG)bYN=7N}zlU67ZnIXf>_ zGdC{@BV0-ig(i7H7;^^#R9JZLV)}K3UWFccN|HXqo0t@QhRmj(F{aZ$mV7Lsk|0>oGbxb9K-6$FTM*=tQ`Myc63HLo0X5G5(%-`5g1VPIIhk9dK?m3E8GL z^^t9R*@1QRi*$CAWQ8^Bp%mvg306Scx7I@tb-x?20q;KE^DfvxXYhA|fWO4&pf(AW zT?XOdfh7iiw2{`4Px8r+?ArghN_R8~yY$*SH_`p%bG&^4y{k#m@pVl?U0=&C*xIeG zRVXc3`$T0w+D4}dCG!0yp}W3|1(Yh0{1$p&L#h6F59=;fm~XP5Z-G$%*CweizssT6 z6aa+gC|ko*?5A7lr^@BXUbg-!dSy-0Y zemiv5z9N7}C4h&Th2YryN%~%fzSvwMIDXD&{9LmX9N%jef@43>QleHKYVPIL2by~X zNA_RkV%c$xp3idIA+G*Xg!+Mm`X`_ak%b4Jy_r&4J6@PA^@BK4#}{gErJtg-ZM-yF zPA#_n>Nfgcgq}8DDi&R~3i-j*{j{p0qyzD5^znQC+5oO4k zF-UCw4SVR>bklgT`Rm8`+59<$lRistBy{I^vH556vDS|l%v;v;9JoJlHJF%X(IHtR zyR)VkEFq-PgC(ys7m3%b_AdGpS{Tn(M^HcC8Q&w0(8R@2c3JNzr_mpj43NE~_(sU1 zv+kjrPo{5U8PgkkWKniS@0UjlVMPB>I>Np3wII#11wAxKN&=APa5ioq$miq*_$>tj^@(}cc4Va)_-RIZ*NjYSvIkEiHM3B-iM4;Jz# z_yxU~Hc#U6XGCsN9}>H4aMxQCo$}Tz220Dwn^YpRH*q+*NhQK&e(CG2#n-3*5;o|? zlccoqC-q1hGzn>QP46(L(JiGTTr1xcAZ@N0M6btuO9jo&-tQF!&1Xx${D6EdBxl(g zzse53PurM~Gt+(#IrDV{HF;?Ez$8JM`zA>_^WpF5SLiE~gq(R1UAUZi0v{n~co$BT zSiXoamO*%eL%4$eagvZT?@ua~GdHrj|E6E;V|>(|+E>mDWye2+@iFLBDQ4cEBz$C! zY90wFgY_K=Yx=1i7V+554`@4_$Rb^lnOE3$IV7yZ+fq7nn*(Jej?*_wt z@*A1;VcCivCAO8mEm93Mw#fa#06jc-f=zmx)l?}P%jNlHY{hWxDWeTA`Y7q?d1N7kx^c{Qz1Mxnbfi7*4 z3{(cmFct3|FmJr99AwqbUwQd|Dh4)(}2+M5caGqm($1Bt5@!l7st7UuB1my=5$1uV~ z95}g0XroDZtlMQb(xHrDPE04#hRMCVk=ZHU7Su_~wk(}8xsTk=T-Wo}>2yZPx3YW1 z3v4msU}Z~qm>ua*meS>uB{^I?S&+lh$(+t6vDc<5*V8SN1(|I^7fxm?@DXIjyKpjl zu2qs**|?AKab*Y_gOH7^P=p z0a}RdGSE*IcACm8Lf@J!4E;kVUi`CczO7s_yo?&wuxD-MZ=#j&Nd@mZ%4|Bg4K$*i z)YgYYUM@W4D8~sM*CxQe%E8vO72fldUlV$2ThX~ZO|j_IHZDMT+p_7(rk;1dny$>D zv%B9Fmd{Y;h%XAE@wyxiTR5`}?vFU8Ph(@|D0O5tJ1|?34u0Imcaj88oUZIAWEX$2 zfNpP-d)V0~_AqFZdsx#Z4ZxbdD|&l~GyuiW2YQFzCx)hvwh5W>?i}S(!j8?uLBqc9 z(F}Wjp3=;2Ia8U#lKINXEV~=wo554*I5zAoWfXg|Z`-ftDNWz?PLqv?)!;U=sqkZN|)QgoZS6m9;` zfX=-O`L`ApKV}9Q$n8?u;e}Yp{-v;oMW?TxujKzBkg|iOPu;L7p2^rUrBS9Rv{vjK1%AVEPOZTiE@ec<)q($Fy@EqDs3ETVR169q=d4 zJM*&5ymw8TQ0`??Y{5|0o%e7OyM7rs>gpm#ZD|+EZd1E-O6Fax+(K^$2;__0iY{E) zT_Yj#E?n82Ku}&NK&+)twF^!6O>AmuNc5-6m4WQMw>0WJ@nhvA% ztP*gArYl?8@;g^32kA%cLgDyD6#T7*xQxwNsVr*@O~bJb%lG00S;kJ_ddPT0YHg%@ z0n&B%E~y&z#IoucRk^^^k>DDes;fn&5g5MenLPE?iUU9PkV<-C)yTrmC#r8IxyXy0 z*l`kF4H8qe4A0hdWXKu@1~x*IZT#2F$igDC`iCT68GL{Q+RK!M`4rd&Te(^plXH=q zi7Zshv@o?;MG~(Ohn8c-o)w0ASnz*PbwO1wMrySi#6gIhTGMl*KzBV$vyDJEEibVO zM}Ay&2g&J>dA1uGx*eFN7rCxw+p%ecp=qnJ7w{#FDy%xFJU|*NgJl;yS*7PwfV%AH z2F1uldgxe*ssXNP+E##R`oOj7ShnxkPNC_h>I5yLRE4a=*ylbmTKMi}UZX?wA0X=>nLv5pq`iH401*zLDgk18yxuX>O)Rs?Lb zU1wLT`O1Kit$XC`>b7>nwbq<5^~y_|w{2_BH@k@&#j525S`?VN=X#E9MTrj`uEkbT zIQ)^axGFVOy`a6Ne1Ysp*%QAR@a8YNc;$Hu=bm})$`m3j>z#tCr1{czHutis(Pvg( zkQvBj2daUbZOc@h$Tn3yc9GW|#@I0IuVa`DL^e{g6*B!3+p$95(?d|2=9)-%4w6uh z0+a$E!?>5N^f1v(-LSF$2J+zzF9<=`o^IAAUxAiT@NWemgazmz-^A^6b}DXSyYubya;6tE;8gz z+YG>tNc8rdD1=N1Vnd7B1$QZ@6e%?^JrlX#Kv{w`ayRrLihR{kHOq_*Pi6jhAY2ap zUimV~r9fvJAF0;TVT0esu|=z@N9JM``Q3@-1#uXdi3_=wSURR2hrVW5UddJkDp*JL z{m3y@GsZ%YYOV&B<9nfIs#@Xj+6*LzAL^!|TaXhT_TSYYS0IwiBupZFa@nqhSjuoE z^B~DphK#P9>r$Ww?A6uP?d^tE!gPV=#kTJT7DSe*IZj ze-w5dul^$0k+L~qU%pGB(x`9m6l?`Oe3!B&U-BK&{u4EckoIpvZfmGy!Fo{z5Swm- znij!LMRlgDI`$5w71&HW3Vg68bbz6ICMs``nRjb-k2-_Y*KE&n9X!NN7z8#HoNgGp zW9y#9pjW!pSqgju8I)X|Rfe6gm5)H3#kvlGZU$j&Ad3!@LmFMIqaeg`LR7=_5@tSx zzCfi-;5wF$dLh^K-2}|!d9I3Ll)x(GG~M%jUyYN*)=V?-%m4)|kqhmthi(u>lG7x4 zR)$|B&s5k)A5+?L2GHy4wv*T%3Q-(ruNXqX(lAqqJCp6Yu(~J@jl_nCg<=k34J9Gi zH(w89%{Dz06Il=%T*yiF7Q(zh(M|+J1*RP*LE=L&xhTDHJk-cY^(J(5J_SA|z*#K? zcEn!T4Fv~EDB(5BP8{8W@uXt6%tUil6rMnCp^VD&W47z$jI^IpE2FxVT;=^KW45R= zY3hBMEd^mcO75)6i?U3~Y^Y8O43v+-PSVUMGJQ~}AK13)qOc0tokcz1YB9$}5JG2} zycEaO5+4;hF(eePZYz+_RQ)dk>%xx=-L;$qm0oHBVuT3eWQy-vDEcZK_*&InguQ-O z^}>7_WH#&W>T~mHfZ6N~RU>mKFN>jUEmyZ9L6H$QGBU9eSXGfL*sSpScQZ4q8jT>q z40TNh>$tHWI98-;F^oeKIIs)Sa=r0^3=mXA@480iic;XxLuF5X+7=Q#y*E%%!^36T=Br4AgH%=_oHg!{j4`RcXR8`$Y zZD3;9g%Jy3BIi=-0p*_VyeM-M*^#ncW&D;#q<#4<4R=N5HfB!cMTL^xG>`!b4Sg$s z`3Gasw=CC$6xWOZ48=wq?)KDRVWDmfDh-vRrkB7>)F7Nx6m`PPiA_m?(o;i~oddfE zY1t~&We~bP%mfH%J#s+7$Wwt_E_!N}!9(2s?AOYL`4re8yWlrUUEW5OUVt)8!v-rw z30Ko9s4H+x@SqoVTad6|Jn#-Y7cDkD6&0EwMJtYCI}St5?xWY>huTRJKonU(jjh5^ z16dmyRt9MtGx$#37Gw%^X+fsK2HUmfU}?Y@4nT}v0Bst>%7P*=;Bf|#;Tw|O@=gN# zA0{F;!Z1VBT?Q^J4p`8jVjo*lqMsXM6lUsvjJn?#j2lGI&(P$C7Qn;~5_bEqt42vf zIG+N$$a1N$pMI&jeTvhepV#ZO`7nSq=wHZo*sfmaM!skHAeAJ6UPGl~x3*3#r!6YA zl+CgGvP}w6ntgj$Mwp>?Taag^tg5Kg;>fmKLq#PoN>cH^=c&*_32IznBN)UR>=0gD3tS;Z>EX#} zNE&cCE4I!`lLdHu|I5Oay!54`_ z7{jq)xq%ybaMj?_!OL+a>qwIeS{);C@qCCD;z49(VcXe=%-;HN>kRR*7M zi%ZK@hHP`))`}W%JMjF_i#%@D0?WGPqbwR`z8QkyiqayNsL*K;a=r_XD-Lv&ibED8 zC}`(`Au7O!yo2O*xC1a1ZLlrstBt@5;iaiyS2wiuNGs|yXpo99rHn{{7_x)EsqUDp zm2eiSu@gu0c@aB&LYTjhX0Df@jv4`ou-95_tXx;lj@+Y+Do6#EvL$8Ql0uBa)Dx6Z7*u5N=7VJr9~2pGZvGJS*rJl_EZu#Kol*P;@V^fj;?+*N19aXh? zH%d^lp2V&itEL_qZi1kN2g}QbF|1h@H+~VU1MS5KfS|JqzY+#Z5`+dO1`9F@+@i^d zFF*q$Vh|#try`mP1?K`$o)u}Rgzw?1FOyWT(vk5hgB3PoYu=1hJAxKMXaYQ7L;-?x z(4XK9C-$|lThzf+^kUWb5a+-Z74WAMNE6$D(-p!L3)rH&lx~mA(y>bcqR0>)Cc+<{ z6L}mtAaDZ`rX*^b3S2HE1-8Qu4$ZW6SXzfs!eovb1HlmwfH<(gRo{V@j(lvDZzD!k zfD4J8seFq98}VDjMkR-(Y)=`7rO;y;hoxZ5@8+#oUdKSW6qM5Pdy)nmst!ys~eUpm=>z4BIQ;U*A>Oy~y_VS+$M zj4bp($F7rrU`yPx94wYf(Am_6%%Xe>?1+7_Au}ci)`z#0Kv_Wvs|X_^vJp6;0l8@) z9#udTjobMM--qB6#7*JtU~-5?!bWjC$HNK@dC(v=7aUa$0Sy;=3MM9x{UCM;eE~t^ zA+|5Ygp4qzz-F`G&uIA+(7se%79yIygFvYY`!3D~gq=*BT@b1jM_Yo%U0QnU(Fwxpa>QV6lH zRahBUkC5c0*1Gzs_qp^~D2ZNO=ew51TI!UaAqzXb;x zNRK_-6QUZXkyXnbO+v0i2F~hP4q>y05>T%;Z&-S_O|7_#bAf(A&TU4ClbV~!#Z~ZoP>Gsz(Ngo97!FVN4ywj zKR61CnjhQ1Dswc5MqB`c6E?#sY&?>AlH@8wEc#q25M2@GV22iFhN>EF;V?_$8(^jo z77T7rN)Vm}Ss=pZCV_89I66hZxhOE~KwO8ex z!GTquQ!}+PQI?;Yr68@F%g#(&megJj1e^++FUI9g2*7!W{^A(g)e#v)9IMo2iQzo~ zKM1P%I(A-#G3h{RLJpaM<|M3XI-XM8@&Li7#7CF|$K!GFh*GR2k2noZGSM^Qw}A1O0m31$K_LIo zvrnKSXV@Wbwz6nt8qi{Z{A+GH9qaUDN)uw}86;5^YgHsV5mijtsj|3yWfG0b49pb7x!p`R zH)U12WID@0lsoYw+|gi}uu~vL6Fj*H|2PnP2sq({9v8U5me&Hr?~w)Km~P-0HV%7n zavGRgRE**0U?AF11g54#u&N%y3OEf=Ep9hDkzX{jz--qO_JtjpdHKq)k#u(80OB2K zz**B{Rbw0AG9l(Jlr)$lGQf5o&bi?8A+e+I`aQ~pRXH3u*f@K0V2L4W?71$?C#VG+ zl0_=AV5FlZ?L~f&=Gz`DGMz2*d@NkH9TXoHgIaAsU=rSnC?BFF|pV^ANhnF$sJxcxX60gO-D* zj7#{SfMNGKrMfx?vi5igl3!&8*T93N%>4kIwkw?YFXe4g2!!aPv;^3EHP#?O9 zpDE)$MDVDK!-3*qb~lTrOhRMB_QI)4nSjf-@6FWJBNHJ+Y8FlaL6y*hjtXlT+~<0s zEj_wCqU5+^&sHrYWZ^UwijW@}dq^q@VMhn0q4FI34j<=b;7}+-oX5inL&gm@1-3n69PW?o$?R#wsSM)9 zxNb2(+(g4!sfy_Zu&6#O4kjgV<0=iJ1@YoG2 z&}{@JAYveHJm_@f#ke*S%WySp_i8|bFgkI5#hoNLTt2SFL^c${6`HL`OQ)K-d=%STh0?oD}f% ztO%wmL`aN`1Z3A0H^qQMfips!pJGxWjyiB)2LTwF5Qk0-l<>1c$(pcFakd;Gc`Hy& z%Tiq&Cm@W3q&w(eo!xe8^=O#}nhIN}${i`7%lH$AP`X>9DmANwL1AU#aNPM@28Dcw z4Gj++=M1KS9pnf5kh+KpRwK+Tok&-5XX+KF#aKG$rvF^gXK{Q4Z zfsE83)ely02=52l3-pU47lg?n^Z*Izc%hO_5d4}yLe$pMEM+TMZL2?9$%Oc`#W9bQ8C}eiP3c&fIh|iz?TxJJpj2yhy z?FiX9IDdis!6-;EMm8JF1(_XJOifGyT{LMcLw4AR-(55_74A2-~fHh3bPiS*UL zfyBVPnMS+w7F-^cg=~SR00HPA7YN)KL!SCLiH?iztz=6?p0U9=S+Ed~iwuZZpC2S? zHqwwnT$B7&ghExN`XSO-3AW=E*HIa;&Sp-k&dpFucn_>+b*Of!3mMufED+c%{H9=> z+(X$T>j#^GI4OK{F7Je?-U#Zca629&$1r!;syCAzmA9*mi&BWRtaoJuY9X{?p4p$S z8ifOZiVM@&fe$h+`|OnJOZsaG`fCaLYYEO>*#S^`nS z(_c$);#!9OT7v#sf)oA9O3`Ucsr4w!ZSJon_`6jM{j~)BwFDJ@fk>WH%Cm+3T7v#s zg1(gu{j~%sS@$LBMrl8~Ra9#IwFLdO1bs^x`fCaLYYF;m31l8)E+tvLG`SHJnX#|vt#kYY9q!9Et9R^@$A?E19o?6 zQ}|y#uiauQy9Myw0_g6}&ja-C&P(tcW4k*Si@$vQ-JKud_mOsYw({?8Sv_vso|eup z;d%AE&inCCXAQ-l2l&%B_|up9)9;4i&x8Ewjg#=_p(#7?_p0Ie^Du9G0h8%`gg*_d z$Dc>}6aRJQ&adz%{&T#YU*%8ycQ!ls@hAQ}oSk3ePy9C!JNNS^{>yot2lx~JF{RGO z_!IwGrq0Lt6aU$YEw>C!*00~ZZvEy0%VwV@^v6^1vlSi6=*}OqX@j$~>93}A$zLJN zvfmBN){q~vM+aw3);=hkKly)S6#T%)$*1riNa_3mK6Ndst7TUY%KkGY9mR3}BF8zY zqwhF>;p1531NPS7Y+d(AyGH$;ktU0gsz!I7+QCj6oIRboeTSlG{|e?*9BW{4R>#J$ J>LJ-h{|EJOdU*f< diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 4ec3fa1641074e4da15f4a6dd072a6e1604bc0e3..adb7ffde57d51c1748be1e8a8f0ad7e4c299a69a 100644 GIT binary patch delta 75 zcmeypis$z#o(%^$4f2vxDw4_zEAX(As0yD}Km delta 71 zcmeynf#dH6jtzS_4a)M83=30Iv-H!F%}i2E43bR~Q;pKhQY{S<&CHV%(^AaSOwx=~ b6O&DnlhaI%4VvF@w!h(I-2R4>X(As0!yOrT diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 94948b6a88e4b7577abac3a4f7c9803667d58496..9daf51f3e31702b3301cf34bdb568d2d948f28a0 100644 GIT binary patch delta 80 zcmaESkooaJ<_(uPZS#^-Dw4_zEA%Bg149v*r(++dptJPFM~AGoKe? delta 67 zcmZp8%+~OjZNmXhgR;CN!@`u*Ed8`(Gm{h(gJjdhRHHPrR7-F*Qe3#;?L;dfAU=QycGkXu8%<+jJ|7_cz?|PXb7psEba!X8-yf3?5rZAN zaW?ETq1LRT@#qX>%@!>s$ceOqgm&xijE-Z7%U-62!&BA2b`&ZOECP9#ShWBwEc8PT<_f3&aH~c$qW{CcERT=Embv{ zl1x!!!c^Rz{H2joN{5nzWM>`fSSp55J{Js?Cb1c=J`^v-X^%Q(vH+AEGWl2?WvPQR zd%hamn{A%<+Mf$zqCL4TrrQ2x;oGCjV&nBy@ufpZyS^r5<2r=2AJ@c*hDhlYmGR1X zRHyzYWEh}oF3p9zukvL1R5$l1mS%2djI@~-pSQTPq9KE?m5_(sjGNzot7~U7l_Sx5e?M m3#q;Tyk61NidgEb#bFl@yLixFIPBs-KHUFyaaguZgH+Nwkqf@d*^c zuhJ(-v9RFRiB>{Dd;k&btbGG#At{8A&j(01!@Y3Mx#ym{vpu=9Jvkgs!Luix4`O;a zp95h;2+AdqDOqr&gUeB8%rd!vA!H?C^lNJRZdKl-G>_6nj~cl(N-5#ANf=Fb;_bA5 z)!H=r=*^GHDDR~Yl5EUKjvGZ=InS0SDy>by5}_0$3NOpgIvagVJOfc| zwl1;{tV%u@$sMen1{`!F3ZpEw@SJ>=qAt?)>(6S85 z8&27w5R_3$FJPBGR}f4rqzhHF(%Z~I>PS(7@==Cnef;GrR zipqJ4orUUor~b3VX6lmzHdha?GE*PzvGsS?+4mME^qCzZ%4N};{+ z2dVnj%4MvJpK4)Jf4alYUcfVtHWmRE0J;@&rAY&v1F^a>zuxO?Zg#7VDKa@FRMB|k zU|kNygtDMKl`u4~`|Q?4>tZ)ETkJi1(Q0PFyRv+*zjWi$p`17uwVz4gdfE diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index a3eb2f37510e591b544ef30d7ce5e07752ce8202..38de35bc151a4ee338902579a14198d919f31942 100644 GIT binary patch delta 63 zcmaFR#`vI(af213L0)o7MN)ZTrM_WuN~&p!MQW0Xv2lt~qN#<6xv62Qaf+FVSyHlL SYI2gXkzull+2$<9Z;k-CeH6g} delta 63 zcmaFR#`vI(af213L0MjsVPQ&YmVR2YnMsO?L9%ILs!^I*s-;1qnR#+zT8ep^Nt$tL SVzNnca+;~J!R9Q+Z;k-FNEKxO diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 13f33a90aae7807dfeb70f7893e48f0c7d70d007..fc62208843cc6c90499e71c92e319d8fefee037d 100644 GIT binary patch delta 67 zcmbRFgJtFqmJM4t4f2vxDw4_zEAW!Nd;Pvqr}Vq);DdP<_j2aG=lyw}_nA3& z`S3aVIX}+c4Dqo4;O!6Rd5B3xOdh0+!YKr!c#=_r_JOD1rQiYdXV=D$UK{TaRuNVc z#t8Qj?k7AzSVL&eJV#2`r3H6 zx4Vo2m;k|Lb^<(br-XEnIBH-%p{}lo;?ves^~IOFf3KNN95_pul4207uoxJEQ!*u+ zxv~9krIu6mvBmDuoofUNqvwP`{}sr&QvGA>Ath#)t2h) ztKIPmPIte){r<}7?!H@3wfMIC#fef29y1D!+5k9jtVYV41sA+?4xoSOwo~;-vRE}! z8lg}#>kX9;bT-}!X@$2b29!>u`o^!t-mzYc8H~_EDi4MWG~O{Z&IL!mqpByqD<pi{LN7zs(s&a?zzp14D<$XN3l>CxY`A1W$Al7ch^Rx3-pIsF zl1bE*+E<-vC52`&a$^+u#4so!T=oWp;>x(1lKQDrwnePgP4!rb!y}67`|HJAHNVi^ zJUeqU5rsxuM_rE~K{a$_F);%sM7jgJ*`qyUWn>~_w7lsFcr-L33}S-Jt&9*|?JgC^ zJ7uKKIhSy;Imur?H2>~mKP$9U z=xk(wXhBJ39d#nxWaf zXJP*fFFm{K`TcD(yYh5f0cRGsRa^fkHa*vtVZRQfG)h{c63avwA8d?D1O<|V0-N}t z4gks8Bm|u{kf^^_J9LTb0K`LWZt`ltL7I>Z3^C{&!I|icgGh5~W$>ChvCP5WJJT(} z`xI=8eNPI~L~4`KQKv1?ym~Ez1BEhhqkJ-h+Yqz(*E3^-07B})!L~ZFWW*kB-}MEqQl7OX3jU9MkH4>n`~y4Ej=C7MO_&7{G$++(*MNz%S0z)(F(wPm*QwP(cqJw6 zLLvAv6KNZ^1kcsd>fQ^lv<1JDigI}qTG9*Sl_s|kf$@k;W#*DY5*U%#ATQ%t4&)=i z2GWm6$$$YytHWV-TE;#LdrC*HX@7dE0uYlOZADDkFiGFb_0pN*=T6xYF%KrVC1Q19 zqGw7ZJ4W}>%3BAH7$!hkMI|)}y-tJmH%*q1_B^SBL=HNEbAr?}3u;wEv--d#TI4+e zNh8rW>j;Wz-)IvvAveM(Q+4A9BJ^7qi!+_pu>BNTqNeJ#sow0on$vIx=VH#07H+WK z2FO{H7?Ft(h7_NyW>}WRHVb!mz76kB#FY$c8_<=f`S9}jWxma}Wk`G@i&ib|>&{kJ z&liiWUT|R6hI_%04;}f?yL;b}4;|vPM?Q4qLq|Sz<)$0?(0iERkq;gD(0~8K@veXO P{U3ekM18i~TfO!lNv^nx delta 5893 zcmeHLO^B6c6z1wwPR*$0j8=Z%y2%%-Pslftq5 z{gX@hzB)>dzVGPa5Z{?eUP1ukg^eu9Xo!`{+Z0rS#H01#eG;5}d3*H4?a>Zm4Pq@~ z1o05!VZ%2eNA@Xrdw{ zuU+W>R?M7gPR} zGzl6gQe4? z>st9urwS}kZ=KZmgTR0qB^7eV5Xrm^&M%z3a;*HblZ{@_&z1WR=7LY{tfr3IcRz|# zyDA2t37ICxj^RU~idgEMu>l`@?_3N4n2Q=2#Cdb~a=Cw`Qr>G0cw^5wP_2>dlo4h{ zP+lSV8~b~Cs#AGQsiR!GC?pW;omRyPS-QD z#g^?;3#laOT7KC?0>fxlCuVJX3x@58rn!8+O+|wV!GI1)25=sGg{7C;g2Ozdh=Ww9 zR78Lm(K!P&2FIdK6pZyk1mPD`$;3?kRB|!v=dYK~a*!Z^t7)U&J~H#+Tt6w!J$H(Q z;9Uf6y;dz9E%+3K4$a|_?tzhBM(;IdK2dMDSB}@azA9&%UyhX9I>&R(YALg4-|V5i zuf4SUl|wnkt~{Nq-qhUAdfUx%^UJHJM^e8CQAHhHP|mXmkp&w#PZGPrh;^L0fdXA( z(V*yPTgni<6+#PXr6594NMyMJg-eMftfQg?G?xx2pk_f3Bf;>vsKCEEy-e^00nX-P z|EB=CF(M$Xm_liBt29#%r5Lh@%n= z3l0n_isD@HOnXK8P3kG>xlzFx

06H1#=IWXV5U{DQdK$5t~{M9;i3k2=MwB|P$>lo$%Nz6LI~VZ%26p^3T*{5 z3;8u~oh)A%sZ0<^*QA`%38cd>p(=%SNI=DnUA_r>fjOMk1_+fD#mKaZN)U#7n^CS< zjr(V!zX&rI2=)Bh?%p?Yv6t(RFD^mBTh>avg~1VzL*5c8x#Pm%RRF|bzCcuH`&eWi z&4qMr-rzLuK$cR{k@Z(c*S54kmn58s0JvCCuqs6#J&BAr^FNe7cdA^-mbtW-30Pkn z>#AOWKs;ln6*r1LI+cuRM`IhBqV6u2xFc+c+C;}ZwvZ^J6RygHqc15+@%-Wj=Tv(Z z40fw^G8Dz9ypC3S2u4LZ&|N0vV1vs{%=*pA?v5EbEzGio=Q*?3YAme=KzC(*!u+CU zi8*7IW_`}Pwex$T-gvJZTiSWsJI7b;OwcO@l%b|tdD>?xhjOdx?KjKG9k~oqZ|KbG z`2)p{`qtHQE^7e?^vrp{g_SlmphE-tpy?eN(0}*WLjyWAphE+?^he;(fUe?zhX!v{)(tB-4f2vxDw4_zEAy*Cak!rdnt6n<|^hXQ~t?udGs;>{-n>*`Z2%@`pyb$<|eT zym`r~Iq@Y$iFw6osYR26s=dk3b*bj^^afK#>B$Xs@{>dA45lwMWfY$rP{%U;pdq8A zu)2sK?Y!e%~cC`D9%bl}(-B zEkD_-p&95y>FEyIj3Se}n+zt0G)hc=XaRC>BP%D^l^{n>=4(;_hLH+d`0Q#lBVYIC zyG=W_C+i*Inar|YfAWX@tdq~K)1F+gn|<v{)(tB-4a)M83=30Iv-H!F%}i2E43bR~Q;pKhQY{S<&CHV%(^AaSOwx=~ z6O&DnlhaI%4L0B4bS;>?rb%wHc{ShU?^Q~ZKQxL1*$R`lR%uV3TO~g^p~_~mLzMzo zaz6^6}#h8IEoBX~}h9BZ~xYH*)G%8FFv|$tmGFT=nH|YSwOoR{Q z4Ww|})o4Z)gErr7+NnKx!FKk^9P70wFI;CZS?>tX$R4f2vxDw4_zEAuC6CDL3 z69WS)Q=?P^E5k$}%gVysaPkBP6K*6$lP@?N(=*dEGW2!QFIE78%sd4HJ)>eSE+YdY zV_ic7T_hV6G(ajRPYn8vWUtxe(@qODjP*?QEc6U5jdc`Ejev^G^$d;8fY=zNqqS)jPY1glHT6f{68C)Y=tPd0EB7!3<} zSa42m_R41Lm^>lC5-E;AX(LptIwmJ2zofWU!4N3{5SL1>g@jJN8xua+AxMex)Z#k% zPH+hpsR}|vy)q# zY@h5I%R_l0p+b@3PHIA_kG3BT52W-_A8oPuZG!y#se2fCrz$Zza!##cVq^e;$&R|> RlYRekwl*_vZD#sB3joT;v>^Zh delta 1830 zcmZ3njqBSst_>$R4a)M83=30Iv-H!F%}i2E43bR~Q;pKhQY{S<&CHV%(^AaSOwx=~ z6O&DnlhaI%4L1Ma{AVg}$I8H9Q&5y@$EB-lWME{hYiOWrV5VSTW@TbwWo$V)H!Mog z#8}VB#6-{3K+n=pN5RO%z`)AXDAmBqFwwx!%F5ExXtF?z2@kTW$p!J=lMe)jPcCp& z(bv`0)Ae@JFIE78%sd4HJp;&1!g}SCjdPaukdPYWO zdWPoaItpMukZoY3XJ`rKnggXwfG)M1JkdFV4^;=yL3<~!cj4DFGSxHnMRtrCHn*4< zC}@CGPPU6SpPb;usg}VWJ0(LfVl=df2(1#PsjQPfe$o@go}$(U#FLYv`20hGDXNm< z)RY^%oW#^*6B3J_n)v*$k(!d0h5Ao_Ysbhw8aRmZ1)j~8g|3s-0+vMBQw+srkmzLH zARdZS4wcHGlcc5`yJ-8-z(K2-;3>y0+G6wk1o`=#Q%^84GJwG3egFL?Pf!=1{QnPU Mt107FQ>M?e0J~$j00000 diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index 652f7d213..4f07d7562 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index fa5ed5dae..95d906ea6 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 7f9a91f8f..3219a94e0 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 1b826c5a6..55540411f 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 9e5d5fe33..70e9d3c57 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 6f42dabb0..1718d2913 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/faq.ipynb b/master/_sources/tutorials/faq.ipynb index 68f00abc8..5b938cc35 100644 --- a/master/_sources/tutorials/faq.ipynb +++ b/master/_sources/tutorials/faq.ipynb @@ -271,6 +271,18 @@ ")" ] }, + { + "cell_type": "markdown", + "id": "13228a99-5d3f-47c0-87e5-2290d16461c4", + "metadata": {}, + "source": [ + "Methods that internally call `filter.find_label_issues()` can be sped up by specifying the argument `low_memory=True`, which will instead use `find_label_issues_batched()` internally. The following methods provide this option: \n", + "\n", + "1. [classification.CleanLearning](../cleanlab/classification.html#cleanlab.classification.CleanLearning)\n", + "2. [multilabel_classification.filter.find_label_issues](../cleanlab/multilabel_classification/filter.html#cleanlab.multilabel_classification.filter.find_label_issues)\n", + "3. [token_classification.filter.find_label_issues](../cleanlab/token_classification/filter.html?highlight=token#cleanlab.token_classification.filter.find_label_issues)" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 41324628c..be02c86f8 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index eca031728..760245459 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index eda8c2c3c..f0a5e1998 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -72,7 +72,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 01e7726fd..ca9edca3a 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 883821190..879c70a6a 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index f7fe5eaf1..f46ee3106 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index d6cd98ce7..068162fda 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index ec4726d5a..0e3f34e88 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index 287774f72..a5f1d4c91 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 3462d40fa..911fd3162 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 2791d538f..515c69708 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "outlier", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 66, 68, 69, 76, 78, 79], "helper": [1, 13, 27, 31, 33, 34, 35, 36, 37, 38, 50, 73, 75, 87], "method": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "ar": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "us": [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 65, 66, 68, 73, 77, 82], "benchmark": [1, 24, 65, 66, 68, 69, 76, 78, 79], "cleanlab": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82], "": [1, 2, 3, 7, 23, 24, 28, 31, 34, 36, 38, 43, 44, 48, 50, 51, 52, 53, 55, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "core": [1, 4, 27, 29, 57, 59, 84], "algorithm": [1, 2, 7, 25, 38, 43, 52, 61, 63, 65, 74, 76, 78, 87], "These": [1, 2, 3, 7, 26, 29, 30, 41, 43, 44, 47, 52, 56, 60, 61, 63, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "introduc": [1, 67, 74, 76], "synthet": [1, 78, 79, 84], "nois": [1, 2, 3, 23, 29, 32, 38, 44, 68, 69, 73, 78], "label": [1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 16, 17, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 73, 77, 81, 82], "classif": [1, 3, 7, 23, 27, 29, 32, 34, 35, 38, 43, 44, 45, 46, 47, 52, 53, 61, 62, 63, 64, 65, 66, 68, 69, 77, 78, 81, 82, 83, 84], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 27, 28, 29, 32, 34, 38, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 77, 78, 82, 85], "specif": [1, 3, 4, 6, 10, 13, 21, 26, 41, 45, 48, 51, 60, 64, 69, 72, 75, 76, 87], "thi": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "modul": [1, 3, 10, 11, 12, 13, 16, 21, 23, 24, 25, 26, 27, 28, 29, 38, 41, 43, 52, 53, 65, 74, 75, 79], "provid": [1, 2, 3, 4, 5, 7, 11, 13, 18, 23, 24, 25, 27, 28, 29, 32, 38, 42, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 82, 83, 84, 85, 86, 87], "gener": [1, 2, 3, 5, 7, 18, 21, 23, 34, 38, 39, 52, 53, 55, 60, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 86, 87], "valid": [1, 2, 3, 4, 7, 9, 23, 29, 30, 32, 33, 34, 38, 43, 45, 48, 53, 55, 56, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "matric": [1, 3, 32, 74], "which": [1, 2, 3, 4, 7, 9, 10, 11, 13, 17, 19, 21, 23, 24, 28, 29, 32, 34, 37, 38, 43, 44, 45, 48, 50, 52, 53, 55, 56, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "learn": [1, 2, 3, 7, 17, 25, 26, 27, 28, 29, 31, 33, 38, 41, 43, 45, 52, 54, 56, 59, 63, 65, 67, 68, 71, 72, 73, 77, 78, 83, 86], "i": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "possibl": [1, 2, 3, 7, 23, 24, 28, 29, 31, 32, 34, 45, 46, 47, 48, 50, 52, 53, 55, 61, 63, 64, 69, 74, 76, 78, 79, 80, 83, 84, 87], "noisi": [1, 2, 3, 23, 25, 28, 29, 32, 38, 44, 45, 47, 53, 55, 56, 57, 59, 60, 66, 68, 69, 71, 72, 74, 77, 78], "given": [1, 2, 3, 7, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 37, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 56, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "matrix": [1, 2, 3, 4, 7, 13, 23, 29, 31, 32, 35, 38, 39, 45, 50, 52, 53, 71, 81], "trace": [1, 68, 69, 76, 78, 79], "valu": [1, 2, 3, 4, 7, 9, 10, 13, 17, 19, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "more": [1, 2, 3, 4, 5, 7, 10, 13, 19, 23, 24, 27, 28, 31, 34, 38, 43, 44, 45, 46, 47, 48, 50, 53, 55, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 84, 87], "function": [1, 2, 3, 4, 5, 10, 11, 13, 18, 19, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 73, 74, 76, 78, 79, 80, 84, 85, 86, 87], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 7, 32, 38, 68, 69, 76, 78, 79], "py": [1, 3, 21, 24, 25, 29, 32, 34, 43, 68, 69, 76, 78, 79], "verbos": [1, 2, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 27, 29, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 68, 76, 78], "fals": [1, 2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 67, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81, 83, 84, 86], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65], "prior": [1, 2, 3, 23, 29, 32, 34], "repres": [1, 2, 3, 4, 5, 7, 9, 13, 19, 23, 27, 29, 32, 35, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "p": [1, 2, 3, 7, 23, 29, 31, 32, 38, 43, 51, 52, 53, 57, 69, 71, 72, 75, 76, 78, 87], "true_label": [1, 2, 3, 23, 32, 38, 76, 78], "k": [1, 2, 3, 4, 7, 9, 13, 14, 18, 19, 20, 23, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 68, 69, 74, 76, 78, 79, 80, 81, 84, 85, 87], "check": [1, 2, 4, 6, 7, 9, 13, 24, 27, 28, 33, 39, 42, 48, 55, 65, 67, 68, 69, 71, 74, 75, 76, 78, 79, 83, 85, 86], "learnabl": 1, "mean": [1, 2, 5, 9, 10, 17, 19, 25, 28, 32, 34, 50, 55, 69, 72, 74, 76, 78, 79, 81, 83, 86], "achiev": [1, 2, 24, 25, 28, 55, 78, 87], "better": [1, 4, 29, 43, 45, 53, 55, 56, 65, 67, 69, 71, 72, 74, 76, 79, 80, 81, 86, 87], "than": [1, 2, 3, 5, 7, 19, 20, 23, 29, 38, 42, 43, 48, 50, 52, 53, 55, 59, 63, 67, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 87], "random": [1, 2, 3, 5, 7, 27, 34, 43, 53, 55, 67, 68, 69, 71, 74, 75, 76, 78, 79, 81, 85], "perform": [1, 2, 5, 7, 19, 20, 24, 28, 34, 55, 65, 68, 74, 76, 78, 79, 82, 83, 85, 86], "averag": [1, 3, 17, 20, 23, 24, 28, 34, 36, 43, 44, 52, 53, 74, 78, 81], "amount": [1, 3, 75], "paramet": [1, 2, 3, 4, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 72, 75, 85, 86], "np": [1, 2, 3, 4, 5, 13, 23, 25, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 60, 61, 63, 64, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 84, 85, 86, 87], "ndarrai": [1, 2, 3, 4, 13, 18, 19, 23, 25, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 87], "an": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "arrai": [1, 2, 3, 4, 5, 9, 13, 19, 23, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "shape": [1, 2, 3, 4, 13, 23, 25, 27, 29, 31, 32, 33, 34, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 73, 74, 76, 79, 80, 81, 84, 87], "condit": [1, 2, 3, 32, 37, 38, 53, 75, 76, 87], "probabl": [1, 2, 3, 4, 7, 13, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 84, 87], "k_": [1, 2, 3, 32, 38], "k_y": [1, 2, 3, 32, 38], "contain": [1, 2, 3, 4, 9, 10, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86], "fraction": [1, 2, 3, 7, 15, 25, 32, 38, 43, 55, 71, 74], "exampl": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 78, 79, 80, 82, 83, 84, 85, 86, 87], "everi": [1, 2, 3, 4, 13, 24, 28, 29, 32, 37, 38, 45, 53, 55, 56, 67, 68, 69, 71, 72, 74, 75, 78, 80, 82, 84, 85, 87], "class": [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87], "other": [1, 2, 3, 4, 7, 13, 17, 23, 24, 26, 27, 28, 29, 32, 35, 38, 39, 41, 43, 44, 47, 52, 53, 55, 60, 67, 68, 69, 71, 72, 74, 75, 76, 79, 81, 84, 87], "assum": [1, 2, 3, 9, 29, 32, 36, 37, 38, 53, 57, 60, 74, 81, 84, 87], "column": [1, 2, 3, 4, 7, 9, 10, 23, 27, 29, 32, 34, 35, 37, 38, 43, 44, 45, 47, 48, 51, 52, 53, 55, 60, 61, 63, 64, 67, 68, 69, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "sum": [1, 2, 3, 19, 23, 32, 34, 38, 44, 45, 47, 50, 55, 68, 69, 74, 75, 76, 78, 79, 84, 87], "1": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 73, 74, 82], "each": [1, 2, 3, 4, 5, 6, 10, 11, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 38, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "true": [1, 2, 3, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "return": [1, 2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "type": [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 75, 79, 80, 84, 85, 87], "bool": [1, 2, 3, 4, 9, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 34, 37, 38, 43, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64], "is_valid": 1, "whether": [1, 3, 4, 7, 10, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 29, 38, 43, 44, 45, 47, 48, 64, 67, 69, 72, 73, 75, 76, 83, 86, 87], "generate_noisy_label": [1, 68, 69, 76, 78, 79], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 32, 34, 35, 36, 37, 38, 43, 45, 47, 50, 51, 52, 53, 55, 56, 61, 63, 64, 65, 67, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 84, 87], "perfect": [1, 2, 23, 55, 76, 80], "exactli": [1, 3, 7, 23, 24, 28, 29, 46, 52, 68, 69, 71, 72, 75, 76, 86], "yield": [1, 24, 28], "between": [1, 4, 7, 12, 13, 16, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 41, 43, 44, 47, 50, 52, 53, 55, 56, 59, 63, 64, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "below": [1, 3, 7, 23, 24, 27, 28, 29, 31, 34, 43, 44, 45, 50, 51, 59, 63, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "we": [1, 2, 3, 4, 5, 7, 10, 17, 24, 27, 28, 29, 34, 38, 39, 43, 50, 53, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "loop": [1, 3, 32, 38, 75], "implement": [1, 2, 3, 4, 6, 11, 17, 24, 25, 27, 28, 32, 38, 55, 65, 67, 68, 71, 81, 82, 85], "what": [1, 4, 6, 7, 13, 21, 23, 25, 27, 29, 43, 44, 48, 50, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "doe": [1, 2, 3, 7, 27, 28, 29, 34, 39, 50, 55, 57, 59, 63, 67, 68, 69, 71, 72, 75, 79, 83, 84, 86], "do": [1, 2, 4, 7, 23, 27, 28, 38, 39, 52, 53, 57, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "fast": 1, "explain": [1, 7], "python": [1, 2, 28, 42, 55, 68, 69, 73, 81], "pseudocod": [1, 82], "happen": [1, 7, 29, 45, 78, 84], "n": [1, 2, 3, 4, 5, 23, 24, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 67, 72, 73, 74, 75, 78, 79, 83, 84, 85, 86, 87], "without": [1, 2, 4, 7, 9, 13, 15, 24, 28, 47, 55, 65, 67, 72, 76, 80, 81, 86], "ani": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 33, 37, 38, 42, 43, 45, 47, 48, 50, 51, 53, 55, 57, 59, 60, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86], "distinct": [1, 38, 87], "natur": [1, 7, 78, 81], "number": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 84, 87], "0": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "count_joint": 1, "len": [1, 2, 3, 5, 23, 27, 32, 37, 38, 39, 52, 53, 55, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87], "y": [1, 2, 3, 4, 28, 32, 34, 38, 39, 42, 51, 55, 56, 67, 68, 69, 71, 74, 76, 78, 79, 81, 83, 86], "round": [1, 27, 29, 38, 55, 74, 83], "astyp": [1, 78], "int": [1, 2, 3, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 38, 44, 45, 47, 51, 52, 53, 55, 57, 59, 60, 61, 64, 67, 68, 75, 81], "rang": [1, 3, 5, 9, 32, 34, 36, 38, 55, 56, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 87], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 7, 9, 10, 13, 17, 23, 27, 29, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 86, 87], "pragma": 1, "cover": [1, 3, 66, 73], "choic": [1, 29, 75, 79, 81], "replac": [1, 37, 42, 53, 68, 69, 72, 73, 75, 78, 81, 85, 86], "generate_noise_matrix_from_trac": [1, 68, 69, 76, 78, 79], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 53, 67, 68, 69], "05": [1, 19, 37, 55, 61, 63, 73, 74, 76, 80, 87], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 68, 69, 76, 78, 79], "none": [1, 2, 3, 4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 74, 75, 76, 78, 79, 84], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 7, 19, 28, 34, 55, 67, 68, 69, 71, 73, 76, 78, 79, 85], "max_it": [1, 67, 72, 81, 86], "10000": [1, 27, 73, 74], "x": [1, 2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 32, 34, 37, 38, 39, 42, 43, 45, 51, 52, 53, 55, 57, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "diagon": [1, 3, 4, 13, 29, 32, 38], "equal": [1, 3, 7, 9, 45, 50, 60, 82], "creat": [1, 2, 6, 13, 24, 27, 28, 29, 38, 55, 65, 67, 71, 72, 74, 75, 84, 86, 87], "impli": [1, 23, 44], "float": [1, 2, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 33, 34, 37, 38, 43, 44, 45, 47, 50, 51, 55, 59, 63, 67, 68, 69, 76, 78, 79], "entri": [1, 3, 4, 13, 23, 24, 28, 29, 31, 35, 38, 43, 44, 45, 48, 71, 72, 76, 79, 80, 85, 86], "maximum": [1, 7, 52, 60, 64, 84], "minimum": [1, 7, 15, 29, 31, 45, 50, 63], "noise_r": 1, "non": [1, 2, 3, 4, 6, 13, 19, 24, 28, 29, 50, 55, 68, 74, 76, 78, 80, 81], "default": [1, 2, 3, 4, 7, 11, 13, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 68, 74, 75, 84], "If": [1, 2, 3, 4, 7, 10, 13, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 45, 48, 50, 51, 52, 55, 56, 57, 59, 60, 63, 64, 65, 66, 67, 68, 71, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "have": [1, 2, 3, 4, 7, 13, 16, 19, 23, 24, 26, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 48, 50, 52, 53, 55, 56, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "all": [1, 2, 3, 4, 5, 7, 10, 13, 17, 21, 23, 24, 27, 28, 29, 32, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "necessari": [1, 2, 3, 5, 7, 37, 68], "In": [1, 2, 3, 7, 23, 24, 27, 28, 43, 44, 46, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87], "particular": [1, 4, 7, 10, 11, 13, 14, 15, 17, 19, 20, 24, 28, 38, 43, 47, 51, 55, 60, 64, 65, 67, 69, 72, 74, 78, 79, 81, 83, 85, 86], "satisfi": [1, 3, 23], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 22, 24, 25, 26, 27, 28, 29, 32, 38, 41, 42, 45, 52, 53, 55, 57, 65, 66, 67, 73, 74, 76, 82], "argument": [1, 2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 34, 39, 42, 43, 44, 45, 47, 50, 52, 53, 55, 59, 60, 61, 63, 69, 72, 73, 74, 75, 80, 83, 86, 87], "when": [1, 2, 3, 4, 7, 9, 11, 13, 18, 19, 24, 28, 29, 32, 34, 38, 42, 45, 47, 48, 50, 52, 53, 55, 56, 68, 69, 71, 72, 74, 75, 78, 82, 83, 84, 85, 86, 87], "The": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "rate": [1, 2, 3, 7, 25, 38, 67, 87], "set": [1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 48, 50, 52, 53, 55, 57, 59, 60, 68, 69, 71, 72, 74, 78, 79, 81, 82, 83, 84, 85, 86, 87], "note": [1, 2, 3, 5, 7, 24, 27, 28, 29, 34, 38, 43, 48, 50, 51, 52, 53, 55, 56, 60, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "you": [1, 2, 3, 4, 5, 7, 11, 13, 23, 24, 26, 27, 28, 29, 34, 41, 42, 43, 45, 48, 50, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "high": [1, 2, 13, 27, 29, 38, 50, 53, 55, 68, 69, 73, 75, 76, 80, 83, 84, 85, 86, 87], "mai": [1, 2, 3, 4, 7, 10, 16, 17, 23, 24, 26, 27, 28, 29, 32, 34, 38, 43, 44, 48, 50, 52, 53, 55, 57, 60, 64, 66, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87], "imposs": [1, 7, 76], "also": [1, 2, 3, 5, 7, 17, 23, 24, 27, 28, 29, 37, 42, 43, 52, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "low": [1, 7, 38, 43, 65, 68, 69, 72, 76, 80, 84], "zero": [1, 3, 4, 13, 24, 28, 31, 38, 39, 68, 75, 79, 80, 81], "forc": [1, 2, 3, 4, 28, 68, 87], "instead": [1, 2, 3, 7, 10, 13, 21, 23, 24, 27, 28, 29, 32, 38, 42, 43, 45, 47, 52, 53, 55, 56, 59, 61, 63, 66, 67, 71, 74, 75, 76, 79, 80, 81, 83, 84, 85, 86, 87], "onli": [1, 2, 3, 4, 7, 13, 18, 19, 23, 24, 27, 28, 29, 31, 32, 37, 38, 42, 43, 52, 53, 55, 57, 59, 63, 64, 65, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 86, 87], "guarante": [1, 3, 4, 12, 16, 24, 26, 28, 30, 32, 41, 66], "produc": [1, 2, 4, 7, 13, 34, 43, 53, 55, 57, 59, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "higher": [1, 4, 7, 23, 29, 31, 32, 34, 43, 44, 55, 69, 72, 74, 80], "opposit": [1, 87], "occur": [1, 3, 7, 23, 37, 50, 68, 69, 74, 75, 81], "small": [1, 3, 7, 23, 27, 34, 38, 44, 72, 73, 75, 79, 81, 86], "numpi": [1, 3, 4, 5, 7, 9, 27, 28, 34, 36, 37, 39, 42, 47, 50, 55, 56, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "max": [1, 29, 52, 53, 75, 81], "tri": [1, 24, 28, 82], "befor": [1, 2, 3, 24, 28, 38, 52, 55, 60, 72, 74, 76, 78, 81, 83, 85, 86], "option": [1, 2, 3, 4, 5, 6, 9, 10, 13, 18, 19, 23, 24, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 74, 75, 76, 83, 84, 85], "left": [1, 2, 29, 31, 36, 38, 45, 48, 51, 68, 69, 79, 80, 81, 84], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 24, 28, 33, 34, 43, 48, 50, 51, 52, 68, 69, 73, 78, 79, 80, 87], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 24, 28, 42, 74, 76, 84], "length": [1, 4, 9, 19, 23, 25, 29, 38, 45, 48, 52, 53, 55, 57, 60, 64, 67, 79, 81, 84, 85, 87], "must": [1, 2, 3, 4, 13, 23, 24, 25, 26, 28, 29, 32, 34, 35, 38, 41, 42, 43, 44, 45, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 71, 78, 82, 84, 87], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 7, 9, 23, 27, 29, 35, 38, 39, 43, 45, 51, 57, 59, 60, 61, 63, 64, 67, 74, 78, 79, 80, 84, 85, 86, 87], "ball": [1, 73], "bin": [1, 3, 45, 68, 69, 81], "ensur": [1, 2, 7, 24, 28, 38, 39, 50, 53, 55, 67, 68, 69, 72, 75, 76, 81, 82, 83, 85, 86], "most": [1, 3, 4, 5, 7, 13, 23, 27, 29, 34, 42, 43, 44, 45, 48, 50, 52, 53, 56, 59, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86], "least": [1, 7, 23, 27, 43, 44, 50, 53, 63, 74, 75, 78, 81, 84], "int_arrai": [1, 38], "can": [2, 3, 4, 5, 6, 10, 11, 13, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 71, 72, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "model": [2, 3, 4, 7, 13, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 37, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82, 84, 87], "For": [2, 3, 4, 5, 6, 7, 8, 13, 17, 22, 23, 24, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "regular": [2, 3, 27, 42], "multi": [2, 3, 7, 23, 24, 27, 28, 29, 33, 34, 35, 38, 39, 44, 45, 46, 47, 52, 53, 65, 74, 76, 77], "task": [2, 4, 23, 27, 32, 34, 35, 36, 38, 43, 45, 53, 55, 65, 67, 72, 73, 74, 76, 79, 81, 84, 86, 87], "cleanlearn": [2, 3, 7, 18, 24, 38, 42, 55, 56, 65, 66, 83, 85, 86], "wrap": [2, 24, 28, 42, 52, 55, 65, 68, 69, 71, 72, 76, 83, 85, 86], "instanc": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42, 52, 55, 60, 67, 68, 69, 71, 72, 75, 76, 85], "sklearn": [2, 3, 4, 7, 23, 28, 34, 38, 42, 52, 55, 56, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86], "classifi": [2, 3, 28, 34, 38, 43, 46, 52, 53, 65, 66, 67, 71, 72, 74, 78, 79, 81, 82, 84, 85, 86, 87], "adher": [2, 28, 55], "estim": [2, 3, 4, 6, 10, 17, 23, 27, 28, 29, 32, 38, 43, 44, 45, 50, 52, 55, 57, 59, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 77, 79, 80, 81, 82, 83, 84, 87], "api": [2, 3, 11, 42, 52, 55, 66, 74, 83], "defin": [2, 3, 4, 5, 7, 11, 17, 23, 24, 25, 27, 28, 29, 53, 55, 57, 68, 69, 71, 78, 81, 87], "four": [2, 7, 73, 76, 87], "clf": [2, 3, 4, 34, 55, 65, 71, 74, 76, 79, 85], "fit": [2, 3, 4, 7, 28, 42, 52, 55, 65, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87], "sample_weight": [2, 28, 55, 76], "predict_proba": [2, 4, 23, 28, 34, 42, 67, 68, 69, 71, 72, 74, 76, 78, 79, 81, 85], "predict": [2, 3, 4, 7, 13, 17, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 81, 83, 84, 86, 87], "score": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 27, 29, 31, 34, 36, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 81, 83, 85, 86], "data": [2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 34, 35, 38, 41, 42, 43, 44, 45, 46, 50, 52, 53, 54, 55, 60, 61, 62, 63, 64, 66, 70, 72, 75, 77, 82, 86], "e": [2, 3, 4, 7, 13, 17, 23, 24, 27, 28, 29, 32, 34, 35, 38, 39, 43, 44, 45, 46, 52, 53, 55, 57, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "featur": [2, 3, 4, 7, 13, 14, 18, 19, 20, 34, 38, 52, 55, 65, 68, 69, 71, 72, 76, 78, 83, 85], "element": [2, 3, 4, 23, 29, 31, 38, 43, 45, 53, 60, 61, 63, 67, 72, 74, 86, 87], "first": [2, 7, 19, 23, 27, 34, 38, 43, 44, 48, 53, 55, 67, 68, 71, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "index": [2, 7, 19, 23, 29, 36, 37, 38, 39, 44, 53, 55, 60, 63, 64, 67, 68, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "should": [2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 47, 48, 50, 52, 53, 55, 56, 60, 61, 63, 64, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "correspond": [2, 3, 4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "differ": [2, 4, 5, 7, 10, 12, 16, 19, 23, 24, 26, 27, 28, 29, 30, 34, 38, 39, 41, 43, 48, 50, 52, 55, 67, 68, 69, 71, 72, 75, 76, 78, 81, 82, 85], "sampl": [2, 3, 4, 7, 13, 15, 29, 31, 34, 45, 48, 53, 55, 56, 65, 66, 73, 74, 76, 77, 79, 80, 83, 84, 86, 87], "size": [2, 7, 24, 27, 28, 29, 34, 45, 50, 51, 55, 57, 59, 71, 74, 75, 76, 78, 79, 82, 84, 86], "here": [2, 4, 5, 7, 13, 27, 29, 32, 42, 43, 44, 45, 47, 48, 51, 52, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "re": [2, 4, 24, 28, 37, 43, 55, 65, 67, 68, 71, 72, 74, 83, 84, 85, 86, 87], "weight": [2, 7, 24, 25, 28, 34, 43, 50, 53, 55, 67, 68, 69, 72, 81, 86], "loss": [2, 25, 42, 53, 55, 75], "while": [2, 3, 7, 24, 27, 28, 33, 34, 38, 48, 51, 55, 65, 74, 75, 76, 78, 83], "train": [2, 3, 4, 7, 13, 24, 25, 28, 34, 38, 42, 43, 48, 52, 55, 56, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 84, 87], "support": [2, 3, 4, 9, 27, 34, 38, 39, 52, 53, 63, 65, 66, 67, 68, 69, 74, 75], "your": [2, 3, 4, 6, 7, 13, 23, 24, 26, 27, 28, 29, 34, 38, 41, 42, 43, 44, 45, 47, 52, 53, 55, 56, 57, 59, 60, 66, 67, 71, 73, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "recommend": [2, 4, 7, 10, 13, 27, 29, 43, 68, 69, 74, 75, 82, 83], "furthermor": 2, "correctli": [2, 3, 7, 23, 24, 28, 29, 32, 39, 44, 45, 50, 55, 57, 72, 74, 79, 80, 83, 84, 86], "clonabl": [2, 55], "via": [2, 4, 7, 10, 13, 17, 23, 25, 27, 28, 34, 38, 43, 48, 52, 53, 55, 56, 59, 63, 67, 68, 69, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "base": [2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 27, 28, 29, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87], "clone": [2, 55, 79], "intern": [2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 47, 55, 61, 66, 68, 74, 76, 78, 79, 81, 87], "multipl": [2, 3, 4, 9, 10, 23, 29, 37, 43, 44, 45, 47, 50, 55, 65, 68, 69, 74, 75, 77, 79, 80, 83], "g": [2, 3, 4, 7, 17, 23, 24, 28, 29, 35, 38, 45, 46, 52, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "manual": [2, 55, 67, 74, 81, 82, 83, 85, 86, 87], "pytorch": [2, 24, 25, 28, 55, 65, 67, 74, 77, 79, 84], "call": [2, 3, 4, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 24, 28, 34, 38, 42, 52, 55, 67, 68, 69, 72, 74, 75, 76, 81, 82, 84, 86, 87], "__init__": [2, 25, 55, 75], "independ": [2, 3, 7, 44, 55, 82, 87], "compat": [2, 24, 27, 28, 42, 55, 56, 59, 63, 65, 74, 82, 83, 85, 86], "neural": [2, 25, 42, 52, 55, 67, 74, 75, 79, 81], "network": [2, 24, 25, 28, 42, 52, 55, 67, 72, 74, 75, 79, 81, 86], "typic": [2, 24, 28, 52, 55, 67, 69, 71, 72, 75, 81, 82, 85, 86], "initi": [2, 3, 10, 24, 28, 43, 55, 72, 74, 85, 86], "insid": [2, 28, 55, 74, 76], "There": [2, 3, 65, 76, 78, 79], "two": [2, 3, 7, 19, 23, 24, 27, 28, 35, 38, 48, 50, 51, 66, 68, 69, 71, 72, 74, 75, 76, 79, 83, 84, 86, 87], "new": [2, 5, 11, 17, 24, 27, 28, 33, 37, 38, 43, 55, 67, 68, 71, 72, 73, 74, 81, 82, 86, 87], "notion": 2, "confid": [2, 3, 7, 17, 23, 27, 29, 32, 34, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 59, 63, 65, 76, 78, 79, 80, 82, 84, 85, 87], "packag": [2, 4, 5, 6, 7, 8, 12, 22, 26, 29, 30, 38, 41, 48, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "prune": [2, 3, 29, 45, 55, 66, 80], "everyth": [2, 76], "els": [2, 68, 73, 74, 75, 78, 79], "mathemat": [2, 3, 7, 32], "keep": [2, 10, 11, 38, 65, 68, 73, 74, 84], "belong": [2, 3, 7, 23, 29, 31, 32, 44, 45, 46, 47, 52, 53, 57, 61, 63, 64, 75, 76, 79, 81, 84, 87], "2": [2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 45, 47, 52, 53, 55, 56, 60, 61, 63, 64, 73, 74, 82], "error": [2, 3, 4, 7, 10, 24, 28, 29, 31, 32, 36, 38, 44, 45, 47, 48, 50, 53, 55, 57, 59, 60, 63, 66, 67, 68, 69, 71, 72, 73, 77, 85], "erron": [2, 3, 23, 29, 32, 38, 44, 45, 53, 55, 56, 57, 81, 83], "import": [2, 3, 4, 5, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 27, 34, 36, 37, 43, 47, 50, 55, 56, 61, 63, 64, 65, 71, 72, 74, 79, 80, 81, 83, 84, 85, 86, 87], "linear_model": [2, 4, 23, 38, 55, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logisticregress": [2, 3, 4, 23, 38, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logreg": 2, "cl": [2, 11, 55, 65, 74, 76, 83, 85, 86], "pass": [2, 3, 4, 7, 9, 10, 11, 13, 18, 21, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 52, 53, 55, 61, 65, 67, 68, 69, 72, 73, 74, 76, 78, 80, 81, 83, 86], "x_train": [2, 68, 69, 76, 78, 79, 83, 85], "labels_maybe_with_error": 2, "had": [2, 3, 55, 80], "issu": [2, 3, 4, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 41, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 70, 77, 78, 82, 83, 86], "pred": [2, 29, 38, 82, 83, 85, 86], "x_test": [2, 68, 69, 76, 79, 83, 85], "might": [2, 43, 55, 60, 68, 69, 74, 75, 85, 86], "case": [2, 3, 10, 23, 34, 43, 55, 67, 68, 69, 71, 73, 75, 76, 81, 83, 85, 86, 87], "standard": [2, 3, 4, 23, 29, 42, 44, 45, 47, 53, 55, 65, 68, 69, 71, 73, 76, 85], "adapt": [2, 24, 26, 38, 41, 55, 81], "skorch": [2, 55, 65, 74], "kera": [2, 41, 55, 65, 74], "scikera": [2, 42, 55, 74], "open": [2, 27, 65, 73, 80, 87], "doesn": [2, 55, 65], "t": [2, 3, 7, 24, 25, 27, 28, 29, 34, 36, 37, 47, 52, 53, 55, 61, 63, 64, 65, 68, 69, 73, 75, 76, 79, 80, 87], "alreadi": [2, 4, 13, 24, 27, 28, 32, 42, 43, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 85, 86], "exist": [2, 4, 7, 9, 24, 27, 28, 37, 42, 48, 50, 52, 55, 65, 66, 68, 69, 72, 78, 79, 86, 87], "made": [2, 4, 13, 55, 72, 75, 78, 80, 82, 83, 85, 86], "easi": [2, 32, 55, 68, 69, 73, 74, 76, 79], "inherit": [2, 5, 25, 55], "baseestim": [2, 28, 55], "yourmodel": [2, 55], "def": [2, 5, 11, 24, 28, 42, 55, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "self": [2, 3, 4, 5, 9, 10, 11, 13, 24, 25, 27, 28, 29, 34, 52, 53, 55, 68, 73, 75, 79, 84, 85, 87], "refer": [2, 7, 24, 28, 44, 45, 47, 48, 50, 55, 59, 60, 68, 69, 71, 72, 74, 75, 76, 82, 83], "origin": [2, 4, 7, 28, 29, 37, 38, 42, 44, 45, 48, 51, 52, 55, 56, 59, 61, 63, 68, 71, 72, 74, 75, 76, 80, 81, 83, 85, 86, 87], "total": [2, 3, 23, 27, 38, 44, 64, 74, 75, 84], "state": [2, 3, 4, 24, 25, 28, 33, 55, 76, 79, 80, 87], "art": [2, 25, 76, 79], "northcutt": [2, 3, 23, 52, 53], "et": [2, 3, 23, 25, 52, 53], "al": [2, 3, 23, 25, 52, 53], "2021": [2, 3, 23, 52, 53], "weak": 2, "supervis": [2, 7, 68, 69, 74, 78], "find": [2, 4, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 26, 27, 28, 29, 33, 37, 38, 41, 48, 52, 53, 55, 57, 61, 63, 66, 68, 77, 82], "uncertainti": [2, 7, 31, 52, 55, 74, 81, 83], "It": [2, 3, 4, 5, 7, 9, 10, 13, 17, 21, 24, 28, 29, 32, 34, 36, 43, 50, 55, 65, 68, 69, 74, 75, 76, 79, 82], "work": [2, 3, 5, 7, 9, 23, 24, 27, 28, 29, 32, 37, 38, 39, 42, 43, 53, 55, 65, 66, 68, 69, 73, 81, 83, 86], "includ": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 37, 38, 41, 43, 44, 47, 48, 52, 53, 55, 59, 60, 61, 63, 65, 66, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 87], "deep": [2, 26, 28, 41, 42, 55, 72], "see": [2, 3, 4, 10, 23, 24, 27, 28, 29, 34, 38, 42, 44, 45, 47, 48, 52, 53, 55, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "subfield": 2, "theori": [2, 76], "machin": [2, 26, 41, 55, 68, 69, 73, 78], "across": [2, 3, 4, 5, 7, 10, 13, 17, 23, 27, 34, 44, 52, 68, 69, 71, 72, 73, 74, 75, 76, 80, 82], "varieti": [2, 85, 86], "like": [2, 3, 4, 5, 7, 11, 13, 23, 24, 27, 28, 29, 32, 38, 42, 43, 44, 47, 48, 50, 53, 55, 56, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "pu": [2, 38], "input": [2, 3, 4, 7, 13, 19, 23, 24, 27, 28, 32, 34, 37, 38, 39, 42, 55, 65, 66, 69, 72, 73, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "discret": [2, 29, 32, 38, 52, 53, 57, 59, 60], "vector": [2, 3, 4, 7, 13, 29, 32, 34, 35, 38, 52, 53, 65, 67, 68, 69, 71, 72, 75, 76, 79, 80, 81, 84, 86, 87], "would": [2, 3, 4, 24, 27, 28, 29, 38, 45, 55, 65, 68, 74, 75, 76, 81, 83, 86, 87], "obtain": [2, 4, 7, 13, 29, 43, 45, 48, 53, 56, 67, 69, 72, 74, 78, 80, 82, 84, 87], "been": [2, 23, 29, 32, 37, 38, 43, 44, 48, 50, 52, 53, 55, 67, 68, 71, 74, 76, 78, 79, 80, 81, 84, 87], "dure": [2, 13, 52, 55, 67, 71, 72, 74, 76, 79, 82, 83, 85, 86, 87], "denot": [2, 3, 32, 34, 38, 45, 52, 53, 63], "tild": 2, "paper": [2, 7, 43, 52, 61, 63, 73, 76, 78, 81, 83, 87], "cv_n_fold": [2, 3, 55, 86], "5": [2, 3, 4, 14, 15, 17, 18, 19, 20, 21, 23, 28, 29, 31, 33, 34, 38, 43, 44, 47, 48, 51, 55, 56, 63, 68, 72, 73, 74, 79, 80, 81, 82, 84, 86, 87], "converge_latent_estim": [2, 3], "pulearn": [2, 38], "find_label_issues_kwarg": [2, 7, 55, 66, 74, 76], "label_quality_scores_kwarg": [2, 7], "low_memori": [2, 45, 61], "clean": [2, 50, 53, 55, 56, 65, 68, 69, 73, 83, 85, 86], "even": [2, 3, 23, 27, 31, 32, 38, 55, 67, 74, 76, 78, 79, 80], "messi": [2, 55, 76], "ridden": [2, 55], "autom": [2, 55, 65, 69, 73, 74], "robust": [2, 32, 55, 69, 74], "prone": [2, 55], "out": [2, 3, 4, 7, 13, 20, 24, 28, 29, 34, 42, 45, 46, 48, 52, 53, 55, 56, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87], "current": [2, 3, 7, 10, 11, 17, 24, 28, 29, 34, 43, 50, 55, 68, 69, 74, 78], "intend": [2, 10, 11, 12, 13, 21, 30, 43, 59, 63, 67, 68, 69, 72, 76], "A": [2, 3, 4, 5, 7, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 28, 29, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 50, 51, 52, 53, 55, 57, 59, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78, 80, 82, 85, 86, 87], "follow": [2, 3, 7, 11, 23, 24, 27, 28, 34, 36, 43, 44, 48, 50, 52, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "experiment": [2, 24, 25, 27, 28, 45, 66, 74], "wrapper": [2, 4, 42, 67, 83, 85, 86], "around": [2, 4, 50, 68, 69, 80, 81, 87], "fasttext": [2, 41], "store": [2, 4, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 52, 55, 71, 72, 73, 84, 85, 86, 87], "along": [2, 34, 45, 63, 68, 69, 74, 75, 81], "dimens": [2, 36, 38, 57, 60, 74, 75, 81, 84], "select": [2, 6, 19, 43, 53, 75, 78, 81], "split": [2, 3, 4, 7, 9, 27, 34, 37, 38, 55, 67, 68, 69, 71, 72, 73, 75, 76, 79, 82, 85, 87], "cross": [2, 3, 7, 23, 29, 32, 33, 34, 45, 48, 53, 55, 56, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "fold": [2, 3, 23, 29, 32, 55, 67, 71, 73, 74, 80, 84, 85], "By": [2, 23, 44, 45, 55, 68, 84], "need": [2, 3, 7, 23, 24, 27, 28, 29, 44, 45, 47, 52, 55, 65, 67, 68, 69, 72, 74, 76, 78, 79, 80, 84, 86], "holdout": [2, 3, 55], "comput": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 43, 44, 45, 47, 50, 52, 53, 55, 56, 57, 59, 65, 66, 68, 69, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86], "them": [2, 3, 4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 43, 52, 55, 66, 68, 69, 71, 72, 74, 75, 78, 79, 81, 83, 84, 85, 86, 87], "numer": [2, 3, 4, 7, 10, 17, 34, 50, 52, 55, 60, 65, 66, 67, 68, 69, 70, 72, 75, 76, 78, 81, 83, 85, 86], "consist": [2, 3, 24, 28, 38, 43, 84, 87], "latent": [2, 3, 32], "thei": [2, 3, 12, 16, 19, 24, 25, 26, 28, 29, 30, 38, 42, 45, 50, 53, 55, 56, 59, 63, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 83, 86, 87], "relat": [2, 3, 10, 14, 15, 19, 20, 32, 38, 44, 55, 69], "close": [2, 3, 7, 27, 32, 52, 67, 68, 69, 71, 72, 74, 75, 76, 80], "form": [2, 3, 7, 24, 25, 28, 32, 37, 38, 53, 55, 74], "equival": [2, 3, 24, 28, 32, 52, 81], "iter": [2, 3, 23, 24, 28, 29, 38, 44, 45, 55, 78, 84], "enforc": [2, 24, 28, 38], "perfectli": [2, 23, 44, 76], "certain": [2, 3, 4, 13, 24, 28, 42, 55, 68, 69, 73, 81], "dict": [2, 3, 4, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 63, 68, 69, 74, 75, 87], "keyword": [2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 31, 34, 37, 42, 43, 45, 52, 53, 55, 61, 63, 68], "filter": [2, 3, 7, 27, 37, 44, 46, 47, 49, 58, 59, 60, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 79, 80, 83, 84, 85, 86, 87], "find_label_issu": [2, 3, 7, 27, 29, 44, 45, 47, 48, 50, 55, 57, 59, 60, 61, 63, 64, 65, 66, 74, 79, 80, 83, 84, 85, 86, 87], "particularli": [2, 65, 78, 81], "filter_bi": [2, 3, 27, 29, 45, 66, 74], "frac_nois": [2, 29, 45, 61, 74], "min_examples_per_class": [2, 29, 45, 74, 76], "impact": [2, 7, 68, 69, 75], "ml": [2, 4, 7, 55, 65, 68, 69, 71, 72, 75, 78, 85, 86], "accuraci": [2, 25, 53, 67, 74, 75, 76, 78, 81, 83, 84, 85, 86], "n_job": [2, 27, 29, 45, 57, 59, 61, 74, 81, 84], "disabl": [2, 24, 28, 29, 81], "process": [2, 3, 5, 13, 27, 29, 37, 43, 45, 57, 59, 61, 67, 68, 78, 82, 86], "caus": [2, 29, 34, 68, 69], "rank": [2, 3, 23, 27, 29, 34, 44, 45, 46, 48, 49, 52, 54, 58, 60, 61, 62, 64, 65, 66, 68, 69, 73, 74, 79, 80, 81, 83, 84, 85, 86, 87], "get_label_quality_scor": [2, 27, 29, 34, 43, 45, 47, 48, 50, 53, 56, 59, 61, 63, 66, 76, 79, 80, 83, 84, 87], "adjust_pred_prob": [2, 7, 47, 52, 53, 76], "control": [2, 4, 6, 7, 13, 27, 29, 36, 43, 52, 55, 61, 63, 68, 69, 73, 74], "how": [2, 3, 4, 7, 10, 11, 13, 17, 23, 24, 25, 27, 28, 32, 38, 43, 44, 47, 48, 50, 52, 53, 55, 59, 63, 65, 68, 69, 71, 72, 73, 75, 80, 81, 82, 83, 84, 85, 86], "much": [2, 7, 23, 27, 29, 55, 74, 76, 78, 81], "output": [2, 3, 4, 7, 13, 24, 25, 28, 32, 38, 42, 43, 44, 48, 50, 52, 55, 59, 60, 63, 64, 65, 66, 67, 68, 72, 73, 74, 75, 80, 81, 82, 83, 86], "print": [2, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 38, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 66, 67, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "suppress": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60, 84, 87], "statement": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60], "big": [2, 27, 45, 55, 76], "limit": [2, 4, 13, 27, 45, 80, 84, 87], "memori": [2, 24, 27, 28, 45, 51, 57, 59, 68, 84], "label_issues_batch": [2, 26, 45, 74], "find_label_issues_batch": [2, 27, 45, 74], "pred_prob": [2, 3, 4, 7, 13, 18, 20, 23, 27, 29, 31, 32, 33, 34, 35, 38, 39, 43, 44, 45, 47, 48, 51, 52, 53, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86], "threshold": [2, 3, 5, 7, 14, 15, 17, 20, 27, 50, 51, 52, 53, 59, 63, 68, 80, 81, 84, 87], "inverse_noise_matrix": [2, 3, 7, 32, 38, 66, 76], "label_issu": [2, 27, 29, 45, 48, 55, 57, 66, 67, 72, 74, 75, 76, 83, 85, 86], "clf_kwarg": [2, 3, 7, 55], "clf_final_kwarg": [2, 55], "validation_func": [2, 3, 7], "correct": [2, 7, 23, 27, 29, 31, 43, 44, 45, 47, 48, 50, 53, 55, 56, 59, 63, 65, 67, 71, 72, 75, 76, 78, 80, 82, 83], "result": [2, 3, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 27, 28, 29, 31, 38, 45, 47, 48, 53, 55, 56, 57, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 85, 86, 87], "identifi": [2, 3, 4, 5, 7, 9, 13, 21, 23, 27, 29, 45, 48, 53, 55, 56, 57, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79, 81, 83, 84, 85, 86, 87], "final": [2, 7, 55, 71, 80, 82, 83, 85], "remain": [2, 55, 66, 75, 83, 85, 86, 87], "datasetlik": [2, 38, 55], "beyond": [2, 4, 5, 6, 8, 22, 65, 84], "pd": [2, 3, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 33, 42, 43, 44, 55, 63, 67, 68, 69, 71, 72, 74, 76, 78, 83, 85, 86, 87], "datafram": [2, 3, 4, 5, 9, 10, 14, 15, 17, 18, 19, 20, 23, 27, 33, 38, 39, 42, 43, 44, 55, 60, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 86, 87], "scipi": [2, 10, 38], "spars": [2, 4, 7, 10, 13, 38, 39, 71], "csr_matrix": [2, 4, 10, 13], "torch": [2, 24, 25, 28, 67, 72, 73, 75, 81, 86], "util": [2, 4, 13, 21, 24, 25, 28, 30, 43, 55, 65, 66, 67, 68, 69, 74, 75, 76, 81], "tensorflow": [2, 38, 42, 65, 67, 74], "object": [2, 4, 9, 10, 13, 21, 24, 25, 27, 28, 34, 38, 39, 42, 45, 48, 49, 50, 51, 52, 55, 63, 65, 67, 69, 71, 75, 76, 77, 83, 86], "list": [2, 3, 4, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 35, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 59, 60, 61, 63, 64, 66, 67, 68, 69, 73, 75, 76, 79, 80, 83, 86, 87], "index_list": 2, "subset": [2, 3, 4, 13, 23, 27, 29, 38, 53, 60, 64, 67, 71, 72, 74, 75, 79, 80, 81, 82, 83, 85, 86, 87], "wa": [2, 3, 9, 11, 27, 38, 43, 44, 50, 52, 64, 67, 68, 69, 71, 72, 74, 76, 79, 80, 82, 84, 85, 86, 87], "abl": [2, 3, 7, 55, 67, 74, 76, 78, 79], "format": [2, 3, 4, 7, 9, 24, 27, 28, 29, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 48, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 71, 73, 75, 78, 83, 84, 85, 87], "make": [2, 3, 24, 27, 28, 34, 42, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "sure": [2, 27, 29, 34, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 85, 86], "shuffl": [2, 7, 38, 67, 75, 79, 81], "ha": [2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 24, 28, 32, 34, 37, 38, 43, 48, 50, 55, 61, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "batch": [2, 27, 38, 42, 43, 57, 59, 74, 75, 81], "order": [2, 7, 23, 24, 28, 29, 32, 33, 34, 36, 38, 43, 44, 45, 48, 52, 53, 57, 60, 61, 63, 64, 66, 67, 68, 69, 72, 73, 74, 75, 76, 80, 83, 84, 86, 87], "destroi": [2, 38], "oper": [2, 24, 27, 28, 38, 42, 53, 65, 72, 81, 85, 86], "eg": [2, 7, 38, 48, 68, 69, 74], "repeat": [2, 38, 43, 78, 81], "appli": [2, 24, 28, 29, 34, 35, 37, 38, 47, 52, 61, 67, 68, 71, 75, 78, 79, 81, 82, 83, 84, 85, 86], "array_lik": [2, 3, 23, 29, 38, 45, 52, 56], "some": [2, 3, 4, 7, 11, 17, 23, 24, 26, 28, 29, 32, 37, 38, 41, 43, 44, 45, 47, 48, 52, 53, 55, 57, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "seri": [2, 3, 27, 38, 39, 55, 63], "row": [2, 3, 4, 10, 13, 23, 27, 29, 31, 32, 36, 38, 43, 44, 45, 47, 52, 53, 55, 60, 61, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 81, 85, 87], "rather": [2, 3, 19, 23, 38, 42, 43, 50, 59, 63, 78, 82, 84, 86, 87], "leav": [2, 29], "per": [2, 3, 10, 23, 27, 29, 34, 37, 43, 44, 45, 47, 50, 53, 56, 57, 59, 63, 69, 74, 80, 87], "determin": [2, 3, 7, 13, 17, 19, 23, 27, 29, 34, 38, 43, 45, 48, 50, 53, 59, 63, 68, 78, 81, 83], "cutoff": [2, 3, 81], "consid": [2, 3, 4, 7, 10, 13, 18, 19, 20, 23, 24, 28, 29, 38, 43, 50, 52, 53, 56, 59, 63, 67, 69, 71, 72, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86], "section": [2, 3, 5, 7, 66, 71, 75], "3": [2, 3, 4, 5, 23, 24, 28, 29, 32, 33, 34, 35, 36, 37, 38, 42, 45, 52, 53, 55, 56, 61, 63, 73, 74, 82], "equat": [2, 3, 32], "advanc": [2, 3, 4, 6, 13, 50, 52, 63, 66, 69, 70, 76], "user": [2, 3, 4, 11, 13, 21, 24, 28, 29, 50, 52, 53, 55, 59, 63, 76], "specifi": [2, 3, 4, 7, 10, 13, 21, 24, 27, 28, 29, 34, 37, 43, 44, 45, 48, 50, 52, 53, 55, 56, 64, 66, 67, 69, 72, 75, 78, 80, 83, 86], "automat": [2, 3, 4, 19, 23, 65, 71, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "greater": [2, 3, 4, 6, 7, 20, 27, 36, 38, 50, 69, 73, 74, 87], "count": [2, 17, 19, 23, 27, 29, 32, 38, 44, 45, 66, 74, 75], "observ": [2, 3, 32, 67, 68, 69, 78, 81, 83], "mislabel": [2, 7, 23, 27, 29, 32, 43, 44, 45, 48, 50, 53, 59, 61, 63, 65, 67, 71, 72, 74, 75, 76, 79, 80, 83, 85, 86], "one": [2, 3, 4, 7, 19, 23, 24, 27, 28, 29, 34, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 78, 81, 82, 83, 85, 86, 87], "get_label_issu": [2, 27, 55, 76, 83, 85, 86], "either": [2, 3, 5, 7, 24, 27, 28, 29, 43, 45, 50, 52, 53, 57, 59, 69, 79, 80], "boolean": [2, 5, 7, 17, 27, 29, 37, 43, 45, 48, 53, 55, 57, 59, 60, 65, 67, 69, 72, 74, 75, 80, 83, 84, 86], "label_issues_mask": [2, 29, 53, 55, 66], "indic": [2, 3, 4, 5, 7, 10, 17, 23, 27, 28, 29, 31, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "its": [2, 4, 6, 7, 13, 24, 27, 28, 29, 36, 37, 45, 48, 52, 53, 55, 57, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86, 87], "return_indices_ranked_bi": [2, 27, 29, 45, 61, 66, 74, 76, 79, 85, 86], "significantli": [2, 75, 76, 78, 82], "reduc": [2, 27, 29, 38, 67, 74], "time": [2, 7, 24, 27, 28, 38, 43, 66, 68, 73, 74, 75, 76, 80, 81, 83, 84, 85, 86, 87], "take": [2, 4, 7, 13, 23, 24, 28, 33, 34, 38, 42, 53, 71, 75, 78, 85, 87], "run": [2, 4, 5, 6, 8, 13, 19, 22, 24, 27, 28, 55, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "skip": [2, 7, 24, 28, 55, 67, 74, 79, 87], "slow": [2, 3], "step": [2, 5, 19, 34, 74, 75, 76, 78, 82], "caution": [2, 4, 74], "previous": [2, 4, 10, 38, 52, 55, 66, 67, 68, 71, 72, 78, 82, 85], "assign": [2, 5, 14, 15, 17, 18, 19, 20, 33, 34, 38, 55, 68, 71, 74, 75, 83, 84, 85, 87], "individu": [2, 10, 19, 24, 28, 43, 47, 50, 53, 55, 61, 63, 66, 69, 71, 74, 78, 79, 80, 85, 87], "still": [2, 27, 28, 38, 52, 74, 75, 81, 85], "extra": [2, 24, 28, 38, 42, 43, 44, 55, 72, 74, 75, 78, 81], "receiv": [2, 7, 24, 28, 44, 47, 48, 55, 57, 61, 69, 80], "overwritten": [2, 55], "callabl": [2, 3, 34, 37, 42, 47], "x_val": 2, "y_val": 2, "map": [2, 3, 27, 28, 33, 37, 38, 51, 53, 55, 60, 67, 68, 69, 74, 75, 76, 79, 87], "appropri": [2, 7, 13, 45, 53, 68, 71, 79, 80], "earli": [2, 75], "stop": [2, 75], "x_valid": 2, "y_valid": 2, "could": [2, 17, 23, 38, 52, 68, 71, 75, 79, 83, 85, 87], "f": [2, 5, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "ignor": [2, 24, 28, 37, 42, 55, 60, 64, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "allow": [2, 23, 24, 27, 28, 31, 38, 43, 51, 52, 55, 57, 59, 67, 74, 75, 82, 84, 86], "access": [2, 7, 10, 24, 28, 55, 69, 75, 79], "hyperparamet": [2, 47, 52, 75], "purpos": [2, 68, 69, 74, 79, 83], "want": [2, 4, 23, 27, 39, 43, 45, 55, 68, 72, 73, 75, 78, 80, 81, 82, 84, 86, 87], "explicitli": [2, 28, 55], "yourself": [2, 4, 27, 69], "altern": [2, 7, 34, 38, 42, 43, 53, 66, 67, 71, 72, 74, 75, 76, 78, 79, 81, 83, 86], "same": [2, 3, 4, 5, 7, 9, 11, 19, 24, 27, 28, 29, 38, 42, 43, 45, 52, 53, 55, 59, 60, 63, 64, 65, 68, 69, 71, 72, 74, 75, 80, 81, 82, 83, 84, 85, 86], "effect": [2, 7, 24, 28, 43, 52, 55, 71, 72, 74, 81], "offer": [2, 4, 67, 68, 69, 72, 74, 76, 79, 86], "after": [2, 3, 4, 10, 14, 15, 17, 18, 19, 20, 24, 28, 38, 43, 55, 68, 72, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86], "attribut": [2, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 52, 55, 68, 85], "label_issues_df": [2, 55, 75], "similar": [2, 7, 23, 24, 28, 36, 38, 43, 47, 48, 50, 52, 55, 59, 63, 68, 69, 71, 72, 74, 75, 76, 80, 81, 84], "document": [2, 3, 4, 7, 11, 23, 24, 27, 28, 29, 34, 37, 42, 44, 45, 47, 50, 52, 55, 59, 60, 61, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "descript": [2, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 38, 48, 55, 68, 69], "were": [2, 3, 4, 23, 28, 44, 50, 63, 67, 71, 72, 74, 76, 78, 80, 82, 84, 85, 86], "present": [2, 3, 4, 7, 9, 10, 15, 23, 38, 52, 60, 65, 71, 74, 75, 81, 85], "actual": [2, 3, 4, 23, 43, 44, 53, 69, 74, 76, 87], "num_class": [2, 23, 27, 38, 42, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 85, 86], "uniqu": [2, 38, 60, 68, 74, 79, 81], "given_label": [2, 4, 23, 32, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86, 87], "normal": [2, 3, 19, 29, 31, 34, 37, 38, 53, 74, 76, 81], "trick": [2, 74], "distribut": [2, 3, 4, 7, 13, 19, 20, 23, 28, 29, 33, 43, 52, 53, 65, 68, 69, 71, 72, 75, 81], "account": [2, 23, 43, 47, 52, 53, 72, 74, 76, 78, 79, 81, 83, 86], "word": [2, 3, 37, 63, 64, 74], "remov": [2, 7, 23, 24, 28, 29, 55, 65, 72, 73, 74, 75, 81, 83, 85, 86], "so": [2, 3, 5, 7, 11, 19, 23, 24, 27, 28, 29, 38, 43, 44, 50, 53, 55, 59, 63, 67, 68, 69, 72, 75, 76, 81, 84], "proportion": [2, 7, 29], "just": [2, 3, 4, 7, 10, 23, 25, 27, 38, 42, 53, 55, 57, 65, 66, 67, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86], "procedur": 2, "get": [2, 3, 4, 10, 24, 25, 28, 29, 34, 37, 38, 43, 45, 47, 52, 53, 55, 56, 57, 65, 67, 72, 73, 74, 75, 76, 81, 82, 83, 85, 86], "detect": [2, 4, 5, 6, 10, 11, 13, 17, 20, 36, 46, 48, 49, 50, 51, 52, 53, 54, 55, 58, 62, 65, 68, 70, 75, 77, 79, 83, 84, 85, 86, 87], "arg": [2, 9, 17, 24, 25, 28, 34, 38, 53, 55], "kwarg": [2, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 42, 55, 57, 59, 61, 74], "test": [2, 7, 19, 28, 34, 42, 55, 65, 68, 69, 71, 72, 75, 82, 83, 85, 86, 87], "expect": [2, 3, 24, 28, 29, 34, 43, 52, 53, 55, 72, 74, 76, 78, 79, 80, 83, 85, 86, 87], "class_predict": 2, "evalu": [2, 7, 24, 25, 27, 28, 55, 67, 68, 69, 74, 75, 76, 78, 82, 83, 84, 85, 86], "simpli": [2, 23, 53, 68, 69, 71, 72, 74, 76, 83, 84, 86, 87], "quantifi": [2, 4, 5, 7, 10, 29, 47, 52, 55, 65, 69, 71, 72, 75, 76, 80], "save_spac": [2, 7, 55], "potenti": [2, 7, 23, 29, 37, 45, 48, 53, 55, 57, 59, 66, 67, 68, 69, 71, 72, 73, 75, 76, 79, 80, 84, 85, 87], "cach": [2, 72, 75, 81, 86], "panda": [2, 4, 5, 9, 14, 15, 17, 18, 19, 20, 23, 38, 39, 42, 43, 44, 66, 67, 68, 69, 71, 72, 73, 76, 78, 83, 84, 85, 86], "unlik": [2, 29, 31, 34, 42, 44, 45, 47, 63, 68, 78, 79, 81, 83], "both": [2, 4, 7, 13, 19, 23, 24, 28, 29, 38, 43, 45, 53, 57, 59, 64, 65, 68, 74, 75, 76, 78, 87], "mask": [2, 27, 29, 37, 38, 45, 48, 53, 55, 57, 59, 60, 65, 73, 74, 78, 80, 84, 87], "prefer": [2, 53, 61], "plan": 2, "subsequ": [2, 3, 24, 28, 72, 74, 75, 76, 80, 86], "invok": [2, 24, 28, 76, 82], "scratch": [2, 55], "To": [2, 4, 5, 6, 7, 8, 10, 13, 19, 22, 24, 27, 28, 29, 42, 43, 45, 47, 51, 52, 53, 55, 56, 57, 59, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "share": [2, 53, 55], "mostli": [2, 38, 50, 55], "longer": [2, 33, 37, 55, 66, 72, 74, 80, 86], "info": [2, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 44, 55, 63, 68, 69, 73, 74, 87], "about": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 21, 23, 25, 27, 31, 43, 44, 47, 55, 60, 63, 67, 68, 71, 72, 73, 74, 75, 76, 78, 81], "docstr": [2, 23, 24, 28, 38, 55, 73, 76], "unless": [2, 24, 28, 55, 74], "our": [2, 3, 7, 42, 43, 53, 55, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "is_label_issu": [2, 55, 67, 68, 69, 71, 72, 75, 76, 83, 86], "entir": [2, 7, 19, 27, 29, 32, 44, 45, 50, 53, 55, 57, 59, 60, 65, 68, 69, 74, 80, 81, 82, 84, 87], "accur": [2, 3, 4, 7, 13, 23, 27, 29, 43, 44, 45, 48, 53, 55, 56, 57, 59, 60, 66, 69, 71, 72, 74, 75, 78, 83], "label_qu": [2, 43, 55, 76, 78, 83, 86], "measur": [2, 23, 43, 44, 55, 65, 73, 74, 76, 78, 79, 84, 85, 87], "qualiti": [2, 3, 4, 5, 7, 10, 23, 27, 29, 31, 34, 43, 44, 45, 47, 48, 50, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 83, 85, 86], "lower": [2, 4, 5, 7, 10, 20, 27, 34, 43, 44, 47, 50, 53, 55, 56, 59, 63, 67, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 86, 87], "eas": 2, "comparison": [2, 24, 28, 76, 78, 83], "against": [2, 24, 28, 68, 71, 74, 78, 79], "predicted_label": [2, 4, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86], "ad": [2, 24, 28, 69, 78, 83], "precis": [2, 45, 48, 74, 76, 84, 87], "definit": [2, 5, 55, 71, 85], "accessor": [2, 55], "describ": [2, 7, 43, 52, 53, 55, 61, 63, 76, 78, 79, 80, 82, 87], "precomput": [2, 32, 55, 73], "clear": [2, 55, 72, 83, 86], "save": [2, 4, 13, 24, 27, 28, 51, 55, 74, 80, 84, 87], "space": [2, 7, 52, 55, 71, 73, 75], "place": [2, 24, 28, 38, 55, 78, 85], "larg": [2, 27, 55, 74, 81, 84, 87], "deploi": [2, 55, 74], "care": [2, 7, 24, 28, 55, 74, 76], "avail": [2, 4, 5, 9, 13, 21, 28, 55, 76, 78, 80, 83], "cannot": [2, 4, 9, 13, 38, 82, 87], "anymor": 2, "classmethod": [2, 14, 15, 17, 18, 19, 20, 28, 34, 55], "__init_subclass__": [2, 28, 55], "set_": [2, 28, 55], "_request": [2, 28, 55], "pep": [2, 28, 55], "487": [2, 28, 55], "look": [2, 4, 5, 13, 24, 28, 38, 55, 60, 68, 69, 71, 74, 76, 78, 79, 80, 81, 84, 85, 87], "inform": [2, 4, 5, 7, 10, 13, 21, 24, 28, 38, 43, 44, 48, 55, 60, 63, 64, 65, 67, 68, 71, 72, 76, 78, 81, 84, 87], "__metadata_request__": [2, 28, 55], "infer": [2, 28, 38, 55, 60, 64, 75, 78, 79, 83, 85, 86], "signatur": [2, 24, 28, 55], "accept": [2, 24, 28, 53, 55, 68, 69], "metadata": [2, 28, 55, 87], "through": [2, 4, 5, 28, 55, 67, 69, 72, 73, 78, 81, 83, 86], "develop": [2, 6, 28, 55, 74, 76, 87], "request": [2, 28, 55, 69, 72, 73, 79, 85, 86, 87], "those": [2, 3, 7, 27, 28, 29, 42, 43, 45, 55, 59, 63, 64, 65, 67, 74, 75, 80, 84], "http": [2, 4, 5, 6, 7, 8, 22, 24, 25, 27, 28, 31, 38, 52, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "www": [2, 28, 55, 81], "org": [2, 24, 25, 28, 38, 52, 55, 74, 76, 87], "dev": [2, 28, 55], "0487": [2, 28, 55], "get_metadata_rout": [2, 28, 55], "rout": [2, 28, 55], "pleas": [2, 24, 28, 42, 55, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "guid": [2, 5, 28, 55, 66, 75], "mechan": [2, 24, 28, 55], "metadatarequest": [2, 28, 55], "encapsul": [2, 13, 28, 50, 55], "get_param": [2, 28, 42, 55], "subobject": [2, 28, 55], "param": [2, 7, 24, 28, 42, 52, 55], "name": [2, 4, 5, 7, 9, 10, 23, 24, 28, 33, 34, 38, 42, 43, 44, 51, 55, 60, 64, 67, 69, 72, 73, 75, 76, 79, 84, 86, 87], "set_fit_request": [2, 28, 55], "union": [2, 3, 4, 9, 27, 28, 34, 38, 39, 45, 51, 55, 59, 63], "str": [2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 32, 34, 37, 38, 42, 43, 44, 48, 50, 51, 53, 55, 60, 64, 67, 68, 78, 79, 87], "unchang": [2, 24, 28, 55, 87], "relev": [2, 13, 19, 28, 55, 75], "enable_metadata_rout": [2, 28, 55], "set_config": [2, 28, 55], "meta": [2, 28, 55], "rais": [2, 4, 9, 10, 24, 28, 31, 34, 55, 74], "alia": [2, 24, 28, 55], "metadata_rout": [2, 28, 55], "retain": [2, 28, 38, 55], "chang": [2, 24, 27, 28, 31, 55, 63, 67, 68, 72, 74, 80, 81, 86, 87], "version": [2, 4, 5, 6, 7, 8, 12, 16, 22, 24, 26, 28, 30, 31, 38, 41, 42, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "sub": [2, 28, 50, 55], "pipelin": [2, 28, 55], "otherwis": [2, 7, 23, 24, 27, 28, 29, 35, 37, 38, 45, 52, 55, 57, 59, 60, 64, 72, 74, 86], "updat": [2, 10, 24, 27, 28, 55, 66, 68, 75], "set_param": [2, 28, 42, 55], "simpl": [2, 24, 28, 29, 43, 53, 55, 68, 69, 71, 72, 75, 78, 81, 83, 85, 86], "well": [2, 3, 7, 24, 28, 31, 32, 43, 45, 53, 55, 60, 63, 64, 66, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81], "nest": [2, 24, 28, 55, 61, 63, 64, 87], "latter": [2, 24, 28, 55, 81], "compon": [2, 28, 55], "__": [2, 28, 55], "set_score_request": [2, 55], "structur": [3, 52, 71, 85], "unobserv": 3, "less": [3, 4, 7, 27, 34, 43, 52, 53, 57, 59, 63, 71, 73, 74, 75, 76, 80, 87], "channel": [3, 67, 76], "character": 3, "flip": 3, "nm": 3, "invers": [3, 7, 23, 32, 38, 44, 69, 73, 86], "inv": 3, "confident_joint": [3, 17, 23, 29, 38, 44, 45, 66, 74, 76], "un": 3, "under": [3, 7, 24, 28, 44, 52, 81], "joint": [3, 23, 29, 32, 38, 44, 45, 73], "num_label_issu": [3, 27, 29, 45, 60, 64, 66], "estimation_method": [3, 27], "off_diagon": 3, "multi_label": [3, 23, 29, 38, 39, 45, 79], "don": [3, 65, 69, 76, 80], "statis": 3, "compute_confident_joint": [3, 23, 29, 38, 45, 76], "off": [3, 29, 38, 50, 75, 76, 80, 81], "j": [3, 4, 13, 23, 24, 28, 29, 45, 48, 51, 52, 61, 63, 64, 68, 69, 76, 84, 87], "confident_learn": [3, 29, 45, 76], "off_diagonal_calibr": 3, "calibr": [3, 29, 38, 43, 78], "cj": [3, 32, 38], "axi": [3, 32, 34, 57, 60, 67, 68, 69, 74, 75, 76, 78, 79, 81, 83, 84], "bincount": [3, 68, 69, 76, 78, 79], "alwai": [3, 7, 24, 28, 38, 67, 76, 83, 85, 86], "estimate_issu": 3, "over": [3, 7, 24, 27, 28, 50, 57, 59, 69, 71, 73, 74, 75, 76, 81, 83, 85], "As": [3, 5, 65, 68, 69, 72, 76, 83, 87], "add": [3, 4, 5, 10, 24, 28, 42, 51, 67, 68, 69, 72, 74, 75, 76, 79, 86], "approach": [3, 23, 27, 29, 71, 76, 79, 81, 83, 85], "custom": [3, 5, 8, 24, 27, 28, 34, 37, 53, 72, 76, 86], "know": [3, 68, 69, 74, 76, 78], "cut": [3, 50, 65, 76], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 81, 87], "underestim": 3, "few": [3, 65, 74, 78, 79, 80, 81, 87], "4": [3, 4, 14, 15, 17, 18, 19, 20, 33, 34, 37, 47, 48, 50, 51, 53, 56, 63, 73, 74, 79, 84, 87], "detail": [3, 11, 23, 24, 28, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 59, 60, 61, 65, 66, 67, 79, 81, 87], "num_issu": [3, 5, 27, 67, 68, 69, 71, 72, 75, 76], "calibrate_confident_joint": 3, "up": [3, 19, 29, 34, 43, 73, 74, 80, 83, 86, 87], "p_": [3, 23, 29], "pair": [3, 7, 23, 29, 76], "v": [3, 7, 27, 44, 45, 47, 53, 68, 69, 79, 81, 82], "rest": [3, 4, 5, 6, 7, 8, 22, 44, 45, 47, 55, 68, 69, 71, 72, 75, 76, 78, 83, 85, 86], "fashion": [3, 57, 85], "2x2": 3, "incorrectli": [3, 23, 44, 45, 48, 71, 87], "calibrated_cj": 3, "c": [3, 7, 37, 45, 53, 65, 67, 68, 69, 71, 72, 74, 76, 79, 81, 82, 83, 85], "whose": [3, 4, 7, 13, 20, 24, 28, 32, 37, 43, 47, 50, 56, 59, 63, 64, 67, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 84, 87], "truli": [3, 81, 84], "estimate_joint": [3, 23, 76], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 45, 76, 80, 82, 84, 87], "return_indices_of_off_diagon": 3, "frequenc": [3, 19, 43, 44, 60, 81], "done": [3, 7, 55, 68, 74, 76, 79, 81, 82], "overfit": [3, 7, 48, 67, 68, 69, 71, 72, 75, 82, 85], "classifict": 3, "singl": [3, 4, 19, 23, 24, 28, 34, 35, 38, 43, 44, 50, 51, 52, 53, 63, 67, 68, 74, 76, 79, 80, 85], "baselin": [3, 24, 29, 81, 83, 86], "proxi": 3, "tupl": [3, 24, 28, 32, 33, 35, 37, 38, 43, 45, 51, 59, 61, 63, 64, 67, 87], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 27, 32, 43, 57, 59, 65, 74, 75, 84, 86], "practic": [3, 69, 75, 76, 81, 83, 85, 86], "complet": [3, 67, 68, 69, 71, 72, 75, 76, 80], "gist": 3, "cj_ish": 3, "guess": [3, 32, 76, 78], "8": [3, 4, 5, 33, 34, 35, 37, 47, 61, 63, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "parallel": [3, 29, 61, 73], "again": [3, 42, 81, 85], "simplifi": [3, 11], "understand": [3, 6, 23, 44, 69, 76, 83, 84, 87], "100": [3, 24, 28, 53, 68, 69, 71, 73, 74, 75, 76, 79, 84, 85, 86, 87], "optim": [3, 24, 25, 28, 42, 75, 78], "speed": [3, 29, 73, 74, 83, 86], "dtype": [3, 18, 19, 24, 28, 37, 38, 47, 63, 67, 80], "enumer": [3, 24, 28, 67, 68, 69, 75, 87], "s_label": 3, "confident_bin": 3, "6": [3, 4, 28, 34, 38, 63, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "num_confident_bin": 3, "argmax": [3, 29, 53, 57, 60, 67, 74, 76, 81, 84], "elif": 3, "estimate_lat": 3, "py_method": [3, 32], "cnt": [3, 32], "1d": [3, 27, 29, 34, 35, 38, 39, 47, 56, 67, 85], "eqn": [3, 32], "margin": [3, 29, 32, 34, 53], "marginal_p": [3, 32], "shorthand": [3, 10], "proport": [3, 7, 23, 44, 76, 82], "poorli": [3, 32, 85], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 76], "variabl": [3, 5, 11, 38, 55, 56, 67, 68, 71, 76, 79, 83], "exact": [3, 32, 68, 69, 71, 75, 85], "within": [3, 4, 12, 24, 25, 28, 30, 45, 50, 59, 61, 63, 68, 69, 75, 80, 84], "percent": 3, "often": [3, 23, 32, 44, 74, 76, 82, 84], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 7, 38, 39, 67, 68, 71, 72, 74, 75, 80, 81, 86], "wai": [3, 4, 42, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 82, 85, 86], "pro": 3, "con": 3, "pred_proba": [3, 82], "combin": [3, 23, 68, 73, 74, 75, 76, 82, 83], "becaus": [3, 32, 38, 50, 74, 76, 78, 80], "littl": [3, 27, 73, 80, 87], "uniform": [3, 53, 73, 74, 76], "20": [3, 5, 64, 67, 69, 73, 75, 76, 84, 87], "Such": [3, 75, 81], "bound": [3, 18, 24, 28, 48, 50, 51, 80], "reason": [3, 17, 24, 28], "comment": [3, 37, 87], "end": [3, 24, 28, 51], "file": [3, 4, 9, 26, 27, 41, 51, 67, 68, 71, 72, 73, 74, 80, 81, 84, 85, 87], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 76], "handl": [3, 4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 66, 68, 69, 76, 84, 85, 87], "five": [3, 48, 51, 76, 80], "estimate_cv_predicted_prob": [3, 76], "estimate_noise_matric": 3, "get_confident_threshold": [3, 27], "amongst": [3, 7], "confident_threshold": [3, 7, 17, 27, 52], "unifi": 4, "audit": [4, 6, 9, 10, 13, 67, 70, 71, 72, 75, 76, 80], "kind": [4, 5, 67, 68, 71, 72, 73, 75, 76], "addit": [4, 5, 6, 7, 8, 10, 21, 22, 24, 28, 34, 39, 43, 61, 67, 68, 72, 75, 76, 78, 81, 82, 85, 86], "depend": [4, 5, 6, 7, 8, 9, 10, 22, 26, 29, 31, 38, 41, 45, 52, 55, 56, 65], "instal": [4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 42, 57, 59], "pip": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "development": [4, 5, 6, 8, 22], "git": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "github": [4, 5, 6, 8, 22, 24, 25, 38, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "com": [4, 5, 6, 8, 22, 24, 25, 27, 31, 38, 52, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "egg": [4, 5, 6, 8, 22, 65, 73], "label_nam": [4, 5, 7, 9, 65, 67, 68, 69, 71, 72, 75, 76], "image_kei": [4, 75], "interfac": [4, 65, 74, 76], "librari": [4, 7, 28, 48, 52, 65, 68, 72, 73, 74, 86], "goal": 4, "track": [4, 10, 11, 65, 68, 73, 74, 76], "intermedi": [4, 6, 69], "statist": [4, 7, 10, 17, 19, 23, 43, 44, 69, 72, 75, 76], "convert": [4, 9, 24, 28, 35, 39, 43, 50, 59, 63, 66, 67, 72, 73, 75, 78, 79, 80, 86], "hug": [4, 9, 75], "face": [4, 9, 13, 73, 75, 79], "kei": [4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 34, 43, 44, 50, 52, 68, 69, 74, 75, 76, 78, 80], "string": [4, 7, 9, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 28, 38, 43, 44, 56, 60, 63, 64, 71, 72, 74, 78, 79, 86, 87], "dictionari": [4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 33, 38, 43, 44, 47, 48, 50, 51, 68, 69, 71, 72, 76, 78, 79, 80], "path": [4, 9, 24, 27, 28, 51, 67, 68, 74, 80], "local": [4, 9, 24, 25, 28, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "text": [4, 5, 7, 9, 14, 15, 17, 18, 19, 20, 34, 52, 61, 63, 64, 65, 68, 69, 70, 73, 74, 76, 77, 78, 81], "txt": [4, 9, 87], "csv": [4, 9, 71, 72, 83, 85, 86], "json": [4, 9], "hub": [4, 9, 81], "imag": [4, 6, 23, 28, 48, 50, 51, 52, 57, 59, 60, 65, 68, 69, 73, 74, 77, 78, 79, 80, 82, 84], "point": [4, 5, 19, 24, 28, 68, 69, 74, 76, 78], "field": [4, 7, 24, 28], "themselv": [4, 83, 85, 86], "cleanvis": [4, 7], "level": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 37, 61, 63, 69, 75, 77, 84], "load_dataset": [4, 9, 75], "glue": 4, "sst2": 4, "properti": [4, 9, 10], "has_label": [4, 9], "class_nam": [4, 9, 23, 44, 51, 60, 64, 65, 73, 76, 80, 84, 87], "empti": [4, 9, 32, 43, 69, 79], "find_issu": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 65, 67, 68, 69, 71, 72, 75, 76], "knn_graph": [4, 7, 13, 14, 19, 20, 71], "issue_typ": [4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 67, 68, 69, 71, 72, 75, 76], "sort": [4, 13, 27, 29, 34, 36, 43, 45, 48, 50, 53, 59, 61, 63, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "common": [4, 10, 13, 69, 70, 73, 74, 76, 79, 80, 84], "real": [4, 13, 65, 68, 69, 74, 76, 78, 79, 83, 84], "world": [4, 13, 65, 68, 69, 74, 76, 78, 83, 84], "interact": [4, 13, 74], "embed": [4, 7, 13, 52, 65, 67, 68, 69, 71, 72, 76, 86], "thereof": [4, 13], "insight": [4, 13, 78], "act": [4, 7, 50, 68], "issuefind": [4, 13, 21], "logic": [4, 11, 27, 29, 57, 59, 84], "best": [4, 13, 33, 43, 53, 68, 69, 71, 74, 78, 79, 81, 83, 85, 86, 87], "2d": [4, 13, 27, 34, 35, 37, 38, 43, 67, 79, 85], "num_exampl": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 44, 67, 68, 69, 71, 72, 75, 76], "represent": [4, 7, 13, 24, 28, 35, 45, 65, 67, 68, 69, 72, 74, 75, 76, 81, 86], "num_featur": [4, 13, 24, 28, 42], "distanc": [4, 7, 13, 19, 20, 36, 50, 52, 71, 81], "nearest": [4, 7, 13, 18, 19, 20, 36, 52, 69, 72, 81], "neighbor": [4, 7, 13, 18, 19, 20, 36, 52, 68, 69, 71, 72, 75, 81], "graph": [4, 7, 10, 13, 19], "squar": [4, 13, 38, 55, 73, 83], "csr": [4, 13], "evenli": [4, 13], "omit": [4, 13, 50, 51, 75, 80], "itself": [4, 13, 24, 28, 80], "duplic": [4, 6, 12, 13, 16, 17, 24, 28, 65, 68, 76], "explicit": [4, 13], "precend": [4, 13], "construct": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42], "neither": [4, 7, 11, 13, 80], "nor": [4, 7, 11, 13], "collect": [4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 43, 78, 87], "unspecifi": [4, 13, 29, 45], "interest": [4, 13, 17, 60, 64, 72, 76, 84, 85, 86, 87], "constructor": [4, 7, 13, 18], "issuemanag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21], "respons": [4, 13, 17, 55, 56, 73, 83, 87], "random_st": [4, 67, 68, 69, 75, 76, 79, 81, 85], "lab": [4, 14, 15, 17, 18, 19, 20, 27, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79], "nearestneighbor": [4, 7, 52, 71, 81], "comprehens": [4, 65, 75], "nbr": 4, "n_neighbor": [4, 7, 52], "metric": [4, 7, 14, 19, 38, 42, 52, 67, 71, 72, 75, 76, 83, 85, 86], "euclidean": [4, 7, 50, 52, 71], "kneighbors_graph": [4, 71], "mode": [4, 24, 27, 28, 71, 81], "4x4": 4, "float64": [4, 19, 24, 28, 63], "compress": [4, 7, 38, 57, 59], "toarrai": 4, "NOT": [4, 27, 72, 86], "23606798": 4, "41421356": 4, "configur": [4, 13, 34], "suppos": [4, 48, 81, 83, 85, 86], "who": [4, 50, 71, 76, 85, 87], "manag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 68], "clean_learning_kwarg": [4, 7, 18], "labelissuemanag": [4, 7, 11, 18], "prune_method": [4, 66], "prune_by_noise_r": [4, 29, 45, 76], "report": [4, 5, 8, 12, 14, 15, 17, 18, 19, 20, 23, 44, 64, 65, 67, 68, 69, 71, 72, 76, 87], "include_descript": [4, 14, 15, 17, 18, 19, 20, 21], "show_summary_scor": [4, 21], "summari": [4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 42, 44, 49, 58, 59, 61, 62, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 80, 84, 87], "show": [4, 19, 24, 28, 33, 38, 51, 60, 64, 69, 71, 72, 73, 74, 75, 76, 78, 81, 83, 84, 85, 87], "top": [4, 23, 27, 29, 38, 45, 48, 51, 53, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 83, 86, 87], "suffer": [4, 7, 10, 17, 45, 53, 64, 87], "onc": [4, 17, 23, 24, 28, 68, 74, 76, 79, 80, 85], "familiar": 4, "usag": [4, 27, 42], "found": [4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 28, 38, 65, 67, 68, 69, 71, 72, 74, 75, 81, 83, 85, 86, 87], "issue_summari": [4, 7, 10, 68], "overal": [4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 34, 43, 44, 47, 50, 55, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 80, 87], "sever": [4, 5, 7, 9, 10, 17, 24, 27, 28, 29, 47, 50, 52, 53, 59, 63, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 85, 86, 87], "dataissu": [4, 10, 13, 21], "outlier": [4, 6, 11, 12, 16, 17, 30, 53, 65, 68, 69, 76, 77], "someth": [4, 5, 24, 28, 53], "123": [4, 68, 69], "456": [4, 67, 86], "nearest_neighbor": 4, "7": [4, 34, 35, 42, 61, 63, 67, 68, 69, 71, 72, 73, 74, 78, 79, 80, 81, 83, 84, 85, 86, 87], "9": [4, 14, 15, 17, 18, 19, 20, 34, 35, 47, 61, 63, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "distance_to_nearest_neighbor": [4, 68, 69, 71, 72, 75, 76], "789": 4, "get_issu": [4, 7, 10, 67, 69, 71, 72, 75], "issue_nam": [4, 5, 7, 10, 11, 14, 15, 17, 18, 19, 20, 68, 69], "focu": [4, 10, 72, 84, 87], "full": [4, 7, 10, 27, 51, 75, 87], "summar": [4, 10, 14, 15, 17, 18, 19, 20, 23, 44, 60, 64, 65, 84], "valueerror": [4, 9, 10, 31, 34, 74], "specific_issu": [4, 10], "exhibit": [4, 7, 10, 60, 69, 72, 75, 76, 80], "lie": [4, 7, 36, 52, 53, 67, 68, 69, 71, 72, 75, 76, 86], "directli": [4, 11, 13, 21, 27, 42, 43, 69, 72, 79, 80, 83, 86], "compar": [4, 43, 52, 63, 68, 69, 71, 76], "get_issue_summari": [4, 10, 69], "get_info": [4, 10, 69], "yet": [4, 10, 73, 78], "static": [4, 13], "list_possible_issue_typ": [4, 13], "regist": [4, 5, 11, 13, 24, 28, 68], "registri": [4, 11, 13], "list_default_issue_typ": [4, 13], "folder": [4, 67, 68, 75], "load": [4, 9, 27, 51, 73, 74, 75, 76, 80, 81, 84, 87], "futur": [4, 7, 17, 24, 28, 43, 65, 68], "overwrit": [4, 68], "separ": [4, 23, 34, 47, 68, 69, 74, 75, 80, 82], "rememb": [4, 74, 76], "part": [4, 7, 24, 28, 29, 48, 50, 67, 68, 73, 84, 87], "ident": [4, 7, 17, 38, 72, 86], "walk": 5, "alongsid": [5, 24, 28, 68, 74], "pre": [5, 7, 24, 28, 68, 69], "runtim": [5, 24, 27, 28, 55, 57, 59, 67, 74, 75], "issue_manager_factori": [5, 11, 68], "myissuemanag": [5, 11], "decor": [5, 11], "start": [5, 24, 25, 28, 65, 71, 79, 87], "ll": [5, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "thing": [5, 28, 76, 83, 86], "next": [5, 43, 65, 67, 71, 72, 78, 80, 83, 85, 86, 87], "dummi": 5, "randint": [5, 34, 68, 69], "mark": [5, 66, 80, 81, 83], "regard": [5, 69, 76], "rand": [5, 34, 68, 69], "is_": [5, 7, 68], "_issu": [5, 7, 68], "issue_score_kei": [5, 14, 15, 17, 18, 19, 20, 68], "whole": [5, 19, 24, 28, 69], "make_summari": [5, 14, 15, 17, 18, 19, 20, 68], "popul": 5, "verbosity_level": [5, 14, 15, 17, 18, 19, 20], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 27, 60, 64, 74, 79], "intermediate_arg": 5, "min": [5, 34, 50, 63, 68, 74, 81], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 7, 8, 10, 12, 14, 15, 18, 19, 20, 68], "instanti": [5, 13, 27, 42, 52, 67, 69, 71, 86], "477762": 5, "286455": 5, "term": [5, 7, 32, 38, 67, 68, 69, 71, 72, 75, 76], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 14, 20, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "003042": 5, "058117": 5, "11": [5, 42, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "121908": 5, "15": [5, 36, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "169312": 5, "17": [5, 67, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 68, 73, 76], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "search": [6, 7, 15, 19, 37, 55, 74, 82], "nondefault": 6, "Near": 6, "iid": [6, 19, 69, 72, 75, 76], "imbal": [6, 12, 16, 47, 52, 53], "togeth": [6, 7, 32, 68, 69, 71, 72, 75, 76, 83, 86, 87], "built": [6, 34], "own": [6, 24, 26, 28, 41, 47, 48, 57, 61, 67, 69, 71, 72, 75, 78, 79, 83, 84, 85, 86, 87], "prerequisit": 6, "basic": [6, 28, 42, 81], "page": [7, 69, 74, 76], "variou": [7, 10, 26, 39, 41, 65, 68, 69, 71, 72, 73, 76, 78, 80, 85], "sai": [7, 24, 28, 79, 84], "why": [7, 72], "matter": [7, 23, 44], "three": [7, 23, 43, 44, 55, 60, 67, 68, 69, 71, 73, 76, 78, 82, 83, 84, 85, 87], "_score": 7, "flag": [7, 17, 19, 29, 34, 44, 45, 48, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86], "badli": [7, 50, 87], "code": [7, 24, 28, 32, 38, 42, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "issue_scor": 7, "outlier_scor": [7, 20, 68, 69, 71, 72, 75, 76, 81], "atyp": [7, 52, 68, 69, 71, 72, 75, 76, 81], "datapoint": [7, 29, 34, 38, 53, 56, 65, 67, 68, 69, 71, 72, 74, 82, 83, 85, 86], "is_issu": [7, 17], "is_outlier_issu": [7, 68, 69, 71, 72, 75, 76], "annot": [7, 23, 33, 43, 44, 45, 47, 48, 50, 51, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 77, 80, 84], "transform": [7, 34, 36, 38, 52, 53, 69, 72, 75, 81, 85, 86, 87], "dissimilar": [7, 71, 72], "preced": 7, "cosin": [7, 52, 81], "incorrect": [7, 50, 53, 56, 67, 68, 69, 71, 72, 75, 76, 80, 83, 85], "due": [7, 27, 29, 53, 57, 59, 67, 68, 69, 71, 72, 75, 76], "appear": [7, 23, 33, 44, 45, 48, 56, 69, 71, 72, 75, 83, 84], "likelihood": [7, 27, 29, 45, 50, 52, 53, 57, 61], "now": [7, 27, 66, 67, 69, 78, 80, 81, 83, 85, 86, 87], "u": [7, 67, 68, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 86, 87], "token": [7, 37, 59, 60, 61, 62, 63, 64, 74, 76, 77], "etc": [7, 17, 24, 28, 32, 42, 43, 61, 65, 68, 69, 72, 74, 75, 76], "calcul": [7, 19, 27, 34, 43, 47, 48, 50, 52, 55, 59, 73, 75], "hamper": [7, 73, 75], "analyt": [7, 65, 78], "lead": [7, 50, 53, 75, 80], "draw": [7, 68, 69], "conclus": 7, "try": [7, 27, 29, 42, 43, 57, 59, 65, 69, 74, 76, 84], "veri": [7, 23, 44, 48, 50, 68, 69, 71, 72, 75, 76, 78, 81, 83, 86], "rare": [7, 29, 68, 69, 71, 72, 74, 75, 76], "anomal": [7, 53, 68, 69, 71, 72, 75, 76], "articl": [7, 27, 74], "ai": [7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 81, 83, 85, 86, 87], "blog": 7, "unexpect": [7, 24, 28], "consequ": 7, "inspect": [7, 67, 69, 75, 76, 80, 83, 86], "neg": [7, 50, 68, 69, 73], "affect": [7, 24, 28, 57, 63, 72, 74], "extrem": [7, 68, 69, 71, 72, 74, 75, 76], "rel": [7, 23, 43, 44, 52, 68, 69, 71, 72, 75, 76, 81], "record": [7, 24, 28, 67, 71, 83], "abbrevi": 7, "misspel": 7, "typo": [7, 64], "resolut": 7, "video": [7, 73], "audio": [7, 68, 69, 74, 77], "minor": [7, 37], "variat": 7, "translat": 7, "d": [7, 36, 71, 72, 76, 79, 85, 87], "constant": [7, 55], "median": 7, "question": [7, 17, 65, 76], "nearli": [7, 17, 69, 71, 72, 75], "awar": [7, 66, 76], "presenc": [7, 76], "signific": [7, 69, 72, 75, 76], "violat": [7, 69, 72, 75, 76], "assumpt": [7, 69, 72, 75, 76], "changepoint": [7, 69, 72, 75, 76], "shift": [7, 69, 72, 75, 76], "drift": [7, 69, 72, 75, 76], "autocorrel": [7, 69, 72, 75, 76], "almost": [7, 69, 72, 75, 76], "adjac": [7, 69, 72, 75, 76], "tend": [7, 23, 32, 69, 72, 75, 76, 84, 87], "sequenti": [7, 24, 28, 42, 75], "gap": 7, "group": [7, 19, 73, 80, 87], "b": [7, 14, 15, 17, 18, 19, 20, 23, 37, 38, 63, 71, 72, 73, 76, 82, 85, 87], "x1": [7, 48, 51, 80], "x2": [7, 48, 51, 80], "10th": 7, "100th": 7, "90": [7, 63, 71, 76, 82, 85], "similarli": [7, 24, 28, 68, 71, 74, 75, 80], "math": [7, 75], "behind": [7, 52, 76], "fundament": 7, "proper": [7, 38, 43, 48, 72, 75, 78, 80, 85], "closer": [7, 50, 80], "scenario": [7, 53, 68, 69], "underli": [7, 52, 61, 63, 87], "stem": [7, 52, 81], "evolv": 7, "influenc": 7, "accordingli": 7, "emploi": [7, 79, 81], "partit": [7, 82], "ahead": 7, "good": [7, 24, 28, 42, 44, 50, 53, 57, 59, 60, 65, 75], "fix": [7, 43, 72, 76, 83, 86], "problem": [7, 27, 34, 60, 65, 68, 69, 72, 74, 75], "deploy": [7, 76, 83, 85, 86], "overlook": [7, 50, 80], "fact": 7, "thu": [7, 23, 28, 44, 67, 71, 72, 76, 82, 85, 87], "diagnos": [7, 69, 74], "rarest": 7, "q": [7, 80], "fall": [7, 50, 59, 63, 76, 81], "subpar": 7, "special": [7, 37], "techniqu": 7, "smote": 7, "asymmetr": [7, 23], "properli": [7, 27, 33, 38, 39, 57, 74, 79, 81, 83, 84], "too": [7, 29, 34, 52, 74, 75, 80], "dark": [7, 84], "bright": [7, 87], "blurri": [7, 75], "abnorm": [7, 75], "exert": 7, "possible_issue_typ": 7, "label_kwarg": 7, "outlier_kwarg": 7, "near_dupl": [7, 11, 14, 68, 69, 71, 72, 75, 76], "near_duplicate_kwarg": 7, "non_iid": [7, 11, 19, 69, 71, 72, 75, 76], "non_iid_kwarg": 7, "health_summary_paramet": [7, 18], "health_summari": [7, 18, 23, 65, 73], "health_summary_kwarg": 7, "tandem": [7, 73], "view": [7, 24, 28, 29, 59, 61, 63, 65, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "sensit": 7, "ood_kwarg": 7, "outofdistribut": [7, 20, 52, 81], "outsid": 7, "knn": [7, 10, 19, 52, 71, 81], "outlierissuemanag": [7, 11, 20, 68], "nearduplicateissuemanag": [7, 11, 14], "noniidissuemanag": [7, 11, 19, 71], "num_permut": [7, 19], "permut": [7, 19], "significance_threshold": [7, 19], "signic": 7, "noniid": [7, 12, 16], "class_imbalance_kwarg": 7, "classimbalanceissuemanag": [7, 15], "data_issu": [8, 12, 13, 21, 68], "issue_find": [8, 12], "factori": [8, 12, 13], "datalab": [9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 65, 67, 75, 78, 85, 86], "except": [9, 42, 53, 68, 69, 75, 78], "dataformaterror": 9, "with_traceback": 9, "tb": 9, "__traceback__": 9, "datasetdicterror": 9, "datasetdict": 9, "usual": [9, 21, 75, 78, 83], "datasetloaderror": 9, "dataset_typ": 9, "fail": [9, 71], "hold": 9, "is_avail": [9, 75], "serv": [10, 13, 78], "central": [10, 87], "repositori": 10, "being": [10, 23, 24, 28, 29, 34, 37, 38, 53, 71, 76, 83, 84, 85], "basi": 10, "collect_statist": 10, "reus": [10, 17, 75], "avoid": [10, 24, 27, 28, 29, 36, 38, 45, 48, 55, 57, 59, 68, 69, 74], "recomput": [10, 86], "weighted_knn_graph": 10, "issue_manager_that_computes_knn_graph": 10, "collect_issues_from_issue_manag": 10, "set_health_scor": 10, "health": [10, 18, 23, 44, 65], "get_data_statist": 10, "concret": 11, "subclass": [11, 24, 28, 52, 68], "my_issu": 11, "stabl": [12, 16, 26, 30, 38, 41, 52, 66], "instati": 13, "public": [13, 76, 80, 84, 87], "creation": [13, 28], "execut": [13, 24, 28, 68, 74, 80], "coordin": [13, 48, 50, 51, 80, 87], "behavior": [13, 23, 24, 28], "At": [13, 74], "associ": [13, 24, 28, 78], "get_available_issue_typ": 13, "10": [14, 18, 19, 24, 25, 52, 53, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "_": [14, 17, 18, 19, 34, 37, 38, 67, 68, 73, 75, 76, 79, 85], "classvar": [14, 15, 17, 18, 19, 20], "short": [14, 15, 17, 18, 19, 20, 37, 38], "item": [14, 15, 17, 18, 19, 20, 38, 68, 69, 75, 76, 78, 79], "some_info_kei": [14, 15, 17, 18, 19, 20], "additional_info_kei": [14, 15, 17, 18, 19, 20], "near_duplicate_set": [14, 68, 69, 71, 72, 75, 76], "occurr": [14, 15, 17, 19, 20, 37], "collect_info": [14, 15, 17, 18, 19, 20], "near_duplicate_scor": [14, 68, 69, 71, 72, 75, 76], "info_to_omit": [14, 15, 17, 18, 19, 20], "compos": [14, 15, 17, 18, 19, 20, 24, 28, 72, 81, 86], "is_x_issu": [14, 15, 17, 18, 19, 20], "x_score": [14, 15, 17, 18, 19, 20], "val_a": [14, 15, 17, 18, 19, 20], "val_b1": [14, 15, 17, 18, 19, 20], "val_b2": [14, 15, 17, 18, 19, 20], "report_str": [14, 15, 17, 18, 19, 20, 21], "class_imbal": 15, "class_imbalance_scor": 15, "bleed": [16, 26], "edg": [16, 26, 50, 65, 76, 87], "sharp": [16, 26], "abc": 17, "believ": [17, 84], "priori": [17, 76], "global": 17, "anoth": [17, 23, 27, 37, 50, 53, 71, 72, 74, 76, 78, 81, 86], "abstract": 17, "applic": [18, 43, 76, 78, 79, 87], "typevar": [18, 24, 28, 50, 51], "_scalartype_co": 18, "covari": [18, 55, 83], "get_health_summari": 18, "summary_dict": 18, "label_scor": [18, 67, 68, 69, 71, 72, 75, 76], "simplified_kolmogorov_smirnov_test": 19, "neighbor_histogram": 19, "non_neighbor_histogram": 19, "kolmogorov": 19, "smirnov": 19, "largest": [19, 27, 34, 53, 57, 59, 84], "empir": [19, 33, 43], "cumul": 19, "ecdf": 19, "histogram": [19, 71, 83], "absolut": 19, "25": [19, 24, 34, 36, 73, 75, 76, 78, 79, 80, 87], "dimension": [19, 38, 67, 76, 81], "trial": 19, "non_iid_scor": [19, 69, 72, 75, 76], "default_threshold": 20, "37037": 20, "q3_avg_dist": 20, "iqr_avg_dist": 20, "median_outlier_scor": 20, "ood": [20, 52, 53, 68, 69, 72, 75, 76, 81], "exclud": [21, 60, 64, 68, 87], "get_report": 21, "overview": [23, 67, 69, 71, 72, 75, 78, 80, 81, 83, 85, 86, 87], "modifi": [23, 24, 27, 28, 38, 74, 76], "help": [23, 24, 28, 65, 66, 67, 68, 71, 72, 73, 74, 78, 79, 83, 84, 85, 86, 87], "rank_classes_by_label_qu": [23, 69], "merg": [23, 37, 65, 73, 74, 87], "find_overlapping_class": [23, 74, 76], "ascend": [23, 36, 44, 75, 76], "problemat": [23, 44, 60, 64, 67, 80, 87], "unnorm": [23, 44, 76], "abov": [23, 24, 27, 28, 38, 43, 50, 53, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "model_select": [23, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 83, 85, 86], "cross_val_predict": [23, 28, 67, 68, 69, 71, 72, 76, 78, 82, 83, 85, 86], "get_data_labels_from_dataset": 23, "yourfavoritemodel": [23, 76], "cv": [23, 34, 67, 68, 69, 71, 76, 78, 85], "df": [23, 38, 64, 67], "overall_label_qu": [23, 44], "col": 23, "prob": [23, 37, 76, 82], "divid": [23, 44, 53], "label_nois": [23, 44], "human": [23, 73, 84, 87], "clearli": [23, 53, 75, 80, 84], "num": [23, 44, 73, 76], "overlap": [23, 65, 73, 74, 76], "ontolog": 23, "publish": [23, 87], "therefor": [23, 53], "vehicl": [23, 73], "truck": [23, 73, 81, 84], "intuit": [23, 44], "car": [23, 73, 80, 84], "frequent": [23, 43, 71, 74, 83, 85], "confus": [23, 24, 28, 29, 38, 86, 87], "characterist": 23, "l": [23, 24, 28, 48, 50, 51], "class1": 23, "class2": 23, "relationship": 23, "arbitrari": [23, 59, 63, 68, 81, 83], "match": [23, 24, 28, 29, 43, 44, 53, 68, 69, 73, 75, 80, 82, 84], "dog": [23, 38, 44, 46, 60, 73, 74, 81, 82, 87], "cat": [23, 38, 44, 46, 73, 74, 81, 82], "captur": [23, 67, 80, 81, 84], "co": [23, 24, 25], "noisy_label": [23, 68, 69, 79], "overlapping_class": 23, "descend": [23, 24, 28, 34, 44], "overall_label_health_scor": [23, 44, 76], "suggest": [23, 43, 44, 50, 72, 74, 75, 83, 86], "half": [23, 24, 28, 44, 73, 87], "health_scor": [23, 44], "classes_by_label_qu": [23, 69], "cnn": [24, 28, 75], "cifar": [24, 25, 73, 81], "teach": [24, 25], "bhanml": 24, "blob": 24, "master": [24, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "call_bn": 24, "bn": 24, "input_channel": 24, "n_output": 24, "dropout_r": 24, "top_bn": 24, "architectur": [24, 28, 72, 86], "shown": [24, 51, 68, 74, 78, 81, 82, 84, 87], "forward": [24, 25, 28, 75, 78], "overridden": [24, 28], "although": [24, 28, 52, 71, 85], "recip": [24, 28], "afterward": [24, 28], "sinc": [24, 28, 31, 39, 44, 59, 63, 74, 78, 79, 80, 82, 87], "former": [24, 28], "hook": [24, 28, 73], "silent": [24, 27, 28], "t_destin": [24, 28], "__call__": [24, 28, 34], "add_modul": [24, 28], "child": [24, 28], "fn": [24, 28], "recurs": [24, 28, 34], "submodul": [24, 28], "children": [24, 28, 87], "nn": [24, 25, 28, 75], "init": [24, 28, 76], "doc": [24, 28, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "no_grad": [24, 28, 75, 81], "init_weight": [24, 28], "linear": [24, 28, 72, 75, 86], "fill_": [24, 28], "net": [24, 28, 67, 73, 75], "in_featur": [24, 28], "out_featur": [24, 28], "bia": [24, 28, 72, 75, 86], "tensor": [24, 25, 28, 67, 75, 81], "requires_grad": [24, 28], "bfloat16": [24, 28], "cast": [24, 28, 67], "buffer": [24, 28], "datatyp": [24, 28], "direct": [24, 28], "member": [24, 28, 68], "xdoctest": [24, 28], "undefin": [24, 28], "var": [24, 28], "buf": [24, 28], "20l": [24, 28], "1l": [24, 28], "5l": [24, 28], "immedi": [24, 28, 81], "cpu": [24, 28, 29, 67, 75], "move": [24, 28, 34, 66, 73], "cuda": [24, 28, 67, 75], "devic": [24, 28, 67, 75], "gpu": [24, 28, 67, 72, 86], "live": [24, 28], "copi": [24, 28, 55, 67, 68, 69, 71, 74, 79, 82, 83, 85], "doubl": [24, 28], "dump_patch": [24, 28], "eval": [24, 28, 75, 79, 81], "dropout": [24, 28], "batchnorm": [24, 28], "grad": [24, 28], "extra_repr": [24, 28], "line": [24, 28, 65, 68, 73, 78, 81, 87], "get_buff": [24, 28], "target": [24, 25, 28, 55, 56, 81, 83], "throw": [24, 28], "get_submodul": [24, 28], "explan": [24, 28], "fulli": [24, 28, 42, 74], "qualifi": [24, 28], "referenc": [24, 28], "attributeerror": [24, 28], "invalid": [24, 28], "resolv": [24, 28, 87], "get_extra_st": [24, 28], "state_dict": [24, 28], "set_extra_st": [24, 28], "build": [24, 28, 75, 84], "pickleabl": [24, 28], "serial": [24, 28], "backward": [24, 28, 75], "break": [24, 28, 75], "pickl": [24, 28, 80], "get_paramet": [24, 28], "let": [24, 28, 52, 53, 67, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "net_b": [24, 28], "net_c": [24, 28], "conv": [24, 28], "conv2d": [24, 28, 75], "16": [24, 28, 34, 59, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 86, 87], "33": [24, 28, 73, 80], "kernel_s": [24, 28], "stride": [24, 28], "200": [24, 28, 53, 73, 80, 87], "diagram": [24, 28, 82], "degre": [24, 28, 83], "queri": [24, 28, 69, 75], "named_modul": [24, 28], "o": [24, 28, 36, 37, 67, 68, 69, 73, 74, 76, 79, 80, 87], "transit": [24, 28], "ipu": [24, 28], "load_state_dict": [24, 28], "strict": [24, 28, 34], "persist": [24, 28], "strictli": [24, 28], "namedtupl": [24, 28], "missing_kei": [24, 28], "unexpected_kei": [24, 28], "miss": [24, 28, 38, 48, 50, 71, 74, 80, 83, 85], "runtimeerror": [24, 28], "idx": [24, 28, 38, 39, 68, 74, 75, 76, 78, 80, 81], "named_buff": [24, 28], "prefix": [24, 28, 67, 87], "prepend": [24, 28], "running_var": [24, 28], "named_children": [24, 28], "conv4": [24, 28], "conv5": [24, 28], "memo": [24, 28], "remove_dupl": [24, 28], "named_paramet": [24, 28], "register_backward_hook": [24, 28], "deprec": [24, 28, 31], "favor": [24, 28], "register_full_backward_hook": [24, 28], "removablehandl": [24, 28], "register_buff": [24, 28], "running_mean": [24, 28], "register_forward_hook": [24, 28], "posit": [24, 28, 38, 73, 81], "won": [24, 28, 68, 69, 74, 79], "inplac": [24, 28, 78], "register_forward_pre_hook": [24, 28], "gradient": [24, 28, 71, 75, 83], "respect": [24, 28, 76], "grad_input": [24, 28], "grad_output": [24, 28], "technic": [24, 28], "caller": [24, 28], "register_load_state_dict_post_hook": [24, 28], "post": [24, 28], "incompatible_kei": [24, 28], "modif": [24, 28], "thrown": [24, 28], "clearn": [24, 28], "register_modul": [24, 28], "register_paramet": [24, 28], "requires_grad_": [24, 28], "autograd": [24, 28], "freez": [24, 28, 67, 72, 86], "finetun": [24, 28], "gan": [24, 28], "share_memori": [24, 28], "share_memory_": [24, 28], "destin": [24, 28], "keep_var": [24, 28], "shallow": [24, 28], "howev": [24, 28, 38, 67, 71, 72, 75, 78, 82, 84, 85, 86], "releas": [24, 28, 66, 74, 81], "design": [24, 28], "ordereddict": [24, 28], "detach": [24, 28, 75], "non_block": [24, 28], "memory_format": [24, 28], "channels_last": [24, 28], "Its": [24, 28, 34, 44, 50], "complex": [24, 28], "integr": [24, 28, 65], "asynchron": [24, 28], "host": [24, 28], "pin": [24, 28, 72, 73, 86], "desir": [24, 28, 37, 51], "4d": [24, 28], "ignore_w": [24, 28], "determinist": [24, 28, 67], "1913": [24, 28], "3420": [24, 28], "5113": [24, 28], "2325": [24, 28], "env": [24, 28], "torch_doctest_cuda1": [24, 28], "gpu1": [24, 28], "1914": [24, 28], "5112": [24, 28], "2324": [24, 28], "float16": [24, 28], "cdoubl": [24, 28], "3741": [24, 28], "2382": [24, 28], "5593": [24, 28], "4443": [24, 28], "complex128": [24, 28], "6122": [24, 28], "1150": [24, 28], "to_empti": [24, 28], "storag": [24, 28], "dst_type": [24, 28], "xpu": [24, 28], "zero_grad": [24, 28, 75], "set_to_non": [24, 28], "context": [24, 28, 80], "noisili": [25, 76], "han": 25, "2018": 25, "cifar_cnn": [25, 26], "loss_coteach": 25, "y_1": 25, "y_2": 25, "forget_r": 25, "class_weight": 25, "logit": [25, 42, 75], "decim": [25, 38], "quickli": [25, 67, 71, 72, 74, 75, 79, 81, 84, 85, 87], "forget": [25, 34, 87], "rate_schedul": 25, "epoch": [25, 28, 74, 75], "initialize_lr_schedul": 25, "lr": [25, 28], "001": [25, 53, 74], "250": [25, 68, 69, 76, 80], "epoch_decay_start": 25, "80": [25, 71, 73, 79, 83, 85], "schedul": 25, "adjust": [25, 29, 47, 52, 53, 65, 76], "beta": 25, "adam": 25, "adjust_learning_r": 25, "alpha_plan": 25, "beta1_plan": 25, "forget_rate_schedul": 25, "num_gradu": 25, "expon": 25, "tell": [25, 72, 75, 76, 86], "train_load": [25, 28], "model1": [25, 76], "optimizer1": 25, "model2": [25, 76], "optimizer2": 25, "dataload": [25, 75, 81], "parser": 25, "parse_arg": 25, "num_iter_per_epoch": 25, "print_freq": 25, "topk": 25, "top1": 25, "top5": 25, "test_load": 25, "offici": [26, 41, 87], "wish": [26, 41, 81, 84, 87], "mnist_pytorch": 26, "coteach": [26, 66], "mini": [27, 57, 59, 74], "With": [27, 72, 76, 78, 83, 84, 86, 87], "approxim": [27, 52, 78], "low_self_confid": [27, 29, 45], "self_confid": [27, 29, 34, 45, 47, 53, 61, 63, 74, 76, 79, 85, 86], "conveni": [27, 67, 72, 86], "script": 27, "labelinspector": [27, 74], "adj_confident_thresholds_shar": 27, "labels_shar": 27, "pred_probs_shar": 27, "labels_fil": [27, 74], "pred_probs_fil": [27, 74], "batch_siz": [27, 28, 57, 59, 74, 75, 81, 84], "quality_score_kwarg": 27, "num_issue_kwarg": 27, "return_mask": 27, "variant": [27, 43, 84], "read": [27, 31, 69, 74, 76, 81, 87], "zarr": [27, 74], "memmap": [27, 84], "pythonspe": 27, "mmap": [27, 74], "hdf5": 27, "further": [27, 44, 45, 47, 50, 59, 60, 67, 74], "yourfil": 27, "r": [27, 55, 68, 69, 83, 84], "npy": [27, 73, 74, 84], "mmap_mod": [27, 84], "tip": [27, 29, 42, 74], "save_arrai": 27, "your_arrai": 27, "disk": [27, 73, 74], "npz": [27, 87], "maxim": [27, 43, 57, 59, 84], "multiprocess": [27, 29, 45, 57, 59, 74, 75, 84], "linux": [27, 57, 59], "physic": [27, 29, 57, 59, 80, 84], "psutil": [27, 29, 57, 59, 84], "demonstr": [27, 68, 72, 74, 75, 76, 78, 79, 80, 83, 84], "labels_arrai": [27, 39], "predprob": 27, "pred_probs_arrai": 27, "back": [27, 51, 68, 74, 80, 81], "store_result": 27, "becom": [27, 81], "verifi": [27, 74, 78, 81], "long": [27, 43, 52, 78], "enough": [27, 38, 74], "chunk": [27, 82], "ram": [27, 73], "faster": [27, 52, 55, 57, 59, 74, 76], "end_index": 27, "labels_batch": 27, "pred_probs_batch": 27, "update_confident_threshold": 27, "batch_result": 27, "score_label_qu": 27, "indices_of_examples_with_issu": [27, 74], "shortcut": 27, "encount": [27, 29, 57], "1000": [27, 67, 72, 73, 74, 81], "aggreg": [27, 34, 43, 47, 50, 53, 63, 74, 76, 78], "get_num_issu": 27, "fetch": [27, 67, 69], "seen": [27, 74, 81, 87], "far": [27, 43], "get_quality_scor": 27, "label_quality_scor": [27, 47, 50, 53, 56, 76, 80, 83], "method1": 27, "method2": 27, "normalized_margin": [27, 29, 34, 45, 47, 53, 61, 63], "low_normalized_margin": [27, 29, 45], "issue_indic": [27, 50, 75], "update_num_issu": 27, "split_arr": 27, "arr": [27, 74], "chunksiz": 27, "convnet": 28, "bespok": [28, 42], "get_mnist_dataset": 28, "loader": [28, 75], "download": [28, 67, 74, 75, 81], "mnist": [28, 65, 67, 73], "get_sklearn_digits_dataset": 28, "handwritten": 28, "digit": [28, 67, 73], "last": [28, 34, 48, 51, 68, 69, 74, 78, 87], "sklearn_digits_test_s": 28, "hard": [28, 73, 81], "simplenet": 28, "64": [28, 71, 75, 76, 80, 85], "log_interv": 28, "50": [28, 73, 74, 76, 78, 80, 81, 87], "01": [28, 53, 55, 67, 76, 79, 80, 83], "momentum": 28, "no_cuda": 28, "test_batch_s": [28, 75], "templat": 28, "enabl": 28, "flexibli": 28, "among": [28, 43, 76], "test_set": 28, "Be": 28, "overrid": 28, "train_idx": [28, 38, 81], "train_label": [28, 81, 86], "scikit": [28, 38, 52, 65, 67, 68, 69, 71, 72, 74, 77, 83, 86], "set_predict_proba_request": 28, "set_predict_request": 28, "encourag": [29, 45, 53, 56], "multilabel_classif": [29, 44, 45, 47, 53, 79], "pred_probs_by_class": 29, "prune_count_matrix_col": 29, "rank_by_kwarg": [29, 45, 53, 76], "num_to_remove_per_class": [29, 45], "bad": [29, 45, 50, 53, 72, 74, 86], "seem": [29, 76, 79], "fewer": [29, 38, 80], "aren": 29, "confidence_weighted_entropi": [29, 34, 45, 47, 53, 61, 63], "label_issues_idx": [29, 53], "entropi": [29, 31, 33, 34, 52, 53], "prune_by_class": [29, 45, 76], "predicted_neq_given": [29, 45, 76], "prune_counts_matrix": 29, "smallest": [29, 53], "unus": 29, "number_of_mislabeled_examples_in_class_k": 29, "delet": [29, 65, 74, 86], "thread": [29, 45], "window": [29, 73], "shorter": [29, 48], "find_predicted_neq_given": 29, "find_label_issues_using_argmax_confusion_matrix": 29, "latent_algebra": [30, 66], "label_quality_util": 30, "multilabel_util": [30, 79], "multilabel_scor": [30, 47], "token_classification_util": [30, 87], "get_normalized_entropi": 31, "min_allowed_prob": 31, "wikipedia": 31, "activ": [31, 33, 43, 65, 78], "towardsdatasci": 31, "cheatsheet": 31, "ec57bc067c0b": 31, "clip": [31, 38, 67], "behav": 31, "unnecessari": [31, 74], "slightli": [31, 85, 86], "interv": [31, 34, 81], "herein": 32, "inexact": 32, "cours": 32, "propag": 32, "throughout": [32, 38, 55, 67, 78, 84, 87], "compute_ps_py_inv_noise_matrix": 32, "compute_py_inv_noise_matrix": 32, "compute_inv_noise_matrix": 32, "easili": [32, 66, 67, 69, 71, 72, 76, 78, 79, 81, 82, 83, 84, 85, 86], "increas": [32, 50, 52, 53, 67, 68, 74, 78, 79, 87], "dot": [32, 63, 74], "compute_noise_matrix_from_invers": 32, "compute_pi": 32, "true_labels_class_count": 32, "compute_pyx": 32, "pyx": 32, "multiannot": 33, "assert_valid_inputs_multiannot": 33, "labels_multiannot": [33, 43], "ensembl": [33, 34, 43, 53, 71, 74, 79, 81, 83, 85], "allow_single_label": 33, "annotator_id": 33, "assert_valid_pred_prob": 33, "pred_probs_unlabel": [33, 43], "format_multiannotator_label": [33, 43, 78], "lexicograph": [33, 38], "formatted_label": [33, 38], "old": [33, 38, 66, 73], "th": [33, 37, 38, 43, 45, 48, 50, 51, 52, 61, 63, 64, 72, 79, 80, 87], "check_consensus_label_class": 33, "consensus_label": [33, 43, 78], "consensus_method": [33, 43], "consensu": [33, 43, 65, 77, 87], "establish": [33, 83, 86], "compute_soft_cross_entropi": 33, "soft": [33, 73], "find_best_temp_scal": 33, "coarse_search_rang": [33, 55, 74], "fine_search_s": [33, 55, 74], "temperatur": [33, 34, 50, 59, 63], "scale": [33, 36, 73, 74, 81, 84, 85], "factor": [33, 34, 57, 59], "minim": [33, 50, 81], "temp_scale_pred_prob": 33, "temp": 33, "sharpen": [33, 73], "smoothen": 33, "classlabelscor": 34, "enum": 34, "get_self_confidence_for_each_label": [34, 53], "get_normalized_margin_for_each_label": [34, 53], "get_confidence_weighted_entropy_for_each_label": [34, 53], "75": [34, 68, 69, 73, 78, 79, 80, 83, 87], "from_str": 34, "scorer": 34, "exponential_moving_averag": [34, 47], "alpha": [34, 47, 50, 68, 69, 76, 79, 83], "exponenti": 34, "ema": 34, "s_1": 34, "s_k": 34, "ema_k": 34, "accord": [34, 45, 71, 72, 76, 87], "formula": [34, 36], "_t": 34, "cdot": 34, "s_t": 34, "qquad": 34, "leq": 34, "_1": 34, "give": [34, 53, 76, 78, 84], "recent": [34, 87], "success": 34, "previou": [34, 75, 80], "discount": 34, "s_ema": 34, "175": [34, 76, 80], "softmin": [34, 47, 50, 59, 63], "underflow": 34, "nan": [34, 43, 71, 78, 83, 85], "possible_method": 34, "aggregated_scor": 34, "multilabelscor": 34, "base_scor": 34, "base_scorer_kwarg": 34, "aggregator_kwarg": [34, 47], "n_sampl": 34, "n_label": 34, "binari": [34, 38, 45, 47, 76, 87], "worst": [34, 78], "class_label_quality_scor": 34, "get_class_label_quality_scor": 34, "42": [34, 73, 80, 87], "452": 34, "new_scor": 34, "575": 34, "get_label_quality_scores_per_class": [34, 47], "ml_scorer": 34, "multilabel_pi": 34, "binar": [34, 35], "second": [34, 36, 38, 53, 68, 74, 76, 87], "get_cross_validated_multilabel_pred_prob": 34, "reformat": [34, 67], "wider": 34, "strategi": 34, "splitter": 34, "kfold": [34, 75], "multiclass": [34, 38, 43, 79], "onevsrestclassifi": [34, 79], "randomforestclassifi": [34, 76, 79], "n_split": [34, 75, 79], "stack_compl": 35, "pred_prob_slic": 35, "extend": [35, 75, 81, 87], "get_onehot_num_class": 35, "onehot": 35, "encod": [35, 51, 57, 60, 71, 72, 74, 83, 84, 85, 86], "multilabel": [35, 79], "int2onehot": [35, 79], "hot": [35, 45, 51, 57, 60, 71, 73, 74, 83, 84, 85], "onehot2int": [35, 79], "onehot_matrix": 35, "transform_distances_to_scor": 36, "exp": [36, 52, 53, 68], "dt": 36, "right": [36, 48, 51, 72, 79, 80, 81, 86], "num_neighbor": 36, "slice": 36, "ood_features_scor": [36, 52, 81], "95122942": 36, "83945702": 36, "token_classif": [37, 61, 63, 64], "get_sent": [37, 87], "sentenc": [37, 61, 63, 64, 72, 86], "readabl": 37, "filter_sent": [37, 87], "lambda": [37, 67, 68, 78], "long_sent": 37, "headlin": 37, "process_token": 37, "charact": [37, 38], "s1": 37, "s2": 37, "processed_token": 37, "rule": [37, 73], "alecnlcb": 37, "entiti": [37, 65, 74, 87], "mapped_ent": 37, "unique_ident": 37, "loc": [37, 68, 69, 75, 87], "merge_prob": 37, "probs_merg": 37, "55": [37, 73, 80, 83], "0125": [37, 63], "0375": 37, "075": 37, "025": 37, "color_sent": 37, "color": [37, 60, 68, 69, 71, 76, 79, 81, 83, 84], "red": [37, 51, 68, 69, 73, 76, 79, 80, 81, 84], "colored_sent": 37, "termcolor": 37, "31msentenc": 37, "0m": 37, "ancillari": 38, "remove_noise_from_class": 38, "class_without_nois": 38, "any_other_class": 38, "choos": [38, 53, 71, 74, 76, 83, 85], "tradition": 38, "clip_noise_r": 38, "clip_valu": 38, "new_sum": 38, "preserv": 38, "value_count": [38, 74], "fill": 38, "wherea": [38, 45, 82], "come": [38, 68, 69, 74, 84], "major": [38, 43, 66, 75, 81], "versu": [38, 76], "value_counts_fill_missing_class": 38, "get_missing_class": 38, "round_preserving_sum": 38, "obviou": 38, "cgdeboer": 38, "iteround": 38, "round_preserving_row_tot": 38, "reach": 38, "estimate_pu_f1": 38, "prob_s_eq_1": 38, "claesen": 38, "f1": [38, 72, 76], "confusion_matrix": 38, "BE": 38, "print_square_matrix": 38, "left_nam": 38, "top_nam": 38, "titl": [38, 68, 69, 76, 79, 81], "short_titl": 38, "round_plac": 38, "pretti": [38, 76], "print_noise_matrix": [38, 76], "print_inverse_noise_matrix": 38, "print_joint_matrix": [38, 76], "joint_matrix": 38, "compress_int_arrai": 38, "num_possible_valu": 38, "train_val_split": 38, "holdout_idx": 38, "subset_x_i": 38, "extract": [38, 52, 67, 72, 78, 81, 84, 86], "subset_label": 38, "subset_data": 38, "extract_indices_tf": 38, "allow_shuffl": 38, "turn": [38, 65, 80], "unshuffle_tensorflow_dataset": 38, "shuffledataset": 38, "histori": 38, "pre_x": 38, "buffer_s": 38, "is_torch_dataset": 38, "is_tensorflow_dataset": 38, "csr_vstack": 38, "csr_matric": 38, "append": [38, 67, 73, 75, 76, 78, 79, 81, 87], "bottom": [38, 48, 51, 80], "vstack": [38, 73, 74, 75, 76, 78, 79], "append_extra_datapoint": 38, "to_data": 38, "from_data": 38, "taken": 38, "One": [38, 52, 74], "get_num_class": 38, "label_matrix": 38, "canon": 38, "num_unique_class": 38, "get_unique_class": 38, "format_label": 38, "smart_display_datafram": 38, "displai": [38, 51, 60, 64, 67, 72, 76, 86, 87], "jupyt": [38, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "notebook": [38, 43, 67, 69, 73, 74, 76, 78, 79, 80, 84, 87], "consol": 38, "force_two_dimens": 38, "html": [38, 52, 71, 74, 76], "assert_valid_input": 39, "allow_missing_class": 39, "allow_one_class": 39, "assert_valid_class_label": 39, "assert_nonempty_input": 39, "assert_indexing_work": 39, "length_x": 39, "labels_to_arrai": 39, "labellik": 39, "keraswrappermodel": [42, 65], "keraswrappersequenti": 42, "tf": [42, 67], "legaci": 42, "lack": 42, "keraswrapp": 42, "huggingface_keras_imdb": 42, "unit": [42, 87], "model_kwarg": [42, 55], "compile_kwarg": 42, "sparsecategoricalcrossentropi": 42, "layer": [42, 67, 72, 81, 86], "dens": [42, 72, 86], "my_keras_model": 42, "from_logit": 42, "compil": 42, "declar": 42, "apply_softmax": 42, "analysi": 43, "analyz": [43, 65, 76, 78, 79], "get_label_quality_multiannot": [43, 78], "vote": 43, "crowdsourc": [43, 65, 78], "dawid": [43, 78], "skene": [43, 78], "analog": [43, 73, 78], "chosen": [43, 53, 78], "crowdlab": [43, 78], "unlabel": [43, 78, 81, 84], "decid": [43, 72, 73, 78, 83, 86, 87], "get_active_learning_scor": [43, 78], "activelab": [43, 78], "priorit": [43, 50, 80, 84, 87], "showcas": 43, "main": 43, "best_qual": 43, "quality_method": 43, "calibrate_prob": 43, "return_detailed_qu": 43, "return_annotator_stat": 43, "return_weight": 43, "label_quality_score_kwarg": 43, "necessarili": [43, 72, 76], "did": [43, 44, 67, 71, 76, 78, 83, 85, 86], "id": [43, 68, 75, 78], "majority_vot": 43, "ti": 43, "broken": [43, 73], "highest": [43, 68, 75, 82], "0th": 43, "consensus_quality_scor": [43, 78], "annotator_agr": [43, 78], "reman": 43, "1st": 43, "2nd": [43, 57], "3rd": 43, "consensus_label_suffix": 43, "consensus_quality_score_suffix": 43, "suffix": 43, "emsembl": 43, "weigh": [43, 73], "agreement": [43, 78], "agre": 43, "prevent": 43, "overconfid": [43, 82], "wrong": [43, 48, 50, 66, 68, 69, 72, 74, 76, 80, 86], "detailed_label_qu": [43, 78], "annotator_stat": [43, 78], "model_weight": 43, "annotator_weight": 43, "warn": [43, 68], "labels_info": 43, "num_annot": [43, 78], "deriv": [43, 78], "quality_annotator_1": 43, "quality_annotator_2": 43, "quality_annotator_m": 43, "lowest": [43, 69, 75, 78, 79, 80, 84], "annotator_qu": [43, 78], "num_examples_label": [43, 78], "agreement_with_consensu": [43, 78], "worst_class": [43, 78], "trustworthi": [43, 78, 83], "get_label_quality_multiannotator_ensembl": 43, "func": 43, "weigtht": 43, "budget": 43, "retrain": [43, 83, 86], "active_learning_scor": 43, "improv": [43, 69, 73, 74, 75, 76, 83, 84, 85, 86], "active_learning_scores_unlabel": 43, "get_active_learning_scores_ensembl": 43, "henc": [43, 67, 68, 78], "get_majority_vote_label": [43, 78], "event": 43, "lastli": [43, 71], "convert_long_to_wide_dataset": 43, "labels_multiannotator_long": 43, "wide": [43, 67, 85, 86], "suitabl": [43, 71, 85], "labels_multiannotator_wid": 43, "common_multilabel_issu": 44, "mutual": [44, 79], "exclus": [44, 79], "vice": 44, "versa": 44, "rank_classes_by_multilabel_qu": 44, "overall_multilabel_health_scor": 44, "multilabel_health_summari": 44, "classes_by_multilabel_qu": 44, "inner": [45, 59], "find_multilabel_issues_per_class": 45, "per_class_label_issu": 45, "label_issues_list": 45, "labels_list": 45, "pred_probs_list": [45, 53, 75, 76], "anim": [46, 81], "rat": 46, "predat": 46, "pet": 46, "reptil": 46, "manner": [47, 78, 83, 85, 86], "box": [48, 50, 51, 73, 80], "object_detect": [48, 50, 51, 80], "return_indices_ranked_by_scor": [48, 80], "overlapping_label_check": [48, 50], "suboptim": [48, 50], "locat": [48, 50, 80, 84, 87], "bbox": [48, 51, 80], "image_nam": 48, "y1": [48, 51, 80], "y2": [48, 51, 80], "later": [48, 52, 86, 87], "mmdetect": [48, 80], "corner": [48, 51, 80], "swap": [48, 50, 60, 64], "penal": [48, 50], "concern": [48, 50, 65, 69], "aggregation_weight": 50, "imperfect": [50, 74], "chose": [50, 78, 80], "imperfectli": [50, 80], "dirti": [50, 53, 56, 83], "subtyp": 50, "badloc": 50, "nonneg": 50, "issues_from_scor": [50, 59, 60, 63, 64, 80, 84, 87], "compute_overlooked_box_scor": 50, "high_probability_threshold": 50, "auxiliary_input": 50, "vari": [50, 69], "iou": 50, "heavili": 50, "auxiliarytypesdict": 50, "pred_label": [50, 86], "pred_label_prob": 50, "pred_bbox": 50, "lab_label": 50, "lab_bbox": 50, "similarity_matrix": 50, "min_possible_similar": 50, "scores_overlook": 50, "compute_badloc_box_scor": 50, "low_probability_threshold": 50, "scores_badloc": 50, "compute_swap_box_scor": 50, "accident": [50, 71, 72, 86], "scores_swap": 50, "pool_box_scores_per_imag": 50, "box_scor": 50, "image_scor": [50, 59, 84], "visual": [51, 68, 69, 75, 83, 85, 87], "prediction_threshold": 51, "overlai": [51, 80], "figsiz": [51, 68, 69, 75, 76, 79, 81], "save_path": [51, 80], "blue": [51, 73, 76, 80], "overlaid": 51, "side": [51, 73, 80], "figur": [51, 76, 79, 81, 83], "extens": [51, 76, 78], "png": [51, 80], "pdf": [51, 52], "ep": 51, "svg": 51, "plot": [51, 68, 69, 76, 79, 81, 83, 84], "matplotlib": [51, 68, 69, 75, 76, 79, 80, 81, 83], "Of": 52, "li": 52, "smaller": [52, 79, 80], "find_top_issu": [52, 53, 81], "reli": [52, 67, 68, 69, 72, 80, 81, 86], "dist_metr": 52, "dim": [52, 75, 84], "subtract": [52, 53], "renorm": [52, 53, 74], "least_confid": 52, "sum_": 52, "log": [52, 53, 66], "softmax": [52, 59, 63, 75], "literatur": 52, "gen": 52, "liu": 52, "lochman": 52, "zach": 52, "openaccess": 52, "thecvf": 52, "content": [52, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "cvpr2023": 52, "liu_gen_pushing_the_limits_of_softmax": 52, "based_out": 52, "distribution_detection_cvpr_2023_pap": 52, "fit_scor": [52, 81], "ood_predictions_scor": 52, "categor": [52, 68, 69, 70, 83, 85], "pretrain": [52, 67, 72, 81, 86], "adjust_confident_threshold": 52, "probabilist": [52, 67, 68, 69, 71, 72, 81, 82, 85], "order_label_issu": [53, 66], "whichev": [53, 82], "argsort": [53, 72, 75, 76, 81, 83, 86], "max_": 53, "get_label_quality_ensemble_scor": [53, 74, 76], "weight_ensemble_members_bi": 53, "custom_weight": 53, "log_loss_search_t_valu": 53, "0001": [53, 73], "scheme": 53, "log_loss_search": 53, "log_loss": [53, 72], "1e0": 53, "1e1": 53, "1e2": 53, "2e2": 53, "quality_scor": [53, 81], "forth": 53, "top_issue_indic": 53, "rank_bi": [53, 66], "weird": [53, 64], "minu": 53, "prob_label": 53, "max_prob_not_label": 53, "idea": 53, "AND": [53, 72], "corrupt": [55, 83], "linearregress": [55, 74, 83], "y_with_nois": 55, "n_boot": [55, 74], "include_aleatoric_uncertainti": [55, 74], "sole": [55, 68, 78, 81, 85], "larger": [55, 57, 59, 73, 74, 75], "bootstrap": [55, 74, 83], "resampl": [55, 67, 74], "epistem": [55, 74, 81, 83], "aleator": [55, 74, 83], "model_final_kwarg": 55, "coars": 55, "thorough": [55, 74], "fine": [55, 67, 72, 81, 86], "grain": 55, "grid": 55, "get_epistemic_uncertainti": 55, "varianc": [55, 76], "epistemic_uncertainti": 55, "get_aleatoric_uncertainti": 55, "residu": [55, 56, 74], "deviat": [55, 83], "ie": 55, "aleatoric_uncertainti": 55, "outr": 56, "contin": 56, "raw": [56, 65, 66, 69, 73, 75, 78, 80, 81], "aka": [56, 67, 76, 87], "00323821": 56, "33692597": 56, "00191686": 56, "semant": [57, 59, 60, 77], "segment": [57, 59, 60, 77], "pixel": [57, 59, 60, 81, 84], "h": [57, 59, 60, 84], "height": [57, 59, 60, 84], "w": [57, 59, 60, 84], "width": [57, 59, 60, 84], "labels_one_hot": [57, 60, 84], "stream": [57, 81, 87], "downsampl": [57, 59, 84], "shrink": [57, 59], "divis": [57, 59, 68], "segmant": [59, 60], "num_pixel_issu": [59, 84], "product": [59, 74, 75], "pixel_scor": [59, 84], "display_issu": [59, 60, 61, 63, 64, 84, 87], "highlight": [60, 64, 68, 69, 71, 84], "enter": 60, "legend": [60, 68, 69, 79, 80, 83, 84], "colormap": 60, "background": 60, "person": [60, 74, 80, 84, 87], "common_label_issu": [60, 64, 84, 87], "ambigu": [60, 64, 67, 72, 73, 76, 86, 87], "systemat": [60, 64, 78], "misunderstood": [60, 64], "issues_df": [60, 75], "filter_by_class": [60, 84], "class_index": 60, "issues_subset": [60, 64], "95": [61, 63, 71, 73, 76, 83], "token_score_method": 63, "sentence_score_method": 63, "sentence_score_kwarg": 63, "compris": [63, 64], "token_scor": [63, 87], "converg": 63, "toward": 63, "_softmin_sentence_scor": 63, "sentence_scor": [63, 87], "token_info": 63, "70": [63, 71, 76, 83], "02": [63, 68, 69, 76, 80, 83], "03": [63, 73, 76, 80, 87], "04": [63, 80, 83], "08": [63, 76, 80, 87], "commonli": [64, 66, 68, 69, 79, 87], "filter_by_token": [64, 87], "But": [64, 76, 87], "restrict": [64, 74], "reliabl": [65, 67, 74, 78, 84, 85], "thousand": 65, "imagenet": [65, 73], "popular": [65, 78, 80], "centric": [65, 77], "capabl": 65, "minut": [65, 67, 71, 72, 73, 78, 79, 80, 83, 84, 85, 86, 87], "conda": 65, "feature_embed": [65, 81], "Then": [65, 74, 75, 83, 85, 86], "your_dataset": [65, 67, 68, 69, 71, 72, 75], "column_name_of_label": [65, 67, 68, 69, 71, 72, 75], "plagu": [65, 69], "untrain": 65, "\u30c4": 65, "label_issues_info": [65, 69], "sklearn_compatible_model": 65, "framework": [65, 79, 80], "complianc": 65, "tag": [65, 79, 87], "sequenc": 65, "recognit": [65, 67, 74, 87], "train_data": [65, 81, 83, 85, 86], "gotten": 65, "test_data": [65, 76, 79, 81, 83, 85, 86], "deal": [65, 69], "tutori": [65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "faq": [65, 77], "feel": [65, 67, 69, 74], "free": [65, 67, 69, 74, 76], "ask": [65, 74], "slack": [65, 74], "project": [65, 83], "welcom": 65, "commun": [65, 74], "guidelin": [65, 80], "piec": 65, "studio": [65, 69, 74], "platform": [65, 74], "tabular": [65, 68, 69, 70, 74, 77, 78], "automl": [65, 74], "foundat": 65, "smart": [65, 74], "edit": [65, 74], "easier": [65, 76], "unreli": [65, 67, 71, 72, 85], "older": 66, "outlin": 66, "substitut": 66, "v2": [66, 71, 85], "get_noise_indic": 66, "psx": 66, "sorted_index_method": 66, "order_label_error": 66, "label_errors_bool": 66, "latent_estim": 66, "num_label_error": 66, "learningwithnoisylabel": 66, "neatli": 66, "organ": [66, 71, 73, 85, 87], "reorgan": 66, "baseline_method": 66, "incorpor": [66, 76], "research": [66, 76], "polyplex": 66, "terminologi": 66, "label_error": 66, "quickstart": [67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "spoken": 67, "500": [67, 81, 87], "english": [67, 73], "pronunci": 67, "wav": 67, "huggingfac": [67, 68, 69, 75], "voxceleb": 67, "speech": [67, 87], "your_pred_prob": [67, 68, 69, 71, 72], "tensorflow_io": 67, "26": [67, 68, 73, 75, 76, 78, 80], "huggingface_hub": 67, "12": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "branch": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "reproduc": [67, 71, 76, 78], "command": 67, "wget": [67, 80, 84, 87], "navig": 67, "link": [67, 73, 80], "browser": 67, "jakobovski": 67, "archiv": [67, 87], "v1": 67, "tar": [67, 81], "gz": [67, 81], "mkdir": [67, 87], "spoken_digit": 67, "xf": 67, "6_nicolas_32": 67, "data_path": 67, "listdir": 67, "nondeterminist": 67, "file_nam": 67, "endswith": 67, "file_path": 67, "join": [67, 74, 75], "39": [67, 68, 72, 73, 74, 75, 80, 83, 84, 86, 87], "7_george_26": 67, "0_nicolas_24": 67, "0_nicolas_6": 67, "listen": 67, "display_exampl": 67, "click": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "expand": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "pulldown": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "colab": [67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "tfio": 67, "pathlib": 67, "ipython": 67, "load_wav_16k_mono": 67, "filenam": 67, "khz": 67, "file_cont": 67, "io": [67, 73], "read_fil": 67, "sample_r": 67, "decode_wav": 67, "desired_channel": 67, "squeez": 67, "int64": [67, 78], "rate_in": 67, "rate_out": 67, "16000": 67, "wav_file_nam": 67, "audio_r": 67, "wav_file_exampl": 67, "plai": [67, 73, 74], "button": 67, "wav_file_name_exampl": 67, "7_jackson_43": 67, "hear": 67, "extractor": 67, "encoderclassifi": 67, "spkrec": 67, "xvect": 67, "feature_extractor": 67, "from_hparam": 67, "run_opt": 67, "uncom": 67, "wav_audio_file_path": 67, "head": [67, 69, 71, 72, 73, 75, 76, 78, 83, 85, 86], "torchaudio": 67, "extract_audio_embed": 67, "emb": [67, 75], "signal": 67, "encode_batch": 67, "embeddings_list": [67, 75], "embeddings_arrai": 67, "512": [67, 75], "14": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "196308": 67, "319454": 67, "47899": 67, "289091": 67, "817013": 67, "892642": 67, "24": [67, 73, 76, 78, 80], "898056": 67, "2561927": 67, "559636": 67, "5597174": 67, "6206665": 67, "285249": 67, "21": [67, 68, 69, 73, 76, 80, 87], "709625": 67, "5033684": 67, "913807": 67, "819826": 67, "1831462": 67, "208761": 67, "08425": 67, "321053": 67, "005463": 67, "216175": 67, "478231": 67, "682177": 67, "053815": 67, "2424726": 67, "091422": 67, "78335106": 67, "039538": 67, "23": [67, 73, 75, 76, 80], "569181": 67, "19": [67, 72, 73, 75, 76, 81, 83, 84, 86, 87], "76109": 67, "1258249": 67, "75323": 67, "3508852": 67, "598273": 67, "237118": 67, "2500": 67, "leverag": [67, 72, 74, 76, 78, 86], "tune": [67, 72, 73, 81, 86], "computation": [67, 72, 86], "intens": [67, 72, 86], "held": [67, 71, 72, 73, 80, 81, 82, 85], "straightforward": [67, 71, 85], "benefit": [67, 82, 84, 85], "tol": 67, "num_crossval_fold": [67, 71, 78, 85], "decreas": [67, 74], "never": [67, 76, 79, 81, 82], "accuracy_scor": [67, 72, 76, 85, 86], "cv_accuraci": 67, "9772": 67, "probabilit": [67, 86], "9976": 67, "176": [67, 73, 76, 79], "006548": 67, "2318": 67, "008296": 67, "986": 67, "010476": 67, "1946": 67, "012922": 67, "516": 67, "013263": 67, "investig": 67, "100049": 67, "998728": 67, "998785": 67, "980984": 67, "998247": 67, "18": [67, 72, 73, 76, 80, 81, 83, 84, 86, 87], "identified_label_issu": [67, 72], "lowest_quality_label": [67, 72, 76, 83, 86], "sort_valu": [67, 69, 71, 72, 75, 76, 78], "469": 67, "1871": 67, "1955": 67, "2132": 67, "worth": [67, 76], "iloc": [67, 71, 72, 83, 85, 86], "6_yweweler_14": 67, "6_yweweler_36": 67, "6_yweweler_35": 67, "6_theo_27": 67, "4_george_31": 67, "6_nicolas_8": 67, "sound": 67, "quit": [67, 81], "22": [67, 68, 73, 75, 76, 79, 80, 87], "blindli": [67, 74, 83, 85, 86], "trust": [67, 74, 76, 78, 82, 83, 85, 86], "address": [68, 69, 72, 74, 86], "underneath": 68, "hood": 68, "alert": 68, "introduct": 68, "mayb": [68, 69, 72], "examin": [68, 69, 71, 85], "your_feature_matrix": [68, 69], "toi": [68, 69, 73, 75, 76, 78], "train_test_split": [68, 69, 81, 85, 86], "inf": [68, 69], "mid": [68, 69], "bins_map": [68, 69], "create_data": [68, 69], "y_bin": [68, 69], "y_i": [68, 69], "y_bin_idx": [68, 69], "y_train": [68, 69, 76, 83], "y_test": [68, 69, 76, 83], "y_train_idx": [68, 69], "y_test_idx": [68, 69], "test_siz": [68, 69, 85, 86], "slide": [68, 69, 73], "decis": [68, 69, 85], "boundari": [68, 69], "frame": [68, 69], "x_out": [68, 69], "tini": [68, 69], "concaten": [68, 69, 82], "y_out": [68, 69], "y_out_bin": [68, 69], "y_out_bin_idx": [68, 69], "exact_duplicate_idx": [68, 69], "x_duplic": [68, 69], "y_duplic": [68, 69], "y_duplicate_idx": [68, 69], "noisy_labels_idx": [68, 69, 79], "scatter": [68, 69, 76, 79, 83], "black": [68, 69, 73, 83], "cyan": [68, 69], "pyplot": [68, 69, 75, 76, 79, 81, 83], "plt": [68, 69, 75, 76, 79, 81, 83], "plot_data": [68, 69, 76, 79, 83], "fig": [68, 69, 73, 75, 81, 83], "ax": [68, 69, 75, 81, 83], "subplot": [68, 69, 75, 81], "set_titl": [68, 69, 75, 81], "set_xlabel": [68, 69], "x_1": [68, 69], "fontsiz": [68, 69, 75, 76, 79], "set_ylabel": [68, 69], "x_2": [68, 69], "set_xlim": [68, 69], "set_ylim": [68, 69], "linestyl": [68, 69], "circl": [68, 69, 76, 79], "misclassifi": [68, 69], "zip": [68, 69, 75, 80, 87], "label_err": [68, 69], "180": [68, 69, 80], "marker": [68, 69], "facecolor": [68, 69], "edgecolor": [68, 69], "linewidth": [68, 69, 81], "dup": [68, 69], "first_legend": [68, 69], "align": [68, 69], "title_fontproperti": [68, 69], "semibold": [68, 69], "second_legend": [68, 69], "45": [68, 69, 73, 76, 80], "gca": [68, 69], "add_artist": [68, 69], "tight_layout": [68, 69], "ideal": [68, 69], "logist": [68, 69, 72, 78, 81, 86], "regress": [68, 69, 72, 77, 78, 81, 86], "remaind": 68, "modal": [68, 69, 74, 78], "regardless": [68, 69], "132": [68, 69, 76, 80], "9091": [68, 69], "77": [68, 69, 71, 73, 80, 85], "006939": [68, 69], "007830": [68, 69], "40": [68, 69, 72, 73, 75, 87], "014826": [68, 69], "107": [68, 69, 76, 79], "021220": [68, 69], "120": [68, 69, 75], "026403": [68, 69], "notic": [68, 76, 78, 80], "5221": [68, 69], "126": [68, 69, 76, 80], "046465": [68, 69], "130": [68, 69], "068695": [68, 69], "129": [68, 69], "127": [68, 69], "076251": [68, 69], "128": [68, 69, 73, 75], "083941": [68, 69], "2465": [68, 69], "is_near_duplicate_issu": [68, 69, 71, 72, 75, 76], "131": [68, 69, 84], "000000e": [68, 69], "00": [68, 69, 71, 73, 75, 84, 85], "463180e": [68, 69], "07": [68, 69, 76, 80], "51": [68, 69, 71, 73, 76, 80], "857172e": [68, 69], "859087e": [68, 69], "30": [68, 73, 74, 75, 79, 84, 87], "3293": 68, "025076": 68, "026534": 68, "050766": 68, "051025": 68, "home": [68, 72, 73, 75, 81, 86], "runner": [68, 72, 75, 81, 86], "219": [68, 80], "userwarn": 68, "249": [68, 76, 80, 87], "228": [68, 80], "34": [68, 73, 76, 78, 80, 81, 87], "54": [68, 73, 76, 80], "039117": 68, "53": [68, 71, 73, 79, 80, 85], "044594": 68, "105": 68, "105121": 68, "133588": [68, 69], "43": [68, 73, 75, 76, 80, 86], "168035": 68, "125": 68, "090878": 68, "37": [68, 73], "169462": 68, "109": [68, 80], "194566": 68, "35": [68, 73, 78, 79, 80], "196302": 68, "206314": 68, "average_ood_scor": 68, "32933380816554325": 68, "52": [68, 73, 80, 87], "085049e": 68, "087324e": 68, "89": [68, 71, 80, 83], "92": [68, 73, 76, 80], "574261e": 68, "583757e": 68, "91": [68, 73, 80, 85, 87], "314215e": 68, "341292e": 68, "specfi": 68, "new_lab": 68, "scoring_funct": 68, "div": 68, "rem": 68, "inv_scal": 68, "49": [68, 73, 76, 80], "superstitionissuemanag": 68, "unlucki": 68, "superstit": 68, "to_seri": 68, "issues_mask": 68, "summary_scor": 68, "32": [68, 73, 76, 78, 80], "9242": 68, "is_superstition_issu": 68, "superstition_scor": 68, "047581": 68, "090635": 68, "129591": 68, "65": [68, 80], "164840": 68, "demo": [69, 71, 79, 85], "discov": [69, 87], "lurk": [69, 75, 76], "thoroughli": 69, "preprocess": [69, 71, 81, 83, 85, 86], "review": [69, 71, 72, 73, 74, 76, 80, 83, 84, 85, 86, 87], "8218": 69, "is_non_iid_issu": [69, 72, 75, 76], "810274": 69, "826147": 69, "849587": 69, "855359": 69, "855485": 69, "821750488732925": 69, "auto": [69, 73, 74, 83, 85, 86], "conceptu": 69, "909091": 69, "522080": 69, "246459": 69, "821750": 69, "betweeen": 69, "864232": 69, "586131": 69, "235095": 69, "970324": 69, "825563": 69, "548979": 69, "221560": 69, "890575": 69, "533367": 69, "622256": 69, "199185": 69, "755724": 69, "499498": [69, 73], "179601": 69, "948362": 69, "632385": 69, "292800": 69, "878267": 69, "examples_w_issu": [69, 74], "inde": [69, 72], "miscellan": [69, 87], "206897": 69, "041667": 69, "793103": 69, "071429": 69, "103448": 69, "928571": 69, "053333": 69, "101266": 69, "946667": 69, "portion": 69, "huge": [69, 76], "worri": 69, "critic": 69, "highli": [69, 75], "sql": [71, 85], "databas": [71, 85], "excel": [71, 85], "parquet": [71, 85], "student": [71, 83, 85, 87], "grade": [71, 83, 85], "900": [71, 83, 85], "exam": [71, 83, 85], "letter": [71, 85, 87], "hundr": [71, 85], "histgradientboostingclassifi": 71, "reflect": [71, 72, 78, 80, 81, 83, 85, 86], "standardscal": [71, 81, 85], "possibli": [71, 85], "grades_data": [71, 85], "read_csv": [71, 72, 83, 85, 86], "stud_id": [71, 85], "exam_1": [71, 83, 85], "exam_2": [71, 83, 85], "exam_3": [71, 83, 85], "letter_grad": [71, 85], "f48f73": [71, 85], "0bd4e7": [71, 85], "81": [71, 72, 80, 83, 85, 87], "great": [71, 73, 85], "particip": [71, 85], "cb9d7a": [71, 85], "61": [71, 80, 85], "94": [71, 73, 76, 80, 83, 85], "78": [71, 73, 76, 80, 83, 85], "9acca4": [71, 85], "48": [71, 73, 76, 80, 85, 87], "x_raw": [71, 85], "cat_featur": 71, "x_encod": [71, 85], "get_dummi": [71, 83, 85], "drop_first": [71, 85], "numeric_featur": [71, 85], "scaler": [71, 81, 85], "x_process": [71, 85], "fit_transform": [71, 85], "bring": [71, 72, 75, 78, 83, 85, 86], "byod": [71, 72, 75, 78, 83, 85, 86], "boost": [71, 74, 78, 83], "xgboost": [71, 74, 83], "think": [71, 74, 79, 84, 87], "carefulli": [71, 72, 75, 85], "nonzero": 71, "suspici": [71, 85], "tabl": [71, 73, 78, 85], "357": 71, "294": [71, 80], "46": [71, 73, 76, 80], "941": 71, "6578": 71, "000005": [71, 72, 75], "886": 71, "000059": 71, "709": 71, "000104": 71, "723": 71, "000169": 71, "689": 71, "000181": 71, "7154": 71, "012085": 71, "061510": 71, "115512": 71, "124391": 71, "214163": 71, "2169": 71, "915": 71, "168": [71, 76], "691": 71, "185": [71, 73, 80], "582": 71, "issue_result": 71, "000842": 71, "555944": 71, "004374": 71, "sorted_issu": 71, "73": [71, 73, 79, 80, 83], "86": [71, 73, 75, 76, 80, 83], "deserv": 71, "outlier_result": 71, "sorted_outli": 71, "56": [71, 83], "96": [71, 73, 76, 79, 80, 83], "lt": [71, 72, 73, 75, 78, 84], "style": [71, 84], "font": 71, "18px": 71, "ff00ff": 71, "bac": 71, "unintend": [71, 72], "mistak": [71, 72, 75, 85, 86], "duplicate_result": 71, "690": 71, "246": [71, 80], "58": [71, 73, 76, 80], "perhap": [71, 76, 78], "twice": 71, "67": [71, 73, 80, 83], "wari": [71, 72, 74], "intent": [72, 86], "servic": [72, 86], "onlin": [72, 86], "bank": [72, 73, 86], "banking77": [72, 86], "oo": [72, 86], "000": [72, 73, 75, 86, 87], "categori": [72, 75, 86], "scope": [72, 86], "dive": 72, "your_featur": 72, "sentence_transform": [72, 86], "sentencetransform": [72, 86], "payment": [72, 86], "cancel_transf": [72, 86], "transfer": [72, 86], "fund": [72, 86], "cancel": [72, 86], "transact": [72, 86], "my": [72, 86], "revert": [72, 86], "morn": [72, 86], "realis": [72, 86], "yesterdai": [72, 86], "rent": [72, 86], "realli": [72, 78, 84, 86], "tomorrow": [72, 86], "raw_text": [72, 86], "visa_or_mastercard": [72, 86], "card_payment_fee_charg": [72, 86], "supported_cards_and_curr": [72, 86], "beneficiary_not_allow": [72, 86], "lost_or_stolen_phon": [72, 86], "apple_pay_or_google_pai": [72, 86], "getting_spare_card": [72, 86], "change_pin": [72, 86], "card_about_to_expir": [72, 86], "utter": [72, 86], "continu": [72, 75, 78, 83, 85, 86, 87], "suit": [72, 73, 86], "electra": [72, 86], "discrimin": [72, 86], "googl": [72, 86], "text_embed": 72, "No": [72, 74, 86], "google_electra": [72, 86], "pool": [72, 74, 81, 86], "checkpoint": [72, 81, 86], "electramodel": [72, 86], "discriminator_predict": [72, 86], "dense_predict": [72, 86], "bertforsequenceclassif": [72, 86], "bertforpretrain": [72, 86], "400": [72, 86], "data_dict": [72, 76, 78], "84": [72, 73, 80], "41": [72, 73, 75, 80, 83], "38": [72, 73, 80, 84], "9580": 72, "981": 72, "974": 72, "000150": 72, "982": [72, 73], "000220": 72, "971": 72, "000511": 72, "980": [72, 73], "000948": 72, "9122": 72, "994": 72, "676322": 72, "999": [72, 73], "693868": 72, "697240": 72, "433": 72, "700874": 72, "989": 72, "713590": 72, "0656": 72, "148": 72, "006237": 72, "160": 72, "514": 72, "006485": 72, "546": 72, "481": 72, "008165": 72, "0000": [72, 73, 76], "313": [72, 80], "564102": 72, "572258": 72, "28": [72, 73, 75, 76, 78, 87], "574915": 72, "31": [72, 73, 78, 80], "575507": 72, "575874": 72, "791943": 72, "258507": 72, "698864": 72, "183013": 72, "771059": 72, "to_numpi": [72, 83, 86], "data_with_suggested_label": 72, "suggested_label": 72, "charg": [72, 86], "cash": [72, 86], "holidai": [72, 86], "sent": [72, 86, 87], "card": [72, 73, 86], "mine": [72, 86], "expir": [72, 86], "me": [72, 86], "withdraw": 72, "monei": 72, "whoever": [72, 86], "outlier_issu": [72, 75], "lowest_quality_outli": 72, "OR": 72, "636c65616e6c616220697320617765736f6d6521": 72, "phone": [72, 73], "gone": 72, "gt": [72, 78, 87], "samp": 72, "br": 72, "press": [72, 87], "nonsens": 72, "sens": 72, "detriment": 72, "duplicate_issu": 72, "fee": 72, "pai": 72, "go": [72, 73, 76], "shortlist": [72, 83, 86], "curat": [72, 77], "mnist_test_set": 73, "imagenet_val_set": 73, "tench": 73, "goldfish": 73, "white": [73, 87], "shark": 73, "tiger": 73, "hammerhead": 73, "electr": 73, "rai": 73, "stingrai": 73, "cock": 73, "hen": 73, "ostrich": 73, "brambl": 73, "goldfinch": 73, "hous": 73, "finch": 73, "junco": 73, "indigo": 73, "bunt": 73, "american": [73, 87], "robin": 73, "bulbul": 73, "jai": 73, "magpi": 73, "chickade": 73, "dipper": 73, "kite": 73, "bald": 73, "eagl": 73, "vultur": 73, "grei": 73, "owl": 73, "fire": 73, "salamand": 73, "smooth": 73, "newt": 73, "spot": [73, 80], "axolotl": 73, "bullfrog": 73, "tree": 73, "frog": [73, 81], "tail": 73, "loggerhead": 73, "sea": 73, "turtl": 73, "leatherback": 73, "mud": 73, "terrapin": 73, "band": 73, "gecko": 73, "green": [73, 87], "iguana": 73, "carolina": 73, "anol": 73, "desert": 73, "grassland": 73, "whiptail": 73, "lizard": 73, "agama": 73, "frill": 73, "neck": 73, "allig": 73, "gila": 73, "monster": 73, "european": 73, "chameleon": 73, "komodo": 73, "dragon": 73, "nile": 73, "crocodil": 73, "triceratop": 73, "worm": 73, "snake": 73, "ring": 73, "eastern": 73, "hog": 73, "nose": 73, "kingsnak": 73, "garter": 73, "water": 73, "vine": 73, "night": 73, "boa": 73, "constrictor": 73, "african": 73, "rock": 73, "indian": 73, "cobra": 73, "mamba": 73, "saharan": 73, "horn": 73, "viper": 73, "diamondback": 73, "rattlesnak": 73, "sidewind": 73, "trilobit": 73, "harvestman": 73, "scorpion": 73, "yellow": 73, "garden": 73, "spider": 73, "barn": 73, "southern": 73, "widow": 73, "tarantula": 73, "wolf": 73, "tick": 73, "centiped": 73, "grous": 73, "ptarmigan": 73, "ruf": 73, "prairi": 73, "peacock": 73, "quail": 73, "partridg": 73, "parrot": 73, "macaw": 73, "sulphur": 73, "crest": 73, "cockatoo": 73, "lorikeet": 73, "coucal": 73, "bee": 73, "eater": 73, "hornbil": 73, "hummingbird": 73, "jacamar": 73, "toucan": 73, "duck": [73, 86], "breast": 73, "mergans": 73, "goos": 73, "swan": 73, "tusker": 73, "echidna": 73, "platypu": 73, "wallabi": 73, "koala": 73, "wombat": 73, "jellyfish": 73, "anemon": 73, "brain": 73, "coral": 73, "flatworm": 73, "nematod": 73, "conch": 73, "snail": 73, "slug": 73, "chiton": 73, "chamber": 73, "nautilu": 73, "dung": 73, "crab": 73, "fiddler": 73, "king": 73, "lobster": 73, "spini": 73, "crayfish": 73, "hermit": 73, "isopod": 73, "stork": 73, "spoonbil": 73, "flamingo": 73, "heron": 73, "egret": 73, "bittern": 73, "crane": 73, "bird": [73, 81], "limpkin": 73, "gallinul": 73, "coot": 73, "bustard": 73, "ruddi": 73, "turnston": 73, "dunlin": 73, "redshank": 73, "dowitch": 73, "oystercatch": 73, "pelican": 73, "penguin": 73, "albatross": 73, "whale": 73, "killer": 73, "dugong": 73, "lion": 73, "chihuahua": 73, "japanes": 73, "chin": 73, "maltes": 73, "pekinges": 73, "shih": 73, "tzu": 73, "charl": 73, "spaniel": 73, "papillon": 73, "terrier": 73, "rhodesian": 73, "ridgeback": 73, "afghan": [73, 87], "hound": 73, "basset": 73, "beagl": 73, "bloodhound": 73, "bluetick": 73, "coonhound": 73, "tan": 73, "walker": 73, "foxhound": 73, "redbon": 73, "borzoi": 73, "irish": 73, "wolfhound": 73, "italian": 73, "greyhound": 73, "whippet": 73, "ibizan": 73, "norwegian": 73, "elkhound": 73, "otterhound": 73, "saluki": 73, "scottish": 73, "deerhound": 73, "weimaran": 73, "staffordshir": 73, "bull": 73, "bedlington": 73, "border": 73, "kerri": 73, "norfolk": 73, "norwich": 73, "yorkshir": 73, "wire": 73, "fox": 73, "lakeland": 73, "sealyham": 73, "airedal": 73, "cairn": 73, "australian": 73, "dandi": 73, "dinmont": 73, "boston": 73, "miniatur": 73, "schnauzer": 73, "giant": 73, "tibetan": 73, "silki": 73, "coat": [73, 75], "wheaten": 73, "west": 73, "highland": 73, "lhasa": 73, "apso": 73, "flat": 73, "retriev": 73, "curli": 73, "golden": 73, "labrador": 73, "chesapeak": 73, "bai": 73, "german": [73, 87], "shorthair": 73, "pointer": 73, "vizsla": 73, "setter": 73, "gordon": 73, "brittani": 73, "clumber": 73, "springer": 73, "welsh": 73, "cocker": 73, "sussex": 73, "kuvasz": 73, "schipperk": 73, "groenendael": 73, "malinoi": 73, "briard": 73, "kelpi": 73, "komondor": 73, "sheepdog": 73, "shetland": 73, "colli": 73, "bouvier": 73, "de": 73, "flandr": 73, "rottweil": 73, "shepherd": 73, "dobermann": 73, "pinscher": 73, "swiss": [73, 87], "mountain": 73, "bernes": 73, "appenzel": 73, "sennenhund": 73, "entlebuch": 73, "boxer": 73, "bullmastiff": 73, "mastiff": 73, "french": 73, "bulldog": 73, "dane": 73, "st": 73, "bernard": 73, "huski": 73, "alaskan": 73, "malamut": 73, "siberian": 73, "dalmatian": 73, "affenpinsch": 73, "basenji": 73, "pug": 73, "leonberg": 73, "newfoundland": 73, "pyrenean": 73, "samoi": 73, "pomeranian": 73, "chow": 73, "keeshond": 73, "griffon": 73, "bruxelloi": 73, "pembrok": 73, "corgi": 73, "cardigan": 73, "poodl": 73, "mexican": 73, "hairless": 73, "tundra": 73, "coyot": 73, "dingo": 73, "dhole": 73, "wild": 73, "hyena": 73, "kit": 73, "arctic": 73, "tabbi": 73, "persian": 73, "siames": 73, "egyptian": 73, "mau": 73, "cougar": 73, "lynx": 73, "leopard": 73, "snow": 73, "jaguar": 73, "cheetah": 73, "brown": [73, 84], "bear": 73, "polar": 73, "sloth": 73, "mongoos": 73, "meerkat": 73, "beetl": 73, "ladybug": 73, "ground": [73, 76, 78, 83], "longhorn": 73, "leaf": 73, "rhinocero": 73, "weevil": 73, "fly": 73, "ant": 73, "grasshopp": 73, "cricket": 73, "stick": 73, "insect": 73, "cockroach": 73, "manti": 73, "cicada": 73, "leafhopp": 73, "lacew": 73, "dragonfli": 73, "damselfli": 73, "admir": 73, "ringlet": 73, "monarch": 73, "butterfli": 73, "gossam": 73, "wing": 73, "starfish": 73, "urchin": 73, "cucumb": 73, "cottontail": 73, "rabbit": 73, "hare": 73, "angora": 73, "hamster": 73, "porcupin": 73, "squirrel": 73, "marmot": 73, "beaver": 73, "guinea": 73, "pig": 73, "sorrel": 73, "zebra": 73, "boar": 73, "warthog": 73, "hippopotamu": 73, "ox": 73, "buffalo": 73, "bison": 73, "bighorn": 73, "sheep": 73, "alpin": 73, "ibex": 73, "hartebeest": 73, "impala": 73, "gazel": 73, "dromedari": 73, "llama": 73, "weasel": 73, "mink": 73, "polecat": 73, "foot": 73, "ferret": 73, "otter": 73, "skunk": 73, "badger": 73, "armadillo": 73, "toed": 73, "orangutan": 73, "gorilla": 73, "chimpanze": 73, "gibbon": 73, "siamang": 73, "guenon": 73, "pata": 73, "monkei": 73, "baboon": 73, "macaqu": 73, "langur": 73, "colobu": 73, "probosci": 73, "marmoset": 73, "capuchin": 73, "howler": 73, "titi": 73, "geoffroi": 73, "lemur": 73, "indri": 73, "asian": 73, "eleph": 73, "bush": 73, "snoek": 73, "eel": 73, "coho": 73, "salmon": 73, "beauti": 73, "clownfish": 73, "sturgeon": 73, "garfish": 73, "lionfish": 73, "pufferfish": 73, "abacu": 73, "abaya": 73, "academ": 73, "gown": 73, "accordion": 73, "acoust": 73, "guitar": 73, "aircraft": 73, "carrier": 73, "airlin": 73, "airship": 73, "altar": 73, "ambul": 73, "amphibi": 73, "clock": [73, 87], "apiari": 73, "apron": 73, "wast": 73, "assault": 73, "rifl": 73, "backpack": 73, "bakeri": 73, "balanc": 73, "beam": 73, "balloon": 73, "ballpoint": 73, "pen": 73, "aid": 73, "banjo": 73, "balust": 73, "barbel": 73, "barber": 73, "chair": [73, 80], "barbershop": 73, "baromet": 73, "barrel": 73, "wheelbarrow": 73, "basebal": 73, "basketbal": 73, "bassinet": 73, "bassoon": 73, "swim": 73, "cap": 73, "bath": 73, "towel": 73, "bathtub": 73, "station": 73, "wagon": 73, "lighthous": 73, "beaker": 73, "militari": 73, "beer": 73, "bottl": 73, "glass": 73, "bell": 73, "cot": 73, "bib": 73, "bicycl": [73, 84], "bikini": 73, "binder": 73, "binocular": 73, "birdhous": 73, "boathous": 73, "bobsleigh": 73, "bolo": 73, "tie": 73, "poke": 73, "bonnet": 73, "bookcas": 73, "bookstor": 73, "bow": 73, "brass": 73, "bra": 73, "breakwat": 73, "breastplat": 73, "broom": 73, "bucket": 73, "buckl": 73, "bulletproof": 73, "vest": 73, "butcher": 73, "shop": 73, "taxicab": 73, "cauldron": 73, "candl": 73, "cannon": 73, "cano": 73, "mirror": [73, 80], "carousel": 73, "tool": [73, 76, 78], "carton": 73, "wheel": 73, "teller": 73, "cassett": 73, "player": 73, "castl": 73, "catamaran": 73, "cd": 73, "cello": 73, "mobil": [73, 87], "chain": 73, "fenc": [73, 84], "mail": 73, "chainsaw": 73, "chest": 73, "chiffoni": 73, "chime": 73, "china": 73, "cabinet": 73, "christma": 73, "stock": 73, "church": 73, "movi": 73, "theater": 73, "cleaver": 73, "cliff": 73, "dwell": 73, "cloak": 73, "clog": 73, "cocktail": 73, "shaker": 73, "coffe": 73, "mug": 73, "coffeemak": 73, "coil": 73, "lock": 73, "keyboard": 73, "confectioneri": 73, "ship": [73, 81], "corkscrew": 73, "cornet": 73, "cowboi": 73, "boot": 73, "hat": 73, "cradl": 73, "crash": 73, "helmet": 73, "crate": 73, "infant": 73, "bed": 73, "crock": 73, "pot": 73, "croquet": 73, "crutch": 73, "cuirass": 73, "dam": 73, "desk": 73, "desktop": 73, "rotari": 73, "dial": 73, "telephon": 73, "diaper": 73, "watch": 73, "dine": 73, "dishcloth": 73, "dishwash": 73, "disc": 73, "brake": 73, "dock": 73, "sled": 73, "dome": 73, "doormat": 73, "drill": 73, "rig": 73, "drum": 73, "drumstick": 73, "dumbbel": 73, "dutch": 73, "oven": 73, "fan": 73, "locomot": 73, "entertain": 73, "center": 73, "envelop": 73, "espresso": 73, "powder": 73, "feather": 73, "fireboat": 73, "engin": [73, 84], "screen": 73, "sheet": 73, "flagpol": 73, "flute": 73, "footbal": 73, "forklift": 73, "fountain": 73, "poster": 73, "freight": 73, "fry": 73, "pan": 73, "fur": 73, "garbag": 73, "ga": 73, "pump": 73, "goblet": 73, "kart": 73, "golf": 73, "cart": 73, "gondola": 73, "gong": 73, "grand": 73, "piano": 73, "greenhous": 73, "grill": 73, "groceri": 73, "guillotin": 73, "barrett": 73, "hair": 73, "sprai": 73, "hammer": 73, "dryer": 73, "hand": [73, 76], "handkerchief": 73, "drive": 73, "harmonica": 73, "harp": 73, "harvest": 73, "hatchet": 73, "holster": 73, "honeycomb": 73, "hoop": 73, "skirt": 73, "horizont": 73, "bar": 73, "hors": [73, 81, 86], "drawn": 73, "hourglass": 73, "ipod": 73, "cloth": 73, "iron": 73, "jack": 73, "lantern": 73, "jean": 73, "jeep": 73, "shirt": [73, 75], "jigsaw": 73, "puzzl": 73, "pull": 73, "rickshaw": 73, "joystick": 73, "kimono": 73, "knee": 73, "pad": 73, "knot": 73, "ladl": 73, "lampshad": 73, "laptop": 73, "lawn": 73, "mower": 73, "knife": 73, "lifeboat": 73, "lighter": 73, "limousin": 73, "ocean": 73, "liner": 73, "lipstick": 73, "slip": 73, "shoe": 73, "lotion": 73, "speaker": 73, "loup": 73, "sawmil": 73, "magnet": 73, "compass": 73, "bag": [73, 75, 81, 82], "mailbox": 73, "tight": 73, "tank": 73, "manhol": 73, "maraca": 73, "marimba": 73, "maypol": 73, "maze": 73, "cup": [73, 80], "medicin": 73, "megalith": 73, "microphon": 73, "microwav": 73, "milk": 73, "minibu": 73, "miniskirt": 73, "minivan": 73, "missil": 73, "mitten": 73, "mix": 73, "bowl": 73, "modem": 73, "monasteri": 73, "monitor": 73, "mope": 73, "mortar": 73, "mosqu": 73, "mosquito": 73, "scooter": 73, "bike": 73, "tent": 73, "mous": [73, 74], "mousetrap": 73, "van": 73, "muzzl": 73, "nail": 73, "brace": 73, "necklac": 73, "nippl": 73, "obelisk": 73, "obo": 73, "ocarina": 73, "odomet": 73, "oil": 73, "oscilloscop": 73, "overskirt": 73, "bullock": 73, "oxygen": 73, "packet": 73, "paddl": 73, "padlock": 73, "paintbrush": 73, "pajama": 73, "palac": [73, 87], "parachut": 73, "park": 73, "bench": 73, "meter": 73, "passeng": 73, "patio": 73, "payphon": 73, "pedest": 73, "pencil": 73, "perfum": 73, "petri": 73, "dish": 73, "photocopi": 73, "plectrum": 73, "pickelhaub": 73, "picket": 73, "pickup": 73, "pier": 73, "piggi": 73, "pill": 73, "pillow": 73, "ping": 73, "pong": 73, "pinwheel": 73, "pirat": 73, "pitcher": 73, "plane": 73, "planetarium": 73, "plastic": 73, "plate": 73, "rack": 73, "plow": 73, "plunger": 73, "polaroid": 73, "camera": 73, "pole": [73, 84], "polic": 73, "poncho": 73, "billiard": 73, "soda": 73, "potter": 73, "power": [73, 76, 87], "prayer": 73, "rug": 73, "printer": 73, "prison": 73, "projectil": 73, "projector": 73, "hockei": 73, "puck": 73, "punch": 73, "purs": 73, "quill": 73, "quilt": 73, "race": 73, "racket": 73, "radiat": 73, "radio": 73, "telescop": 73, "rain": 73, "recreat": 73, "reel": 73, "reflex": 73, "refriger": 73, "remot": 73, "restaur": 73, "revolv": 73, "rotisseri": 73, "eras": 73, "rugbi": 73, "ruler": 73, "safe": 73, "safeti": 73, "salt": 73, "sandal": [73, 75], "sarong": 73, "saxophon": 73, "scabbard": 73, "school": 73, "bu": [73, 84], "schooner": 73, "scoreboard": 73, "crt": 73, "screw": 73, "screwdriv": 73, "seat": 73, "belt": 73, "sew": 73, "shield": 73, "shoji": 73, "basket": 73, "shovel": 73, "shower": 73, "curtain": 73, "ski": 73, "sleep": 73, "door": 73, "slot": 73, "snorkel": 73, "snowmobil": 73, "snowplow": 73, "soap": 73, "dispens": 73, "soccer": [73, 87], "sock": 73, "solar": 73, "thermal": 73, "collector": 73, "sombrero": 73, "soup": 73, "heater": 73, "shuttl": 73, "spatula": 73, "motorboat": 73, "web": 73, "spindl": 73, "sport": [73, 87], "spotlight": 73, "stage": 73, "steam": 73, "arch": 73, "bridg": 73, "steel": 73, "stethoscop": 73, "scarf": 73, "stone": 73, "wall": [73, 84], "stopwatch": 73, "stove": 73, "strainer": 73, "tram": 73, "stretcher": 73, "couch": 73, "stupa": 73, "submarin": 73, "sundial": 73, "sunglass": 73, "sunscreen": 73, "suspens": 73, "mop": 73, "sweatshirt": 73, "swimsuit": 73, "swing": 73, "switch": 73, "syring": 73, "lamp": 73, "tape": 73, "teapot": 73, "teddi": 73, "televis": [73, 87], "tenni": 73, "thatch": 73, "roof": 73, "front": 73, "thimbl": 73, "thresh": 73, "throne": 73, "tile": 73, "toaster": 73, "tobacco": 73, "toilet": 73, "totem": 73, "tow": 73, "tractor": 73, "semi": 73, "trailer": 73, "trai": 73, "trench": 73, "tricycl": 73, "trimaran": 73, "tripod": 73, "triumphal": 73, "trolleybu": 73, "trombon": 73, "tub": 73, "turnstil": 73, "typewrit": 73, "umbrella": 73, "unicycl": 73, "upright": 73, "vacuum": 73, "cleaner": 73, "vase": 73, "vault": 73, "velvet": 73, "vend": 73, "vestment": 73, "viaduct": 73, "violin": 73, "volleybal": 73, "waffl": 73, "wallet": 73, "wardrob": 73, "sink": 73, "wash": 73, "jug": 73, "tower": 73, "whiskei": 73, "whistl": 73, "wig": 73, "shade": [73, 84], "windsor": 73, "wine": 73, "wok": 73, "wooden": 73, "spoon": 73, "wool": 73, "rail": 73, "shipwreck": 73, "yawl": 73, "yurt": 73, "websit": 73, "comic": 73, "book": 73, "crossword": 73, "traffic": [73, 80, 84], "sign": [73, 84, 87], "light": [73, 75, 80, 84], "dust": 73, "jacket": [73, 80], "menu": 73, "guacamol": 73, "consomm": 73, "trifl": 73, "ic": 73, "cream": 73, "pop": 73, "baguett": 73, "bagel": 73, "pretzel": 73, "cheeseburg": 73, "mash": 73, "potato": 73, "cabbag": 73, "broccoli": 73, "cauliflow": 73, "zucchini": 73, "spaghetti": 73, "squash": 73, "acorn": 73, "butternut": 73, "artichok": 73, "pepper": 73, "cardoon": 73, "mushroom": 73, "granni": 73, "smith": 73, "strawberri": 73, "orang": 73, "lemon": 73, "pineappl": 73, "banana": 73, "jackfruit": 73, "custard": 73, "appl": 73, "pomegran": 73, "hai": 73, "carbonara": 73, "chocol": 73, "syrup": 73, "dough": 73, "meatloaf": 73, "pizza": 73, "pie": 73, "burrito": 73, "eggnog": 73, "alp": 73, "bubbl": 73, "reef": 73, "geyser": 73, "lakeshor": 73, "promontori": 73, "shoal": 73, "seashor": 73, "vallei": 73, "volcano": 73, "bridegroom": 73, "scuba": 73, "diver": 73, "rapese": 73, "daisi": 73, "ladi": 73, "slipper": 73, "corn": 73, "rose": 73, "hip": 73, "chestnut": 73, "fungu": 73, "agar": 73, "gyromitra": 73, "stinkhorn": 73, "earth": 73, "star": 73, "wood": 73, "bolet": 73, "ear": 73, "cifar10_test_set": 73, "airplan": [73, 81], "automobil": [73, 81], "deer": [73, 81], "cifar100_test_set": 73, "aquarium_fish": 73, "babi": 73, "boi": 73, "camel": 73, "caterpillar": 73, "cattl": [73, 87], "cloud": 73, "dinosaur": 73, "dolphin": 73, "flatfish": 73, "forest": 73, "girl": 73, "kangaroo": 73, "lawn_mow": 73, "man": 73, "maple_tre": 73, "motorcycl": [73, 84], "oak_tre": 73, "orchid": 73, "palm_tre": 73, "pear": 73, "pickup_truck": 73, "pine_tre": 73, "plain": 73, "poppi": 73, "possum": 73, "raccoon": 73, "road": [73, 84], "rocket": 73, "seal": 73, "shrew": 73, "skyscrap": 73, "streetcar": 73, "sunflow": 73, "sweet_pepp": 73, "trout": 73, "tulip": 73, "willow_tre": 73, "woman": [73, 80], "caltech256": 73, "ak47": 73, "bat": 73, "glove": 73, "birdbath": 73, "blimp": 73, "bonsai": 73, "boom": 73, "breadmak": 73, "buddha": 73, "bulldoz": 73, "cactu": 73, "cake": 73, "tire": 73, "cartman": 73, "cereal": 73, "chandeli": 73, "chess": 73, "board": 73, "chimp": 73, "chopstick": 73, "coffin": 73, "coin": 73, "comet": 73, "cormor": 73, "globe": 73, "diamond": 73, "dice": 73, "doorknob": 73, "drink": 73, "straw": 73, "dumb": 73, "eiffel": 73, "elk": 73, "ewer": 73, "eyeglass": 73, "fern": 73, "fighter": 73, "jet": [73, 83], "extinguish": 73, "hydrant": 73, "firework": 73, "flashlight": 73, "floppi": 73, "fri": 73, "frisbe": 73, "galaxi": 73, "giraff": 73, "goat": 73, "gate": 73, "grape": 73, "pick": 73, "hamburg": 73, "hammock": 73, "harpsichord": 73, "hawksbil": 73, "helicopt": 73, "hibiscu": 73, "homer": 73, "simpson": 73, "horsesho": 73, "air": 73, "skeleton": 73, "ibi": 73, "cone": 73, "iri": 73, "jesu": 73, "christ": 73, "joi": 73, "kayak": 73, "ketch": 73, "ladder": 73, "lath": 73, "licens": 73, "lightbulb": 73, "lightn": 73, "mandolin": 73, "mar": 73, "mattress": 73, "megaphon": 73, "menorah": 73, "microscop": 73, "minaret": 73, "minotaur": 73, "motorbik": 73, "mussel": 73, "neckti": 73, "octopu": 73, "palm": 73, "pilot": 73, "paperclip": 73, "shredder": 73, "pci": 73, "peopl": [73, 80], "pez": 73, "picnic": 73, "pram": 73, "prai": 73, "pyramid": 73, "rainbow": 73, "roulett": 73, "saddl": 73, "saturn": 73, "segwai": 73, "propel": 73, "sextant": 73, "music": 73, "skateboard": 73, "smokestack": 73, "sneaker": 73, "boat": 73, "stain": 73, "steer": 73, "stirrup": 73, "superman": 73, "sushi": 73, "armi": [73, 87], "sword": 73, "tambourin": 73, "teepe": 73, "court": 73, "theodolit": 73, "tomato": 73, "tombston": 73, "tour": 73, "pisa": 73, "treadmil": 73, "fork": 73, "tweezer": 73, "unicorn": 73, "vcr": 73, "waterfal": 73, "watermelon": 73, "weld": 73, "windmil": 73, "xylophon": 73, "yarmulk": 73, "yo": 73, "toad": 73, "twenty_news_test_set": 73, "alt": 73, "atheism": 73, "comp": 73, "graphic": [73, 84], "misc": [73, 87], "sy": 73, "ibm": 73, "pc": 73, "hardwar": 73, "mac": 73, "forsal": 73, "rec": 73, "sci": 73, "crypt": 73, "electron": 73, "med": 73, "soc": 73, "religion": 73, "christian": [73, 87], "talk": [73, 87], "polit": 73, "gun": 73, "mideast": 73, "amazon": 73, "neutral": 73, "imdb_test_set": 73, "all_class": 73, "20news_test_set": 73, "_load_classes_predprobs_label": 73, "dataset_nam": 73, "labelerror": 73, "url_bas": 73, "5392f6c71473055060be3044becdde1cbc18284d": 73, "url_label": 73, "original_test_label": 73, "_original_label": 73, "url_prob": 73, "cross_validated_predicted_prob": 73, "_pyx": 73, "num_part": 73, "datatset": 73, "bytesio": 73, "allow_pickl": 73, "pred_probs_part": 73, "url": 73, "_of_": 73, "nload": 73, "imdb": 73, "ve": [73, 76, 78, 80], "interpret": [73, 74, 76], "capit": 73, "50000": 73, "medic": [73, 87], "doctor": 73, "836": 73, "736842": 73, "282": [73, 80], "76": [73, 76, 79, 80, 83], "714286": 73, "265": [73, 79], "400000": 73, "782": 73, "74": [73, 80, 83, 85], "628571": 73, "620": 73, "36": [73, 87], "72": [73, 76, 79, 83, 85], "500000": 73, "995": 73, "522": 73, "038462": 73, "996": 73, "480": 73, "074074": 73, "997": 73, "716": 73, "998": 73, "722": 73, "466": 73, "987": 73, "44": [73, 75, 79, 80], "00088": 73, "435": 73, "876": 73, "00076": 73, "638": 73, "639": 73, "00072": 73, "681": 73, "00070": 73, "499495": 73, "183": 73, "717": 73, "00000": 73, "499496": 73, "499497": 73, "715": 73, "714": 73, "499499": 73, "729": 73, "499500": 73, "772": 73, "82": [73, 76, 80], "29780": 73, "256": [73, 74, 80], "29": [73, 75, 78, 79, 80, 84, 87], "780": 73, "254": [73, 80], "359223": 73, "333333": 73, "640777": 73, "184": [73, 76], "282609": 73, "341176": 73, "253333": 73, "658824": 73, "337349": 73, "246575": 73, "662651": 73, "248": 73, "330000": 73, "355769": 73, "670000": 73, "251": [73, 80], "112": 73, "252": 73, "253": [73, 80], "058824": 73, "167": [73, 76, 80], "255": [73, 75], "190": [73, 76, 80], "66": 73, "002216": 73, "000974": 73, "59": [73, 80], "88": [73, 75, 76, 79, 80, 83, 85], "000873": 73, "79": [73, 80], "000739": 73, "32635": 73, "47": [73, 80], "32636": 73, "32637": 73, "32638": 73, "32639": 73, "32640": 73, "420": 73, "002242": 73, "997758": 73, "002088": 73, "001045": 73, "997912": 73, "002053": 73, "997947": 73, "001980": 73, "000991": 73, "998020": 73, "001946": 73, "002915": 73, "998054": 73, "001938": 73, "002904": 73, "998062": 73, "001020": 73, "998980": 73, "001018": 73, "002035": 73, "998982": 73, "999009": 73, "0003": 73, "0002": 73, "27": [73, 76, 80, 87], "71": [73, 80, 85], "071": 73, "067269": 73, "929": 73, "046": 73, "057312": 73, "954": 73, "035": 73, "032096": 73, "965": 73, "031": 73, "012232": 73, "969": 73, "022": 73, "025896": 73, "978": 73, "020": [73, 76], "013092": 73, "018": 73, "013065": 73, "016": 73, "031496": 73, "984": 73, "013": 73, "020833": 73, "012": 73, "010020": 73, "988": 73, "0073": 73, "0020": 73, "0016": 73, "0015": 73, "0014": 73, "0013": 73, "0012": 73, "0010": 73, "0008": 73, "0007": 73, "0006": 73, "0005": 73, "0004": 73, "284": [73, 80], "97": [73, 74, 76, 80, 83, 85, 87], "452381": 73, "459770": 73, "518868": 73, "460784": 73, "446602": 73, "57": 73, "68": [73, 76, 80, 85], "103774": 73, "030612": 73, "049020": 73, "98": [73, 74, 83], "110092": 73, "99": [73, 76, 85], "0034": 73, "0032": 73, "0026": 73, "0025": 73, "4945": 73, "4946": 73, "85": [73, 80, 83], "4947": 73, "4948": 73, "83": [73, 76, 80, 83, 85, 87], "4949": 73, "4950": 73, "25000": 73, "708": 73, "601": 73, "05664": 73, "048495": 73, "94336": 73, "04808": 73, "056159": 73, "95192": 73, "1309": 73, "05236": 73, "309": 73, "7532": 73, "532": 73, "034483": 73, "009646": 73, "965517": 73, "030457": 73, "020513": 73, "969543": 73, "028061": 73, "035443": 73, "971939": 73, "025316": 73, "005168": 73, "974684": 73, "049751": 73, "979487": 73, "019920": 73, "042802": 73, "980080": 73, "017677": 73, "005115": 73, "982323": 73, "012987": 73, "005236": 73, "987013": 73, "012723": 73, "025126": 73, "987277": 73, "010989": 73, "008264": 73, "989011": 73, "010283": 73, "027778": 73, "989717": 73, "009677": 73, "990323": 73, "007614": 73, "010127": 73, "992386": 73, "005051": 73, "994949": 73, "005025": 73, "994975": 73, "005013": 73, "994987": 73, "001859": 73, "001328": 73, "000929": 73, "000664": 73, "186": [73, 76], "187": 73, "188": [73, 76, 79], "189": [73, 76], "9996437": 73, "437": 73, "228667": 73, "287149": 73, "192393": 73, "230267": 73, "807607": 73, "142732": 73, "132872": 73, "155587": 73, "146413": 73, "844413": 73, "203006": 73, "154384": 73, "025728": 73, "019687": 73, "974272": 73, "298801": 73, "029891": 73, "217015": 73, "021709": 73, "58589": 73, "005861": 73, "574": 73, "405": 73, "snippet": 74, "nlp": [74, 87], "mind": [74, 76], "number_of_class": 74, "total_number_of_data_point": 74, "drop": [74, 78, 83, 86], "feed": 74, "alphabet": 74, "labels_proper_format": 74, "your_classifi": 74, "issues_datafram": 74, "class_predicted_for_flagged_exampl": 74, "class_predicted_for_all_exampl": 74, "grant": 74, "datataset": 74, "fair": [74, 76], "game": 74, "speedup": [74, 81], "flexibl": 74, "tempfil": 74, "mkdtemp": 74, "anywai": 74, "pred_probs_merg": 74, "merge_rare_class": 74, "count_threshold": 74, "class_mapping_orig2new": 74, "heath_summari": 74, "num_examples_per_class": 74, "rare_class": 74, "num_classes_merg": 74, "other_class": 74, "labels_merg": 74, "new_c": 74, "merged_prob": 74, "keepdim": 74, "hstack": [74, 75, 76, 78], "new_class": 74, "original_class": 74, "num_check": 74, "ones_array_ref": 74, "isclos": 74, "though": [74, 76, 87], "successfulli": 74, "meaning": [74, 81], "virtuou": [74, 78], "cycl": [74, 78], "jointli": 74, "junk": 74, "clutter": 74, "unknown": 74, "caltech": 74, "intersect": 74, "combined_boolean_mask": 74, "mask1": 74, "mask2": 74, "gradientboostingclassifi": [74, 76], "true_error": [74, 76, 79], "101": [74, 80], "102": [74, 79, 80, 87], "104": [74, 80], "model_to_find_error": 74, "model_to_return": 74, "cl0": 74, "randomizedsearchcv": 74, "expens": 74, "param_distribut": 74, "learning_r": [74, 76], "max_depth": [74, 76], "magnitud": 74, "coeffici": [74, 83], "optin": 74, "environ": [74, 76], "rerun": [74, 76], "cell": [74, 76], "On": [74, 76, 80], "unabl": [74, 76], "render": [74, 76], "nbviewer": [74, 76], "cleanlearningcleanlearn": [74, 76], "linearregressionlinearregress": 74, "assist": 74, "streamlin": 74, "ux": 74, "agpl": 74, "compani": 74, "commerci": 74, "alter": 74, "email": 74, "discuss": 74, "anywher": 74, "60": [75, 76], "excess": 75, "torchvis": [75, 81], "tensordataset": 75, "stratifiedkfold": [75, 79], "tqdm": 75, "fashion_mnist": 75, "0a671f063342996f19779d38c0ab4abef9c64f757b35af8134b331c294d7ba48": 75, "num_row": 75, "60000": 75, "pil": 75, "transformed_dataset": 75, "with_format": 75, "unsqueez": 75, "num_proc": 75, "cpu_count": 75, "torch_dataset": 75, "quick": [75, 79], "super": 75, "relu": 75, "batchnorm2d": 75, "maxpool2d": 75, "lazylinear": 75, "flatten": 75, "get_test_accuraci": 75, "testload": [75, 81], "energi": 75, "trainload": [75, 81], "n_epoch": 75, "patienc": 75, "criterion": 75, "crossentropyloss": 75, "adamw": 75, "best_test_accuraci": 75, "start_epoch": 75, "running_loss": 75, "best_epoch": 75, "end_epoch": 75, "3f": [75, 83], "acc": [75, 76], "time_taken": 75, "compute_embed": 75, "compute_pred_prob": 75, "train_batch_s": 75, "num_work": 75, "worker": [75, 87], "train_id_list": 75, "test_id_list": 75, "train_id": 75, "test_id": 75, "embeddings_model": 75, "ntrain": 75, "trainset": 75, "testset": 75, "pin_memori": 75, "fold_embed": 75, "fold_pred_prob": 75, "finish": 75, "483": 75, "775": 75, "443": [75, 87], "329": [75, 80], "215": [75, 80], "78it": 75, "40it": 75, "492": 75, "87": [75, 80, 83, 85, 86], "095": 75, "403": 75, "415": 75, "145": [75, 80], "92it": 75, "97it": 75, "476": 75, "562": 75, "327": [75, 80], "755": 75, "901": 75, "13it": 75, "05it": 75, "reorder": 75, "vision": 75, "low_inform": 75, "odd_aspect_ratio": 75, "odd_siz": 75, "grayscal": 75, "exce": 75, "max_preval": 75, "7797": 75, "3818": 75, "3486": 75, "310": 75, "166": 75, "9667": 75, "27080": 75, "715920": 75, "4156": 75, "718073": 75, "40378": 75, "721143": 75, "25316": 75, "725187": 75, "30820": 75, "731430": 75, "9410": 75, "19228": 75, "dress": 75, "32657": 75, "000007": 75, "53564": 75, "000010": 75, "pullov": 75, "21282": 75, "000021": 75, "54078": 75, "000022": [75, 87], "0262": 75, "54565": 75, "9762": 75, "47139": 75, "258": 75, "30968": 75, "30659": 75, "000026": 75, "0425": 75, "57620": 75, "647848": 75, "7475": 75, "663768": 75, "27513": 75, "672686": 75, "41556": 75, "674473": 75, "14509": 75, "675285": 75, "04246606876652691": 75, "069238": 75, "970188": 75, "997795": 75, "928584": 75, "999650": 75, "12076": 75, "trouser": 75, "11262": 75, "000028": 75, "plot_label_issue_exampl": 75, "ncol": [75, 81], "nrow": [75, 81], "ceil": 75, "axes_list": 75, "label_issue_indic": 75, "gl": 75, "sl": 75, "fontdict": 75, "imshow": [75, 81], "cmap": [75, 83], "grai": 75, "subplots_adjust": 75, "hspace": 75, "outsiz": 75, "outlier_issues_df": 75, "depict": [75, 79, 80, 81, 82, 84], "plot_outlier_issues_exampl": 75, "n_comparison_imag": 75, "sample_from_class": 75, "number_of_sampl": 75, "non_outlier_indic": 75, "isnul": 75, "non_outlier_indices_excluding_curr": 75, "sampled_indic": 75, "label_scores_of_sampl": 75, "top_score_indic": 75, "top_label_indic": 75, "sampled_imag": 75, "get_image_given_label_and_sampl": 75, "image_from_dataset": 75, "corresponding_label": 75, "comparison_imag": 75, "images_to_plot": 75, "idlist": 75, "iterrow": 75, "especi": [75, 83, 85, 86], "near_duplicate_issu": 75, "closest": 75, "counterpart": 75, "near_duplicate_issues_df": 75, "plot_near_duplicate_issue_exampl": 75, "seen_id_pair": 75, "get_image_and_given_label_and_predicted_label": 75, "duplicate_imag": 75, "nd_set": 75, "challeng": 75, "dark_issu": 75, "reveal": [75, 84], "dark_scor": 75, "dark_issues_df": 75, "is_dark_issu": 75, "34848": 75, "203922": 75, "50270": 75, "204588": 75, "3936": 75, "213098": 75, "733": 75, "217686": 75, "8094": 75, "230118": 75, "plot_image_issue_exampl": 75, "difficult": 75, "disproportion": 75, "lowinfo_issu": 75, "low_information_scor": 75, "lowinfo_issues_df": 75, "is_low_information_issu": 75, "53050": 75, "067975": 75, "40875": 75, "089929": 75, "9594": 75, "092601": 75, "34825": 75, "107744": 75, "37530": 75, "108516": 75, "lot": 75, "depth": 76, "survei": [76, 87], "focus": [76, 78], "scienc": 76, "multivariate_norm": [76, 78, 79], "make_data": [76, 78], "cov": [76, 78, 79], "avg_trac": [76, 79], "test_label": [76, 79, 81, 86], "py_tru": 76, "noise_matrix_tru": 76, "noise_marix": 76, "s_test": 76, "noisy_test_label": 76, "purpl": 76, "val": 76, "namespac": 76, "exec": 76, "markerfacecolor": [76, 79], "markeredgecolor": [76, 79, 83], "markers": [76, 79, 83], "markeredgewidth": [76, 79, 83], "realist": 76, "6000": 76, "638483e": 76, "897052e": 76, "548986e": 76, "924634e": 76, "374580e": 76, "4643": 76, "147": [76, 80], "050286": 76, "065420": 76, "109420": 76, "111687": 76, "115403": 76, "3312": 76, "007136": 76, "119": [76, 80], "033725": 76, "103": [76, 80], "033738": 76, "238": [76, 80], "037825": 76, "236": [76, 80], "037843": 76, "222": 76, "614915": 76, "122": [76, 80], "624422": 76, "625965": 76, "626079": 76, "118": 76, "627675": 76, "695174": 76, "323529": 76, "522929": 76, "013722": 76, "675606": 76, "646438": 76, "anyth": 76, "enhanc": [76, 78, 80], "magic": 76, "liter": 76, "identif": 76, "x27": 76, "logisticregressionlogisticregress": 76, "ever": 76, "truth": [76, 78, 83], "092": 76, "040": 76, "024": 76, "004": 76, "surpris": 76, "arxiv": 76, "ab": 76, "1705": 76, "01936": 76, "ton": 76, "yourfavoritemodel1": 76, "merged_label": 76, "merged_test_label": 76, "newli": [76, 78], "yourfavoritemodel2": 76, "yourfavoritemodel3": 76, "cl3": 76, "takeawai": 76, "That": [76, 79], "randomli": 76, "my_test_pred_prob": 76, "my_test_pr": 76, "issues_test": 76, "corrected_test_label": 76, "pretend": 76, "cl_test_pr": 76, "69": [76, 83], "fairli": 76, "label_acc": 76, "percentag": 76, "offset": 76, "nquestion": 76, "overestim": 76, "answer": 76, "experienc": 76, "06": [76, 80, 87], "62": [76, 80, 83], "knowledg": 76, "quantiti": [76, 83], "prioiri": 76, "known": 76, "versatil": 76, "label_issues_indic": 76, "213": [76, 80], "212": [76, 85], "218": [76, 80], "152": 76, "197": [76, 80], "196": [76, 80], "170": 76, "214": 76, "164": [76, 79], "198": [76, 80], "191": [76, 80], "63": [76, 80], "121": [76, 86], "117": [76, 83], "206": [76, 80], "115": [76, 80], "193": 76, "194": 76, "201": [76, 80], "174": [76, 87], "163": 76, "150": [76, 78, 80], "169": 76, "151": [76, 80], "precision_scor": 76, "recall_scor": 76, "f1_score": 76, "true_label_issu": 76, "filter_by_list": 76, "718750": [76, 78], "807018": 76, "912": 76, "733333": 76, "800000": 76, "721311": 76, "792793": 76, "908": 76, "676923": 76, "765217": 76, "892": 76, "567901": 76, "702290": 76, "844": 76, "gaug": 76, "label_issues_count": 76, "155": [76, 80], "156": 76, "172": [76, 79], "157": 76, "easiest": 76, "modular": 76, "penalti": 76, "l2": 76, "model3": 76, "n_estim": 76, "cv_pred_probs_1": 76, "cv_pred_probs_2": 76, "cv_pred_probs_3": 76, "label_quality_scores_best": 76, "cv_pred_probs_ensembl": 76, "label_quality_scores_bett": 76, "superior": [76, 82], "workflow": [77, 83], "speechbrain": 77, "timm": 77, "glad": 78, "multiannotator_label": 78, "300": [78, 87], "noisier": 78, "111": [78, 83], "local_data": [78, 79], "true_labels_train": [78, 79], "noise_matrix_bett": 78, "noise_matrix_wors": 78, "transpos": [78, 81], "dropna": 78, "zfill": 78, "row_na_check": 78, "notna": 78, "reset_index": 78, "a0001": 78, "a0002": 78, "a0003": 78, "a0004": 78, "a0005": 78, "a0006": 78, "a0007": 78, "a0008": 78, "a0009": 78, "a0010": 78, "a0041": 78, "a0042": 78, "a0043": 78, "a0044": 78, "a0045": 78, "a0046": 78, "a0047": 78, "a0048": 78, "a0049": 78, "a0050": 78, "na": 78, "60856743": 78, "41693214": 78, "40908785": 78, "87147629": 78, "64941785": 78, "10774851": 78, "0524466": 78, "71853246": 78, "37169848": 78, "66031048": 78, "multiannotator_util": 78, "crude": 78, "straight": 78, "majority_vote_label": 78, "736157": 78, "757738": 78, "782255": 78, "715585": 78, "824273": 78, "quality_annotator_a0001": 78, "quality_annotator_a0002": 78, "quality_annotator_a0003": 78, "quality_annotator_a0004": 78, "quality_annotator_a0005": 78, "quality_annotator_a0006": 78, "quality_annotator_a0007": 78, "quality_annotator_a0008": 78, "quality_annotator_a0009": 78, "quality_annotator_a0010": 78, "quality_annotator_a0041": 78, "quality_annotator_a0042": 78, "quality_annotator_a0043": 78, "quality_annotator_a0044": 78, "quality_annotator_a0045": 78, "quality_annotator_a0046": 78, "quality_annotator_a0047": 78, "quality_annotator_a0048": 78, "quality_annotator_a0049": 78, "quality_annotator_a0050": 78, "070551": 78, "216064": 78, "119178": 78, "alongisd": 78, "244982": 78, "208333": 78, "295978": 78, "294118": 78, "324194": 78, "310345": 78, "355315": 78, "346154": 78, "439728": 78, "480000": 78, "a0031": 78, "523205": 78, "580645": 78, "a0034": 78, "535313": 78, "607143": 78, "a0021": 78, "607002": 78, "a0015": 78, "609527": 78, "678571": 78, "a0011": 78, "621101": 78, "692308": 78, "wors": 78, "improved_consensus_label": 78, "majority_vote_accuraci": 78, "cleanlab_label_accuraci": 78, "8581081081081081": 78, "9797297297297297": 78, "besid": 78, "sorted_consensus_quality_scor": 78, "worst_qual": 78, "better_qu": 78, "worst_quality_accuraci": 78, "better_quality_accuraci": 78, "9893238434163701": 78, "improved_pred_prob": 78, "treat": [78, 79, 83, 87], "analzi": 78, "copyright": 79, "advertis": 79, "violenc": 79, "nsfw": 79, "ranked_label_issu": [79, 85, 86], "multioutput": 79, "multioutputclassifi": 79, "celeba": 79, "make_multilabel_data": 79, "boxes_coordin": 79, "box_multilabel": 79, "make_multi": 79, "bx1": 79, "by1": 79, "bx2": 79, "by2": 79, "label_list": 79, "ur": 79, "upper": 79, "inidx": 79, "logical_and": 79, "tolist": 79, "inv_d": 79, "labels_idx": 79, "true_labels_test": 79, "dict_unique_label": 79, "get_color_arrai": 79, "dcolor": 79, "aa4400": 79, "55227f": 79, "55a100": 79, "00ff00": 79, "007f7f": 79, "386b55": 79, "0000ff": 79, "simplic": 79, "advis": 79, "y_onehot": 79, "single_class_label": 79, "stratifi": [79, 82], "kf": 79, "train_index": 79, "test_index": 79, "clf_cv": 79, "x_train_cv": 79, "x_test_cv": 79, "y_train_cv": 79, "y_test_cv": 79, "y_pred_cv": 79, "saw": 79, "num_to_displai": 79, "09": [79, 80], "275": 79, "267": 79, "225": 79, "171": 79, "234": 79, "165": 79, "227": [79, 80], "262": [79, 80], "263": [79, 80], "266": [79, 80], "139": 79, "143": [79, 80, 87], "216": [79, 80, 87], "159": [79, 80], "despit": [79, 87], "suspect": 79, "888": 79, "8224": 79, "9632": 79, "968": 79, "6512": 79, "0444": 79, "774": 79, "labels_binary_format": 79, "labels_list_format": 79, "surround": 80, "scene": 80, "coco": 80, "everydai": 80, "has_label_issu": 80, "insal": 80, "nc": [80, 84, 87], "s3": [80, 84, 87], "amazonaw": [80, 84, 87], "objectdetectionbenchmark": 80, "tutorial_obj": 80, "pkl": 80, "example_imag": 80, "unzip": [80, 87], "begin": 80, "detectron2": 80, "image_path": 80, "rb": 80, "image_to_visu": 80, "seg_map": 80, "334": 80, "float32": 80, "bboxes_ignor": 80, "290": 80, "286": 80, "285": 80, "224": 80, "231": 80, "293": 80, "235": 80, "289": [80, 83], "281": 80, "271": 80, "280": 80, "277": 80, "93": [80, 83], "279": 80, "287": 80, "299": 80, "276": 80, "307": 80, "321": 80, "326": 80, "330": 80, "333": 80, "261": 80, "319": 80, "257": 80, "295": 80, "283": 80, "243": 80, "303": 80, "316": 80, "247": 80, "323": 80, "328": 80, "226": [80, 87], "232": 80, "239": 80, "240": 80, "209": 80, "242": 80, "202": 80, "230": 80, "220": 80, "229": 80, "217": [80, 87], "237": 80, "207": 80, "204": 80, "205": 80, "223": 80, "153": 80, "149": 80, "140": 80, "244": [80, 87], "124": 80, "268": 80, "273": 80, "108": 80, "110": 80, "136": 80, "173": 80, "297": 80, "317": 80, "192": 80, "332": 80, "324": 80, "203": 80, "320": 80, "314": 80, "199": 80, "291": 80, "000000481413": 80, "jpg": 80, "42398": 80, "44503": 80, "337": [80, 86], "29968": 80, "336": 80, "21005": 80, "9978472": 80, "forgot": 80, "drew": 80, "label_issue_idx": 80, "num_examples_to_show": 80, "113": [80, 83], "candid": 80, "97489622": 80, "70610878": 80, "98764951": 80, "88899237": 80, "99085805": 80, "issue_idx": 80, "95569726e": 80, "03354841e": 80, "57510169e": 80, "58447666e": 80, "39755858e": 80, "suppli": 80, "issue_to_visu": 80, "000000009483": 80, "955697261680538e": 80, "addition": [80, 84], "visibl": 80, "missmatch": 80, "likelei": 80, "agnost": 80, "vaidat": 80, "inconsist": 80, "000000395701": 80, "033548411774308e": 80, "armchair": 80, "tv": 80, "000000154004": 80, "38300759625496356": 80, "foreground": 80, "000000448410": 80, "0008575101690203273": 80, "crowd": 80, "alon": 80, "explor": [80, 81], "resembl": [80, 81], "contribut": 80, "000000499768": 80, "9748962231208227": 80, "000000521141": 80, "8889923658893665": 80, "000000143931": 80, "9876495074395957": 80, "train_feature_embed": 81, "ood_train_feature_scor": 81, "test_feature_embed": 81, "ood_test_feature_scor": 81, "ood_train_predictions_scor": 81, "train_pred_prob": 81, "ood_test_predictions_scor": 81, "test_pred_prob": 81, "pylab": 81, "rcparam": 81, "baggingclassifi": 81, "therebi": 81, "rescal": 81, "transform_norm": 81, "totensor": 81, "root": 81, "animal_class": 81, "non_animal_class": 81, "animal_idx": 81, "isin": 81, "test_idx": 81, "toronto": 81, "edu": 81, "kriz": 81, "5000": 81, "plot_imag": 81, "visualize_outli": 81, "txt_class": 81, "img": [81, 83], "npimg": 81, "show_label": 81, "data_subset": 81, "hidden": 81, "resnet50": 81, "corpu": 81, "2048": 81, "embed_imag": 81, "create_model": 81, "rwightman": 81, "v0": 81, "rsb": 81, "resnet50_a1_0": 81, "14fe96d1": 81, "pth": 81, "strang": 81, "odd": 81, "train_ood_features_scor": 81, "top_train_ood_features_idx": 81, "fun": 81, "negat": 81, "homogen": 81, "bottom_train_ood_features_idx": 81, "test_ood_features_scor": 81, "top_ood_features_idx": 81, "inevit": 81, "trade": 81, "5th": 81, "percentil": 81, "fifth_percentil": 81, "plt_rang": 81, "hist": 81, "train_outlier_scor": 81, "ylabel": 81, "axvlin": 81, "test_outlier_scor": 81, "sorted_idx": 81, "ood_features_indic": 81, "revisit": 81, "unusu": 81, "return_invers": 81, "train_feature_embeddings_sc": 81, "test_feature_embeddings_sc": 81, "train_pred_label": 81, "9702": 81, "train_ood_predictions_scor": 81, "test_ood_predictions_scor": 81, "mainli": [81, 87], "auxiliari": [81, 84], "lost": 81, "unsuit": 82, "ok": [82, 87], "convention": 82, "aforement": 82, "hypothet": 82, "contrast": 82, "tradit": 82, "disjoint": 82, "out_of_sample_pred_probs_for_a": 82, "out_of_sample_pred_probs_for_b": 82, "out_of_sample_pred_probs_for_c": 82, "out_of_sample_pred_prob": 82, "price": 83, "incom": 83, "ag": 83, "histgradientboostingregressor": 83, "r2_score": 83, "student_grades_r": 83, "final_scor": 83, "true_final_scor": 83, "homework": 83, "3d": 83, "hue": 83, "mpl_toolkit": 83, "mplot3d": 83, "axes3d": 83, "errors_idx": 83, "add_subplot": 83, "z": 83, "colorbar": 83, "errors_mask": 83, "feature_column": 83, "predicted_column": 83, "x_train_raw": 83, "x_test_raw": 83, "categorical_featur": [83, 85], "randomforestregressor": 83, "629763": 83, "521450": 83, "954607": 83, "547234": 83, "338296": 83, "754531": 83, "619090": 83, "312295": 83, "806626": 83, "784048": 83, "identified_issu": [83, 86], "659": 83, "367": 83, "560": 83, "318": 83, "305": 83, "688": 83, "657": 83, "view_datapoint": 83, "concat": 83, "consum": [83, 86], "baseline_model": [83, 86], "preds_og": 83, "r2_og": 83, "838": 83, "robustli": [83, 85, 86], "acceler": [83, 86], "found_label_issu": 83, "preds_cl": 83, "r2_cl": 83, "925": 83, "effort": [83, 85, 86], "favorit": 83, "64404888e": 83, "06755306e": 83, "05302732e": 83, "66635743e": 83, "53166364e": 83, "synthia": 84, "semantic_segment": 84, "imagesegment": 84, "given_mask": 84, "predicted_mask": 84, "set_printopt": [84, 87], "sky": 84, "sidewalk": 84, "veget": 84, "terrain": 84, "rider": 84, "pred_probs_filepath": 84, "1088": 84, "1920": 84, "label_filepath": 84, "synthia_class": 84, "maunal": 84, "100000": 84, "244800": 84, "system": 84, "leftmost": 84, "area": 84, "middl": [84, 87], "infact": 84, "rightmost": 84, "discrep": 84, "4997436": 84, "130927": 84, "69it": 84, "3263230": 84, "783379": 84, "275110": 84, "255792": 84, "78225": 84, "55990": 84, "54315": 84, "33591": 84, "24645": 84, "21054": 84, "15045": 84, "14171": 84, "13832": 84, "13498": 84, "11490": 84, "9149": 84, "8769": 84, "6999": 84, "6031": 84, "5011": 84, "mistakenli": 84, "class_issu": 84, "aim": [84, 87], "domin": 84, "extratreesclassifi": 85, "extratre": 85, "labelencod": [85, 86], "labels_raw": 85, "interg": [85, 86], "tress": 85, "928": 85, "911": 85, "cheat": 85, "0pt": 85, "864": 85, "498": 85, "labels_train": 85, "labels_test": 85, "acc_og": [85, 86], "783068783068783": 85, "acc_cl": [85, 86], "8095238095238095": 85, "earlier": [86, 87], "raw_label": 86, "raw_train_text": 86, "raw_test_text": 86, "raw_train_label": 86, "raw_test_label": 86, "encond": 86, "train_text": 86, "test_text": 86, "858043": 86, "545888": 86, "826290": 86, "965814": 86, "791937": 86, "646": 86, "390": 86, "628": 86, "702": 86, "863": 86, "135": 86, "735": 86, "print_as_df": 86, "inverse_transform": 86, "fight": 86, "bunch": 87, "conll": 87, "2003": 87, "love": 87, "n_i": 87, "optional_list_of_ordered_class_nam": 87, "deepai": 87, "conll2003": 87, "rm": 87, "tokenclassif": 87, "2023": 87, "2400": 87, "52e0": 87, "1a01": 87, "992": 87, "connect": 87, "await": 87, "982975": 87, "960k": 87, "959": 87, "94k": 87, "kb": 87, "mb": 87, "directori": 87, "inflat": 87, "177": 87, "17045998": 87, "16m": 87, "octet": 87, "26m": 87, "5mb": 87, "bert": 87, "read_npz": 87, "filepath": 87, "corrsespond": 87, "iob2": 87, "given_ent": 87, "entity_map": 87, "readfil": 87, "sep": 87, "startswith": 87, "docstart": 87, "isalpha": 87, "isupp": 87, "indices_to_preview": 87, "nsentenc": 87, "eu": 87, "reject": 87, "boycott": 87, "british": 87, "lamb": 87, "00030412": 87, "00023826": 87, "99936208": 87, "00007009": 87, "00002545": 87, "99998795": 87, "00000401": 87, "00000218": 87, "00000455": 87, "00000131": 87, "00000749": 87, "99996115": 87, "00001371": 87, "0000087": 87, "00000895": 87, "99998936": 87, "00000382": 87, "00000178": 87, "00000366": 87, "00000137": 87, "99999101": 87, "00000266": 87, "00000174": 87, "0000035": 87, "00000109": 87, "99998768": 87, "00000482": 87, "00000202": 87, "00000438": 87, "0000011": 87, "00000465": 87, "99996392": 87, "00001105": 87, "0000116": 87, "00000878": 87, "99998671": 87, "00000364": 87, "00000213": 87, "00000472": 87, "00000281": 87, "99999073": 87, "00000211": 87, "00000159": 87, "00000442": 87, "00000115": 87, "peter": 87, "blackburn": 87, "00000358": 87, "00000529": 87, "99995623": 87, "0000129": 87, "0000024": 87, "00001812": 87, "99994141": 87, "00001645": 87, "00002162": 87, "brussel": 87, "1996": 87, "00001172": 87, "00000821": 87, "00004661": 87, "0000618": 87, "99987167": 87, "99999061": 87, "00000201": 87, "00000195": 87, "00000408": 87, "00000135": 87, "2254": 87, "2907": 87, "19392": 87, "9962": 87, "8904": 87, "19303": 87, "12918": 87, "9256": 87, "11855": 87, "18392": 87, "20426": 87, "19402": 87, "14744": 87, "19371": 87, "4645": 87, "10331": 87, "9430": 87, "6143": 87, "18367": 87, "12914": 87, "todai": 87, "weather": 87, "march": 87, "scalfaro": 87, "northern": 87, "himself": 87, "said": 87, "germani": 87, "nastja": 87, "rysich": 87, "north": 87, "spla": 87, "fought": 87, "khartoum": 87, "govern": 87, "south": 87, "1983": 87, "autonomi": 87, "animist": 87, "region": 87, "moslem": 87, "arabis": 87, "mayor": 87, "antonio": 87, "gonzalez": 87, "garcia": 87, "revolutionari": 87, "parti": 87, "wednesdai": 87, "troop": 87, "raid": 87, "farm": 87, "stole": 87, "rape": 87, "women": 87, "spring": 87, "chg": 87, "hrw": 87, "12pct": 87, "princ": 87, "photo": 87, "moment": 87, "spokeswoman": 87, "rainier": 87, "told": 87, "reuter": 87, "danila": 87, "carib": 87, "w224": 87, "equip": 87, "radiomet": 87, "earn": 87, "19996": 87, "london": 87, "denom": 87, "sale": 87, "uk": 87, "jp": 87, "fr": 87, "maccabi": 87, "hapoel": 87, "haifa": 87, "tel": 87, "aviv": 87, "hospit": 87, "rever": 87, "roman": 87, "cathol": 87, "nun": 87, "admit": 87, "calcutta": 87, "week": 87, "ago": 87, "fever": 87, "vomit": 87, "allianc": 87, "embattl": 87, "kabul": 87, "salang": 87, "highwai": 87, "mondai": 87, "tuesdai": 87, "suprem": 87, "council": 87, "led": 87, "jumbish": 87, "milli": 87, "movement": 87, "warlord": 87, "abdul": 87, "rashid": 87, "dostum": 87, "dollar": 87, "exchang": 87, "3570": 87, "12049": 87, "born": 87, "1937": 87, "provinc": 87, "anhui": 87, "dai": 87, "came": 87, "shanghai": 87, "citi": 87, "prolif": 87, "author": 87, "teacher": 87, "chines": 87, "16764": 87, "1990": 87, "historian": 87, "alan": 87, "john": 87, "percival": 87, "taylor": 87, "di": 87, "20446": 87, "pace": 87, "bowler": 87, "ian": 87, "harvei": 87, "claim": 87, "victoria": 87, "15514": 87, "cotti": 87, "osc": 87, "foreign": 87, "minist": 87, "7525": 87, "sultan": 87, "specter": 87, "met": 87, "crown": 87, "abdullah": 87, "defenc": 87, "aviat": 87, "jeddah": 87, "saudi": 87, "agenc": 87, "2288": 87, "hi": 87, "customari": 87, "outfit": 87, "champion": 87, "damp": 87, "scalp": 87, "canada": 87, "reign": 87, "olymp": 87, "donovan": 87, "bailei": 87, "1992": 87, "linford": 87, "christi": 87, "britain": 87, "1984": 87, "1988": 87, "carl": 87, "lewi": 87, "ambigi": 87, "punctuat": 87, "chicago": 87, "digest": 87, "philadelphia": 87, "usda": 87, "york": 87, "token_issu": 87, "471": 87, "kean": 87, "year": 87, "contract": 87, "manchest": 87, "19072": 87, "societi": 87, "million": 87, "bite": 87, "deliv": 87, "19910": 87, "father": 87, "clarenc": 87, "woolmer": 87, "renam": 87, "uttar": 87, "pradesh": 87, "india": 87, "ranji": 87, "trophi": 87, "nation": 87, "championship": 87, "captain": 87, "1949": 87, "15658": 87, "19879": 87, "iii": 87, "brian": 87, "shimer": 87, "randi": 87, "jone": 87, "19104": 87}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [8, 0, 0, "-", "datalab"], [23, 0, 0, "-", "dataset"], [26, 0, 0, "-", "experimental"], [29, 0, 0, "-", "filter"], [30, 0, 0, "-", "internal"], [41, 0, 0, "-", "models"], [43, 0, 0, "-", "multiannotator"], [46, 0, 0, "-", "multilabel_classification"], [49, 0, 0, "-", "object_detection"], [52, 0, 0, "-", "outlier"], [53, 0, 0, "-", "rank"], [54, 0, 0, "-", "regression"], [58, 0, 0, "-", "segmentation"], [62, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [12, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[9, 0, 0, "-", "data"], [10, 0, 0, "-", "data_issues"], [13, 0, 0, "-", "issue_finder"], [11, 0, 0, "-", "issue_manager_factory"], [21, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[9, 2, 1, "", "Data"], [9, 5, 1, "", "DataFormatError"], [9, 5, 1, "", "DatasetDictError"], [9, 5, 1, "", "DatasetLoadError"], [9, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[10, 2, 1, "", "DataIssues"], [10, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[10, 3, 1, "", "collect_issues_from_issue_manager"], [10, 3, 1, "", "collect_statistics"], [10, 3, 1, "", "get_info"], [10, 3, 1, "", "get_issue_summary"], [10, 3, 1, "", "get_issues"], [10, 3, 1, "", "set_health_score"], [10, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[13, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"], [13, 3, 1, "", "list_default_issue_types"], [13, 3, 1, "", "list_possible_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[14, 0, 0, "-", "duplicate"], [15, 0, 0, "-", "imbalance"], [17, 0, 0, "-", "issue_manager"], [18, 0, 0, "-", "label"], [19, 0, 0, "-", "noniid"], [20, 0, 0, "-", "outlier"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[14, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[14, 3, 1, "", "collect_info"], [14, 6, 1, "", "description"], [14, 3, 1, "", "find_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_name"], [14, 6, 1, "", "issue_score_key"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "make_summary"], [14, 6, 1, "", "near_duplicate_sets"], [14, 3, 1, "", "report"], [14, 6, 1, "", "summary"], [14, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[15, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[15, 3, 1, "", "collect_info"], [15, 6, 1, "", "description"], [15, 3, 1, "", "find_issues"], [15, 6, 1, "", "info"], [15, 6, 1, "", "issue_name"], [15, 6, 1, "", "issue_score_key"], [15, 6, 1, "", "issues"], [15, 3, 1, "", "make_summary"], [15, 3, 1, "", "report"], [15, 6, 1, "", "summary"], [15, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[17, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[18, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 3, 1, "", "get_health_summary"], [18, 6, 1, "", "health_summary_parameters"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[19, 2, 1, "", "NonIIDIssueManager"], [19, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[20, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[20, 6, 1, "", "DEFAULT_THRESHOLDS"], [20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "ood"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[11, 7, 1, "", "REGISTRY"], [11, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[21, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[21, 3, 1, "", "get_report"], [21, 3, 1, "", "report"]], "cleanlab.dataset": [[23, 1, 1, "", "find_overlapping_classes"], [23, 1, 1, "", "health_summary"], [23, 1, 1, "", "overall_label_health_score"], [23, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[24, 0, 0, "-", "cifar_cnn"], [25, 0, 0, "-", "coteaching"], [27, 0, 0, "-", "label_issues_batched"], [28, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[24, 2, 1, "", "CNN"], [24, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[24, 6, 1, "", "T_destination"], [24, 3, 1, "", "__call__"], [24, 3, 1, "", "add_module"], [24, 3, 1, "", "apply"], [24, 3, 1, "", "bfloat16"], [24, 3, 1, "", "buffers"], [24, 3, 1, "", "children"], [24, 3, 1, "", "cpu"], [24, 3, 1, "", "cuda"], [24, 3, 1, "", "double"], [24, 6, 1, "", "dump_patches"], [24, 3, 1, "", "eval"], [24, 3, 1, "", "extra_repr"], [24, 3, 1, "", "float"], [24, 3, 1, "id0", "forward"], [24, 3, 1, "", "get_buffer"], [24, 3, 1, "", "get_extra_state"], [24, 3, 1, "", "get_parameter"], [24, 3, 1, "", "get_submodule"], [24, 3, 1, "", "half"], [24, 3, 1, "", "ipu"], [24, 3, 1, "", "load_state_dict"], [24, 3, 1, "", "modules"], [24, 3, 1, "", "named_buffers"], [24, 3, 1, "", "named_children"], [24, 3, 1, "", "named_modules"], [24, 3, 1, "", "named_parameters"], [24, 3, 1, "", "parameters"], [24, 3, 1, "", "register_backward_hook"], [24, 3, 1, "", "register_buffer"], [24, 3, 1, "", "register_forward_hook"], [24, 3, 1, "", "register_forward_pre_hook"], [24, 3, 1, "", "register_full_backward_hook"], [24, 3, 1, "", "register_load_state_dict_post_hook"], [24, 3, 1, "", "register_module"], [24, 3, 1, "", "register_parameter"], [24, 3, 1, "", "requires_grad_"], [24, 3, 1, "", "set_extra_state"], [24, 3, 1, "", "share_memory"], [24, 3, 1, "", "state_dict"], [24, 3, 1, "", "to"], [24, 3, 1, "", "to_empty"], [24, 3, 1, "", "train"], [24, 6, 1, "", "training"], [24, 3, 1, "", "type"], [24, 3, 1, "", "xpu"], [24, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[25, 1, 1, "", "adjust_learning_rate"], [25, 1, 1, "", "evaluate"], [25, 1, 1, "", "forget_rate_scheduler"], [25, 1, 1, "", "initialize_lr_scheduler"], [25, 1, 1, "", "loss_coteaching"], [25, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[27, 2, 1, "", "LabelInspector"], [27, 7, 1, "", "adj_confident_thresholds_shared"], [27, 1, 1, "", "find_label_issues_batched"], [27, 7, 1, "", "labels_shared"], [27, 7, 1, "", "pred_probs_shared"], [27, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[27, 3, 1, "", "get_confident_thresholds"], [27, 3, 1, "", "get_label_issues"], [27, 3, 1, "", "get_num_issues"], [27, 3, 1, "", "get_quality_scores"], [27, 3, 1, "", "score_label_quality"], [27, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[28, 2, 1, "", "CNN"], [28, 2, 1, "", "SimpleNet"], [28, 1, 1, "", "get_mnist_dataset"], [28, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[28, 3, 1, "", "__init_subclass__"], [28, 6, 1, "", "batch_size"], [28, 6, 1, "", "dataset"], [28, 6, 1, "", "epochs"], [28, 3, 1, "id0", "fit"], [28, 3, 1, "", "get_metadata_routing"], [28, 3, 1, "", "get_params"], [28, 6, 1, "", "loader"], [28, 6, 1, "", "log_interval"], [28, 6, 1, "", "lr"], [28, 6, 1, "", "momentum"], [28, 6, 1, "", "no_cuda"], [28, 3, 1, "id1", "predict"], [28, 3, 1, "id4", "predict_proba"], [28, 6, 1, "", "seed"], [28, 3, 1, "", "set_fit_request"], [28, 3, 1, "", "set_params"], [28, 3, 1, "", "set_predict_proba_request"], [28, 3, 1, "", "set_predict_request"], [28, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[28, 6, 1, "", "T_destination"], [28, 3, 1, "", "__call__"], [28, 3, 1, "", "add_module"], [28, 3, 1, "", "apply"], [28, 3, 1, "", "bfloat16"], [28, 3, 1, "", "buffers"], [28, 3, 1, "", "children"], [28, 3, 1, "", "cpu"], [28, 3, 1, "", "cuda"], [28, 3, 1, "", "double"], [28, 6, 1, "", "dump_patches"], [28, 3, 1, "", "eval"], [28, 3, 1, "", "extra_repr"], [28, 3, 1, "", "float"], [28, 3, 1, "", "forward"], [28, 3, 1, "", "get_buffer"], [28, 3, 1, "", "get_extra_state"], [28, 3, 1, "", "get_parameter"], [28, 3, 1, "", "get_submodule"], [28, 3, 1, "", "half"], [28, 3, 1, "", "ipu"], [28, 3, 1, "", "load_state_dict"], [28, 3, 1, "", "modules"], [28, 3, 1, "", "named_buffers"], [28, 3, 1, "", "named_children"], [28, 3, 1, "", "named_modules"], [28, 3, 1, "", "named_parameters"], [28, 3, 1, "", "parameters"], [28, 3, 1, "", "register_backward_hook"], [28, 3, 1, "", "register_buffer"], [28, 3, 1, "", "register_forward_hook"], [28, 3, 1, "", "register_forward_pre_hook"], [28, 3, 1, "", "register_full_backward_hook"], [28, 3, 1, "", "register_load_state_dict_post_hook"], [28, 3, 1, "", "register_module"], [28, 3, 1, "", "register_parameter"], [28, 3, 1, "", "requires_grad_"], [28, 3, 1, "", "set_extra_state"], [28, 3, 1, "", "share_memory"], [28, 3, 1, "", "state_dict"], [28, 3, 1, "", "to"], [28, 3, 1, "", "to_empty"], [28, 3, 1, "", "train"], [28, 6, 1, "", "training"], [28, 3, 1, "", "type"], [28, 3, 1, "", "xpu"], [28, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[29, 1, 1, "", "find_label_issues"], [29, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [29, 1, 1, "", "find_predicted_neq_given"], [29, 7, 1, "", "pred_probs_by_class"], [29, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[31, 0, 0, "-", "label_quality_utils"], [32, 0, 0, "-", "latent_algebra"], [33, 0, 0, "-", "multiannotator_utils"], [34, 0, 0, "-", "multilabel_scorer"], [35, 0, 0, "-", "multilabel_utils"], [36, 0, 0, "-", "outlier"], [37, 0, 0, "-", "token_classification_utils"], [38, 0, 0, "-", "util"], [39, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[31, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[32, 1, 1, "", "compute_inv_noise_matrix"], [32, 1, 1, "", "compute_noise_matrix_from_inverse"], [32, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [32, 1, 1, "", "compute_py"], [32, 1, 1, "", "compute_py_inv_noise_matrix"], [32, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[33, 1, 1, "", "assert_valid_inputs_multiannotator"], [33, 1, 1, "", "assert_valid_pred_probs"], [33, 1, 1, "", "check_consensus_label_classes"], [33, 1, 1, "", "compute_soft_cross_entropy"], [33, 1, 1, "", "find_best_temp_scaler"], [33, 1, 1, "", "format_multiannotator_labels"], [33, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[34, 2, 1, "", "Aggregator"], [34, 2, 1, "", "ClassLabelScorer"], [34, 2, 1, "", "MultilabelScorer"], [34, 1, 1, "", "exponential_moving_average"], [34, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [34, 1, 1, "", "get_label_quality_scores"], [34, 1, 1, "", "multilabel_py"], [34, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[34, 3, 1, "", "__call__"], [34, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[34, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [34, 6, 1, "", "NORMALIZED_MARGIN"], [34, 6, 1, "", "SELF_CONFIDENCE"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[34, 3, 1, "", "__call__"], [34, 3, 1, "", "aggregate"], [34, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[35, 1, 1, "", "get_onehot_num_classes"], [35, 1, 1, "", "int2onehot"], [35, 1, 1, "", "onehot2int"], [35, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[36, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[37, 1, 1, "", "color_sentence"], [37, 1, 1, "", "filter_sentence"], [37, 1, 1, "", "get_sentence"], [37, 1, 1, "", "mapping"], [37, 1, 1, "", "merge_probs"], [37, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[38, 1, 1, "", "append_extra_datapoint"], [38, 1, 1, "", "clip_noise_rates"], [38, 1, 1, "", "clip_values"], [38, 1, 1, "", "compress_int_array"], [38, 1, 1, "", "confusion_matrix"], [38, 1, 1, "", "csr_vstack"], [38, 1, 1, "", "estimate_pu_f1"], [38, 1, 1, "", "extract_indices_tf"], [38, 1, 1, "", "force_two_dimensions"], [38, 1, 1, "", "format_labels"], [38, 1, 1, "", "get_missing_classes"], [38, 1, 1, "", "get_num_classes"], [38, 1, 1, "", "get_unique_classes"], [38, 1, 1, "", "is_tensorflow_dataset"], [38, 1, 1, "", "is_torch_dataset"], [38, 1, 1, "", "num_unique_classes"], [38, 1, 1, "", "print_inverse_noise_matrix"], [38, 1, 1, "", "print_joint_matrix"], [38, 1, 1, "", "print_noise_matrix"], [38, 1, 1, "", "print_square_matrix"], [38, 1, 1, "", "remove_noise_from_class"], [38, 1, 1, "", "round_preserving_row_totals"], [38, 1, 1, "", "round_preserving_sum"], [38, 1, 1, "", "smart_display_dataframe"], [38, 1, 1, "", "subset_X_y"], [38, 1, 1, "", "subset_data"], [38, 1, 1, "", "subset_labels"], [38, 1, 1, "", "train_val_split"], [38, 1, 1, "", "unshuffle_tensorflow_dataset"], [38, 1, 1, "", "value_counts"], [38, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[39, 1, 1, "", "assert_indexing_works"], [39, 1, 1, "", "assert_nonempty_input"], [39, 1, 1, "", "assert_valid_class_labels"], [39, 1, 1, "", "assert_valid_inputs"], [39, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[42, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[42, 2, 1, "", "KerasWrapperModel"], [42, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[43, 1, 1, "", "convert_long_to_wide_dataset"], [43, 1, 1, "", "get_active_learning_scores"], [43, 1, 1, "", "get_active_learning_scores_ensemble"], [43, 1, 1, "", "get_label_quality_multiannotator"], [43, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [43, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[44, 0, 0, "-", "dataset"], [45, 0, 0, "-", "filter"], [47, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[44, 1, 1, "", "common_multilabel_issues"], [44, 1, 1, "", "multilabel_health_summary"], [44, 1, 1, "", "overall_multilabel_health_score"], [44, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[47, 1, 1, "", "get_label_quality_scores"], [47, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[48, 0, 0, "-", "filter"], [50, 0, 0, "-", "rank"], [51, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[48, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[50, 1, 1, "", "compute_badloc_box_scores"], [50, 1, 1, "", "compute_overlooked_box_scores"], [50, 1, 1, "", "compute_swap_box_scores"], [50, 1, 1, "", "get_label_quality_scores"], [50, 1, 1, "", "issues_from_scores"], [50, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[51, 1, 1, "", "visualize"]], "cleanlab.outlier": [[52, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[52, 3, 1, "", "fit"], [52, 3, 1, "", "fit_score"], [52, 3, 1, "", "score"]], "cleanlab.rank": [[53, 1, 1, "", "find_top_issues"], [53, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [53, 1, 1, "", "get_label_quality_ensemble_scores"], [53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_normalized_margin_for_each_label"], [53, 1, 1, "", "get_self_confidence_for_each_label"], [53, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[55, 0, 0, "-", "learn"], [56, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[55, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[55, 3, 1, "", "__init_subclass__"], [55, 3, 1, "", "find_label_issues"], [55, 3, 1, "", "fit"], [55, 3, 1, "", "get_aleatoric_uncertainty"], [55, 3, 1, "", "get_epistemic_uncertainty"], [55, 3, 1, "", "get_label_issues"], [55, 3, 1, "", "get_metadata_routing"], [55, 3, 1, "", "get_params"], [55, 3, 1, "", "predict"], [55, 3, 1, "", "save_space"], [55, 3, 1, "", "score"], [55, 3, 1, "", "set_fit_request"], [55, 3, 1, "", "set_params"], [55, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[56, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[57, 0, 0, "-", "filter"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[57, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[60, 1, 1, "", "common_label_issues"], [60, 1, 1, "", "display_issues"], [60, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[61, 0, 0, "-", "filter"], [63, 0, 0, "-", "rank"], [64, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[61, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[63, 1, 1, "", "get_label_quality_scores"], [63, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[64, 1, 1, "", "common_label_issues"], [64, 1, 1, "", "display_issues"], [64, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 67, 71, 72, 74, 75, 76, 79, 85, 86, 87], "count": [3, 76], "datalab": [4, 5, 6, 7, 8, 68, 69, 70, 71, 72, 76], "creat": [5, 68, 69, 76, 78], "your": [5, 65, 68, 69, 72, 74, 76], "own": 5, "issu": [5, 6, 7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 84, 85, 87], "manag": 5, "prerequisit": 5, "implement": 5, "issuemanag": [5, 68], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 68], "us": [5, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "guid": [6, 8], "type": [6, 7, 76], "custom": [6, 68], "can": [7, 69, 73, 74, 76, 78], "detect": [7, 69, 71, 72, 74, 76, 80, 81], "estim": [7, 76, 78], "each": 7, "label": [7, 18, 65, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "outlier": [7, 20, 36, 52, 71, 72, 75, 81], "Near": [7, 69, 71, 72, 75], "duplic": [7, 14, 69, 71, 72, 75], "non": 7, "iid": 7, "class": [7, 66, 76, 84], "imbal": [7, 15], "imag": [7, 75, 81], "specif": [7, 84], "option": 7, "paramet": [7, 76], "get": [8, 68, 69, 78, 79, 80, 84, 87], "start": [8, 73], "api": 8, "refer": 8, "data": [9, 65, 67, 68, 69, 71, 73, 74, 76, 78, 79, 80, 81, 83, 84, 85, 87], "data_issu": 10, "factori": 11, "intern": [12, 30], "issue_find": 13, "issue_manag": [16, 17], "noniid": 19, "report": [21, 75], "dataset": [23, 44, 65, 69, 72, 73, 74, 75, 76, 79, 80, 81, 83, 84, 86, 87], "cifar_cnn": 24, "coteach": 25, "experiment": 26, "label_issues_batch": 27, "mnist_pytorch": 28, "filter": [29, 45, 48, 57, 61, 76], "label_quality_util": 31, "latent_algebra": 32, "multiannotator_util": 33, "multilabel_scor": 34, "multilabel_util": 35, "token_classification_util": 37, "util": 38, "valid": [39, 75, 82], "fasttext": 40, "model": [41, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "kera": 42, "multiannot": [43, 78], "multilabel_classif": 46, "rank": [47, 50, 53, 56, 59, 63, 76], "object_detect": 49, "summari": [51, 60, 64], "regress": [54, 55, 56, 74, 83], "learn": [55, 69, 74, 76, 85], "segment": [58, 84], "token_classif": [62, 87], "cleanlab": [65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "document": 65, "quickstart": 65, "1": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "instal": [65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "2": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "find": [65, 67, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "common": [65, 66, 87], "3": [65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "handl": [65, 74], "error": [65, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "train": [65, 67, 74, 81, 83, 85, 86], "robust": [65, 76, 83, 85, 86], "noisi": [65, 76, 83, 85, 86], "4": [65, 67, 68, 69, 71, 72, 75, 76, 78, 80, 81, 83, 85, 86], "curat": [65, 73], "fix": [65, 74], "level": [65, 73, 76, 87], "5": [65, 67, 69, 71, 75, 76, 78, 83, 85], "improv": [65, 78], "via": [65, 76, 78], "mani": [65, 76], "other": [65, 78, 80, 83], "techniqu": 65, "contribut": 65, "easi": 65, "mode": 65, "how": [66, 74, 76, 78, 79, 87], "migrat": 66, "version": 66, "0": 66, "from": [66, 68, 69, 76, 83, 85, 86], "pre": [66, 67, 81], "function": [66, 68], "name": 66, "chang": 66, "modul": [66, 76], "new": 66, "remov": 66, "argument": [66, 68], "variabl": 66, "audio": 67, "speechbrain": 67, "depend": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "import": [67, 68, 69, 73, 75, 76, 78], "them": [67, 73, 76], "load": [67, 68, 69, 71, 72, 83, 85, 86], "featur": [67, 75, 81], "fit": 67, "linear": 67, "comput": [67, 71, 72, 75, 78, 82, 85], "out": [67, 68, 69, 71, 72, 75, 78, 82, 85], "sampl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "predict": [67, 68, 69, 71, 72, 75, 78, 79, 80, 82, 85], "probabl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "workflow": [68, 76], "audit": [68, 69], "requir": [68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "classifi": [68, 69], "instanti": 68, "object": [68, 80], "increment": 68, "search": 68, "specifi": 68, "nondefault": 68, "save": 68, "ad": 68, "A": 69, "unifi": 69, "all": [69, 76], "kind": [69, 80], "skip": [69, 73, 76, 78], "detail": [69, 73, 76, 78], "more": [69, 76, 83, 85, 86], "about": 69, "addit": 69, "inform": [69, 75], "tutori": [70, 73, 77], "tabular": [71, 85], "numer": 71, "categor": 71, "column": 71, "process": [71, 81, 83, 85], "select": [71, 85], "construct": 71, "k": [71, 75, 82], "nearest": 71, "neighbour": 71, "graph": 71, "text": [72, 86, 87], "format": [72, 74, 79, 80, 86], "defin": [72, 75, 83, 86], "fetch": [73, 75], "evalu": 73, "health": [73, 76], "8": [73, 76], "popular": 73, "faq": 74, "what": [74, 76, 82], "do": [74, 76], "i": [74, 76, 82], "infer": 74, "correct": 74, "exampl": [74, 75, 76, 81], "ha": 74, "flag": 74, "should": 74, "v": 74, "test": [74, 76, 81], "big": 74, "limit": 74, "memori": 74, "why": 74, "isn": 74, "t": 74, "cleanlearn": [74, 76], "work": [74, 76, 78, 87], "me": 74, "differ": [74, 80], "clean": [74, 76], "final": 74, "hyperparamet": 74, "tune": 74, "onli": 74, "one": [74, 76, 79, 84], "doe": [74, 78, 87], "take": 74, "so": 74, "long": 74, "ml": [74, 76], "run": 74, "identifi": [74, 80], "licens": 74, "open": 74, "sourc": 74, "under": 74, "an": 74, "answer": 74, "question": 74, "pytorch": [75, 81], "normal": 75, "fashion": 75, "mnist": 75, "prepar": 75, "fold": [75, 82], "cross": [75, 82], "embed": [75, 81], "7": [75, 76], "view": 75, "most": [75, 87], "like": 75, "sever": 75, "set": [75, 76], "dark": 75, "top": [75, 84], "low": 75, "The": 76, "centric": 76, "ai": 76, "machin": 76, "find_label_issu": 76, "line": 76, "code": 76, "visual": [76, 80, 81, 84], "twenti": 76, "lowest": 76, "qualiti": [76, 78, 79, 80, 84, 87], "see": 76, "now": 76, "let": 76, "": 76, "happen": 76, "we": 76, "merg": 76, "seafoam": 76, "green": 76, "yellow": 76, "too": 76, "you": 76, "re": 76, "6": 76, "One": 76, "score": [76, 78, 79, 80, 84, 87], "rule": 76, "overal": [76, 84], "accur": 76, "thi": 76, "directli": 76, "fulli": 76, "character": 76, "nois": 76, "matrix": [76, 79], "joint": 76, "prior": 76, "true": 76, "distribut": 76, "flip": 76, "rate": 76, "ani": 76, "again": 76, "support": 76, "lot": 76, "method": 76, "filter_bi": 76, "automat": 76, "everi": 76, "uniqu": 76, "num_label_issu": 76, "threshold": 76, "found": 76, "Not": 76, "sure": 76, "when": 76, "ensembl": 76, "multipl": [76, 78], "predictor": 76, "consensu": 78, "annot": 78, "initi": 78, "major": 78, "vote": 78, "better": 78, "statist": 78, "compar": 78, "inspect": 78, "potenti": [78, 83, 86], "retrain": 78, "further": 78, "multi": 79, "given": 79, "hot": 79, "binari": 79, "download": [80, 84, 87], "objectlab": 80, "timm": 81, "cifar10": 81, "some": 81, "pred_prob": [81, 84, 87], "wai": 83, "semant": 84, "which": 84, "ar": 84, "commonli": 84, "mislabel": [84, 87], "focus": 84, "scikit": 85, "token": 87, "word": 87, "sentenc": 87, "contain": 87, "particular": 87}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "outlier", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 66, 68, 69, 76, 78, 79], "helper": [1, 13, 27, 31, 33, 34, 35, 36, 37, 38, 50, 73, 75, 87], "method": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "ar": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "us": [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 65, 66, 68, 73, 77, 82], "benchmark": [1, 24, 65, 66, 68, 69, 76, 78, 79], "cleanlab": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82], "": [1, 2, 3, 7, 23, 24, 28, 31, 34, 36, 38, 43, 44, 48, 50, 51, 52, 53, 55, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "core": [1, 4, 27, 29, 57, 59, 84], "algorithm": [1, 2, 7, 25, 38, 43, 52, 61, 63, 65, 74, 76, 78, 87], "These": [1, 2, 3, 7, 26, 29, 30, 41, 43, 44, 47, 52, 56, 60, 61, 63, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "introduc": [1, 67, 74, 76], "synthet": [1, 78, 79, 84], "nois": [1, 2, 3, 23, 29, 32, 38, 44, 68, 69, 73, 78], "label": [1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 16, 17, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 73, 77, 81, 82], "classif": [1, 3, 7, 23, 27, 29, 32, 34, 35, 38, 43, 44, 45, 46, 47, 52, 53, 61, 62, 63, 64, 65, 66, 68, 69, 77, 78, 81, 82, 83, 84], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 27, 28, 29, 32, 34, 38, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 77, 78, 82, 85], "specif": [1, 3, 4, 6, 10, 13, 21, 26, 41, 45, 48, 51, 60, 64, 69, 72, 75, 76, 87], "thi": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "modul": [1, 3, 10, 11, 12, 13, 16, 21, 23, 24, 25, 26, 27, 28, 29, 38, 41, 43, 52, 53, 65, 74, 75, 79], "provid": [1, 2, 3, 4, 5, 7, 11, 13, 18, 23, 24, 25, 27, 28, 29, 32, 38, 42, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 82, 83, 84, 85, 86, 87], "gener": [1, 2, 3, 5, 7, 18, 21, 23, 34, 38, 39, 52, 53, 55, 60, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 86, 87], "valid": [1, 2, 3, 4, 7, 9, 23, 29, 30, 32, 33, 34, 38, 43, 45, 48, 53, 55, 56, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "matric": [1, 3, 32, 74], "which": [1, 2, 3, 4, 7, 9, 10, 11, 13, 17, 19, 21, 23, 24, 28, 29, 32, 34, 37, 38, 43, 44, 45, 48, 50, 52, 53, 55, 56, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "learn": [1, 2, 3, 7, 17, 25, 26, 27, 28, 29, 31, 33, 38, 41, 43, 45, 52, 54, 56, 59, 63, 65, 67, 68, 71, 72, 73, 77, 78, 83, 86], "i": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "possibl": [1, 2, 3, 7, 23, 24, 28, 29, 31, 32, 34, 45, 46, 47, 48, 50, 52, 53, 55, 61, 63, 64, 69, 74, 76, 78, 79, 80, 83, 84, 87], "noisi": [1, 2, 3, 23, 25, 28, 29, 32, 38, 44, 45, 47, 53, 55, 56, 57, 59, 60, 66, 68, 69, 71, 72, 74, 77, 78], "given": [1, 2, 3, 7, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 37, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 56, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "matrix": [1, 2, 3, 4, 7, 13, 23, 29, 31, 32, 35, 38, 39, 45, 50, 52, 53, 71, 81], "trace": [1, 68, 69, 76, 78, 79], "valu": [1, 2, 3, 4, 7, 9, 10, 13, 17, 19, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "more": [1, 2, 3, 4, 5, 7, 10, 13, 19, 23, 24, 27, 28, 31, 34, 38, 43, 44, 45, 46, 47, 48, 50, 53, 55, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 84, 87], "function": [1, 2, 3, 4, 5, 10, 11, 13, 18, 19, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 73, 74, 76, 78, 79, 80, 84, 85, 86, 87], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 7, 32, 38, 68, 69, 76, 78, 79], "py": [1, 3, 21, 24, 25, 29, 32, 34, 43, 68, 69, 76, 78, 79], "verbos": [1, 2, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 27, 29, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 68, 76, 78], "fals": [1, 2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 67, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81, 83, 84, 86], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65], "prior": [1, 2, 3, 23, 29, 32, 34], "repres": [1, 2, 3, 4, 5, 7, 9, 13, 19, 23, 27, 29, 32, 35, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "p": [1, 2, 3, 7, 23, 29, 31, 32, 38, 43, 51, 52, 53, 57, 69, 71, 72, 75, 76, 78, 87], "true_label": [1, 2, 3, 23, 32, 38, 76, 78], "k": [1, 2, 3, 4, 7, 9, 13, 14, 18, 19, 20, 23, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 68, 69, 74, 76, 78, 79, 80, 81, 84, 85, 87], "check": [1, 2, 4, 6, 7, 9, 13, 24, 27, 28, 33, 39, 42, 48, 55, 65, 67, 68, 69, 71, 74, 75, 76, 78, 79, 83, 85, 86], "learnabl": 1, "mean": [1, 2, 5, 9, 10, 17, 19, 25, 28, 32, 34, 50, 55, 69, 72, 74, 76, 78, 79, 81, 83, 86], "achiev": [1, 2, 24, 25, 28, 55, 78, 87], "better": [1, 4, 29, 43, 45, 53, 55, 56, 65, 67, 69, 71, 72, 74, 76, 79, 80, 81, 86, 87], "than": [1, 2, 3, 5, 7, 19, 20, 23, 29, 38, 42, 43, 48, 50, 52, 53, 55, 59, 63, 67, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 87], "random": [1, 2, 3, 5, 7, 27, 34, 43, 53, 55, 67, 68, 69, 71, 74, 75, 76, 78, 79, 81, 85], "perform": [1, 2, 5, 7, 19, 20, 24, 28, 34, 55, 65, 68, 74, 76, 78, 79, 82, 83, 85, 86], "averag": [1, 3, 17, 20, 23, 24, 28, 34, 36, 43, 44, 52, 53, 74, 78, 81], "amount": [1, 3, 75], "paramet": [1, 2, 3, 4, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 72, 75, 85, 86], "np": [1, 2, 3, 4, 5, 13, 23, 25, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 60, 61, 63, 64, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 84, 85, 86, 87], "ndarrai": [1, 2, 3, 4, 13, 18, 19, 23, 25, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 87], "an": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "arrai": [1, 2, 3, 4, 5, 9, 13, 19, 23, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "shape": [1, 2, 3, 4, 13, 23, 25, 27, 29, 31, 32, 33, 34, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 73, 74, 76, 79, 80, 81, 84, 87], "condit": [1, 2, 3, 32, 37, 38, 53, 75, 76, 87], "probabl": [1, 2, 3, 4, 7, 13, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 84, 87], "k_": [1, 2, 3, 32, 38], "k_y": [1, 2, 3, 32, 38], "contain": [1, 2, 3, 4, 9, 10, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86], "fraction": [1, 2, 3, 7, 15, 25, 32, 38, 43, 55, 71, 74], "exampl": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 78, 79, 80, 82, 83, 84, 85, 86, 87], "everi": [1, 2, 3, 4, 13, 24, 28, 29, 32, 37, 38, 45, 53, 55, 56, 67, 68, 69, 71, 72, 74, 75, 78, 80, 82, 84, 85, 87], "class": [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87], "other": [1, 2, 3, 4, 7, 13, 17, 23, 24, 26, 27, 28, 29, 32, 35, 38, 39, 41, 43, 44, 47, 52, 53, 55, 60, 67, 68, 69, 71, 72, 74, 75, 76, 79, 81, 84, 87], "assum": [1, 2, 3, 9, 29, 32, 36, 37, 38, 53, 57, 60, 74, 81, 84, 87], "column": [1, 2, 3, 4, 7, 9, 10, 23, 27, 29, 32, 34, 35, 37, 38, 43, 44, 45, 47, 48, 51, 52, 53, 55, 60, 61, 63, 64, 67, 68, 69, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "sum": [1, 2, 3, 19, 23, 32, 34, 38, 44, 45, 47, 50, 55, 68, 69, 74, 75, 76, 78, 79, 84, 87], "1": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 73, 74, 82], "each": [1, 2, 3, 4, 5, 6, 10, 11, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 38, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "true": [1, 2, 3, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "return": [1, 2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "type": [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 75, 79, 80, 84, 85, 87], "bool": [1, 2, 3, 4, 9, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 34, 37, 38, 43, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64], "is_valid": 1, "whether": [1, 3, 4, 7, 10, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 29, 38, 43, 44, 45, 47, 48, 64, 67, 69, 72, 73, 75, 76, 83, 86, 87], "generate_noisy_label": [1, 68, 69, 76, 78, 79], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 32, 34, 35, 36, 37, 38, 43, 45, 47, 50, 51, 52, 53, 55, 56, 61, 63, 64, 65, 67, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 84, 87], "perfect": [1, 2, 23, 55, 76, 80], "exactli": [1, 3, 7, 23, 24, 28, 29, 46, 52, 68, 69, 71, 72, 75, 76, 86], "yield": [1, 24, 28], "between": [1, 4, 7, 12, 13, 16, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 41, 43, 44, 47, 50, 52, 53, 55, 56, 59, 63, 64, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "below": [1, 3, 7, 23, 24, 27, 28, 29, 31, 34, 43, 44, 45, 50, 51, 59, 63, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "we": [1, 2, 3, 4, 5, 7, 10, 17, 24, 27, 28, 29, 34, 38, 39, 43, 50, 53, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "loop": [1, 3, 32, 38, 75], "implement": [1, 2, 3, 4, 6, 11, 17, 24, 25, 27, 28, 32, 38, 55, 65, 67, 68, 71, 81, 82, 85], "what": [1, 4, 6, 7, 13, 21, 23, 25, 27, 29, 43, 44, 48, 50, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "doe": [1, 2, 3, 7, 27, 28, 29, 34, 39, 50, 55, 57, 59, 63, 67, 68, 69, 71, 72, 75, 79, 83, 84, 86], "do": [1, 2, 4, 7, 23, 27, 28, 38, 39, 52, 53, 57, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "fast": 1, "explain": [1, 7], "python": [1, 2, 28, 42, 55, 68, 69, 73, 81], "pseudocod": [1, 82], "happen": [1, 7, 29, 45, 78, 84], "n": [1, 2, 3, 4, 5, 23, 24, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 67, 72, 73, 74, 75, 78, 79, 83, 84, 85, 86, 87], "without": [1, 2, 4, 7, 9, 13, 15, 24, 28, 47, 55, 65, 67, 72, 76, 80, 81, 86], "ani": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 33, 37, 38, 42, 43, 45, 47, 48, 50, 51, 53, 55, 57, 59, 60, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86], "distinct": [1, 38, 87], "natur": [1, 7, 78, 81], "number": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 84, 87], "0": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "count_joint": 1, "len": [1, 2, 3, 5, 23, 27, 32, 37, 38, 39, 52, 53, 55, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87], "y": [1, 2, 3, 4, 28, 32, 34, 38, 39, 42, 51, 55, 56, 67, 68, 69, 71, 74, 76, 78, 79, 81, 83, 86], "round": [1, 27, 29, 38, 55, 74, 83], "astyp": [1, 78], "int": [1, 2, 3, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 38, 44, 45, 47, 51, 52, 53, 55, 57, 59, 60, 61, 64, 67, 68, 75, 81], "rang": [1, 3, 5, 9, 32, 34, 36, 38, 55, 56, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 87], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 7, 9, 10, 13, 17, 23, 27, 29, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 86, 87], "pragma": 1, "cover": [1, 3, 66, 73], "choic": [1, 29, 75, 79, 81], "replac": [1, 37, 42, 53, 68, 69, 72, 73, 75, 78, 81, 85, 86], "generate_noise_matrix_from_trac": [1, 68, 69, 76, 78, 79], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 53, 67, 68, 69], "05": [1, 19, 37, 55, 61, 63, 73, 74, 76, 80], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 68, 69, 76, 78, 79], "none": [1, 2, 3, 4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 74, 75, 76, 78, 79, 84], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 7, 19, 28, 34, 55, 67, 68, 69, 71, 73, 76, 78, 79, 85], "max_it": [1, 67, 72, 81, 86], "10000": [1, 27, 73, 74], "x": [1, 2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 32, 34, 37, 38, 39, 42, 43, 45, 51, 52, 53, 55, 57, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "diagon": [1, 3, 4, 13, 29, 32, 38], "equal": [1, 3, 7, 9, 45, 50, 60, 82], "creat": [1, 2, 6, 13, 24, 27, 28, 29, 38, 55, 65, 67, 71, 72, 74, 75, 84, 86, 87], "impli": [1, 23, 44], "float": [1, 2, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 33, 34, 37, 38, 43, 44, 45, 47, 50, 51, 55, 59, 63, 67, 68, 69, 76, 78, 79], "entri": [1, 3, 4, 13, 23, 24, 28, 29, 31, 35, 38, 43, 44, 45, 48, 71, 72, 76, 79, 80, 85, 86], "maximum": [1, 7, 52, 60, 64, 84], "minimum": [1, 7, 15, 29, 31, 45, 50, 63], "noise_r": 1, "non": [1, 2, 3, 4, 6, 13, 19, 24, 28, 29, 50, 55, 68, 74, 76, 78, 80, 81], "default": [1, 2, 3, 4, 7, 11, 13, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 68, 74, 75, 84], "If": [1, 2, 3, 4, 7, 10, 13, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 45, 48, 50, 51, 52, 55, 56, 57, 59, 60, 63, 64, 65, 66, 67, 68, 71, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "have": [1, 2, 3, 4, 7, 13, 16, 19, 23, 24, 26, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 48, 50, 52, 53, 55, 56, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "all": [1, 2, 3, 4, 5, 7, 10, 13, 17, 21, 23, 24, 27, 28, 29, 32, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "necessari": [1, 2, 3, 5, 7, 37, 68], "In": [1, 2, 3, 7, 23, 24, 27, 28, 43, 44, 46, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87], "particular": [1, 4, 7, 10, 11, 13, 14, 15, 17, 19, 20, 24, 28, 38, 43, 47, 51, 55, 60, 64, 65, 67, 69, 72, 74, 78, 79, 81, 83, 85, 86], "satisfi": [1, 3, 23], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 22, 24, 25, 26, 27, 28, 29, 32, 38, 41, 42, 45, 52, 53, 55, 57, 65, 66, 67, 73, 74, 76, 82], "argument": [1, 2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 34, 39, 42, 43, 44, 45, 47, 50, 52, 53, 55, 59, 60, 61, 63, 69, 72, 73, 74, 75, 80, 83, 86, 87], "when": [1, 2, 3, 4, 7, 9, 11, 13, 18, 19, 24, 28, 29, 32, 34, 38, 42, 45, 47, 48, 50, 52, 53, 55, 56, 68, 69, 71, 72, 74, 75, 78, 82, 83, 84, 85, 86, 87], "The": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "rate": [1, 2, 3, 7, 25, 38, 67, 87], "set": [1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 48, 50, 52, 53, 55, 57, 59, 60, 68, 69, 71, 72, 74, 78, 79, 81, 82, 83, 84, 85, 86, 87], "note": [1, 2, 3, 5, 7, 24, 27, 28, 29, 34, 38, 43, 48, 50, 51, 52, 53, 55, 56, 60, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "you": [1, 2, 3, 4, 5, 7, 11, 13, 23, 24, 26, 27, 28, 29, 34, 41, 42, 43, 45, 48, 50, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "high": [1, 2, 13, 27, 29, 38, 50, 53, 55, 68, 69, 73, 75, 76, 80, 83, 84, 85, 86, 87], "mai": [1, 2, 3, 4, 7, 10, 16, 17, 23, 24, 26, 27, 28, 29, 32, 34, 38, 43, 44, 48, 50, 52, 53, 55, 57, 60, 64, 66, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87], "imposs": [1, 7, 76], "also": [1, 2, 3, 5, 7, 17, 23, 24, 27, 28, 29, 37, 42, 43, 52, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "low": [1, 7, 38, 43, 65, 68, 69, 72, 76, 80, 84], "zero": [1, 3, 4, 13, 24, 28, 31, 38, 39, 68, 75, 79, 80, 81], "forc": [1, 2, 3, 4, 28, 68, 87], "instead": [1, 2, 3, 7, 10, 13, 21, 23, 24, 27, 28, 29, 32, 38, 42, 43, 45, 47, 52, 53, 55, 56, 59, 61, 63, 66, 67, 71, 74, 75, 76, 79, 80, 81, 83, 84, 85, 86, 87], "onli": [1, 2, 3, 4, 7, 13, 18, 19, 23, 24, 27, 28, 29, 31, 32, 37, 38, 42, 43, 52, 53, 55, 57, 59, 63, 64, 65, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 86, 87], "guarante": [1, 3, 4, 12, 16, 24, 26, 28, 30, 32, 41, 66], "produc": [1, 2, 4, 7, 13, 34, 43, 53, 55, 57, 59, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "higher": [1, 4, 7, 23, 29, 31, 32, 34, 43, 44, 55, 69, 72, 74, 80], "opposit": [1, 87], "occur": [1, 3, 7, 23, 37, 50, 68, 69, 74, 75, 81], "small": [1, 3, 7, 23, 27, 34, 38, 44, 72, 73, 75, 79, 81, 86], "numpi": [1, 3, 4, 5, 7, 9, 27, 28, 34, 36, 37, 39, 42, 47, 50, 55, 56, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "max": [1, 29, 52, 53, 75, 81], "tri": [1, 24, 28, 82], "befor": [1, 2, 3, 24, 28, 38, 52, 55, 60, 72, 74, 76, 78, 81, 83, 85, 86], "option": [1, 2, 3, 4, 5, 6, 9, 10, 13, 18, 19, 23, 24, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 74, 75, 76, 83, 84, 85], "left": [1, 2, 29, 31, 36, 38, 45, 48, 51, 68, 69, 79, 80, 81, 84], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 24, 28, 33, 34, 43, 48, 50, 51, 52, 68, 69, 73, 78, 79, 80, 87], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 24, 28, 42, 74, 76, 84], "length": [1, 4, 9, 19, 23, 25, 29, 38, 45, 48, 52, 53, 55, 57, 60, 64, 67, 79, 81, 84, 85, 87], "must": [1, 2, 3, 4, 13, 23, 24, 25, 26, 28, 29, 32, 34, 35, 38, 41, 42, 43, 44, 45, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 71, 78, 82, 84, 87], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 7, 9, 23, 27, 29, 35, 38, 39, 43, 45, 51, 57, 59, 60, 61, 63, 64, 67, 74, 78, 79, 80, 84, 85, 86, 87], "ball": [1, 73], "bin": [1, 3, 45, 68, 69, 81], "ensur": [1, 2, 7, 24, 28, 38, 39, 50, 53, 55, 67, 68, 69, 72, 75, 76, 81, 82, 83, 85, 86], "most": [1, 3, 4, 5, 7, 13, 23, 27, 29, 34, 42, 43, 44, 45, 48, 50, 52, 53, 56, 59, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86], "least": [1, 7, 23, 27, 43, 44, 50, 53, 63, 74, 75, 78, 81, 84], "int_arrai": [1, 38], "can": [2, 3, 4, 5, 6, 10, 11, 13, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 71, 72, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "model": [2, 3, 4, 7, 13, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 37, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82, 84, 87], "For": [2, 3, 4, 5, 6, 7, 8, 13, 17, 22, 23, 24, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "regular": [2, 3, 27, 42], "multi": [2, 3, 7, 23, 24, 27, 28, 29, 33, 34, 35, 38, 39, 44, 45, 46, 47, 52, 53, 65, 74, 76, 77], "task": [2, 4, 23, 27, 32, 34, 35, 36, 38, 43, 45, 53, 55, 65, 67, 72, 73, 74, 76, 79, 81, 84, 86, 87], "cleanlearn": [2, 3, 7, 18, 24, 38, 42, 55, 56, 65, 66, 83, 85, 86], "wrap": [2, 24, 28, 42, 52, 55, 65, 68, 69, 71, 72, 76, 83, 85, 86], "instanc": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42, 52, 55, 60, 67, 68, 69, 71, 72, 75, 76, 85], "sklearn": [2, 3, 4, 7, 23, 28, 34, 38, 42, 52, 55, 56, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86], "classifi": [2, 3, 28, 34, 38, 43, 46, 52, 53, 65, 66, 67, 71, 72, 74, 78, 79, 81, 82, 84, 85, 86, 87], "adher": [2, 28, 55], "estim": [2, 3, 4, 6, 10, 17, 23, 27, 28, 29, 32, 38, 43, 44, 45, 50, 52, 55, 57, 59, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 77, 79, 80, 81, 82, 83, 84, 87], "api": [2, 3, 11, 42, 52, 55, 66, 74, 83], "defin": [2, 3, 4, 5, 7, 11, 17, 23, 24, 25, 27, 28, 29, 53, 55, 57, 68, 69, 71, 78, 81, 87], "four": [2, 7, 73, 76, 87], "clf": [2, 3, 4, 34, 55, 65, 71, 74, 76, 79, 85], "fit": [2, 3, 4, 7, 28, 42, 52, 55, 65, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87], "sample_weight": [2, 28, 55, 76], "predict_proba": [2, 4, 23, 28, 34, 42, 67, 68, 69, 71, 72, 74, 76, 78, 79, 81, 85], "predict": [2, 3, 4, 7, 13, 17, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 81, 83, 84, 86, 87], "score": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 27, 29, 31, 34, 36, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 81, 83, 85, 86], "data": [2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 34, 35, 38, 41, 42, 43, 44, 45, 46, 50, 52, 53, 54, 55, 60, 61, 62, 63, 64, 66, 70, 72, 75, 77, 82, 86], "e": [2, 3, 4, 7, 13, 17, 23, 24, 27, 28, 29, 32, 34, 35, 38, 39, 43, 44, 45, 46, 52, 53, 55, 57, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "featur": [2, 3, 4, 7, 13, 14, 18, 19, 20, 34, 38, 52, 55, 65, 68, 69, 71, 72, 76, 78, 83, 85], "element": [2, 3, 4, 23, 29, 31, 38, 43, 45, 53, 60, 61, 63, 67, 72, 74, 86, 87], "first": [2, 7, 19, 23, 27, 34, 38, 43, 44, 48, 53, 55, 67, 68, 71, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "index": [2, 7, 19, 23, 29, 36, 37, 38, 39, 44, 53, 55, 60, 63, 64, 67, 68, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "should": [2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 47, 48, 50, 52, 53, 55, 56, 60, 61, 63, 64, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "correspond": [2, 3, 4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "differ": [2, 4, 5, 7, 10, 12, 16, 19, 23, 24, 26, 27, 28, 29, 30, 34, 38, 39, 41, 43, 48, 50, 52, 55, 67, 68, 69, 71, 72, 75, 76, 78, 81, 82, 85], "sampl": [2, 3, 4, 7, 13, 15, 29, 31, 34, 45, 48, 53, 55, 56, 65, 66, 73, 74, 76, 77, 79, 80, 83, 84, 86, 87], "size": [2, 7, 24, 27, 28, 29, 34, 45, 50, 51, 55, 57, 59, 71, 74, 75, 76, 78, 79, 82, 84, 86], "here": [2, 4, 5, 7, 13, 27, 29, 32, 42, 43, 44, 45, 47, 48, 51, 52, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "re": [2, 4, 24, 28, 37, 43, 55, 65, 67, 68, 71, 72, 74, 83, 84, 85, 86, 87], "weight": [2, 7, 24, 25, 28, 34, 43, 50, 53, 55, 67, 68, 69, 72, 81, 86], "loss": [2, 25, 42, 53, 55, 75], "while": [2, 3, 7, 24, 27, 28, 33, 34, 38, 48, 51, 55, 65, 74, 75, 76, 78, 83], "train": [2, 3, 4, 7, 13, 24, 25, 28, 34, 38, 42, 43, 48, 52, 55, 56, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 84, 87], "support": [2, 3, 4, 9, 27, 34, 38, 39, 52, 53, 63, 65, 66, 67, 68, 69, 74, 75], "your": [2, 3, 4, 6, 7, 13, 23, 24, 26, 27, 28, 29, 34, 38, 41, 42, 43, 44, 45, 47, 52, 53, 55, 56, 57, 59, 60, 66, 67, 71, 73, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "recommend": [2, 4, 7, 10, 13, 27, 29, 43, 68, 69, 74, 75, 82, 83], "furthermor": 2, "correctli": [2, 3, 7, 23, 24, 28, 29, 32, 39, 44, 45, 50, 55, 57, 72, 74, 79, 80, 83, 84, 86], "clonabl": [2, 55], "via": [2, 4, 7, 10, 13, 17, 23, 25, 27, 28, 34, 38, 43, 48, 52, 53, 55, 56, 59, 63, 67, 68, 69, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "base": [2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 27, 28, 29, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87], "clone": [2, 55, 79], "intern": [2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 47, 55, 61, 66, 68, 74, 76, 78, 79, 81, 87], "multipl": [2, 3, 4, 9, 10, 23, 29, 37, 43, 44, 45, 47, 50, 55, 65, 68, 69, 74, 75, 77, 79, 80, 83], "g": [2, 3, 4, 7, 17, 23, 24, 28, 29, 35, 38, 45, 46, 52, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "manual": [2, 55, 67, 74, 81, 82, 83, 85, 86, 87], "pytorch": [2, 24, 25, 28, 55, 65, 67, 74, 77, 79, 84], "call": [2, 3, 4, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 24, 28, 34, 38, 42, 52, 55, 67, 68, 69, 72, 74, 75, 76, 81, 82, 84, 86, 87], "__init__": [2, 25, 55, 75], "independ": [2, 3, 7, 44, 55, 82, 87], "compat": [2, 24, 27, 28, 42, 55, 56, 59, 63, 65, 74, 82, 83, 85, 86], "neural": [2, 25, 42, 52, 55, 67, 74, 75, 79, 81], "network": [2, 24, 25, 28, 42, 52, 55, 67, 72, 74, 75, 79, 81, 86], "typic": [2, 24, 28, 52, 55, 67, 69, 71, 72, 75, 81, 82, 85, 86], "initi": [2, 3, 10, 24, 28, 43, 55, 72, 74, 85, 86], "insid": [2, 28, 55, 74, 76], "There": [2, 3, 65, 76, 78, 79], "two": [2, 3, 7, 19, 23, 24, 27, 28, 35, 38, 48, 50, 51, 66, 68, 69, 71, 72, 74, 75, 76, 79, 83, 84, 86, 87], "new": [2, 5, 11, 17, 24, 27, 28, 33, 37, 38, 43, 55, 67, 68, 71, 72, 73, 74, 81, 82, 86, 87], "notion": 2, "confid": [2, 3, 7, 17, 23, 27, 29, 32, 34, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 59, 63, 65, 76, 78, 79, 80, 82, 84, 85, 87], "packag": [2, 4, 5, 6, 7, 8, 12, 22, 26, 29, 30, 38, 41, 48, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "prune": [2, 3, 29, 45, 55, 66, 80], "everyth": [2, 76], "els": [2, 68, 73, 74, 75, 78, 79], "mathemat": [2, 3, 7, 32], "keep": [2, 10, 11, 38, 65, 68, 73, 74, 84], "belong": [2, 3, 7, 23, 29, 31, 32, 44, 45, 46, 47, 52, 53, 57, 61, 63, 64, 75, 76, 79, 81, 84, 87], "2": [2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 45, 47, 52, 53, 55, 56, 60, 61, 63, 64, 73, 74, 82], "error": [2, 3, 4, 7, 10, 24, 28, 29, 31, 32, 36, 38, 44, 45, 47, 48, 50, 53, 55, 57, 59, 60, 63, 66, 67, 68, 69, 71, 72, 73, 77, 85], "erron": [2, 3, 23, 29, 32, 38, 44, 45, 53, 55, 56, 57, 81, 83], "import": [2, 3, 4, 5, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 27, 34, 36, 37, 43, 47, 50, 55, 56, 61, 63, 64, 65, 71, 72, 74, 79, 80, 81, 83, 84, 85, 86, 87], "linear_model": [2, 4, 23, 38, 55, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logisticregress": [2, 3, 4, 23, 38, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logreg": 2, "cl": [2, 11, 55, 65, 74, 76, 83, 85, 86], "pass": [2, 3, 4, 7, 9, 10, 11, 13, 18, 21, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 52, 53, 55, 61, 65, 67, 68, 69, 72, 73, 74, 76, 78, 80, 81, 83, 86], "x_train": [2, 68, 69, 76, 78, 79, 83, 85], "labels_maybe_with_error": 2, "had": [2, 3, 55, 80], "issu": [2, 3, 4, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 41, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 70, 77, 78, 82, 83, 86], "pred": [2, 29, 38, 82, 83, 85, 86], "x_test": [2, 68, 69, 76, 79, 83, 85], "might": [2, 43, 55, 60, 68, 69, 74, 75, 85, 86], "case": [2, 3, 10, 23, 34, 43, 55, 67, 68, 69, 71, 73, 75, 76, 81, 83, 85, 86, 87], "standard": [2, 3, 4, 23, 29, 42, 44, 45, 47, 53, 55, 65, 68, 69, 71, 73, 76, 85], "adapt": [2, 24, 26, 38, 41, 55, 81], "skorch": [2, 55, 65, 74], "kera": [2, 41, 55, 65, 74], "scikera": [2, 42, 55, 74], "open": [2, 27, 65, 73, 80, 87], "doesn": [2, 55, 65], "t": [2, 3, 7, 24, 25, 27, 28, 29, 34, 36, 37, 47, 52, 53, 55, 61, 63, 64, 65, 68, 69, 73, 75, 76, 79, 80, 87], "alreadi": [2, 4, 13, 24, 27, 28, 32, 42, 43, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 85, 86], "exist": [2, 4, 7, 9, 24, 27, 28, 37, 42, 48, 50, 52, 55, 65, 66, 68, 69, 72, 78, 79, 86, 87], "made": [2, 4, 13, 55, 72, 75, 78, 80, 82, 83, 85, 86], "easi": [2, 32, 55, 68, 69, 73, 74, 76, 79], "inherit": [2, 5, 25, 55], "baseestim": [2, 28, 55], "yourmodel": [2, 55], "def": [2, 5, 11, 24, 28, 42, 55, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "self": [2, 3, 4, 5, 9, 10, 11, 13, 24, 25, 27, 28, 29, 34, 52, 53, 55, 68, 73, 75, 79, 84, 85, 87], "refer": [2, 7, 24, 28, 44, 45, 47, 48, 50, 55, 59, 60, 68, 69, 71, 72, 74, 75, 76, 82, 83], "origin": [2, 4, 7, 28, 29, 37, 38, 42, 44, 45, 48, 51, 52, 55, 56, 59, 61, 63, 68, 71, 72, 74, 75, 76, 80, 81, 83, 85, 86, 87], "total": [2, 3, 23, 27, 38, 44, 64, 74, 75, 84], "state": [2, 3, 4, 24, 25, 28, 33, 55, 76, 79, 80, 87], "art": [2, 25, 76, 79], "northcutt": [2, 3, 23, 52, 53], "et": [2, 3, 23, 25, 52, 53], "al": [2, 3, 23, 25, 52, 53], "2021": [2, 3, 23, 52, 53], "weak": 2, "supervis": [2, 7, 68, 69, 74, 78], "find": [2, 4, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 26, 27, 28, 29, 33, 37, 38, 41, 48, 52, 53, 55, 57, 61, 63, 66, 68, 77, 82], "uncertainti": [2, 7, 31, 52, 55, 74, 81, 83], "It": [2, 3, 4, 5, 7, 9, 10, 13, 17, 21, 24, 28, 29, 32, 34, 36, 43, 50, 55, 65, 68, 69, 74, 75, 76, 79, 82], "work": [2, 3, 5, 7, 9, 23, 24, 27, 28, 29, 32, 37, 38, 39, 42, 43, 53, 55, 65, 66, 68, 69, 73, 81, 83, 86], "includ": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 37, 38, 41, 43, 44, 47, 48, 52, 53, 55, 59, 60, 61, 63, 65, 66, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 87], "deep": [2, 26, 28, 41, 42, 55, 72], "see": [2, 3, 4, 10, 23, 24, 27, 28, 29, 34, 38, 42, 44, 45, 47, 48, 52, 53, 55, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "subfield": 2, "theori": [2, 76], "machin": [2, 26, 41, 55, 68, 69, 73, 78], "across": [2, 3, 4, 5, 7, 10, 13, 17, 23, 27, 34, 44, 52, 68, 69, 71, 72, 73, 74, 75, 76, 80, 82], "varieti": [2, 85, 86], "like": [2, 3, 4, 5, 7, 11, 13, 23, 24, 27, 28, 29, 32, 38, 42, 43, 44, 47, 48, 50, 53, 55, 56, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "pu": [2, 38], "input": [2, 3, 4, 7, 13, 19, 23, 24, 27, 28, 32, 34, 37, 38, 39, 42, 55, 65, 66, 69, 72, 73, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "discret": [2, 29, 32, 38, 52, 53, 57, 59, 60], "vector": [2, 3, 4, 7, 13, 29, 32, 34, 35, 38, 52, 53, 65, 67, 68, 69, 71, 72, 75, 76, 79, 80, 81, 84, 86, 87], "would": [2, 3, 4, 24, 27, 28, 29, 38, 45, 55, 65, 68, 74, 75, 76, 81, 83, 86, 87], "obtain": [2, 4, 7, 13, 29, 43, 45, 48, 53, 56, 67, 69, 72, 74, 78, 80, 82, 84, 87], "been": [2, 23, 29, 32, 37, 38, 43, 44, 48, 50, 52, 53, 55, 67, 68, 71, 74, 76, 78, 79, 80, 81, 84, 87], "dure": [2, 13, 52, 55, 67, 71, 72, 74, 76, 79, 82, 83, 85, 86, 87], "denot": [2, 3, 32, 34, 38, 45, 52, 53, 63], "tild": 2, "paper": [2, 7, 43, 52, 61, 63, 73, 76, 78, 81, 83, 87], "cv_n_fold": [2, 3, 55, 86], "5": [2, 3, 4, 14, 15, 17, 18, 19, 20, 21, 23, 28, 29, 31, 33, 34, 38, 43, 44, 47, 48, 51, 55, 56, 63, 68, 72, 73, 74, 79, 80, 81, 82, 84, 86, 87], "converge_latent_estim": [2, 3], "pulearn": [2, 38], "find_label_issues_kwarg": [2, 7, 55, 66, 74, 76], "label_quality_scores_kwarg": [2, 7], "low_memori": [2, 45, 61, 74], "clean": [2, 50, 53, 55, 56, 65, 68, 69, 73, 83, 85, 86], "even": [2, 3, 23, 27, 31, 32, 38, 55, 67, 74, 76, 78, 79, 80], "messi": [2, 55, 76], "ridden": [2, 55], "autom": [2, 55, 65, 69, 73, 74], "robust": [2, 32, 55, 69, 74], "prone": [2, 55], "out": [2, 3, 4, 7, 13, 20, 24, 28, 29, 34, 42, 45, 46, 48, 52, 53, 55, 56, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87], "current": [2, 3, 7, 10, 11, 17, 24, 28, 29, 34, 43, 50, 55, 68, 69, 74, 78], "intend": [2, 10, 11, 12, 13, 21, 30, 43, 59, 63, 67, 68, 69, 72, 76], "A": [2, 3, 4, 5, 7, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 28, 29, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 50, 51, 52, 53, 55, 57, 59, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78, 80, 82, 85, 86, 87], "follow": [2, 3, 7, 11, 23, 24, 27, 28, 34, 36, 43, 44, 48, 50, 52, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "experiment": [2, 24, 25, 27, 28, 45, 66, 74], "wrapper": [2, 4, 42, 67, 83, 85, 86], "around": [2, 4, 50, 68, 69, 80, 81, 87], "fasttext": [2, 41], "store": [2, 4, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 52, 55, 71, 72, 73, 84, 85, 86, 87], "along": [2, 34, 45, 63, 68, 69, 74, 75, 81], "dimens": [2, 36, 38, 57, 60, 74, 75, 81, 84], "select": [2, 6, 19, 43, 53, 75, 78, 81], "split": [2, 3, 4, 7, 9, 27, 34, 37, 38, 55, 67, 68, 69, 71, 72, 73, 75, 76, 79, 82, 85, 87], "cross": [2, 3, 7, 23, 29, 32, 33, 34, 45, 48, 53, 55, 56, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "fold": [2, 3, 23, 29, 32, 55, 67, 71, 73, 74, 80, 84, 85], "By": [2, 23, 44, 45, 55, 68, 84], "need": [2, 3, 7, 23, 24, 27, 28, 29, 44, 45, 47, 52, 55, 65, 67, 68, 69, 72, 74, 76, 78, 79, 80, 84, 86], "holdout": [2, 3, 55], "comput": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 43, 44, 45, 47, 50, 52, 53, 55, 56, 57, 59, 65, 66, 68, 69, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86], "them": [2, 3, 4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 43, 52, 55, 66, 68, 69, 71, 72, 74, 75, 78, 79, 81, 83, 84, 85, 86, 87], "numer": [2, 3, 4, 7, 10, 17, 34, 50, 52, 55, 60, 65, 66, 67, 68, 69, 70, 72, 75, 76, 78, 81, 83, 85, 86], "consist": [2, 3, 24, 28, 38, 43, 84, 87], "latent": [2, 3, 32], "thei": [2, 3, 12, 16, 19, 24, 25, 26, 28, 29, 30, 38, 42, 45, 50, 53, 55, 56, 59, 63, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 83, 86, 87], "relat": [2, 3, 10, 14, 15, 19, 20, 32, 38, 44, 55, 69], "close": [2, 3, 7, 27, 32, 52, 67, 68, 69, 71, 72, 74, 75, 76, 80], "form": [2, 3, 7, 24, 25, 28, 32, 37, 38, 53, 55, 74], "equival": [2, 3, 24, 28, 32, 52, 81], "iter": [2, 3, 23, 24, 28, 29, 38, 44, 45, 55, 78, 84], "enforc": [2, 24, 28, 38], "perfectli": [2, 23, 44, 76], "certain": [2, 3, 4, 13, 24, 28, 42, 55, 68, 69, 73, 81], "dict": [2, 3, 4, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 63, 68, 69, 74, 75, 87], "keyword": [2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 31, 34, 37, 42, 43, 45, 52, 53, 55, 61, 63, 68], "filter": [2, 3, 7, 27, 37, 44, 46, 47, 49, 58, 59, 60, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 79, 80, 83, 84, 85, 86, 87], "find_label_issu": [2, 3, 7, 27, 29, 44, 45, 47, 48, 50, 55, 57, 59, 60, 61, 63, 64, 65, 66, 74, 79, 80, 83, 84, 85, 86, 87], "particularli": [2, 65, 78, 81], "filter_bi": [2, 3, 27, 29, 45, 66, 74], "frac_nois": [2, 29, 45, 61, 74], "min_examples_per_class": [2, 29, 45, 74, 76], "impact": [2, 7, 68, 69, 75], "ml": [2, 4, 7, 55, 65, 68, 69, 71, 72, 75, 78, 85, 86], "accuraci": [2, 25, 53, 67, 74, 75, 76, 78, 81, 83, 84, 85, 86], "n_job": [2, 27, 29, 45, 57, 59, 61, 74, 81, 84], "disabl": [2, 24, 28, 29, 81], "process": [2, 3, 5, 13, 27, 29, 37, 43, 45, 57, 59, 61, 67, 68, 78, 82, 86], "caus": [2, 29, 34, 68, 69], "rank": [2, 3, 23, 27, 29, 34, 44, 45, 46, 48, 49, 52, 54, 58, 60, 61, 62, 64, 65, 66, 68, 69, 73, 74, 79, 80, 81, 83, 84, 85, 86, 87], "get_label_quality_scor": [2, 27, 29, 34, 43, 45, 47, 48, 50, 53, 56, 59, 61, 63, 66, 76, 79, 80, 83, 84, 87], "adjust_pred_prob": [2, 7, 47, 52, 53, 76], "control": [2, 4, 6, 7, 13, 27, 29, 36, 43, 52, 55, 61, 63, 68, 69, 73, 74], "how": [2, 3, 4, 7, 10, 11, 13, 17, 23, 24, 25, 27, 28, 32, 38, 43, 44, 47, 48, 50, 52, 53, 55, 59, 63, 65, 68, 69, 71, 72, 73, 75, 80, 81, 82, 83, 84, 85, 86], "much": [2, 7, 23, 27, 29, 55, 74, 76, 78, 81], "output": [2, 3, 4, 7, 13, 24, 25, 28, 32, 38, 42, 43, 44, 48, 50, 52, 55, 59, 60, 63, 64, 65, 66, 67, 68, 72, 73, 74, 75, 80, 81, 82, 83, 86], "print": [2, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 38, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 66, 67, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "suppress": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60, 84, 87], "statement": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60], "big": [2, 27, 45, 55, 76], "limit": [2, 4, 13, 27, 45, 80, 84, 87], "memori": [2, 24, 27, 28, 45, 51, 57, 59, 68, 84], "label_issues_batch": [2, 26, 45, 74], "find_label_issues_batch": [2, 27, 45, 74], "pred_prob": [2, 3, 4, 7, 13, 18, 20, 23, 27, 29, 31, 32, 33, 34, 35, 38, 39, 43, 44, 45, 47, 48, 51, 52, 53, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86], "threshold": [2, 3, 5, 7, 14, 15, 17, 20, 27, 50, 51, 52, 53, 59, 63, 68, 80, 81, 84, 87], "inverse_noise_matrix": [2, 3, 7, 32, 38, 66, 76], "label_issu": [2, 27, 29, 45, 48, 55, 57, 66, 67, 72, 74, 75, 76, 83, 85, 86], "clf_kwarg": [2, 3, 7, 55], "clf_final_kwarg": [2, 55], "validation_func": [2, 3, 7], "correct": [2, 7, 23, 27, 29, 31, 43, 44, 45, 47, 48, 50, 53, 55, 56, 59, 63, 65, 67, 71, 72, 75, 76, 78, 80, 82, 83], "result": [2, 3, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 27, 28, 29, 31, 38, 45, 47, 48, 53, 55, 56, 57, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 85, 86, 87], "identifi": [2, 3, 4, 5, 7, 9, 13, 21, 23, 27, 29, 45, 48, 53, 55, 56, 57, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79, 81, 83, 84, 85, 86, 87], "final": [2, 7, 55, 71, 80, 82, 83, 85], "remain": [2, 55, 66, 75, 83, 85, 86, 87], "datasetlik": [2, 38, 55], "beyond": [2, 4, 5, 6, 8, 22, 65, 84], "pd": [2, 3, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 33, 42, 43, 44, 55, 63, 67, 68, 69, 71, 72, 74, 76, 78, 83, 85, 86, 87], "datafram": [2, 3, 4, 5, 9, 10, 14, 15, 17, 18, 19, 20, 23, 27, 33, 38, 39, 42, 43, 44, 55, 60, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 86, 87], "scipi": [2, 10, 38], "spars": [2, 4, 7, 10, 13, 38, 39, 71], "csr_matrix": [2, 4, 10, 13], "torch": [2, 24, 25, 28, 67, 72, 73, 75, 81, 86], "util": [2, 4, 13, 21, 24, 25, 28, 30, 43, 55, 65, 66, 67, 68, 69, 74, 75, 76, 81], "tensorflow": [2, 38, 42, 65, 67, 74], "object": [2, 4, 9, 10, 13, 21, 24, 25, 27, 28, 34, 38, 39, 42, 45, 48, 49, 50, 51, 52, 55, 63, 65, 67, 69, 71, 75, 76, 77, 83, 86], "list": [2, 3, 4, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 35, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 59, 60, 61, 63, 64, 66, 67, 68, 69, 73, 75, 76, 79, 80, 83, 86, 87], "index_list": 2, "subset": [2, 3, 4, 13, 23, 27, 29, 38, 53, 60, 64, 67, 71, 72, 74, 75, 79, 80, 81, 82, 83, 85, 86, 87], "wa": [2, 3, 9, 11, 27, 38, 43, 44, 50, 52, 64, 67, 68, 69, 71, 72, 74, 76, 79, 80, 82, 84, 85, 86, 87], "abl": [2, 3, 7, 55, 67, 74, 76, 78, 79], "format": [2, 3, 4, 7, 9, 24, 27, 28, 29, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 48, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 71, 73, 75, 78, 83, 84, 85, 87], "make": [2, 3, 24, 27, 28, 34, 42, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "sure": [2, 27, 29, 34, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 85, 86], "shuffl": [2, 7, 38, 67, 75, 79, 81], "ha": [2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 24, 28, 32, 34, 37, 38, 43, 48, 50, 55, 61, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "batch": [2, 27, 38, 42, 43, 57, 59, 74, 75, 81], "order": [2, 7, 23, 24, 28, 29, 32, 33, 34, 36, 38, 43, 44, 45, 48, 52, 53, 57, 60, 61, 63, 64, 66, 67, 68, 69, 72, 73, 74, 75, 76, 80, 83, 84, 86, 87], "destroi": [2, 38], "oper": [2, 24, 27, 28, 38, 42, 53, 65, 72, 81, 85, 86], "eg": [2, 7, 38, 48, 68, 69, 74], "repeat": [2, 38, 43, 78, 81], "appli": [2, 24, 28, 29, 34, 35, 37, 38, 47, 52, 61, 67, 68, 71, 75, 78, 79, 81, 82, 83, 84, 85, 86], "array_lik": [2, 3, 23, 29, 38, 45, 52, 56], "some": [2, 3, 4, 7, 11, 17, 23, 24, 26, 28, 29, 32, 37, 38, 41, 43, 44, 45, 47, 48, 52, 53, 55, 57, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "seri": [2, 3, 27, 38, 39, 55, 63], "row": [2, 3, 4, 10, 13, 23, 27, 29, 31, 32, 36, 38, 43, 44, 45, 47, 52, 53, 55, 60, 61, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 81, 85, 87], "rather": [2, 3, 19, 23, 38, 42, 43, 50, 59, 63, 78, 82, 84, 86, 87], "leav": [2, 29], "per": [2, 3, 10, 23, 27, 29, 34, 37, 43, 44, 45, 47, 50, 53, 56, 57, 59, 63, 69, 74, 80, 87], "determin": [2, 3, 7, 13, 17, 19, 23, 27, 29, 34, 38, 43, 45, 48, 50, 53, 59, 63, 68, 78, 81, 83], "cutoff": [2, 3, 81], "consid": [2, 3, 4, 7, 10, 13, 18, 19, 20, 23, 24, 28, 29, 38, 43, 50, 52, 53, 56, 59, 63, 67, 69, 71, 72, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86], "section": [2, 3, 5, 7, 66, 71, 75], "3": [2, 3, 4, 5, 23, 24, 28, 29, 32, 33, 34, 35, 36, 37, 38, 42, 45, 52, 53, 55, 56, 61, 63, 73, 74, 82], "equat": [2, 3, 32], "advanc": [2, 3, 4, 6, 13, 50, 52, 63, 66, 69, 70, 76], "user": [2, 3, 4, 11, 13, 21, 24, 28, 29, 50, 52, 53, 55, 59, 63, 76], "specifi": [2, 3, 4, 7, 10, 13, 21, 24, 27, 28, 29, 34, 37, 43, 44, 45, 48, 50, 52, 53, 55, 56, 64, 66, 67, 69, 72, 74, 75, 78, 80, 83, 86], "automat": [2, 3, 4, 19, 23, 65, 71, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "greater": [2, 3, 4, 6, 7, 20, 27, 36, 38, 50, 69, 73, 74, 87], "count": [2, 17, 19, 23, 27, 29, 32, 38, 44, 45, 66, 74, 75], "observ": [2, 3, 32, 67, 68, 69, 78, 81, 83], "mislabel": [2, 7, 23, 27, 29, 32, 43, 44, 45, 48, 50, 53, 59, 61, 63, 65, 67, 71, 72, 74, 75, 76, 79, 80, 83, 85, 86], "one": [2, 3, 4, 7, 19, 23, 24, 27, 28, 29, 34, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 78, 81, 82, 83, 85, 86, 87], "get_label_issu": [2, 27, 55, 76, 83, 85, 86], "either": [2, 3, 5, 7, 24, 27, 28, 29, 43, 45, 50, 52, 53, 57, 59, 69, 79, 80], "boolean": [2, 5, 7, 17, 27, 29, 37, 43, 45, 48, 53, 55, 57, 59, 60, 65, 67, 69, 72, 74, 75, 80, 83, 84, 86], "label_issues_mask": [2, 29, 53, 55, 66], "indic": [2, 3, 4, 5, 7, 10, 17, 23, 27, 28, 29, 31, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "its": [2, 4, 6, 7, 13, 24, 27, 28, 29, 36, 37, 45, 48, 52, 53, 55, 57, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86, 87], "return_indices_ranked_bi": [2, 27, 29, 45, 61, 66, 74, 76, 79, 85, 86], "significantli": [2, 75, 76, 78, 82], "reduc": [2, 27, 29, 38, 67, 74], "time": [2, 7, 24, 27, 28, 38, 43, 66, 68, 73, 74, 75, 76, 80, 81, 83, 84, 85, 86, 87], "take": [2, 4, 7, 13, 23, 24, 28, 33, 34, 38, 42, 53, 71, 75, 78, 85, 87], "run": [2, 4, 5, 6, 8, 13, 19, 22, 24, 27, 28, 55, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "skip": [2, 7, 24, 28, 55, 67, 74, 79, 87], "slow": [2, 3], "step": [2, 5, 19, 34, 74, 75, 76, 78, 82], "caution": [2, 4, 74], "previous": [2, 4, 10, 38, 52, 55, 66, 67, 68, 71, 72, 78, 82, 85], "assign": [2, 5, 14, 15, 17, 18, 19, 20, 33, 34, 38, 55, 68, 71, 74, 75, 83, 84, 85, 87], "individu": [2, 10, 19, 24, 28, 43, 47, 50, 53, 55, 61, 63, 66, 69, 71, 74, 78, 79, 80, 85, 87], "still": [2, 27, 28, 38, 52, 74, 75, 81, 85], "extra": [2, 24, 28, 38, 42, 43, 44, 55, 72, 74, 75, 78, 81], "receiv": [2, 7, 24, 28, 44, 47, 48, 55, 57, 61, 69, 80], "overwritten": [2, 55], "callabl": [2, 3, 34, 37, 42, 47], "x_val": 2, "y_val": 2, "map": [2, 3, 27, 28, 33, 37, 38, 51, 53, 55, 60, 67, 68, 69, 74, 75, 76, 79, 87], "appropri": [2, 7, 13, 45, 53, 68, 71, 79, 80], "earli": [2, 75], "stop": [2, 75], "x_valid": 2, "y_valid": 2, "could": [2, 17, 23, 38, 52, 68, 71, 75, 79, 83, 85, 87], "f": [2, 5, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "ignor": [2, 24, 28, 37, 42, 55, 60, 64, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "allow": [2, 23, 24, 27, 28, 31, 38, 43, 51, 52, 55, 57, 59, 67, 74, 75, 82, 84, 86], "access": [2, 7, 10, 24, 28, 55, 69, 75, 79], "hyperparamet": [2, 47, 52, 75], "purpos": [2, 68, 69, 74, 79, 83], "want": [2, 4, 23, 27, 39, 43, 45, 55, 68, 72, 73, 75, 78, 80, 81, 82, 84, 86, 87], "explicitli": [2, 28, 55], "yourself": [2, 4, 27, 69], "altern": [2, 7, 34, 38, 42, 43, 53, 66, 67, 71, 72, 74, 75, 76, 78, 79, 81, 83, 86], "same": [2, 3, 4, 5, 7, 9, 11, 19, 24, 27, 28, 29, 38, 42, 43, 45, 52, 53, 55, 59, 60, 63, 64, 65, 68, 69, 71, 72, 74, 75, 80, 81, 82, 83, 84, 85, 86], "effect": [2, 7, 24, 28, 43, 52, 55, 71, 72, 74, 81], "offer": [2, 4, 67, 68, 69, 72, 74, 76, 79, 86], "after": [2, 3, 4, 10, 14, 15, 17, 18, 19, 20, 24, 28, 38, 43, 55, 68, 72, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86], "attribut": [2, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 52, 55, 68, 85], "label_issues_df": [2, 55, 75], "similar": [2, 7, 23, 24, 28, 36, 38, 43, 47, 48, 50, 52, 55, 59, 63, 68, 69, 71, 72, 74, 75, 76, 80, 81, 84], "document": [2, 3, 4, 7, 11, 23, 24, 27, 28, 29, 34, 37, 42, 44, 45, 47, 50, 52, 55, 59, 60, 61, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "descript": [2, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 38, 48, 55, 68, 69], "were": [2, 3, 4, 23, 28, 44, 50, 63, 67, 71, 72, 74, 76, 78, 80, 82, 84, 85, 86], "present": [2, 3, 4, 7, 9, 10, 15, 23, 38, 52, 60, 65, 71, 74, 75, 81, 85], "actual": [2, 3, 4, 23, 43, 44, 53, 69, 74, 76, 87], "num_class": [2, 23, 27, 38, 42, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 85, 86], "uniqu": [2, 38, 60, 68, 74, 79, 81], "given_label": [2, 4, 23, 32, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86, 87], "normal": [2, 3, 19, 29, 31, 34, 37, 38, 53, 74, 76, 81], "trick": [2, 74], "distribut": [2, 3, 4, 7, 13, 19, 20, 23, 28, 29, 33, 43, 52, 53, 65, 68, 69, 71, 72, 75, 81], "account": [2, 23, 43, 47, 52, 53, 72, 74, 76, 78, 79, 81, 83, 86], "word": [2, 3, 37, 63, 64, 74], "remov": [2, 7, 23, 24, 28, 29, 55, 65, 72, 73, 74, 75, 81, 83, 85, 86], "so": [2, 3, 5, 7, 11, 19, 23, 24, 27, 28, 29, 38, 43, 44, 50, 53, 55, 59, 63, 67, 68, 69, 72, 75, 76, 81, 84], "proportion": [2, 7, 29], "just": [2, 3, 4, 7, 10, 23, 25, 27, 38, 42, 53, 55, 57, 65, 66, 67, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86], "procedur": 2, "get": [2, 3, 4, 10, 24, 25, 28, 29, 34, 37, 38, 43, 45, 47, 52, 53, 55, 56, 57, 65, 67, 72, 73, 74, 75, 76, 81, 82, 83, 85, 86], "detect": [2, 4, 5, 6, 10, 11, 13, 17, 20, 36, 46, 48, 49, 50, 51, 52, 53, 54, 55, 58, 62, 65, 68, 70, 75, 77, 79, 83, 84, 85, 86, 87], "arg": [2, 9, 17, 24, 25, 28, 34, 38, 53, 55], "kwarg": [2, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 42, 55, 57, 59, 61, 74], "test": [2, 7, 19, 28, 34, 42, 55, 65, 68, 69, 71, 72, 75, 82, 83, 85, 86, 87], "expect": [2, 3, 24, 28, 29, 34, 43, 52, 53, 55, 72, 74, 76, 78, 79, 80, 83, 85, 86, 87], "class_predict": 2, "evalu": [2, 7, 24, 25, 27, 28, 55, 67, 68, 69, 74, 75, 76, 78, 82, 83, 84, 85, 86], "simpli": [2, 23, 53, 68, 69, 71, 72, 74, 76, 83, 84, 86, 87], "quantifi": [2, 4, 5, 7, 10, 29, 47, 52, 55, 65, 69, 71, 72, 75, 76, 80], "save_spac": [2, 7, 55], "potenti": [2, 7, 23, 29, 37, 45, 48, 53, 55, 57, 59, 66, 67, 68, 69, 71, 72, 73, 75, 76, 79, 80, 84, 85, 87], "cach": [2, 72, 75, 81, 86], "panda": [2, 4, 5, 9, 14, 15, 17, 18, 19, 20, 23, 38, 39, 42, 43, 44, 66, 67, 68, 69, 71, 72, 73, 76, 78, 83, 84, 85, 86], "unlik": [2, 29, 31, 34, 42, 44, 45, 47, 63, 68, 78, 79, 81, 83], "both": [2, 4, 7, 13, 19, 23, 24, 28, 29, 38, 43, 45, 53, 57, 59, 64, 65, 68, 74, 75, 76, 78, 87], "mask": [2, 27, 29, 37, 38, 45, 48, 53, 55, 57, 59, 60, 65, 73, 74, 78, 80, 84, 87], "prefer": [2, 53, 61], "plan": 2, "subsequ": [2, 3, 24, 28, 72, 74, 75, 76, 80, 86], "invok": [2, 24, 28, 76, 82], "scratch": [2, 55], "To": [2, 4, 5, 6, 7, 8, 10, 13, 19, 22, 24, 27, 28, 29, 42, 43, 45, 47, 51, 52, 53, 55, 56, 57, 59, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "share": [2, 53, 55], "mostli": [2, 38, 50, 55], "longer": [2, 33, 37, 55, 66, 72, 74, 80, 86], "info": [2, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 44, 55, 63, 68, 69, 73, 74, 87], "about": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 21, 23, 25, 27, 31, 43, 44, 47, 55, 60, 63, 67, 68, 71, 72, 73, 74, 75, 76, 78, 81], "docstr": [2, 23, 24, 28, 38, 55, 73, 76], "unless": [2, 24, 28, 55, 74], "our": [2, 3, 7, 42, 43, 53, 55, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "is_label_issu": [2, 55, 67, 68, 69, 71, 72, 75, 76, 83, 86], "entir": [2, 7, 19, 27, 29, 32, 44, 45, 50, 53, 55, 57, 59, 60, 65, 68, 69, 74, 80, 81, 82, 84, 87], "accur": [2, 3, 4, 7, 13, 23, 27, 29, 43, 44, 45, 48, 53, 55, 56, 57, 59, 60, 66, 69, 71, 72, 74, 75, 78, 83], "label_qu": [2, 43, 55, 76, 78, 83, 86], "measur": [2, 23, 43, 44, 55, 65, 73, 74, 76, 78, 79, 84, 85, 87], "qualiti": [2, 3, 4, 5, 7, 10, 23, 27, 29, 31, 34, 43, 44, 45, 47, 48, 50, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 83, 85, 86], "lower": [2, 4, 5, 7, 10, 20, 27, 34, 43, 44, 47, 50, 53, 55, 56, 59, 63, 67, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 86, 87], "eas": 2, "comparison": [2, 24, 28, 76, 78, 83], "against": [2, 24, 28, 68, 71, 74, 78, 79], "predicted_label": [2, 4, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86], "ad": [2, 24, 28, 69, 78, 83], "precis": [2, 45, 48, 74, 76, 84, 87], "definit": [2, 5, 55, 71, 85], "accessor": [2, 55], "describ": [2, 7, 43, 52, 53, 55, 61, 63, 76, 78, 79, 80, 82, 87], "precomput": [2, 32, 55, 73], "clear": [2, 55, 72, 83, 86], "save": [2, 4, 13, 24, 27, 28, 51, 55, 74, 80, 84, 87], "space": [2, 7, 52, 55, 71, 73, 75], "place": [2, 24, 28, 38, 55, 78, 85], "larg": [2, 27, 55, 74, 81, 84, 87], "deploi": [2, 55, 74], "care": [2, 7, 24, 28, 55, 74, 76], "avail": [2, 4, 5, 9, 13, 21, 28, 55, 76, 78, 80, 83], "cannot": [2, 4, 9, 13, 38, 82, 87], "anymor": 2, "classmethod": [2, 14, 15, 17, 18, 19, 20, 28, 34, 55], "__init_subclass__": [2, 28, 55], "set_": [2, 28, 55], "_request": [2, 28, 55], "pep": [2, 28, 55], "487": [2, 28, 55], "look": [2, 4, 5, 13, 24, 28, 38, 55, 60, 68, 69, 71, 74, 76, 78, 79, 80, 81, 84, 85, 87], "inform": [2, 4, 5, 7, 10, 13, 21, 24, 28, 38, 43, 44, 48, 55, 60, 63, 64, 65, 67, 68, 71, 72, 76, 78, 81, 84, 87], "__metadata_request__": [2, 28, 55], "infer": [2, 28, 38, 55, 60, 64, 75, 78, 79, 83, 85, 86], "signatur": [2, 24, 28, 55], "accept": [2, 24, 28, 53, 55, 68, 69], "metadata": [2, 28, 55, 87], "through": [2, 4, 5, 28, 55, 67, 69, 72, 73, 78, 81, 83, 86], "develop": [2, 6, 28, 55, 74, 76, 87], "request": [2, 28, 55, 69, 72, 73, 79, 85, 86, 87], "those": [2, 3, 7, 27, 28, 29, 42, 43, 45, 55, 59, 63, 64, 65, 67, 74, 75, 80, 84], "http": [2, 4, 5, 6, 7, 8, 22, 24, 25, 27, 28, 31, 38, 52, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "www": [2, 28, 55, 81], "org": [2, 24, 25, 28, 38, 52, 55, 74, 76, 87], "dev": [2, 28, 55], "0487": [2, 28, 55], "get_metadata_rout": [2, 28, 55], "rout": [2, 28, 55], "pleas": [2, 24, 28, 42, 55, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "guid": [2, 5, 28, 55, 66, 75], "mechan": [2, 24, 28, 55], "metadatarequest": [2, 28, 55], "encapsul": [2, 13, 28, 50, 55], "get_param": [2, 28, 42, 55], "subobject": [2, 28, 55], "param": [2, 7, 24, 28, 42, 52, 55], "name": [2, 4, 5, 7, 9, 10, 23, 24, 28, 33, 34, 38, 42, 43, 44, 51, 55, 60, 64, 67, 69, 72, 73, 75, 76, 79, 84, 86, 87], "set_fit_request": [2, 28, 55], "union": [2, 3, 4, 9, 27, 28, 34, 38, 39, 45, 51, 55, 59, 63], "str": [2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 32, 34, 37, 38, 42, 43, 44, 48, 50, 51, 53, 55, 60, 64, 67, 68, 78, 79, 87], "unchang": [2, 24, 28, 55, 87], "relev": [2, 13, 19, 28, 55, 75], "enable_metadata_rout": [2, 28, 55], "set_config": [2, 28, 55], "meta": [2, 28, 55], "rais": [2, 4, 9, 10, 24, 28, 31, 34, 55, 74], "alia": [2, 24, 28, 55], "metadata_rout": [2, 28, 55], "retain": [2, 28, 38, 55], "chang": [2, 24, 27, 28, 31, 55, 63, 67, 68, 72, 74, 80, 81, 86, 87], "version": [2, 4, 5, 6, 7, 8, 12, 16, 22, 24, 26, 28, 30, 31, 38, 41, 42, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "sub": [2, 28, 50, 55], "pipelin": [2, 28, 55], "otherwis": [2, 7, 23, 24, 27, 28, 29, 35, 37, 38, 45, 52, 55, 57, 59, 60, 64, 72, 74, 86], "updat": [2, 10, 24, 27, 28, 55, 66, 68, 75], "set_param": [2, 28, 42, 55], "simpl": [2, 24, 28, 29, 43, 53, 55, 68, 69, 71, 72, 75, 78, 81, 83, 85, 86], "well": [2, 3, 7, 24, 28, 31, 32, 43, 45, 53, 55, 60, 63, 64, 66, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81], "nest": [2, 24, 28, 55, 61, 63, 64, 87], "latter": [2, 24, 28, 55, 81], "compon": [2, 28, 55], "__": [2, 28, 55], "set_score_request": [2, 55], "structur": [3, 52, 71, 85], "unobserv": 3, "less": [3, 4, 7, 27, 34, 43, 52, 53, 57, 59, 63, 71, 73, 74, 75, 76, 80, 87], "channel": [3, 67, 76], "character": 3, "flip": 3, "nm": 3, "invers": [3, 7, 23, 32, 38, 44, 69, 73, 86], "inv": 3, "confident_joint": [3, 17, 23, 29, 38, 44, 45, 66, 74, 76], "un": 3, "under": [3, 7, 24, 28, 44, 52, 81], "joint": [3, 23, 29, 32, 38, 44, 45, 73], "num_label_issu": [3, 27, 29, 45, 60, 64, 66], "estimation_method": [3, 27], "off_diagon": 3, "multi_label": [3, 23, 29, 38, 39, 45, 79], "don": [3, 65, 69, 76, 80], "statis": 3, "compute_confident_joint": [3, 23, 29, 38, 45, 76], "off": [3, 29, 38, 50, 75, 76, 80, 81], "j": [3, 4, 13, 23, 24, 28, 29, 45, 48, 51, 52, 61, 63, 64, 68, 69, 76, 84, 87], "confident_learn": [3, 29, 45, 76], "off_diagonal_calibr": 3, "calibr": [3, 29, 38, 43, 78], "cj": [3, 32, 38], "axi": [3, 32, 34, 57, 60, 67, 68, 69, 74, 75, 76, 78, 79, 81, 83, 84], "bincount": [3, 68, 69, 76, 78, 79], "alwai": [3, 7, 24, 28, 38, 67, 76, 83, 85, 86], "estimate_issu": 3, "over": [3, 7, 24, 27, 28, 50, 57, 59, 69, 71, 73, 74, 75, 76, 81, 83, 85], "As": [3, 5, 65, 68, 69, 72, 76, 83, 87], "add": [3, 4, 5, 10, 24, 28, 42, 51, 67, 68, 69, 72, 74, 75, 76, 79, 86], "approach": [3, 23, 27, 29, 71, 76, 79, 81, 83, 85], "custom": [3, 5, 8, 24, 27, 28, 34, 37, 53, 72, 76, 86], "know": [3, 68, 69, 74, 76, 78], "cut": [3, 50, 65, 76], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 81, 87], "underestim": 3, "few": [3, 65, 74, 78, 79, 80, 81, 87], "4": [3, 4, 14, 15, 17, 18, 19, 20, 33, 34, 37, 47, 48, 50, 51, 53, 56, 63, 73, 74, 79, 84, 87], "detail": [3, 11, 23, 24, 28, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 59, 60, 61, 65, 66, 67, 79, 81, 87], "num_issu": [3, 5, 27, 67, 68, 69, 71, 72, 75, 76], "calibrate_confident_joint": 3, "up": [3, 19, 29, 34, 43, 73, 74, 80, 83, 86, 87], "p_": [3, 23, 29], "pair": [3, 7, 23, 29, 76], "v": [3, 7, 27, 44, 45, 47, 53, 68, 69, 79, 81, 82], "rest": [3, 4, 5, 6, 7, 8, 22, 44, 45, 47, 55, 68, 69, 71, 72, 75, 76, 78, 83, 85, 86], "fashion": [3, 57, 85], "2x2": 3, "incorrectli": [3, 23, 44, 45, 48, 71, 87], "calibrated_cj": 3, "c": [3, 7, 37, 45, 53, 65, 67, 68, 69, 71, 72, 74, 76, 79, 81, 82, 83, 85], "whose": [3, 4, 7, 13, 20, 24, 28, 32, 37, 43, 47, 50, 56, 59, 63, 64, 67, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 84, 87], "truli": [3, 81, 84], "estimate_joint": [3, 23, 76], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 45, 76, 80, 82, 84, 87], "return_indices_of_off_diagon": 3, "frequenc": [3, 19, 43, 44, 60, 81], "done": [3, 7, 55, 68, 74, 76, 79, 81, 82], "overfit": [3, 7, 48, 67, 68, 69, 71, 72, 75, 82, 85], "classifict": 3, "singl": [3, 4, 19, 23, 24, 28, 34, 35, 38, 43, 44, 50, 51, 52, 53, 63, 67, 68, 74, 76, 79, 80, 85], "baselin": [3, 24, 29, 81, 83, 86], "proxi": 3, "tupl": [3, 24, 28, 32, 33, 35, 37, 38, 43, 45, 51, 59, 61, 63, 64, 67, 87], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 27, 32, 43, 57, 59, 65, 74, 75, 84, 86], "practic": [3, 69, 75, 76, 81, 83, 85, 86], "complet": [3, 67, 68, 69, 71, 72, 75, 76, 80], "gist": 3, "cj_ish": 3, "guess": [3, 32, 76, 78], "8": [3, 4, 5, 33, 34, 35, 37, 47, 61, 63, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "parallel": [3, 29, 61, 73], "again": [3, 42, 81, 85], "simplifi": [3, 11], "understand": [3, 6, 23, 44, 69, 76, 83, 84, 87], "100": [3, 24, 28, 53, 68, 69, 71, 73, 74, 75, 76, 79, 84, 85, 86, 87], "optim": [3, 24, 25, 28, 42, 75, 78], "speed": [3, 29, 73, 74, 83, 86], "dtype": [3, 18, 19, 24, 28, 37, 38, 47, 63, 67, 80], "enumer": [3, 24, 28, 67, 68, 69, 75, 87], "s_label": 3, "confident_bin": 3, "6": [3, 4, 28, 34, 38, 63, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "num_confident_bin": 3, "argmax": [3, 29, 53, 57, 60, 67, 74, 76, 81, 84], "elif": 3, "estimate_lat": 3, "py_method": [3, 32], "cnt": [3, 32], "1d": [3, 27, 29, 34, 35, 38, 39, 47, 56, 67, 85], "eqn": [3, 32], "margin": [3, 29, 32, 34, 53], "marginal_p": [3, 32], "shorthand": [3, 10], "proport": [3, 7, 23, 44, 76, 82], "poorli": [3, 32, 85], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 76], "variabl": [3, 5, 11, 38, 55, 56, 67, 68, 71, 76, 79, 83], "exact": [3, 32, 68, 69, 71, 75, 85], "within": [3, 4, 12, 24, 25, 28, 30, 45, 50, 59, 61, 63, 68, 69, 75, 80, 84], "percent": 3, "often": [3, 23, 32, 44, 74, 76, 82, 84], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 7, 38, 39, 67, 68, 71, 72, 74, 75, 80, 81, 86], "wai": [3, 4, 42, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 82, 85, 86], "pro": 3, "con": 3, "pred_proba": [3, 82], "combin": [3, 23, 68, 73, 74, 75, 76, 82, 83], "becaus": [3, 32, 38, 50, 74, 76, 78, 80], "littl": [3, 27, 73, 80, 87], "uniform": [3, 53, 73, 74, 76], "20": [3, 5, 64, 67, 69, 73, 75, 76, 84, 87], "Such": [3, 75, 81], "bound": [3, 18, 24, 28, 48, 50, 51, 80], "reason": [3, 17, 24, 28], "comment": [3, 37, 87], "end": [3, 24, 28, 51], "file": [3, 4, 9, 26, 27, 41, 51, 67, 68, 71, 72, 73, 74, 80, 81, 84, 85, 87], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 76], "handl": [3, 4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 66, 68, 69, 76, 84, 85, 87], "five": [3, 48, 51, 76, 80], "estimate_cv_predicted_prob": [3, 76], "estimate_noise_matric": 3, "get_confident_threshold": [3, 27], "amongst": [3, 7], "confident_threshold": [3, 7, 17, 27, 52], "unifi": 4, "audit": [4, 6, 9, 10, 13, 67, 70, 71, 72, 75, 76, 80], "kind": [4, 5, 67, 68, 71, 72, 73, 75, 76], "addit": [4, 5, 6, 7, 8, 10, 21, 22, 24, 28, 34, 39, 43, 61, 67, 68, 72, 75, 76, 78, 81, 82, 85, 86], "depend": [4, 5, 6, 7, 8, 9, 10, 22, 26, 29, 31, 38, 41, 45, 52, 55, 56, 65], "instal": [4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 42, 57, 59], "pip": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "development": [4, 5, 6, 8, 22], "git": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "github": [4, 5, 6, 8, 22, 24, 25, 38, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "com": [4, 5, 6, 8, 22, 24, 25, 27, 31, 38, 52, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "egg": [4, 5, 6, 8, 22, 65, 73], "label_nam": [4, 5, 7, 9, 65, 67, 68, 69, 71, 72, 75, 76], "image_kei": [4, 75], "interfac": [4, 65, 74, 76], "librari": [4, 7, 28, 48, 52, 65, 68, 72, 73, 74, 86], "goal": 4, "track": [4, 10, 11, 65, 68, 73, 74, 76], "intermedi": [4, 6, 69], "statist": [4, 7, 10, 17, 19, 23, 43, 44, 69, 72, 75, 76], "convert": [4, 9, 24, 28, 35, 39, 43, 50, 59, 63, 66, 67, 72, 73, 75, 78, 79, 80, 86], "hug": [4, 9, 75], "face": [4, 9, 13, 73, 75, 79], "kei": [4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 34, 43, 44, 50, 52, 68, 69, 74, 75, 76, 78, 80], "string": [4, 7, 9, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 28, 38, 43, 44, 56, 60, 63, 64, 71, 72, 74, 78, 79, 86, 87], "dictionari": [4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 33, 38, 43, 44, 47, 48, 50, 51, 68, 69, 71, 72, 76, 78, 79, 80], "path": [4, 9, 24, 27, 28, 51, 67, 68, 74, 80], "local": [4, 9, 24, 25, 28, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "text": [4, 5, 7, 9, 14, 15, 17, 18, 19, 20, 34, 52, 61, 63, 64, 65, 68, 69, 70, 73, 74, 76, 77, 78, 81], "txt": [4, 9, 87], "csv": [4, 9, 71, 72, 83, 85, 86], "json": [4, 9], "hub": [4, 9, 81], "imag": [4, 6, 23, 28, 48, 50, 51, 52, 57, 59, 60, 65, 68, 69, 73, 74, 77, 78, 79, 80, 82, 84], "point": [4, 5, 19, 24, 28, 68, 69, 74, 76, 78], "field": [4, 7, 24, 28], "themselv": [4, 83, 85, 86], "cleanvis": [4, 7], "level": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 37, 61, 63, 69, 75, 77, 84], "load_dataset": [4, 9, 75], "glue": 4, "sst2": 4, "properti": [4, 9, 10], "has_label": [4, 9], "class_nam": [4, 9, 23, 44, 51, 60, 64, 65, 73, 76, 80, 84, 87], "empti": [4, 9, 32, 43, 69, 79], "find_issu": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 65, 67, 68, 69, 71, 72, 75, 76], "knn_graph": [4, 7, 13, 14, 19, 20, 71], "issue_typ": [4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 67, 68, 69, 71, 72, 75, 76], "sort": [4, 13, 27, 29, 34, 36, 43, 45, 48, 50, 53, 59, 61, 63, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "common": [4, 10, 13, 69, 70, 73, 74, 76, 79, 80, 84], "real": [4, 13, 65, 68, 69, 74, 76, 78, 79, 83, 84], "world": [4, 13, 65, 68, 69, 74, 76, 78, 83, 84], "interact": [4, 13, 74], "embed": [4, 7, 13, 52, 65, 67, 68, 69, 71, 72, 76, 86], "thereof": [4, 13], "insight": [4, 13, 78], "act": [4, 7, 50, 68], "issuefind": [4, 13, 21], "logic": [4, 11, 27, 29, 57, 59, 84], "best": [4, 13, 33, 43, 53, 68, 69, 71, 74, 78, 79, 81, 83, 85, 86, 87], "2d": [4, 13, 27, 34, 35, 37, 38, 43, 67, 79, 85], "num_exampl": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 44, 67, 68, 69, 71, 72, 75, 76], "represent": [4, 7, 13, 24, 28, 35, 45, 65, 67, 68, 69, 72, 74, 75, 76, 81, 86], "num_featur": [4, 13, 24, 28, 42], "distanc": [4, 7, 13, 19, 20, 36, 50, 52, 71, 81], "nearest": [4, 7, 13, 18, 19, 20, 36, 52, 69, 72, 81], "neighbor": [4, 7, 13, 18, 19, 20, 36, 52, 68, 69, 71, 72, 75, 81], "graph": [4, 7, 10, 13, 19], "squar": [4, 13, 38, 55, 73, 83], "csr": [4, 13], "evenli": [4, 13], "omit": [4, 13, 50, 51, 75, 80], "itself": [4, 13, 24, 28, 80], "duplic": [4, 6, 12, 13, 16, 17, 24, 28, 65, 68, 76], "explicit": [4, 13], "precend": [4, 13], "construct": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42], "neither": [4, 7, 11, 13, 80], "nor": [4, 7, 11, 13], "collect": [4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 43, 78, 87], "unspecifi": [4, 13, 29, 45], "interest": [4, 13, 17, 60, 64, 72, 76, 84, 85, 86, 87], "constructor": [4, 7, 13, 18], "issuemanag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21], "respons": [4, 13, 17, 55, 56, 73, 83, 87], "random_st": [4, 67, 68, 69, 75, 76, 79, 81, 85], "lab": [4, 14, 15, 17, 18, 19, 20, 27, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79], "nearestneighbor": [4, 7, 52, 71, 81], "comprehens": [4, 65, 75], "nbr": 4, "n_neighbor": [4, 7, 52], "metric": [4, 7, 14, 19, 38, 42, 52, 67, 71, 72, 75, 76, 83, 85, 86], "euclidean": [4, 7, 50, 52, 71], "kneighbors_graph": [4, 71], "mode": [4, 24, 27, 28, 71, 81], "4x4": 4, "float64": [4, 19, 24, 28, 63], "compress": [4, 7, 38, 57, 59], "toarrai": 4, "NOT": [4, 27, 72, 86], "23606798": 4, "41421356": 4, "configur": [4, 13, 34], "suppos": [4, 48, 81, 83, 85, 86], "who": [4, 50, 71, 76, 85, 87], "manag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 68], "clean_learning_kwarg": [4, 7, 18], "labelissuemanag": [4, 7, 11, 18], "prune_method": [4, 66], "prune_by_noise_r": [4, 29, 45, 76], "report": [4, 5, 8, 12, 14, 15, 17, 18, 19, 20, 23, 44, 64, 65, 67, 68, 69, 71, 72, 76, 87], "include_descript": [4, 14, 15, 17, 18, 19, 20, 21], "show_summary_scor": [4, 21], "summari": [4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 42, 44, 49, 58, 59, 61, 62, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 80, 84, 87], "show": [4, 19, 24, 28, 33, 38, 51, 60, 64, 69, 71, 72, 73, 74, 75, 76, 78, 81, 83, 84, 85, 87], "top": [4, 23, 27, 29, 38, 45, 48, 51, 53, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 83, 86, 87], "suffer": [4, 7, 10, 17, 45, 53, 64, 87], "onc": [4, 17, 23, 24, 28, 68, 74, 76, 79, 80, 85], "familiar": 4, "usag": [4, 27, 42], "found": [4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 28, 38, 65, 67, 68, 69, 71, 72, 74, 75, 81, 83, 85, 86, 87], "issue_summari": [4, 7, 10, 68], "overal": [4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 34, 43, 44, 47, 50, 55, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 80, 87], "sever": [4, 5, 7, 9, 10, 17, 24, 27, 28, 29, 47, 50, 52, 53, 59, 63, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 85, 86, 87], "dataissu": [4, 10, 13, 21], "outlier": [4, 6, 11, 12, 16, 17, 30, 53, 65, 68, 69, 76, 77], "someth": [4, 5, 24, 28, 53], "123": [4, 68, 69], "456": [4, 67, 86], "nearest_neighbor": 4, "7": [4, 34, 35, 42, 61, 63, 67, 68, 69, 71, 72, 73, 74, 78, 79, 80, 81, 83, 84, 85, 86, 87], "9": [4, 14, 15, 17, 18, 19, 20, 34, 35, 47, 61, 63, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "distance_to_nearest_neighbor": [4, 68, 69, 71, 72, 75, 76], "789": 4, "get_issu": [4, 7, 10, 67, 69, 71, 72, 75], "issue_nam": [4, 5, 7, 10, 11, 14, 15, 17, 18, 19, 20, 68, 69], "focu": [4, 10, 72, 84, 87], "full": [4, 7, 10, 27, 51, 75, 87], "summar": [4, 10, 14, 15, 17, 18, 19, 20, 23, 44, 60, 64, 65, 84], "valueerror": [4, 9, 10, 31, 34, 74], "specific_issu": [4, 10], "exhibit": [4, 7, 10, 60, 69, 72, 75, 76, 80], "lie": [4, 7, 36, 52, 53, 67, 68, 69, 71, 72, 75, 76, 86], "directli": [4, 11, 13, 21, 27, 42, 43, 69, 72, 79, 80, 83, 86], "compar": [4, 43, 52, 63, 68, 69, 71, 76], "get_issue_summari": [4, 10, 69], "get_info": [4, 10, 69], "yet": [4, 10, 73, 78], "static": [4, 13], "list_possible_issue_typ": [4, 13], "regist": [4, 5, 11, 13, 24, 28, 68], "registri": [4, 11, 13], "list_default_issue_typ": [4, 13], "folder": [4, 67, 68, 75], "load": [4, 9, 27, 51, 73, 74, 75, 76, 80, 81, 84, 87], "futur": [4, 7, 17, 24, 28, 43, 65, 68], "overwrit": [4, 68], "separ": [4, 23, 34, 47, 68, 69, 74, 75, 80, 82], "rememb": [4, 74, 76], "part": [4, 7, 24, 28, 29, 48, 50, 67, 68, 73, 84, 87], "ident": [4, 7, 17, 38, 72, 86], "walk": 5, "alongsid": [5, 24, 28, 68, 74], "pre": [5, 7, 24, 28, 68, 69], "runtim": [5, 24, 27, 28, 55, 57, 59, 67, 74, 75], "issue_manager_factori": [5, 11, 68], "myissuemanag": [5, 11], "decor": [5, 11], "start": [5, 24, 25, 28, 65, 71, 79, 87], "ll": [5, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "thing": [5, 28, 76, 83, 86], "next": [5, 43, 65, 67, 71, 72, 78, 80, 83, 85, 86, 87], "dummi": 5, "randint": [5, 34, 68, 69], "mark": [5, 66, 80, 81, 83], "regard": [5, 69, 76], "rand": [5, 34, 68, 69], "is_": [5, 7, 68], "_issu": [5, 7, 68], "issue_score_kei": [5, 14, 15, 17, 18, 19, 20, 68], "whole": [5, 19, 24, 28, 69], "make_summari": [5, 14, 15, 17, 18, 19, 20, 68], "popul": 5, "verbosity_level": [5, 14, 15, 17, 18, 19, 20], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 27, 60, 64, 74, 79], "intermediate_arg": 5, "min": [5, 34, 50, 63, 68, 74, 81], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 7, 8, 10, 12, 14, 15, 18, 19, 20, 68], "instanti": [5, 13, 27, 42, 52, 67, 69, 71, 86], "477762": 5, "286455": 5, "term": [5, 7, 32, 38, 67, 68, 69, 71, 72, 75, 76], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 14, 20, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "003042": 5, "058117": 5, "11": [5, 42, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "121908": 5, "15": [5, 36, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "169312": 5, "17": [5, 67, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 68, 73, 76], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "search": [6, 7, 15, 19, 37, 55, 74, 82], "nondefault": 6, "Near": 6, "iid": [6, 19, 69, 72, 75, 76], "imbal": [6, 12, 16, 47, 52, 53], "togeth": [6, 7, 32, 68, 69, 71, 72, 75, 76, 83, 86, 87], "built": [6, 34], "own": [6, 24, 26, 28, 41, 47, 48, 57, 61, 67, 69, 71, 72, 75, 78, 79, 83, 84, 85, 86, 87], "prerequisit": 6, "basic": [6, 28, 42, 81], "page": [7, 69, 74, 76], "variou": [7, 10, 26, 39, 41, 65, 68, 69, 71, 72, 73, 76, 78, 80, 85], "sai": [7, 24, 28, 79, 84], "why": [7, 72], "matter": [7, 23, 44], "three": [7, 23, 43, 44, 55, 60, 67, 68, 69, 71, 73, 76, 78, 82, 83, 84, 85, 87], "_score": 7, "flag": [7, 17, 19, 29, 34, 44, 45, 48, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86], "badli": [7, 50, 87], "code": [7, 24, 28, 32, 38, 42, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "issue_scor": 7, "outlier_scor": [7, 20, 68, 69, 71, 72, 75, 76, 81], "atyp": [7, 52, 68, 69, 71, 72, 75, 76, 81], "datapoint": [7, 29, 34, 38, 53, 56, 65, 67, 68, 69, 71, 72, 74, 82, 83, 85, 86], "is_issu": [7, 17], "is_outlier_issu": [7, 68, 69, 71, 72, 75, 76], "annot": [7, 23, 33, 43, 44, 45, 47, 48, 50, 51, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 77, 80, 84], "transform": [7, 34, 36, 38, 52, 53, 69, 72, 75, 81, 85, 86, 87], "dissimilar": [7, 71, 72], "preced": 7, "cosin": [7, 52, 81], "incorrect": [7, 50, 53, 56, 67, 68, 69, 71, 72, 75, 76, 80, 83, 85], "due": [7, 27, 29, 53, 57, 59, 67, 68, 69, 71, 72, 75, 76], "appear": [7, 23, 33, 44, 45, 48, 56, 69, 71, 72, 75, 83, 84], "likelihood": [7, 27, 29, 45, 50, 52, 53, 57, 61], "now": [7, 27, 66, 67, 69, 78, 80, 81, 83, 85, 86, 87], "u": [7, 67, 68, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 86, 87], "token": [7, 37, 59, 60, 61, 62, 63, 64, 74, 76, 77], "etc": [7, 17, 24, 28, 32, 42, 43, 61, 65, 68, 69, 72, 74, 75, 76], "calcul": [7, 19, 27, 34, 43, 47, 48, 50, 52, 55, 59, 73, 75], "hamper": [7, 73, 75], "analyt": [7, 65, 78], "lead": [7, 50, 53, 75, 80], "draw": [7, 68, 69], "conclus": 7, "try": [7, 27, 29, 42, 43, 57, 59, 65, 69, 74, 76, 84], "veri": [7, 23, 44, 48, 50, 68, 69, 71, 72, 75, 76, 78, 81, 83, 86], "rare": [7, 29, 68, 69, 71, 72, 74, 75, 76], "anomal": [7, 53, 68, 69, 71, 72, 75, 76], "articl": [7, 27, 74], "ai": [7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 81, 83, 85, 86, 87], "blog": 7, "unexpect": [7, 24, 28], "consequ": 7, "inspect": [7, 67, 69, 75, 76, 80, 83, 86], "neg": [7, 50, 68, 69, 73], "affect": [7, 24, 28, 57, 63, 72, 74], "extrem": [7, 68, 69, 71, 72, 74, 75, 76], "rel": [7, 23, 43, 44, 52, 68, 69, 71, 72, 75, 76, 81], "record": [7, 24, 28, 67, 71, 83], "abbrevi": 7, "misspel": 7, "typo": [7, 64], "resolut": 7, "video": [7, 73], "audio": [7, 68, 69, 74, 77], "minor": [7, 37], "variat": 7, "translat": 7, "d": [7, 36, 71, 72, 76, 79, 85, 87], "constant": [7, 55], "median": 7, "question": [7, 17, 65, 76], "nearli": [7, 17, 69, 71, 72, 75], "awar": [7, 66, 76], "presenc": [7, 76], "signific": [7, 69, 72, 75, 76], "violat": [7, 69, 72, 75, 76], "assumpt": [7, 69, 72, 75, 76], "changepoint": [7, 69, 72, 75, 76], "shift": [7, 69, 72, 75, 76], "drift": [7, 69, 72, 75, 76], "autocorrel": [7, 69, 72, 75, 76], "almost": [7, 69, 72, 75, 76], "adjac": [7, 69, 72, 75, 76], "tend": [7, 23, 32, 69, 72, 75, 76, 84, 87], "sequenti": [7, 24, 28, 42, 75], "gap": 7, "group": [7, 19, 73, 80, 87], "b": [7, 14, 15, 17, 18, 19, 20, 23, 37, 38, 63, 71, 72, 73, 76, 82, 85, 87], "x1": [7, 48, 51, 80], "x2": [7, 48, 51, 80], "10th": 7, "100th": 7, "90": [7, 63, 71, 76, 82, 85], "similarli": [7, 24, 28, 68, 71, 74, 75, 80], "math": [7, 75], "behind": [7, 52, 76], "fundament": 7, "proper": [7, 38, 43, 48, 72, 75, 78, 80, 85], "closer": [7, 50, 80], "scenario": [7, 53, 68, 69], "underli": [7, 52, 61, 63, 87], "stem": [7, 52, 81], "evolv": 7, "influenc": 7, "accordingli": 7, "emploi": [7, 79, 81], "partit": [7, 82], "ahead": 7, "good": [7, 24, 28, 42, 44, 50, 53, 57, 59, 60, 65, 75], "fix": [7, 43, 72, 76, 83, 86], "problem": [7, 27, 34, 60, 65, 68, 69, 72, 74, 75], "deploy": [7, 76, 83, 85, 86], "overlook": [7, 50, 80], "fact": 7, "thu": [7, 23, 28, 44, 67, 71, 72, 76, 82, 85, 87], "diagnos": [7, 69, 74], "rarest": 7, "q": [7, 80], "fall": [7, 50, 59, 63, 76, 81], "subpar": 7, "special": [7, 37], "techniqu": 7, "smote": 7, "asymmetr": [7, 23], "properli": [7, 27, 33, 38, 39, 57, 74, 79, 81, 83, 84], "too": [7, 29, 34, 52, 74, 75, 80], "dark": [7, 84], "bright": [7, 87], "blurri": [7, 75], "abnorm": [7, 75], "exert": 7, "possible_issue_typ": 7, "label_kwarg": 7, "outlier_kwarg": 7, "near_dupl": [7, 11, 14, 68, 69, 71, 72, 75, 76], "near_duplicate_kwarg": 7, "non_iid": [7, 11, 19, 69, 71, 72, 75, 76], "non_iid_kwarg": 7, "health_summary_paramet": [7, 18], "health_summari": [7, 18, 23, 65, 73], "health_summary_kwarg": 7, "tandem": [7, 73], "view": [7, 24, 28, 29, 59, 61, 63, 65, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "sensit": 7, "ood_kwarg": 7, "outofdistribut": [7, 20, 52, 81], "outsid": 7, "knn": [7, 10, 19, 52, 71, 81], "outlierissuemanag": [7, 11, 20, 68], "nearduplicateissuemanag": [7, 11, 14], "noniidissuemanag": [7, 11, 19, 71], "num_permut": [7, 19], "permut": [7, 19], "significance_threshold": [7, 19], "signic": 7, "noniid": [7, 12, 16], "class_imbalance_kwarg": 7, "classimbalanceissuemanag": [7, 15], "data_issu": [8, 12, 13, 21, 68], "issue_find": [8, 12], "factori": [8, 12, 13], "datalab": [9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 65, 67, 75, 78, 85, 86], "except": [9, 42, 53, 68, 69, 75, 78], "dataformaterror": 9, "with_traceback": 9, "tb": 9, "__traceback__": 9, "datasetdicterror": 9, "datasetdict": 9, "usual": [9, 21, 75, 78, 83], "datasetloaderror": 9, "dataset_typ": 9, "fail": [9, 71], "hold": 9, "is_avail": [9, 75], "serv": [10, 13, 78], "central": [10, 87], "repositori": 10, "being": [10, 23, 24, 28, 29, 34, 37, 38, 53, 71, 76, 83, 84, 85], "basi": 10, "collect_statist": 10, "reus": [10, 17, 75], "avoid": [10, 24, 27, 28, 29, 36, 38, 45, 48, 55, 57, 59, 68, 69, 74], "recomput": [10, 86], "weighted_knn_graph": 10, "issue_manager_that_computes_knn_graph": 10, "collect_issues_from_issue_manag": 10, "set_health_scor": 10, "health": [10, 18, 23, 44, 65], "get_data_statist": 10, "concret": 11, "subclass": [11, 24, 28, 52, 68], "my_issu": 11, "stabl": [12, 16, 26, 30, 38, 41, 52, 66], "instati": 13, "public": [13, 76, 80, 84, 87], "creation": [13, 28], "execut": [13, 24, 28, 68, 74, 80], "coordin": [13, 48, 50, 51, 80, 87], "behavior": [13, 23, 24, 28], "At": [13, 74], "associ": [13, 24, 28, 78], "get_available_issue_typ": 13, "10": [14, 18, 19, 24, 25, 52, 53, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "_": [14, 17, 18, 19, 34, 37, 38, 67, 68, 73, 75, 76, 79, 85], "classvar": [14, 15, 17, 18, 19, 20], "short": [14, 15, 17, 18, 19, 20, 37, 38], "item": [14, 15, 17, 18, 19, 20, 38, 68, 69, 75, 76, 78, 79], "some_info_kei": [14, 15, 17, 18, 19, 20], "additional_info_kei": [14, 15, 17, 18, 19, 20], "near_duplicate_set": [14, 68, 69, 71, 72, 75, 76], "occurr": [14, 15, 17, 19, 20, 37], "collect_info": [14, 15, 17, 18, 19, 20], "near_duplicate_scor": [14, 68, 69, 71, 72, 75, 76], "info_to_omit": [14, 15, 17, 18, 19, 20], "compos": [14, 15, 17, 18, 19, 20, 24, 28, 72, 81, 86], "is_x_issu": [14, 15, 17, 18, 19, 20], "x_score": [14, 15, 17, 18, 19, 20], "val_a": [14, 15, 17, 18, 19, 20], "val_b1": [14, 15, 17, 18, 19, 20], "val_b2": [14, 15, 17, 18, 19, 20], "report_str": [14, 15, 17, 18, 19, 20, 21], "class_imbal": 15, "class_imbalance_scor": 15, "bleed": [16, 26], "edg": [16, 26, 50, 65, 76, 87], "sharp": [16, 26], "abc": 17, "believ": [17, 84], "priori": [17, 76], "global": 17, "anoth": [17, 23, 27, 37, 50, 53, 71, 72, 74, 76, 78, 81, 86], "abstract": 17, "applic": [18, 43, 76, 78, 79, 87], "typevar": [18, 24, 28, 50, 51], "_scalartype_co": 18, "covari": [18, 55, 83], "get_health_summari": 18, "summary_dict": 18, "label_scor": [18, 67, 68, 69, 71, 72, 75, 76], "simplified_kolmogorov_smirnov_test": 19, "neighbor_histogram": 19, "non_neighbor_histogram": 19, "kolmogorov": 19, "smirnov": 19, "largest": [19, 27, 34, 53, 57, 59, 84], "empir": [19, 33, 43], "cumul": 19, "ecdf": 19, "histogram": [19, 71, 83], "absolut": 19, "25": [19, 24, 34, 36, 73, 75, 76, 78, 79, 80, 87], "dimension": [19, 38, 67, 76, 81], "trial": 19, "non_iid_scor": [19, 69, 72, 75, 76], "default_threshold": 20, "37037": 20, "q3_avg_dist": 20, "iqr_avg_dist": 20, "median_outlier_scor": 20, "ood": [20, 52, 53, 68, 69, 72, 75, 76, 81], "exclud": [21, 60, 64, 68, 87], "get_report": 21, "overview": [23, 67, 69, 71, 72, 75, 78, 80, 81, 83, 85, 86, 87], "modifi": [23, 24, 27, 28, 38, 74, 76], "help": [23, 24, 28, 65, 66, 67, 68, 71, 72, 73, 74, 78, 79, 83, 84, 85, 86, 87], "rank_classes_by_label_qu": [23, 69], "merg": [23, 37, 65, 73, 74, 87], "find_overlapping_class": [23, 74, 76], "ascend": [23, 36, 44, 75, 76], "problemat": [23, 44, 60, 64, 67, 80, 87], "unnorm": [23, 44, 76], "abov": [23, 24, 27, 28, 38, 43, 50, 53, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "model_select": [23, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 83, 85, 86], "cross_val_predict": [23, 28, 67, 68, 69, 71, 72, 76, 78, 82, 83, 85, 86], "get_data_labels_from_dataset": 23, "yourfavoritemodel": [23, 76], "cv": [23, 34, 67, 68, 69, 71, 76, 78, 85], "df": [23, 38, 64, 67], "overall_label_qu": [23, 44], "col": 23, "prob": [23, 37, 76, 82], "divid": [23, 44, 53], "label_nois": [23, 44], "human": [23, 73, 84, 87], "clearli": [23, 53, 75, 80, 84], "num": [23, 44, 73, 76], "overlap": [23, 65, 73, 74, 76], "ontolog": 23, "publish": [23, 87], "therefor": [23, 53], "vehicl": [23, 73], "truck": [23, 73, 81, 84], "intuit": [23, 44], "car": [23, 73, 80, 84], "frequent": [23, 43, 71, 74, 83, 85], "confus": [23, 24, 28, 29, 38, 86, 87], "characterist": 23, "l": [23, 24, 28, 48, 50, 51], "class1": 23, "class2": 23, "relationship": 23, "arbitrari": [23, 59, 63, 68, 81, 83], "match": [23, 24, 28, 29, 43, 44, 53, 68, 69, 73, 75, 80, 82, 84], "dog": [23, 38, 44, 46, 60, 73, 74, 81, 82, 87], "cat": [23, 38, 44, 46, 73, 74, 81, 82], "captur": [23, 67, 80, 81, 84], "co": [23, 24, 25], "noisy_label": [23, 68, 69, 79], "overlapping_class": 23, "descend": [23, 24, 28, 34, 44], "overall_label_health_scor": [23, 44, 76], "suggest": [23, 43, 44, 50, 72, 74, 75, 83, 86], "half": [23, 24, 28, 44, 73, 87], "health_scor": [23, 44], "classes_by_label_qu": [23, 69], "cnn": [24, 28, 75], "cifar": [24, 25, 73, 81], "teach": [24, 25], "bhanml": 24, "blob": 24, "master": [24, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "call_bn": 24, "bn": 24, "input_channel": 24, "n_output": 24, "dropout_r": 24, "top_bn": 24, "architectur": [24, 28, 72, 86], "shown": [24, 51, 68, 74, 78, 81, 82, 84, 87], "forward": [24, 25, 28, 75, 78], "overridden": [24, 28], "although": [24, 28, 52, 71, 85], "recip": [24, 28], "afterward": [24, 28], "sinc": [24, 28, 31, 39, 44, 59, 63, 74, 78, 79, 80, 82, 87], "former": [24, 28], "hook": [24, 28, 73], "silent": [24, 27, 28], "t_destin": [24, 28], "__call__": [24, 28, 34], "add_modul": [24, 28], "child": [24, 28], "fn": [24, 28], "recurs": [24, 28, 34], "submodul": [24, 28], "children": [24, 28, 87], "nn": [24, 25, 28, 75], "init": [24, 28, 76], "doc": [24, 28, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "no_grad": [24, 28, 75, 81], "init_weight": [24, 28], "linear": [24, 28, 72, 75, 86], "fill_": [24, 28], "net": [24, 28, 67, 73, 75], "in_featur": [24, 28], "out_featur": [24, 28], "bia": [24, 28, 72, 75, 86], "tensor": [24, 25, 28, 67, 75, 81], "requires_grad": [24, 28], "bfloat16": [24, 28], "cast": [24, 28, 67], "buffer": [24, 28], "datatyp": [24, 28], "direct": [24, 28], "member": [24, 28, 68], "xdoctest": [24, 28], "undefin": [24, 28], "var": [24, 28], "buf": [24, 28], "20l": [24, 28], "1l": [24, 28], "5l": [24, 28], "immedi": [24, 28, 81], "cpu": [24, 28, 29, 67, 75], "move": [24, 28, 34, 66, 73], "cuda": [24, 28, 67, 75], "devic": [24, 28, 67, 75], "gpu": [24, 28, 67, 72, 86], "live": [24, 28], "copi": [24, 28, 55, 67, 68, 69, 71, 74, 79, 82, 83, 85], "doubl": [24, 28], "dump_patch": [24, 28], "eval": [24, 28, 75, 79, 81], "dropout": [24, 28], "batchnorm": [24, 28], "grad": [24, 28], "extra_repr": [24, 28], "line": [24, 28, 65, 68, 73, 78, 81, 87], "get_buff": [24, 28], "target": [24, 25, 28, 55, 56, 81, 83], "throw": [24, 28], "get_submodul": [24, 28], "explan": [24, 28], "fulli": [24, 28, 42, 74], "qualifi": [24, 28], "referenc": [24, 28], "attributeerror": [24, 28], "invalid": [24, 28], "resolv": [24, 28, 87], "get_extra_st": [24, 28], "state_dict": [24, 28], "set_extra_st": [24, 28], "build": [24, 28, 75, 84], "pickleabl": [24, 28], "serial": [24, 28], "backward": [24, 28, 75], "break": [24, 28, 75], "pickl": [24, 28, 80], "get_paramet": [24, 28], "let": [24, 28, 52, 53, 67, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "net_b": [24, 28], "net_c": [24, 28], "conv": [24, 28], "conv2d": [24, 28, 75], "16": [24, 28, 34, 59, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 86, 87], "33": [24, 28, 73, 80], "kernel_s": [24, 28], "stride": [24, 28], "200": [24, 28, 53, 73, 80, 87], "diagram": [24, 28, 82], "degre": [24, 28, 83], "queri": [24, 28, 69, 75], "named_modul": [24, 28], "o": [24, 28, 36, 37, 67, 68, 69, 73, 74, 76, 79, 80, 87], "transit": [24, 28], "ipu": [24, 28], "load_state_dict": [24, 28], "strict": [24, 28, 34], "persist": [24, 28], "strictli": [24, 28], "namedtupl": [24, 28], "missing_kei": [24, 28], "unexpected_kei": [24, 28], "miss": [24, 28, 38, 48, 50, 71, 74, 80, 83, 85], "runtimeerror": [24, 28], "idx": [24, 28, 38, 39, 68, 74, 75, 76, 78, 80, 81], "named_buff": [24, 28], "prefix": [24, 28, 67, 87], "prepend": [24, 28], "running_var": [24, 28], "named_children": [24, 28], "conv4": [24, 28], "conv5": [24, 28], "memo": [24, 28], "remove_dupl": [24, 28], "named_paramet": [24, 28], "register_backward_hook": [24, 28], "deprec": [24, 28, 31], "favor": [24, 28], "register_full_backward_hook": [24, 28], "removablehandl": [24, 28], "register_buff": [24, 28], "running_mean": [24, 28], "register_forward_hook": [24, 28], "posit": [24, 28, 38, 73, 81], "won": [24, 28, 68, 69, 74, 79], "inplac": [24, 28, 78], "register_forward_pre_hook": [24, 28], "gradient": [24, 28, 71, 75, 83], "respect": [24, 28, 76], "grad_input": [24, 28], "grad_output": [24, 28], "technic": [24, 28], "caller": [24, 28], "register_load_state_dict_post_hook": [24, 28], "post": [24, 28], "incompatible_kei": [24, 28], "modif": [24, 28], "thrown": [24, 28], "clearn": [24, 28], "register_modul": [24, 28], "register_paramet": [24, 28], "requires_grad_": [24, 28], "autograd": [24, 28], "freez": [24, 28, 67, 72, 86], "finetun": [24, 28], "gan": [24, 28], "share_memori": [24, 28], "share_memory_": [24, 28], "destin": [24, 28], "keep_var": [24, 28], "shallow": [24, 28], "howev": [24, 28, 38, 67, 71, 72, 75, 78, 82, 84, 85, 86], "releas": [24, 28, 66, 74, 81], "design": [24, 28], "ordereddict": [24, 28], "detach": [24, 28, 75], "non_block": [24, 28], "memory_format": [24, 28], "channels_last": [24, 28], "Its": [24, 28, 34, 44, 50], "complex": [24, 28], "integr": [24, 28, 65], "asynchron": [24, 28], "host": [24, 28], "pin": [24, 28, 72, 73, 86], "desir": [24, 28, 37, 51], "4d": [24, 28], "ignore_w": [24, 28], "determinist": [24, 28, 67], "1913": [24, 28], "3420": [24, 28], "5113": [24, 28], "2325": [24, 28], "env": [24, 28], "torch_doctest_cuda1": [24, 28], "gpu1": [24, 28], "1914": [24, 28], "5112": [24, 28], "2324": [24, 28], "float16": [24, 28], "cdoubl": [24, 28], "3741": [24, 28], "2382": [24, 28], "5593": [24, 28], "4443": [24, 28], "complex128": [24, 28], "6122": [24, 28], "1150": [24, 28], "to_empti": [24, 28], "storag": [24, 28], "dst_type": [24, 28], "xpu": [24, 28], "zero_grad": [24, 28, 75], "set_to_non": [24, 28], "context": [24, 28, 80], "noisili": [25, 76], "han": 25, "2018": 25, "cifar_cnn": [25, 26], "loss_coteach": 25, "y_1": 25, "y_2": 25, "forget_r": 25, "class_weight": 25, "logit": [25, 42, 75], "decim": [25, 38], "quickli": [25, 67, 71, 72, 74, 75, 79, 81, 84, 85, 87], "forget": [25, 34, 87], "rate_schedul": 25, "epoch": [25, 28, 74, 75], "initialize_lr_schedul": 25, "lr": [25, 28], "001": [25, 53, 74], "250": [25, 68, 69, 76, 80], "epoch_decay_start": 25, "80": [25, 71, 73, 79, 83, 85], "schedul": 25, "adjust": [25, 29, 47, 52, 53, 65, 76], "beta": 25, "adam": 25, "adjust_learning_r": 25, "alpha_plan": 25, "beta1_plan": 25, "forget_rate_schedul": 25, "num_gradu": 25, "expon": 25, "tell": [25, 72, 75, 76, 86], "train_load": [25, 28], "model1": [25, 76], "optimizer1": 25, "model2": [25, 76], "optimizer2": 25, "dataload": [25, 75, 81], "parser": 25, "parse_arg": 25, "num_iter_per_epoch": 25, "print_freq": 25, "topk": 25, "top1": 25, "top5": 25, "test_load": 25, "offici": [26, 41, 87], "wish": [26, 41, 81, 84, 87], "mnist_pytorch": 26, "coteach": [26, 66], "mini": [27, 57, 59, 74], "With": [27, 72, 76, 78, 83, 84, 86, 87], "approxim": [27, 52, 78], "low_self_confid": [27, 29, 45], "self_confid": [27, 29, 34, 45, 47, 53, 61, 63, 74, 76, 79, 85, 86], "conveni": [27, 67, 72, 86], "script": 27, "labelinspector": [27, 74], "adj_confident_thresholds_shar": 27, "labels_shar": 27, "pred_probs_shar": 27, "labels_fil": [27, 74], "pred_probs_fil": [27, 74], "batch_siz": [27, 28, 57, 59, 74, 75, 81, 84], "quality_score_kwarg": 27, "num_issue_kwarg": 27, "return_mask": 27, "variant": [27, 43, 84], "read": [27, 31, 69, 74, 76, 81, 87], "zarr": [27, 74], "memmap": [27, 84], "pythonspe": 27, "mmap": [27, 74], "hdf5": 27, "further": [27, 44, 45, 47, 50, 59, 60, 67, 74], "yourfil": 27, "r": [27, 55, 68, 69, 83, 84], "npy": [27, 73, 74, 84], "mmap_mod": [27, 84], "tip": [27, 29, 42, 74], "save_arrai": 27, "your_arrai": 27, "disk": [27, 73, 74], "npz": [27, 87], "maxim": [27, 43, 57, 59, 84], "multiprocess": [27, 29, 45, 57, 59, 74, 75, 84], "linux": [27, 57, 59], "physic": [27, 29, 57, 59, 80, 84], "psutil": [27, 29, 57, 59, 84], "demonstr": [27, 68, 72, 74, 75, 76, 78, 79, 80, 83, 84], "labels_arrai": [27, 39], "predprob": 27, "pred_probs_arrai": 27, "back": [27, 51, 68, 74, 80, 81], "store_result": 27, "becom": [27, 81], "verifi": [27, 74, 78, 81], "long": [27, 43, 52, 78], "enough": [27, 38, 74], "chunk": [27, 82], "ram": [27, 73], "faster": [27, 52, 55, 57, 59, 74, 76], "end_index": 27, "labels_batch": 27, "pred_probs_batch": 27, "update_confident_threshold": 27, "batch_result": 27, "score_label_qu": 27, "indices_of_examples_with_issu": [27, 74], "shortcut": 27, "encount": [27, 29, 57], "1000": [27, 67, 72, 73, 74, 81], "aggreg": [27, 34, 43, 47, 50, 53, 63, 74, 76, 78], "get_num_issu": 27, "fetch": [27, 67, 69], "seen": [27, 74, 81, 87], "far": [27, 43], "get_quality_scor": 27, "label_quality_scor": [27, 47, 50, 53, 56, 76, 80, 83], "method1": 27, "method2": 27, "normalized_margin": [27, 29, 34, 45, 47, 53, 61, 63], "low_normalized_margin": [27, 29, 45], "issue_indic": [27, 50, 75], "update_num_issu": 27, "split_arr": 27, "arr": [27, 74], "chunksiz": 27, "convnet": 28, "bespok": [28, 42], "get_mnist_dataset": 28, "loader": [28, 75], "download": [28, 67, 74, 75, 81], "mnist": [28, 65, 67, 73], "get_sklearn_digits_dataset": 28, "handwritten": 28, "digit": [28, 67, 73], "last": [28, 34, 48, 51, 68, 69, 74, 78, 87], "sklearn_digits_test_s": 28, "hard": [28, 73, 81], "simplenet": 28, "64": [28, 71, 75, 76, 80, 85], "log_interv": 28, "50": [28, 73, 74, 76, 78, 80, 81], "01": [28, 53, 55, 67, 75, 76, 79, 80, 83], "momentum": 28, "no_cuda": 28, "test_batch_s": [28, 75], "templat": 28, "enabl": 28, "flexibli": 28, "among": [28, 43, 76], "test_set": 28, "Be": 28, "overrid": 28, "train_idx": [28, 38, 81], "train_label": [28, 81, 86], "scikit": [28, 38, 52, 65, 67, 68, 69, 71, 72, 74, 77, 83, 86], "set_predict_proba_request": 28, "set_predict_request": 28, "encourag": [29, 45, 53, 56], "multilabel_classif": [29, 44, 45, 47, 53, 74, 79], "pred_probs_by_class": 29, "prune_count_matrix_col": 29, "rank_by_kwarg": [29, 45, 53, 76], "num_to_remove_per_class": [29, 45], "bad": [29, 45, 50, 53, 72, 74, 86], "seem": [29, 76, 79], "fewer": [29, 38, 80], "aren": 29, "confidence_weighted_entropi": [29, 34, 45, 47, 53, 61, 63], "label_issues_idx": [29, 53], "entropi": [29, 31, 33, 34, 52, 53], "prune_by_class": [29, 45, 76], "predicted_neq_given": [29, 45, 76], "prune_counts_matrix": 29, "smallest": [29, 53], "unus": 29, "number_of_mislabeled_examples_in_class_k": 29, "delet": [29, 65, 74, 86], "thread": [29, 45], "window": [29, 73], "shorter": [29, 48], "find_predicted_neq_given": 29, "find_label_issues_using_argmax_confusion_matrix": 29, "latent_algebra": [30, 66], "label_quality_util": 30, "multilabel_util": [30, 79], "multilabel_scor": [30, 47], "token_classification_util": [30, 87], "get_normalized_entropi": 31, "min_allowed_prob": 31, "wikipedia": 31, "activ": [31, 33, 43, 65, 78], "towardsdatasci": 31, "cheatsheet": 31, "ec57bc067c0b": 31, "clip": [31, 38, 67], "behav": 31, "unnecessari": [31, 74], "slightli": [31, 85, 86], "interv": [31, 34, 81], "herein": 32, "inexact": 32, "cours": 32, "propag": 32, "throughout": [32, 38, 55, 67, 78, 84, 87], "compute_ps_py_inv_noise_matrix": 32, "compute_py_inv_noise_matrix": 32, "compute_inv_noise_matrix": 32, "easili": [32, 66, 67, 69, 71, 72, 76, 78, 79, 81, 82, 83, 84, 85, 86], "increas": [32, 50, 52, 53, 67, 68, 74, 78, 79, 87], "dot": [32, 63, 74], "compute_noise_matrix_from_invers": 32, "compute_pi": 32, "true_labels_class_count": 32, "compute_pyx": 32, "pyx": 32, "multiannot": 33, "assert_valid_inputs_multiannot": 33, "labels_multiannot": [33, 43], "ensembl": [33, 34, 43, 53, 71, 74, 79, 81, 83, 85], "allow_single_label": 33, "annotator_id": 33, "assert_valid_pred_prob": 33, "pred_probs_unlabel": [33, 43], "format_multiannotator_label": [33, 43, 78], "lexicograph": [33, 38], "formatted_label": [33, 38], "old": [33, 38, 66, 73], "th": [33, 37, 38, 43, 45, 48, 50, 51, 52, 61, 63, 64, 72, 79, 80, 87], "check_consensus_label_class": 33, "consensus_label": [33, 43, 78], "consensus_method": [33, 43], "consensu": [33, 43, 65, 77, 87], "establish": [33, 83, 86], "compute_soft_cross_entropi": 33, "soft": [33, 73], "find_best_temp_scal": 33, "coarse_search_rang": [33, 55, 74], "fine_search_s": [33, 55, 74], "temperatur": [33, 34, 50, 59, 63], "scale": [33, 36, 73, 74, 81, 84, 85], "factor": [33, 34, 57, 59], "minim": [33, 50, 81], "temp_scale_pred_prob": 33, "temp": 33, "sharpen": [33, 73], "smoothen": 33, "classlabelscor": 34, "enum": 34, "get_self_confidence_for_each_label": [34, 53], "get_normalized_margin_for_each_label": [34, 53], "get_confidence_weighted_entropy_for_each_label": [34, 53], "75": [34, 68, 69, 73, 78, 79, 80, 83, 87], "from_str": 34, "scorer": 34, "exponential_moving_averag": [34, 47], "alpha": [34, 47, 50, 68, 69, 76, 79, 83], "exponenti": 34, "ema": 34, "s_1": 34, "s_k": 34, "ema_k": 34, "accord": [34, 45, 71, 72, 76, 87], "formula": [34, 36], "_t": 34, "cdot": 34, "s_t": 34, "qquad": 34, "leq": 34, "_1": 34, "give": [34, 53, 76, 78, 84], "recent": [34, 87], "success": 34, "previou": [34, 75, 80], "discount": 34, "s_ema": 34, "175": [34, 76, 80], "softmin": [34, 47, 50, 59, 63], "underflow": 34, "nan": [34, 43, 71, 78, 83, 85], "possible_method": 34, "aggregated_scor": 34, "multilabelscor": 34, "base_scor": 34, "base_scorer_kwarg": 34, "aggregator_kwarg": [34, 47], "n_sampl": 34, "n_label": 34, "binari": [34, 38, 45, 47, 76, 87], "worst": [34, 78], "class_label_quality_scor": 34, "get_class_label_quality_scor": 34, "42": [34, 73, 80, 87], "452": 34, "new_scor": 34, "575": 34, "get_label_quality_scores_per_class": [34, 47], "ml_scorer": 34, "multilabel_pi": 34, "binar": [34, 35], "second": [34, 36, 38, 53, 68, 74, 76, 87], "get_cross_validated_multilabel_pred_prob": 34, "reformat": [34, 67], "wider": 34, "strategi": 34, "splitter": 34, "kfold": [34, 75], "multiclass": [34, 38, 43, 79], "onevsrestclassifi": [34, 79], "randomforestclassifi": [34, 76, 79], "n_split": [34, 75, 79], "stack_compl": 35, "pred_prob_slic": 35, "extend": [35, 75, 81, 87], "get_onehot_num_class": 35, "onehot": 35, "encod": [35, 51, 57, 60, 71, 72, 74, 83, 84, 85, 86], "multilabel": [35, 79], "int2onehot": [35, 79], "hot": [35, 45, 51, 57, 60, 71, 73, 74, 83, 84, 85], "onehot2int": [35, 79], "onehot_matrix": 35, "transform_distances_to_scor": 36, "exp": [36, 52, 53, 68], "dt": 36, "right": [36, 48, 51, 72, 79, 80, 81, 86], "num_neighbor": 36, "slice": 36, "ood_features_scor": [36, 52, 81], "95122942": 36, "83945702": 36, "token_classif": [37, 61, 63, 64, 74], "get_sent": [37, 87], "sentenc": [37, 61, 63, 64, 72, 86], "readabl": 37, "filter_sent": [37, 87], "lambda": [37, 67, 68, 78], "long_sent": 37, "headlin": 37, "process_token": 37, "charact": [37, 38], "s1": 37, "s2": 37, "processed_token": 37, "rule": [37, 73], "alecnlcb": 37, "entiti": [37, 65, 74, 87], "mapped_ent": 37, "unique_ident": 37, "loc": [37, 68, 69, 75, 87], "merge_prob": 37, "probs_merg": 37, "55": [37, 73, 80, 83], "0125": [37, 63], "0375": 37, "075": 37, "025": 37, "color_sent": 37, "color": [37, 60, 68, 69, 71, 76, 79, 81, 83, 84], "red": [37, 51, 68, 69, 73, 76, 79, 80, 81, 84], "colored_sent": 37, "termcolor": 37, "31msentenc": 37, "0m": 37, "ancillari": 38, "remove_noise_from_class": 38, "class_without_nois": 38, "any_other_class": 38, "choos": [38, 53, 71, 74, 76, 83, 85], "tradition": 38, "clip_noise_r": 38, "clip_valu": 38, "new_sum": 38, "preserv": 38, "value_count": [38, 74], "fill": 38, "wherea": [38, 45, 82], "come": [38, 68, 69, 74, 84], "major": [38, 43, 66, 75, 81], "versu": [38, 76], "value_counts_fill_missing_class": 38, "get_missing_class": 38, "round_preserving_sum": 38, "obviou": 38, "cgdeboer": 38, "iteround": 38, "round_preserving_row_tot": 38, "reach": 38, "estimate_pu_f1": 38, "prob_s_eq_1": 38, "claesen": 38, "f1": [38, 72, 76], "confusion_matrix": 38, "BE": 38, "print_square_matrix": 38, "left_nam": 38, "top_nam": 38, "titl": [38, 68, 69, 76, 79, 81], "short_titl": 38, "round_plac": 38, "pretti": [38, 76], "print_noise_matrix": [38, 76], "print_inverse_noise_matrix": 38, "print_joint_matrix": [38, 76], "joint_matrix": 38, "compress_int_arrai": 38, "num_possible_valu": 38, "train_val_split": 38, "holdout_idx": 38, "subset_x_i": 38, "extract": [38, 52, 67, 72, 78, 81, 84, 86], "subset_label": 38, "subset_data": 38, "extract_indices_tf": 38, "allow_shuffl": 38, "turn": [38, 65, 80], "unshuffle_tensorflow_dataset": 38, "shuffledataset": 38, "histori": 38, "pre_x": 38, "buffer_s": 38, "is_torch_dataset": 38, "is_tensorflow_dataset": 38, "csr_vstack": 38, "csr_matric": 38, "append": [38, 67, 73, 75, 76, 78, 79, 81, 87], "bottom": [38, 48, 51, 80], "vstack": [38, 73, 74, 75, 76, 78, 79], "append_extra_datapoint": 38, "to_data": 38, "from_data": 38, "taken": 38, "One": [38, 52, 74], "get_num_class": 38, "label_matrix": 38, "canon": 38, "num_unique_class": 38, "get_unique_class": 38, "format_label": 38, "smart_display_datafram": 38, "displai": [38, 51, 60, 64, 67, 72, 76, 86, 87], "jupyt": [38, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "notebook": [38, 43, 67, 69, 73, 74, 76, 78, 79, 80, 84, 87], "consol": 38, "force_two_dimens": 38, "html": [38, 52, 71, 74, 76], "assert_valid_input": 39, "allow_missing_class": 39, "allow_one_class": 39, "assert_valid_class_label": 39, "assert_nonempty_input": 39, "assert_indexing_work": 39, "length_x": 39, "labels_to_arrai": 39, "labellik": 39, "keraswrappermodel": [42, 65], "keraswrappersequenti": 42, "tf": [42, 67], "legaci": 42, "lack": 42, "keraswrapp": 42, "huggingface_keras_imdb": 42, "unit": [42, 87], "model_kwarg": [42, 55], "compile_kwarg": 42, "sparsecategoricalcrossentropi": 42, "layer": [42, 67, 72, 81, 86], "dens": [42, 72, 86], "my_keras_model": 42, "from_logit": 42, "compil": 42, "declar": 42, "apply_softmax": 42, "analysi": 43, "analyz": [43, 65, 76, 78, 79], "get_label_quality_multiannot": [43, 78], "vote": 43, "crowdsourc": [43, 65, 78], "dawid": [43, 78], "skene": [43, 78], "analog": [43, 73, 78], "chosen": [43, 53, 78], "crowdlab": [43, 78], "unlabel": [43, 78, 81, 84], "decid": [43, 72, 73, 78, 83, 86, 87], "get_active_learning_scor": [43, 78], "activelab": [43, 78], "priorit": [43, 50, 80, 84, 87], "showcas": 43, "main": 43, "best_qual": 43, "quality_method": 43, "calibrate_prob": 43, "return_detailed_qu": 43, "return_annotator_stat": 43, "return_weight": 43, "label_quality_score_kwarg": 43, "necessarili": [43, 72, 76], "did": [43, 44, 67, 71, 76, 78, 83, 85, 86], "id": [43, 68, 75, 78], "majority_vot": 43, "ti": 43, "broken": [43, 73], "highest": [43, 68, 75, 82], "0th": 43, "consensus_quality_scor": [43, 78], "annotator_agr": [43, 78], "reman": 43, "1st": 43, "2nd": [43, 57], "3rd": 43, "consensus_label_suffix": 43, "consensus_quality_score_suffix": 43, "suffix": 43, "emsembl": 43, "weigh": [43, 73], "agreement": [43, 78], "agre": 43, "prevent": 43, "overconfid": [43, 82], "wrong": [43, 48, 50, 66, 68, 69, 72, 74, 76, 80, 86], "detailed_label_qu": [43, 78], "annotator_stat": [43, 78], "model_weight": 43, "annotator_weight": 43, "warn": [43, 68], "labels_info": 43, "num_annot": [43, 78], "deriv": [43, 78], "quality_annotator_1": 43, "quality_annotator_2": 43, "quality_annotator_m": 43, "lowest": [43, 69, 75, 78, 79, 80, 84], "annotator_qu": [43, 78], "num_examples_label": [43, 78], "agreement_with_consensu": [43, 78], "worst_class": [43, 78], "trustworthi": [43, 78, 83], "get_label_quality_multiannotator_ensembl": 43, "func": 43, "weigtht": 43, "budget": 43, "retrain": [43, 83, 86], "active_learning_scor": 43, "improv": [43, 69, 73, 74, 75, 76, 83, 84, 85, 86], "active_learning_scores_unlabel": 43, "get_active_learning_scores_ensembl": 43, "henc": [43, 67, 68, 78], "get_majority_vote_label": [43, 78], "event": 43, "lastli": [43, 71], "convert_long_to_wide_dataset": 43, "labels_multiannotator_long": 43, "wide": [43, 67, 85, 86], "suitabl": [43, 71, 85], "labels_multiannotator_wid": 43, "common_multilabel_issu": 44, "mutual": [44, 79], "exclus": [44, 79], "vice": 44, "versa": 44, "rank_classes_by_multilabel_qu": 44, "overall_multilabel_health_scor": 44, "multilabel_health_summari": 44, "classes_by_multilabel_qu": 44, "inner": [45, 59], "find_multilabel_issues_per_class": 45, "per_class_label_issu": 45, "label_issues_list": 45, "labels_list": 45, "pred_probs_list": [45, 53, 75, 76], "anim": [46, 81], "rat": 46, "predat": 46, "pet": 46, "reptil": 46, "manner": [47, 78, 83, 85, 86], "box": [48, 50, 51, 73, 80], "object_detect": [48, 50, 51, 80], "return_indices_ranked_by_scor": [48, 80], "overlapping_label_check": [48, 50], "suboptim": [48, 50], "locat": [48, 50, 80, 84, 87], "bbox": [48, 51, 80], "image_nam": 48, "y1": [48, 51, 80], "y2": [48, 51, 80], "later": [48, 52, 86, 87], "mmdetect": [48, 80], "corner": [48, 51, 80], "swap": [48, 50, 60, 64], "penal": [48, 50], "concern": [48, 50, 65, 69], "aggregation_weight": 50, "imperfect": [50, 74], "chose": [50, 78, 80], "imperfectli": [50, 80], "dirti": [50, 53, 56, 83], "subtyp": 50, "badloc": 50, "nonneg": 50, "issues_from_scor": [50, 59, 60, 63, 64, 80, 84, 87], "compute_overlooked_box_scor": 50, "high_probability_threshold": 50, "auxiliary_input": 50, "vari": [50, 69], "iou": 50, "heavili": 50, "auxiliarytypesdict": 50, "pred_label": [50, 86], "pred_label_prob": 50, "pred_bbox": 50, "lab_label": 50, "lab_bbox": 50, "similarity_matrix": 50, "min_possible_similar": 50, "scores_overlook": 50, "compute_badloc_box_scor": 50, "low_probability_threshold": 50, "scores_badloc": 50, "compute_swap_box_scor": 50, "accident": [50, 71, 72, 86], "scores_swap": 50, "pool_box_scores_per_imag": 50, "box_scor": 50, "image_scor": [50, 59, 84], "visual": [51, 68, 69, 75, 83, 85, 87], "prediction_threshold": 51, "overlai": [51, 80], "figsiz": [51, 68, 69, 75, 76, 79, 81], "save_path": [51, 80], "blue": [51, 73, 76, 80], "overlaid": 51, "side": [51, 73, 80], "figur": [51, 76, 79, 81, 83], "extens": [51, 76, 78], "png": [51, 80], "pdf": [51, 52], "ep": 51, "svg": 51, "plot": [51, 68, 69, 76, 79, 81, 83, 84], "matplotlib": [51, 68, 69, 75, 76, 79, 80, 81, 83], "Of": 52, "li": 52, "smaller": [52, 79, 80], "find_top_issu": [52, 53, 81], "reli": [52, 67, 68, 69, 72, 80, 81, 86], "dist_metr": 52, "dim": [52, 75, 84], "subtract": [52, 53], "renorm": [52, 53, 74], "least_confid": 52, "sum_": 52, "log": [52, 53, 66], "softmax": [52, 59, 63, 75], "literatur": 52, "gen": 52, "liu": 52, "lochman": 52, "zach": 52, "openaccess": 52, "thecvf": 52, "content": [52, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "cvpr2023": 52, "liu_gen_pushing_the_limits_of_softmax": 52, "based_out": 52, "distribution_detection_cvpr_2023_pap": 52, "fit_scor": [52, 81], "ood_predictions_scor": 52, "categor": [52, 68, 69, 70, 83, 85], "pretrain": [52, 67, 72, 81, 86], "adjust_confident_threshold": 52, "probabilist": [52, 67, 68, 69, 71, 72, 81, 82, 85], "order_label_issu": [53, 66], "whichev": [53, 82], "argsort": [53, 72, 75, 76, 81, 83, 86], "max_": 53, "get_label_quality_ensemble_scor": [53, 74, 76], "weight_ensemble_members_bi": 53, "custom_weight": 53, "log_loss_search_t_valu": 53, "0001": [53, 73], "scheme": 53, "log_loss_search": 53, "log_loss": [53, 72], "1e0": 53, "1e1": 53, "1e2": 53, "2e2": 53, "quality_scor": [53, 81], "forth": 53, "top_issue_indic": 53, "rank_bi": [53, 66], "weird": [53, 64], "minu": 53, "prob_label": 53, "max_prob_not_label": 53, "idea": 53, "AND": [53, 72], "corrupt": [55, 83], "linearregress": [55, 74, 83], "y_with_nois": 55, "n_boot": [55, 74], "include_aleatoric_uncertainti": [55, 74], "sole": [55, 68, 78, 81, 85], "larger": [55, 57, 59, 73, 74, 75], "bootstrap": [55, 74, 83], "resampl": [55, 67, 74], "epistem": [55, 74, 81, 83], "aleator": [55, 74, 83], "model_final_kwarg": 55, "coars": 55, "thorough": [55, 74], "fine": [55, 67, 72, 81, 86], "grain": 55, "grid": 55, "get_epistemic_uncertainti": 55, "varianc": [55, 76], "epistemic_uncertainti": 55, "get_aleatoric_uncertainti": 55, "residu": [55, 56, 74], "deviat": [55, 83], "ie": 55, "aleatoric_uncertainti": 55, "outr": 56, "contin": 56, "raw": [56, 65, 66, 69, 73, 75, 78, 80, 81], "aka": [56, 67, 76, 87], "00323821": 56, "33692597": 56, "00191686": 56, "semant": [57, 59, 60, 77], "segment": [57, 59, 60, 77], "pixel": [57, 59, 60, 81, 84], "h": [57, 59, 60, 84], "height": [57, 59, 60, 84], "w": [57, 59, 60, 84], "width": [57, 59, 60, 84], "labels_one_hot": [57, 60, 84], "stream": [57, 81, 87], "downsampl": [57, 59, 84], "shrink": [57, 59], "divis": [57, 59, 68], "segmant": [59, 60], "num_pixel_issu": [59, 84], "product": [59, 74, 75], "pixel_scor": [59, 84], "display_issu": [59, 60, 61, 63, 64, 84, 87], "highlight": [60, 64, 68, 69, 71, 84], "enter": 60, "legend": [60, 68, 69, 79, 80, 83, 84], "colormap": 60, "background": 60, "person": [60, 74, 80, 84, 87], "common_label_issu": [60, 64, 84, 87], "ambigu": [60, 64, 67, 72, 73, 76, 86, 87], "systemat": [60, 64, 78], "misunderstood": [60, 64], "issues_df": [60, 75], "filter_by_class": [60, 84], "class_index": 60, "issues_subset": [60, 64], "95": [61, 63, 71, 73, 76, 83], "token_score_method": 63, "sentence_score_method": 63, "sentence_score_kwarg": 63, "compris": [63, 64], "token_scor": [63, 87], "converg": 63, "toward": 63, "_softmin_sentence_scor": 63, "sentence_scor": [63, 87], "token_info": 63, "70": [63, 71, 76, 83], "02": [63, 68, 69, 76, 80, 83], "03": [63, 73, 76, 80, 87], "04": [63, 80, 83], "08": [63, 76, 80, 87], "commonli": [64, 66, 68, 69, 79, 87], "filter_by_token": [64, 87], "But": [64, 76, 87], "restrict": [64, 74], "reliabl": [65, 67, 74, 78, 84, 85], "thousand": 65, "imagenet": [65, 73], "popular": [65, 78, 80], "centric": [65, 77], "capabl": 65, "minut": [65, 67, 71, 72, 73, 78, 79, 80, 83, 84, 85, 86, 87], "conda": 65, "feature_embed": [65, 81], "Then": [65, 74, 75, 83, 85, 86], "your_dataset": [65, 67, 68, 69, 71, 72, 75], "column_name_of_label": [65, 67, 68, 69, 71, 72, 75], "plagu": [65, 69], "untrain": 65, "\u30c4": 65, "label_issues_info": [65, 69], "sklearn_compatible_model": 65, "framework": [65, 79, 80], "complianc": 65, "tag": [65, 79, 87], "sequenc": 65, "recognit": [65, 67, 74, 87], "train_data": [65, 81, 83, 85, 86], "gotten": 65, "test_data": [65, 76, 79, 81, 83, 85, 86], "deal": [65, 69], "tutori": [65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "faq": [65, 77], "feel": [65, 67, 69, 74], "free": [65, 67, 69, 74, 76], "ask": [65, 74], "slack": [65, 74], "project": [65, 83], "welcom": 65, "commun": [65, 74], "guidelin": [65, 80], "piec": 65, "studio": [65, 69, 74], "platform": [65, 74], "tabular": [65, 68, 69, 70, 74, 77, 78], "automl": [65, 74], "foundat": 65, "smart": [65, 74], "edit": [65, 74], "easier": [65, 76], "unreli": [65, 67, 71, 72, 85], "older": 66, "outlin": 66, "substitut": 66, "v2": [66, 71, 85], "get_noise_indic": 66, "psx": 66, "sorted_index_method": 66, "order_label_error": 66, "label_errors_bool": 66, "latent_estim": 66, "num_label_error": 66, "learningwithnoisylabel": 66, "neatli": 66, "organ": [66, 71, 73, 85, 87], "reorgan": 66, "baseline_method": 66, "incorpor": [66, 76], "research": [66, 76], "polyplex": 66, "terminologi": 66, "label_error": 66, "quickstart": [67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "spoken": 67, "500": [67, 81, 87], "english": [67, 73], "pronunci": 67, "wav": 67, "huggingfac": [67, 68, 69, 75], "voxceleb": 67, "speech": [67, 87], "your_pred_prob": [67, 68, 69, 71, 72], "tensorflow_io": 67, "26": [67, 68, 73, 75, 76, 78, 80], "huggingface_hub": 67, "12": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "branch": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "reproduc": [67, 71, 76, 78], "command": 67, "wget": [67, 80, 84, 87], "navig": 67, "link": [67, 73, 80], "browser": 67, "jakobovski": 67, "archiv": [67, 87], "v1": 67, "tar": [67, 81], "gz": [67, 81], "mkdir": [67, 87], "spoken_digit": 67, "xf": 67, "6_nicolas_32": 67, "data_path": 67, "listdir": 67, "nondeterminist": 67, "file_nam": 67, "endswith": 67, "file_path": 67, "join": [67, 74, 75], "39": [67, 68, 72, 73, 74, 75, 80, 83, 84, 86, 87], "7_george_26": 67, "0_nicolas_24": 67, "0_nicolas_6": 67, "listen": 67, "display_exampl": 67, "click": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "expand": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "pulldown": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "colab": [67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "tfio": 67, "pathlib": 67, "ipython": 67, "load_wav_16k_mono": 67, "filenam": 67, "khz": 67, "file_cont": 67, "io": [67, 73], "read_fil": 67, "sample_r": 67, "decode_wav": 67, "desired_channel": 67, "squeez": 67, "int64": [67, 78], "rate_in": 67, "rate_out": 67, "16000": 67, "wav_file_nam": 67, "audio_r": 67, "wav_file_exampl": 67, "plai": [67, 73, 74], "button": 67, "wav_file_name_exampl": 67, "7_jackson_43": 67, "hear": 67, "extractor": 67, "encoderclassifi": 67, "spkrec": 67, "xvect": 67, "feature_extractor": 67, "from_hparam": 67, "run_opt": 67, "uncom": 67, "wav_audio_file_path": 67, "head": [67, 69, 71, 72, 73, 75, 76, 78, 83, 85, 86], "torchaudio": 67, "extract_audio_embed": 67, "emb": [67, 75], "signal": 67, "encode_batch": 67, "embeddings_list": [67, 75], "embeddings_arrai": 67, "512": [67, 75], "14": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "196308": 67, "319454": 67, "47899": 67, "289091": 67, "817013": 67, "892642": 67, "24": [67, 73, 76, 78, 80], "898056": 67, "2561927": 67, "559636": 67, "5597174": 67, "6206665": 67, "285249": 67, "21": [67, 68, 69, 73, 76, 80, 87], "709625": 67, "5033684": 67, "913807": 67, "819826": 67, "1831462": 67, "208761": 67, "08425": 67, "321053": 67, "005463": 67, "216175": 67, "478231": 67, "682177": 67, "053815": 67, "2424726": 67, "091422": 67, "78335106": 67, "039538": 67, "23": [67, 73, 75, 76, 80], "569181": 67, "19": [67, 72, 73, 75, 76, 81, 83, 84, 86], "76109": 67, "1258249": 67, "75323": 67, "3508852": 67, "598273": 67, "237118": 67, "2500": 67, "leverag": [67, 72, 74, 76, 78, 86], "tune": [67, 72, 73, 81, 86], "computation": [67, 72, 86], "intens": [67, 72, 86], "held": [67, 71, 72, 73, 80, 81, 82, 85], "straightforward": [67, 71, 85], "benefit": [67, 82, 84, 85], "tol": 67, "num_crossval_fold": [67, 71, 78, 85], "decreas": [67, 74], "never": [67, 76, 79, 81, 82], "accuracy_scor": [67, 72, 76, 85, 86], "cv_accuraci": 67, "9772": 67, "probabilit": [67, 86], "9976": 67, "176": [67, 73, 76, 79], "006548": 67, "2318": 67, "008296": 67, "986": 67, "010476": 67, "1946": 67, "012922": 67, "516": 67, "013263": 67, "investig": 67, "100049": 67, "998728": 67, "998785": 67, "980984": 67, "998247": 67, "18": [67, 72, 73, 76, 80, 81, 83, 84, 86], "identified_label_issu": [67, 72], "lowest_quality_label": [67, 72, 76, 83, 86], "sort_valu": [67, 69, 71, 72, 75, 76, 78], "469": 67, "1871": 67, "1955": 67, "2132": 67, "worth": [67, 76], "iloc": [67, 71, 72, 83, 85, 86], "6_yweweler_14": 67, "6_yweweler_36": 67, "6_yweweler_35": 67, "6_theo_27": 67, "4_george_31": 67, "6_nicolas_8": 67, "sound": 67, "quit": [67, 81], "22": [67, 68, 73, 75, 76, 79, 80, 87], "blindli": [67, 74, 83, 85, 86], "trust": [67, 74, 76, 78, 82, 83, 85, 86], "address": [68, 69, 72, 74, 86], "underneath": 68, "hood": 68, "alert": 68, "introduct": 68, "mayb": [68, 69, 72], "examin": [68, 69, 71, 85], "your_feature_matrix": [68, 69], "toi": [68, 69, 73, 75, 76, 78], "train_test_split": [68, 69, 81, 85, 86], "inf": [68, 69], "mid": [68, 69], "bins_map": [68, 69], "create_data": [68, 69], "y_bin": [68, 69], "y_i": [68, 69], "y_bin_idx": [68, 69], "y_train": [68, 69, 76, 83], "y_test": [68, 69, 76, 83], "y_train_idx": [68, 69], "y_test_idx": [68, 69], "test_siz": [68, 69, 85, 86], "slide": [68, 69, 73], "decis": [68, 69, 85], "boundari": [68, 69], "frame": [68, 69], "x_out": [68, 69], "tini": [68, 69], "concaten": [68, 69, 82], "y_out": [68, 69], "y_out_bin": [68, 69], "y_out_bin_idx": [68, 69], "exact_duplicate_idx": [68, 69], "x_duplic": [68, 69], "y_duplic": [68, 69], "y_duplicate_idx": [68, 69], "noisy_labels_idx": [68, 69, 79], "scatter": [68, 69, 76, 79, 83], "black": [68, 69, 73, 83], "cyan": [68, 69], "pyplot": [68, 69, 75, 76, 79, 81, 83], "plt": [68, 69, 75, 76, 79, 81, 83], "plot_data": [68, 69, 76, 79, 83], "fig": [68, 69, 73, 75, 81, 83], "ax": [68, 69, 75, 81, 83], "subplot": [68, 69, 75, 81], "set_titl": [68, 69, 75, 81], "set_xlabel": [68, 69], "x_1": [68, 69], "fontsiz": [68, 69, 75, 76, 79], "set_ylabel": [68, 69], "x_2": [68, 69], "set_xlim": [68, 69], "set_ylim": [68, 69], "linestyl": [68, 69], "circl": [68, 69, 76, 79], "misclassifi": [68, 69], "zip": [68, 69, 75, 80, 87], "label_err": [68, 69], "180": [68, 69, 80], "marker": [68, 69], "facecolor": [68, 69], "edgecolor": [68, 69], "linewidth": [68, 69, 81], "dup": [68, 69], "first_legend": [68, 69], "align": [68, 69], "title_fontproperti": [68, 69], "semibold": [68, 69], "second_legend": [68, 69], "45": [68, 69, 73, 75, 76, 80], "gca": [68, 69], "add_artist": [68, 69], "tight_layout": [68, 69], "ideal": [68, 69], "logist": [68, 69, 72, 78, 81, 86], "regress": [68, 69, 72, 77, 78, 81, 86], "remaind": 68, "modal": [68, 69, 74, 78], "regardless": [68, 69], "132": [68, 69, 76, 80], "9091": [68, 69], "77": [68, 69, 71, 73, 80, 85], "006939": [68, 69], "007830": [68, 69], "40": [68, 69, 72, 73, 75], "014826": [68, 69], "107": [68, 69, 76, 79], "021220": [68, 69], "120": [68, 69], "026403": [68, 69], "notic": [68, 76, 78, 80], "5221": [68, 69], "126": [68, 69, 76, 80], "046465": [68, 69], "130": [68, 69], "068695": [68, 69], "129": [68, 69], "127": [68, 69], "076251": [68, 69], "128": [68, 69, 73, 75], "083941": [68, 69], "2465": [68, 69], "is_near_duplicate_issu": [68, 69, 71, 72, 75, 76], "131": [68, 69, 84], "000000e": [68, 69], "00": [68, 69, 71, 73, 75, 84, 85], "463180e": [68, 69], "07": [68, 69, 76, 80], "51": [68, 69, 71, 73, 76, 80], "857172e": [68, 69], "859087e": [68, 69], "30": [68, 73, 74, 75, 79, 84, 87], "3293": 68, "025076": 68, "026534": 68, "050766": 68, "051025": 68, "home": [68, 72, 73, 75, 81, 86], "runner": [68, 72, 75, 81, 86], "219": [68, 80], "userwarn": 68, "249": [68, 76, 80], "228": [68, 80], "34": [68, 73, 76, 78, 80, 81, 87], "54": [68, 73, 76, 80], "039117": 68, "53": [68, 71, 73, 79, 80, 85], "044594": 68, "105": 68, "105121": 68, "133588": [68, 69], "43": [68, 73, 75, 76, 80, 86, 87], "168035": 68, "125": 68, "090878": 68, "37": [68, 73], "169462": 68, "109": [68, 80], "194566": 68, "35": [68, 73, 78, 79, 80, 87], "196302": 68, "206314": 68, "average_ood_scor": 68, "32933380816554325": 68, "52": [68, 73, 80, 87], "085049e": 68, "087324e": 68, "89": [68, 71, 80, 83], "92": [68, 73, 76, 80], "574261e": 68, "583757e": 68, "91": [68, 73, 80, 85], "314215e": 68, "341292e": 68, "specfi": 68, "new_lab": 68, "scoring_funct": 68, "div": 68, "rem": 68, "inv_scal": 68, "49": [68, 73, 76, 80], "superstitionissuemanag": 68, "unlucki": 68, "superstit": 68, "to_seri": 68, "issues_mask": 68, "summary_scor": 68, "32": [68, 73, 76, 78, 80], "9242": 68, "is_superstition_issu": 68, "superstition_scor": 68, "047581": 68, "090635": 68, "129591": 68, "65": [68, 80], "164840": 68, "demo": [69, 71, 79, 85], "discov": [69, 87], "lurk": [69, 75, 76], "thoroughli": 69, "preprocess": [69, 71, 81, 83, 85, 86], "review": [69, 71, 72, 73, 74, 76, 80, 83, 84, 85, 86, 87], "8218": 69, "is_non_iid_issu": [69, 72, 75, 76], "810274": 69, "826147": 69, "849587": 69, "855359": 69, "855485": 69, "821750488732925": 69, "auto": [69, 73, 74, 83, 85, 86], "conceptu": 69, "909091": 69, "522080": 69, "246459": 69, "821750": 69, "betweeen": 69, "864232": 69, "586131": 69, "235095": 69, "970324": 69, "825563": 69, "548979": 69, "221560": 69, "890575": 69, "533367": 69, "622256": 69, "199185": 69, "755724": 69, "499498": [69, 73], "179601": 69, "948362": 69, "632385": 69, "292800": 69, "878267": 69, "examples_w_issu": [69, 74], "inde": [69, 72], "miscellan": [69, 87], "206897": 69, "041667": 69, "793103": 69, "071429": 69, "103448": 69, "928571": 69, "053333": 69, "101266": 69, "946667": 69, "portion": 69, "huge": [69, 76], "worri": 69, "critic": 69, "highli": [69, 75], "sql": [71, 85], "databas": [71, 85], "excel": [71, 85], "parquet": [71, 85], "student": [71, 83, 85, 87], "grade": [71, 83, 85], "900": [71, 83, 85], "exam": [71, 83, 85], "letter": [71, 85, 87], "hundr": [71, 85], "histgradientboostingclassifi": 71, "reflect": [71, 72, 78, 80, 81, 83, 85, 86], "standardscal": [71, 81, 85], "possibli": [71, 85], "grades_data": [71, 85], "read_csv": [71, 72, 83, 85, 86], "stud_id": [71, 85], "exam_1": [71, 83, 85], "exam_2": [71, 83, 85], "exam_3": [71, 83, 85], "letter_grad": [71, 85], "f48f73": [71, 85], "0bd4e7": [71, 85], "81": [71, 72, 80, 83, 85, 87], "great": [71, 73, 85], "particip": [71, 85], "cb9d7a": [71, 85], "61": [71, 80, 85], "94": [71, 73, 76, 80, 83, 85], "78": [71, 73, 76, 80, 83, 85], "9acca4": [71, 85], "48": [71, 73, 76, 80, 85], "x_raw": [71, 85], "cat_featur": 71, "x_encod": [71, 85], "get_dummi": [71, 83, 85], "drop_first": [71, 85], "numeric_featur": [71, 85], "scaler": [71, 81, 85], "x_process": [71, 85], "fit_transform": [71, 85], "bring": [71, 72, 75, 78, 83, 85, 86], "byod": [71, 72, 75, 78, 83, 85, 86], "boost": [71, 74, 78, 83], "xgboost": [71, 74, 83], "think": [71, 74, 79, 84, 87], "carefulli": [71, 72, 75, 85], "nonzero": 71, "suspici": [71, 85], "tabl": [71, 73, 78, 85], "357": 71, "294": [71, 80], "46": [71, 73, 76, 80], "941": 71, "6578": 71, "000005": [71, 72, 75], "886": 71, "000059": 71, "709": 71, "000104": 71, "723": 71, "000169": 71, "689": 71, "000181": 71, "7154": 71, "012085": 71, "061510": 71, "115512": 71, "124391": 71, "214163": 71, "2169": 71, "915": 71, "168": [71, 76], "691": 71, "185": [71, 73, 80, 87], "582": 71, "issue_result": 71, "000842": 71, "555944": 71, "004374": 71, "sorted_issu": 71, "73": [71, 73, 79, 80, 83], "86": [71, 73, 75, 76, 80, 83], "deserv": 71, "outlier_result": 71, "sorted_outli": 71, "56": [71, 83], "96": [71, 73, 76, 79, 80, 83], "lt": [71, 72, 73, 75, 78, 84], "style": [71, 84], "font": 71, "18px": 71, "ff00ff": 71, "bac": 71, "unintend": [71, 72], "mistak": [71, 72, 75, 85, 86], "duplicate_result": 71, "690": 71, "246": [71, 80], "58": [71, 73, 76, 80], "perhap": [71, 76, 78], "twice": 71, "67": [71, 73, 80, 83], "wari": [71, 72, 74], "intent": [72, 86], "servic": [72, 86], "onlin": [72, 86], "bank": [72, 73, 86], "banking77": [72, 86], "oo": [72, 86], "000": [72, 73, 75, 86, 87], "categori": [72, 75, 86], "scope": [72, 86], "dive": 72, "your_featur": 72, "sentence_transform": [72, 86], "sentencetransform": [72, 86], "payment": [72, 86], "cancel_transf": [72, 86], "transfer": [72, 86], "fund": [72, 86], "cancel": [72, 86], "transact": [72, 86], "my": [72, 86], "revert": [72, 86], "morn": [72, 86], "realis": [72, 86], "yesterdai": [72, 86], "rent": [72, 86], "realli": [72, 78, 84, 86], "tomorrow": [72, 86], "raw_text": [72, 86], "card_about_to_expir": [72, 86], "lost_or_stolen_phon": [72, 86], "change_pin": [72, 86], "getting_spare_card": [72, 86], "apple_pay_or_google_pai": [72, 86], "visa_or_mastercard": [72, 86], "card_payment_fee_charg": [72, 86], "beneficiary_not_allow": [72, 86], "supported_cards_and_curr": [72, 86], "utter": [72, 86], "continu": [72, 75, 78, 83, 85, 86, 87], "suit": [72, 73, 86], "electra": [72, 86], "discrimin": [72, 86], "googl": [72, 86], "text_embed": 72, "No": [72, 74, 86], "google_electra": [72, 86], "pool": [72, 74, 81, 86], "checkpoint": [72, 81, 86], "electramodel": [72, 86], "discriminator_predict": [72, 86], "dense_predict": [72, 86], "bertforsequenceclassif": [72, 86], "bertforpretrain": [72, 86], "400": [72, 86], "data_dict": [72, 76, 78], "84": [72, 73, 80], "41": [72, 73, 80, 83], "38": [72, 73, 80, 84], "9580": 72, "981": 72, "974": 72, "000150": 72, "982": [72, 73], "000220": 72, "971": 72, "000511": 72, "980": [72, 73], "000948": 72, "9122": 72, "994": 72, "676322": 72, "999": [72, 73], "693868": 72, "697240": 72, "433": 72, "700874": 72, "989": 72, "713590": 72, "0656": 72, "148": 72, "006237": 72, "160": 72, "514": 72, "006485": 72, "546": 72, "481": 72, "008165": 72, "0000": [72, 73, 76], "313": [72, 80], "564102": 72, "572258": 72, "28": [72, 73, 75, 76, 78, 87], "574915": 72, "31": [72, 73, 78, 80], "575507": 72, "575874": 72, "791943": 72, "258507": 72, "698864": 72, "183013": 72, "771059": 72, "to_numpi": [72, 83, 86], "data_with_suggested_label": 72, "suggested_label": 72, "charg": [72, 86], "cash": [72, 86], "holidai": [72, 86], "sent": [72, 86, 87], "card": [72, 73, 86], "mine": [72, 86], "expir": [72, 86], "me": [72, 86], "withdraw": 72, "monei": 72, "whoever": [72, 86], "outlier_issu": [72, 75], "lowest_quality_outli": 72, "OR": 72, "636c65616e6c616220697320617765736f6d6521": 72, "phone": [72, 73], "gone": 72, "gt": [72, 78, 87], "samp": 72, "br": 72, "press": [72, 87], "nonsens": 72, "sens": 72, "detriment": 72, "duplicate_issu": 72, "fee": 72, "pai": 72, "go": [72, 73, 76], "shortlist": [72, 83, 86], "curat": [72, 77], "mnist_test_set": 73, "imagenet_val_set": 73, "tench": 73, "goldfish": 73, "white": [73, 87], "shark": 73, "tiger": 73, "hammerhead": 73, "electr": 73, "rai": 73, "stingrai": 73, "cock": 73, "hen": 73, "ostrich": 73, "brambl": 73, "goldfinch": 73, "hous": 73, "finch": 73, "junco": 73, "indigo": 73, "bunt": 73, "american": [73, 87], "robin": 73, "bulbul": 73, "jai": 73, "magpi": 73, "chickade": 73, "dipper": 73, "kite": 73, "bald": 73, "eagl": 73, "vultur": 73, "grei": 73, "owl": 73, "fire": 73, "salamand": 73, "smooth": 73, "newt": 73, "spot": [73, 80], "axolotl": 73, "bullfrog": 73, "tree": 73, "frog": [73, 81], "tail": 73, "loggerhead": 73, "sea": 73, "turtl": 73, "leatherback": 73, "mud": 73, "terrapin": 73, "band": 73, "gecko": 73, "green": [73, 87], "iguana": 73, "carolina": 73, "anol": 73, "desert": 73, "grassland": 73, "whiptail": 73, "lizard": 73, "agama": 73, "frill": 73, "neck": 73, "allig": 73, "gila": 73, "monster": 73, "european": 73, "chameleon": 73, "komodo": 73, "dragon": 73, "nile": 73, "crocodil": 73, "triceratop": 73, "worm": 73, "snake": 73, "ring": 73, "eastern": 73, "hog": 73, "nose": 73, "kingsnak": 73, "garter": 73, "water": 73, "vine": 73, "night": 73, "boa": 73, "constrictor": 73, "african": 73, "rock": 73, "indian": 73, "cobra": 73, "mamba": 73, "saharan": 73, "horn": 73, "viper": 73, "diamondback": 73, "rattlesnak": 73, "sidewind": 73, "trilobit": 73, "harvestman": 73, "scorpion": 73, "yellow": 73, "garden": 73, "spider": 73, "barn": 73, "southern": 73, "widow": 73, "tarantula": 73, "wolf": 73, "tick": 73, "centiped": 73, "grous": 73, "ptarmigan": 73, "ruf": 73, "prairi": 73, "peacock": 73, "quail": 73, "partridg": 73, "parrot": 73, "macaw": 73, "sulphur": 73, "crest": 73, "cockatoo": 73, "lorikeet": 73, "coucal": 73, "bee": 73, "eater": 73, "hornbil": 73, "hummingbird": 73, "jacamar": 73, "toucan": 73, "duck": [73, 86], "breast": 73, "mergans": 73, "goos": 73, "swan": 73, "tusker": 73, "echidna": 73, "platypu": 73, "wallabi": 73, "koala": 73, "wombat": 73, "jellyfish": 73, "anemon": 73, "brain": 73, "coral": 73, "flatworm": 73, "nematod": 73, "conch": 73, "snail": 73, "slug": 73, "chiton": 73, "chamber": 73, "nautilu": 73, "dung": 73, "crab": 73, "fiddler": 73, "king": 73, "lobster": 73, "spini": 73, "crayfish": 73, "hermit": 73, "isopod": 73, "stork": 73, "spoonbil": 73, "flamingo": 73, "heron": 73, "egret": 73, "bittern": 73, "crane": 73, "bird": [73, 81], "limpkin": 73, "gallinul": 73, "coot": 73, "bustard": 73, "ruddi": 73, "turnston": 73, "dunlin": 73, "redshank": 73, "dowitch": 73, "oystercatch": 73, "pelican": 73, "penguin": 73, "albatross": 73, "whale": 73, "killer": 73, "dugong": 73, "lion": 73, "chihuahua": 73, "japanes": 73, "chin": 73, "maltes": 73, "pekinges": 73, "shih": 73, "tzu": 73, "charl": 73, "spaniel": 73, "papillon": 73, "terrier": 73, "rhodesian": 73, "ridgeback": 73, "afghan": [73, 87], "hound": 73, "basset": 73, "beagl": 73, "bloodhound": 73, "bluetick": 73, "coonhound": 73, "tan": 73, "walker": 73, "foxhound": 73, "redbon": 73, "borzoi": 73, "irish": 73, "wolfhound": 73, "italian": 73, "greyhound": 73, "whippet": 73, "ibizan": 73, "norwegian": 73, "elkhound": 73, "otterhound": 73, "saluki": 73, "scottish": 73, "deerhound": 73, "weimaran": 73, "staffordshir": 73, "bull": 73, "bedlington": 73, "border": 73, "kerri": 73, "norfolk": 73, "norwich": 73, "yorkshir": 73, "wire": 73, "fox": 73, "lakeland": 73, "sealyham": 73, "airedal": 73, "cairn": 73, "australian": 73, "dandi": 73, "dinmont": 73, "boston": 73, "miniatur": 73, "schnauzer": 73, "giant": 73, "tibetan": 73, "silki": 73, "coat": [73, 75], "wheaten": 73, "west": 73, "highland": 73, "lhasa": 73, "apso": 73, "flat": 73, "retriev": 73, "curli": 73, "golden": 73, "labrador": 73, "chesapeak": 73, "bai": 73, "german": [73, 87], "shorthair": 73, "pointer": 73, "vizsla": 73, "setter": 73, "gordon": 73, "brittani": 73, "clumber": 73, "springer": 73, "welsh": 73, "cocker": 73, "sussex": 73, "kuvasz": 73, "schipperk": 73, "groenendael": 73, "malinoi": 73, "briard": 73, "kelpi": 73, "komondor": 73, "sheepdog": 73, "shetland": 73, "colli": 73, "bouvier": 73, "de": 73, "flandr": 73, "rottweil": 73, "shepherd": 73, "dobermann": 73, "pinscher": 73, "swiss": [73, 87], "mountain": 73, "bernes": 73, "appenzel": 73, "sennenhund": 73, "entlebuch": 73, "boxer": 73, "bullmastiff": 73, "mastiff": 73, "french": 73, "bulldog": 73, "dane": 73, "st": 73, "bernard": 73, "huski": 73, "alaskan": 73, "malamut": 73, "siberian": 73, "dalmatian": 73, "affenpinsch": 73, "basenji": 73, "pug": 73, "leonberg": 73, "newfoundland": 73, "pyrenean": 73, "samoi": 73, "pomeranian": 73, "chow": 73, "keeshond": 73, "griffon": 73, "bruxelloi": 73, "pembrok": 73, "corgi": 73, "cardigan": 73, "poodl": 73, "mexican": 73, "hairless": 73, "tundra": 73, "coyot": 73, "dingo": 73, "dhole": 73, "wild": 73, "hyena": 73, "kit": 73, "arctic": 73, "tabbi": 73, "persian": 73, "siames": 73, "egyptian": 73, "mau": 73, "cougar": 73, "lynx": 73, "leopard": 73, "snow": 73, "jaguar": 73, "cheetah": 73, "brown": [73, 84], "bear": 73, "polar": 73, "sloth": 73, "mongoos": 73, "meerkat": 73, "beetl": 73, "ladybug": 73, "ground": [73, 76, 78, 83], "longhorn": 73, "leaf": 73, "rhinocero": 73, "weevil": 73, "fly": 73, "ant": 73, "grasshopp": 73, "cricket": 73, "stick": 73, "insect": 73, "cockroach": 73, "manti": 73, "cicada": 73, "leafhopp": 73, "lacew": 73, "dragonfli": 73, "damselfli": 73, "admir": 73, "ringlet": 73, "monarch": 73, "butterfli": 73, "gossam": 73, "wing": 73, "starfish": 73, "urchin": 73, "cucumb": 73, "cottontail": 73, "rabbit": 73, "hare": 73, "angora": 73, "hamster": 73, "porcupin": 73, "squirrel": 73, "marmot": 73, "beaver": 73, "guinea": 73, "pig": 73, "sorrel": 73, "zebra": 73, "boar": 73, "warthog": 73, "hippopotamu": 73, "ox": 73, "buffalo": 73, "bison": 73, "bighorn": 73, "sheep": 73, "alpin": 73, "ibex": 73, "hartebeest": 73, "impala": 73, "gazel": 73, "dromedari": 73, "llama": 73, "weasel": 73, "mink": 73, "polecat": 73, "foot": 73, "ferret": 73, "otter": 73, "skunk": 73, "badger": 73, "armadillo": 73, "toed": 73, "orangutan": 73, "gorilla": 73, "chimpanze": 73, "gibbon": 73, "siamang": 73, "guenon": 73, "pata": 73, "monkei": 73, "baboon": 73, "macaqu": 73, "langur": 73, "colobu": 73, "probosci": 73, "marmoset": 73, "capuchin": 73, "howler": 73, "titi": 73, "geoffroi": 73, "lemur": 73, "indri": 73, "asian": 73, "eleph": 73, "bush": 73, "snoek": 73, "eel": 73, "coho": 73, "salmon": 73, "beauti": 73, "clownfish": 73, "sturgeon": 73, "garfish": 73, "lionfish": 73, "pufferfish": 73, "abacu": 73, "abaya": 73, "academ": 73, "gown": 73, "accordion": 73, "acoust": 73, "guitar": 73, "aircraft": 73, "carrier": 73, "airlin": 73, "airship": 73, "altar": 73, "ambul": 73, "amphibi": 73, "clock": [73, 87], "apiari": 73, "apron": 73, "wast": 73, "assault": 73, "rifl": 73, "backpack": 73, "bakeri": 73, "balanc": 73, "beam": 73, "balloon": 73, "ballpoint": 73, "pen": 73, "aid": 73, "banjo": 73, "balust": 73, "barbel": 73, "barber": 73, "chair": [73, 80], "barbershop": 73, "baromet": 73, "barrel": 73, "wheelbarrow": 73, "basebal": 73, "basketbal": 73, "bassinet": 73, "bassoon": 73, "swim": 73, "cap": 73, "bath": 73, "towel": 73, "bathtub": 73, "station": 73, "wagon": 73, "lighthous": 73, "beaker": 73, "militari": 73, "beer": 73, "bottl": 73, "glass": 73, "bell": 73, "cot": 73, "bib": 73, "bicycl": [73, 84], "bikini": 73, "binder": 73, "binocular": 73, "birdhous": 73, "boathous": 73, "bobsleigh": 73, "bolo": 73, "tie": 73, "poke": 73, "bonnet": 73, "bookcas": 73, "bookstor": 73, "bow": 73, "brass": 73, "bra": 73, "breakwat": 73, "breastplat": 73, "broom": 73, "bucket": 73, "buckl": 73, "bulletproof": 73, "vest": 73, "butcher": 73, "shop": 73, "taxicab": 73, "cauldron": 73, "candl": 73, "cannon": 73, "cano": 73, "mirror": [73, 80], "carousel": 73, "tool": [73, 76, 78], "carton": 73, "wheel": 73, "teller": 73, "cassett": 73, "player": 73, "castl": 73, "catamaran": 73, "cd": 73, "cello": 73, "mobil": [73, 87], "chain": 73, "fenc": [73, 84], "mail": 73, "chainsaw": 73, "chest": 73, "chiffoni": 73, "chime": 73, "china": 73, "cabinet": 73, "christma": 73, "stock": 73, "church": 73, "movi": 73, "theater": 73, "cleaver": 73, "cliff": 73, "dwell": 73, "cloak": 73, "clog": 73, "cocktail": 73, "shaker": 73, "coffe": 73, "mug": 73, "coffeemak": 73, "coil": 73, "lock": 73, "keyboard": 73, "confectioneri": 73, "ship": [73, 81], "corkscrew": 73, "cornet": 73, "cowboi": 73, "boot": 73, "hat": 73, "cradl": 73, "crash": 73, "helmet": 73, "crate": 73, "infant": 73, "bed": 73, "crock": 73, "pot": 73, "croquet": 73, "crutch": 73, "cuirass": 73, "dam": 73, "desk": 73, "desktop": 73, "rotari": 73, "dial": 73, "telephon": 73, "diaper": 73, "watch": 73, "dine": 73, "dishcloth": 73, "dishwash": 73, "disc": 73, "brake": 73, "dock": 73, "sled": 73, "dome": 73, "doormat": 73, "drill": 73, "rig": 73, "drum": 73, "drumstick": 73, "dumbbel": 73, "dutch": 73, "oven": 73, "fan": 73, "locomot": 73, "entertain": 73, "center": 73, "envelop": 73, "espresso": 73, "powder": 73, "feather": 73, "fireboat": 73, "engin": [73, 84], "screen": 73, "sheet": 73, "flagpol": 73, "flute": 73, "footbal": 73, "forklift": 73, "fountain": 73, "poster": 73, "freight": 73, "fry": 73, "pan": 73, "fur": 73, "garbag": 73, "ga": 73, "pump": 73, "goblet": 73, "kart": 73, "golf": 73, "cart": 73, "gondola": 73, "gong": 73, "grand": 73, "piano": 73, "greenhous": 73, "grill": 73, "groceri": 73, "guillotin": 73, "barrett": 73, "hair": 73, "sprai": 73, "hammer": 73, "dryer": 73, "hand": [73, 76], "handkerchief": 73, "drive": 73, "harmonica": 73, "harp": 73, "harvest": 73, "hatchet": 73, "holster": 73, "honeycomb": 73, "hoop": 73, "skirt": 73, "horizont": 73, "bar": 73, "hors": [73, 81, 86], "drawn": 73, "hourglass": 73, "ipod": 73, "cloth": 73, "iron": 73, "jack": 73, "lantern": 73, "jean": 73, "jeep": 73, "shirt": [73, 75], "jigsaw": 73, "puzzl": 73, "pull": 73, "rickshaw": 73, "joystick": 73, "kimono": 73, "knee": 73, "pad": 73, "knot": 73, "ladl": 73, "lampshad": 73, "laptop": 73, "lawn": 73, "mower": 73, "knife": 73, "lifeboat": 73, "lighter": 73, "limousin": 73, "ocean": 73, "liner": 73, "lipstick": 73, "slip": 73, "shoe": 73, "lotion": 73, "speaker": 73, "loup": 73, "sawmil": 73, "magnet": 73, "compass": 73, "bag": [73, 75, 81, 82], "mailbox": 73, "tight": 73, "tank": 73, "manhol": 73, "maraca": 73, "marimba": 73, "maypol": 73, "maze": 73, "cup": [73, 80], "medicin": 73, "megalith": 73, "microphon": 73, "microwav": 73, "milk": 73, "minibu": 73, "miniskirt": 73, "minivan": 73, "missil": 73, "mitten": 73, "mix": 73, "bowl": 73, "modem": 73, "monasteri": 73, "monitor": 73, "mope": 73, "mortar": 73, "mosqu": 73, "mosquito": 73, "scooter": 73, "bike": 73, "tent": 73, "mous": [73, 74], "mousetrap": 73, "van": 73, "muzzl": 73, "nail": 73, "brace": 73, "necklac": 73, "nippl": 73, "obelisk": 73, "obo": 73, "ocarina": 73, "odomet": 73, "oil": 73, "oscilloscop": 73, "overskirt": 73, "bullock": 73, "oxygen": 73, "packet": 73, "paddl": 73, "padlock": 73, "paintbrush": 73, "pajama": 73, "palac": [73, 87], "parachut": 73, "park": 73, "bench": 73, "meter": 73, "passeng": 73, "patio": 73, "payphon": 73, "pedest": 73, "pencil": 73, "perfum": 73, "petri": 73, "dish": 73, "photocopi": 73, "plectrum": 73, "pickelhaub": 73, "picket": 73, "pickup": 73, "pier": 73, "piggi": 73, "pill": 73, "pillow": 73, "ping": 73, "pong": 73, "pinwheel": 73, "pirat": 73, "pitcher": 73, "plane": 73, "planetarium": 73, "plastic": 73, "plate": 73, "rack": 73, "plow": 73, "plunger": 73, "polaroid": 73, "camera": 73, "pole": [73, 84], "polic": 73, "poncho": 73, "billiard": 73, "soda": 73, "potter": 73, "power": [73, 76, 87], "prayer": 73, "rug": 73, "printer": 73, "prison": 73, "projectil": 73, "projector": 73, "hockei": 73, "puck": 73, "punch": 73, "purs": 73, "quill": 73, "quilt": 73, "race": 73, "racket": 73, "radiat": 73, "radio": 73, "telescop": 73, "rain": 73, "recreat": 73, "reel": 73, "reflex": 73, "refriger": 73, "remot": 73, "restaur": 73, "revolv": 73, "rotisseri": 73, "eras": 73, "rugbi": 73, "ruler": 73, "safe": 73, "safeti": 73, "salt": 73, "sandal": [73, 75], "sarong": 73, "saxophon": 73, "scabbard": 73, "school": 73, "bu": [73, 84], "schooner": 73, "scoreboard": 73, "crt": 73, "screw": 73, "screwdriv": 73, "seat": 73, "belt": 73, "sew": 73, "shield": 73, "shoji": 73, "basket": 73, "shovel": 73, "shower": 73, "curtain": 73, "ski": 73, "sleep": 73, "door": 73, "slot": 73, "snorkel": 73, "snowmobil": 73, "snowplow": 73, "soap": 73, "dispens": 73, "soccer": [73, 87], "sock": 73, "solar": 73, "thermal": 73, "collector": 73, "sombrero": 73, "soup": 73, "heater": 73, "shuttl": 73, "spatula": 73, "motorboat": 73, "web": 73, "spindl": 73, "sport": [73, 87], "spotlight": 73, "stage": 73, "steam": 73, "arch": 73, "bridg": 73, "steel": 73, "stethoscop": 73, "scarf": 73, "stone": 73, "wall": [73, 84], "stopwatch": 73, "stove": 73, "strainer": 73, "tram": 73, "stretcher": 73, "couch": 73, "stupa": 73, "submarin": 73, "sundial": 73, "sunglass": 73, "sunscreen": 73, "suspens": 73, "mop": 73, "sweatshirt": 73, "swimsuit": 73, "swing": 73, "switch": 73, "syring": 73, "lamp": 73, "tape": 73, "teapot": 73, "teddi": 73, "televis": [73, 87], "tenni": 73, "thatch": 73, "roof": 73, "front": 73, "thimbl": 73, "thresh": 73, "throne": 73, "tile": 73, "toaster": 73, "tobacco": 73, "toilet": 73, "totem": 73, "tow": 73, "tractor": 73, "semi": 73, "trailer": 73, "trai": 73, "trench": 73, "tricycl": 73, "trimaran": 73, "tripod": 73, "triumphal": 73, "trolleybu": 73, "trombon": 73, "tub": 73, "turnstil": 73, "typewrit": 73, "umbrella": 73, "unicycl": 73, "upright": 73, "vacuum": 73, "cleaner": 73, "vase": 73, "vault": 73, "velvet": 73, "vend": 73, "vestment": 73, "viaduct": 73, "violin": 73, "volleybal": 73, "waffl": 73, "wallet": 73, "wardrob": 73, "sink": 73, "wash": 73, "jug": 73, "tower": 73, "whiskei": 73, "whistl": 73, "wig": 73, "shade": [73, 84], "windsor": 73, "wine": 73, "wok": 73, "wooden": 73, "spoon": 73, "wool": 73, "rail": 73, "shipwreck": 73, "yawl": 73, "yurt": 73, "websit": 73, "comic": 73, "book": 73, "crossword": 73, "traffic": [73, 80, 84], "sign": [73, 84, 87], "light": [73, 75, 80, 84], "dust": 73, "jacket": [73, 80], "menu": 73, "guacamol": 73, "consomm": 73, "trifl": 73, "ic": 73, "cream": 73, "pop": 73, "baguett": 73, "bagel": 73, "pretzel": 73, "cheeseburg": 73, "mash": 73, "potato": 73, "cabbag": 73, "broccoli": 73, "cauliflow": 73, "zucchini": 73, "spaghetti": 73, "squash": 73, "acorn": 73, "butternut": 73, "artichok": 73, "pepper": 73, "cardoon": 73, "mushroom": 73, "granni": 73, "smith": 73, "strawberri": 73, "orang": 73, "lemon": 73, "pineappl": 73, "banana": 73, "jackfruit": 73, "custard": 73, "appl": 73, "pomegran": 73, "hai": 73, "carbonara": 73, "chocol": 73, "syrup": 73, "dough": 73, "meatloaf": 73, "pizza": 73, "pie": 73, "burrito": 73, "eggnog": 73, "alp": 73, "bubbl": 73, "reef": 73, "geyser": 73, "lakeshor": 73, "promontori": 73, "shoal": 73, "seashor": 73, "vallei": 73, "volcano": 73, "bridegroom": 73, "scuba": 73, "diver": 73, "rapese": 73, "daisi": 73, "ladi": 73, "slipper": 73, "corn": 73, "rose": 73, "hip": 73, "chestnut": 73, "fungu": 73, "agar": 73, "gyromitra": 73, "stinkhorn": 73, "earth": 73, "star": 73, "wood": 73, "bolet": 73, "ear": 73, "cifar10_test_set": 73, "airplan": [73, 81], "automobil": [73, 81], "deer": [73, 81], "cifar100_test_set": 73, "aquarium_fish": 73, "babi": 73, "boi": 73, "camel": 73, "caterpillar": 73, "cattl": [73, 87], "cloud": 73, "dinosaur": 73, "dolphin": 73, "flatfish": 73, "forest": 73, "girl": 73, "kangaroo": 73, "lawn_mow": 73, "man": 73, "maple_tre": 73, "motorcycl": [73, 84], "oak_tre": 73, "orchid": 73, "palm_tre": 73, "pear": 73, "pickup_truck": 73, "pine_tre": 73, "plain": 73, "poppi": 73, "possum": 73, "raccoon": 73, "road": [73, 84], "rocket": 73, "seal": 73, "shrew": 73, "skyscrap": 73, "streetcar": 73, "sunflow": 73, "sweet_pepp": 73, "trout": 73, "tulip": 73, "willow_tre": 73, "woman": [73, 80], "caltech256": 73, "ak47": 73, "bat": 73, "glove": 73, "birdbath": 73, "blimp": 73, "bonsai": 73, "boom": 73, "breadmak": 73, "buddha": 73, "bulldoz": 73, "cactu": 73, "cake": 73, "tire": 73, "cartman": 73, "cereal": 73, "chandeli": 73, "chess": 73, "board": 73, "chimp": 73, "chopstick": 73, "coffin": 73, "coin": 73, "comet": 73, "cormor": 73, "globe": 73, "diamond": 73, "dice": 73, "doorknob": 73, "drink": 73, "straw": 73, "dumb": 73, "eiffel": 73, "elk": 73, "ewer": 73, "eyeglass": 73, "fern": 73, "fighter": 73, "jet": [73, 83], "extinguish": 73, "hydrant": 73, "firework": 73, "flashlight": 73, "floppi": 73, "fri": 73, "frisbe": 73, "galaxi": 73, "giraff": 73, "goat": 73, "gate": 73, "grape": 73, "pick": 73, "hamburg": 73, "hammock": 73, "harpsichord": 73, "hawksbil": 73, "helicopt": 73, "hibiscu": 73, "homer": 73, "simpson": 73, "horsesho": 73, "air": 73, "skeleton": 73, "ibi": 73, "cone": 73, "iri": 73, "jesu": 73, "christ": 73, "joi": 73, "kayak": 73, "ketch": 73, "ladder": 73, "lath": 73, "licens": 73, "lightbulb": 73, "lightn": 73, "mandolin": 73, "mar": 73, "mattress": 73, "megaphon": 73, "menorah": 73, "microscop": 73, "minaret": 73, "minotaur": 73, "motorbik": 73, "mussel": 73, "neckti": 73, "octopu": 73, "palm": 73, "pilot": 73, "paperclip": 73, "shredder": 73, "pci": 73, "peopl": [73, 80], "pez": 73, "picnic": 73, "pram": 73, "prai": 73, "pyramid": 73, "rainbow": 73, "roulett": 73, "saddl": 73, "saturn": 73, "segwai": 73, "propel": 73, "sextant": 73, "music": 73, "skateboard": 73, "smokestack": 73, "sneaker": 73, "boat": 73, "stain": 73, "steer": 73, "stirrup": 73, "superman": 73, "sushi": 73, "armi": [73, 87], "sword": 73, "tambourin": 73, "teepe": 73, "court": 73, "theodolit": 73, "tomato": 73, "tombston": 73, "tour": 73, "pisa": 73, "treadmil": 73, "fork": 73, "tweezer": 73, "unicorn": 73, "vcr": 73, "waterfal": 73, "watermelon": 73, "weld": 73, "windmil": 73, "xylophon": 73, "yarmulk": 73, "yo": 73, "toad": 73, "twenty_news_test_set": 73, "alt": 73, "atheism": 73, "comp": 73, "graphic": [73, 84], "misc": [73, 87], "sy": 73, "ibm": 73, "pc": 73, "hardwar": 73, "mac": 73, "forsal": 73, "rec": 73, "sci": 73, "crypt": 73, "electron": 73, "med": 73, "soc": 73, "religion": 73, "christian": [73, 87], "talk": [73, 87], "polit": 73, "gun": 73, "mideast": 73, "amazon": 73, "neutral": 73, "imdb_test_set": 73, "all_class": 73, "20news_test_set": 73, "_load_classes_predprobs_label": 73, "dataset_nam": 73, "labelerror": 73, "url_bas": 73, "5392f6c71473055060be3044becdde1cbc18284d": 73, "url_label": 73, "original_test_label": 73, "_original_label": 73, "url_prob": 73, "cross_validated_predicted_prob": 73, "_pyx": 73, "num_part": 73, "datatset": 73, "bytesio": 73, "allow_pickl": 73, "pred_probs_part": 73, "url": 73, "_of_": 73, "nload": 73, "imdb": 73, "ve": [73, 76, 78, 80], "interpret": [73, 74, 76], "capit": 73, "50000": 73, "medic": [73, 87], "doctor": 73, "836": 73, "736842": 73, "282": [73, 80], "76": [73, 76, 79, 80, 83], "714286": 73, "265": [73, 79], "400000": 73, "782": 73, "74": [73, 80, 83, 85], "628571": 73, "620": 73, "36": [73, 87], "72": [73, 76, 79, 83, 85], "500000": 73, "995": 73, "522": 73, "038462": 73, "996": 73, "480": 73, "074074": 73, "997": 73, "716": 73, "998": 73, "722": 73, "466": 73, "987": 73, "44": [73, 75, 79, 80], "00088": 73, "435": 73, "876": 73, "00076": 73, "638": 73, "639": 73, "00072": 73, "681": 73, "00070": 73, "499495": 73, "183": 73, "717": 73, "00000": 73, "499496": 73, "499497": 73, "715": 73, "714": 73, "499499": 73, "729": 73, "499500": 73, "772": 73, "82": [73, 76, 80], "29780": 73, "256": [73, 74, 80], "29": [73, 75, 78, 79, 80, 84, 87], "780": 73, "254": [73, 80], "359223": 73, "333333": 73, "640777": 73, "184": [73, 76], "282609": 73, "341176": 73, "253333": 73, "658824": 73, "337349": 73, "246575": 73, "662651": 73, "248": 73, "330000": 73, "355769": 73, "670000": 73, "251": [73, 80], "112": 73, "252": 73, "253": [73, 80], "058824": 73, "167": [73, 76, 80, 87], "255": [73, 75], "190": [73, 76, 80], "66": 73, "002216": 73, "000974": 73, "59": [73, 80], "88": [73, 75, 76, 79, 80, 83, 85], "000873": 73, "79": [73, 80], "000739": 73, "32635": 73, "47": [73, 75, 80], "32636": 73, "32637": 73, "32638": 73, "32639": 73, "32640": 73, "420": 73, "002242": 73, "997758": 73, "002088": 73, "001045": 73, "997912": 73, "002053": 73, "997947": 73, "001980": 73, "000991": 73, "998020": 73, "001946": 73, "002915": 73, "998054": 73, "001938": 73, "002904": 73, "998062": 73, "001020": 73, "998980": 73, "001018": 73, "002035": 73, "998982": 73, "999009": 73, "0003": 73, "0002": 73, "27": [73, 76, 80, 87], "71": [73, 80, 85], "071": 73, "067269": 73, "929": 73, "046": 73, "057312": 73, "954": 73, "035": 73, "032096": 73, "965": 73, "031": 73, "012232": 73, "969": 73, "022": 73, "025896": 73, "978": 73, "020": [73, 76], "013092": 73, "018": 73, "013065": 73, "016": 73, "031496": 73, "984": 73, "013": 73, "020833": 73, "012": 73, "010020": 73, "988": 73, "0073": 73, "0020": 73, "0016": 73, "0015": 73, "0014": 73, "0013": 73, "0012": 73, "0010": 73, "0008": 73, "0007": 73, "0006": 73, "0005": 73, "0004": 73, "284": [73, 80], "97": [73, 74, 76, 80, 83, 85, 87], "452381": 73, "459770": 73, "518868": 73, "460784": 73, "446602": 73, "57": 73, "68": [73, 76, 80, 85], "103774": 73, "030612": 73, "049020": 73, "98": [73, 74, 83], "110092": 73, "99": [73, 76, 85], "0034": 73, "0032": 73, "0026": 73, "0025": 73, "4945": 73, "4946": 73, "85": [73, 80, 83], "4947": 73, "4948": 73, "83": [73, 76, 80, 83, 85, 87], "4949": 73, "4950": 73, "25000": 73, "708": 73, "601": 73, "05664": 73, "048495": 73, "94336": 73, "04808": 73, "056159": 73, "95192": 73, "1309": 73, "05236": 73, "309": 73, "7532": 73, "532": 73, "034483": 73, "009646": 73, "965517": 73, "030457": 73, "020513": 73, "969543": 73, "028061": 73, "035443": 73, "971939": 73, "025316": 73, "005168": 73, "974684": 73, "049751": 73, "979487": 73, "019920": 73, "042802": 73, "980080": 73, "017677": 73, "005115": 73, "982323": 73, "012987": 73, "005236": 73, "987013": 73, "012723": 73, "025126": 73, "987277": 73, "010989": 73, "008264": 73, "989011": 73, "010283": 73, "027778": 73, "989717": 73, "009677": 73, "990323": 73, "007614": 73, "010127": 73, "992386": 73, "005051": 73, "994949": 73, "005025": 73, "994975": 73, "005013": 73, "994987": 73, "001859": 73, "001328": 73, "000929": 73, "000664": 73, "186": [73, 76], "187": 73, "188": [73, 76, 79], "189": [73, 76], "9996437": 73, "437": 73, "228667": 73, "287149": 73, "192393": 73, "230267": 73, "807607": 73, "142732": 73, "132872": 73, "155587": 73, "146413": 73, "844413": 73, "203006": 73, "154384": 73, "025728": 73, "019687": 73, "974272": 73, "298801": 73, "029891": 73, "217015": 73, "021709": 73, "58589": 73, "005861": 73, "574": 73, "405": 73, "snippet": 74, "nlp": [74, 87], "mind": [74, 76], "number_of_class": 74, "total_number_of_data_point": 74, "drop": [74, 78, 83, 86], "feed": 74, "alphabet": 74, "labels_proper_format": 74, "your_classifi": 74, "issues_datafram": 74, "class_predicted_for_flagged_exampl": 74, "class_predicted_for_all_exampl": 74, "grant": 74, "datataset": 74, "fair": [74, 76], "game": 74, "speedup": [74, 81], "flexibl": 74, "tempfil": 74, "mkdtemp": 74, "sped": 74, "anywai": 74, "pred_probs_merg": 74, "merge_rare_class": 74, "count_threshold": 74, "class_mapping_orig2new": 74, "heath_summari": 74, "num_examples_per_class": 74, "rare_class": 74, "num_classes_merg": 74, "other_class": 74, "labels_merg": 74, "new_c": 74, "merged_prob": 74, "keepdim": 74, "hstack": [74, 75, 76, 78], "new_class": 74, "original_class": 74, "num_check": 74, "ones_array_ref": 74, "isclos": 74, "though": [74, 76, 87], "successfulli": 74, "meaning": [74, 81], "virtuou": [74, 78], "cycl": [74, 78], "jointli": 74, "junk": 74, "clutter": 74, "unknown": 74, "caltech": 74, "intersect": 74, "combined_boolean_mask": 74, "mask1": 74, "mask2": 74, "gradientboostingclassifi": [74, 76], "true_error": [74, 76, 79], "101": [74, 80], "102": [74, 79, 80], "104": [74, 80], "model_to_find_error": 74, "model_to_return": 74, "cl0": 74, "randomizedsearchcv": 74, "expens": 74, "param_distribut": 74, "learning_r": [74, 76], "max_depth": [74, 76], "magnitud": 74, "coeffici": [74, 83], "optin": 74, "environ": [74, 76], "rerun": [74, 76], "cell": [74, 76], "On": [74, 76, 80], "unabl": [74, 76], "render": [74, 76], "nbviewer": [74, 76], "cleanlearningcleanlearn": [74, 76], "linearregressionlinearregress": 74, "assist": 74, "streamlin": 74, "ux": 74, "agpl": 74, "compani": 74, "commerci": 74, "alter": 74, "email": 74, "discuss": 74, "anywher": 74, "60": [75, 76], "excess": 75, "torchvis": [75, 81], "tensordataset": 75, "stratifiedkfold": [75, 79], "tqdm": 75, "fashion_mnist": 75, "0a671f063342996f19779d38c0ab4abef9c64f757b35af8134b331c294d7ba48": 75, "num_row": 75, "60000": 75, "pil": 75, "transformed_dataset": 75, "with_format": 75, "unsqueez": 75, "num_proc": 75, "cpu_count": 75, "torch_dataset": 75, "quick": [75, 79], "super": 75, "relu": 75, "batchnorm2d": 75, "maxpool2d": 75, "lazylinear": 75, "flatten": 75, "get_test_accuraci": 75, "testload": [75, 81], "energi": 75, "trainload": [75, 81], "n_epoch": 75, "patienc": 75, "criterion": 75, "crossentropyloss": 75, "adamw": 75, "best_test_accuraci": 75, "start_epoch": 75, "running_loss": 75, "best_epoch": 75, "end_epoch": 75, "3f": [75, 83], "acc": [75, 76], "time_taken": 75, "compute_embed": 75, "compute_pred_prob": 75, "train_batch_s": 75, "num_work": 75, "worker": [75, 87], "train_id_list": 75, "test_id_list": 75, "train_id": 75, "test_id": 75, "embeddings_model": 75, "ntrain": 75, "trainset": 75, "testset": 75, "pin_memori": 75, "fold_embed": 75, "fold_pred_prob": 75, "finish": 75, "483": 75, "775": 75, "045": 75, "329": [75, 80], "215": [75, 80], "663": 75, "57it": 75, "83it": 75, "492": 75, "87": [75, 80, 83, 85, 86], "095": 75, "897": 75, "415": 75, "464": 75, "03it": 75, "22it": 75, "476": 75, "942": 75, "327": [75, 80], "755": 75, "527": 75, "38it": 75, "76it": 75, "reorder": 75, "vision": 75, "low_inform": 75, "odd_aspect_ratio": 75, "odd_siz": 75, "grayscal": 75, "exce": 75, "max_preval": 75, "7797": 75, "3818": 75, "3486": 75, "310": 75, "166": 75, "9667": 75, "27080": 75, "715920": 75, "4156": 75, "718073": 75, "40378": 75, "721143": 75, "25316": 75, "725187": 75, "30820": 75, "731430": 75, "9410": 75, "19228": 75, "dress": 75, "32657": 75, "000007": 75, "53564": 75, "000010": 75, "pullov": 75, "21282": 75, "000021": 75, "54078": 75, "000022": [75, 87], "0262": 75, "54565": 75, "9762": 75, "47139": 75, "258": 75, "30968": 75, "30659": 75, "000026": 75, "0425": 75, "57620": 75, "647848": 75, "7475": 75, "663768": 75, "27513": 75, "672686": 75, "41556": 75, "674473": 75, "14509": 75, "675285": 75, "04246606876652691": 75, "069238": 75, "970188": 75, "997795": 75, "928584": 75, "999650": 75, "12076": 75, "trouser": 75, "11262": 75, "000028": 75, "plot_label_issue_exampl": 75, "ncol": [75, 81], "nrow": [75, 81], "ceil": 75, "axes_list": 75, "label_issue_indic": 75, "gl": 75, "sl": 75, "fontdict": 75, "imshow": [75, 81], "cmap": [75, 83], "grai": 75, "subplots_adjust": 75, "hspace": 75, "outsiz": 75, "outlier_issues_df": 75, "depict": [75, 79, 80, 81, 82, 84], "plot_outlier_issues_exampl": 75, "n_comparison_imag": 75, "sample_from_class": 75, "number_of_sampl": 75, "non_outlier_indic": 75, "isnul": 75, "non_outlier_indices_excluding_curr": 75, "sampled_indic": 75, "label_scores_of_sampl": 75, "top_score_indic": 75, "top_label_indic": 75, "sampled_imag": 75, "get_image_given_label_and_sampl": 75, "image_from_dataset": 75, "corresponding_label": 75, "comparison_imag": 75, "images_to_plot": 75, "idlist": 75, "iterrow": 75, "especi": [75, 83, 85, 86], "near_duplicate_issu": 75, "closest": 75, "counterpart": 75, "near_duplicate_issues_df": 75, "plot_near_duplicate_issue_exampl": 75, "seen_id_pair": 75, "get_image_and_given_label_and_predicted_label": 75, "duplicate_imag": 75, "nd_set": 75, "challeng": 75, "dark_issu": 75, "reveal": [75, 84], "dark_scor": 75, "dark_issues_df": 75, "is_dark_issu": 75, "34848": 75, "203922": 75, "50270": 75, "204588": 75, "3936": 75, "213098": 75, "733": 75, "217686": 75, "8094": 75, "230118": 75, "plot_image_issue_exampl": 75, "difficult": 75, "disproportion": 75, "lowinfo_issu": 75, "low_information_scor": 75, "lowinfo_issues_df": 75, "is_low_information_issu": 75, "53050": 75, "067975": 75, "40875": 75, "089929": 75, "9594": 75, "092601": 75, "34825": 75, "107744": 75, "37530": 75, "108516": 75, "lot": 75, "depth": 76, "survei": [76, 87], "focus": [76, 78], "scienc": 76, "multivariate_norm": [76, 78, 79], "make_data": [76, 78], "cov": [76, 78, 79], "avg_trac": [76, 79], "test_label": [76, 79, 81, 86], "py_tru": 76, "noise_matrix_tru": 76, "noise_marix": 76, "s_test": 76, "noisy_test_label": 76, "purpl": 76, "val": 76, "namespac": 76, "exec": 76, "markerfacecolor": [76, 79], "markeredgecolor": [76, 79, 83], "markers": [76, 79, 83], "markeredgewidth": [76, 79, 83], "realist": 76, "6000": 76, "638483e": 76, "897052e": 76, "548986e": 76, "924634e": 76, "374580e": 76, "4643": 76, "147": [76, 80], "050286": 76, "065420": 76, "109420": 76, "111687": 76, "115403": 76, "3312": 76, "007136": 76, "119": [76, 80], "033725": 76, "103": [76, 80], "033738": 76, "238": [76, 80], "037825": 76, "236": [76, 80], "037843": 76, "222": 76, "614915": 76, "122": [76, 80], "624422": 76, "625965": 76, "626079": 76, "118": 76, "627675": 76, "695174": 76, "323529": 76, "522929": 76, "013722": 76, "675606": 76, "646438": 76, "anyth": 76, "enhanc": [76, 78, 80], "magic": 76, "liter": 76, "identif": 76, "x27": 76, "logisticregressionlogisticregress": 76, "ever": 76, "truth": [76, 78, 83], "092": 76, "040": 76, "024": 76, "004": 76, "surpris": 76, "arxiv": 76, "ab": 76, "1705": 76, "01936": 76, "ton": 76, "yourfavoritemodel1": 76, "merged_label": 76, "merged_test_label": 76, "newli": [76, 78], "yourfavoritemodel2": 76, "yourfavoritemodel3": 76, "cl3": 76, "takeawai": 76, "That": [76, 79], "randomli": 76, "my_test_pred_prob": 76, "my_test_pr": 76, "issues_test": 76, "corrected_test_label": 76, "pretend": 76, "cl_test_pr": 76, "69": [76, 83], "fairli": 76, "label_acc": 76, "percentag": 76, "offset": 76, "nquestion": 76, "overestim": 76, "answer": 76, "experienc": 76, "06": [76, 80, 87], "62": [76, 80, 83], "knowledg": 76, "quantiti": [76, 83], "prioiri": 76, "known": 76, "versatil": 76, "label_issues_indic": 76, "213": [76, 80], "212": [76, 85], "218": [76, 80], "152": 76, "197": [76, 80], "196": [76, 80], "170": 76, "214": 76, "164": [76, 79], "198": [76, 80], "191": [76, 80], "63": [76, 80], "121": [76, 86], "117": [76, 83], "206": [76, 80], "115": [76, 80], "193": [76, 87], "194": 76, "201": [76, 80], "174": 76, "163": 76, "150": [76, 78, 80], "169": 76, "151": [76, 80], "precision_scor": 76, "recall_scor": 76, "f1_score": 76, "true_label_issu": 76, "filter_by_list": 76, "718750": [76, 78], "807018": 76, "912": 76, "733333": 76, "800000": 76, "721311": 76, "792793": 76, "908": 76, "676923": 76, "765217": 76, "892": 76, "567901": 76, "702290": 76, "844": 76, "gaug": 76, "label_issues_count": 76, "155": [76, 80], "156": 76, "172": [76, 79], "157": 76, "easiest": 76, "modular": 76, "penalti": 76, "l2": 76, "model3": 76, "n_estim": 76, "cv_pred_probs_1": 76, "cv_pred_probs_2": 76, "cv_pred_probs_3": 76, "label_quality_scores_best": 76, "cv_pred_probs_ensembl": 76, "label_quality_scores_bett": 76, "superior": [76, 82], "workflow": [77, 83], "speechbrain": 77, "timm": 77, "glad": 78, "multiannotator_label": 78, "300": [78, 87], "noisier": 78, "111": [78, 83], "local_data": [78, 79], "true_labels_train": [78, 79], "noise_matrix_bett": 78, "noise_matrix_wors": 78, "transpos": [78, 81], "dropna": 78, "zfill": 78, "row_na_check": 78, "notna": 78, "reset_index": 78, "a0001": 78, "a0002": 78, "a0003": 78, "a0004": 78, "a0005": 78, "a0006": 78, "a0007": 78, "a0008": 78, "a0009": 78, "a0010": 78, "a0041": 78, "a0042": 78, "a0043": 78, "a0044": 78, "a0045": 78, "a0046": 78, "a0047": 78, "a0048": 78, "a0049": 78, "a0050": 78, "na": 78, "60856743": 78, "41693214": 78, "40908785": 78, "87147629": 78, "64941785": 78, "10774851": 78, "0524466": 78, "71853246": 78, "37169848": 78, "66031048": 78, "multiannotator_util": 78, "crude": 78, "straight": 78, "majority_vote_label": 78, "736157": 78, "757738": 78, "782255": 78, "715585": 78, "824273": 78, "quality_annotator_a0001": 78, "quality_annotator_a0002": 78, "quality_annotator_a0003": 78, "quality_annotator_a0004": 78, "quality_annotator_a0005": 78, "quality_annotator_a0006": 78, "quality_annotator_a0007": 78, "quality_annotator_a0008": 78, "quality_annotator_a0009": 78, "quality_annotator_a0010": 78, "quality_annotator_a0041": 78, "quality_annotator_a0042": 78, "quality_annotator_a0043": 78, "quality_annotator_a0044": 78, "quality_annotator_a0045": 78, "quality_annotator_a0046": 78, "quality_annotator_a0047": 78, "quality_annotator_a0048": 78, "quality_annotator_a0049": 78, "quality_annotator_a0050": 78, "070551": 78, "216064": 78, "119178": 78, "alongisd": 78, "244982": 78, "208333": 78, "295978": 78, "294118": 78, "324194": 78, "310345": 78, "355315": 78, "346154": 78, "439728": 78, "480000": 78, "a0031": 78, "523205": 78, "580645": 78, "a0034": 78, "535313": 78, "607143": 78, "a0021": 78, "607002": 78, "a0015": 78, "609527": 78, "678571": 78, "a0011": 78, "621101": 78, "692308": 78, "wors": 78, "improved_consensus_label": 78, "majority_vote_accuraci": 78, "cleanlab_label_accuraci": 78, "8581081081081081": 78, "9797297297297297": 78, "besid": 78, "sorted_consensus_quality_scor": 78, "worst_qual": 78, "better_qu": 78, "worst_quality_accuraci": 78, "better_quality_accuraci": 78, "9893238434163701": 78, "improved_pred_prob": 78, "treat": [78, 79, 83, 87], "analzi": 78, "copyright": 79, "advertis": 79, "violenc": 79, "nsfw": 79, "ranked_label_issu": [79, 85, 86], "multioutput": 79, "multioutputclassifi": 79, "celeba": 79, "make_multilabel_data": 79, "boxes_coordin": 79, "box_multilabel": 79, "make_multi": 79, "bx1": 79, "by1": 79, "bx2": 79, "by2": 79, "label_list": 79, "ur": 79, "upper": 79, "inidx": 79, "logical_and": 79, "tolist": 79, "inv_d": 79, "labels_idx": 79, "true_labels_test": 79, "dict_unique_label": 79, "get_color_arrai": 79, "dcolor": 79, "aa4400": 79, "55227f": 79, "55a100": 79, "00ff00": 79, "007f7f": 79, "386b55": 79, "0000ff": 79, "simplic": 79, "advis": 79, "y_onehot": 79, "single_class_label": 79, "stratifi": [79, 82], "kf": 79, "train_index": 79, "test_index": 79, "clf_cv": 79, "x_train_cv": 79, "x_test_cv": 79, "y_train_cv": 79, "y_test_cv": 79, "y_pred_cv": 79, "saw": 79, "num_to_displai": 79, "09": [79, 80], "275": 79, "267": 79, "225": 79, "171": 79, "234": 79, "165": 79, "227": [79, 80], "262": [79, 80], "263": [79, 80], "266": [79, 80], "139": 79, "143": [79, 80], "216": [79, 80], "159": [79, 80], "despit": [79, 87], "suspect": 79, "888": 79, "8224": 79, "9632": 79, "968": 79, "6512": 79, "0444": 79, "774": 79, "labels_binary_format": 79, "labels_list_format": 79, "surround": 80, "scene": 80, "coco": 80, "everydai": 80, "has_label_issu": 80, "insal": 80, "nc": [80, 84, 87], "s3": [80, 84, 87], "amazonaw": [80, 84, 87], "objectdetectionbenchmark": 80, "tutorial_obj": 80, "pkl": 80, "example_imag": 80, "unzip": [80, 87], "begin": 80, "detectron2": 80, "image_path": 80, "rb": 80, "image_to_visu": 80, "seg_map": 80, "334": 80, "float32": 80, "bboxes_ignor": 80, "290": 80, "286": 80, "285": 80, "224": 80, "231": 80, "293": 80, "235": 80, "289": [80, 83], "281": 80, "271": 80, "280": 80, "277": 80, "93": [80, 83, 87], "279": 80, "287": 80, "299": 80, "276": 80, "307": 80, "321": 80, "326": 80, "330": 80, "333": 80, "261": 80, "319": 80, "257": 80, "295": 80, "283": 80, "243": 80, "303": 80, "316": 80, "247": 80, "323": 80, "328": 80, "226": 80, "232": 80, "239": 80, "240": 80, "209": 80, "242": 80, "202": 80, "230": 80, "220": 80, "229": 80, "217": [80, 87], "237": 80, "207": 80, "204": 80, "205": 80, "223": 80, "153": 80, "149": 80, "140": 80, "244": [80, 87], "124": 80, "268": 80, "273": 80, "108": 80, "110": 80, "136": [80, 87], "145": 80, "173": 80, "297": 80, "317": 80, "192": 80, "332": 80, "324": 80, "203": 80, "320": 80, "314": 80, "199": 80, "291": 80, "000000481413": 80, "jpg": 80, "42398": 80, "44503": 80, "337": [80, 86], "29968": 80, "336": 80, "21005": 80, "9978472": 80, "forgot": 80, "drew": 80, "label_issue_idx": 80, "num_examples_to_show": 80, "113": [80, 83], "candid": 80, "97489622": 80, "70610878": 80, "98764951": 80, "88899237": 80, "99085805": 80, "issue_idx": 80, "95569726e": 80, "03354841e": 80, "57510169e": 80, "58447666e": 80, "39755858e": 80, "suppli": 80, "issue_to_visu": 80, "000000009483": 80, "955697261680538e": 80, "addition": [80, 84], "visibl": 80, "missmatch": 80, "likelei": 80, "agnost": 80, "vaidat": 80, "inconsist": 80, "000000395701": 80, "033548411774308e": 80, "armchair": 80, "tv": 80, "000000154004": 80, "38300759625496356": 80, "foreground": 80, "000000448410": 80, "0008575101690203273": 80, "crowd": 80, "alon": 80, "explor": [80, 81], "resembl": [80, 81], "contribut": 80, "000000499768": 80, "9748962231208227": 80, "000000521141": 80, "8889923658893665": 80, "000000143931": 80, "9876495074395957": 80, "train_feature_embed": 81, "ood_train_feature_scor": 81, "test_feature_embed": 81, "ood_test_feature_scor": 81, "ood_train_predictions_scor": 81, "train_pred_prob": 81, "ood_test_predictions_scor": 81, "test_pred_prob": 81, "pylab": 81, "rcparam": 81, "baggingclassifi": 81, "therebi": 81, "rescal": 81, "transform_norm": 81, "totensor": 81, "root": 81, "animal_class": 81, "non_animal_class": 81, "animal_idx": 81, "isin": 81, "test_idx": 81, "toronto": 81, "edu": 81, "kriz": 81, "5000": 81, "plot_imag": 81, "visualize_outli": 81, "txt_class": 81, "img": [81, 83], "npimg": 81, "show_label": 81, "data_subset": 81, "hidden": 81, "resnet50": 81, "corpu": 81, "2048": 81, "embed_imag": 81, "create_model": 81, "rwightman": 81, "v0": 81, "rsb": 81, "resnet50_a1_0": 81, "14fe96d1": 81, "pth": 81, "strang": 81, "odd": 81, "train_ood_features_scor": 81, "top_train_ood_features_idx": 81, "fun": 81, "negat": 81, "homogen": 81, "bottom_train_ood_features_idx": 81, "test_ood_features_scor": 81, "top_ood_features_idx": 81, "inevit": 81, "trade": 81, "5th": 81, "percentil": 81, "fifth_percentil": 81, "plt_rang": 81, "hist": 81, "train_outlier_scor": 81, "ylabel": 81, "axvlin": 81, "test_outlier_scor": 81, "sorted_idx": 81, "ood_features_indic": 81, "revisit": 81, "unusu": 81, "return_invers": 81, "train_feature_embeddings_sc": 81, "test_feature_embeddings_sc": 81, "train_pred_label": 81, "9702": 81, "train_ood_predictions_scor": 81, "test_ood_predictions_scor": 81, "mainli": [81, 87], "auxiliari": [81, 84], "lost": 81, "unsuit": 82, "ok": [82, 87], "convention": 82, "aforement": 82, "hypothet": 82, "contrast": 82, "tradit": 82, "disjoint": 82, "out_of_sample_pred_probs_for_a": 82, "out_of_sample_pred_probs_for_b": 82, "out_of_sample_pred_probs_for_c": 82, "out_of_sample_pred_prob": 82, "price": 83, "incom": 83, "ag": 83, "histgradientboostingregressor": 83, "r2_score": 83, "student_grades_r": 83, "final_scor": 83, "true_final_scor": 83, "homework": 83, "3d": 83, "hue": 83, "mpl_toolkit": 83, "mplot3d": 83, "axes3d": 83, "errors_idx": 83, "add_subplot": 83, "z": 83, "colorbar": 83, "errors_mask": 83, "feature_column": 83, "predicted_column": 83, "x_train_raw": 83, "x_test_raw": 83, "categorical_featur": [83, 85], "randomforestregressor": 83, "629763": 83, "521450": 83, "954607": 83, "547234": 83, "338296": 83, "754531": 83, "619090": 83, "312295": 83, "806626": 83, "784048": 83, "identified_issu": [83, 86], "659": 83, "367": 83, "560": 83, "318": 83, "305": 83, "688": 83, "657": 83, "view_datapoint": 83, "concat": 83, "consum": [83, 86], "baseline_model": [83, 86], "preds_og": 83, "r2_og": 83, "838": 83, "robustli": [83, 85, 86], "acceler": [83, 86], "found_label_issu": 83, "preds_cl": 83, "r2_cl": 83, "925": 83, "effort": [83, 85, 86], "favorit": 83, "64404888e": 83, "06755306e": 83, "05302732e": 83, "66635743e": 83, "53166364e": 83, "synthia": 84, "semantic_segment": 84, "imagesegment": 84, "given_mask": 84, "predicted_mask": 84, "set_printopt": [84, 87], "sky": 84, "sidewalk": 84, "veget": 84, "terrain": 84, "rider": 84, "pred_probs_filepath": 84, "1088": 84, "1920": 84, "label_filepath": 84, "synthia_class": 84, "maunal": 84, "100000": 84, "244800": 84, "system": 84, "leftmost": 84, "area": 84, "middl": [84, 87], "infact": 84, "rightmost": 84, "discrep": 84, "4997436": 84, "128276": 84, "27it": 84, "3263230": 84, "783379": 84, "275110": 84, "255792": 84, "78225": 84, "55990": 84, "54315": 84, "33591": 84, "24645": 84, "21054": 84, "15045": 84, "14171": 84, "13832": 84, "13498": 84, "11490": 84, "9149": 84, "8769": 84, "6999": 84, "6031": 84, "5011": 84, "mistakenli": 84, "class_issu": 84, "aim": [84, 87], "domin": 84, "extratreesclassifi": 85, "extratre": 85, "labelencod": [85, 86], "labels_raw": 85, "interg": [85, 86], "tress": 85, "928": 85, "911": 85, "cheat": 85, "0pt": 85, "864": 85, "498": 85, "labels_train": 85, "labels_test": 85, "acc_og": [85, 86], "783068783068783": 85, "acc_cl": [85, 86], "8095238095238095": 85, "earlier": [86, 87], "raw_label": 86, "raw_train_text": 86, "raw_test_text": 86, "raw_train_label": 86, "raw_test_label": 86, "encond": 86, "train_text": 86, "test_text": 86, "858043": 86, "545888": 86, "826290": 86, "965814": 86, "791937": 86, "646": 86, "390": 86, "628": 86, "702": 86, "863": 86, "135": 86, "735": 86, "print_as_df": 86, "inverse_transform": 86, "fight": 86, "bunch": 87, "conll": 87, "2003": 87, "love": 87, "n_i": 87, "optional_list_of_ordered_class_nam": 87, "deepai": 87, "conll2003": 87, "rm": 87, "tokenclassif": 87, "2023": 87, "2400": 87, "52e0": 87, "1a00": 87, "871": 87, "connect": 87, "443": 87, "await": 87, "982975": 87, "960k": 87, "959": 87, "94k": 87, "21mb": 87, "mb": 87, "directori": 87, "inflat": 87, "137": 87, "17045998": 87, "16m": 87, "octet": 87, "26m": 87, "8mb": 87, "bert": 87, "read_npz": 87, "filepath": 87, "corrsespond": 87, "iob2": 87, "given_ent": 87, "entity_map": 87, "readfil": 87, "sep": 87, "startswith": 87, "docstart": 87, "isalpha": 87, "isupp": 87, "indices_to_preview": 87, "nsentenc": 87, "eu": 87, "reject": 87, "boycott": 87, "british": 87, "lamb": 87, "00030412": 87, "00023826": 87, "99936208": 87, "00007009": 87, "00002545": 87, "99998795": 87, "00000401": 87, "00000218": 87, "00000455": 87, "00000131": 87, "00000749": 87, "99996115": 87, "00001371": 87, "0000087": 87, "00000895": 87, "99998936": 87, "00000382": 87, "00000178": 87, "00000366": 87, "00000137": 87, "99999101": 87, "00000266": 87, "00000174": 87, "0000035": 87, "00000109": 87, "99998768": 87, "00000482": 87, "00000202": 87, "00000438": 87, "0000011": 87, "00000465": 87, "99996392": 87, "00001105": 87, "0000116": 87, "00000878": 87, "99998671": 87, "00000364": 87, "00000213": 87, "00000472": 87, "00000281": 87, "99999073": 87, "00000211": 87, "00000159": 87, "00000442": 87, "00000115": 87, "peter": 87, "blackburn": 87, "00000358": 87, "00000529": 87, "99995623": 87, "0000129": 87, "0000024": 87, "00001812": 87, "99994141": 87, "00001645": 87, "00002162": 87, "brussel": 87, "1996": 87, "00001172": 87, "00000821": 87, "00004661": 87, "0000618": 87, "99987167": 87, "99999061": 87, "00000201": 87, "00000195": 87, "00000408": 87, "00000135": 87, "2254": 87, "2907": 87, "19392": 87, "9962": 87, "8904": 87, "19303": 87, "12918": 87, "9256": 87, "11855": 87, "18392": 87, "20426": 87, "19402": 87, "14744": 87, "19371": 87, "4645": 87, "10331": 87, "9430": 87, "6143": 87, "18367": 87, "12914": 87, "todai": 87, "weather": 87, "march": 87, "scalfaro": 87, "northern": 87, "himself": 87, "said": 87, "germani": 87, "nastja": 87, "rysich": 87, "north": 87, "spla": 87, "fought": 87, "khartoum": 87, "govern": 87, "south": 87, "1983": 87, "autonomi": 87, "animist": 87, "region": 87, "moslem": 87, "arabis": 87, "mayor": 87, "antonio": 87, "gonzalez": 87, "garcia": 87, "revolutionari": 87, "parti": 87, "wednesdai": 87, "troop": 87, "raid": 87, "farm": 87, "stole": 87, "rape": 87, "women": 87, "spring": 87, "chg": 87, "hrw": 87, "12pct": 87, "princ": 87, "photo": 87, "moment": 87, "spokeswoman": 87, "rainier": 87, "told": 87, "reuter": 87, "danila": 87, "carib": 87, "w224": 87, "equip": 87, "radiomet": 87, "earn": 87, "19996": 87, "london": 87, "denom": 87, "sale": 87, "uk": 87, "jp": 87, "fr": 87, "maccabi": 87, "hapoel": 87, "haifa": 87, "tel": 87, "aviv": 87, "hospit": 87, "rever": 87, "roman": 87, "cathol": 87, "nun": 87, "admit": 87, "calcutta": 87, "week": 87, "ago": 87, "fever": 87, "vomit": 87, "allianc": 87, "embattl": 87, "kabul": 87, "salang": 87, "highwai": 87, "mondai": 87, "tuesdai": 87, "suprem": 87, "council": 87, "led": 87, "jumbish": 87, "milli": 87, "movement": 87, "warlord": 87, "abdul": 87, "rashid": 87, "dostum": 87, "dollar": 87, "exchang": 87, "3570": 87, "12049": 87, "born": 87, "1937": 87, "provinc": 87, "anhui": 87, "dai": 87, "came": 87, "shanghai": 87, "citi": 87, "prolif": 87, "author": 87, "teacher": 87, "chines": 87, "16764": 87, "1990": 87, "historian": 87, "alan": 87, "john": 87, "percival": 87, "taylor": 87, "di": 87, "20446": 87, "pace": 87, "bowler": 87, "ian": 87, "harvei": 87, "claim": 87, "victoria": 87, "15514": 87, "cotti": 87, "osc": 87, "foreign": 87, "minist": 87, "7525": 87, "sultan": 87, "specter": 87, "met": 87, "crown": 87, "abdullah": 87, "defenc": 87, "aviat": 87, "jeddah": 87, "saudi": 87, "agenc": 87, "2288": 87, "hi": 87, "customari": 87, "outfit": 87, "champion": 87, "damp": 87, "scalp": 87, "canada": 87, "reign": 87, "olymp": 87, "donovan": 87, "bailei": 87, "1992": 87, "linford": 87, "christi": 87, "britain": 87, "1984": 87, "1988": 87, "carl": 87, "lewi": 87, "ambigi": 87, "punctuat": 87, "chicago": 87, "digest": 87, "philadelphia": 87, "usda": 87, "york": 87, "token_issu": 87, "471": 87, "kean": 87, "year": 87, "contract": 87, "manchest": 87, "19072": 87, "societi": 87, "million": 87, "bite": 87, "deliv": 87, "19910": 87, "father": 87, "clarenc": 87, "woolmer": 87, "renam": 87, "uttar": 87, "pradesh": 87, "india": 87, "ranji": 87, "trophi": 87, "nation": 87, "championship": 87, "captain": 87, "1949": 87, "15658": 87, "19879": 87, "iii": 87, "brian": 87, "shimer": 87, "randi": 87, "jone": 87, "19104": 87}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [8, 0, 0, "-", "datalab"], [23, 0, 0, "-", "dataset"], [26, 0, 0, "-", "experimental"], [29, 0, 0, "-", "filter"], [30, 0, 0, "-", "internal"], [41, 0, 0, "-", "models"], [43, 0, 0, "-", "multiannotator"], [46, 0, 0, "-", "multilabel_classification"], [49, 0, 0, "-", "object_detection"], [52, 0, 0, "-", "outlier"], [53, 0, 0, "-", "rank"], [54, 0, 0, "-", "regression"], [58, 0, 0, "-", "segmentation"], [62, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [12, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[9, 0, 0, "-", "data"], [10, 0, 0, "-", "data_issues"], [13, 0, 0, "-", "issue_finder"], [11, 0, 0, "-", "issue_manager_factory"], [21, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[9, 2, 1, "", "Data"], [9, 5, 1, "", "DataFormatError"], [9, 5, 1, "", "DatasetDictError"], [9, 5, 1, "", "DatasetLoadError"], [9, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[10, 2, 1, "", "DataIssues"], [10, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[10, 3, 1, "", "collect_issues_from_issue_manager"], [10, 3, 1, "", "collect_statistics"], [10, 3, 1, "", "get_info"], [10, 3, 1, "", "get_issue_summary"], [10, 3, 1, "", "get_issues"], [10, 3, 1, "", "set_health_score"], [10, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[13, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"], [13, 3, 1, "", "list_default_issue_types"], [13, 3, 1, "", "list_possible_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[14, 0, 0, "-", "duplicate"], [15, 0, 0, "-", "imbalance"], [17, 0, 0, "-", "issue_manager"], [18, 0, 0, "-", "label"], [19, 0, 0, "-", "noniid"], [20, 0, 0, "-", "outlier"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[14, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[14, 3, 1, "", "collect_info"], [14, 6, 1, "", "description"], [14, 3, 1, "", "find_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_name"], [14, 6, 1, "", "issue_score_key"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "make_summary"], [14, 6, 1, "", "near_duplicate_sets"], [14, 3, 1, "", "report"], [14, 6, 1, "", "summary"], [14, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[15, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[15, 3, 1, "", "collect_info"], [15, 6, 1, "", "description"], [15, 3, 1, "", "find_issues"], [15, 6, 1, "", "info"], [15, 6, 1, "", "issue_name"], [15, 6, 1, "", "issue_score_key"], [15, 6, 1, "", "issues"], [15, 3, 1, "", "make_summary"], [15, 3, 1, "", "report"], [15, 6, 1, "", "summary"], [15, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[17, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[18, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 3, 1, "", "get_health_summary"], [18, 6, 1, "", "health_summary_parameters"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[19, 2, 1, "", "NonIIDIssueManager"], [19, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[20, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[20, 6, 1, "", "DEFAULT_THRESHOLDS"], [20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "ood"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[11, 7, 1, "", "REGISTRY"], [11, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[21, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[21, 3, 1, "", "get_report"], [21, 3, 1, "", "report"]], "cleanlab.dataset": [[23, 1, 1, "", "find_overlapping_classes"], [23, 1, 1, "", "health_summary"], [23, 1, 1, "", "overall_label_health_score"], [23, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[24, 0, 0, "-", "cifar_cnn"], [25, 0, 0, "-", "coteaching"], [27, 0, 0, "-", "label_issues_batched"], [28, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[24, 2, 1, "", "CNN"], [24, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[24, 6, 1, "", "T_destination"], [24, 3, 1, "", "__call__"], [24, 3, 1, "", "add_module"], [24, 3, 1, "", "apply"], [24, 3, 1, "", "bfloat16"], [24, 3, 1, "", "buffers"], [24, 3, 1, "", "children"], [24, 3, 1, "", "cpu"], [24, 3, 1, "", "cuda"], [24, 3, 1, "", "double"], [24, 6, 1, "", "dump_patches"], [24, 3, 1, "", "eval"], [24, 3, 1, "", "extra_repr"], [24, 3, 1, "", "float"], [24, 3, 1, "id0", "forward"], [24, 3, 1, "", "get_buffer"], [24, 3, 1, "", "get_extra_state"], [24, 3, 1, "", "get_parameter"], [24, 3, 1, "", "get_submodule"], [24, 3, 1, "", "half"], [24, 3, 1, "", "ipu"], [24, 3, 1, "", "load_state_dict"], [24, 3, 1, "", "modules"], [24, 3, 1, "", "named_buffers"], [24, 3, 1, "", "named_children"], [24, 3, 1, "", "named_modules"], [24, 3, 1, "", "named_parameters"], [24, 3, 1, "", "parameters"], [24, 3, 1, "", "register_backward_hook"], [24, 3, 1, "", "register_buffer"], [24, 3, 1, "", "register_forward_hook"], [24, 3, 1, "", "register_forward_pre_hook"], [24, 3, 1, "", "register_full_backward_hook"], [24, 3, 1, "", "register_load_state_dict_post_hook"], [24, 3, 1, "", "register_module"], [24, 3, 1, "", "register_parameter"], [24, 3, 1, "", "requires_grad_"], [24, 3, 1, "", "set_extra_state"], [24, 3, 1, "", "share_memory"], [24, 3, 1, "", "state_dict"], [24, 3, 1, "", "to"], [24, 3, 1, "", "to_empty"], [24, 3, 1, "", "train"], [24, 6, 1, "", "training"], [24, 3, 1, "", "type"], [24, 3, 1, "", "xpu"], [24, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[25, 1, 1, "", "adjust_learning_rate"], [25, 1, 1, "", "evaluate"], [25, 1, 1, "", "forget_rate_scheduler"], [25, 1, 1, "", "initialize_lr_scheduler"], [25, 1, 1, "", "loss_coteaching"], [25, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[27, 2, 1, "", "LabelInspector"], [27, 7, 1, "", "adj_confident_thresholds_shared"], [27, 1, 1, "", "find_label_issues_batched"], [27, 7, 1, "", "labels_shared"], [27, 7, 1, "", "pred_probs_shared"], [27, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[27, 3, 1, "", "get_confident_thresholds"], [27, 3, 1, "", "get_label_issues"], [27, 3, 1, "", "get_num_issues"], [27, 3, 1, "", "get_quality_scores"], [27, 3, 1, "", "score_label_quality"], [27, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[28, 2, 1, "", "CNN"], [28, 2, 1, "", "SimpleNet"], [28, 1, 1, "", "get_mnist_dataset"], [28, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[28, 3, 1, "", "__init_subclass__"], [28, 6, 1, "", "batch_size"], [28, 6, 1, "", "dataset"], [28, 6, 1, "", "epochs"], [28, 3, 1, "id0", "fit"], [28, 3, 1, "", "get_metadata_routing"], [28, 3, 1, "", "get_params"], [28, 6, 1, "", "loader"], [28, 6, 1, "", "log_interval"], [28, 6, 1, "", "lr"], [28, 6, 1, "", "momentum"], [28, 6, 1, "", "no_cuda"], [28, 3, 1, "id1", "predict"], [28, 3, 1, "id4", "predict_proba"], [28, 6, 1, "", "seed"], [28, 3, 1, "", "set_fit_request"], [28, 3, 1, "", "set_params"], [28, 3, 1, "", "set_predict_proba_request"], [28, 3, 1, "", "set_predict_request"], [28, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[28, 6, 1, "", "T_destination"], [28, 3, 1, "", "__call__"], [28, 3, 1, "", "add_module"], [28, 3, 1, "", "apply"], [28, 3, 1, "", "bfloat16"], [28, 3, 1, "", "buffers"], [28, 3, 1, "", "children"], [28, 3, 1, "", "cpu"], [28, 3, 1, "", "cuda"], [28, 3, 1, "", "double"], [28, 6, 1, "", "dump_patches"], [28, 3, 1, "", "eval"], [28, 3, 1, "", "extra_repr"], [28, 3, 1, "", "float"], [28, 3, 1, "", "forward"], [28, 3, 1, "", "get_buffer"], [28, 3, 1, "", "get_extra_state"], [28, 3, 1, "", "get_parameter"], [28, 3, 1, "", "get_submodule"], [28, 3, 1, "", "half"], [28, 3, 1, "", "ipu"], [28, 3, 1, "", "load_state_dict"], [28, 3, 1, "", "modules"], [28, 3, 1, "", "named_buffers"], [28, 3, 1, "", "named_children"], [28, 3, 1, "", "named_modules"], [28, 3, 1, "", "named_parameters"], [28, 3, 1, "", "parameters"], [28, 3, 1, "", "register_backward_hook"], [28, 3, 1, "", "register_buffer"], [28, 3, 1, "", "register_forward_hook"], [28, 3, 1, "", "register_forward_pre_hook"], [28, 3, 1, "", "register_full_backward_hook"], [28, 3, 1, "", "register_load_state_dict_post_hook"], [28, 3, 1, "", "register_module"], [28, 3, 1, "", "register_parameter"], [28, 3, 1, "", "requires_grad_"], [28, 3, 1, "", "set_extra_state"], [28, 3, 1, "", "share_memory"], [28, 3, 1, "", "state_dict"], [28, 3, 1, "", "to"], [28, 3, 1, "", "to_empty"], [28, 3, 1, "", "train"], [28, 6, 1, "", "training"], [28, 3, 1, "", "type"], [28, 3, 1, "", "xpu"], [28, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[29, 1, 1, "", "find_label_issues"], [29, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [29, 1, 1, "", "find_predicted_neq_given"], [29, 7, 1, "", "pred_probs_by_class"], [29, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[31, 0, 0, "-", "label_quality_utils"], [32, 0, 0, "-", "latent_algebra"], [33, 0, 0, "-", "multiannotator_utils"], [34, 0, 0, "-", "multilabel_scorer"], [35, 0, 0, "-", "multilabel_utils"], [36, 0, 0, "-", "outlier"], [37, 0, 0, "-", "token_classification_utils"], [38, 0, 0, "-", "util"], [39, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[31, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[32, 1, 1, "", "compute_inv_noise_matrix"], [32, 1, 1, "", "compute_noise_matrix_from_inverse"], [32, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [32, 1, 1, "", "compute_py"], [32, 1, 1, "", "compute_py_inv_noise_matrix"], [32, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[33, 1, 1, "", "assert_valid_inputs_multiannotator"], [33, 1, 1, "", "assert_valid_pred_probs"], [33, 1, 1, "", "check_consensus_label_classes"], [33, 1, 1, "", "compute_soft_cross_entropy"], [33, 1, 1, "", "find_best_temp_scaler"], [33, 1, 1, "", "format_multiannotator_labels"], [33, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[34, 2, 1, "", "Aggregator"], [34, 2, 1, "", "ClassLabelScorer"], [34, 2, 1, "", "MultilabelScorer"], [34, 1, 1, "", "exponential_moving_average"], [34, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [34, 1, 1, "", "get_label_quality_scores"], [34, 1, 1, "", "multilabel_py"], [34, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[34, 3, 1, "", "__call__"], [34, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[34, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [34, 6, 1, "", "NORMALIZED_MARGIN"], [34, 6, 1, "", "SELF_CONFIDENCE"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[34, 3, 1, "", "__call__"], [34, 3, 1, "", "aggregate"], [34, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[35, 1, 1, "", "get_onehot_num_classes"], [35, 1, 1, "", "int2onehot"], [35, 1, 1, "", "onehot2int"], [35, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[36, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[37, 1, 1, "", "color_sentence"], [37, 1, 1, "", "filter_sentence"], [37, 1, 1, "", "get_sentence"], [37, 1, 1, "", "mapping"], [37, 1, 1, "", "merge_probs"], [37, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[38, 1, 1, "", "append_extra_datapoint"], [38, 1, 1, "", "clip_noise_rates"], [38, 1, 1, "", "clip_values"], [38, 1, 1, "", "compress_int_array"], [38, 1, 1, "", "confusion_matrix"], [38, 1, 1, "", "csr_vstack"], [38, 1, 1, "", "estimate_pu_f1"], [38, 1, 1, "", "extract_indices_tf"], [38, 1, 1, "", "force_two_dimensions"], [38, 1, 1, "", "format_labels"], [38, 1, 1, "", "get_missing_classes"], [38, 1, 1, "", "get_num_classes"], [38, 1, 1, "", "get_unique_classes"], [38, 1, 1, "", "is_tensorflow_dataset"], [38, 1, 1, "", "is_torch_dataset"], [38, 1, 1, "", "num_unique_classes"], [38, 1, 1, "", "print_inverse_noise_matrix"], [38, 1, 1, "", "print_joint_matrix"], [38, 1, 1, "", "print_noise_matrix"], [38, 1, 1, "", "print_square_matrix"], [38, 1, 1, "", "remove_noise_from_class"], [38, 1, 1, "", "round_preserving_row_totals"], [38, 1, 1, "", "round_preserving_sum"], [38, 1, 1, "", "smart_display_dataframe"], [38, 1, 1, "", "subset_X_y"], [38, 1, 1, "", "subset_data"], [38, 1, 1, "", "subset_labels"], [38, 1, 1, "", "train_val_split"], [38, 1, 1, "", "unshuffle_tensorflow_dataset"], [38, 1, 1, "", "value_counts"], [38, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[39, 1, 1, "", "assert_indexing_works"], [39, 1, 1, "", "assert_nonempty_input"], [39, 1, 1, "", "assert_valid_class_labels"], [39, 1, 1, "", "assert_valid_inputs"], [39, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[42, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[42, 2, 1, "", "KerasWrapperModel"], [42, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[43, 1, 1, "", "convert_long_to_wide_dataset"], [43, 1, 1, "", "get_active_learning_scores"], [43, 1, 1, "", "get_active_learning_scores_ensemble"], [43, 1, 1, "", "get_label_quality_multiannotator"], [43, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [43, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[44, 0, 0, "-", "dataset"], [45, 0, 0, "-", "filter"], [47, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[44, 1, 1, "", "common_multilabel_issues"], [44, 1, 1, "", "multilabel_health_summary"], [44, 1, 1, "", "overall_multilabel_health_score"], [44, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[47, 1, 1, "", "get_label_quality_scores"], [47, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[48, 0, 0, "-", "filter"], [50, 0, 0, "-", "rank"], [51, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[48, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[50, 1, 1, "", "compute_badloc_box_scores"], [50, 1, 1, "", "compute_overlooked_box_scores"], [50, 1, 1, "", "compute_swap_box_scores"], [50, 1, 1, "", "get_label_quality_scores"], [50, 1, 1, "", "issues_from_scores"], [50, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[51, 1, 1, "", "visualize"]], "cleanlab.outlier": [[52, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[52, 3, 1, "", "fit"], [52, 3, 1, "", "fit_score"], [52, 3, 1, "", "score"]], "cleanlab.rank": [[53, 1, 1, "", "find_top_issues"], [53, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [53, 1, 1, "", "get_label_quality_ensemble_scores"], [53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_normalized_margin_for_each_label"], [53, 1, 1, "", "get_self_confidence_for_each_label"], [53, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[55, 0, 0, "-", "learn"], [56, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[55, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[55, 3, 1, "", "__init_subclass__"], [55, 3, 1, "", "find_label_issues"], [55, 3, 1, "", "fit"], [55, 3, 1, "", "get_aleatoric_uncertainty"], [55, 3, 1, "", "get_epistemic_uncertainty"], [55, 3, 1, "", "get_label_issues"], [55, 3, 1, "", "get_metadata_routing"], [55, 3, 1, "", "get_params"], [55, 3, 1, "", "predict"], [55, 3, 1, "", "save_space"], [55, 3, 1, "", "score"], [55, 3, 1, "", "set_fit_request"], [55, 3, 1, "", "set_params"], [55, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[56, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[57, 0, 0, "-", "filter"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[57, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[60, 1, 1, "", "common_label_issues"], [60, 1, 1, "", "display_issues"], [60, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[61, 0, 0, "-", "filter"], [63, 0, 0, "-", "rank"], [64, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[61, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[63, 1, 1, "", "get_label_quality_scores"], [63, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[64, 1, 1, "", "common_label_issues"], [64, 1, 1, "", "display_issues"], [64, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 67, 71, 72, 74, 75, 76, 79, 85, 86, 87], "count": [3, 76], "datalab": [4, 5, 6, 7, 8, 68, 69, 70, 71, 72, 76], "creat": [5, 68, 69, 76, 78], "your": [5, 65, 68, 69, 72, 74, 76], "own": 5, "issu": [5, 6, 7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 84, 85, 87], "manag": 5, "prerequisit": 5, "implement": 5, "issuemanag": [5, 68], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 68], "us": [5, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "guid": [6, 8], "type": [6, 7, 76], "custom": [6, 68], "can": [7, 69, 73, 74, 76, 78], "detect": [7, 69, 71, 72, 74, 76, 80, 81], "estim": [7, 76, 78], "each": 7, "label": [7, 18, 65, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "outlier": [7, 20, 36, 52, 71, 72, 75, 81], "Near": [7, 69, 71, 72, 75], "duplic": [7, 14, 69, 71, 72, 75], "non": 7, "iid": 7, "class": [7, 66, 76, 84], "imbal": [7, 15], "imag": [7, 75, 81], "specif": [7, 84], "option": 7, "paramet": [7, 76], "get": [8, 68, 69, 78, 79, 80, 84, 87], "start": [8, 73], "api": 8, "refer": 8, "data": [9, 65, 67, 68, 69, 71, 73, 74, 76, 78, 79, 80, 81, 83, 84, 85, 87], "data_issu": 10, "factori": 11, "intern": [12, 30], "issue_find": 13, "issue_manag": [16, 17], "noniid": 19, "report": [21, 75], "dataset": [23, 44, 65, 69, 72, 73, 74, 75, 76, 79, 80, 81, 83, 84, 86, 87], "cifar_cnn": 24, "coteach": 25, "experiment": 26, "label_issues_batch": 27, "mnist_pytorch": 28, "filter": [29, 45, 48, 57, 61, 76], "label_quality_util": 31, "latent_algebra": 32, "multiannotator_util": 33, "multilabel_scor": 34, "multilabel_util": 35, "token_classification_util": 37, "util": 38, "valid": [39, 75, 82], "fasttext": 40, "model": [41, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "kera": 42, "multiannot": [43, 78], "multilabel_classif": 46, "rank": [47, 50, 53, 56, 59, 63, 76], "object_detect": 49, "summari": [51, 60, 64], "regress": [54, 55, 56, 74, 83], "learn": [55, 69, 74, 76, 85], "segment": [58, 84], "token_classif": [62, 87], "cleanlab": [65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "document": 65, "quickstart": 65, "1": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "instal": [65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "2": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "find": [65, 67, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "common": [65, 66, 87], "3": [65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "handl": [65, 74], "error": [65, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "train": [65, 67, 74, 81, 83, 85, 86], "robust": [65, 76, 83, 85, 86], "noisi": [65, 76, 83, 85, 86], "4": [65, 67, 68, 69, 71, 72, 75, 76, 78, 80, 81, 83, 85, 86], "curat": [65, 73], "fix": [65, 74], "level": [65, 73, 76, 87], "5": [65, 67, 69, 71, 75, 76, 78, 83, 85], "improv": [65, 78], "via": [65, 76, 78], "mani": [65, 76], "other": [65, 78, 80, 83], "techniqu": 65, "contribut": 65, "easi": 65, "mode": 65, "how": [66, 74, 76, 78, 79, 87], "migrat": 66, "version": 66, "0": 66, "from": [66, 68, 69, 76, 83, 85, 86], "pre": [66, 67, 81], "function": [66, 68], "name": 66, "chang": 66, "modul": [66, 76], "new": 66, "remov": 66, "argument": [66, 68], "variabl": 66, "audio": 67, "speechbrain": 67, "depend": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "import": [67, 68, 69, 73, 75, 76, 78], "them": [67, 73, 76], "load": [67, 68, 69, 71, 72, 83, 85, 86], "featur": [67, 75, 81], "fit": 67, "linear": 67, "comput": [67, 71, 72, 75, 78, 82, 85], "out": [67, 68, 69, 71, 72, 75, 78, 82, 85], "sampl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "predict": [67, 68, 69, 71, 72, 75, 78, 79, 80, 82, 85], "probabl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "workflow": [68, 76], "audit": [68, 69], "requir": [68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "classifi": [68, 69], "instanti": 68, "object": [68, 80], "increment": 68, "search": 68, "specifi": 68, "nondefault": 68, "save": 68, "ad": 68, "A": 69, "unifi": 69, "all": [69, 76], "kind": [69, 80], "skip": [69, 73, 76, 78], "detail": [69, 73, 76, 78], "more": [69, 76, 83, 85, 86], "about": 69, "addit": 69, "inform": [69, 75], "tutori": [70, 73, 77], "tabular": [71, 85], "numer": 71, "categor": 71, "column": 71, "process": [71, 81, 83, 85], "select": [71, 85], "construct": 71, "k": [71, 75, 82], "nearest": 71, "neighbour": 71, "graph": 71, "text": [72, 86, 87], "format": [72, 74, 79, 80, 86], "defin": [72, 75, 83, 86], "fetch": [73, 75], "evalu": 73, "health": [73, 76], "8": [73, 76], "popular": 73, "faq": 74, "what": [74, 76, 82], "do": [74, 76], "i": [74, 76, 82], "infer": 74, "correct": 74, "exampl": [74, 75, 76, 81], "ha": 74, "flag": 74, "should": 74, "v": 74, "test": [74, 76, 81], "big": 74, "limit": 74, "memori": 74, "why": 74, "isn": 74, "t": 74, "cleanlearn": [74, 76], "work": [74, 76, 78, 87], "me": 74, "differ": [74, 80], "clean": [74, 76], "final": 74, "hyperparamet": 74, "tune": 74, "onli": 74, "one": [74, 76, 79, 84], "doe": [74, 78, 87], "take": 74, "so": 74, "long": 74, "ml": [74, 76], "run": 74, "identifi": [74, 80], "licens": 74, "open": 74, "sourc": 74, "under": 74, "an": 74, "answer": 74, "question": 74, "pytorch": [75, 81], "normal": 75, "fashion": 75, "mnist": 75, "prepar": 75, "fold": [75, 82], "cross": [75, 82], "embed": [75, 81], "7": [75, 76], "view": 75, "most": [75, 87], "like": 75, "sever": 75, "set": [75, 76], "dark": 75, "top": [75, 84], "low": 75, "The": 76, "centric": 76, "ai": 76, "machin": 76, "find_label_issu": 76, "line": 76, "code": 76, "visual": [76, 80, 81, 84], "twenti": 76, "lowest": 76, "qualiti": [76, 78, 79, 80, 84, 87], "see": 76, "now": 76, "let": 76, "": 76, "happen": 76, "we": 76, "merg": 76, "seafoam": 76, "green": 76, "yellow": 76, "too": 76, "you": 76, "re": 76, "6": 76, "One": 76, "score": [76, 78, 79, 80, 84, 87], "rule": 76, "overal": [76, 84], "accur": 76, "thi": 76, "directli": 76, "fulli": 76, "character": 76, "nois": 76, "matrix": [76, 79], "joint": 76, "prior": 76, "true": 76, "distribut": 76, "flip": 76, "rate": 76, "ani": 76, "again": 76, "support": 76, "lot": 76, "method": 76, "filter_bi": 76, "automat": 76, "everi": 76, "uniqu": 76, "num_label_issu": 76, "threshold": 76, "found": 76, "Not": 76, "sure": 76, "when": 76, "ensembl": 76, "multipl": [76, 78], "predictor": 76, "consensu": 78, "annot": 78, "initi": 78, "major": 78, "vote": 78, "better": 78, "statist": 78, "compar": 78, "inspect": 78, "potenti": [78, 83, 86], "retrain": 78, "further": 78, "multi": 79, "given": 79, "hot": 79, "binari": 79, "download": [80, 84, 87], "objectlab": 80, "timm": 81, "cifar10": 81, "some": 81, "pred_prob": [81, 84, 87], "wai": 83, "semant": 84, "which": 84, "ar": 84, "commonli": 84, "mislabel": [84, 87], "focus": 84, "scikit": 85, "token": 87, "word": 87, "sentenc": 87, "contain": 87, "particular": 87}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index 08cc95edd..da00afa59 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1482,7 +1482,7 @@

5. Use cleanlab to find label issues -{"state": {"a49ef86a9bd144d1931a7be38b2a5a01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "532b7f85502d4c0da068d1332d3a2cc4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "196ed22213e14808976f7feeb53257f5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a49ef86a9bd144d1931a7be38b2a5a01", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_532b7f85502d4c0da068d1332d3a2cc4", "value": 2041.0}}, "b91b7eef8707452cae9f843e371fbd45": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b60d5405d45f4315bfedc2d177513d5c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9188e16ab0bf405cbb6ede3d095090eb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b91b7eef8707452cae9f843e371fbd45", "placeholder": "\u200b", "style": "IPY_MODEL_b60d5405d45f4315bfedc2d177513d5c", "value": "Downloading: 100%"}}, "7eeb4ac6bc7b43b4a691b0a258b6720f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dc64655542ef4ff4b5814755edfa5186": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "eb1a3ccc7c2c49d3b68b283330d66b46": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7eeb4ac6bc7b43b4a691b0a258b6720f", "placeholder": "\u200b", "style": "IPY_MODEL_dc64655542ef4ff4b5814755edfa5186", "value": " 2.04k/2.04k [00:00<00:00, 289kB/s]"}}, "32a36dde49344419b3b4e7be815490a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a64838b316ea4a70b83bb295f397185b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9188e16ab0bf405cbb6ede3d095090eb", "IPY_MODEL_196ed22213e14808976f7feeb53257f5", "IPY_MODEL_eb1a3ccc7c2c49d3b68b283330d66b46"], "layout": "IPY_MODEL_32a36dde49344419b3b4e7be815490a7"}}, "daf6104a1b0f40f1830ccd4fe75146a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a277815b5a61495eb8875e6c873c754a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6eebba3899c94b48b388f3f97eeded45": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_daf6104a1b0f40f1830ccd4fe75146a0", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a277815b5a61495eb8875e6c873c754a", "value": 16887676.0}}, "6200da02a8124489b0647c2b4a6fa02c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "875e2edede054c63aa4eda4d28a1a33c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f76a89adcfdb446cacafc8a85b3b8354": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6200da02a8124489b0647c2b4a6fa02c", "placeholder": "\u200b", "style": "IPY_MODEL_875e2edede054c63aa4eda4d28a1a33c", "value": "Downloading: 100%"}}, "6e77ca0b847d45609149599588df7185": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c8efbc4cee74d4caf74c9aec9e7c587": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "72977f7022d14e1fa6ae4a72d4be8635": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6e77ca0b847d45609149599588df7185", "placeholder": "\u200b", "style": "IPY_MODEL_5c8efbc4cee74d4caf74c9aec9e7c587", "value": " 16.9M/16.9M [00:00<00:00, 82.3MB/s]"}}, "7eee3c0f99624be3b2164aa0604f2e90": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ea154f5b3034a20ae21570f16e504ed": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f76a89adcfdb446cacafc8a85b3b8354", "IPY_MODEL_6eebba3899c94b48b388f3f97eeded45", "IPY_MODEL_72977f7022d14e1fa6ae4a72d4be8635"], "layout": "IPY_MODEL_7eee3c0f99624be3b2164aa0604f2e90"}}, "6c4f6453da3a442bab0b936d9ad01b30": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "804691af901148b18412889fc499f8f2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "dd7a1cb002cd44b39c38b166f6dca0dd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6c4f6453da3a442bab0b936d9ad01b30", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_804691af901148b18412889fc499f8f2", "value": 3201.0}}, "5365b3d444254f48b34ef90ca7351131": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "045582fa2e264245bd93aa80fac29ca0": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6942981f478d492bb7f394fa5350239d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5365b3d444254f48b34ef90ca7351131", "placeholder": "\u200b", "style": "IPY_MODEL_045582fa2e264245bd93aa80fac29ca0", "value": "Downloading: 100%"}}, "e8b82083389d4573b556f3f2fbd025a2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "17121d0963f644f5aa4b8351a2e4124b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0d87830b3f4a4bc7943ba8a980564dc6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e8b82083389d4573b556f3f2fbd025a2", "placeholder": "\u200b", "style": "IPY_MODEL_17121d0963f644f5aa4b8351a2e4124b", "value": " 3.20k/3.20k [00:00<00:00, 496kB/s]"}}, "2d7e97a682ce45d3827c4c7a01bb4589": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "232f223de8db4ab8af2c1dde668f008b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6942981f478d492bb7f394fa5350239d", "IPY_MODEL_dd7a1cb002cd44b39c38b166f6dca0dd", "IPY_MODEL_0d87830b3f4a4bc7943ba8a980564dc6"], "layout": "IPY_MODEL_2d7e97a682ce45d3827c4c7a01bb4589"}}, "0b44b22fdf0445c685934e44fa0c8a56": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c4868c5d246b4a199b762954dfdf32b2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "36a59442845548cb916463d010d88d63": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0b44b22fdf0445c685934e44fa0c8a56", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c4868c5d246b4a199b762954dfdf32b2", "value": 15856877.0}}, "ddec1730a690405dae12bdf0c77d45ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "727d84872e8a4a95805cfee09c910d42": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "73566f0085464f61a1e128448a5078ab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ddec1730a690405dae12bdf0c77d45ad", "placeholder": "\u200b", "style": "IPY_MODEL_727d84872e8a4a95805cfee09c910d42", "value": "Downloading: 100%"}}, "7bc6f8d236fd4e19916889562345f410": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "449cef325f5a4b8b93eb6e6eb2e93b8c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "bd2d7aa9ddab4df7ba7d853c2a75a154": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7bc6f8d236fd4e19916889562345f410", "placeholder": "\u200b", "style": "IPY_MODEL_449cef325f5a4b8b93eb6e6eb2e93b8c", "value": " 15.9M/15.9M [00:00<00:00, 78.4MB/s]"}}, "12ddf61e03c04c448e56148a1316f04c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "89c987a11a494130948f5964710a5482": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_73566f0085464f61a1e128448a5078ab", "IPY_MODEL_36a59442845548cb916463d010d88d63", "IPY_MODEL_bd2d7aa9ddab4df7ba7d853c2a75a154"], "layout": "IPY_MODEL_12ddf61e03c04c448e56148a1316f04c"}}, "7c5d3b4f1dbc4a2f8ce6711ef7ffa2fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c1b109171ca44849cedcc2720a51a67": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a5ff0ebb96f64be985c3305480d0fc80": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7c5d3b4f1dbc4a2f8ce6711ef7ffa2fc", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3c1b109171ca44849cedcc2720a51a67", "value": 128619.0}}, "4089a9f371624f199b0a0bdaae8aadbe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3529fa120c664508a1f7e3018c9f9c55": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "73fcbd9c96a848d6abf9004c39cda302": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4089a9f371624f199b0a0bdaae8aadbe", "placeholder": "\u200b", "style": "IPY_MODEL_3529fa120c664508a1f7e3018c9f9c55", "value": "Downloading: 100%"}}, "51bb9bcc7e9c4f7599feb35ca4d7e015": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "368df7a165d54c678a9621f778a25c9f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "89f6c21afbac4a308560ab9e3e5aeadd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_51bb9bcc7e9c4f7599feb35ca4d7e015", "placeholder": "\u200b", "style": "IPY_MODEL_368df7a165d54c678a9621f778a25c9f", "value": " 129k/129k [00:00<00:00, 765kB/s]"}}, "9ac745d4a4cb40f6ab87734056a4c792": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7371bbe858054f02a79b3b16a5a3b7ac": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_73fcbd9c96a848d6abf9004c39cda302", "IPY_MODEL_a5ff0ebb96f64be985c3305480d0fc80", "IPY_MODEL_89f6c21afbac4a308560ab9e3e5aeadd"], "layout": "IPY_MODEL_9ac745d4a4cb40f6ab87734056a4c792"}}}, "version_major": 2, "version_minor": 0} +{"state": {"5e67d58415924ca8a4f172a5e9690974": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8f7753bfe0014edf97884369b8d33c4d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "28f305305cb540b08b7d6e233970c5c5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5e67d58415924ca8a4f172a5e9690974", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8f7753bfe0014edf97884369b8d33c4d", "value": 2041.0}}, "4563b44482964c1696c3758eed7cb38c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7335e068e3d54ef78c5ae567c8c4cce9": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c97d8abbf91c433893db082142f3ca58": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4563b44482964c1696c3758eed7cb38c", "placeholder": "\u200b", "style": "IPY_MODEL_7335e068e3d54ef78c5ae567c8c4cce9", "value": "Downloading: 100%"}}, "1dc5761b98cd48219a4194ddec6526b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed84a42d5de3498a930602c0f3d780e2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "1ef29a170b5549faac1f2694d2e06501": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1dc5761b98cd48219a4194ddec6526b7", "placeholder": "\u200b", "style": "IPY_MODEL_ed84a42d5de3498a930602c0f3d780e2", "value": " 2.04k/2.04k [00:00<00:00, 271kB/s]"}}, "c0fc2cf124ea4dcfabd0ab9605265f18": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6061cf918e854396a1b07695e6458b60": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c97d8abbf91c433893db082142f3ca58", "IPY_MODEL_28f305305cb540b08b7d6e233970c5c5", "IPY_MODEL_1ef29a170b5549faac1f2694d2e06501"], "layout": "IPY_MODEL_c0fc2cf124ea4dcfabd0ab9605265f18"}}, "afce138a808a4b69a2c63930614137ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc43857e69f343ef92fada928e9740cf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b54e5de4478d46abbb2b8a5950446a69": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_afce138a808a4b69a2c63930614137ea", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cc43857e69f343ef92fada928e9740cf", "value": 16887676.0}}, "ebca93b25576446e8c42289cde7515ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d283da15cce476793e2247f5c59dad9": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b984345129a244b7848070d451e81d39": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ebca93b25576446e8c42289cde7515ad", "placeholder": "\u200b", "style": "IPY_MODEL_2d283da15cce476793e2247f5c59dad9", "value": "Downloading: 100%"}}, "21b452f4fe8c483e82b50d37a5e21af1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ff95803607e435996c9bf92ef513800": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "af6edd0025f549ebb38044f4ba74180a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_21b452f4fe8c483e82b50d37a5e21af1", "placeholder": "\u200b", "style": "IPY_MODEL_7ff95803607e435996c9bf92ef513800", "value": " 16.9M/16.9M [00:00<00:00, 79.5MB/s]"}}, "e1506dc085d042229dabf40909be1eee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3a16922938de4df9a1be051af9791adf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b984345129a244b7848070d451e81d39", "IPY_MODEL_b54e5de4478d46abbb2b8a5950446a69", "IPY_MODEL_af6edd0025f549ebb38044f4ba74180a"], "layout": "IPY_MODEL_e1506dc085d042229dabf40909be1eee"}}, "ce1cb404c1f345a8b16485c9db8491cc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c9d248e8840c4e1eb86117026ba1311d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a39dae1d75dd4e098c69341b83e03b65": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ce1cb404c1f345a8b16485c9db8491cc", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c9d248e8840c4e1eb86117026ba1311d", "value": 3201.0}}, "4099c2c987a3484e9ee8f30579d43812": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb44cdabd036409dab2fddeb00554554": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "018c12f4bb2748fa8b6146ce71beb80c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4099c2c987a3484e9ee8f30579d43812", "placeholder": "\u200b", "style": "IPY_MODEL_fb44cdabd036409dab2fddeb00554554", "value": "Downloading: 100%"}}, "8fb6eef8146a4b7bbfe1f98030548a43": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1afcef1e03674ecda259c2ff9a7ae6d9": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b47c682bb75b430381107f64713b435d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8fb6eef8146a4b7bbfe1f98030548a43", "placeholder": "\u200b", "style": "IPY_MODEL_1afcef1e03674ecda259c2ff9a7ae6d9", "value": " 3.20k/3.20k [00:00<00:00, 439kB/s]"}}, "17493e62ee004d7da87038724b06abfd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1a2289b90992489f97dfc0b852bb95e4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_018c12f4bb2748fa8b6146ce71beb80c", "IPY_MODEL_a39dae1d75dd4e098c69341b83e03b65", "IPY_MODEL_b47c682bb75b430381107f64713b435d"], "layout": "IPY_MODEL_17493e62ee004d7da87038724b06abfd"}}, "c2aa343c35ab4e5b955e9109ef5122fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3aaef80f95984be7a6521be8c34688bd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3eb111e036ef43fe81f5260f065d1c18": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c2aa343c35ab4e5b955e9109ef5122fb", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3aaef80f95984be7a6521be8c34688bd", "value": 15856877.0}}, "e414fe50fbd6406387b83f73ad49a1af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b98afcef659408390c3f0c3187a1931": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "47b831f72d9847d382c6f3baa7f2e135": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e414fe50fbd6406387b83f73ad49a1af", "placeholder": "\u200b", "style": "IPY_MODEL_0b98afcef659408390c3f0c3187a1931", "value": "Downloading: 100%"}}, "e6ce7990787b4ebea9aecd301d4e835d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6119f5efd9294ddfa7e06cb0952d9265": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8fb7f1e5381c4360a5b82e5578cdad06": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e6ce7990787b4ebea9aecd301d4e835d", "placeholder": "\u200b", "style": "IPY_MODEL_6119f5efd9294ddfa7e06cb0952d9265", "value": " 15.9M/15.9M [00:00<00:00, 75.2MB/s]"}}, "50f624c2421b472c8c1f1b53afeb0bed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f1533a7aaaa4915b0a58bea504ac277": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_47b831f72d9847d382c6f3baa7f2e135", "IPY_MODEL_3eb111e036ef43fe81f5260f065d1c18", "IPY_MODEL_8fb7f1e5381c4360a5b82e5578cdad06"], "layout": "IPY_MODEL_50f624c2421b472c8c1f1b53afeb0bed"}}, "d663ffe70d2f4b22a7732e7be6be3553": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9246cff512af4988bf1a62faaf51cd22": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "63e0ad84258848959cc53f7a1e5ab1ce": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d663ffe70d2f4b22a7732e7be6be3553", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9246cff512af4988bf1a62faaf51cd22", "value": 128619.0}}, "5e4aae5a6995480f8721afb1fc564aec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47901410190c496db5a7001965edc597": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "903d4ca0e7ed4cf1847160a3472496e1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5e4aae5a6995480f8721afb1fc564aec", "placeholder": "\u200b", "style": "IPY_MODEL_47901410190c496db5a7001965edc597", "value": "Downloading: 100%"}}, "27f3f12f83454a9bb0a5fee0e47c426b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a2033e7163e42edacf468deaf77898e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b483c477b28f4ebca4c63cf6e4b9fb7a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_27f3f12f83454a9bb0a5fee0e47c426b", "placeholder": "\u200b", "style": "IPY_MODEL_4a2033e7163e42edacf468deaf77898e", "value": " 129k/129k [00:00<00:00, 11.9MB/s]"}}, "75378deda3df4ffc9b70f1a36ea91f17": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a03f59311ab478a86fe2fe3e9f304c9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_903d4ca0e7ed4cf1847160a3472496e1", "IPY_MODEL_63e0ad84258848959cc53f7a1e5ab1ce", "IPY_MODEL_b483c477b28f4ebca4c63cf6e4b9fb7a"], "layout": "IPY_MODEL_75378deda3df4ffc9b70f1a36ea91f17"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index 7fea2ce14..b57479d2e 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:33:57.811082Z", - "iopub.status.busy": "2023-10-06T06:33:57.810702Z", - "iopub.status.idle": "2023-10-06T06:34:01.791219Z", - "shell.execute_reply": "2023-10-06T06:34:01.790365Z" + "iopub.execute_input": "2023-10-11T10:06:13.530712Z", + "iopub.status.busy": "2023-10-11T10:06:13.530270Z", + "iopub.status.idle": "2023-10-11T10:06:17.624587Z", + "shell.execute_reply": "2023-10-11T10:06:17.623834Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:01.795548Z", - "iopub.status.busy": "2023-10-06T06:34:01.794851Z", - "iopub.status.idle": "2023-10-06T06:34:01.801189Z", - "shell.execute_reply": "2023-10-06T06:34:01.800577Z" + "iopub.execute_input": "2023-10-11T10:06:17.629374Z", + "iopub.status.busy": "2023-10-11T10:06:17.628483Z", + "iopub.status.idle": "2023-10-11T10:06:17.632507Z", + "shell.execute_reply": "2023-10-11T10:06:17.631963Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:01.804254Z", - "iopub.status.busy": "2023-10-06T06:34:01.803638Z", - "iopub.status.idle": "2023-10-06T06:34:01.810426Z", - "shell.execute_reply": "2023-10-06T06:34:01.809770Z" + "iopub.execute_input": "2023-10-11T10:06:17.635666Z", + "iopub.status.busy": "2023-10-11T10:06:17.635226Z", + "iopub.status.idle": "2023-10-11T10:06:17.640894Z", + "shell.execute_reply": "2023-10-11T10:06:17.640234Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-06T06:34:01.813409Z", - "iopub.status.busy": "2023-10-06T06:34:01.812975Z", - "iopub.status.idle": "2023-10-06T06:34:04.038287Z", - "shell.execute_reply": "2023-10-06T06:34:04.037226Z" + "iopub.execute_input": "2023-10-11T10:06:17.644263Z", + "iopub.status.busy": "2023-10-11T10:06:17.643621Z", + "iopub.status.idle": "2023-10-11T10:06:19.409539Z", + "shell.execute_reply": "2023-10-11T10:06:19.408284Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-06T06:34:04.042343Z", - "iopub.status.busy": "2023-10-06T06:34:04.041872Z", - "iopub.status.idle": "2023-10-06T06:34:04.061190Z", - "shell.execute_reply": "2023-10-06T06:34:04.060590Z" + "iopub.execute_input": "2023-10-11T10:06:19.414213Z", + "iopub.status.busy": "2023-10-11T10:06:19.413666Z", + "iopub.status.idle": "2023-10-11T10:06:19.433427Z", + "shell.execute_reply": "2023-10-11T10:06:19.432769Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:04.095741Z", - "iopub.status.busy": "2023-10-06T06:34:04.095178Z", - "iopub.status.idle": "2023-10-06T06:34:04.102186Z", - "shell.execute_reply": "2023-10-06T06:34:04.101476Z" + "iopub.execute_input": "2023-10-11T10:06:19.472896Z", + "iopub.status.busy": "2023-10-11T10:06:19.472266Z", + "iopub.status.idle": "2023-10-11T10:06:19.479743Z", + "shell.execute_reply": "2023-10-11T10:06:19.479048Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-06T06:34:04.105477Z", - "iopub.status.busy": "2023-10-06T06:34:04.104872Z", - "iopub.status.idle": "2023-10-06T06:34:04.965548Z", - "shell.execute_reply": "2023-10-06T06:34:04.964900Z" + "iopub.execute_input": "2023-10-11T10:06:19.482840Z", + "iopub.status.busy": "2023-10-11T10:06:19.482392Z", + "iopub.status.idle": "2023-10-11T10:06:20.428208Z", + "shell.execute_reply": "2023-10-11T10:06:20.427353Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:04.968436Z", - "iopub.status.busy": "2023-10-06T06:34:04.967960Z", - "iopub.status.idle": "2023-10-06T06:34:06.918212Z", - "shell.execute_reply": "2023-10-06T06:34:06.917506Z" + "iopub.execute_input": "2023-10-11T10:06:20.431985Z", + "iopub.status.busy": "2023-10-11T10:06:20.431338Z", + "iopub.status.idle": "2023-10-11T10:06:22.361117Z", + "shell.execute_reply": "2023-10-11T10:06:22.360333Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2023-10-06T06:34:06.921684Z", - "iopub.status.busy": "2023-10-06T06:34:06.921193Z", - "iopub.status.idle": "2023-10-06T06:34:06.958139Z", - "shell.execute_reply": "2023-10-06T06:34:06.957485Z" + "iopub.execute_input": "2023-10-11T10:06:22.365050Z", + "iopub.status.busy": "2023-10-11T10:06:22.364632Z", + "iopub.status.idle": "2023-10-11T10:06:22.401154Z", + "shell.execute_reply": "2023-10-11T10:06:22.400355Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:06.964241Z", - "iopub.status.busy": "2023-10-06T06:34:06.963715Z", - "iopub.status.idle": "2023-10-06T06:34:06.967580Z", - "shell.execute_reply": "2023-10-06T06:34:06.966909Z" + "iopub.execute_input": "2023-10-11T10:06:22.404975Z", + "iopub.status.busy": "2023-10-11T10:06:22.404572Z", + "iopub.status.idle": "2023-10-11T10:06:22.408515Z", + "shell.execute_reply": "2023-10-11T10:06:22.407975Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:06.970603Z", - "iopub.status.busy": "2023-10-06T06:34:06.970082Z", - "iopub.status.idle": "2023-10-06T06:34:21.231021Z", - "shell.execute_reply": "2023-10-06T06:34:21.230263Z" + "iopub.execute_input": "2023-10-11T10:06:22.411570Z", + "iopub.status.busy": "2023-10-11T10:06:22.411136Z", + "iopub.status.idle": "2023-10-11T10:06:35.954615Z", + "shell.execute_reply": "2023-10-11T10:06:35.953925Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-06T06:34:21.234804Z", - "iopub.status.busy": "2023-10-06T06:34:21.234164Z", - "iopub.status.idle": "2023-10-06T06:34:21.241258Z", - "shell.execute_reply": "2023-10-06T06:34:21.240546Z" + "iopub.execute_input": "2023-10-11T10:06:35.958400Z", + "iopub.status.busy": "2023-10-11T10:06:35.957919Z", + "iopub.status.idle": "2023-10-11T10:06:35.962537Z", + "shell.execute_reply": "2023-10-11T10:06:35.961976Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:21.244392Z", - "iopub.status.busy": "2023-10-06T06:34:21.244113Z", - "iopub.status.idle": "2023-10-06T06:34:28.601864Z", - "shell.execute_reply": "2023-10-06T06:34:28.601230Z" + "iopub.execute_input": "2023-10-11T10:06:35.965630Z", + "iopub.status.busy": "2023-10-11T10:06:35.965182Z", + "iopub.status.idle": "2023-10-11T10:06:42.068518Z", + "shell.execute_reply": "2023-10-11T10:06:42.067831Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-06T06:34:28.605821Z", - "iopub.status.busy": "2023-10-06T06:34:28.605165Z", - "iopub.status.idle": "2023-10-06T06:34:28.611669Z", - "shell.execute_reply": "2023-10-06T06:34:28.611074Z" + "iopub.execute_input": "2023-10-11T10:06:42.072974Z", + "iopub.status.busy": "2023-10-11T10:06:42.071653Z", + "iopub.status.idle": "2023-10-11T10:06:42.079428Z", + "shell.execute_reply": "2023-10-11T10:06:42.078858Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:28.614836Z", - "iopub.status.busy": "2023-10-06T06:34:28.614212Z", - "iopub.status.idle": "2023-10-06T06:34:28.711942Z", - "shell.execute_reply": "2023-10-06T06:34:28.711055Z" + "iopub.execute_input": "2023-10-11T10:06:42.083907Z", + "iopub.status.busy": "2023-10-11T10:06:42.082745Z", + "iopub.status.idle": "2023-10-11T10:06:42.182816Z", + "shell.execute_reply": "2023-10-11T10:06:42.182051Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:28.716027Z", - "iopub.status.busy": "2023-10-06T06:34:28.715457Z", - "iopub.status.idle": "2023-10-06T06:34:28.730018Z", - "shell.execute_reply": "2023-10-06T06:34:28.729236Z" + "iopub.execute_input": "2023-10-11T10:06:42.186838Z", + "iopub.status.busy": "2023-10-11T10:06:42.186411Z", + "iopub.status.idle": "2023-10-11T10:06:42.199311Z", + "shell.execute_reply": "2023-10-11T10:06:42.198511Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:28.733487Z", - "iopub.status.busy": "2023-10-06T06:34:28.732791Z", - "iopub.status.idle": "2023-10-06T06:34:28.744918Z", - "shell.execute_reply": "2023-10-06T06:34:28.744217Z" + "iopub.execute_input": "2023-10-11T10:06:42.202668Z", + "iopub.status.busy": "2023-10-11T10:06:42.202106Z", + "iopub.status.idle": "2023-10-11T10:06:42.213276Z", + "shell.execute_reply": "2023-10-11T10:06:42.212591Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:28.748470Z", - "iopub.status.busy": "2023-10-06T06:34:28.748053Z", - "iopub.status.idle": "2023-10-06T06:34:28.755566Z", - "shell.execute_reply": "2023-10-06T06:34:28.754885Z" + "iopub.execute_input": "2023-10-11T10:06:42.216159Z", + "iopub.status.busy": "2023-10-11T10:06:42.215771Z", + "iopub.status.idle": "2023-10-11T10:06:42.221165Z", + "shell.execute_reply": "2023-10-11T10:06:42.220471Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2023-10-06T06:34:28.758919Z", - "iopub.status.busy": "2023-10-06T06:34:28.758520Z", - "iopub.status.idle": "2023-10-06T06:34:28.768688Z", - "shell.execute_reply": "2023-10-06T06:34:28.767981Z" + "iopub.execute_input": "2023-10-11T10:06:42.224258Z", + "iopub.status.busy": "2023-10-11T10:06:42.223670Z", + "iopub.status.idle": "2023-10-11T10:06:42.233376Z", + "shell.execute_reply": "2023-10-11T10:06:42.232275Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-06T06:34:28.772280Z", - "iopub.status.busy": "2023-10-06T06:34:28.771857Z", - "iopub.status.idle": "2023-10-06T06:34:28.927290Z", - "shell.execute_reply": "2023-10-06T06:34:28.926569Z" + "iopub.execute_input": "2023-10-11T10:06:42.236775Z", + "iopub.status.busy": "2023-10-11T10:06:42.236260Z", + "iopub.status.idle": "2023-10-11T10:06:42.393008Z", + "shell.execute_reply": "2023-10-11T10:06:42.392180Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-06T06:34:28.931104Z", - "iopub.status.busy": "2023-10-06T06:34:28.930500Z", - "iopub.status.idle": "2023-10-06T06:34:29.075447Z", - "shell.execute_reply": "2023-10-06T06:34:29.074733Z" + "iopub.execute_input": "2023-10-11T10:06:42.396683Z", + "iopub.status.busy": "2023-10-11T10:06:42.396229Z", + "iopub.status.idle": "2023-10-11T10:06:42.542955Z", + "shell.execute_reply": "2023-10-11T10:06:42.542241Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-06T06:34:29.079070Z", - "iopub.status.busy": "2023-10-06T06:34:29.078639Z", - "iopub.status.idle": "2023-10-06T06:34:29.225055Z", - "shell.execute_reply": "2023-10-06T06:34:29.224289Z" + "iopub.execute_input": "2023-10-11T10:06:42.546200Z", + "iopub.status.busy": "2023-10-11T10:06:42.545707Z", + "iopub.status.idle": "2023-10-11T10:06:42.693407Z", + "shell.execute_reply": "2023-10-11T10:06:42.692633Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:29.228789Z", - "iopub.status.busy": "2023-10-06T06:34:29.228165Z", - "iopub.status.idle": "2023-10-06T06:34:29.373658Z", - "shell.execute_reply": "2023-10-06T06:34:29.373005Z" + "iopub.execute_input": "2023-10-11T10:06:42.696904Z", + "iopub.status.busy": "2023-10-11T10:06:42.696301Z", + "iopub.status.idle": "2023-10-11T10:06:42.841328Z", + "shell.execute_reply": "2023-10-11T10:06:42.840647Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:29.380244Z", - "iopub.status.busy": "2023-10-06T06:34:29.378604Z", - "iopub.status.idle": "2023-10-06T06:34:29.385840Z", - "shell.execute_reply": "2023-10-06T06:34:29.384869Z" + "iopub.execute_input": "2023-10-11T10:06:42.844799Z", + "iopub.status.busy": "2023-10-11T10:06:42.844446Z", + "iopub.status.idle": "2023-10-11T10:06:42.850945Z", + "shell.execute_reply": "2023-10-11T10:06:42.849568Z" }, "nbsphinx": "hidden" }, @@ -1377,7 +1377,28 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "045582fa2e264245bd93aa80fac29ca0": { + "018c12f4bb2748fa8b6146ce71beb80c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4099c2c987a3484e9ee8f30579d43812", + "placeholder": "​", + "style": "IPY_MODEL_fb44cdabd036409dab2fddeb00554554", + "value": "Downloading: 100%" + } + }, + "0b98afcef659408390c3f0c3187a1931": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1392,7 +1413,7 @@ "description_width": "" } }, - "0b44b22fdf0445c685934e44fa0c8a56": { + "17493e62ee004d7da87038724b06abfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1444,28 +1465,44 @@ "width": null } }, - "0d87830b3f4a4bc7943ba8a980564dc6": { + "1a2289b90992489f97dfc0b852bb95e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e8b82083389d4573b556f3f2fbd025a2", - "placeholder": "​", - "style": "IPY_MODEL_17121d0963f644f5aa4b8351a2e4124b", - "value": " 3.20k/3.20k [00:00<00:00, 496kB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_018c12f4bb2748fa8b6146ce71beb80c", + "IPY_MODEL_a39dae1d75dd4e098c69341b83e03b65", + "IPY_MODEL_b47c682bb75b430381107f64713b435d" + ], + "layout": "IPY_MODEL_17493e62ee004d7da87038724b06abfd" + } + }, + "1afcef1e03674ecda259c2ff9a7ae6d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "12ddf61e03c04c448e56148a1316f04c": { + "1dc5761b98cd48219a4194ddec6526b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1517,68 +1554,28 @@ "width": null } }, - "17121d0963f644f5aa4b8351a2e4124b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "196ed22213e14808976f7feeb53257f5": { + "1ef29a170b5549faac1f2694d2e06501": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a49ef86a9bd144d1931a7be38b2a5a01", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_532b7f85502d4c0da068d1332d3a2cc4", - "value": 2041.0 - } - }, - "232f223de8db4ab8af2c1dde668f008b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6942981f478d492bb7f394fa5350239d", - "IPY_MODEL_dd7a1cb002cd44b39c38b166f6dca0dd", - "IPY_MODEL_0d87830b3f4a4bc7943ba8a980564dc6" - ], - "layout": "IPY_MODEL_2d7e97a682ce45d3827c4c7a01bb4589" + "layout": "IPY_MODEL_1dc5761b98cd48219a4194ddec6526b7", + "placeholder": "​", + "style": "IPY_MODEL_ed84a42d5de3498a930602c0f3d780e2", + "value": " 2.04k/2.04k [00:00<00:00, 271kB/s]" } }, - "2d7e97a682ce45d3827c4c7a01bb4589": { + "21b452f4fe8c483e82b50d37a5e21af1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1630,7 +1627,7 @@ "width": null } }, - "32a36dde49344419b3b4e7be815490a7": { + "27f3f12f83454a9bb0a5fee0e47c426b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1682,7 +1679,31 @@ "width": null } }, - "3529fa120c664508a1f7e3018c9f9c55": { + "28f305305cb540b08b7d6e233970c5c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e67d58415924ca8a4f172a5e9690974", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8f7753bfe0014edf97884369b8d33c4d", + "value": 2041.0 + } + }, + "2d283da15cce476793e2247f5c59dad9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1697,22 +1718,45 @@ "description_width": "" } }, - "368df7a165d54c678a9621f778a25c9f": { + "3a16922938de4df9a1be051af9791adf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b984345129a244b7848070d451e81d39", + "IPY_MODEL_b54e5de4478d46abbb2b8a5950446a69", + "IPY_MODEL_af6edd0025f549ebb38044f4ba74180a" + ], + "layout": "IPY_MODEL_e1506dc085d042229dabf40909be1eee" + } + }, + "3aaef80f95984be7a6521be8c34688bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "36a59442845548cb916463d010d88d63": { + "3eb111e036ef43fe81f5260f065d1c18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1728,31 +1772,37 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0b44b22fdf0445c685934e44fa0c8a56", + "layout": "IPY_MODEL_c2aa343c35ab4e5b955e9109ef5122fb", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c4868c5d246b4a199b762954dfdf32b2", + "style": "IPY_MODEL_3aaef80f95984be7a6521be8c34688bd", "value": 15856877.0 } }, - "3c1b109171ca44849cedcc2720a51a67": { + "3f1533a7aaaa4915b0a58bea504ac277": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_47b831f72d9847d382c6f3baa7f2e135", + "IPY_MODEL_3eb111e036ef43fe81f5260f065d1c18", + "IPY_MODEL_8fb7f1e5381c4360a5b82e5578cdad06" + ], + "layout": "IPY_MODEL_50f624c2421b472c8c1f1b53afeb0bed" } }, - "4089a9f371624f199b0a0bdaae8aadbe": { + "4099c2c987a3484e9ee8f30579d43812": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1804,22 +1854,7 @@ "width": null } }, - "449cef325f5a4b8b93eb6e6eb2e93b8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "51bb9bcc7e9c4f7599feb35ca4d7e015": { + "4563b44482964c1696c3758eed7cb38c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1871,23 +1906,80 @@ "width": null } }, - "532b7f85502d4c0da068d1332d3a2cc4": { + "47901410190c496db5a7001965edc597": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "47b831f72d9847d382c6f3baa7f2e135": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e414fe50fbd6406387b83f73ad49a1af", + "placeholder": "​", + "style": "IPY_MODEL_0b98afcef659408390c3f0c3187a1931", + "value": "Downloading: 100%" + } + }, + "4a03f59311ab478a86fe2fe3e9f304c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_903d4ca0e7ed4cf1847160a3472496e1", + "IPY_MODEL_63e0ad84258848959cc53f7a1e5ab1ce", + "IPY_MODEL_b483c477b28f4ebca4c63cf6e4b9fb7a" + ], + "layout": "IPY_MODEL_75378deda3df4ffc9b70f1a36ea91f17" + } + }, + "4a2033e7163e42edacf468deaf77898e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "5365b3d444254f48b34ef90ca7351131": { + "50f624c2421b472c8c1f1b53afeb0bed": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1939,22 +2031,7 @@ "width": null } }, - "5c8efbc4cee74d4caf74c9aec9e7c587": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6200da02a8124489b0647c2b4a6fa02c": { + "5e4aae5a6995480f8721afb1fc564aec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2006,28 +2083,7 @@ "width": null } }, - "6942981f478d492bb7f394fa5350239d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5365b3d444254f48b34ef90ca7351131", - "placeholder": "​", - "style": "IPY_MODEL_045582fa2e264245bd93aa80fac29ca0", - "value": "Downloading: 100%" - } - }, - "6c4f6453da3a442bab0b936d9ad01b30": { + "5e67d58415924ca8a4f172a5e9690974": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2079,15 +2135,91 @@ "width": null } }, - "6e77ca0b847d45609149599588df7185": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "6061cf918e854396a1b07695e6458b60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c97d8abbf91c433893db082142f3ca58", + "IPY_MODEL_28f305305cb540b08b7d6e233970c5c5", + "IPY_MODEL_1ef29a170b5549faac1f2694d2e06501" + ], + "layout": "IPY_MODEL_c0fc2cf124ea4dcfabd0ab9605265f18" + } + }, + "6119f5efd9294ddfa7e06cb0952d9265": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "63e0ad84258848959cc53f7a1e5ab1ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d663ffe70d2f4b22a7732e7be6be3553", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9246cff512af4988bf1a62faaf51cd22", + "value": 128619.0 + } + }, + "7335e068e3d54ef78c5ae567c8c4cce9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "75378deda3df4ffc9b70f1a36ea91f17": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", @@ -2131,46 +2263,90 @@ "width": null } }, - "6eebba3899c94b48b388f3f97eeded45": { + "7ff95803607e435996c9bf92ef513800": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_daf6104a1b0f40f1830ccd4fe75146a0", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a277815b5a61495eb8875e6c873c754a", - "value": 16887676.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "727d84872e8a4a95805cfee09c910d42": { + "8f7753bfe0014edf97884369b8d33c4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "72977f7022d14e1fa6ae4a72d4be8635": { + "8fb6eef8146a4b7bbfe1f98030548a43": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8fb7f1e5381c4360a5b82e5578cdad06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2185,13 +2361,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6e77ca0b847d45609149599588df7185", + "layout": "IPY_MODEL_e6ce7990787b4ebea9aecd301d4e835d", "placeholder": "​", - "style": "IPY_MODEL_5c8efbc4cee74d4caf74c9aec9e7c587", - "value": " 16.9M/16.9M [00:00<00:00, 82.3MB/s]" + "style": "IPY_MODEL_6119f5efd9294ddfa7e06cb0952d9265", + "value": " 15.9M/15.9M [00:00<00:00, 75.2MB/s]" } }, - "73566f0085464f61a1e128448a5078ab": { + "903d4ca0e7ed4cf1847160a3472496e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2206,35 +2382,53 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ddec1730a690405dae12bdf0c77d45ad", + "layout": "IPY_MODEL_5e4aae5a6995480f8721afb1fc564aec", "placeholder": "​", - "style": "IPY_MODEL_727d84872e8a4a95805cfee09c910d42", + "style": "IPY_MODEL_47901410190c496db5a7001965edc597", "value": "Downloading: 100%" } }, - "7371bbe858054f02a79b3b16a5a3b7ac": { + "9246cff512af4988bf1a62faaf51cd22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a39dae1d75dd4e098c69341b83e03b65": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_73fcbd9c96a848d6abf9004c39cda302", - "IPY_MODEL_a5ff0ebb96f64be985c3305480d0fc80", - "IPY_MODEL_89f6c21afbac4a308560ab9e3e5aeadd" - ], - "layout": "IPY_MODEL_9ac745d4a4cb40f6ab87734056a4c792" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ce1cb404c1f345a8b16485c9db8491cc", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c9d248e8840c4e1eb86117026ba1311d", + "value": 3201.0 } }, - "73fcbd9c96a848d6abf9004c39cda302": { + "af6edd0025f549ebb38044f4ba74180a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2249,13 +2443,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4089a9f371624f199b0a0bdaae8aadbe", + "layout": "IPY_MODEL_21b452f4fe8c483e82b50d37a5e21af1", "placeholder": "​", - "style": "IPY_MODEL_3529fa120c664508a1f7e3018c9f9c55", - "value": "Downloading: 100%" + "style": "IPY_MODEL_7ff95803607e435996c9bf92ef513800", + "value": " 16.9M/16.9M [00:00<00:00, 79.5MB/s]" } }, - "7bc6f8d236fd4e19916889562345f410": { + "afce138a808a4b69a2c63930614137ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2307,59 +2501,94 @@ "width": null } }, - "7c5d3b4f1dbc4a2f8ce6711ef7ffa2fc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "b47c682bb75b430381107f64713b435d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8fb6eef8146a4b7bbfe1f98030548a43", + "placeholder": "​", + "style": "IPY_MODEL_1afcef1e03674ecda259c2ff9a7ae6d9", + "value": " 3.20k/3.20k [00:00<00:00, 439kB/s]" + } + }, + "b483c477b28f4ebca4c63cf6e4b9fb7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27f3f12f83454a9bb0a5fee0e47c426b", + "placeholder": "​", + "style": "IPY_MODEL_4a2033e7163e42edacf468deaf77898e", + "value": " 129k/129k [00:00<00:00, 11.9MB/s]" + } + }, + "b54e5de4478d46abbb2b8a5950446a69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_afce138a808a4b69a2c63930614137ea", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc43857e69f343ef92fada928e9740cf", + "value": 16887676.0 + } + }, + "b984345129a244b7848070d451e81d39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ebca93b25576446e8c42289cde7515ad", + "placeholder": "​", + "style": "IPY_MODEL_2d283da15cce476793e2247f5c59dad9", + "value": "Downloading: 100%" } }, - "7eeb4ac6bc7b43b4a691b0a258b6720f": { + "c0fc2cf124ea4dcfabd0ab9605265f18": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2411,7 +2640,7 @@ "width": null } }, - "7eee3c0f99624be3b2164aa0604f2e90": { + "c2aa343c35ab4e5b955e9109ef5122fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2463,60 +2692,7 @@ "width": null } }, - "804691af901148b18412889fc499f8f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "875e2edede054c63aa4eda4d28a1a33c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "89c987a11a494130948f5964710a5482": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_73566f0085464f61a1e128448a5078ab", - "IPY_MODEL_36a59442845548cb916463d010d88d63", - "IPY_MODEL_bd2d7aa9ddab4df7ba7d853c2a75a154" - ], - "layout": "IPY_MODEL_12ddf61e03c04c448e56148a1316f04c" - } - }, - "89f6c21afbac4a308560ab9e3e5aeadd": { + "c97d8abbf91c433893db082142f3ca58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2531,56 +2707,45 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_51bb9bcc7e9c4f7599feb35ca4d7e015", + "layout": "IPY_MODEL_4563b44482964c1696c3758eed7cb38c", "placeholder": "​", - "style": "IPY_MODEL_368df7a165d54c678a9621f778a25c9f", - "value": " 129k/129k [00:00<00:00, 765kB/s]" + "style": "IPY_MODEL_7335e068e3d54ef78c5ae567c8c4cce9", + "value": "Downloading: 100%" } }, - "8ea154f5b3034a20ae21570f16e504ed": { + "c9d248e8840c4e1eb86117026ba1311d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f76a89adcfdb446cacafc8a85b3b8354", - "IPY_MODEL_6eebba3899c94b48b388f3f97eeded45", - "IPY_MODEL_72977f7022d14e1fa6ae4a72d4be8635" - ], - "layout": "IPY_MODEL_7eee3c0f99624be3b2164aa0604f2e90" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9188e16ab0bf405cbb6ede3d095090eb": { + "cc43857e69f343ef92fada928e9740cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b91b7eef8707452cae9f843e371fbd45", - "placeholder": "​", - "style": "IPY_MODEL_b60d5405d45f4315bfedc2d177513d5c", - "value": "Downloading: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9ac745d4a4cb40f6ab87734056a4c792": { + "ce1cb404c1f345a8b16485c9db8491cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2632,23 +2797,7 @@ "width": null } }, - "a277815b5a61495eb8875e6c873c754a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a49ef86a9bd144d1931a7be38b2a5a01": { + "d663ffe70d2f4b22a7732e7be6be3553": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2700,68 +2849,7 @@ "width": null } }, - "a5ff0ebb96f64be985c3305480d0fc80": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7c5d3b4f1dbc4a2f8ce6711ef7ffa2fc", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3c1b109171ca44849cedcc2720a51a67", - "value": 128619.0 - } - }, - "a64838b316ea4a70b83bb295f397185b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9188e16ab0bf405cbb6ede3d095090eb", - "IPY_MODEL_196ed22213e14808976f7feeb53257f5", - "IPY_MODEL_eb1a3ccc7c2c49d3b68b283330d66b46" - ], - "layout": "IPY_MODEL_32a36dde49344419b3b4e7be815490a7" - } - }, - "b60d5405d45f4315bfedc2d177513d5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b91b7eef8707452cae9f843e371fbd45": { + "e1506dc085d042229dabf40909be1eee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2813,44 +2901,7 @@ "width": null } }, - "bd2d7aa9ddab4df7ba7d853c2a75a154": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7bc6f8d236fd4e19916889562345f410", - "placeholder": "​", - "style": "IPY_MODEL_449cef325f5a4b8b93eb6e6eb2e93b8c", - "value": " 15.9M/15.9M [00:00<00:00, 78.4MB/s]" - } - }, - "c4868c5d246b4a199b762954dfdf32b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "daf6104a1b0f40f1830ccd4fe75146a0": { + "e414fe50fbd6406387b83f73ad49a1af": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2902,46 +2953,7 @@ "width": null } }, - "dc64655542ef4ff4b5814755edfa5186": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dd7a1cb002cd44b39c38b166f6dca0dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6c4f6453da3a442bab0b936d9ad01b30", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_804691af901148b18412889fc499f8f2", - "value": 3201.0 - } - }, - "ddec1730a690405dae12bdf0c77d45ad": { + "e6ce7990787b4ebea9aecd301d4e835d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2993,7 +3005,7 @@ "width": null } }, - "e8b82083389d4573b556f3f2fbd025a2": { + "ebca93b25576446e8c42289cde7515ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3045,46 +3057,34 @@ "width": null } }, - "eb1a3ccc7c2c49d3b68b283330d66b46": { + "ed84a42d5de3498a930602c0f3d780e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7eeb4ac6bc7b43b4a691b0a258b6720f", - "placeholder": "​", - "style": "IPY_MODEL_dc64655542ef4ff4b5814755edfa5186", - "value": " 2.04k/2.04k [00:00<00:00, 289kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "f76a89adcfdb446cacafc8a85b3b8354": { + "fb44cdabd036409dab2fddeb00554554": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6200da02a8124489b0647c2b4a6fa02c", - "placeholder": "​", - "style": "IPY_MODEL_875e2edede054c63aa4eda4d28a1a33c", - "value": "Downloading: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index ebc3caca9..cc3192559 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1431,7 +1431,7 @@

Functionality 3: Save and load Datalab objects
-
+
@@ -1696,7 +1696,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"5c021ebf34de4581981fecf21195993e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3987137de4504b5abe1733797f16b424": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0db1020fb61f4591a35b0b4ed9f8b92d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5c021ebf34de4581981fecf21195993e", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3987137de4504b5abe1733797f16b424", "value": 132.0}}, "74aeae835eb8460582d6603a33f0ac88": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "77bd3f4f099c4c599987c0173f0d4c89": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e4e09c0c6fb3437b94ed88932e6de16c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_74aeae835eb8460582d6603a33f0ac88", "placeholder": "\u200b", "style": "IPY_MODEL_77bd3f4f099c4c599987c0173f0d4c89", "value": "Saving the dataset (1/1 shards): 100%"}}, "58f15bc382044332bc048fab5370e1bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a52fa425a414cc7a12b67af84ed77f6": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ee621ec79e424de5af003af733820b8f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_58f15bc382044332bc048fab5370e1bd", "placeholder": "\u200b", "style": "IPY_MODEL_0a52fa425a414cc7a12b67af84ed77f6", "value": " 132/132 [00:00<00:00, 8406.70 examples/s]"}}, "b83be3b245cb4069b4d72d50e73e18a4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "6713c53175244c529ffae4fda3ab5714": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e4e09c0c6fb3437b94ed88932e6de16c", "IPY_MODEL_0db1020fb61f4591a35b0b4ed9f8b92d", "IPY_MODEL_ee621ec79e424de5af003af733820b8f"], "layout": "IPY_MODEL_b83be3b245cb4069b4d72d50e73e18a4"}}}, "version_major": 2, "version_minor": 0} +{"state": {"9027272d8c804b79be47cdd3881f0b1b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f4102172a11745b28bd7187d5ed85cc8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8c86f4ddf7a14abea61133f0bf1d790a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9027272d8c804b79be47cdd3881f0b1b", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f4102172a11745b28bd7187d5ed85cc8", "value": 132.0}}, "1b6beabc1b5c4d3a8fad1f9081b50341": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ebf2259c70a54e689384bd5d242b9d28": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "969a3d67c56f46baa147ce1d9dd21e0f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1b6beabc1b5c4d3a8fad1f9081b50341", "placeholder": "\u200b", "style": "IPY_MODEL_ebf2259c70a54e689384bd5d242b9d28", "value": "Saving the dataset (1/1 shards): 100%"}}, "8c70d44a1e4142b1a00913bb4666681d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d2bd8e0fc99640f9b387ee5193893c74": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "64f62e1fa7f640b79efce9f8e3b56a45": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8c70d44a1e4142b1a00913bb4666681d", "placeholder": "\u200b", "style": "IPY_MODEL_d2bd8e0fc99640f9b387ee5193893c74", "value": " 132/132 [00:00<00:00, 7337.46 examples/s]"}}, "4f35b8f73d034069a603c23a0563307a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "000a72a34108458187c056846d927f18": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_969a3d67c56f46baa147ce1d9dd21e0f", "IPY_MODEL_8c86f4ddf7a14abea61133f0bf1d790a", "IPY_MODEL_64f62e1fa7f640b79efce9f8e3b56a45"], "layout": "IPY_MODEL_4f35b8f73d034069a603c23a0563307a"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index ad88e6923..f349085c3 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:35.311395Z", - "iopub.status.busy": "2023-10-06T06:34:35.310889Z", - "iopub.status.idle": "2023-10-06T06:34:36.592498Z", - "shell.execute_reply": "2023-10-06T06:34:36.591730Z" + "iopub.execute_input": "2023-10-11T10:06:47.925963Z", + "iopub.status.busy": "2023-10-11T10:06:47.925706Z", + "iopub.status.idle": "2023-10-11T10:06:49.196469Z", + "shell.execute_reply": "2023-10-11T10:06:49.195684Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:36.596102Z", - "iopub.status.busy": "2023-10-06T06:34:36.595513Z", - "iopub.status.idle": "2023-10-06T06:34:36.600429Z", - "shell.execute_reply": "2023-10-06T06:34:36.599809Z" + "iopub.execute_input": "2023-10-11T10:06:49.200264Z", + "iopub.status.busy": "2023-10-11T10:06:49.199701Z", + "iopub.status.idle": "2023-10-11T10:06:49.204725Z", + "shell.execute_reply": "2023-10-11T10:06:49.204075Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:36.603908Z", - "iopub.status.busy": "2023-10-06T06:34:36.603438Z", - "iopub.status.idle": "2023-10-06T06:34:36.616203Z", - "shell.execute_reply": "2023-10-06T06:34:36.615530Z" + "iopub.execute_input": "2023-10-11T10:06:49.207917Z", + "iopub.status.busy": "2023-10-11T10:06:49.207471Z", + "iopub.status.idle": "2023-10-11T10:06:49.220660Z", + "shell.execute_reply": "2023-10-11T10:06:49.219522Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:36.619652Z", - "iopub.status.busy": "2023-10-06T06:34:36.619212Z", - "iopub.status.idle": "2023-10-06T06:34:36.625829Z", - "shell.execute_reply": "2023-10-06T06:34:36.625116Z" + "iopub.execute_input": "2023-10-11T10:06:49.223760Z", + "iopub.status.busy": "2023-10-11T10:06:49.223377Z", + "iopub.status.idle": "2023-10-11T10:06:49.232520Z", + "shell.execute_reply": "2023-10-11T10:06:49.230357Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:36.629296Z", - "iopub.status.busy": "2023-10-06T06:34:36.629027Z", - "iopub.status.idle": "2023-10-06T06:34:36.970439Z", - "shell.execute_reply": "2023-10-06T06:34:36.969698Z" + "iopub.execute_input": "2023-10-11T10:06:49.236038Z", + "iopub.status.busy": "2023-10-11T10:06:49.235602Z", + "iopub.status.idle": "2023-10-11T10:06:49.592190Z", + "shell.execute_reply": "2023-10-11T10:06:49.591409Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:36.974310Z", - "iopub.status.busy": "2023-10-06T06:34:36.973685Z", - "iopub.status.idle": "2023-10-06T06:34:37.353250Z", - "shell.execute_reply": "2023-10-06T06:34:37.352425Z" + "iopub.execute_input": "2023-10-11T10:06:49.596124Z", + "iopub.status.busy": "2023-10-11T10:06:49.595560Z", + "iopub.status.idle": "2023-10-11T10:06:49.993332Z", + "shell.execute_reply": "2023-10-11T10:06:49.992442Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:37.357001Z", - "iopub.status.busy": "2023-10-06T06:34:37.356307Z", - "iopub.status.idle": "2023-10-06T06:34:37.384275Z", - "shell.execute_reply": "2023-10-06T06:34:37.383586Z" + "iopub.execute_input": "2023-10-11T10:06:49.998251Z", + "iopub.status.busy": "2023-10-11T10:06:49.996894Z", + "iopub.status.idle": "2023-10-11T10:06:50.027716Z", + "shell.execute_reply": "2023-10-11T10:06:50.027022Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:37.387652Z", - "iopub.status.busy": "2023-10-06T06:34:37.387261Z", - "iopub.status.idle": "2023-10-06T06:34:37.401464Z", - "shell.execute_reply": "2023-10-06T06:34:37.400770Z" + "iopub.execute_input": "2023-10-11T10:06:50.032775Z", + "iopub.status.busy": "2023-10-11T10:06:50.032294Z", + "iopub.status.idle": "2023-10-11T10:06:50.048894Z", + "shell.execute_reply": "2023-10-11T10:06:50.048063Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:37.404797Z", - "iopub.status.busy": "2023-10-06T06:34:37.404375Z", - "iopub.status.idle": "2023-10-06T06:34:39.017516Z", - "shell.execute_reply": "2023-10-06T06:34:39.016588Z" + "iopub.execute_input": "2023-10-11T10:06:50.052393Z", + "iopub.status.busy": "2023-10-11T10:06:50.051868Z", + "iopub.status.idle": "2023-10-11T10:06:51.729322Z", + "shell.execute_reply": "2023-10-11T10:06:51.728441Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:39.021223Z", - "iopub.status.busy": "2023-10-06T06:34:39.020657Z", - "iopub.status.idle": "2023-10-06T06:34:39.053070Z", - "shell.execute_reply": "2023-10-06T06:34:39.052324Z" + "iopub.execute_input": "2023-10-11T10:06:51.733189Z", + "iopub.status.busy": "2023-10-11T10:06:51.732510Z", + "iopub.status.idle": "2023-10-11T10:06:51.765133Z", + "shell.execute_reply": "2023-10-11T10:06:51.764425Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:39.056590Z", - "iopub.status.busy": "2023-10-06T06:34:39.056315Z", - "iopub.status.idle": "2023-10-06T06:34:39.083702Z", - "shell.execute_reply": "2023-10-06T06:34:39.083060Z" + "iopub.execute_input": "2023-10-11T10:06:51.768381Z", + "iopub.status.busy": "2023-10-11T10:06:51.768129Z", + "iopub.status.idle": "2023-10-11T10:06:51.792755Z", + "shell.execute_reply": "2023-10-11T10:06:51.792140Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:39.087905Z", - "iopub.status.busy": "2023-10-06T06:34:39.086371Z", - "iopub.status.idle": "2023-10-06T06:34:39.108178Z", - "shell.execute_reply": "2023-10-06T06:34:39.107399Z" + "iopub.execute_input": "2023-10-11T10:06:51.796349Z", + "iopub.status.busy": "2023-10-11T10:06:51.795866Z", + "iopub.status.idle": "2023-10-11T10:06:51.814866Z", + "shell.execute_reply": "2023-10-11T10:06:51.814031Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:39.112295Z", - "iopub.status.busy": "2023-10-06T06:34:39.111668Z", - "iopub.status.idle": "2023-10-06T06:34:39.143288Z", - "shell.execute_reply": "2023-10-06T06:34:39.142634Z" + "iopub.execute_input": "2023-10-11T10:06:51.818318Z", + "iopub.status.busy": "2023-10-11T10:06:51.817962Z", + "iopub.status.idle": "2023-10-11T10:06:51.851217Z", + "shell.execute_reply": "2023-10-11T10:06:51.850651Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6713c53175244c529ffae4fda3ab5714", + "model_id": "000a72a34108458187c056846d927f18", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:39.146114Z", - "iopub.status.busy": "2023-10-06T06:34:39.145701Z", - "iopub.status.idle": "2023-10-06T06:34:39.164460Z", - "shell.execute_reply": "2023-10-06T06:34:39.163789Z" + "iopub.execute_input": "2023-10-11T10:06:51.854291Z", + "iopub.status.busy": "2023-10-11T10:06:51.853819Z", + "iopub.status.idle": "2023-10-11T10:06:51.871821Z", + "shell.execute_reply": "2023-10-11T10:06:51.871225Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:39.167856Z", - "iopub.status.busy": "2023-10-06T06:34:39.167060Z", - "iopub.status.idle": "2023-10-06T06:34:39.174808Z", - "shell.execute_reply": "2023-10-06T06:34:39.174237Z" + "iopub.execute_input": "2023-10-11T10:06:51.875226Z", + "iopub.status.busy": "2023-10-11T10:06:51.874736Z", + "iopub.status.idle": "2023-10-11T10:06:51.882299Z", + "shell.execute_reply": "2023-10-11T10:06:51.881732Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:39.178006Z", - "iopub.status.busy": "2023-10-06T06:34:39.177289Z", - "iopub.status.idle": "2023-10-06T06:34:39.199860Z", - "shell.execute_reply": "2023-10-06T06:34:39.199257Z" + "iopub.execute_input": "2023-10-11T10:06:51.885597Z", + "iopub.status.busy": "2023-10-11T10:06:51.884870Z", + "iopub.status.idle": "2023-10-11T10:06:51.907502Z", + "shell.execute_reply": "2023-10-11T10:06:51.906898Z" } }, "outputs": [ @@ -1430,62 +1430,29 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a52fa425a414cc7a12b67af84ed77f6": { + "000a72a34108458187c056846d927f18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0db1020fb61f4591a35b0b4ed9f8b92d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5c021ebf34de4581981fecf21195993e", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3987137de4504b5abe1733797f16b424", - "value": 132.0 - } - }, - "3987137de4504b5abe1733797f16b424": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_969a3d67c56f46baa147ce1d9dd21e0f", + "IPY_MODEL_8c86f4ddf7a14abea61133f0bf1d790a", + "IPY_MODEL_64f62e1fa7f640b79efce9f8e3b56a45" + ], + "layout": "IPY_MODEL_4f35b8f73d034069a603c23a0563307a" } }, - "58f15bc382044332bc048fab5370e1bd": { + "1b6beabc1b5c4d3a8fad1f9081b50341": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1537,7 +1504,7 @@ "width": null } }, - "5c021ebf34de4581981fecf21195993e": { + "4f35b8f73d034069a603c23a0563307a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1585,33 +1552,32 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "6713c53175244c529ffae4fda3ab5714": { + "64f62e1fa7f640b79efce9f8e3b56a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e4e09c0c6fb3437b94ed88932e6de16c", - "IPY_MODEL_0db1020fb61f4591a35b0b4ed9f8b92d", - "IPY_MODEL_ee621ec79e424de5af003af733820b8f" - ], - "layout": "IPY_MODEL_b83be3b245cb4069b4d72d50e73e18a4" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8c70d44a1e4142b1a00913bb4666681d", + "placeholder": "​", + "style": "IPY_MODEL_d2bd8e0fc99640f9b387ee5193893c74", + "value": " 132/132 [00:00<00:00, 7337.46 examples/s]" } }, - "74aeae835eb8460582d6603a33f0ac88": { + "8c70d44a1e4142b1a00913bb4666681d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1663,22 +1629,31 @@ "width": null } }, - "77bd3f4f099c4c599987c0173f0d4c89": { + "8c86f4ddf7a14abea61133f0bf1d790a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9027272d8c804b79be47cdd3881f0b1b", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f4102172a11745b28bd7187d5ed85cc8", + "value": 132.0 } }, - "b83be3b245cb4069b4d72d50e73e18a4": { + "9027272d8c804b79be47cdd3881f0b1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1726,11 +1701,11 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "e4e09c0c6fb3437b94ed88932e6de16c": { + "969a3d67c56f46baa147ce1d9dd21e0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1745,31 +1720,56 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_74aeae835eb8460582d6603a33f0ac88", + "layout": "IPY_MODEL_1b6beabc1b5c4d3a8fad1f9081b50341", "placeholder": "​", - "style": "IPY_MODEL_77bd3f4f099c4c599987c0173f0d4c89", + "style": "IPY_MODEL_ebf2259c70a54e689384bd5d242b9d28", "value": "Saving the dataset (1/1 shards): 100%" } }, - "ee621ec79e424de5af003af733820b8f": { + "d2bd8e0fc99640f9b387ee5193893c74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_58f15bc382044332bc048fab5370e1bd", - "placeholder": "​", - "style": "IPY_MODEL_0a52fa425a414cc7a12b67af84ed77f6", - "value": " 132/132 [00:00<00:00, 8406.70 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ebf2259c70a54e689384bd5d242b9d28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f4102172a11745b28bd7187d5ed85cc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 7f47959c9..3ae97f87e 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:44.530012Z", - "iopub.status.busy": "2023-10-06T06:34:44.529327Z", - "iopub.status.idle": "2023-10-06T06:34:45.752223Z", - "shell.execute_reply": "2023-10-06T06:34:45.751499Z" + "iopub.execute_input": "2023-10-11T10:06:57.182275Z", + "iopub.status.busy": "2023-10-11T10:06:57.182000Z", + "iopub.status.idle": "2023-10-11T10:06:58.458719Z", + "shell.execute_reply": "2023-10-11T10:06:58.457973Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:45.756043Z", - "iopub.status.busy": "2023-10-06T06:34:45.755496Z", - "iopub.status.idle": "2023-10-06T06:34:45.760292Z", - "shell.execute_reply": "2023-10-06T06:34:45.759649Z" + "iopub.execute_input": "2023-10-11T10:06:58.463256Z", + "iopub.status.busy": "2023-10-11T10:06:58.462318Z", + "iopub.status.idle": "2023-10-11T10:06:58.467044Z", + "shell.execute_reply": "2023-10-11T10:06:58.466421Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:45.763382Z", - "iopub.status.busy": "2023-10-06T06:34:45.763142Z", - "iopub.status.idle": "2023-10-06T06:34:45.774856Z", - "shell.execute_reply": "2023-10-06T06:34:45.774113Z" + "iopub.execute_input": "2023-10-11T10:06:58.470490Z", + "iopub.status.busy": "2023-10-11T10:06:58.470045Z", + "iopub.status.idle": "2023-10-11T10:06:58.482516Z", + "shell.execute_reply": "2023-10-11T10:06:58.481902Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:45.778271Z", - "iopub.status.busy": "2023-10-06T06:34:45.777712Z", - "iopub.status.idle": "2023-10-06T06:34:45.783404Z", - "shell.execute_reply": "2023-10-06T06:34:45.782740Z" + "iopub.execute_input": "2023-10-11T10:06:58.485314Z", + "iopub.status.busy": "2023-10-11T10:06:58.484859Z", + "iopub.status.idle": "2023-10-11T10:06:58.490137Z", + "shell.execute_reply": "2023-10-11T10:06:58.489591Z" } }, "outputs": [], @@ -443,10 +443,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:45.786666Z", - "iopub.status.busy": "2023-10-06T06:34:45.786210Z", - "iopub.status.idle": "2023-10-06T06:34:46.123213Z", - "shell.execute_reply": "2023-10-06T06:34:46.122453Z" + "iopub.execute_input": "2023-10-11T10:06:58.498897Z", + "iopub.status.busy": "2023-10-11T10:06:58.498312Z", + "iopub.status.idle": "2023-10-11T10:06:58.857671Z", + "shell.execute_reply": "2023-10-11T10:06:58.856914Z" }, "nbsphinx": "hidden" }, @@ -515,10 +515,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:46.127008Z", - "iopub.status.busy": "2023-10-06T06:34:46.126560Z", - "iopub.status.idle": "2023-10-06T06:34:46.491674Z", - "shell.execute_reply": "2023-10-06T06:34:46.490961Z" + "iopub.execute_input": "2023-10-11T10:06:58.861585Z", + "iopub.status.busy": "2023-10-11T10:06:58.861324Z", + "iopub.status.idle": "2023-10-11T10:06:59.304856Z", + "shell.execute_reply": "2023-10-11T10:06:59.303992Z" } }, "outputs": [ @@ -554,10 +554,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:46.495300Z", - "iopub.status.busy": "2023-10-06T06:34:46.494906Z", - "iopub.status.idle": "2023-10-06T06:34:46.499373Z", - "shell.execute_reply": "2023-10-06T06:34:46.498754Z" + "iopub.execute_input": "2023-10-11T10:06:59.308420Z", + "iopub.status.busy": "2023-10-11T10:06:59.307919Z", + "iopub.status.idle": "2023-10-11T10:06:59.311319Z", + "shell.execute_reply": "2023-10-11T10:06:59.310596Z" } }, "outputs": [], @@ -596,10 +596,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:46.502989Z", - "iopub.status.busy": "2023-10-06T06:34:46.502484Z", - "iopub.status.idle": "2023-10-06T06:34:46.530547Z", - "shell.execute_reply": "2023-10-06T06:34:46.529867Z" + "iopub.execute_input": "2023-10-11T10:06:59.314849Z", + "iopub.status.busy": "2023-10-11T10:06:59.314312Z", + "iopub.status.idle": "2023-10-11T10:06:59.343610Z", + "shell.execute_reply": "2023-10-11T10:06:59.342900Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:46.533984Z", - "iopub.status.busy": "2023-10-06T06:34:46.533474Z", - "iopub.status.idle": "2023-10-06T06:34:48.171070Z", - "shell.execute_reply": "2023-10-06T06:34:48.170184Z" + "iopub.execute_input": "2023-10-11T10:06:59.347326Z", + "iopub.status.busy": "2023-10-11T10:06:59.346928Z", + "iopub.status.idle": "2023-10-11T10:07:01.022421Z", + "shell.execute_reply": "2023-10-11T10:07:01.021624Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:48.175163Z", - "iopub.status.busy": "2023-10-06T06:34:48.174504Z", - "iopub.status.idle": "2023-10-06T06:34:48.197172Z", - "shell.execute_reply": "2023-10-06T06:34:48.196388Z" + "iopub.execute_input": "2023-10-11T10:07:01.026281Z", + "iopub.status.busy": "2023-10-11T10:07:01.025669Z", + "iopub.status.idle": "2023-10-11T10:07:01.049344Z", + "shell.execute_reply": "2023-10-11T10:07:01.048554Z" } }, "outputs": [ @@ -814,10 +814,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:48.200207Z", - "iopub.status.busy": "2023-10-06T06:34:48.199960Z", - "iopub.status.idle": "2023-10-06T06:34:48.210460Z", - "shell.execute_reply": "2023-10-06T06:34:48.209861Z" + "iopub.execute_input": "2023-10-11T10:07:01.053321Z", + "iopub.status.busy": "2023-10-11T10:07:01.052903Z", + "iopub.status.idle": "2023-10-11T10:07:01.063033Z", + "shell.execute_reply": "2023-10-11T10:07:01.062379Z" } }, "outputs": [ @@ -907,10 +907,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:48.213307Z", - "iopub.status.busy": "2023-10-06T06:34:48.213060Z", - "iopub.status.idle": "2023-10-06T06:34:48.222638Z", - "shell.execute_reply": "2023-10-06T06:34:48.221983Z" + "iopub.execute_input": "2023-10-11T10:07:01.066668Z", + "iopub.status.busy": "2023-10-11T10:07:01.066228Z", + "iopub.status.idle": "2023-10-11T10:07:01.073540Z", + "shell.execute_reply": "2023-10-11T10:07:01.072942Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:48.225750Z", - "iopub.status.busy": "2023-10-06T06:34:48.225346Z", - "iopub.status.idle": "2023-10-06T06:34:48.236195Z", - "shell.execute_reply": "2023-10-06T06:34:48.235472Z" + "iopub.execute_input": "2023-10-11T10:07:01.076793Z", + "iopub.status.busy": "2023-10-11T10:07:01.076469Z", + "iopub.status.idle": "2023-10-11T10:07:01.089389Z", + "shell.execute_reply": "2023-10-11T10:07:01.088731Z" } }, "outputs": [ @@ -1122,10 +1122,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:48.239234Z", - "iopub.status.busy": "2023-10-06T06:34:48.238841Z", - "iopub.status.idle": "2023-10-06T06:34:48.250540Z", - "shell.execute_reply": "2023-10-06T06:34:48.249849Z" + "iopub.execute_input": "2023-10-11T10:07:01.092889Z", + "iopub.status.busy": "2023-10-11T10:07:01.092446Z", + "iopub.status.idle": "2023-10-11T10:07:01.104238Z", + "shell.execute_reply": "2023-10-11T10:07:01.103539Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:48.254637Z", - "iopub.status.busy": "2023-10-06T06:34:48.254072Z", - "iopub.status.idle": "2023-10-06T06:34:48.262855Z", - "shell.execute_reply": "2023-10-06T06:34:48.262177Z" + "iopub.execute_input": "2023-10-11T10:07:01.107384Z", + "iopub.status.busy": "2023-10-11T10:07:01.107015Z", + "iopub.status.idle": "2023-10-11T10:07:01.115859Z", + "shell.execute_reply": "2023-10-11T10:07:01.115130Z" }, "scrolled": true }, @@ -1357,10 +1357,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:48.265781Z", - "iopub.status.busy": "2023-10-06T06:34:48.265408Z", - "iopub.status.idle": "2023-10-06T06:34:48.277839Z", - "shell.execute_reply": "2023-10-06T06:34:48.277158Z" + "iopub.execute_input": "2023-10-11T10:07:01.119659Z", + "iopub.status.busy": "2023-10-11T10:07:01.119289Z", + "iopub.status.idle": "2023-10-11T10:07:01.131555Z", + "shell.execute_reply": "2023-10-11T10:07:01.130874Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 4369597c8..0bd08c60e 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:53.708975Z", - "iopub.status.busy": "2023-10-06T06:34:53.708594Z", - "iopub.status.idle": "2023-10-06T06:34:54.865526Z", - "shell.execute_reply": "2023-10-06T06:34:54.864834Z" + "iopub.execute_input": "2023-10-11T10:07:06.638560Z", + "iopub.status.busy": "2023-10-11T10:07:06.637949Z", + "iopub.status.idle": "2023-10-11T10:07:07.838231Z", + "shell.execute_reply": "2023-10-11T10:07:07.837461Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:54.869516Z", - "iopub.status.busy": "2023-10-06T06:34:54.869109Z", - "iopub.status.idle": "2023-10-06T06:34:54.921759Z", - "shell.execute_reply": "2023-10-06T06:34:54.921070Z" + "iopub.execute_input": "2023-10-11T10:07:07.842540Z", + "iopub.status.busy": "2023-10-11T10:07:07.841919Z", + "iopub.status.idle": "2023-10-11T10:07:07.906031Z", + "shell.execute_reply": "2023-10-11T10:07:07.904742Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:54.925371Z", - "iopub.status.busy": "2023-10-06T06:34:54.924797Z", - "iopub.status.idle": "2023-10-06T06:34:55.194035Z", - "shell.execute_reply": "2023-10-06T06:34:55.193305Z" + "iopub.execute_input": "2023-10-11T10:07:07.909838Z", + "iopub.status.busy": "2023-10-11T10:07:07.909434Z", + "iopub.status.idle": "2023-10-11T10:07:08.071412Z", + "shell.execute_reply": "2023-10-11T10:07:08.070158Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:55.198303Z", - "iopub.status.busy": "2023-10-06T06:34:55.197828Z", - "iopub.status.idle": "2023-10-06T06:34:55.203885Z", - "shell.execute_reply": "2023-10-06T06:34:55.201827Z" + "iopub.execute_input": "2023-10-11T10:07:08.074833Z", + "iopub.status.busy": "2023-10-11T10:07:08.074431Z", + "iopub.status.idle": "2023-10-11T10:07:08.079886Z", + "shell.execute_reply": "2023-10-11T10:07:08.079259Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:55.207672Z", - "iopub.status.busy": "2023-10-06T06:34:55.207117Z", - "iopub.status.idle": "2023-10-06T06:34:55.216914Z", - "shell.execute_reply": "2023-10-06T06:34:55.216301Z" + "iopub.execute_input": "2023-10-11T10:07:08.083168Z", + "iopub.status.busy": "2023-10-11T10:07:08.082725Z", + "iopub.status.idle": "2023-10-11T10:07:08.093640Z", + "shell.execute_reply": "2023-10-11T10:07:08.093035Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:55.220983Z", - "iopub.status.busy": "2023-10-06T06:34:55.220730Z", - "iopub.status.idle": "2023-10-06T06:34:55.223736Z", - "shell.execute_reply": "2023-10-06T06:34:55.223207Z" + "iopub.execute_input": "2023-10-11T10:07:08.096833Z", + "iopub.status.busy": "2023-10-11T10:07:08.096464Z", + "iopub.status.idle": "2023-10-11T10:07:08.100440Z", + "shell.execute_reply": "2023-10-11T10:07:08.099833Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:34:55.226831Z", - "iopub.status.busy": "2023-10-06T06:34:55.226597Z", - "iopub.status.idle": "2023-10-06T06:35:00.605839Z", - "shell.execute_reply": "2023-10-06T06:35:00.605201Z" + "iopub.execute_input": "2023-10-11T10:07:08.103888Z", + "iopub.status.busy": "2023-10-11T10:07:08.103365Z", + "iopub.status.idle": "2023-10-11T10:07:13.675614Z", + "shell.execute_reply": "2023-10-11T10:07:13.674870Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:00.611013Z", - "iopub.status.busy": "2023-10-06T06:35:00.609745Z", - "iopub.status.idle": "2023-10-06T06:35:00.623272Z", - "shell.execute_reply": "2023-10-06T06:35:00.622572Z" + "iopub.execute_input": "2023-10-11T10:07:13.680750Z", + "iopub.status.busy": "2023-10-11T10:07:13.679520Z", + "iopub.status.idle": "2023-10-11T10:07:13.692886Z", + "shell.execute_reply": "2023-10-11T10:07:13.692323Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:00.626681Z", - "iopub.status.busy": "2023-10-06T06:35:00.626423Z", - "iopub.status.idle": "2023-10-06T06:35:02.259991Z", - "shell.execute_reply": "2023-10-06T06:35:02.259145Z" + "iopub.execute_input": "2023-10-11T10:07:13.697360Z", + "iopub.status.busy": "2023-10-11T10:07:13.696220Z", + "iopub.status.idle": "2023-10-11T10:07:15.322758Z", + "shell.execute_reply": "2023-10-11T10:07:15.321880Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:02.264279Z", - "iopub.status.busy": "2023-10-06T06:35:02.263075Z", - "iopub.status.idle": "2023-10-06T06:35:02.286957Z", - "shell.execute_reply": "2023-10-06T06:35:02.286209Z" + "iopub.execute_input": "2023-10-11T10:07:15.326569Z", + "iopub.status.busy": "2023-10-11T10:07:15.325871Z", + "iopub.status.idle": "2023-10-11T10:07:15.346082Z", + "shell.execute_reply": "2023-10-11T10:07:15.345423Z" }, "scrolled": true }, @@ -577,10 +577,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:02.291067Z", - "iopub.status.busy": "2023-10-06T06:35:02.290583Z", - "iopub.status.idle": "2023-10-06T06:35:02.302758Z", - "shell.execute_reply": "2023-10-06T06:35:02.302130Z" + "iopub.execute_input": "2023-10-11T10:07:15.349209Z", + "iopub.status.busy": "2023-10-11T10:07:15.348969Z", + "iopub.status.idle": "2023-10-11T10:07:15.360411Z", + "shell.execute_reply": "2023-10-11T10:07:15.359643Z" } }, "outputs": [ @@ -684,10 +684,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:02.306789Z", - "iopub.status.busy": "2023-10-06T06:35:02.306103Z", - "iopub.status.idle": "2023-10-06T06:35:02.324541Z", - "shell.execute_reply": "2023-10-06T06:35:02.323753Z" + "iopub.execute_input": "2023-10-11T10:07:15.363595Z", + "iopub.status.busy": "2023-10-11T10:07:15.363236Z", + "iopub.status.idle": "2023-10-11T10:07:15.377028Z", + "shell.execute_reply": "2023-10-11T10:07:15.376408Z" } }, "outputs": [ @@ -816,10 +816,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:02.329003Z", - "iopub.status.busy": "2023-10-06T06:35:02.328537Z", - "iopub.status.idle": "2023-10-06T06:35:02.341875Z", - "shell.execute_reply": "2023-10-06T06:35:02.340546Z" + "iopub.execute_input": "2023-10-11T10:07:15.380368Z", + "iopub.status.busy": "2023-10-11T10:07:15.380016Z", + "iopub.status.idle": "2023-10-11T10:07:15.392057Z", + "shell.execute_reply": "2023-10-11T10:07:15.391432Z" } }, "outputs": [ @@ -933,10 +933,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:02.345633Z", - "iopub.status.busy": "2023-10-06T06:35:02.344945Z", - "iopub.status.idle": "2023-10-06T06:35:02.358826Z", - "shell.execute_reply": "2023-10-06T06:35:02.358117Z" + "iopub.execute_input": "2023-10-11T10:07:15.395348Z", + "iopub.status.busy": "2023-10-11T10:07:15.394999Z", + "iopub.status.idle": "2023-10-11T10:07:15.409338Z", + "shell.execute_reply": "2023-10-11T10:07:15.408025Z" } }, "outputs": [ @@ -1047,10 +1047,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:02.362397Z", - "iopub.status.busy": "2023-10-06T06:35:02.362112Z", - "iopub.status.idle": "2023-10-06T06:35:02.373380Z", - "shell.execute_reply": "2023-10-06T06:35:02.372616Z" + "iopub.execute_input": "2023-10-11T10:07:15.412563Z", + "iopub.status.busy": "2023-10-11T10:07:15.412216Z", + "iopub.status.idle": "2023-10-11T10:07:15.422364Z", + "shell.execute_reply": "2023-10-11T10:07:15.421757Z" } }, "outputs": [ @@ -1134,10 +1134,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:02.377153Z", - "iopub.status.busy": "2023-10-06T06:35:02.376727Z", - "iopub.status.idle": "2023-10-06T06:35:02.389440Z", - "shell.execute_reply": "2023-10-06T06:35:02.388793Z" + "iopub.execute_input": "2023-10-11T10:07:15.425822Z", + "iopub.status.busy": "2023-10-11T10:07:15.425465Z", + "iopub.status.idle": "2023-10-11T10:07:15.435810Z", + "shell.execute_reply": "2023-10-11T10:07:15.435194Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:02.393460Z", - "iopub.status.busy": "2023-10-06T06:35:02.392980Z", - "iopub.status.idle": "2023-10-06T06:35:02.404659Z", - "shell.execute_reply": "2023-10-06T06:35:02.403660Z" + "iopub.execute_input": "2023-10-11T10:07:15.439021Z", + "iopub.status.busy": "2023-10-11T10:07:15.438660Z", + "iopub.status.idle": "2023-10-11T10:07:15.448445Z", + "shell.execute_reply": "2023-10-11T10:07:15.447817Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 939e5772c..0565dbc1d 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -937,7 +937,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'visa_or_mastercard', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'cancel_transfer', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'getting_spare_card', 'change_pin', 'card_about_to_expire'}
+Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'change_pin', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies'}
 

Let’s view the i-th example in the dataset:

@@ -984,43 +984,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1707,7 +1707,7 @@

Near-duplicate issuesWe see that these two sets of request are indeed very similar to one another! Including near duplicates in a dataset may have unintended effects on models, and be wary about splitting them across training/test sets.

As demonstrated above, cleanlab can automatically shortlist the most likely issues in your dataset to help you better curate your dataset for subsequent modeling. With this shortlist, you can decide whether to fix these label issues or remove nonsensical or duplicated examples from your dataset to obtain a higher-quality dataset for training your next ML model. cleanlab’s issue detection can be run with outputs from any type of model you initially trained.

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 44a64a72c..267260c6d 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:07.905114Z", - "iopub.status.busy": "2023-10-06T06:35:07.904472Z", - "iopub.status.idle": "2023-10-06T06:35:10.815830Z", - "shell.execute_reply": "2023-10-06T06:35:10.815000Z" + "iopub.execute_input": "2023-10-11T10:07:20.647904Z", + "iopub.status.busy": "2023-10-11T10:07:20.647609Z", + "iopub.status.idle": "2023-10-11T10:07:23.817558Z", + "shell.execute_reply": "2023-10-11T10:07:23.816895Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7bbe9e1a7dd947af9d479bd5e6adf343", + "model_id": "3e5263f90c834ffe8e75512b1c9ff0da", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:10.819966Z", - "iopub.status.busy": "2023-10-06T06:35:10.819368Z", - "iopub.status.idle": "2023-10-06T06:35:10.825100Z", - "shell.execute_reply": "2023-10-06T06:35:10.824495Z" + "iopub.execute_input": "2023-10-11T10:07:23.821638Z", + "iopub.status.busy": "2023-10-11T10:07:23.821245Z", + "iopub.status.idle": "2023-10-11T10:07:23.826575Z", + "shell.execute_reply": "2023-10-11T10:07:23.825547Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:10.828533Z", - "iopub.status.busy": "2023-10-06T06:35:10.828036Z", - "iopub.status.idle": "2023-10-06T06:35:10.834503Z", - "shell.execute_reply": "2023-10-06T06:35:10.833791Z" + "iopub.execute_input": "2023-10-11T10:07:23.829423Z", + "iopub.status.busy": "2023-10-11T10:07:23.828974Z", + "iopub.status.idle": "2023-10-11T10:07:23.832787Z", + "shell.execute_reply": "2023-10-11T10:07:23.832078Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:10.838698Z", - "iopub.status.busy": "2023-10-06T06:35:10.838092Z", - "iopub.status.idle": "2023-10-06T06:35:10.982840Z", - "shell.execute_reply": "2023-10-06T06:35:10.981988Z" + "iopub.execute_input": "2023-10-11T10:07:23.836150Z", + "iopub.status.busy": "2023-10-11T10:07:23.835606Z", + "iopub.status.idle": "2023-10-11T10:07:23.878702Z", + "shell.execute_reply": "2023-10-11T10:07:23.877960Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:10.986224Z", - "iopub.status.busy": "2023-10-06T06:35:10.985815Z", - "iopub.status.idle": "2023-10-06T06:35:10.991046Z", - "shell.execute_reply": "2023-10-06T06:35:10.990365Z" + "iopub.execute_input": "2023-10-11T10:07:23.882564Z", + "iopub.status.busy": "2023-10-11T10:07:23.882112Z", + "iopub.status.idle": "2023-10-11T10:07:23.886709Z", + "shell.execute_reply": "2023-10-11T10:07:23.886013Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'cancel_transfer', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'getting_spare_card', 'change_pin', 'card_about_to_expire'}\n" + "Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'change_pin', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:10.995179Z", - "iopub.status.busy": "2023-10-06T06:35:10.994691Z", - "iopub.status.idle": "2023-10-06T06:35:10.998909Z", - "shell.execute_reply": "2023-10-06T06:35:10.998234Z" + "iopub.execute_input": "2023-10-11T10:07:23.890686Z", + "iopub.status.busy": "2023-10-11T10:07:23.890314Z", + "iopub.status.idle": "2023-10-11T10:07:23.894223Z", + "shell.execute_reply": "2023-10-11T10:07:23.893517Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:11.003434Z", - "iopub.status.busy": "2023-10-06T06:35:11.002820Z", - "iopub.status.idle": "2023-10-06T06:35:17.044715Z", - "shell.execute_reply": "2023-10-06T06:35:17.044052Z" + "iopub.execute_input": "2023-10-11T10:07:23.898230Z", + "iopub.status.busy": "2023-10-11T10:07:23.897863Z", + "iopub.status.idle": "2023-10-11T10:07:28.215486Z", + "shell.execute_reply": "2023-10-11T10:07:28.214776Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2a7d43a75994007a1e0039d44bf4eea", + "model_id": "b85482da3c1c4ec2bf18f764413385f0", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a26b5ba183049c7998c8f73d4172ee0", + "model_id": "b921a2781e5b411d92977c1c84a05e0f", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9508ce2d2b9641348c0764cd09fdcd6b", + "model_id": "45194cb1a20648d5a6a1eabd72cf1a09", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "62c92957735b42bfa8856482f295990e", + "model_id": "424933a378b84b5cb884fb55ffadd8ee", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "55c295f16b9a423c9af63d9990e60b3a", + "model_id": "1045ca303da444c292c424c09dde6fd9", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "44c15dfa0908484cb4e18a1de1b213c0", + "model_id": "83d82860dd344eed85830e46dbbe58d5", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f335d8552862438c918a7d38750ea471", + "model_id": "03bcc7001f904860806a3bf48293ea5a", "version_major": 2, "version_minor": 0 }, @@ -503,7 +503,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight']\n", + "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.weight']\n", "- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] @@ -544,10 +544,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:17.048744Z", - "iopub.status.busy": "2023-10-06T06:35:17.048165Z", - "iopub.status.idle": "2023-10-06T06:35:18.380924Z", - "shell.execute_reply": "2023-10-06T06:35:18.380301Z" + "iopub.execute_input": "2023-10-11T10:07:28.221035Z", + "iopub.status.busy": "2023-10-11T10:07:28.219583Z", + "iopub.status.idle": "2023-10-11T10:07:29.495760Z", + "shell.execute_reply": "2023-10-11T10:07:29.495067Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:18.384409Z", - "iopub.status.busy": "2023-10-06T06:35:18.383913Z", - "iopub.status.idle": "2023-10-06T06:35:18.386938Z", - "shell.execute_reply": "2023-10-06T06:35:18.386402Z" + "iopub.execute_input": "2023-10-11T10:07:29.500330Z", + "iopub.status.busy": "2023-10-11T10:07:29.499764Z", + "iopub.status.idle": "2023-10-11T10:07:29.504461Z", + "shell.execute_reply": "2023-10-11T10:07:29.503880Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:18.390628Z", - "iopub.status.busy": "2023-10-06T06:35:18.389275Z", - "iopub.status.idle": "2023-10-06T06:35:20.073368Z", - "shell.execute_reply": "2023-10-06T06:35:20.072572Z" + "iopub.execute_input": "2023-10-11T10:07:29.508239Z", + "iopub.status.busy": "2023-10-11T10:07:29.507759Z", + "iopub.status.idle": "2023-10-11T10:07:31.170507Z", + "shell.execute_reply": "2023-10-11T10:07:31.169597Z" }, "scrolled": true }, @@ -647,10 +647,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:20.077045Z", - "iopub.status.busy": "2023-10-06T06:35:20.076253Z", - "iopub.status.idle": "2023-10-06T06:35:20.098562Z", - "shell.execute_reply": "2023-10-06T06:35:20.097989Z" + "iopub.execute_input": "2023-10-11T10:07:31.175219Z", + "iopub.status.busy": "2023-10-11T10:07:31.174383Z", + "iopub.status.idle": "2023-10-11T10:07:31.199833Z", + "shell.execute_reply": "2023-10-11T10:07:31.199148Z" }, "scrolled": true }, @@ -775,10 +775,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:20.101688Z", - "iopub.status.busy": "2023-10-06T06:35:20.101292Z", - "iopub.status.idle": "2023-10-06T06:35:20.114451Z", - "shell.execute_reply": "2023-10-06T06:35:20.113751Z" + "iopub.execute_input": "2023-10-11T10:07:31.203756Z", + "iopub.status.busy": "2023-10-11T10:07:31.203222Z", + "iopub.status.idle": "2023-10-11T10:07:31.216582Z", + "shell.execute_reply": "2023-10-11T10:07:31.215940Z" }, "scrolled": true }, @@ -888,10 +888,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:20.118385Z", - "iopub.status.busy": "2023-10-06T06:35:20.117980Z", - "iopub.status.idle": "2023-10-06T06:35:20.126856Z", - "shell.execute_reply": "2023-10-06T06:35:20.126136Z" + "iopub.execute_input": "2023-10-11T10:07:31.220392Z", + "iopub.status.busy": "2023-10-11T10:07:31.219895Z", + "iopub.status.idle": "2023-10-11T10:07:31.227784Z", + "shell.execute_reply": "2023-10-11T10:07:31.227148Z" } }, "outputs": [ @@ -929,10 +929,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:20.130383Z", - "iopub.status.busy": "2023-10-06T06:35:20.129993Z", - "iopub.status.idle": "2023-10-06T06:35:20.141340Z", - "shell.execute_reply": "2023-10-06T06:35:20.140662Z" + "iopub.execute_input": "2023-10-11T10:07:31.231283Z", + "iopub.status.busy": "2023-10-11T10:07:31.230949Z", + "iopub.status.idle": "2023-10-11T10:07:31.239608Z", + "shell.execute_reply": "2023-10-11T10:07:31.239047Z" } }, "outputs": [ @@ -1049,10 +1049,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:20.145046Z", - "iopub.status.busy": "2023-10-06T06:35:20.144665Z", - "iopub.status.idle": "2023-10-06T06:35:20.156354Z", - "shell.execute_reply": "2023-10-06T06:35:20.155618Z" + "iopub.execute_input": "2023-10-11T10:07:31.242527Z", + "iopub.status.busy": "2023-10-11T10:07:31.242138Z", + "iopub.status.idle": "2023-10-11T10:07:31.249463Z", + "shell.execute_reply": "2023-10-11T10:07:31.248915Z" } }, "outputs": [ @@ -1135,10 +1135,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:20.160261Z", - "iopub.status.busy": "2023-10-06T06:35:20.159686Z", - "iopub.status.idle": "2023-10-06T06:35:20.169217Z", - "shell.execute_reply": "2023-10-06T06:35:20.168594Z" + "iopub.execute_input": "2023-10-11T10:07:31.252238Z", + "iopub.status.busy": "2023-10-11T10:07:31.251859Z", + "iopub.status.idle": "2023-10-11T10:07:31.258599Z", + "shell.execute_reply": "2023-10-11T10:07:31.258051Z" } }, "outputs": [ @@ -1246,10 +1246,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:20.172348Z", - "iopub.status.busy": "2023-10-06T06:35:20.171955Z", - "iopub.status.idle": "2023-10-06T06:35:20.182758Z", - "shell.execute_reply": "2023-10-06T06:35:20.182184Z" + "iopub.execute_input": "2023-10-11T10:07:31.261466Z", + "iopub.status.busy": "2023-10-11T10:07:31.261084Z", + "iopub.status.idle": "2023-10-11T10:07:31.271326Z", + "shell.execute_reply": "2023-10-11T10:07:31.270782Z" } }, "outputs": [ @@ -1360,10 +1360,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:20.185753Z", - "iopub.status.busy": "2023-10-06T06:35:20.185367Z", - "iopub.status.idle": "2023-10-06T06:35:20.191971Z", - "shell.execute_reply": "2023-10-06T06:35:20.191385Z" + "iopub.execute_input": "2023-10-11T10:07:31.274105Z", + "iopub.status.busy": "2023-10-11T10:07:31.273726Z", + "iopub.status.idle": "2023-10-11T10:07:31.279846Z", + "shell.execute_reply": "2023-10-11T10:07:31.279275Z" } }, "outputs": [ @@ -1431,10 +1431,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:20.194785Z", - "iopub.status.busy": "2023-10-06T06:35:20.194400Z", - "iopub.status.idle": "2023-10-06T06:35:20.200755Z", - "shell.execute_reply": "2023-10-06T06:35:20.200200Z" + "iopub.execute_input": "2023-10-11T10:07:31.282544Z", + "iopub.status.busy": "2023-10-11T10:07:31.282162Z", + "iopub.status.idle": "2023-10-11T10:07:31.288223Z", + "shell.execute_reply": "2023-10-11T10:07:31.287651Z" } }, "outputs": [ @@ -1512,10 +1512,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:20.203680Z", - "iopub.status.busy": "2023-10-06T06:35:20.203318Z", - "iopub.status.idle": "2023-10-06T06:35:20.209433Z", - "shell.execute_reply": "2023-10-06T06:35:20.208867Z" + "iopub.execute_input": "2023-10-11T10:07:31.291092Z", + "iopub.status.busy": "2023-10-11T10:07:31.290705Z", + "iopub.status.idle": "2023-10-11T10:07:31.296619Z", + "shell.execute_reply": "2023-10-11T10:07:31.296059Z" }, "nbsphinx": "hidden" }, @@ -1565,37 +1565,29 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00d4881e37364b46bd15efdaf3d27490": { + "03bcc7001f904860806a3bf48293ea5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "01c763d36b954f8594ee4817c643748e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b16e3649d0c44a02a3b4c06951a20f21", + "IPY_MODEL_fc805ae8481941ecb7b4d453e85270e1", + "IPY_MODEL_15c13f2ef1904d36aae0da490e444994" + ], + "layout": "IPY_MODEL_a17af920182941e58002c4cf8e83171e" } }, - "036b7778c36543bdbeac3d2f0ced5cd3": { + "069cbc86cb6d43559308307b56cbdaa0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1647,28 +1639,7 @@ "width": null } }, - "0a250e335b8e4c219343a2094c200e60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ab03a31e33ca4042ad900e6cbe62f1ec", - "placeholder": "​", - "style": "IPY_MODEL_59329ef378d54b129158814627d099f8", - "value": "Downloading: 100%" - } - }, - "0bbaa18a07b34edaa3b8df2b4b3c5137": { + "07f1a2139f464c99afacc75ed456aa89": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1720,7 +1691,183 @@ "width": null } }, - "10911ca5d8c445cfa6351535653f4785": { + "08222567e27c40d1abead6c1ec8c93ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3e694296ae8d4c84aa6680938cf17629", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b595faff4a024526b60539fe63c2ee7c", + "value": 0.0 + } + }, + "0b98e997fea741f29c36386e79658c5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0df75e3802eb4765969e10fab4fe3ee8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1045ca303da444c292c424c09dde6fd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8ff8d141345b401c9c1f84c64a39cf67", + "IPY_MODEL_14c02c041b124e57bf4002edba0cdf00", + "IPY_MODEL_ed3fa51bbd94410eb093a36bc6b17844" + ], + "layout": "IPY_MODEL_91e09a7ba7934fd685263b3866b937fa" + } + }, + "10d89be6a0374ec897cf377497b18e5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "11abdc356fc747f4aec38230faef0d33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d50484d44df4b18bfe556d46bb3c90c", + "placeholder": "​", + "style": "IPY_MODEL_1e2c40d987be46338cffea0f98710625", + "value": "" + } + }, + "1407f5da059048d9bea48292a33a67bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8aa6fe06fe4444aab2b762c8af919d4e", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3468e33f5ac042eb893e9caa9a6fe2d8", + "value": 29.0 + } + }, + "14095d01843c47b092005e5e53137e39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "14c02c041b124e57bf4002edba0cdf00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40404ad564e54f289b94b4b391a2fbf1", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_952f61bd253d4397bcdb3ba9e08cc27a", + "value": 466062.0 + } + }, + "15c13f2ef1904d36aae0da490e444994": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1735,13 +1882,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_64de4ffe6afd4bfcae90b87d2078f02c", + "layout": "IPY_MODEL_58bba979fc734eddbcf16f916f25795c", "placeholder": "​", - "style": "IPY_MODEL_581b8cb923de472ead864c8ba17eca58", - "value": " 665/665 [00:00<00:00, 70.2kB/s]" + "style": "IPY_MODEL_ea7bdd86579240b4b0acbda847f962e6", + "value": " 232k/232k [00:00<00:00, 11.7MB/s]" } }, - "196c4e5f7f894fee99378255683c69ea": { + "1808d4824d614576b143efc02b695a79": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1793,7 +1940,103 @@ "width": null } }, - "1c23b34a7293486e8fb3a73c3cdcc74a": { + "1e2c40d987be46338cffea0f98710625": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2282f899be604402bbcb09e97e28c74b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "23efd1d587f4466d8ffe87ab695976a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_844fc9a638e64344a64f6c9fcc4b1dc8", + "placeholder": "​", + "style": "IPY_MODEL_57a396c415214478a1756d8429b28142", + "value": " 2.21k/2.21k [00:00<00:00, 200kB/s]" + } + }, + "24cefcf7db0144a284cc29542ef69f64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a505aca9ba4749f38170f2c26ecada79", + "placeholder": "​", + "style": "IPY_MODEL_313354f869f940e18cea2bbd127ae12f", + "value": " 54.2M/54.2M [00:00<00:00, 97.6MB/s]" + } + }, + "255cd285c2964168bd5d592797319799": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e7e3acde30064f1d9904d5b63d9d4a05", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f87840aa69ad485d9908bda606c72497", + "value": 2211.0 + } + }, + "292922cc6d4a45e58b35a866527a29e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1809,7 +2052,7 @@ "description_width": "" } }, - "20af6857c9d64effa8d3097ca76f980c": { + "2e02daa7c3ca45149d91dde070b6b9c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1824,7 +2067,83 @@ "description_width": "" } }, - "22e89d2f72534beab670b51b1b20daa6": { + "313354f869f940e18cea2bbd127ae12f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3468e33f5ac042eb893e9caa9a6fe2d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "35f604b8306542a9ae4c62d3a1c514d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e5a054c0b2e145c48b6889d24cd75a8e", + "placeholder": "​", + "style": "IPY_MODEL_9446ff9a5e194ead9455a669a89eb178", + "value": "Downloading: 100%" + } + }, + "366253d68f314232a50a891614f4b4bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bd503ff4fa494883a7f2adba92a3897e", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_499d1c7f4c5a4fe1a9324f6468bfeb59", + "value": 665.0 + } + }, + "3b86029b2f0642c59a20a096cd0c0e27": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1876,23 +2195,7 @@ "width": null } }, - "25c136838f8e4167812e96724c54d554": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2a7ad8fe6d1040b4bfeea9d7ce09be50": { + "3bfb1b741d9f4d8c9c8d7decc0b01b80": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1944,7 +2247,7 @@ "width": null } }, - "2c0653445662466fb758895be4ba71e6": { + "3d50484d44df4b18bfe556d46bb3c90c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1996,7 +2299,29 @@ "width": null } }, - "2da5437e1acc494284ae4898ecf5825d": { + "3e5263f90c834ffe8e75512b1c9ff0da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_11abdc356fc747f4aec38230faef0d33", + "IPY_MODEL_08222567e27c40d1abead6c1ec8c93ce", + "IPY_MODEL_af8074b8c23b4251b1d07a6df232c716" + ], + "layout": "IPY_MODEL_e705824be7084bcfbcd847ca65fdab2d" + } + }, + "3e694296ae8d4c84aa6680938cf17629": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2045,10 +2370,10 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "2e5d0372d3834746aa0d0c1c8f0e7f1d": { + "40404ad564e54f289b94b4b391a2fbf1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2100,31 +2425,50 @@ "width": null } }, - "2ecf7dfd01c34450a5428be8316c8b11": { + "41524cf278db44f78c46303a6352ee0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e67af21d8af94bf9b8a0a7041681f4f1", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4534af8ca61c4e5ca6601e31f912e07b", - "value": 2211.0 + "layout": "IPY_MODEL_4f121a17923d4b41b907456fd43cea76", + "placeholder": "​", + "style": "IPY_MODEL_8a68688d67f141f49b015ffb7631c5ab", + "value": " 29.0/29.0 [00:00<00:00, 2.24kB/s]" + } + }, + "424933a378b84b5cb884fb55ffadd8ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ab6ac57e7c6640da9ad33aa8d020dd5a", + "IPY_MODEL_798c619031384f2bae98952ab342f9d4", + "IPY_MODEL_24cefcf7db0144a284cc29542ef69f64" + ], + "layout": "IPY_MODEL_de92500a117c4c0da4e9e70013924e96" } }, - "3c3551484b5449899d1fe2e170072a55": { + "425e484ab48344418b6e4895eb45dace": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2176,7 +2520,45 @@ "width": null } }, - "4055649aad66458f9876f0b4c62e54fc": { + "45194cb1a20648d5a6a1eabd72cf1a09": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_35f604b8306542a9ae4c62d3a1c514d0", + "IPY_MODEL_366253d68f314232a50a891614f4b4bf", + "IPY_MODEL_edc99d9a0c5249b9955e3f1f9c7155f4" + ], + "layout": "IPY_MODEL_ec7716facfd74b3f938c25ac1a9d16f1" + } + }, + "499d1c7f4c5a4fe1a9324f6468bfeb59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4f121a17923d4b41b907456fd43cea76": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2228,7 +2610,7 @@ "width": null } }, - "4330bdb512fe46d48298469d69c9e65c": { + "53b0e001d729478c867a3e96d7080c39": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2244,75 +2626,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a2c56565c89245b1b2404448eebb5048", - "max": 231508.0, + "layout": "IPY_MODEL_b6f37e0167e843b5ade3e5ed7a60a25b", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_25c136838f8e4167812e96724c54d554", - "value": 231508.0 - } - }, - "44c15dfa0908484cb4e18a1de1b213c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_560c97ef330f4ba8b3d3dba045f3fa53", - "IPY_MODEL_f33471391501412a8459aec2086f2c05", - "IPY_MODEL_f9729f845f3a4803b112798042fb2873" - ], - "layout": "IPY_MODEL_0bbaa18a07b34edaa3b8df2b4b3c5137" - } - }, - "4534af8ca61c4e5ca6601e31f912e07b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4a26b5ba183049c7998c8f73d4172ee0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b633e1c734554e19907a1391d2c5cbe1", - "IPY_MODEL_2ecf7dfd01c34450a5428be8316c8b11", - "IPY_MODEL_75bc474a92ae48729d6845c664d57cb7" - ], - "layout": "IPY_MODEL_9146bcb240a24bdc8ea111f42c2e405a" + "style": "IPY_MODEL_0df75e3802eb4765969e10fab4fe3ee8", + "value": 391.0 } }, - "4f60b6883d2c4f999a40e92885a5c854": { + "5658f38e06684572b9bca2c6174683a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2327,96 +2649,80 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cb4def97587f4181924c5e7424f2a68b", + "layout": "IPY_MODEL_be7782e2612d4fb3992d72064280ba3a", "placeholder": "​", - "style": "IPY_MODEL_01c763d36b954f8594ee4817c643748e", + "style": "IPY_MODEL_8b4a9fd13f424189b9c44412f391f749", "value": "Downloading: 100%" } }, - "506409b8914a48229f15b57447a43add": { + "57a396c415214478a1756d8429b28142": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "514c1d873693435c8152d9b1f91c94f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5ce01c65834b4616a7d17da59e6d0ac9", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_506409b8914a48229f15b57447a43add", - "value": 665.0 - } - }, - "55c295f16b9a423c9af63d9990e60b3a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4f60b6883d2c4f999a40e92885a5c854", - "IPY_MODEL_600ebc6a946c4593adb15b477911d8d5", - "IPY_MODEL_e9f09eabb6794661a266de606d853f4b" - ], - "layout": "IPY_MODEL_a230ef69c1b445d39970505fff86e52e" - } - }, - "560c97ef330f4ba8b3d3dba045f3fa53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "58bba979fc734eddbcf16f916f25795c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2a7ad8fe6d1040b4bfeea9d7ce09be50", - "placeholder": "​", - "style": "IPY_MODEL_bb09ca3d247941e2a8ab0ffe66637f5f", - "value": "Downloading: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "57c5f26a0f8249bf86e508798575f9b1": { + "61066423dc16481d88ce2edadb92ae4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2431,43 +2737,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6cd8c7c4d84b467280a26fbd2786e6ef", + "layout": "IPY_MODEL_1808d4824d614576b143efc02b695a79", "placeholder": "​", - "style": "IPY_MODEL_77886c7a107a452c8780ab1e0047680a", - "value": " 232k/232k [00:00<00:00, 1.73MB/s]" - } - }, - "581b8cb923de472ead864c8ba17eca58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "59329ef378d54b129158814627d099f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_2282f899be604402bbcb09e97e28c74b", + "value": " 391/391 [00:00<00:00, 18.1kB/s]" } }, - "5a4763bbcb4f40a19aa3b17a5d32f370": { + "6f8e39a189f541498183c2e6ba35ee72": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2519,7 +2795,7 @@ "width": null } }, - "5ce01c65834b4616a7d17da59e6d0ac9": { + "6fc6e8391ccf45b0b90422d2bb9c6771": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2571,7 +2847,7 @@ "width": null } }, - "600ebc6a946c4593adb15b477911d8d5": { + "798c619031384f2bae98952ab342f9d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2587,15 +2863,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3c3551484b5449899d1fe2e170072a55", - "max": 466062.0, + "layout": "IPY_MODEL_c34979b264fc43a28b90b91f2b1acebb", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1c23b34a7293486e8fb3a73c3cdcc74a", - "value": 466062.0 + "style": "IPY_MODEL_a101184f8ba541e49f2e703ef8827f60", + "value": 54245363.0 } }, - "62c92957735b42bfa8856482f295990e": { + "83d82860dd344eed85830e46dbbe58d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2610,14 +2886,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6c853912724f4772b69751e41c87d551", - "IPY_MODEL_feb305bf675e4c8fac258ba63dfd7a2d", - "IPY_MODEL_9742a02e71714a12a771ed3004428b20" + "IPY_MODEL_92c2dbce6d7c412a9fbe8087c6f39c73", + "IPY_MODEL_1407f5da059048d9bea48292a33a67bd", + "IPY_MODEL_41524cf278db44f78c46303a6352ee0b" ], - "layout": "IPY_MODEL_2e5d0372d3834746aa0d0c1c8f0e7f1d" + "layout": "IPY_MODEL_6f8e39a189f541498183c2e6ba35ee72" } }, - "64de4ffe6afd4bfcae90b87d2078f02c": { + "844fc9a638e64344a64f6c9fcc4b1dc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2669,43 +2945,7 @@ "width": null } }, - "680aaa6533ba499683d0440ba9cd8d6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6c853912724f4772b69751e41c87d551": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cb7ebd8cc0b548f6af8b893f83a52a91", - "placeholder": "​", - "style": "IPY_MODEL_7f7eab30af7f433b8963af55c75f1d05", - "value": "Downloading: 100%" - } - }, - "6cd8c7c4d84b467280a26fbd2786e6ef": { + "8a31b581011b4a93b6c157aed2f3018e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2757,7 +2997,22 @@ "width": null } }, - "6f8288c6bb5642ae89de14df3107e620": { + "8a68688d67f141f49b015ffb7631c5ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8aa6fe06fe4444aab2b762c8af919d4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2809,58 +3064,7 @@ "width": null } }, - "75bc474a92ae48729d6845c664d57cb7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d0a0d225553c44c2bbd6c0daef585f97", - "placeholder": "​", - "style": "IPY_MODEL_a847ef32c0b040138998c2e6f3a1ab5a", - "value": " 2.21k/2.21k [00:00<00:00, 168kB/s]" - } - }, - "77886c7a107a452c8780ab1e0047680a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "78566a9152264c5aa12f9ea87241abc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7a1f037669de4a0e91b587e52cffa6e8": { + "8b4a9fd13f424189b9c44412f391f749": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2875,29 +3079,7 @@ "description_width": "" } }, - "7bbe9e1a7dd947af9d479bd5e6adf343": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f78ecc51f869439185011ce475404230", - "IPY_MODEL_bdf8fd5422474a60a42e47705a16f773", - "IPY_MODEL_837927af9c014f588951eb0dda77b120" - ], - "layout": "IPY_MODEL_7f7636fff1b341d2afccdd8e8eefa6b4" - } - }, - "7d464f341e3e4dfd89cca8f3c705cd3b": { + "8ff8d141345b401c9c1f84c64a39cf67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2912,13 +3094,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_196c4e5f7f894fee99378255683c69ea", + "layout": "IPY_MODEL_b728bdbf92d14a0cb266fbfbf3626506", "placeholder": "​", - "style": "IPY_MODEL_b831b897360043cc8d9db0163ddfdd4b", + "style": "IPY_MODEL_dd9814e8a2ab4745a9180d96ad063b50", "value": "Downloading: 100%" } }, - "7f7636fff1b341d2afccdd8e8eefa6b4": { + "91e09a7ba7934fd685263b3866b937fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2970,7 +3152,28 @@ "width": null } }, - "7f7eab30af7f433b8963af55c75f1d05": { + "92c2dbce6d7c412a9fbe8087c6f39c73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8a31b581011b4a93b6c157aed2f3018e", + "placeholder": "​", + "style": "IPY_MODEL_fd7b0fbc75624cd292369b36fe4474b1", + "value": "Downloading: 100%" + } + }, + "9446ff9a5e194ead9455a669a89eb178": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2985,52 +3188,39 @@ "description_width": "" } }, - "837927af9c014f588951eb0dda77b120": { + "952f61bd253d4397bcdb3ba9e08cc27a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5a4763bbcb4f40a19aa3b17a5d32f370", - "placeholder": "​", - "style": "IPY_MODEL_680aaa6533ba499683d0440ba9cd8d6f", - "value": " 0/0 [00:00<?, ?it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "85b335b646bb4d4cb6af4543ad3b55a4": { + "a101184f8ba541e49f2e703ef8827f60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4055649aad66458f9876f0b4c62e54fc", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fb64bce345774581b0d574dd2b9a8212", - "value": 391.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "87867366263b48f6a52ac08eb484436a": { + "a17af920182941e58002c4cf8e83171e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3082,7 +3272,7 @@ "width": null } }, - "8b29690fa1cb437d9fe109c5bdeb8ea6": { + "a505aca9ba4749f38170f2c26ecada79": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3134,59 +3324,86 @@ "width": null } }, - "8b3e8c6c43de4dc7bb122f92b2f3f4fb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "ab6ac57e7c6640da9ad33aa8d020dd5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d3f7d4deed8f4bb7bd8f73ec2dc44787", + "placeholder": "​", + "style": "IPY_MODEL_2e02daa7c3ca45149d91dde070b6b9c4", + "value": "Downloading: 100%" + } + }, + "af8074b8c23b4251b1d07a6df232c716": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3bfb1b741d9f4d8c9c8d7decc0b01b80", + "placeholder": "​", + "style": "IPY_MODEL_14095d01843c47b092005e5e53137e39", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "b16e3649d0c44a02a3b4c06951a20f21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bdbf77706b2a448a883c3f8534e5ed76", + "placeholder": "​", + "style": "IPY_MODEL_10d89be6a0374ec897cf377497b18e5f", + "value": "Downloading: 100%" + } + }, + "b595faff4a024526b60539fe63c2ee7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8cafbbeed54d423b873d83db5431837c": { + "b6f37e0167e843b5ade3e5ed7a60a25b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3238,7 +3455,7 @@ "width": null } }, - "9146bcb240a24bdc8ea111f42c2e405a": { + "b728bdbf92d14a0cb266fbfbf3626506": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3277,41 +3494,20 @@ "max_width": null, "min_height": null, "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9349552ff53e4ad6af5db8422f9153eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8cafbbeed54d423b873d83db5431837c", - "placeholder": "​", - "style": "IPY_MODEL_20af6857c9d64effa8d3097ca76f980c", - "value": " 391/391 [00:00<00:00, 35.7kB/s]" + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9508ce2d2b9641348c0764cd09fdcd6b": { + "b85482da3c1c4ec2bf18f764413385f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3326,35 +3522,36 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0a250e335b8e4c219343a2094c200e60", - "IPY_MODEL_514c1d873693435c8152d9b1f91c94f6", - "IPY_MODEL_10911ca5d8c445cfa6351535653f4785" + "IPY_MODEL_5658f38e06684572b9bca2c6174683a8", + "IPY_MODEL_53b0e001d729478c867a3e96d7080c39", + "IPY_MODEL_61066423dc16481d88ce2edadb92ae4e" ], - "layout": "IPY_MODEL_f4b9c6908a654ccca12a5a79df763444" + "layout": "IPY_MODEL_f13126affda446cfbd40755a48b66d1d" } }, - "9742a02e71714a12a771ed3004428b20": { + "b921a2781e5b411d92977c1c84a05e0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2da5437e1acc494284ae4898ecf5825d", - "placeholder": "​", - "style": "IPY_MODEL_f4e431dfd531456fba5960523e44b81e", - "value": " 54.2M/54.2M [00:00<00:00, 91.5MB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dcc1d67a6ca1484ab12838d655989880", + "IPY_MODEL_255cd285c2964168bd5d592797319799", + "IPY_MODEL_23efd1d587f4466d8ffe87ab695976a2" + ], + "layout": "IPY_MODEL_069cbc86cb6d43559308307b56cbdaa0" } }, - "9b2fab74a79944f297e4bfea317ae949": { + "bd503ff4fa494883a7f2adba92a3897e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3406,7 +3603,7 @@ "width": null } }, - "9e6d509891064270bbb435d72a126095": { + "bdbf77706b2a448a883c3f8534e5ed76": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3455,10 +3652,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "a230ef69c1b445d39970505fff86e52e": { + "be7782e2612d4fb3992d72064280ba3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3510,7 +3707,7 @@ "width": null } }, - "a2c56565c89245b1b2404448eebb5048": { + "c34979b264fc43a28b90b91f2b1acebb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3562,38 +3759,7 @@ "width": null } }, - "a847ef32c0b040138998c2e6f3a1ab5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "aaf66787d00c4f92a788285f1322d3bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ab03a31e33ca4042ad900e6cbe62f1ec": { + "d3f7d4deed8f4bb7bd8f73ec2dc44787": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3645,66 +3811,22 @@ "width": null } }, - "b2a7d43a75994007a1e0039d44bf4eea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b39ff5aa02c3408cbbb519b43f852e97", - "IPY_MODEL_85b335b646bb4d4cb6af4543ad3b55a4", - "IPY_MODEL_9349552ff53e4ad6af5db8422f9153eb" - ], - "layout": "IPY_MODEL_8b3e8c6c43de4dc7bb122f92b2f3f4fb" - } - }, - "b39ff5aa02c3408cbbb519b43f852e97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_87867366263b48f6a52ac08eb484436a", - "placeholder": "​", - "style": "IPY_MODEL_c31705e08c12422ba157d236829f1cc0", - "value": "Downloading: 100%" - } - }, - "b3eab04139114b8a883f533efb31e57c": { + "d53bb78b776c471ebdbed69dcd8c1107": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "b633e1c734554e19907a1391d2c5cbe1": { + "dcc1d67a6ca1484ab12838d655989880": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3719,82 +3841,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_22e89d2f72534beab670b51b1b20daa6", + "layout": "IPY_MODEL_3b86029b2f0642c59a20a096cd0c0e27", "placeholder": "​", - "style": "IPY_MODEL_bd5d8b1eae00448d961af904ad7bf551", + "style": "IPY_MODEL_d53bb78b776c471ebdbed69dcd8c1107", "value": "Downloading: 100%" } }, - "b831b897360043cc8d9db0163ddfdd4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bb09ca3d247941e2a8ab0ffe66637f5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bd5d8b1eae00448d961af904ad7bf551": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bdf8fd5422474a60a42e47705a16f773": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9e6d509891064270bbb435d72a126095", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b3eab04139114b8a883f533efb31e57c", - "value": 0.0 - } - }, - "c31705e08c12422ba157d236829f1cc0": { + "dd9814e8a2ab4745a9180d96ad063b50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3809,7 +3862,7 @@ "description_width": "" } }, - "cb4def97587f4181924c5e7424f2a68b": { + "de92500a117c4c0da4e9e70013924e96": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3861,7 +3914,7 @@ "width": null } }, - "cb7ebd8cc0b548f6af8b893f83a52a91": { + "e5a054c0b2e145c48b6889d24cd75a8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3913,7 +3966,7 @@ "width": null } }, - "d0a0d225553c44c2bbd6c0daef585f97": { + "e705824be7084bcfbcd847ca65fdab2d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3965,7 +4018,7 @@ "width": null } }, - "e67af21d8af94bf9b8a0a7041681f4f1": { + "e7e3acde30064f1d9904d5b63d9d4a05": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4017,7 +4070,22 @@ "width": null } }, - "e80e53a506f34a4eb15f5ca41dcc8f3a": { + "ea7bdd86579240b4b0acbda847f962e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ec7716facfd74b3f938c25ac1a9d16f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4069,7 +4137,7 @@ "width": null } }, - "e9f09eabb6794661a266de606d853f4b": { + "ed3fa51bbd94410eb093a36bc6b17844": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4084,59 +4152,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e80e53a506f34a4eb15f5ca41dcc8f3a", + "layout": "IPY_MODEL_425e484ab48344418b6e4895eb45dace", "placeholder": "​", - "style": "IPY_MODEL_7a1f037669de4a0e91b587e52cffa6e8", - "value": " 466k/466k [00:00<00:00, 2.68MB/s]" + "style": "IPY_MODEL_f3ac47bb4ec24568a69c933fe01e37b5", + "value": " 466k/466k [00:00<00:00, 22.8MB/s]" } }, - "f33471391501412a8459aec2086f2c05": { + "edc99d9a0c5249b9955e3f1f9c7155f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9b2fab74a79944f297e4bfea317ae949", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aaf66787d00c4f92a788285f1322d3bb", - "value": 29.0 - } - }, - "f335d8552862438c918a7d38750ea471": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7d464f341e3e4dfd89cca8f3c705cd3b", - "IPY_MODEL_4330bdb512fe46d48298469d69c9e65c", - "IPY_MODEL_57c5f26a0f8249bf86e508798575f9b1" - ], - "layout": "IPY_MODEL_036b7778c36543bdbeac3d2f0ced5cd3" + "layout": "IPY_MODEL_07f1a2139f464c99afacc75ed456aa89", + "placeholder": "​", + "style": "IPY_MODEL_0b98e997fea741f29c36386e79658c5a", + "value": " 665/665 [00:00<00:00, 32.7kB/s]" } }, - "f4b9c6908a654ccca12a5a79df763444": { + "f13126affda446cfbd40755a48b66d1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4188,7 +4231,7 @@ "width": null } }, - "f4e431dfd531456fba5960523e44b81e": { + "f3ac47bb4ec24568a69c933fe01e37b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4203,28 +4246,7 @@ "description_width": "" } }, - "f78ecc51f869439185011ce475404230": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6f8288c6bb5642ae89de14df3107e620", - "placeholder": "​", - "style": "IPY_MODEL_00d4881e37364b46bd15efdaf3d27490", - "value": "" - } - }, - "f8d0fe29fd574a11a3ff23f9fb9c6def": { + "f87840aa69ad485d9908bda606c72497": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4240,66 +4262,44 @@ "description_width": "" } }, - "f9729f845f3a4803b112798042fb2873": { + "fc805ae8481941ecb7b4d453e85270e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8b29690fa1cb437d9fe109c5bdeb8ea6", - "placeholder": "​", - "style": "IPY_MODEL_78566a9152264c5aa12f9ea87241abc0", - "value": " 29.0/29.0 [00:00<00:00, 3.11kB/s]" + "layout": "IPY_MODEL_6fc6e8391ccf45b0b90422d2bb9c6771", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_292922cc6d4a45e58b35a866527a29e5", + "value": 231508.0 } }, - "fb64bce345774581b0d574dd2b9a8212": { + "fd7b0fbc75624cd292369b36fe4474b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } - }, - "feb305bf675e4c8fac258ba63dfd7a2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2c0653445662466fb758895be4ba71e6", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f8d0fe29fd574a11a3ff23f9fb9c6def", - "value": 54245363.0 - } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index a81d446d1..876c32612 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:25.374211Z", - "iopub.status.busy": "2023-10-06T06:35:25.373835Z", - "iopub.status.idle": "2023-10-06T06:35:26.540620Z", - "shell.execute_reply": "2023-10-06T06:35:26.539898Z" + "iopub.execute_input": "2023-10-11T10:07:37.080093Z", + "iopub.status.busy": "2023-10-11T10:07:37.079618Z", + "iopub.status.idle": "2023-10-11T10:07:38.289799Z", + "shell.execute_reply": "2023-10-11T10:07:38.289011Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:26.545737Z", - "iopub.status.busy": "2023-10-06T06:35:26.544250Z", - "iopub.status.idle": "2023-10-06T06:35:26.549175Z", - "shell.execute_reply": "2023-10-06T06:35:26.548571Z" + "iopub.execute_input": "2023-10-11T10:07:38.293531Z", + "iopub.status.busy": "2023-10-11T10:07:38.292966Z", + "iopub.status.idle": "2023-10-11T10:07:38.297833Z", + "shell.execute_reply": "2023-10-11T10:07:38.297125Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:26.552992Z", - "iopub.status.busy": "2023-10-06T06:35:26.552745Z", - "iopub.status.idle": "2023-10-06T06:35:26.602094Z", - "shell.execute_reply": "2023-10-06T06:35:26.601368Z" + "iopub.execute_input": "2023-10-11T10:07:38.301706Z", + "iopub.status.busy": "2023-10-11T10:07:38.301185Z", + "iopub.status.idle": "2023-10-11T10:07:38.349050Z", + "shell.execute_reply": "2023-10-11T10:07:38.348345Z" }, "nbsphinx": "hidden" }, @@ -301,10 +301,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:26.605547Z", - "iopub.status.busy": "2023-10-06T06:35:26.605090Z", - "iopub.status.idle": "2023-10-06T06:35:44.431461Z", - "shell.execute_reply": "2023-10-06T06:35:44.430739Z" + "iopub.execute_input": "2023-10-11T10:07:38.352885Z", + "iopub.status.busy": "2023-10-11T10:07:38.352400Z", + "iopub.status.idle": "2023-10-11T10:07:55.583042Z", + "shell.execute_reply": "2023-10-11T10:07:55.581664Z" }, "id": "dhTHOg8Pyv5G" }, @@ -2602,13 +2602,7 @@ "\n", "\n", "🎯 Cifar100_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n", "\n", diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 2d61ea6c4..7cf315cba 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -931,13 +931,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -947,6 +947,12 @@

How can I find label issues in big datasets with limited memory?filter.find_label_issues() can be sped up by specifying the argument low_memory=True, which will instead use find_label_issues_batched() internally. The following methods provide this option:

+
    +
  1. classification.CleanLearning

  2. +
  3. multilabel_classification.filter.find_label_issues

  4. +
  5. token_classification.filter.find_label_issues

  6. +

To use less memory and get results faster if your dataset has many classes: Try merging the rare classes into a single “Other” class before you find label issues. The resulting issues won’t be affected much since cleanlab anyway does not have enough data to accurately diagnose label errors in classes that are rarely seen. To do this, you should aggregate all the probability assigned to the rare classes in pred_probs into a single new dimension of pred_probs_merged (where this new array no longer has columns for the rare classes). Here is a function that does this for you, which you can also modify as needed:

@@ -1186,7 +1192,7 @@

Can’t find an answer to your question?Cleanlab Github issues, Cleanlab Code Examples or our Slack Community.

If your question is not addressed anywhere, please open a new Github issue. Our developers may also provide personalized assistance in our Slack Community.

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index fdfacd08c..f8adcb06e 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:46.702241Z", - "iopub.status.busy": "2023-10-06T06:35:46.701424Z", - "iopub.status.idle": "2023-10-06T06:35:47.897272Z", - "shell.execute_reply": "2023-10-06T06:35:47.896538Z" + "iopub.execute_input": "2023-10-11T10:07:57.816728Z", + "iopub.status.busy": "2023-10-11T10:07:57.816485Z", + "iopub.status.idle": "2023-10-11T10:07:59.026260Z", + "shell.execute_reply": "2023-10-11T10:07:59.025496Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:47.901348Z", - "iopub.status.busy": "2023-10-06T06:35:47.900708Z", - "iopub.status.idle": "2023-10-06T06:35:47.906348Z", - "shell.execute_reply": "2023-10-06T06:35:47.905579Z" + "iopub.execute_input": "2023-10-11T10:07:59.030456Z", + "iopub.status.busy": "2023-10-11T10:07:59.029913Z", + "iopub.status.idle": "2023-10-11T10:07:59.035450Z", + "shell.execute_reply": "2023-10-11T10:07:59.034832Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:47.909784Z", - "iopub.status.busy": "2023-10-06T06:35:47.909202Z", - "iopub.status.idle": "2023-10-06T06:35:50.496469Z", - "shell.execute_reply": "2023-10-06T06:35:50.495383Z" + "iopub.execute_input": "2023-10-11T10:07:59.038568Z", + "iopub.status.busy": "2023-10-11T10:07:59.038194Z", + "iopub.status.idle": "2023-10-11T10:08:01.652795Z", + "shell.execute_reply": "2023-10-11T10:08:01.651760Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.501429Z", - "iopub.status.busy": "2023-10-06T06:35:50.500232Z", - "iopub.status.idle": "2023-10-06T06:35:50.543038Z", - "shell.execute_reply": "2023-10-06T06:35:50.542071Z" + "iopub.execute_input": "2023-10-11T10:08:01.657989Z", + "iopub.status.busy": "2023-10-11T10:08:01.656923Z", + "iopub.status.idle": "2023-10-11T10:08:01.702215Z", + "shell.execute_reply": "2023-10-11T10:08:01.701304Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.547244Z", - "iopub.status.busy": "2023-10-06T06:35:50.546623Z", - "iopub.status.idle": "2023-10-06T06:35:50.594347Z", - "shell.execute_reply": "2023-10-06T06:35:50.593337Z" + "iopub.execute_input": "2023-10-11T10:08:01.705900Z", + "iopub.status.busy": "2023-10-11T10:08:01.705462Z", + "iopub.status.idle": "2023-10-11T10:08:01.745163Z", + "shell.execute_reply": "2023-10-11T10:08:01.744187Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.598918Z", - "iopub.status.busy": "2023-10-06T06:35:50.598256Z", - "iopub.status.idle": "2023-10-06T06:35:50.603684Z", - "shell.execute_reply": "2023-10-06T06:35:50.603007Z" + "iopub.execute_input": "2023-10-11T10:08:01.749587Z", + "iopub.status.busy": "2023-10-11T10:08:01.749065Z", + "iopub.status.idle": "2023-10-11T10:08:01.754299Z", + "shell.execute_reply": "2023-10-11T10:08:01.753647Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.607346Z", - "iopub.status.busy": "2023-10-06T06:35:50.606955Z", - "iopub.status.idle": "2023-10-06T06:35:50.611621Z", - "shell.execute_reply": "2023-10-06T06:35:50.610994Z" + "iopub.execute_input": "2023-10-11T10:08:01.757759Z", + "iopub.status.busy": "2023-10-11T10:08:01.757307Z", + "iopub.status.idle": "2023-10-11T10:08:01.761240Z", + "shell.execute_reply": "2023-10-11T10:08:01.760581Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.615316Z", - "iopub.status.busy": "2023-10-06T06:35:50.614749Z", - "iopub.status.idle": "2023-10-06T06:35:50.649105Z", - "shell.execute_reply": "2023-10-06T06:35:50.648436Z" + "iopub.execute_input": "2023-10-11T10:08:01.764426Z", + "iopub.status.busy": "2023-10-11T10:08:01.763978Z", + "iopub.status.idle": "2023-10-11T10:08:01.799681Z", + "shell.execute_reply": "2023-10-11T10:08:01.798932Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be0c14921b504ae9a2b71c8a1f0dd81a", + "model_id": "2b251b453e8e41a682609e2f8b3b9a0b", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2fc0c118beb748e2b5e1646d0d3ee90a", + "model_id": "7c9d800dbdae44238eecd9e1660902f0", "version_major": 2, "version_minor": 0 }, @@ -369,16 +369,28 @@ ")" ] }, + { + "cell_type": "markdown", + "id": "13228a99-5d3f-47c0-87e5-2290d16461c4", + "metadata": {}, + "source": [ + "Methods that internally call `filter.find_label_issues()` can be sped up by specifying the argument `low_memory=True`, which will instead use `find_label_issues_batched()` internally. The following methods provide this option: \n", + "\n", + "1. [classification.CleanLearning](../cleanlab/classification.html#cleanlab.classification.CleanLearning)\n", + "2. [multilabel_classification.filter.find_label_issues](../cleanlab/multilabel_classification/filter.html#cleanlab.multilabel_classification.filter.find_label_issues)\n", + "3. [token_classification.filter.find_label_issues](../cleanlab/token_classification/filter.html?highlight=token#cleanlab.token_classification.filter.find_label_issues)" + ] + }, { "cell_type": "code", "execution_count": 9, "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.659072Z", - "iopub.status.busy": "2023-10-06T06:35:50.658637Z", - "iopub.status.idle": "2023-10-06T06:35:50.666238Z", - "shell.execute_reply": "2023-10-06T06:35:50.665620Z" + "iopub.execute_input": "2023-10-11T10:08:01.806292Z", + "iopub.status.busy": "2023-10-11T10:08:01.806037Z", + "iopub.status.idle": "2023-10-11T10:08:01.818327Z", + "shell.execute_reply": "2023-10-11T10:08:01.817709Z" }, "nbsphinx": "hidden" }, @@ -409,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.669472Z", - "iopub.status.busy": "2023-10-06T06:35:50.669041Z", - "iopub.status.idle": "2023-10-06T06:35:50.673074Z", - "shell.execute_reply": "2023-10-06T06:35:50.672516Z" + "iopub.execute_input": "2023-10-11T10:08:01.821694Z", + "iopub.status.busy": "2023-10-11T10:08:01.821233Z", + "iopub.status.idle": "2023-10-11T10:08:01.825284Z", + "shell.execute_reply": "2023-10-11T10:08:01.824714Z" }, "nbsphinx": "hidden" }, @@ -435,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.675923Z", - "iopub.status.busy": "2023-10-06T06:35:50.675534Z", - "iopub.status.idle": "2023-10-06T06:35:50.683859Z", - "shell.execute_reply": "2023-10-06T06:35:50.683168Z" + "iopub.execute_input": "2023-10-11T10:08:01.828517Z", + "iopub.status.busy": "2023-10-11T10:08:01.828076Z", + "iopub.status.idle": "2023-10-11T10:08:01.837604Z", + "shell.execute_reply": "2023-10-11T10:08:01.837044Z" } }, "outputs": [], @@ -488,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.687215Z", - "iopub.status.busy": "2023-10-06T06:35:50.686615Z", - "iopub.status.idle": "2023-10-06T06:35:50.726504Z", - "shell.execute_reply": "2023-10-06T06:35:50.725494Z" + "iopub.execute_input": "2023-10-11T10:08:01.841816Z", + "iopub.status.busy": "2023-10-11T10:08:01.840680Z", + "iopub.status.idle": "2023-10-11T10:08:01.882053Z", + "shell.execute_reply": "2023-10-11T10:08:01.880812Z" } }, "outputs": [], @@ -508,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.730613Z", - "iopub.status.busy": "2023-10-06T06:35:50.730009Z", - "iopub.status.idle": "2023-10-06T06:35:50.774911Z", - "shell.execute_reply": "2023-10-06T06:35:50.773936Z" + "iopub.execute_input": "2023-10-11T10:08:01.887518Z", + "iopub.status.busy": "2023-10-11T10:08:01.886316Z", + "iopub.status.idle": "2023-10-11T10:08:01.941910Z", + "shell.execute_reply": "2023-10-11T10:08:01.940967Z" }, "nbsphinx": "hidden" }, @@ -590,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.779489Z", - "iopub.status.busy": "2023-10-06T06:35:50.778862Z", - "iopub.status.idle": "2023-10-06T06:35:50.927787Z", - "shell.execute_reply": "2023-10-06T06:35:50.926325Z" + "iopub.execute_input": "2023-10-11T10:08:01.946518Z", + "iopub.status.busy": "2023-10-11T10:08:01.946239Z", + "iopub.status.idle": "2023-10-11T10:08:02.108365Z", + "shell.execute_reply": "2023-10-11T10:08:02.107094Z" } }, "outputs": [ @@ -660,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:50.931566Z", - "iopub.status.busy": "2023-10-06T06:35:50.930949Z", - "iopub.status.idle": "2023-10-06T06:35:53.976357Z", - "shell.execute_reply": "2023-10-06T06:35:53.975618Z" + "iopub.execute_input": "2023-10-11T10:08:02.112121Z", + "iopub.status.busy": "2023-10-11T10:08:02.111609Z", + "iopub.status.idle": "2023-10-11T10:08:05.602326Z", + "shell.execute_reply": "2023-10-11T10:08:05.601496Z" } }, "outputs": [ @@ -749,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:53.979888Z", - "iopub.status.busy": "2023-10-06T06:35:53.979505Z", - "iopub.status.idle": "2023-10-06T06:35:54.053412Z", - "shell.execute_reply": "2023-10-06T06:35:54.052618Z" + "iopub.execute_input": "2023-10-11T10:08:05.606331Z", + "iopub.status.busy": "2023-10-11T10:08:05.605806Z", + "iopub.status.idle": "2023-10-11T10:08:05.688429Z", + "shell.execute_reply": "2023-10-11T10:08:05.687714Z" } }, "outputs": [ @@ -862,58 +874,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06fd8639486845f0a5770bb831a3a054": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0936b9e2055141ccb8c3c3392f9f35e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "11cc4de1ee684fb7b62b44360845e16f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9f135c37d2034d1db8141659bb80934d", - "placeholder": "​", - "style": "IPY_MODEL_374b69e398924f97b3ae64fe3f1a651d", - "value": " 10000/? [00:00<00:00, 951240.33it/s]" - } - }, - "16d43a81d1e645bc8ec9ac1f6bbdd846": { + "17d1546833ee4da5acb8eb563bbd9f1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -965,81 +926,7 @@ "width": null } }, - "226990f90ba74add8ccf415794f4b586": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c21175c46b840cb969b3216ddd4818d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d7ddd051303b46dfbe7e4940618848fa", - "placeholder": "​", - "style": "IPY_MODEL_06fd8639486845f0a5770bb831a3a054", - "value": "number of examples processed for checking labels: " - } - }, - "2fc0c118beb748e2b5e1646d0d3ee90a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2c21175c46b840cb969b3216ddd4818d", - "IPY_MODEL_3eba1bce2e934d509ab39058423f90e0", - "IPY_MODEL_e29a9661bb774a7cbaaf78dc7fce4724" - ], - "layout": "IPY_MODEL_bab7dcb3cea34792a34d2346be233df4" - } - }, - "374b69e398924f97b3ae64fe3f1a651d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3eba1bce2e934d509ab39058423f90e0": { + "20134a20596d45a286748d3d699eb7ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1055,15 +942,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_16d43a81d1e645bc8ec9ac1f6bbdd846", + "layout": "IPY_MODEL_3b4da2a4cc784c20a58e2065f12655d3", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_948908b2e67e4695803af96945588f23", + "style": "IPY_MODEL_5cfcda576b9c46739eb7948eb7135b84", "value": 50.0 } }, - "450b8723e0d64f289233d3be7144493f": { + "25ba0e5222f54ac796ce584ce1a9c40b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1115,31 +1002,59 @@ "width": null } }, - "465eb8e97f324a1196bb2c4fe4c80307": { + "2b251b453e8e41a682609e2f8b3b9a0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5a43f06761e24372af6df7522664bb27", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_226990f90ba74add8ccf415794f4b586", - "value": 50.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d673388669234c0ca5473560de6047b1", + "IPY_MODEL_e58ea11219724945bca16c82010cd844", + "IPY_MODEL_58dbffc23579499a8ad44840f78ba02f" + ], + "layout": "IPY_MODEL_ebe75e14ba9a41459d6a32362e112629" } }, - "5a43f06761e24372af6df7522664bb27": { + "2c1e0a073b88408caf68027a23026794": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3510db2f3a614019b719c69f8da359f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3b4da2a4cc784c20a58e2065f12655d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1191,7 +1106,23 @@ "width": null } }, - "754add897d3543b3bdc3f4002835d76f": { + "57dfc2117732473d94ba95e2660d2325": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "58dbffc23579499a8ad44840f78ba02f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1206,13 +1137,66 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_771edf06ee73476c8d3a8120c432278f", + "layout": "IPY_MODEL_25ba0e5222f54ac796ce584ce1a9c40b", "placeholder": "​", - "style": "IPY_MODEL_7bed1f4ec7ec4590a9af608f1daae97b", - "value": "number of examples processed for estimating thresholds: " + "style": "IPY_MODEL_73b60b0c33154e96b0de8027c2a4cc3e", + "value": " 10000/? [00:00<00:00, 758559.67it/s]" } }, - "771edf06ee73476c8d3a8120c432278f": { + "5cfcda576b9c46739eb7948eb7135b84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "73b60b0c33154e96b0de8027c2a4cc3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7c9d800dbdae44238eecd9e1660902f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cc4091f892fe47dd9a278470b2c1320b", + "IPY_MODEL_20134a20596d45a286748d3d699eb7ef", + "IPY_MODEL_fb329ace41ec43bbad7d05e960aa5d7f" + ], + "layout": "IPY_MODEL_eb4775bd97f44603b1ec5b1a96e17b5d" + } + }, + "882cd8ab79de4ce1b1a09c578bc15eb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1264,38 +1248,7 @@ "width": null } }, - "7bed1f4ec7ec4590a9af608f1daae97b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "948908b2e67e4695803af96945588f23": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9f135c37d2034d1db8141659bb80934d": { + "ad49f6662d6c4c85a94630cba969c923": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1347,7 +1300,7 @@ "width": null } }, - "bab7dcb3cea34792a34d2346be233df4": { + "b87b8222c9824b7ab3ad8c38e03366a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1399,29 +1352,88 @@ "width": null } }, - "be0c14921b504ae9a2b71c8a1f0dd81a": { + "c31753285691439490c1d08253e85818": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cc4091f892fe47dd9a278470b2c1320b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_754add897d3543b3bdc3f4002835d76f", - "IPY_MODEL_465eb8e97f324a1196bb2c4fe4c80307", - "IPY_MODEL_11cc4de1ee684fb7b62b44360845e16f" - ], - "layout": "IPY_MODEL_e9f2e9720ea7477aa5a6decbaea6da00" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b87b8222c9824b7ab3ad8c38e03366a0", + "placeholder": "​", + "style": "IPY_MODEL_c31753285691439490c1d08253e85818", + "value": "number of examples processed for checking labels: " + } + }, + "d673388669234c0ca5473560de6047b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_17d1546833ee4da5acb8eb563bbd9f1a", + "placeholder": "​", + "style": "IPY_MODEL_3510db2f3a614019b719c69f8da359f0", + "value": "number of examples processed for estimating thresholds: " } }, - "d7ddd051303b46dfbe7e4940618848fa": { + "e58ea11219724945bca16c82010cd844": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_882cd8ab79de4ce1b1a09c578bc15eb2", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_57dfc2117732473d94ba95e2660d2325", + "value": 50.0 + } + }, + "eb4775bd97f44603b1ec5b1a96e17b5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1473,28 +1485,7 @@ "width": null } }, - "e29a9661bb774a7cbaaf78dc7fce4724": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_450b8723e0d64f289233d3be7144493f", - "placeholder": "​", - "style": "IPY_MODEL_0936b9e2055141ccb8c3c3392f9f35e7", - "value": " 10000/? [00:00<00:00, 1032240.79it/s]" - } - }, - "e9f2e9720ea7477aa5a6decbaea6da00": { + "ebe75e14ba9a41459d6a32362e112629": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1545,6 +1536,27 @@ "visibility": null, "width": null } + }, + "fb329ace41ec43bbad7d05e960aa5d7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ad49f6662d6c4c85a94630cba969c923", + "placeholder": "​", + "style": "IPY_MODEL_2c1e0a073b88408caf68027a23026794", + "value": " 10000/? [00:00<00:00, 879161.57it/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index df14cc989..310976df3 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -873,19 +873,19 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1263,7 +1263,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-100%|██████████| 40/40 [00:00<00:00, 43.78it/s]
+100%|██████████| 40/40 [00:00<00:00, 44.57it/s]
 
@@ -1314,7 +1314,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-100%|██████████| 40/40 [00:00<00:00, 41.92it/s]
+100%|██████████| 40/40 [00:01<00:00, 39.03it/s]
 
@@ -1365,7 +1365,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-100%|██████████| 40/40 [00:00<00:00, 44.13it/s]
+100%|██████████| 40/40 [00:00<00:00, 45.38it/s]
 
-
-
+
@@ -2312,35 +2304,35 @@

Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -2363,7 +2355,7 @@

Low information images

Here we can see a lot of low information images belong to the Sandal class.

diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index 1b394eb51..4c926444b 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:35:58.996596Z", - "iopub.status.busy": "2023-10-06T06:35:58.996169Z", - "iopub.status.idle": "2023-10-06T06:36:01.613645Z", - "shell.execute_reply": "2023-10-06T06:36:01.612696Z" + "iopub.execute_input": "2023-10-11T10:08:11.357497Z", + "iopub.status.busy": "2023-10-11T10:08:11.357036Z", + "iopub.status.idle": "2023-10-11T10:08:14.044877Z", + "shell.execute_reply": "2023-10-11T10:08:14.044097Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:36:01.617821Z", - "iopub.status.busy": "2023-10-06T06:36:01.617038Z", - "iopub.status.idle": "2023-10-06T06:36:01.623043Z", - "shell.execute_reply": "2023-10-06T06:36:01.622375Z" + "iopub.execute_input": "2023-10-11T10:08:14.049048Z", + "iopub.status.busy": "2023-10-11T10:08:14.048479Z", + "iopub.status.idle": "2023-10-11T10:08:14.054174Z", + "shell.execute_reply": "2023-10-11T10:08:14.053563Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:36:01.626761Z", - "iopub.status.busy": "2023-10-06T06:36:01.626230Z", - "iopub.status.idle": "2023-10-06T06:36:18.376569Z", - "shell.execute_reply": "2023-10-06T06:36:18.375809Z" + "iopub.execute_input": "2023-10-11T10:08:14.057130Z", + "iopub.status.busy": "2023-10-11T10:08:14.056759Z", + "iopub.status.idle": "2023-10-11T10:08:29.524666Z", + "shell.execute_reply": "2023-10-11T10:08:29.523896Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88b15f4b3fc74d1b8e47fc1ac4dfec47", + "model_id": "471ad93953614f17a2204c72fc743424", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8f95920e837c4278a3189a10686934d1", + "model_id": "919b65c98a2d49adb86d4a2bf0a272ef", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6e342b828e64febb10a1251f5430c2e", + "model_id": "eaa30426591f4d24adf70288ff7f338f", "version_major": 2, "version_minor": 0 }, @@ -211,7 +211,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "faa996b8481c4a60b9f6e0666aec6bf8", + "model_id": "9a2f3f65748042e4b3bff278de0563ea", "version_major": 2, "version_minor": 0 }, @@ -225,7 +225,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c962710431744861ba0cfcdf2a0b6887", + "model_id": "a4ba8fa1a1c5413e89c0b3c2d5aaf479", "version_major": 2, "version_minor": 0 }, @@ -239,7 +239,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b4a8cc673f994ad59d178c8f1a49bf1a", + "model_id": "e81ddb9fe8a240bfa8c6f23fb404bcd1", "version_major": 2, "version_minor": 0 }, @@ -253,7 +253,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "33cdde96c6f94e74a90cf9782fe2ac0e", + "model_id": "be0fa222992a4b689ffc715aa577a154", "version_major": 2, "version_minor": 0 }, @@ -267,7 +267,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd03d22ba98a413d90adc537006b8f39", + "model_id": "73d6fe322f2a4c548931f5375ca2ebbb", "version_major": 2, "version_minor": 0 }, @@ -281,7 +281,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "61ec067de744480d8ec2a0377c775341", + "model_id": "c150ef391de14b0bbed383ea10049561", "version_major": 2, "version_minor": 0 }, @@ -295,7 +295,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3d1ef15b6e96488fa1467ed33fb0ff16", + "model_id": "879878209ae04f39a9d431f4b1a30527", "version_major": 2, "version_minor": 0 }, @@ -309,7 +309,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f4eaccaf8aea4d86b3d8bc23ac879bd2", + "model_id": "19cb56bcbce449d8a8e650440d90bb26", "version_major": 2, "version_minor": 0 }, @@ -358,10 +358,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:36:18.380458Z", - "iopub.status.busy": "2023-10-06T06:36:18.380188Z", - "iopub.status.idle": "2023-10-06T06:36:18.384521Z", - "shell.execute_reply": "2023-10-06T06:36:18.383961Z" + "iopub.execute_input": "2023-10-11T10:08:29.528494Z", + "iopub.status.busy": "2023-10-11T10:08:29.528081Z", + "iopub.status.idle": "2023-10-11T10:08:29.532854Z", + "shell.execute_reply": "2023-10-11T10:08:29.532164Z" } }, "outputs": [ @@ -386,17 +386,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:36:18.387234Z", - "iopub.status.busy": "2023-10-06T06:36:18.386867Z", - "iopub.status.idle": "2023-10-06T06:36:34.519477Z", - "shell.execute_reply": "2023-10-06T06:36:34.518687Z" + "iopub.execute_input": "2023-10-11T10:08:29.536554Z", + "iopub.status.busy": "2023-10-11T10:08:29.536115Z", + "iopub.status.idle": "2023-10-11T10:08:47.447516Z", + "shell.execute_reply": "2023-10-11T10:08:47.446625Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "90b11b854c844458a3b8e8e2cdc39e57", + "model_id": "e426ac8581ba43e8be7e6691e756322a", "version_major": 2, "version_minor": 0 }, @@ -434,10 +434,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:36:34.523529Z", - "iopub.status.busy": "2023-10-06T06:36:34.522940Z", - "iopub.status.idle": "2023-10-06T06:37:03.835229Z", - "shell.execute_reply": "2023-10-06T06:37:03.834494Z" + "iopub.execute_input": "2023-10-11T10:08:47.451942Z", + "iopub.status.busy": "2023-10-11T10:08:47.451378Z", + "iopub.status.idle": "2023-10-11T10:09:17.298514Z", + "shell.execute_reply": "2023-10-11T10:09:17.297748Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:37:03.839339Z", - "iopub.status.busy": "2023-10-06T06:37:03.839057Z", - "iopub.status.idle": "2023-10-06T06:37:03.845266Z", - "shell.execute_reply": "2023-10-06T06:37:03.844566Z" + "iopub.execute_input": "2023-10-11T10:09:17.303314Z", + "iopub.status.busy": "2023-10-11T10:09:17.302764Z", + "iopub.status.idle": "2023-10-11T10:09:17.311365Z", + "shell.execute_reply": "2023-10-11T10:09:17.309075Z" } }, "outputs": [], @@ -511,10 +511,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:37:03.848467Z", - "iopub.status.busy": "2023-10-06T06:37:03.847836Z", - "iopub.status.idle": "2023-10-06T06:37:03.854129Z", - "shell.execute_reply": "2023-10-06T06:37:03.853442Z" + "iopub.execute_input": "2023-10-11T10:09:17.315942Z", + "iopub.status.busy": "2023-10-11T10:09:17.314767Z", + "iopub.status.idle": "2023-10-11T10:09:17.320716Z", + "shell.execute_reply": "2023-10-11T10:09:17.320170Z" }, "nbsphinx": "hidden" }, @@ -651,10 +651,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:37:03.857588Z", - "iopub.status.busy": "2023-10-06T06:37:03.857339Z", - "iopub.status.idle": "2023-10-06T06:37:03.869193Z", - "shell.execute_reply": "2023-10-06T06:37:03.868578Z" + "iopub.execute_input": "2023-10-11T10:09:17.325168Z", + "iopub.status.busy": "2023-10-11T10:09:17.324027Z", + "iopub.status.idle": "2023-10-11T10:09:17.337140Z", + "shell.execute_reply": "2023-10-11T10:09:17.336590Z" }, "nbsphinx": "hidden" }, @@ -779,10 +779,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:37:03.872254Z", - "iopub.status.busy": "2023-10-06T06:37:03.871738Z", - "iopub.status.idle": "2023-10-06T06:37:03.906971Z", - "shell.execute_reply": "2023-10-06T06:37:03.906276Z" + "iopub.execute_input": "2023-10-11T10:09:17.341535Z", + "iopub.status.busy": "2023-10-11T10:09:17.340408Z", + "iopub.status.idle": "2023-10-11T10:09:17.380446Z", + "shell.execute_reply": "2023-10-11T10:09:17.379690Z" } }, "outputs": [], @@ -819,10 +819,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:37:03.910573Z", - "iopub.status.busy": "2023-10-06T06:37:03.909972Z", - "iopub.status.idle": "2023-10-06T06:37:47.074575Z", - "shell.execute_reply": "2023-10-06T06:37:47.073820Z" + "iopub.execute_input": "2023-10-11T10:09:17.385260Z", + "iopub.status.busy": "2023-10-11T10:09:17.384093Z", + "iopub.status.idle": "2023-10-11T10:09:57.442330Z", + "shell.execute_reply": "2023-10-11T10:09:57.441579Z" } }, "outputs": [ @@ -838,14 +838,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 6.443\n" + "epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 6.045\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 6.120\n", + "epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 5.663\n", "Computing feature embeddings ...\n" ] }, @@ -862,7 +862,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.35it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.18it/s]" ] }, { @@ -870,7 +870,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 31.46it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 34.59it/s]" ] }, { @@ -878,7 +878,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 11/40 [00:00<00:00, 38.97it/s]" + " 32%|███▎ | 13/40 [00:00<00:00, 42.65it/s]" ] }, { @@ -886,7 +886,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 42.47it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 43.86it/s]" ] }, { @@ -894,7 +894,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 42.42it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 48.27it/s]" ] }, { @@ -902,7 +902,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 44.41it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 49.45it/s]" ] }, { @@ -910,7 +910,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 45.37it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 51.44it/s]" ] }, { @@ -918,15 +918,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 48.21it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 43.78it/s]" + "100%|██████████| 40/40 [00:00<00:00, 44.57it/s]" ] }, { @@ -956,15 +948,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 31.53it/s]" + " 2%|▎ | 1/40 [00:00<00:05, 6.69it/s]" ] }, { @@ -972,7 +956,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 11/40 [00:00<00:00, 39.37it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 27.16it/s]" ] }, { @@ -980,7 +964,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 42.81it/s]" + " 30%|███ | 12/40 [00:00<00:00, 37.62it/s]" ] }, { @@ -988,7 +972,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 43.60it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 40.73it/s]" ] }, { @@ -996,7 +980,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 43.90it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 44.74it/s]" ] }, { @@ -1004,7 +988,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 45.24it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 46.38it/s]" ] }, { @@ -1012,7 +996,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 47.74it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 49.53it/s]" ] }, { @@ -1020,7 +1004,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 43.40it/s]" + "100%|██████████| 40/40 [00:00<00:00, 43.83it/s]" ] }, { @@ -1042,14 +1026,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 6.403\n" + "epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 5.897\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 6.145\n", + "epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 5.464\n", "Computing feature embeddings ...\n" ] }, @@ -1066,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.33it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.34it/s]" ] }, { @@ -1074,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 29.46it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 25.01it/s]" ] }, { @@ -1082,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 11/40 [00:00<00:00, 34.48it/s]" + " 22%|██▎ | 9/40 [00:00<00:01, 26.56it/s]" ] }, { @@ -1090,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 38.20it/s]" + " 30%|███ | 12/40 [00:00<00:01, 27.35it/s]" ] }, { @@ -1098,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 41.46it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 33.00it/s]" ] }, { @@ -1106,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 43.43it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 39.80it/s]" ] }, { @@ -1114,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 44.82it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 43.61it/s]" ] }, { @@ -1122,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 47.53it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 45.23it/s]" ] }, { @@ -1130,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 41.92it/s]" + "100%|██████████| 40/40 [00:01<00:00, 39.03it/s]" ] }, { @@ -1160,15 +1144,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 32.05it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.19it/s]" ] }, { @@ -1176,7 +1152,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 11/40 [00:00<00:00, 39.57it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 30.29it/s]" ] }, { @@ -1184,7 +1160,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 40.49it/s]" + " 30%|███ | 12/40 [00:00<00:00, 40.42it/s]" ] }, { @@ -1192,7 +1168,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 43.07it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 45.78it/s]" ] }, { @@ -1200,7 +1176,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 45.03it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 44.58it/s]" ] }, { @@ -1208,7 +1184,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 46.06it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 47.09it/s]" ] }, { @@ -1216,7 +1192,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 48.48it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 48.18it/s]" ] }, { @@ -1224,7 +1200,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 43.97it/s]" + "100%|██████████| 40/40 [00:00<00:00, 45.22it/s]" ] }, { @@ -1246,14 +1222,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 6.562\n" + "epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 5.942\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 5.901\n", + "epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 5.527\n", "Computing feature embeddings ...\n" ] }, @@ -1270,15 +1246,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 32.36it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.68it/s]" ] }, { @@ -1286,7 +1254,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 11/40 [00:00<00:00, 38.53it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 29.84it/s]" ] }, { @@ -1294,7 +1262,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 40.39it/s]" + " 30%|███ | 12/40 [00:00<00:00, 40.63it/s]" ] }, { @@ -1302,7 +1270,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 43.56it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 46.00it/s]" ] }, { @@ -1310,7 +1278,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 45.13it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 44.49it/s]" ] }, { @@ -1318,7 +1286,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 46.29it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 45.71it/s]" ] }, { @@ -1326,7 +1294,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 48.76it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 48.27it/s]" ] }, { @@ -1334,7 +1302,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 44.13it/s]" + "100%|██████████| 40/40 [00:00<00:00, 45.38it/s]" ] }, { @@ -1372,7 +1340,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 30.31it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 32.66it/s]" ] }, { @@ -1380,7 +1348,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 12/40 [00:00<00:00, 39.85it/s]" + " 30%|███ | 12/40 [00:00<00:00, 43.06it/s]" ] }, { @@ -1388,7 +1356,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 40.81it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 48.51it/s]" ] }, { @@ -1396,7 +1364,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 43.67it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 50.15it/s]" ] }, { @@ -1404,7 +1372,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 45.38it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 51.97it/s]" ] }, { @@ -1412,7 +1380,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 46.54it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 50.03it/s]" ] }, { @@ -1420,15 +1388,14 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 38/40 [00:00<00:00, 50.25it/s]" + "100%|██████████| 40/40 [00:00<00:00, 47.76it/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 44.05it/s]" + "\n" ] }, { @@ -1437,13 +1404,6 @@ "text": [ "Finished Training\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] } ], "source": [ @@ -1505,10 +1465,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:37:47.079451Z", - "iopub.status.busy": "2023-10-06T06:37:47.078307Z", - "iopub.status.idle": "2023-10-06T06:37:47.096551Z", - "shell.execute_reply": "2023-10-06T06:37:47.095936Z" + "iopub.execute_input": "2023-10-11T10:09:57.445751Z", + "iopub.status.busy": "2023-10-11T10:09:57.445209Z", + "iopub.status.idle": "2023-10-11T10:09:57.464093Z", + "shell.execute_reply": "2023-10-11T10:09:57.463363Z" } }, "outputs": [], @@ -1533,10 +1493,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:37:47.101221Z", - "iopub.status.busy": "2023-10-06T06:37:47.100050Z", - "iopub.status.idle": "2023-10-06T06:37:47.766910Z", - "shell.execute_reply": "2023-10-06T06:37:47.766200Z" + "iopub.execute_input": "2023-10-11T10:09:57.467334Z", + "iopub.status.busy": "2023-10-11T10:09:57.466780Z", + "iopub.status.idle": "2023-10-11T10:09:58.133127Z", + "shell.execute_reply": "2023-10-11T10:09:58.132378Z" } }, "outputs": [], @@ -1556,10 +1516,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:37:47.770185Z", - "iopub.status.busy": "2023-10-06T06:37:47.769784Z", - "iopub.status.idle": "2023-10-06T06:41:51.993212Z", - "shell.execute_reply": "2023-10-06T06:41:51.992421Z" + "iopub.execute_input": "2023-10-11T10:09:58.137122Z", + "iopub.status.busy": "2023-10-11T10:09:58.136613Z", + "iopub.status.idle": "2023-10-11T10:13:47.757973Z", + "shell.execute_reply": "2023-10-11T10:13:47.756992Z" } }, "outputs": [ @@ -1596,7 +1556,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9d0d44d31d0a4b36bf059e3a5cba53c6", + "model_id": "b937c984956f4e769733f07751dbd4fa", "version_major": 2, "version_minor": 0 }, @@ -1635,10 +1595,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:51.997394Z", - "iopub.status.busy": "2023-10-06T06:41:51.996280Z", - "iopub.status.idle": "2023-10-06T06:41:52.515365Z", - "shell.execute_reply": "2023-10-06T06:41:52.514685Z" + "iopub.execute_input": "2023-10-11T10:13:47.762235Z", + "iopub.status.busy": "2023-10-11T10:13:47.761108Z", + "iopub.status.idle": "2023-10-11T10:13:48.329878Z", + "shell.execute_reply": "2023-10-11T10:13:48.329124Z" } }, "outputs": [ @@ -1772,13 +1732,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "----------------------- dark images ------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "----------------------- dark images ------------------------\n", "\n", "Number of examples with this issue: 16\n", "Examples representing most severe instances of this issue:\n", @@ -1816,10 +1770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:52.518525Z", - "iopub.status.busy": "2023-10-06T06:41:52.518275Z", - "iopub.status.idle": "2023-10-06T06:41:52.571551Z", - "shell.execute_reply": "2023-10-06T06:41:52.570943Z" + "iopub.execute_input": "2023-10-11T10:13:48.335054Z", + "iopub.status.busy": "2023-10-11T10:13:48.333835Z", + "iopub.status.idle": "2023-10-11T10:13:48.406725Z", + "shell.execute_reply": "2023-10-11T10:13:48.406099Z" } }, "outputs": [ @@ -1923,10 +1877,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:52.574712Z", - "iopub.status.busy": "2023-10-06T06:41:52.574462Z", - "iopub.status.idle": "2023-10-06T06:41:52.584420Z", - "shell.execute_reply": "2023-10-06T06:41:52.583750Z" + "iopub.execute_input": "2023-10-11T10:13:48.411489Z", + "iopub.status.busy": "2023-10-11T10:13:48.410328Z", + "iopub.status.idle": "2023-10-11T10:13:48.423987Z", + "shell.execute_reply": "2023-10-11T10:13:48.423385Z" } }, "outputs": [ @@ -2056,10 +2010,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:52.587253Z", - "iopub.status.busy": "2023-10-06T06:41:52.587026Z", - "iopub.status.idle": "2023-10-06T06:41:52.592597Z", - "shell.execute_reply": "2023-10-06T06:41:52.591944Z" + "iopub.execute_input": "2023-10-11T10:13:48.428538Z", + "iopub.status.busy": "2023-10-11T10:13:48.427366Z", + "iopub.status.idle": "2023-10-11T10:13:48.434492Z", + "shell.execute_reply": "2023-10-11T10:13:48.433933Z" }, "nbsphinx": "hidden" }, @@ -2105,10 +2059,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:52.595392Z", - "iopub.status.busy": "2023-10-06T06:41:52.595172Z", - "iopub.status.idle": "2023-10-06T06:41:53.358678Z", - "shell.execute_reply": "2023-10-06T06:41:53.358096Z" + "iopub.execute_input": "2023-10-11T10:13:48.438863Z", + "iopub.status.busy": "2023-10-11T10:13:48.437732Z", + "iopub.status.idle": "2023-10-11T10:13:49.276524Z", + "shell.execute_reply": "2023-10-11T10:13:49.275792Z" } }, "outputs": [ @@ -2143,10 +2097,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:53.361658Z", - "iopub.status.busy": "2023-10-06T06:41:53.361425Z", - "iopub.status.idle": "2023-10-06T06:41:53.371666Z", - "shell.execute_reply": "2023-10-06T06:41:53.371029Z" + "iopub.execute_input": "2023-10-11T10:13:49.280173Z", + "iopub.status.busy": "2023-10-11T10:13:49.279524Z", + "iopub.status.idle": "2023-10-11T10:13:49.290691Z", + "shell.execute_reply": "2023-10-11T10:13:49.289977Z" } }, "outputs": [ @@ -2313,10 +2267,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:53.374771Z", - "iopub.status.busy": "2023-10-06T06:41:53.374329Z", - "iopub.status.idle": "2023-10-06T06:41:53.384584Z", - "shell.execute_reply": "2023-10-06T06:41:53.383958Z" + "iopub.execute_input": "2023-10-11T10:13:49.294117Z", + "iopub.status.busy": "2023-10-11T10:13:49.293464Z", + "iopub.status.idle": "2023-10-11T10:13:49.303413Z", + "shell.execute_reply": "2023-10-11T10:13:49.302721Z" }, "nbsphinx": "hidden" }, @@ -2392,10 +2346,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:53.387412Z", - "iopub.status.busy": "2023-10-06T06:41:53.387059Z", - "iopub.status.idle": "2023-10-06T06:41:53.929155Z", - "shell.execute_reply": "2023-10-06T06:41:53.928406Z" + "iopub.execute_input": "2023-10-11T10:13:49.306738Z", + "iopub.status.busy": "2023-10-11T10:13:49.306085Z", + "iopub.status.idle": "2023-10-11T10:13:49.877129Z", + "shell.execute_reply": "2023-10-11T10:13:49.876445Z" } }, "outputs": [ @@ -2432,10 +2386,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:53.932899Z", - "iopub.status.busy": "2023-10-06T06:41:53.932337Z", - "iopub.status.idle": "2023-10-06T06:41:53.954268Z", - "shell.execute_reply": "2023-10-06T06:41:53.953626Z" + "iopub.execute_input": "2023-10-11T10:13:49.880872Z", + "iopub.status.busy": "2023-10-11T10:13:49.880359Z", + "iopub.status.idle": "2023-10-11T10:13:49.905077Z", + "shell.execute_reply": "2023-10-11T10:13:49.904324Z" } }, "outputs": [ @@ -2592,10 +2546,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:53.957354Z", - "iopub.status.busy": "2023-10-06T06:41:53.956956Z", - "iopub.status.idle": "2023-10-06T06:41:53.964279Z", - "shell.execute_reply": "2023-10-06T06:41:53.963529Z" + "iopub.execute_input": "2023-10-11T10:13:49.909062Z", + "iopub.status.busy": "2023-10-11T10:13:49.908784Z", + "iopub.status.idle": "2023-10-11T10:13:49.917015Z", + "shell.execute_reply": "2023-10-11T10:13:49.916337Z" }, "nbsphinx": "hidden" }, @@ -2640,10 +2594,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:53.967600Z", - "iopub.status.busy": "2023-10-06T06:41:53.966955Z", - "iopub.status.idle": "2023-10-06T06:41:54.410937Z", - "shell.execute_reply": "2023-10-06T06:41:54.410327Z" + "iopub.execute_input": "2023-10-11T10:13:49.920620Z", + "iopub.status.busy": "2023-10-11T10:13:49.920163Z", + "iopub.status.idle": "2023-10-11T10:13:50.395111Z", + "shell.execute_reply": "2023-10-11T10:13:50.394485Z" } }, "outputs": [ @@ -2718,10 +2672,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:54.414287Z", - "iopub.status.busy": "2023-10-06T06:41:54.413709Z", - "iopub.status.idle": "2023-10-06T06:41:54.424267Z", - "shell.execute_reply": "2023-10-06T06:41:54.423678Z" + "iopub.execute_input": "2023-10-11T10:13:50.398554Z", + "iopub.status.busy": "2023-10-11T10:13:50.398057Z", + "iopub.status.idle": "2023-10-11T10:13:50.408772Z", + "shell.execute_reply": "2023-10-11T10:13:50.408212Z" } }, "outputs": [ @@ -2849,10 +2803,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:54.427440Z", - "iopub.status.busy": "2023-10-06T06:41:54.426976Z", - "iopub.status.idle": "2023-10-06T06:41:54.445935Z", - "shell.execute_reply": "2023-10-06T06:41:54.445120Z" + "iopub.execute_input": "2023-10-11T10:13:50.411961Z", + "iopub.status.busy": "2023-10-11T10:13:50.411350Z", + "iopub.status.idle": "2023-10-11T10:13:50.418505Z", + "shell.execute_reply": "2023-10-11T10:13:50.417860Z" }, "nbsphinx": "hidden" }, @@ -2889,10 +2843,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:54.453589Z", - "iopub.status.busy": "2023-10-06T06:41:54.449597Z", - "iopub.status.idle": "2023-10-06T06:41:54.654951Z", - "shell.execute_reply": "2023-10-06T06:41:54.654275Z" + "iopub.execute_input": "2023-10-11T10:13:50.421240Z", + "iopub.status.busy": "2023-10-11T10:13:50.420937Z", + "iopub.status.idle": "2023-10-11T10:13:50.629910Z", + "shell.execute_reply": "2023-10-11T10:13:50.629179Z" } }, "outputs": [ @@ -2934,10 +2888,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:54.658172Z", - "iopub.status.busy": "2023-10-06T06:41:54.657630Z", - "iopub.status.idle": "2023-10-06T06:41:54.667376Z", - "shell.execute_reply": "2023-10-06T06:41:54.666717Z" + "iopub.execute_input": "2023-10-11T10:13:50.633768Z", + "iopub.status.busy": "2023-10-11T10:13:50.633372Z", + "iopub.status.idle": "2023-10-11T10:13:50.645259Z", + "shell.execute_reply": "2023-10-11T10:13:50.644589Z" } }, "outputs": [ @@ -2962,47 +2916,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -3023,10 +2977,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:54.670140Z", - "iopub.status.busy": "2023-10-06T06:41:54.669781Z", - "iopub.status.idle": "2023-10-06T06:41:54.865356Z", - "shell.execute_reply": "2023-10-06T06:41:54.864585Z" + "iopub.execute_input": "2023-10-11T10:13:50.648555Z", + "iopub.status.busy": "2023-10-11T10:13:50.648181Z", + "iopub.status.idle": "2023-10-11T10:13:50.853163Z", + "shell.execute_reply": "2023-10-11T10:13:50.852446Z" } }, "outputs": [ @@ -3057,10 +3011,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:41:54.868428Z", - "iopub.status.busy": "2023-10-06T06:41:54.868067Z", - "iopub.status.idle": "2023-10-06T06:41:54.874369Z", - "shell.execute_reply": "2023-10-06T06:41:54.873751Z" + "iopub.execute_input": "2023-10-11T10:13:50.856553Z", + "iopub.status.busy": "2023-10-11T10:13:50.855985Z", + "iopub.status.idle": "2023-10-11T10:13:50.861797Z", + "shell.execute_reply": "2023-10-11T10:13:50.861237Z" }, "nbsphinx": "hidden" }, @@ -3097,31 +3051,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0151ebd127904b58993879d5948d5543": { + "02c6f0a42df84df08d778dec1af0af70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_893a3906fd80400ca06dc6cd60f2b3de", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f48ba079fc754c11a1107f624273ab52", - "value": 60000.0 + "layout": "IPY_MODEL_24b068c742324f13b546986aa15688c8", + "placeholder": "​", + "style": "IPY_MODEL_dd5165334aab40bca65fd1c56bacd6ab", + "value": " 9617/10000 [00:01<00:00, 5829.69 examples/s]" + } + }, + "04f0dec9e2024f9bb55309f482e2a808": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "01671bb1af594ed1aaa264189721e161": { + "0530e34526e74f2c8fbe18160e0b98e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3173,74 +3139,59 @@ "width": null } }, - "01e5ca03fde34295afdc0a7e47a2ef9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "02c6bb29d5ff429b98a5f4e28b2cf996": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "06e0d153463d4e80ac2cf34d0073219c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "081f2419fe27464c80a27551ae122f4c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "07c235f5a12e433d8548139c3d2c1f06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4bce7cb5562b49e0959b06ac4e948878", - "placeholder": "​", - "style": "IPY_MODEL_b1f260c53b9d4190b0baabdf94245266", - "value": " 9635/10000 [00:01<00:00, 6219.23 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "084e5989bff34f99aa0927df9c33f5ca": { + "08ee3f3b655547bb9197afb0fa6d9a50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3253,33 +3204,18 @@ "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", - "bar_style": "success", + "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_57e1fb2ec7574a57ab84f5d0169fdb2a", - "max": 4.0, + "layout": "IPY_MODEL_d5ee54a9268e40848992e8fdd001cc30", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6492f686e3414d2e939e0347a87261fa", - "value": 4.0 - } - }, - "09ff6a5101a3425b88b0b796dbc19348": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_149c237e59304d11be5fe2c969ac65c6", + "value": 60000.0 } }, - "0a31e565c6164dbb95f9063af7c30476": { + "0a1b3634ed6f45689c55a69c4d358c70": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3327,11 +3263,11 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "0a6f675ca92c4491843d1bfc2dbe2f73": { + "0d97dd203dd749c98e492df740ad1a8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3347,7 +3283,7 @@ "description_width": "" } }, - "0c8cb9f8e6f44b4f9b398fba6dc63327": { + "145b49eab7524442b9a18a49e4da466d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3399,7 +3335,23 @@ "width": null } }, - "0ed3644c553146f9858ec34a1abe66b4": { + "149c237e59304d11be5fe2c969ac65c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "166290f12ec64720ade2b151369625b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3447,50 +3399,11 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "0ff7ecbba50441bc8acd04172d7878b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1f32673a5bb342c4a558461413b1fa3c", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cbf0b1dba3ea49f9bc102d0106f59e4c", - "value": 26421880.0 - } - }, - "1403b860563b4f118bf69a9385ce03be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "141ba5460c0f40ae9e6e898595d1fb04": { + "17df8f0b127748528def3ab9ee066e9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3505,43 +3418,124 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8df648fe80e042d38fca49b6a6c14155", + "layout": "IPY_MODEL_2bfcc1ba222b46b6bd22c53a26bb8ffb", "placeholder": "​", - "style": "IPY_MODEL_986fe4a4df6047c1a0fbc3c3f144db88", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_824581c27bd54707a1dbd7054941396b", + "value": " 4/4 [00:00<00:00, 622.74it/s]" } }, - "1749e0a97a9d40e7af24b6322bc38eb7": { - "model_module": "@jupyter-widgets/controls", + "17fa1cfef36c4838b2af5ae5c56a2199": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "18ddedcb5c2b45d68ea020d85ec2957a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ee84a0ddb0ff453e9e2ad203d1ec2fbe", + "placeholder": "​", + "style": "IPY_MODEL_b7132a8576a84832a293b379c8146ccb", + "value": "Downloading data: 100%" } }, - "1d6ba9ad5a0f477d86aedd8503d4c816": { + "19cb56bcbce449d8a8e650440d90bb26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c234ef001e8d4a52810d7d8c57e71a06", + "IPY_MODEL_4a49bfbbc62f4d5a9f3a2ef5f3f9ca7d", + "IPY_MODEL_02c6f0a42df84df08d778dec1af0af70" + ], + "layout": "IPY_MODEL_17fa1cfef36c4838b2af5ae5c56a2199" + } + }, + "1a1751cab1284fadad8950d60cfbfa98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "1dad32857f1c40f8bd6a8ff6199a5f6e": { + "1cb3c5ccdcc1482b90ef1579f97a7836": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3557,15 +3551,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a90b395968c14dd4abbfab66088619d0", - "max": 4.0, + "layout": "IPY_MODEL_081f2419fe27464c80a27551ae122f4c", + "max": 3126.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_81e899abc48143ac841fa8aeea8b4f3e", - "value": 4.0 + "style": "IPY_MODEL_796d3a9dc21b498daed15f7910c37dd4", + "value": 3126.0 } }, - "1f32673a5bb342c4a558461413b1fa3c": { + "1d93bcd956e048a1b0dc39e0cc356c0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3617,22 +3611,7 @@ "width": null } }, - "211746264aba474384ebf63383ca003f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "225f13c4665d424ba2ccb424d13ca2af": { + "1da917103e2146f699b66ecb90c8713d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3684,131 +3663,37 @@ "width": null } }, - "24f3a69463c344eba134c96c15bc0098": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6e878ffb2ec546d394990efba924591a", - "placeholder": "​", - "style": "IPY_MODEL_8b462027ddf74098832001a78cd07634", - "value": "Generating train split: 99%" - } - }, - "275368c326b449d88566e43cc460e9ba": { + "22752480604c4f99b5b0e8acafbf27fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_88e8534545094e0c963ec575e95cc2c2", - "placeholder": "​", - "style": "IPY_MODEL_ea678bebcfe2498db2895163b2459f58", - "value": "Downloading builder script: 100%" - } - }, - "299aa0eff6144b94bd17d873f2c8bddc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e22d4c4bce3a4b53bbf0e20cf57c81c8", - "placeholder": "​", - "style": "IPY_MODEL_cc34bb1b87524f388a8f46f998078cb5", - "value": "Downloading readme: 100%" - } - }, - "2ab3efb6c5f74a3b9c54005bd8c52d15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fa6b9ac9d98f4610b25acf9fd34c9cd7", - "placeholder": "​", - "style": "IPY_MODEL_f0746106a8244eb2b9f15cf3186ffbdc", - "value": " 29.5k/29.5k [00:00<00:00, 2.51MB/s]" - } - }, - "2cf14236d6b348139bccc29262556a4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b032fe5407d6402e8cddcea0f75f7348", - "max": 3126.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a6f675ca92c4491843d1bfc2dbe2f73", - "value": 3126.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "2ea284ff7eb44f8188972e764cbd7aad": { + "2316e73fd848478997624e289f885e78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "33a7dbc094c8467593b70492a7889c6b": { + "23d89cb0f39d4026a7fc0feb189966db": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3845,116 +3730,22 @@ "margin": null, "max_height": null, "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "33cdde96c6f94e74a90cf9782fe2ac0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_141ba5460c0f40ae9e6e898595d1fb04", - "IPY_MODEL_5b0141868e224c45b9f34eb14dc3f503", - "IPY_MODEL_52af8bc7ba71495497d942d3f8e3108a" - ], - "layout": "IPY_MODEL_70e3f1da8b574e20a73dcdae80a663cd" - } - }, - "36c9785b3d5a4a58b55da86ab88f4ae8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_43905303f8a343f6b2c4fa023c32ef73", - "placeholder": "​", - "style": "IPY_MODEL_01e5ca03fde34295afdc0a7e47a2ef9e", - "value": " 4/4 [00:00<00:00, 2.79it/s]" - } - }, - "3839a58bc40e4985b854b28e76751270": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "395122d8162d4902b5e474611ff95663": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a9b572fd134640c68524b7c36e53f49b", - "placeholder": "​", - "style": "IPY_MODEL_f8dbc859491a483fb708ff57979ea23a", - "value": "Downloading data: 100%" - } - }, - "39dfc68b4a464b0c915ba7dcbf4be31e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3af7a267f69a4179ade464518a83d144": { + "24b068c742324f13b546986aa15688c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4006,29 +3797,23 @@ "width": null } }, - "3d1ef15b6e96488fa1467ed33fb0ff16": { + "24f0dd9fe7aa4e5293b12229a20826bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_24f3a69463c344eba134c96c15bc0098", - "IPY_MODEL_473606641293409c9166005473f7da63", - "IPY_MODEL_6e799b868e8e41e9a23eb44a07f7c964" - ], - "layout": "IPY_MODEL_0a31e565c6164dbb95f9063af7c30476" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3d2f71a9f6e54418a5ed89f8ec45fc54": { + "27158263426e4326bea37b17780b13a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4080,94 +3865,7 @@ "width": null } }, - "3d962587604c4d2d930b18b9acf54dc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3dad4a6558ae4c9ba3e9317d48a97e26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3f68f8498be148848fa2ce1649ebb5ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "40669995d2a94598a3210f2767d0824b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f1730c6c7a2f4151a5cdf5407e4bfe64", - "placeholder": "​", - "style": "IPY_MODEL_d627e1e57e1e427ca521fa53addedeb0", - "value": "Computing checksums: 100%" - } - }, - "41c4d9d3f4e54674ac4ada871fa5db02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a1c89a6b82d94910956cd2087b93b293", - "placeholder": "​", - "style": "IPY_MODEL_3d962587604c4d2d930b18b9acf54dc7", - "value": "Extracting data files: 100%" - } - }, - "43905303f8a343f6b2c4fa023c32ef73": { + "273a11e90a6f44a2a5e0214019a7a7a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4215,116 +3913,27 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "43bf3282121448eab75d01ed88496868": { + "27dc7709d9104ae6936c712c3cd1c1b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "458c0bc485a74f8a91020cf3173f7842": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6064f73b972b4f819f9643eb378c10a1", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e55c8a9a601342c59a6b69e5b81457c8", - "value": 10000.0 - } - }, - "45f3cb23469e4510b7b2871daf17b8bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d2c75f018c34465b8bead430756a9676", - "placeholder": "​", - "style": "IPY_MODEL_1d6ba9ad5a0f477d86aedd8503d4c816", - "value": " 4.83k/4.83k [00:00<00:00, 385kB/s]" - } - }, - "473606641293409c9166005473f7da63": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_53dd8fadf0554a00bf9f5548e1973730", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_51f97d1b43a24a748b73657754fb41de", - "value": 60000.0 - } - }, - "4b483079a604407d89f71f81b11d8637": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bf73b96ae84a47bf93e41030dcd65a86", - "placeholder": "​", - "style": "IPY_MODEL_09ff6a5101a3425b88b0b796dbc19348", - "value": " 4/4 [00:00<00:00, 613.94it/s]" - } - }, - "4bce7cb5562b49e0959b06ac4e948878": { + "29a57bb372844662ba5b50a6816b3bd4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4376,7 +3985,7 @@ "width": null } }, - "4d06d70cfcf5403db9768c1b6c7ea1c0": { + "2b4ea11a7ca8411f9ad4e2dd06db4666": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4428,44 +4037,81 @@ "width": null } }, - "51f97d1b43a24a748b73657754fb41de": { + "2bcf4863514e44b8a54f1b2b2b38c784": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_76e624e1df7a4932b1c44bb698fdc4bb", + "IPY_MODEL_819cea03472b44a6b15101d9083a8a21", + "IPY_MODEL_17df8f0b127748528def3ab9ee066e9c" + ], + "layout": "IPY_MODEL_7a75183b24834208b5c28167acb72c73" } }, - "52af8bc7ba71495497d942d3f8e3108a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "2bfcc1ba222b46b6bd22c53a26bb8ffb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4d06d70cfcf5403db9768c1b6c7ea1c0", - "placeholder": "​", - "style": "IPY_MODEL_1749e0a97a9d40e7af24b6322bc38eb7", - "value": " 4.42M/4.42M [00:00<00:00, 51.3MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "53dd8fadf0554a00bf9f5548e1973730": { + "2cedd620897b4b7ebc38cd3c6a65c91a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4517,7 +4163,7 @@ "width": null } }, - "55bb3ed2b93c43e7a7ae7956e7f5f072": { + "2ef5a77a55d94c78baa40ea1709dd540": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4569,7 +4215,7 @@ "width": null } }, - "56f725efc02d44f1804d80151899ae54": { + "3217c5f2a83e4d2386c96aee450e0cf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4617,11 +4263,11 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "57e1fb2ec7574a57ab84f5d0169fdb2a": { + "33a2accde46c479ba6a9d32efc0fc132": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4673,7 +4319,7 @@ "width": null } }, - "5b0141868e224c45b9f34eb14dc3f503": { + "34579b0fd42f402bb5c668d10306f0da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4689,15 +4335,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ba99985ebb204af4b9a7a5e34c7001df", - "max": 4422102.0, + "layout": "IPY_MODEL_29a57bb372844662ba5b50a6816b3bd4", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a1ff33a9b7424d4196eaf869f54b8886", - "value": 4422102.0 + "style": "IPY_MODEL_27dc7709d9104ae6936c712c3cd1c1b3", + "value": 60000.0 } }, - "5b328adcfdb04550831822d926e1628f": { + "34cfef4161174003ab992c33ffe64ff2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4712,13 +4358,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_eb1b6a4da22f46cca0dc4fbf6e861449", + "layout": "IPY_MODEL_90c772d5b71c46528baae9d8e8bed162", "placeholder": "​", - "style": "IPY_MODEL_3dad4a6558ae4c9ba3e9317d48a97e26", - "value": " 59928/60000 [00:15<00:00, 4121.17 examples/s]" + "style": "IPY_MODEL_22752480604c4f99b5b0e8acafbf27fc", + "value": "Downloading data: 100%" } }, - "5c56933ef85d473fb2f83c90fb87f0c0": { + "34ef2aacc2d64a75a1a39629a4f0e6d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4731,18 +4377,18 @@ "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", - "bar_style": "success", + "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ed46963891574900a7eacc41e84d9997", - "max": 5148.0, + "layout": "IPY_MODEL_23d89cb0f39d4026a7fc0feb189966db", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2ea284ff7eb44f8188972e764cbd7aad", - "value": 5148.0 + "style": "IPY_MODEL_885869664c2e4787a4f4538b02c6691c", + "value": 60000.0 } }, - "5c607a84f1444542bbaac679854e1b01": { + "3553c2ef58114f9a936ebd6f09229d99": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4794,59 +4440,28 @@ "width": null } }, - "5fe5a726a00c4ddfb55ecc5914ef0075": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "358723d13f4d4aed9dfba7bfe0e6ae9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_938305ce640b4005af8098ad5810cb69", + "placeholder": "​", + "style": "IPY_MODEL_66754249067e42eba1fe8b066b45d7f9", + "value": " 5.15k/5.15k [00:00<00:00, 393kB/s]" } }, - "602f58878fac4e29aa493c675525722c": { + "35ea246fcb374a8f8d74af458959e93c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4861,13 +4476,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_996e2db5825d4518ad2d4d4fabeddd88", + "layout": "IPY_MODEL_dc1561fff54643499c0bab20c7c6093b", "placeholder": "​", - "style": "IPY_MODEL_43bf3282121448eab75d01ed88496868", - "value": "Downloading data files: 100%" + "style": "IPY_MODEL_5f968fc6c31f475992e1f89598bd44ec", + "value": " 59804/60000 [00:10<00:00, 5734.26 examples/s]" + } + }, + "388810db058f44f69ede67c3d5f7dbbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6064f73b972b4f819f9643eb378c10a1": { + "3969ba13cf6a45338e795850a8e1032d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4919,90 +4549,7 @@ "width": null } }, - "61ec067de744480d8ec2a0377c775341": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_41c4d9d3f4e54674ac4ada871fa5db02", - "IPY_MODEL_f0a52bca034c4b199170aba6ea2feed4", - "IPY_MODEL_36c9785b3d5a4a58b55da86ab88f4ae8" - ], - "layout": "IPY_MODEL_55bb3ed2b93c43e7a7ae7956e7f5f072" - } - }, - "6492f686e3414d2e939e0347a87261fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "65e6ffb8c15c4a60a0a38431a50015e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6accb71036214df9a1e0c4bb745d49c7", - "placeholder": "​", - "style": "IPY_MODEL_8b5993c5101e4900b60d25ede6ecc165", - "value": "Downloading data: 100%" - } - }, - "697051b9e4d64222acc5a77f918bd133": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed65830d599646469908fff377873260", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ecdc5d2b0971466ca6fe10b3be15b802", - "value": 29515.0 - } - }, - "6accb71036214df9a1e0c4bb745d49c7": { + "3d99f62fdbaf4890a678133e7ce0ef9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5054,50 +4601,7 @@ "width": null } }, - "6b2a8b54141a4c1da3515dd6dff7308d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_40669995d2a94598a3210f2767d0824b", - "IPY_MODEL_084e5989bff34f99aa0927df9c33f5ca", - "IPY_MODEL_4b483079a604407d89f71f81b11d8637" - ], - "layout": "IPY_MODEL_0c8cb9f8e6f44b4f9b398fba6dc63327" - } - }, - "6e799b868e8e41e9a23eb44a07f7c964": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_01671bb1af594ed1aaa264189721e161", - "placeholder": "​", - "style": "IPY_MODEL_3839a58bc40e4985b854b28e76751270", - "value": " 59530/60000 [00:09<00:00, 6186.86 examples/s]" - } - }, - "6e878ffb2ec546d394990efba924591a": { + "43ce4d5c01d64a389be2ab17db643203": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5149,7 +4653,7 @@ "width": null } }, - "70e3f1da8b574e20a73dcdae80a663cd": { + "44726a05265b410094fdc31944fb6346": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5201,59 +4705,83 @@ "width": null } }, - "711309b7eaec4fa9848d2982dada90af": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "471ad93953614f17a2204c72fc743424": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b46973d78b6044c58cb0b065af3fcc29", + "IPY_MODEL_a2500082713c4f7f8bacbfe37165c6c3", + "IPY_MODEL_bfab3a07981d46538b94c07a77879d04" + ], + "layout": "IPY_MODEL_43ce4d5c01d64a389be2ab17db643203" + } + }, + "497ba684a54b4c55bd282633189297b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4a49bfbbc62f4d5a9f3a2ef5f3f9ca7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6232384e32c45ab857e6b0db2473592", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0d97dd203dd749c98e492df740ad1a8a", + "value": 10000.0 + } + }, + "4ac0611cc2004f7c8c23b1e186519907": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "7a34bc51e4234e16ad880c8ee0b61ddd": { + "4ee876d61a494dc28b9583d4708b305b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5305,7 +4833,7 @@ "width": null } }, - "7d776926d19d4afab5af0ead9d7b6983": { + "50abbeda51104b988a414f28699f1791": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5320,13 +4848,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e3ef29165bd24e338053cea5836afaf0", + "layout": "IPY_MODEL_0530e34526e74f2c8fbe18160e0b98e4", "placeholder": "​", - "style": "IPY_MODEL_83d091ebb83c4976985f8f4ba4a6b137", + "style": "IPY_MODEL_554202939b2b4468aa9c983ecb8e5ad5", "value": "100%" } }, - "7f8cd140bc134cf39b86db70c064a59e": { + "554202939b2b4468aa9c983ecb8e5ad5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5341,7 +4869,7 @@ "description_width": "" } }, - "802b59b6da604b728597ee0f2a195e02": { + "5597552515a443568a713cf452505e3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5356,7 +4884,7 @@ "description_width": "" } }, - "81137cb7597c46a5b79a3203f847fbd3": { + "563ceae2befe4a29a553ec515c85e0c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5371,29 +4899,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5fe5a726a00c4ddfb55ecc5914ef0075", + "layout": "IPY_MODEL_e2aa2b8d04584980b4e7e38f64155397", "placeholder": "​", - "style": "IPY_MODEL_06e0d153463d4e80ac2cf34d0073219c", - "value": " 5.15k/5.15k [00:00<00:00, 317kB/s]" + "style": "IPY_MODEL_b7f742808e984130b2831853efdbf512", + "value": " 4/4 [00:02<00:00, 1.64it/s]" } }, - "81e899abc48143ac841fa8aeea8b4f3e": { + "5a3be28d1bdc4bb388e481945cc539ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1d93bcd956e048a1b0dc39e0cc356c0d", + "placeholder": "​", + "style": "IPY_MODEL_eeac3e7eb46e4f4db75e49018cc7279b", + "value": " 4/4 [00:00<00:00, 3.13it/s]" } }, - "83d091ebb83c4976985f8f4ba4a6b137": { + "5c5ae74d2d4d447a84b93007bd3b2b8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5408,29 +4941,23 @@ "description_width": "" } }, - "88b15f4b3fc74d1b8e47fc1ac4dfec47": { + "5d1aa9f1bf2e48669873e27852771e57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_275368c326b449d88566e43cc460e9ba", - "IPY_MODEL_d9d7e77f20bf4053961273f33bc63c4a", - "IPY_MODEL_45f3cb23469e4510b7b2871daf17b8bf" - ], - "layout": "IPY_MODEL_8f8de057b1db42989765dfa7441e5f4b" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "88e8534545094e0c963ec575e95cc2c2": { + "5e952e88c4024945980510045e4997cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5482,7 +5009,22 @@ "width": null } }, - "893a3906fd80400ca06dc6cd60f2b3de": { + "5f968fc6c31f475992e1f89598bd44ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "61a6ba883fed4813be9bee47c29a5390": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5534,7 +5076,7 @@ "width": null } }, - "8b462027ddf74098832001a78cd07634": { + "644e9b5bc6e549918989726d11f1bc13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5549,7 +5091,7 @@ "description_width": "" } }, - "8b5993c5101e4900b60d25ede6ecc165": { + "66754249067e42eba1fe8b066b45d7f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5564,7 +5106,7 @@ "description_width": "" } }, - "8df648fe80e042d38fca49b6a6c14155": { + "672a93126ff84ec7852eed6b656e6a4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5616,7 +5158,7 @@ "width": null } }, - "8f8de057b1db42989765dfa7441e5f4b": { + "68df7f3bcc1a424486c93b6c16877d82": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5668,66 +5210,95 @@ "width": null } }, - "8f95920e837c4278a3189a10686934d1": { + "6923ecab36614f488946e77b0400211d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f494146fe5f3418ca4c7a070154e390c", - "IPY_MODEL_2cf14236d6b348139bccc29262556a4d", - "IPY_MODEL_ac24325460954081b244544fcfd0818b" - ], - "layout": "IPY_MODEL_b19e6a8b56e4417db6319cd03a94e7aa" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "90b11b854c844458a3b8e8e2cdc39e57": { + "6dbf3b48842240b5b06517d7bf644f66": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a7d4ee8fd3804fdeaae465aa22298ae1", - "IPY_MODEL_0151ebd127904b58993879d5948d5543", - "IPY_MODEL_5b328adcfdb04550831822d926e1628f" - ], - "layout": "IPY_MODEL_c0b88fdeba9f4356a33834c8891a5427" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7312f9eb9add43b497eac7c249001dd1", + "placeholder": "​", + "style": "IPY_MODEL_644e9b5bc6e549918989726d11f1bc13", + "value": " 4.42M/4.42M [00:00<00:00, 73.1MB/s]" } }, - "986fe4a4df6047c1a0fbc3c3f144db88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "706cab8691894b17b3ca83148edf9537": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "996e2db5825d4518ad2d4d4fabeddd88": { + "7312f9eb9add43b497eac7c249001dd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5779,7 +5350,29 @@ "width": null } }, - "9d04baaef43d42a9a4031bfd73162284": { + "73d6fe322f2a4c548931f5375ca2ebbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78dc3a36d4f444f794b7814f03b576b1", + "IPY_MODEL_d3ea63f59e1e4289a55637d86e510018", + "IPY_MODEL_358723d13f4d4aed9dfba7bfe0e6ae9e" + ], + "layout": "IPY_MODEL_ef03d83b67ce4ca1be2d788de0af6fa8" + } + }, + "73f87714f172420daeb7476f1dd6d1de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5794,35 +5387,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_225f13c4665d424ba2ccb424d13ca2af", + "layout": "IPY_MODEL_a3e66fb9df094a46aaff7d1f086a1dcc", "placeholder": "​", - "style": "IPY_MODEL_d3c91085dc2f4e358b8d9ba7171edc86", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_2316e73fd848478997624e289f885e78", + "value": "Extracting data files: 100%" } }, - "9d0d44d31d0a4b36bf059e3a5cba53c6": { + "741d83c0dfda4c599feb62df18e918fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "757358d2997a4b5c9b5e1fa73341d87f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "76e624e1df7a4932b1c44bb698fdc4bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7d776926d19d4afab5af0ead9d7b6983", - "IPY_MODEL_dcb24aca340942299d0c1bec3d240773", - "IPY_MODEL_f0c85a2d35574d3ba0aa5e316dd4ce1c" - ], - "layout": "IPY_MODEL_5c607a84f1444542bbaac679854e1b01" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3553c2ef58114f9a936ebd6f09229d99", + "placeholder": "​", + "style": "IPY_MODEL_f71b33e0c6034a90b7b7d994f3fc8119", + "value": "Computing checksums: 100%" } }, - "a1c89a6b82d94910956cd2087b93b293": { + "77fbac9f50694f019e7e07768d9277c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5874,45 +5497,65 @@ "width": null } }, - "a1ff33a9b7424d4196eaf869f54b8886": { + "786ab11d0340413abf874f6acb9000a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1da917103e2146f699b66ecb90c8713d", + "placeholder": "​", + "style": "IPY_MODEL_388810db058f44f69ede67c3d5f7dbbb", + "value": " 26.4M/26.4M [00:00<00:00, 89.6MB/s]" + } + }, + "78dc3a36d4f444f794b7814f03b576b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ee876d61a494dc28b9583d4708b305b", + "placeholder": "​", + "style": "IPY_MODEL_e4d9b1c9f75a48e59721fe7195d5d1d3", + "value": "Downloading data: 100%" } }, - "a6e342b828e64febb10a1251f5430c2e": { + "796d3a9dc21b498daed15f7910c37dd4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_299aa0eff6144b94bd17d873f2c8bddc", - "IPY_MODEL_dcc4169587cc4e7cbb69d72332762952", - "IPY_MODEL_c0bfb68de22b46efbfa5f581a47933cf" - ], - "layout": "IPY_MODEL_56f725efc02d44f1804d80151899ae54" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a7d4ee8fd3804fdeaae465aa22298ae1": { + "79cb24b03b314bd9b4a24286e52af192": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5927,13 +5570,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dd35b2659196472b91de4048656a837e", + "layout": "IPY_MODEL_ae1868ea77924c86b4556cf2f6b90e52", "placeholder": "​", - "style": "IPY_MODEL_bce4ac39b60447bfa844d74ac2161a62", + "style": "IPY_MODEL_4ac0611cc2004f7c8c23b1e186519907", "value": "Map (num_proc=2): 100%" } }, - "a90b395968c14dd4abbfab66088619d0": { + "7a75183b24834208b5c28167acb72c73": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5985,7 +5628,23 @@ "width": null } }, - "a9b572fd134640c68524b7c36e53f49b": { + "7b57e0729c014ac59243e20cb836fc63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "803f8bed0ae04d9ead2231ca4d73178c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6037,80 +5696,115 @@ "width": null } }, - "ac24325460954081b244544fcfd0818b": { + "805d3d17423c4ddcbefd8dd36e9a4dba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "819cea03472b44a6b15101d9083a8a21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e0854f59becb4f83a0f529dfeca13598", - "placeholder": "​", - "style": "IPY_MODEL_b01da0aad7404edcbcca0b57a9c1401b", - "value": " 3.13k/3.13k [00:00<00:00, 231kB/s]" + "layout": "IPY_MODEL_3969ba13cf6a45338e795850a8e1032d", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24f0dd9fe7aa4e5293b12229a20826bb", + "value": 4.0 } }, - "aca71be19594459c8da95aff7ff51804": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "824581c27bd54707a1dbd7054941396b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "86acdfafd7c2440b8b365a0194c97131": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "879878209ae04f39a9d431f4b1a30527": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b04504a2f2de44fcab6fc2fce8399663", + "IPY_MODEL_34ef2aacc2d64a75a1a39629a4f0e6d2", + "IPY_MODEL_35ea246fcb374a8f8d74af458959e93c" + ], + "layout": "IPY_MODEL_273a11e90a6f44a2a5e0214019a7a7a0" + } + }, + "885869664c2e4787a4f4538b02c6691c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b01da0aad7404edcbcca0b57a9c1401b": { + "8c1c8c6c4bb8498589a2934f7f1761b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6125,7 +5819,7 @@ "description_width": "" } }, - "b032fe5407d6402e8cddcea0f75f7348": { + "90c772d5b71c46528baae9d8e8bed162": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6177,7 +5871,29 @@ "width": null } }, - "b19e6a8b56e4417db6319cd03a94e7aa": { + "919b65c98a2d49adb86d4a2bf0a272ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b25dd42728a44b93aec814ad5963e5cb", + "IPY_MODEL_1cb3c5ccdcc1482b90ef1579f97a7836", + "IPY_MODEL_a12b7f6c88674c529d7e301e81c947f7" + ], + "layout": "IPY_MODEL_2cedd620897b4b7ebc38cd3c6a65c91a" + } + }, + "92886bb5677f4e5eb198b9643ed0580e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6229,7 +5945,7 @@ "width": null } }, - "b1e011a63af64416954348b761a09179": { + "938305ce640b4005af8098ad5810cb69": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6275,82 +5991,13 @@ "overflow_x": null, "overflow_y": null, "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b1f260c53b9d4190b0baabdf94245266": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b202b5782f4046dbaf753b232947ca7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b4a8cc673f994ad59d178c8f1a49bf1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9d04baaef43d42a9a4031bfd73162284", - "IPY_MODEL_697051b9e4d64222acc5a77f918bd133", - "IPY_MODEL_2ab3efb6c5f74a3b9c54005bd8c52d15" - ], - "layout": "IPY_MODEL_3d2f71a9f6e54418a5ed89f8ec45fc54" - } - }, - "b924ade4081d43b3a0948cc65ebae993": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ba99985ebb204af4b9a7a5e34c7001df": { + "96df8fd2c9c14b769cc09eabf25c383b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6402,22 +6049,111 @@ "width": null } }, - "bce4ac39b60447bfa844d74ac2161a62": { + "9a2f3f65748042e4b3bff278de0563ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d853464533a64c64a4dd7a29cf5a5dc8", + "IPY_MODEL_ce459a8fd5c0462a8bb9b13626151fa0", + "IPY_MODEL_563ceae2befe4a29a553ec515c85e0c4" + ], + "layout": "IPY_MODEL_e8606e4cac274bfe913056b0397bd948" + } + }, + "9adc889157114a6383e4faae7ff4243d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "bd24d985acfa47e197b655c7f68578e7": { + "a12b7f6c88674c529d7e301e81c947f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44726a05265b410094fdc31944fb6346", + "placeholder": "​", + "style": "IPY_MODEL_8c1c8c6c4bb8498589a2934f7f1761b2", + "value": " 3.13k/3.13k [00:00<00:00, 283kB/s]" + } + }, + "a2500082713c4f7f8bacbfe37165c6c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_68df7f3bcc1a424486c93b6c16877d82", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9adc889157114a6383e4faae7ff4243d", + "value": 4833.0 + } + }, + "a2fbe6194dc045f98f9da9aa1977e5de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27158263426e4326bea37b17780b13a7", + "placeholder": "​", + "style": "IPY_MODEL_b2ecbc9908234c64ae2bd6fd5d12eabb", + "value": "Downloading data: 100%" + } + }, + "a3a9386b54904ed5869204356c2e0134": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6469,7 +6205,7 @@ "width": null } }, - "bf73b96ae84a47bf93e41030dcd65a86": { + "a3e66fb9df094a46aaff7d1f086a1dcc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6521,7 +6257,29 @@ "width": null } }, - "c0b88fdeba9f4356a33834c8891a5427": { + "a4ba8fa1a1c5413e89c0b3c2d5aaf479": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a2fbe6194dc045f98f9da9aa1977e5de", + "IPY_MODEL_cbe5ce7a3561449c8d9154f6543ff007", + "IPY_MODEL_786ab11d0340413abf874f6acb9000a6" + ], + "layout": "IPY_MODEL_672a93126ff84ec7852eed6b656e6a4b" + } + }, + "ae1868ea77924c86b4556cf2f6b90e52": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6569,32 +6327,11 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "c0bfb68de22b46efbfa5f581a47933cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3af7a267f69a4179ade464518a83d144", - "placeholder": "​", - "style": "IPY_MODEL_3f68f8498be148848fa2ce1649ebb5ed", - "value": " 8.85k/8.85k [00:00<00:00, 695kB/s]" - } - }, - "c437635a9efc4c7b8911bc6bd29b2eb1": { + "ae2857cdae43496fa9ad91d297073afa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6646,7 +6383,7 @@ "width": null } }, - "c8ea3ac570de4717a8baa2dc0f70fdca": { + "b04504a2f2de44fcab6fc2fce8399663": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6661,66 +6398,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_33a7dbc094c8467593b70492a7889c6b", + "layout": "IPY_MODEL_77fbac9f50694f019e7e07768d9277c2", "placeholder": "​", - "style": "IPY_MODEL_1403b860563b4f118bf69a9385ce03be", - "value": "Generating test split: 96%" - } - }, - "c962710431744861ba0cfcdf2a0b6887": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_65e6ffb8c15c4a60a0a38431a50015e6", - "IPY_MODEL_0ff7ecbba50441bc8acd04172d7878b4", - "IPY_MODEL_eb8f2aef4fed42bdbd16f931b651bf30" - ], - "layout": "IPY_MODEL_aca71be19594459c8da95aff7ff51804" - } - }, - "cbf0b1dba3ea49f9bc102d0106f59e4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cc34bb1b87524f388a8f46f998078cb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_5597552515a443568a713cf452505e3c", + "value": "Generating train split: 100%" } }, - "cc5f570c26ae470893c6517163c57717": { + "b18d294539ef4003899854dbace1578b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6772,7 +6456,28 @@ "width": null } }, - "d2c75f018c34465b8bead430756a9676": { + "b25dd42728a44b93aec814ad5963e5cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e8c9ac67500948dba7a4ce77d9e6b184", + "placeholder": "​", + "style": "IPY_MODEL_5c5ae74d2d4d447a84b93007bd3b2b8e", + "value": "Downloading metadata: 100%" + } + }, + "b2719169a30d4a0eaa54f728311d2238": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6824,22 +6529,110 @@ "width": null } }, - "d3c91085dc2f4e358b8d9ba7171edc86": { + "b2ecbc9908234c64ae2bd6fd5d12eabb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b46973d78b6044c58cb0b065af3fcc29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a1b3634ed6f45689c55a69c4d358c70", + "placeholder": "​", + "style": "IPY_MODEL_d8bb136a377140638356501c2007f737", + "value": "Downloading builder script: 100%" + } + }, + "b7132a8576a84832a293b379c8146ccb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b7f742808e984130b2831853efdbf512": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b805d3385e7c4d14a13c357ea74f04f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b937c984956f4e769733f07751dbd4fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_50abbeda51104b988a414f28699f1791", + "IPY_MODEL_34579b0fd42f402bb5c668d10306f0da", + "IPY_MODEL_f42074798a8f44648a3c1c5616a0cfa5" + ], + "layout": "IPY_MODEL_96df8fd2c9c14b769cc09eabf25c383b" } }, - "d3dc5fb6429b4b9e9cdc023e95bd3a36": { + "b9d8f35c3ed340a4b5c41249c6362afe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6891,22 +6684,135 @@ "width": null } }, - "d627e1e57e1e427ca521fa53addedeb0": { + "baebf91f7dd54566adea94c752d57aed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d2638b9baf554491b1981a22a7baec58", + "placeholder": "​", + "style": "IPY_MODEL_757358d2997a4b5c9b5e1fa73341d87f", + "value": " 29.5k/29.5k [00:00<00:00, 2.57MB/s]" + } + }, + "be0fa222992a4b689ffc715aa577a154": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_18ddedcb5c2b45d68ea020d85ec2957a", + "IPY_MODEL_ffea52f1c7e74fbf95e14092cadb4991", + "IPY_MODEL_6dbf3b48842240b5b06517d7bf644f66" + ], + "layout": "IPY_MODEL_e9ec2060710c42b681b93ce4b6180716" + } + }, + "bfab3a07981d46538b94c07a77879d04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_145b49eab7524442b9a18a49e4da466d", + "placeholder": "​", + "style": "IPY_MODEL_d46d1f1270bb49ffa5dbe36f6f20ea45", + "value": " 4.83k/4.83k [00:00<00:00, 401kB/s]" + } + }, + "c150ef391de14b0bbed383ea10049561": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73f87714f172420daeb7476f1dd6d1de", + "IPY_MODEL_cb172118b0794216a2f931552a89631d", + "IPY_MODEL_5a3be28d1bdc4bb388e481945cc539ea" + ], + "layout": "IPY_MODEL_b9d8f35c3ed340a4b5c41249c6362afe" + } + }, + "c234ef001e8d4a52810d7d8c57e71a06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_33a2accde46c479ba6a9d32efc0fc132", + "placeholder": "​", + "style": "IPY_MODEL_04f0dec9e2024f9bb55309f482e2a808", + "value": "Generating test split: 96%" + } + }, + "c7b9ec42f0aa4003bed07f0cc434f7f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a3a9386b54904ed5869204356c2e0134", + "placeholder": "​", + "style": "IPY_MODEL_fc0184bcee27403a9a76e1a145c64fa9", + "value": "Downloading readme: 100%" } }, - "d9d7e77f20bf4053961273f33bc63c4a": { + "cb172118b0794216a2f931552a89631d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -6922,15 +6828,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c437635a9efc4c7b8911bc6bd29b2eb1", - "max": 4833.0, + "layout": "IPY_MODEL_ae2857cdae43496fa9ad91d297073afa", + "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b924ade4081d43b3a0948cc65ebae993", - "value": 4833.0 + "style": "IPY_MODEL_5d1aa9f1bf2e48669873e27852771e57", + "value": 4.0 } }, - "dcb24aca340942299d0c1bec3d240773": { + "cbe5ce7a3561449c8d9154f6543ff007": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -6946,15 +6852,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bd24d985acfa47e197b655c7f68578e7", - "max": 60000.0, + "layout": "IPY_MODEL_166290f12ec64720ade2b151369625b8", + "max": 26421880.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_02c6bb29d5ff429b98a5f4e28b2cf996", - "value": 60000.0 + "style": "IPY_MODEL_fe462236c0ae4f83bf9bdde5c92a4fdd", + "value": 26421880.0 } }, - "dcc4169587cc4e7cbb69d72332762952": { + "ce459a8fd5c0462a8bb9b13626151fa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -6970,37 +6876,39 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ea4f0fd3d84b4419a1e7ab3de48f0683", - "max": 8845.0, + "layout": "IPY_MODEL_b2719169a30d4a0eaa54f728311d2238", + "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b202b5782f4046dbaf753b232947ca7f", - "value": 8845.0 + "style": "IPY_MODEL_7b57e0729c014ac59243e20cb836fc63", + "value": 4.0 } }, - "dd03d22ba98a413d90adc537006b8f39": { + "ced9532ca7354d94b4cf3f0b478729b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_395122d8162d4902b5e474611ff95663", - "IPY_MODEL_5c56933ef85d473fb2f83c90fb87f0c0", - "IPY_MODEL_81137cb7597c46a5b79a3203f847fbd3" - ], - "layout": "IPY_MODEL_7a34bc51e4234e16ad880c8ee0b61ddd" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d99f62fdbaf4890a678133e7ce0ef9d", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_741d83c0dfda4c599feb62df18e918fe", + "value": 8845.0 } }, - "dd35b2659196472b91de4048656a837e": { + "d2638b9baf554491b1981a22a7baec58": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7052,59 +6960,46 @@ "width": null } }, - "e0854f59becb4f83a0f529dfeca13598": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "d3ea63f59e1e4289a55637d86e510018": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_706cab8691894b17b3ca83148edf9537", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_86acdfafd7c2440b8b365a0194c97131", + "value": 5148.0 + } + }, + "d46d1f1270bb49ffa5dbe36f6f20ea45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "e22d4c4bce3a4b53bbf0e20cf57c81c8": { + "d5ee54a9268e40848992e8fdd001cc30": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7156,7 +7051,80 @@ "width": null } }, - "e3ef29165bd24e338053cea5836afaf0": { + "d6b87f3b419d486b98d7d3ac3c80c263": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b18d294539ef4003899854dbace1578b", + "placeholder": "​", + "style": "IPY_MODEL_805d3d17423c4ddcbefd8dd36e9a4dba", + "value": " 59766/60000 [00:17<00:00, 4354.66 examples/s]" + } + }, + "d853464533a64c64a4dd7a29cf5a5dc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ef5a77a55d94c78baa40ea1709dd540", + "placeholder": "​", + "style": "IPY_MODEL_497ba684a54b4c55bd282633189297b3", + "value": "Downloading data files: 100%" + } + }, + "d8bb136a377140638356501c2007f737": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "db2efafd173f4bcea5a3f5fab45315e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dc1561fff54643499c0bab20c7c6093b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7208,23 +7176,22 @@ "width": null } }, - "e55c8a9a601342c59a6b69e5b81457c8": { + "dd5165334aab40bca65fd1c56bacd6ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "e7438ef5064241a096a740028a60f36c": { + "e2aa2b8d04584980b4e7e38f64155397": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7276,7 +7243,44 @@ "width": null } }, - "ea4f0fd3d84b4419a1e7ab3de48f0683": { + "e426ac8581ba43e8be7e6691e756322a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_79cb24b03b314bd9b4a24286e52af192", + "IPY_MODEL_08ee3f3b655547bb9197afb0fa6d9a50", + "IPY_MODEL_d6b87f3b419d486b98d7d3ac3c80c263" + ], + "layout": "IPY_MODEL_3217c5f2a83e4d2386c96aee450e0cf6" + } + }, + "e4d9b1c9f75a48e59721fe7195d5d1d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e6232384e32c45ab857e6b0db2473592": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7328,22 +7332,29 @@ "width": null } }, - "ea678bebcfe2498db2895163b2459f58": { + "e81ddb9fe8a240bfa8c6f23fb404bcd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_34cfef4161174003ab992c33ffe64ff2", + "IPY_MODEL_fada51ce9cc04800b91e06adb2ff8c2a", + "IPY_MODEL_baebf91f7dd54566adea94c752d57aed" + ], + "layout": "IPY_MODEL_92886bb5677f4e5eb198b9643ed0580e" } }, - "eb1b6a4da22f46cca0dc4fbf6e861449": { + "e8606e4cac274bfe913056b0397bd948": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7395,44 +7406,7 @@ "width": null } }, - "eb8f2aef4fed42bdbd16f931b651bf30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d3dc5fb6429b4b9e9cdc023e95bd3a36", - "placeholder": "​", - "style": "IPY_MODEL_7f8cd140bc134cf39b86db70c064a59e", - "value": " 26.4M/26.4M [00:00<00:00, 87.2MB/s]" - } - }, - "ecdc5d2b0971466ca6fe10b3be15b802": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ed46963891574900a7eacc41e84d9997": { + "e8c9ac67500948dba7a4ce77d9e6b184": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7484,7 +7458,7 @@ "width": null } }, - "ed65830d599646469908fff377873260": { + "e9ec2060710c42b681b93ce4b6180716": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7536,28 +7510,29 @@ "width": null } }, - "ee90d27a499c4b08a0059997fe0526e5": { + "eaa30426591f4d24adf70288ff7f338f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ef0beb6a96ea4882a90d42ffeefa8826", - "placeholder": "​", - "style": "IPY_MODEL_211746264aba474384ebf63383ca003f", - "value": " 4/4 [00:03<00:00, 1.18it/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7b9ec42f0aa4003bed07f0cc434f7f7", + "IPY_MODEL_ced9532ca7354d94b4cf3f0b478729b8", + "IPY_MODEL_fca68101da93472d858358f3965f6fdc" + ], + "layout": "IPY_MODEL_2b4ea11a7ca8411f9ad4e2dd06db4666" } }, - "ef0beb6a96ea4882a90d42ffeefa8826": { + "ee84a0ddb0ff453e9e2ad203d1ec2fbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7609,23 +7584,7 @@ "width": null } }, - "ef9144b755a247b0af470acee04b17f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f0746106a8244eb2b9f15cf3186ffbdc": { + "eeac3e7eb46e4f4db75e49018cc7279b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7640,52 +7599,7 @@ "description_width": "" } }, - "f0a52bca034c4b199170aba6ea2feed4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_711309b7eaec4fa9848d2982dada90af", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ef9144b755a247b0af470acee04b17f1", - "value": 4.0 - } - }, - "f0c85a2d35574d3ba0aa5e316dd4ce1c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b1e011a63af64416954348b761a09179", - "placeholder": "​", - "style": "IPY_MODEL_802b59b6da604b728597ee0f2a195e02", - "value": " 60000/60000 [00:50<00:00, 1215.06it/s]" - } - }, - "f1730c6c7a2f4151a5cdf5407e4bfe64": { + "ef03d83b67ce4ca1be2d788de0af6fa8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7737,81 +7651,119 @@ "width": null } }, - "f48ba079fc754c11a1107f624273ab52": { + "f42074798a8f44648a3c1c5616a0cfa5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e952e88c4024945980510045e4997cb", + "placeholder": "​", + "style": "IPY_MODEL_6923ecab36614f488946e77b0400211d", + "value": " 60000/60000 [00:55<00:00, 1101.17it/s]" + } + }, + "f71b33e0c6034a90b7b7d994f3fc8119": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f494146fe5f3418ca4c7a070154e390c": { + "fada51ce9cc04800b91e06adb2ff8c2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cc5f570c26ae470893c6517163c57717", - "placeholder": "​", - "style": "IPY_MODEL_39dfc68b4a464b0c915ba7dcbf4be31e", - "value": "Downloading metadata: 100%" + "layout": "IPY_MODEL_803f8bed0ae04d9ead2231ca4d73178c", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a1751cab1284fadad8950d60cfbfa98", + "value": 29515.0 } }, - "f4eaccaf8aea4d86b3d8bc23ac879bd2": { + "fc0184bcee27403a9a76e1a145c64fa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fca68101da93472d858358f3965f6fdc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c8ea3ac570de4717a8baa2dc0f70fdca", - "IPY_MODEL_458c0bc485a74f8a91020cf3173f7842", - "IPY_MODEL_07c235f5a12e433d8548139c3d2c1f06" - ], - "layout": "IPY_MODEL_0ed3644c553146f9858ec34a1abe66b4" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fee3cfbfdf2641c8a24007b480271e04", + "placeholder": "​", + "style": "IPY_MODEL_b805d3385e7c4d14a13c357ea74f04f1", + "value": " 8.85k/8.85k [00:00<00:00, 885kB/s]" } }, - "f8dbc859491a483fb708ff57979ea23a": { + "fe462236c0ae4f83bf9bdde5c92a4fdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "fa6b9ac9d98f4610b25acf9fd34c9cd7": { + "fee3cfbfdf2641c8a24007b480271e04": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7863,26 +7815,28 @@ "width": null } }, - "faa996b8481c4a60b9f6e0666aec6bf8": { + "ffea52f1c7e74fbf95e14092cadb4991": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_602f58878fac4e29aa493c675525722c", - "IPY_MODEL_1dad32857f1c40f8bd6a8ff6199a5f6e", - "IPY_MODEL_ee90d27a499c4b08a0059997fe0526e5" - ], - "layout": "IPY_MODEL_e7438ef5064241a096a740028a60f36c" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_61a6ba883fed4813be9bee47c29a5390", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_db2efafd173f4bcea5a3f5fab45315e2", + "value": 4422102.0 } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 7cca43c56..c6e4ed944 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:00.752111Z", - "iopub.status.busy": "2023-10-06T06:42:00.751554Z", - "iopub.status.idle": "2023-10-06T06:42:01.984932Z", - "shell.execute_reply": "2023-10-06T06:42:01.984222Z" + "iopub.execute_input": "2023-10-11T10:13:57.120429Z", + "iopub.status.busy": "2023-10-11T10:13:57.119967Z", + "iopub.status.idle": "2023-10-11T10:13:58.448393Z", + "shell.execute_reply": "2023-10-11T10:13:58.447584Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:01.989913Z", - "iopub.status.busy": "2023-10-06T06:42:01.988485Z", - "iopub.status.idle": "2023-10-06T06:42:02.244041Z", - "shell.execute_reply": "2023-10-06T06:42:02.243312Z" + "iopub.execute_input": "2023-10-11T10:13:58.452554Z", + "iopub.status.busy": "2023-10-11T10:13:58.451781Z", + "iopub.status.idle": "2023-10-11T10:13:58.721718Z", + "shell.execute_reply": "2023-10-11T10:13:58.720904Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:02.248272Z", - "iopub.status.busy": "2023-10-06T06:42:02.247996Z", - "iopub.status.idle": "2023-10-06T06:42:02.342896Z", - "shell.execute_reply": "2023-10-06T06:42:02.342171Z" + "iopub.execute_input": "2023-10-11T10:13:58.726058Z", + "iopub.status.busy": "2023-10-11T10:13:58.725553Z", + "iopub.status.idle": "2023-10-11T10:13:58.842660Z", + "shell.execute_reply": "2023-10-11T10:13:58.841926Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:02.346599Z", - "iopub.status.busy": "2023-10-06T06:42:02.345796Z", - "iopub.status.idle": "2023-10-06T06:42:02.593217Z", - "shell.execute_reply": "2023-10-06T06:42:02.592597Z" + "iopub.execute_input": "2023-10-11T10:13:58.846228Z", + "iopub.status.busy": "2023-10-11T10:13:58.845632Z", + "iopub.status.idle": "2023-10-11T10:13:59.105478Z", + "shell.execute_reply": "2023-10-11T10:13:59.104826Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:02.596603Z", - "iopub.status.busy": "2023-10-06T06:42:02.596008Z", - "iopub.status.idle": "2023-10-06T06:42:02.624699Z", - "shell.execute_reply": "2023-10-06T06:42:02.624096Z" + "iopub.execute_input": "2023-10-11T10:13:59.109808Z", + "iopub.status.busy": "2023-10-11T10:13:59.109055Z", + "iopub.status.idle": "2023-10-11T10:13:59.143034Z", + "shell.execute_reply": "2023-10-11T10:13:59.142328Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:02.627929Z", - "iopub.status.busy": "2023-10-06T06:42:02.627213Z", - "iopub.status.idle": "2023-10-06T06:42:04.260009Z", - "shell.execute_reply": "2023-10-06T06:42:04.259249Z" + "iopub.execute_input": "2023-10-11T10:13:59.146701Z", + "iopub.status.busy": "2023-10-11T10:13:59.146192Z", + "iopub.status.idle": "2023-10-11T10:14:00.902837Z", + "shell.execute_reply": "2023-10-11T10:14:00.902026Z" } }, "outputs": [ @@ -471,10 +471,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:04.263601Z", - "iopub.status.busy": "2023-10-06T06:42:04.262984Z", - "iopub.status.idle": "2023-10-06T06:42:04.284428Z", - "shell.execute_reply": "2023-10-06T06:42:04.283750Z" + "iopub.execute_input": "2023-10-11T10:14:00.908526Z", + "iopub.status.busy": "2023-10-11T10:14:00.907016Z", + "iopub.status.idle": "2023-10-11T10:14:00.930887Z", + "shell.execute_reply": "2023-10-11T10:14:00.930271Z" }, "scrolled": true }, @@ -599,10 +599,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:04.287522Z", - "iopub.status.busy": "2023-10-06T06:42:04.286971Z", - "iopub.status.idle": "2023-10-06T06:42:05.384581Z", - "shell.execute_reply": "2023-10-06T06:42:05.383764Z" + "iopub.execute_input": "2023-10-11T10:14:00.934811Z", + "iopub.status.busy": "2023-10-11T10:14:00.934288Z", + "iopub.status.idle": "2023-10-11T10:14:02.173518Z", + "shell.execute_reply": "2023-10-11T10:14:02.172623Z" }, "id": "AaHC5MRKjruT" }, @@ -721,10 +721,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.387922Z", - "iopub.status.busy": "2023-10-06T06:42:05.387552Z", - "iopub.status.idle": "2023-10-06T06:42:05.404111Z", - "shell.execute_reply": "2023-10-06T06:42:05.403317Z" + "iopub.execute_input": "2023-10-11T10:14:02.177637Z", + "iopub.status.busy": "2023-10-11T10:14:02.177188Z", + "iopub.status.idle": "2023-10-11T10:14:02.197229Z", + "shell.execute_reply": "2023-10-11T10:14:02.196542Z" }, "id": "Wy27rvyhjruU" }, @@ -773,10 +773,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.407759Z", - "iopub.status.busy": "2023-10-06T06:42:05.407182Z", - "iopub.status.idle": "2023-10-06T06:42:05.496270Z", - "shell.execute_reply": "2023-10-06T06:42:05.495456Z" + "iopub.execute_input": "2023-10-11T10:14:02.200738Z", + "iopub.status.busy": "2023-10-11T10:14:02.200356Z", + "iopub.status.idle": "2023-10-11T10:14:02.305073Z", + "shell.execute_reply": "2023-10-11T10:14:02.304176Z" }, "id": "Db8YHnyVjruU" }, @@ -883,10 +883,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.500111Z", - "iopub.status.busy": "2023-10-06T06:42:05.499558Z", - "iopub.status.idle": "2023-10-06T06:42:05.712588Z", - "shell.execute_reply": "2023-10-06T06:42:05.711891Z" + "iopub.execute_input": "2023-10-11T10:14:02.309252Z", + "iopub.status.busy": "2023-10-11T10:14:02.308684Z", + "iopub.status.idle": "2023-10-11T10:14:02.536286Z", + "shell.execute_reply": "2023-10-11T10:14:02.535535Z" }, "id": "iJqAHuS2jruV" }, @@ -923,10 +923,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.717185Z", - "iopub.status.busy": "2023-10-06T06:42:05.715897Z", - "iopub.status.idle": "2023-10-06T06:42:05.739941Z", - "shell.execute_reply": "2023-10-06T06:42:05.739310Z" + "iopub.execute_input": "2023-10-11T10:14:02.540203Z", + "iopub.status.busy": "2023-10-11T10:14:02.539674Z", + "iopub.status.idle": "2023-10-11T10:14:02.567501Z", + "shell.execute_reply": "2023-10-11T10:14:02.566798Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -988,10 +988,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.743364Z", - "iopub.status.busy": "2023-10-06T06:42:05.742943Z", - "iopub.status.idle": "2023-10-06T06:42:05.756906Z", - "shell.execute_reply": "2023-10-06T06:42:05.756295Z" + "iopub.execute_input": "2023-10-11T10:14:02.571057Z", + "iopub.status.busy": "2023-10-11T10:14:02.570585Z", + "iopub.status.idle": "2023-10-11T10:14:02.585321Z", + "shell.execute_reply": "2023-10-11T10:14:02.584593Z" }, "id": "0lonvOYvjruV" }, @@ -1138,10 +1138,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.760342Z", - "iopub.status.busy": "2023-10-06T06:42:05.759825Z", - "iopub.status.idle": "2023-10-06T06:42:05.857424Z", - "shell.execute_reply": "2023-10-06T06:42:05.856396Z" + "iopub.execute_input": "2023-10-11T10:14:02.588832Z", + "iopub.status.busy": "2023-10-11T10:14:02.588443Z", + "iopub.status.idle": "2023-10-11T10:14:02.709322Z", + "shell.execute_reply": "2023-10-11T10:14:02.708447Z" }, "id": "MfqTCa3kjruV" }, @@ -1222,10 +1222,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:05.861184Z", - "iopub.status.busy": "2023-10-06T06:42:05.860689Z", - "iopub.status.idle": "2023-10-06T06:42:06.007412Z", - "shell.execute_reply": "2023-10-06T06:42:06.006687Z" + "iopub.execute_input": "2023-10-11T10:14:02.713270Z", + "iopub.status.busy": "2023-10-11T10:14:02.712728Z", + "iopub.status.idle": "2023-10-11T10:14:02.888185Z", + "shell.execute_reply": "2023-10-11T10:14:02.887162Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1285,10 +1285,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.010972Z", - "iopub.status.busy": "2023-10-06T06:42:06.010325Z", - "iopub.status.idle": "2023-10-06T06:42:06.016716Z", - "shell.execute_reply": "2023-10-06T06:42:06.016089Z" + "iopub.execute_input": "2023-10-11T10:14:02.892225Z", + "iopub.status.busy": "2023-10-11T10:14:02.891729Z", + "iopub.status.idle": "2023-10-11T10:14:02.897298Z", + "shell.execute_reply": "2023-10-11T10:14:02.896610Z" }, "id": "0rXP3ZPWjruW" }, @@ -1326,10 +1326,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.020764Z", - "iopub.status.busy": "2023-10-06T06:42:06.019509Z", - "iopub.status.idle": "2023-10-06T06:42:06.026888Z", - "shell.execute_reply": "2023-10-06T06:42:06.026283Z" + "iopub.execute_input": "2023-10-11T10:14:02.900624Z", + "iopub.status.busy": "2023-10-11T10:14:02.900002Z", + "iopub.status.idle": "2023-10-11T10:14:02.906040Z", + "shell.execute_reply": "2023-10-11T10:14:02.905353Z" }, "id": "-iRPe8KXjruW" }, @@ -1384,10 +1384,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.030143Z", - "iopub.status.busy": "2023-10-06T06:42:06.029649Z", - "iopub.status.idle": "2023-10-06T06:42:06.075198Z", - "shell.execute_reply": "2023-10-06T06:42:06.074522Z" + "iopub.execute_input": "2023-10-11T10:14:02.909279Z", + "iopub.status.busy": "2023-10-11T10:14:02.908924Z", + "iopub.status.idle": "2023-10-11T10:14:02.961199Z", + "shell.execute_reply": "2023-10-11T10:14:02.960379Z" }, "id": "ZpipUliyjruW" }, @@ -1438,10 +1438,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.078772Z", - "iopub.status.busy": "2023-10-06T06:42:06.078400Z", - "iopub.status.idle": "2023-10-06T06:42:06.131252Z", - "shell.execute_reply": "2023-10-06T06:42:06.130571Z" + "iopub.execute_input": "2023-10-11T10:14:02.964680Z", + "iopub.status.busy": "2023-10-11T10:14:02.964248Z", + "iopub.status.idle": "2023-10-11T10:14:03.022389Z", + "shell.execute_reply": "2023-10-11T10:14:03.021659Z" }, "id": "SLq-3q4xjruX" }, @@ -1510,10 +1510,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.134879Z", - "iopub.status.busy": "2023-10-06T06:42:06.134329Z", - "iopub.status.idle": "2023-10-06T06:42:06.229121Z", - "shell.execute_reply": "2023-10-06T06:42:06.228107Z" + "iopub.execute_input": "2023-10-11T10:14:03.025803Z", + "iopub.status.busy": "2023-10-11T10:14:03.025268Z", + "iopub.status.idle": "2023-10-11T10:14:03.134328Z", + "shell.execute_reply": "2023-10-11T10:14:03.133401Z" }, "id": "g5LHhhuqFbXK" }, @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.232711Z", - "iopub.status.busy": "2023-10-06T06:42:06.232283Z", - "iopub.status.idle": "2023-10-06T06:42:06.333271Z", - "shell.execute_reply": "2023-10-06T06:42:06.332395Z" + "iopub.execute_input": "2023-10-11T10:14:03.138905Z", + "iopub.status.busy": "2023-10-11T10:14:03.138390Z", + "iopub.status.idle": "2023-10-11T10:14:03.263066Z", + "shell.execute_reply": "2023-10-11T10:14:03.262155Z" }, "id": "p7w8F8ezBcet" }, @@ -1605,10 +1605,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.337092Z", - "iopub.status.busy": "2023-10-06T06:42:06.336564Z", - "iopub.status.idle": "2023-10-06T06:42:06.550977Z", - "shell.execute_reply": "2023-10-06T06:42:06.550309Z" + "iopub.execute_input": "2023-10-11T10:14:03.267338Z", + "iopub.status.busy": "2023-10-11T10:14:03.266800Z", + "iopub.status.idle": "2023-10-11T10:14:03.492781Z", + "shell.execute_reply": "2023-10-11T10:14:03.491850Z" }, "id": "WETRL74tE_sU" }, @@ -1643,10 +1643,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.554148Z", - "iopub.status.busy": "2023-10-06T06:42:06.553782Z", - "iopub.status.idle": "2023-10-06T06:42:06.783468Z", - "shell.execute_reply": "2023-10-06T06:42:06.782697Z" + "iopub.execute_input": "2023-10-11T10:14:03.497643Z", + "iopub.status.busy": "2023-10-11T10:14:03.496183Z", + "iopub.status.idle": "2023-10-11T10:14:03.737406Z", + "shell.execute_reply": "2023-10-11T10:14:03.736450Z" }, "id": "kCfdx2gOLmXS" }, @@ -1808,10 +1808,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.786661Z", - "iopub.status.busy": "2023-10-06T06:42:06.786239Z", - "iopub.status.idle": "2023-10-06T06:42:06.795369Z", - "shell.execute_reply": "2023-10-06T06:42:06.794757Z" + "iopub.execute_input": "2023-10-11T10:14:03.741218Z", + "iopub.status.busy": "2023-10-11T10:14:03.740736Z", + "iopub.status.idle": "2023-10-11T10:14:03.751095Z", + "shell.execute_reply": "2023-10-11T10:14:03.750463Z" }, "id": "-uogYRWFYnuu" }, @@ -1865,10 +1865,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:06.798677Z", - "iopub.status.busy": "2023-10-06T06:42:06.798291Z", - "iopub.status.idle": "2023-10-06T06:42:07.024806Z", - "shell.execute_reply": "2023-10-06T06:42:07.024085Z" + "iopub.execute_input": "2023-10-11T10:14:03.754393Z", + "iopub.status.busy": "2023-10-11T10:14:03.753995Z", + "iopub.status.idle": "2023-10-11T10:14:03.987407Z", + "shell.execute_reply": "2023-10-11T10:14:03.986506Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1915,10 +1915,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:07.028317Z", - "iopub.status.busy": "2023-10-06T06:42:07.027866Z", - "iopub.status.idle": "2023-10-06T06:42:08.356236Z", - "shell.execute_reply": "2023-10-06T06:42:08.355530Z" + "iopub.execute_input": "2023-10-11T10:14:03.991521Z", + "iopub.status.busy": "2023-10-11T10:14:03.990842Z", + "iopub.status.idle": "2023-10-11T10:14:05.577534Z", + "shell.execute_reply": "2023-10-11T10:14:05.576748Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index b5255c166..94c10718b 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:14.489469Z", - "iopub.status.busy": "2023-10-06T06:42:14.489142Z", - "iopub.status.idle": "2023-10-06T06:42:15.635757Z", - "shell.execute_reply": "2023-10-06T06:42:15.635069Z" + "iopub.execute_input": "2023-10-11T10:14:11.825429Z", + "iopub.status.busy": "2023-10-11T10:14:11.825151Z", + "iopub.status.idle": "2023-10-11T10:14:13.048562Z", + "shell.execute_reply": "2023-10-11T10:14:13.047720Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.640608Z", - "iopub.status.busy": "2023-10-06T06:42:15.639168Z", - "iopub.status.idle": "2023-10-06T06:42:15.644290Z", - "shell.execute_reply": "2023-10-06T06:42:15.643681Z" + "iopub.execute_input": "2023-10-11T10:14:13.053084Z", + "iopub.status.busy": "2023-10-11T10:14:13.052428Z", + "iopub.status.idle": "2023-10-11T10:14:13.057100Z", + "shell.execute_reply": "2023-10-11T10:14:13.056428Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.647692Z", - "iopub.status.busy": "2023-10-06T06:42:15.647450Z", - "iopub.status.idle": "2023-10-06T06:42:15.658588Z", - "shell.execute_reply": "2023-10-06T06:42:15.657967Z" + "iopub.execute_input": "2023-10-11T10:14:13.060478Z", + "iopub.status.busy": "2023-10-11T10:14:13.060232Z", + "iopub.status.idle": "2023-10-11T10:14:13.070814Z", + "shell.execute_reply": "2023-10-11T10:14:13.070192Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.661692Z", - "iopub.status.busy": "2023-10-06T06:42:15.661014Z", - "iopub.status.idle": "2023-10-06T06:42:15.721692Z", - "shell.execute_reply": "2023-10-06T06:42:15.720944Z" + "iopub.execute_input": "2023-10-11T10:14:13.074078Z", + "iopub.status.busy": "2023-10-11T10:14:13.073727Z", + "iopub.status.idle": "2023-10-11T10:14:13.136814Z", + "shell.execute_reply": "2023-10-11T10:14:13.136073Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.725638Z", - "iopub.status.busy": "2023-10-06T06:42:15.725217Z", - "iopub.status.idle": "2023-10-06T06:42:15.751469Z", - "shell.execute_reply": "2023-10-06T06:42:15.750769Z" + "iopub.execute_input": "2023-10-11T10:14:13.140864Z", + "iopub.status.busy": "2023-10-11T10:14:13.140185Z", + "iopub.status.idle": "2023-10-11T10:14:13.165307Z", + "shell.execute_reply": "2023-10-11T10:14:13.164597Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.755148Z", - "iopub.status.busy": "2023-10-06T06:42:15.754635Z", - "iopub.status.idle": "2023-10-06T06:42:15.761117Z", - "shell.execute_reply": "2023-10-06T06:42:15.760485Z" + "iopub.execute_input": "2023-10-11T10:14:13.168773Z", + "iopub.status.busy": "2023-10-11T10:14:13.168208Z", + "iopub.status.idle": "2023-10-11T10:14:13.174909Z", + "shell.execute_reply": "2023-10-11T10:14:13.174285Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.765237Z", - "iopub.status.busy": "2023-10-06T06:42:15.764705Z", - "iopub.status.idle": "2023-10-06T06:42:15.803048Z", - "shell.execute_reply": "2023-10-06T06:42:15.802052Z" + "iopub.execute_input": "2023-10-11T10:14:13.178319Z", + "iopub.status.busy": "2023-10-11T10:14:13.177924Z", + "iopub.status.idle": "2023-10-11T10:14:13.214257Z", + "shell.execute_reply": "2023-10-11T10:14:13.213498Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.806871Z", - "iopub.status.busy": "2023-10-06T06:42:15.806549Z", - "iopub.status.idle": "2023-10-06T06:42:15.841392Z", - "shell.execute_reply": "2023-10-06T06:42:15.840675Z" + "iopub.execute_input": "2023-10-11T10:14:13.218276Z", + "iopub.status.busy": "2023-10-11T10:14:13.217701Z", + "iopub.status.idle": "2023-10-11T10:14:13.254925Z", + "shell.execute_reply": "2023-10-11T10:14:13.254173Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:15.844584Z", - "iopub.status.busy": "2023-10-06T06:42:15.844317Z", - "iopub.status.idle": "2023-10-06T06:42:17.522519Z", - "shell.execute_reply": "2023-10-06T06:42:17.521774Z" + "iopub.execute_input": "2023-10-11T10:14:13.258799Z", + "iopub.status.busy": "2023-10-11T10:14:13.258315Z", + "iopub.status.idle": "2023-10-11T10:14:15.021004Z", + "shell.execute_reply": "2023-10-11T10:14:15.020194Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.526337Z", - "iopub.status.busy": "2023-10-06T06:42:17.525524Z", - "iopub.status.idle": "2023-10-06T06:42:17.537152Z", - "shell.execute_reply": "2023-10-06T06:42:17.536497Z" + "iopub.execute_input": "2023-10-11T10:14:15.025841Z", + "iopub.status.busy": "2023-10-11T10:14:15.024979Z", + "iopub.status.idle": "2023-10-11T10:14:15.034493Z", + "shell.execute_reply": "2023-10-11T10:14:15.033801Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.540244Z", - "iopub.status.busy": "2023-10-06T06:42:17.539782Z", - "iopub.status.idle": "2023-10-06T06:42:17.556604Z", - "shell.execute_reply": "2023-10-06T06:42:17.555911Z" + "iopub.execute_input": "2023-10-11T10:14:15.037919Z", + "iopub.status.busy": "2023-10-11T10:14:15.037346Z", + "iopub.status.idle": "2023-10-11T10:14:15.055490Z", + "shell.execute_reply": "2023-10-11T10:14:15.054819Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.560258Z", - "iopub.status.busy": "2023-10-06T06:42:17.559870Z", - "iopub.status.idle": "2023-10-06T06:42:17.568259Z", - "shell.execute_reply": "2023-10-06T06:42:17.567554Z" + "iopub.execute_input": "2023-10-11T10:14:15.059126Z", + "iopub.status.busy": "2023-10-11T10:14:15.058570Z", + "iopub.status.idle": "2023-10-11T10:14:15.069052Z", + "shell.execute_reply": "2023-10-11T10:14:15.068401Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.571912Z", - "iopub.status.busy": "2023-10-06T06:42:17.571512Z", - "iopub.status.idle": "2023-10-06T06:42:17.574930Z", - "shell.execute_reply": "2023-10-06T06:42:17.574243Z" + "iopub.execute_input": "2023-10-11T10:14:15.072472Z", + "iopub.status.busy": "2023-10-11T10:14:15.072093Z", + "iopub.status.idle": "2023-10-11T10:14:15.076415Z", + "shell.execute_reply": "2023-10-11T10:14:15.075778Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.577828Z", - "iopub.status.busy": "2023-10-06T06:42:17.577443Z", - "iopub.status.idle": "2023-10-06T06:42:17.583304Z", - "shell.execute_reply": "2023-10-06T06:42:17.582674Z" + "iopub.execute_input": "2023-10-11T10:14:15.079613Z", + "iopub.status.busy": "2023-10-11T10:14:15.079247Z", + "iopub.status.idle": "2023-10-11T10:14:15.084863Z", + "shell.execute_reply": "2023-10-11T10:14:15.084239Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.586678Z", - "iopub.status.busy": "2023-10-06T06:42:17.586172Z", - "iopub.status.idle": "2023-10-06T06:42:17.590466Z", - "shell.execute_reply": "2023-10-06T06:42:17.589826Z" + "iopub.execute_input": "2023-10-11T10:14:15.088118Z", + "iopub.status.busy": "2023-10-11T10:14:15.087739Z", + "iopub.status.idle": "2023-10-11T10:14:15.091897Z", + "shell.execute_reply": "2023-10-11T10:14:15.091263Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.593673Z", - "iopub.status.busy": "2023-10-06T06:42:17.593163Z", - "iopub.status.idle": "2023-10-06T06:42:17.600145Z", - "shell.execute_reply": "2023-10-06T06:42:17.599501Z" + "iopub.execute_input": "2023-10-11T10:14:15.095018Z", + "iopub.status.busy": "2023-10-11T10:14:15.094663Z", + "iopub.status.idle": "2023-10-11T10:14:15.100964Z", + "shell.execute_reply": "2023-10-11T10:14:15.100337Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.603540Z", - "iopub.status.busy": "2023-10-06T06:42:17.603046Z", - "iopub.status.idle": "2023-10-06T06:42:17.640047Z", - "shell.execute_reply": "2023-10-06T06:42:17.639256Z" + "iopub.execute_input": "2023-10-11T10:14:15.104236Z", + "iopub.status.busy": "2023-10-11T10:14:15.103874Z", + "iopub.status.idle": "2023-10-11T10:14:15.148266Z", + "shell.execute_reply": "2023-10-11T10:14:15.147483Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:17.643804Z", - "iopub.status.busy": "2023-10-06T06:42:17.643497Z", - "iopub.status.idle": "2023-10-06T06:42:17.651284Z", - "shell.execute_reply": "2023-10-06T06:42:17.650617Z" + "iopub.execute_input": "2023-10-11T10:14:15.152634Z", + "iopub.status.busy": "2023-10-11T10:14:15.152105Z", + "iopub.status.idle": "2023-10-11T10:14:15.159365Z", + "shell.execute_reply": "2023-10-11T10:14:15.158722Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 6d0bdd24d..09e88c44d 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:22.813418Z", - "iopub.status.busy": "2023-10-06T06:42:22.812982Z", - "iopub.status.idle": "2023-10-06T06:42:24.046280Z", - "shell.execute_reply": "2023-10-06T06:42:24.045557Z" + "iopub.execute_input": "2023-10-11T10:14:21.271618Z", + "iopub.status.busy": "2023-10-11T10:14:21.271368Z", + "iopub.status.idle": "2023-10-11T10:14:22.578137Z", + "shell.execute_reply": "2023-10-11T10:14:22.577377Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:24.049763Z", - "iopub.status.busy": "2023-10-06T06:42:24.049226Z", - "iopub.status.idle": "2023-10-06T06:42:24.411655Z", - "shell.execute_reply": "2023-10-06T06:42:24.410950Z" + "iopub.execute_input": "2023-10-11T10:14:22.582014Z", + "iopub.status.busy": "2023-10-11T10:14:22.581420Z", + "iopub.status.idle": "2023-10-11T10:14:22.974677Z", + "shell.execute_reply": "2023-10-11T10:14:22.973899Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:24.415251Z", - "iopub.status.busy": "2023-10-06T06:42:24.414971Z", - "iopub.status.idle": "2023-10-06T06:42:24.432546Z", - "shell.execute_reply": "2023-10-06T06:42:24.431900Z" + "iopub.execute_input": "2023-10-11T10:14:22.978649Z", + "iopub.status.busy": "2023-10-11T10:14:22.978310Z", + "iopub.status.idle": "2023-10-11T10:14:22.996898Z", + "shell.execute_reply": "2023-10-11T10:14:22.996247Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:24.435846Z", - "iopub.status.busy": "2023-10-06T06:42:24.435276Z", - "iopub.status.idle": "2023-10-06T06:42:27.295634Z", - "shell.execute_reply": "2023-10-06T06:42:27.294969Z" + "iopub.execute_input": "2023-10-11T10:14:23.000361Z", + "iopub.status.busy": "2023-10-11T10:14:22.999988Z", + "iopub.status.idle": "2023-10-11T10:14:26.108245Z", + "shell.execute_reply": "2023-10-11T10:14:26.107525Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:27.298756Z", - "iopub.status.busy": "2023-10-06T06:42:27.298515Z", - "iopub.status.idle": "2023-10-06T06:42:29.217234Z", - "shell.execute_reply": "2023-10-06T06:42:29.216520Z" + "iopub.execute_input": "2023-10-11T10:14:26.112155Z", + "iopub.status.busy": "2023-10-11T10:14:26.111886Z", + "iopub.status.idle": "2023-10-11T10:14:28.201149Z", + "shell.execute_reply": "2023-10-11T10:14:28.200375Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:29.220473Z", - "iopub.status.busy": "2023-10-06T06:42:29.220211Z", - "iopub.status.idle": "2023-10-06T06:42:29.238406Z", - "shell.execute_reply": "2023-10-06T06:42:29.237629Z" + "iopub.execute_input": "2023-10-11T10:14:28.204772Z", + "iopub.status.busy": "2023-10-11T10:14:28.204276Z", + "iopub.status.idle": "2023-10-11T10:14:28.222625Z", + "shell.execute_reply": "2023-10-11T10:14:28.221712Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:29.241923Z", - "iopub.status.busy": "2023-10-06T06:42:29.241437Z", - "iopub.status.idle": "2023-10-06T06:42:30.906896Z", - "shell.execute_reply": "2023-10-06T06:42:30.905889Z" + "iopub.execute_input": "2023-10-11T10:14:28.225653Z", + "iopub.status.busy": "2023-10-11T10:14:28.225263Z", + "iopub.status.idle": "2023-10-11T10:14:29.944519Z", + "shell.execute_reply": "2023-10-11T10:14:29.943502Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:30.911116Z", - "iopub.status.busy": "2023-10-06T06:42:30.910015Z", - "iopub.status.idle": "2023-10-06T06:42:33.760685Z", - "shell.execute_reply": "2023-10-06T06:42:33.759969Z" + "iopub.execute_input": "2023-10-11T10:14:29.949244Z", + "iopub.status.busy": "2023-10-11T10:14:29.948159Z", + "iopub.status.idle": "2023-10-11T10:14:33.032286Z", + "shell.execute_reply": "2023-10-11T10:14:33.031520Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:33.764037Z", - "iopub.status.busy": "2023-10-06T06:42:33.763407Z", - "iopub.status.idle": "2023-10-06T06:42:33.770524Z", - "shell.execute_reply": "2023-10-06T06:42:33.769866Z" + "iopub.execute_input": "2023-10-11T10:14:33.036284Z", + "iopub.status.busy": "2023-10-11T10:14:33.035595Z", + "iopub.status.idle": "2023-10-11T10:14:33.042204Z", + "shell.execute_reply": "2023-10-11T10:14:33.041481Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:33.773710Z", - "iopub.status.busy": "2023-10-06T06:42:33.773130Z", - "iopub.status.idle": "2023-10-06T06:42:33.778251Z", - "shell.execute_reply": "2023-10-06T06:42:33.777579Z" + "iopub.execute_input": "2023-10-11T10:14:33.045437Z", + "iopub.status.busy": "2023-10-11T10:14:33.044886Z", + "iopub.status.idle": "2023-10-11T10:14:33.049900Z", + "shell.execute_reply": "2023-10-11T10:14:33.049197Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:33.781434Z", - "iopub.status.busy": "2023-10-06T06:42:33.780878Z", - "iopub.status.idle": "2023-10-06T06:42:33.784883Z", - "shell.execute_reply": "2023-10-06T06:42:33.784163Z" + "iopub.execute_input": "2023-10-11T10:14:33.053058Z", + "iopub.status.busy": "2023-10-11T10:14:33.052676Z", + "iopub.status.idle": "2023-10-11T10:14:33.056643Z", + "shell.execute_reply": "2023-10-11T10:14:33.055929Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 55162ce12..f36e17395 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:38.827543Z", - "iopub.status.busy": "2023-10-06T06:42:38.827182Z", - "iopub.status.idle": "2023-10-06T06:42:40.040059Z", - "shell.execute_reply": "2023-10-06T06:42:40.039358Z" + "iopub.execute_input": "2023-10-11T10:14:38.145177Z", + "iopub.status.busy": "2023-10-11T10:14:38.144663Z", + "iopub.status.idle": "2023-10-11T10:14:39.457951Z", + "shell.execute_reply": "2023-10-11T10:14:39.457164Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:40.043489Z", - "iopub.status.busy": "2023-10-06T06:42:40.042901Z", - "iopub.status.idle": "2023-10-06T06:42:42.806381Z", - "shell.execute_reply": "2023-10-06T06:42:42.805383Z" + "iopub.execute_input": "2023-10-11T10:14:39.461839Z", + "iopub.status.busy": "2023-10-11T10:14:39.461266Z", + "iopub.status.idle": "2023-10-11T10:14:40.735125Z", + "shell.execute_reply": "2023-10-11T10:14:40.733964Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:42.810112Z", - "iopub.status.busy": "2023-10-06T06:42:42.809500Z", - "iopub.status.idle": "2023-10-06T06:42:42.814515Z", - "shell.execute_reply": "2023-10-06T06:42:42.813892Z" + "iopub.execute_input": "2023-10-11T10:14:40.740507Z", + "iopub.status.busy": "2023-10-11T10:14:40.739041Z", + "iopub.status.idle": "2023-10-11T10:14:40.744547Z", + "shell.execute_reply": "2023-10-11T10:14:40.743918Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:42.817301Z", - "iopub.status.busy": "2023-10-06T06:42:42.816940Z", - "iopub.status.idle": "2023-10-06T06:42:42.824678Z", - "shell.execute_reply": "2023-10-06T06:42:42.824079Z" + "iopub.execute_input": "2023-10-11T10:14:40.748660Z", + "iopub.status.busy": "2023-10-11T10:14:40.747375Z", + "iopub.status.idle": "2023-10-11T10:14:40.756836Z", + "shell.execute_reply": "2023-10-11T10:14:40.756183Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:42.827618Z", - "iopub.status.busy": "2023-10-06T06:42:42.827242Z", - "iopub.status.idle": "2023-10-06T06:42:43.565874Z", - "shell.execute_reply": "2023-10-06T06:42:43.565212Z" + "iopub.execute_input": "2023-10-11T10:14:40.760217Z", + "iopub.status.busy": "2023-10-11T10:14:40.759720Z", + "iopub.status.idle": "2023-10-11T10:14:41.538167Z", + "shell.execute_reply": "2023-10-11T10:14:41.537478Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:43.571115Z", - "iopub.status.busy": "2023-10-06T06:42:43.570393Z", - "iopub.status.idle": "2023-10-06T06:42:43.577522Z", - "shell.execute_reply": "2023-10-06T06:42:43.576854Z" + "iopub.execute_input": "2023-10-11T10:14:41.543364Z", + "iopub.status.busy": "2023-10-11T10:14:41.542867Z", + "iopub.status.idle": "2023-10-11T10:14:41.549933Z", + "shell.execute_reply": "2023-10-11T10:14:41.549377Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:43.580727Z", - "iopub.status.busy": "2023-10-06T06:42:43.580208Z", - "iopub.status.idle": "2023-10-06T06:42:43.586587Z", - "shell.execute_reply": "2023-10-06T06:42:43.585970Z" + "iopub.execute_input": "2023-10-11T10:14:41.552749Z", + "iopub.status.busy": "2023-10-11T10:14:41.552299Z", + "iopub.status.idle": "2023-10-11T10:14:41.556872Z", + "shell.execute_reply": "2023-10-11T10:14:41.556335Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:43.590034Z", - "iopub.status.busy": "2023-10-06T06:42:43.589424Z", - "iopub.status.idle": "2023-10-06T06:42:44.269421Z", - "shell.execute_reply": "2023-10-06T06:42:44.268565Z" + "iopub.execute_input": "2023-10-11T10:14:41.559649Z", + "iopub.status.busy": "2023-10-11T10:14:41.559200Z", + "iopub.status.idle": "2023-10-11T10:14:42.239478Z", + "shell.execute_reply": "2023-10-11T10:14:42.238623Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:44.273021Z", - "iopub.status.busy": "2023-10-06T06:42:44.272395Z", - "iopub.status.idle": "2023-10-06T06:42:44.405290Z", - "shell.execute_reply": "2023-10-06T06:42:44.404566Z" + "iopub.execute_input": "2023-10-11T10:14:42.243666Z", + "iopub.status.busy": "2023-10-11T10:14:42.243094Z", + "iopub.status.idle": "2023-10-11T10:14:42.361450Z", + "shell.execute_reply": "2023-10-11T10:14:42.360722Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:44.408457Z", - "iopub.status.busy": "2023-10-06T06:42:44.408222Z", - "iopub.status.idle": "2023-10-06T06:42:44.415389Z", - "shell.execute_reply": "2023-10-06T06:42:44.414802Z" + "iopub.execute_input": "2023-10-11T10:14:42.365097Z", + "iopub.status.busy": "2023-10-11T10:14:42.364684Z", + "iopub.status.idle": "2023-10-11T10:14:42.372504Z", + "shell.execute_reply": "2023-10-11T10:14:42.371871Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:44.418415Z", - "iopub.status.busy": "2023-10-06T06:42:44.417886Z", - "iopub.status.idle": "2023-10-06T06:42:44.848994Z", - "shell.execute_reply": "2023-10-06T06:42:44.848316Z" + "iopub.execute_input": "2023-10-11T10:14:42.375717Z", + "iopub.status.busy": "2023-10-11T10:14:42.375160Z", + "iopub.status.idle": "2023-10-11T10:14:42.832948Z", + "shell.execute_reply": "2023-10-11T10:14:42.832163Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:44.852327Z", - "iopub.status.busy": "2023-10-06T06:42:44.851732Z", - "iopub.status.idle": "2023-10-06T06:42:45.232990Z", - "shell.execute_reply": "2023-10-06T06:42:45.232396Z" + "iopub.execute_input": "2023-10-11T10:14:42.837046Z", + "iopub.status.busy": "2023-10-11T10:14:42.836548Z", + "iopub.status.idle": "2023-10-11T10:14:43.241324Z", + "shell.execute_reply": "2023-10-11T10:14:43.240529Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:45.236497Z", - "iopub.status.busy": "2023-10-06T06:42:45.236024Z", - "iopub.status.idle": "2023-10-06T06:42:45.673157Z", - "shell.execute_reply": "2023-10-06T06:42:45.672573Z" + "iopub.execute_input": "2023-10-11T10:14:43.244865Z", + "iopub.status.busy": "2023-10-11T10:14:43.244361Z", + "iopub.status.idle": "2023-10-11T10:14:43.717249Z", + "shell.execute_reply": "2023-10-11T10:14:43.716536Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:45.678207Z", - "iopub.status.busy": "2023-10-06T06:42:45.677552Z", - "iopub.status.idle": "2023-10-06T06:42:46.217025Z", - "shell.execute_reply": "2023-10-06T06:42:46.216410Z" + "iopub.execute_input": "2023-10-11T10:14:43.720695Z", + "iopub.status.busy": "2023-10-11T10:14:43.720189Z", + "iopub.status.idle": "2023-10-11T10:14:44.297358Z", + "shell.execute_reply": "2023-10-11T10:14:44.296598Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:46.224090Z", - "iopub.status.busy": "2023-10-06T06:42:46.223470Z", - "iopub.status.idle": "2023-10-06T06:42:46.761043Z", - "shell.execute_reply": "2023-10-06T06:42:46.760415Z" + "iopub.execute_input": "2023-10-11T10:14:44.306826Z", + "iopub.status.busy": "2023-10-11T10:14:44.306266Z", + "iopub.status.idle": "2023-10-11T10:14:44.877281Z", + "shell.execute_reply": "2023-10-11T10:14:44.876617Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:46.766294Z", - "iopub.status.busy": "2023-10-06T06:42:46.765658Z", - "iopub.status.idle": "2023-10-06T06:42:47.009286Z", - "shell.execute_reply": "2023-10-06T06:42:47.008592Z" + "iopub.execute_input": "2023-10-11T10:14:44.880925Z", + "iopub.status.busy": "2023-10-11T10:14:44.880266Z", + "iopub.status.idle": "2023-10-11T10:14:45.169266Z", + "shell.execute_reply": "2023-10-11T10:14:45.168623Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:47.012459Z", - "iopub.status.busy": "2023-10-06T06:42:47.012212Z", - "iopub.status.idle": "2023-10-06T06:42:47.241149Z", - "shell.execute_reply": "2023-10-06T06:42:47.240568Z" + "iopub.execute_input": "2023-10-11T10:14:45.173068Z", + "iopub.status.busy": "2023-10-11T10:14:45.172641Z", + "iopub.status.idle": "2023-10-11T10:14:45.403753Z", + "shell.execute_reply": "2023-10-11T10:14:45.403119Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:47.245512Z", - "iopub.status.busy": "2023-10-06T06:42:47.245037Z", - "iopub.status.idle": "2023-10-06T06:42:47.249301Z", - "shell.execute_reply": "2023-10-06T06:42:47.248618Z" + "iopub.execute_input": "2023-10-11T10:14:45.409774Z", + "iopub.status.busy": "2023-10-11T10:14:45.409332Z", + "iopub.status.idle": "2023-10-11T10:14:45.413869Z", + "shell.execute_reply": "2023-10-11T10:14:45.413295Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index c23b4d170..6c3125028 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -925,7 +925,7 @@

2. Pre-process the Cifar10 dataset

-
+
@@ -1270,7 +1270,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index ead06f972..a782b4946 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:49.931678Z", - "iopub.status.busy": "2023-10-06T06:42:49.931182Z", - "iopub.status.idle": "2023-10-06T06:42:52.302575Z", - "shell.execute_reply": "2023-10-06T06:42:52.301897Z" + "iopub.execute_input": "2023-10-11T10:14:48.248522Z", + "iopub.status.busy": "2023-10-11T10:14:48.248060Z", + "iopub.status.idle": "2023-10-11T10:14:50.766490Z", + "shell.execute_reply": "2023-10-11T10:14:50.765725Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:52.306349Z", - "iopub.status.busy": "2023-10-06T06:42:52.305724Z", - "iopub.status.idle": "2023-10-06T06:42:52.686477Z", - "shell.execute_reply": "2023-10-06T06:42:52.685783Z" + "iopub.execute_input": "2023-10-11T10:14:50.770556Z", + "iopub.status.busy": "2023-10-11T10:14:50.769989Z", + "iopub.status.idle": "2023-10-11T10:14:51.193239Z", + "shell.execute_reply": "2023-10-11T10:14:51.192424Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:52.690278Z", - "iopub.status.busy": "2023-10-06T06:42:52.689676Z", - "iopub.status.idle": "2023-10-06T06:42:52.694547Z", - "shell.execute_reply": "2023-10-06T06:42:52.693875Z" + "iopub.execute_input": "2023-10-11T10:14:51.197965Z", + "iopub.status.busy": "2023-10-11T10:14:51.197528Z", + "iopub.status.idle": "2023-10-11T10:14:51.208067Z", + "shell.execute_reply": "2023-10-11T10:14:51.204570Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:42:52.697643Z", - "iopub.status.busy": "2023-10-06T06:42:52.697164Z", - "iopub.status.idle": "2023-10-06T06:43:04.860852Z", - "shell.execute_reply": "2023-10-06T06:43:04.860235Z" + "iopub.execute_input": "2023-10-11T10:14:51.216010Z", + "iopub.status.busy": "2023-10-11T10:14:51.214804Z", + "iopub.status.idle": "2023-10-11T10:14:57.872879Z", + "shell.execute_reply": "2023-10-11T10:14:57.871995Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ccf6571d3adb4741985552a78e4d8fa2", + "model_id": "2187a5317f1445fc9127f6334a669a11", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:04.864200Z", - "iopub.status.busy": "2023-10-06T06:43:04.863735Z", - "iopub.status.idle": "2023-10-06T06:43:04.870788Z", - "shell.execute_reply": "2023-10-06T06:43:04.870167Z" + "iopub.execute_input": "2023-10-11T10:14:57.876489Z", + "iopub.status.busy": "2023-10-11T10:14:57.876055Z", + "iopub.status.idle": "2023-10-11T10:14:57.883665Z", + "shell.execute_reply": "2023-10-11T10:14:57.883007Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:04.873511Z", - "iopub.status.busy": "2023-10-06T06:43:04.873258Z", - "iopub.status.idle": "2023-10-06T06:43:05.471458Z", - "shell.execute_reply": "2023-10-06T06:43:05.470758Z" + "iopub.execute_input": "2023-10-11T10:14:57.887146Z", + "iopub.status.busy": "2023-10-11T10:14:57.886624Z", + "iopub.status.idle": "2023-10-11T10:14:58.513974Z", + "shell.execute_reply": "2023-10-11T10:14:58.513288Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:05.475311Z", - "iopub.status.busy": "2023-10-06T06:43:05.474490Z", - "iopub.status.idle": "2023-10-06T06:43:06.043140Z", - "shell.execute_reply": "2023-10-06T06:43:06.042378Z" + "iopub.execute_input": "2023-10-11T10:14:58.517518Z", + "iopub.status.busy": "2023-10-11T10:14:58.517258Z", + "iopub.status.idle": "2023-10-11T10:14:59.113315Z", + "shell.execute_reply": "2023-10-11T10:14:59.112513Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:06.046277Z", - "iopub.status.busy": "2023-10-06T06:43:06.045883Z", - "iopub.status.idle": "2023-10-06T06:43:06.051186Z", - "shell.execute_reply": "2023-10-06T06:43:06.050582Z" + "iopub.execute_input": "2023-10-11T10:14:59.117272Z", + "iopub.status.busy": "2023-10-11T10:14:59.116673Z", + "iopub.status.idle": "2023-10-11T10:14:59.122344Z", + "shell.execute_reply": "2023-10-11T10:14:59.121714Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:06.054063Z", - "iopub.status.busy": "2023-10-06T06:43:06.053689Z", - "iopub.status.idle": "2023-10-06T06:43:20.764569Z", - "shell.execute_reply": "2023-10-06T06:43:20.763956Z" + "iopub.execute_input": "2023-10-11T10:14:59.125452Z", + "iopub.status.busy": "2023-10-11T10:14:59.124992Z", + "iopub.status.idle": "2023-10-11T10:15:12.338984Z", + "shell.execute_reply": "2023-10-11T10:15:12.338203Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:20.768030Z", - "iopub.status.busy": "2023-10-06T06:43:20.767585Z", - "iopub.status.idle": "2023-10-06T06:43:22.576120Z", - "shell.execute_reply": "2023-10-06T06:43:22.575517Z" + "iopub.execute_input": "2023-10-11T10:15:12.342679Z", + "iopub.status.busy": "2023-10-11T10:15:12.342160Z", + "iopub.status.idle": "2023-10-11T10:15:13.939999Z", + "shell.execute_reply": "2023-10-11T10:15:13.939181Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:22.579152Z", - "iopub.status.busy": "2023-10-06T06:43:22.578776Z", - "iopub.status.idle": "2023-10-06T06:43:22.855276Z", - "shell.execute_reply": "2023-10-06T06:43:22.854690Z" + "iopub.execute_input": "2023-10-11T10:15:13.943281Z", + "iopub.status.busy": "2023-10-11T10:15:13.942871Z", + "iopub.status.idle": "2023-10-11T10:15:14.237154Z", + "shell.execute_reply": "2023-10-11T10:15:14.236479Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:22.858774Z", - "iopub.status.busy": "2023-10-06T06:43:22.858378Z", - "iopub.status.idle": "2023-10-06T06:43:23.678242Z", - "shell.execute_reply": "2023-10-06T06:43:23.677668Z" + "iopub.execute_input": "2023-10-11T10:15:14.240534Z", + "iopub.status.busy": "2023-10-11T10:15:14.240195Z", + "iopub.status.idle": "2023-10-11T10:15:15.103691Z", + "shell.execute_reply": "2023-10-11T10:15:15.103046Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:23.681478Z", - "iopub.status.busy": "2023-10-06T06:43:23.681071Z", - "iopub.status.idle": "2023-10-06T06:43:24.014813Z", - "shell.execute_reply": "2023-10-06T06:43:24.014150Z" + "iopub.execute_input": "2023-10-11T10:15:15.108620Z", + "iopub.status.busy": "2023-10-11T10:15:15.107416Z", + "iopub.status.idle": "2023-10-11T10:15:15.457851Z", + "shell.execute_reply": "2023-10-11T10:15:15.457219Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:24.018005Z", - "iopub.status.busy": "2023-10-06T06:43:24.017443Z", - "iopub.status.idle": "2023-10-06T06:43:24.297178Z", - "shell.execute_reply": "2023-10-06T06:43:24.296603Z" + "iopub.execute_input": "2023-10-11T10:15:15.461313Z", + "iopub.status.busy": "2023-10-11T10:15:15.460828Z", + "iopub.status.idle": "2023-10-11T10:15:15.753304Z", + "shell.execute_reply": "2023-10-11T10:15:15.752651Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:24.300543Z", - "iopub.status.busy": "2023-10-06T06:43:24.300054Z", - "iopub.status.idle": "2023-10-06T06:43:24.452368Z", - "shell.execute_reply": "2023-10-06T06:43:24.451646Z" + "iopub.execute_input": "2023-10-11T10:15:15.756626Z", + "iopub.status.busy": "2023-10-11T10:15:15.756115Z", + "iopub.status.idle": "2023-10-11T10:15:15.910302Z", + "shell.execute_reply": "2023-10-11T10:15:15.909590Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:43:24.456293Z", - "iopub.status.busy": "2023-10-06T06:43:24.455637Z", - "iopub.status.idle": "2023-10-06T06:44:12.619311Z", - "shell.execute_reply": "2023-10-06T06:44:12.618417Z" + "iopub.execute_input": "2023-10-11T10:15:15.914207Z", + "iopub.status.busy": "2023-10-11T10:15:15.913659Z", + "iopub.status.idle": "2023-10-11T10:16:11.565422Z", + "shell.execute_reply": "2023-10-11T10:16:11.564466Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:12.622903Z", - "iopub.status.busy": "2023-10-06T06:44:12.622485Z", - "iopub.status.idle": "2023-10-06T06:44:14.166267Z", - "shell.execute_reply": "2023-10-06T06:44:14.165380Z" + "iopub.execute_input": "2023-10-11T10:16:11.570126Z", + "iopub.status.busy": "2023-10-11T10:16:11.569548Z", + "iopub.status.idle": "2023-10-11T10:16:13.183899Z", + "shell.execute_reply": "2023-10-11T10:16:13.183075Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:14.170824Z", - "iopub.status.busy": "2023-10-06T06:44:14.170017Z", - "iopub.status.idle": "2023-10-06T06:44:14.391897Z", - "shell.execute_reply": "2023-10-06T06:44:14.391122Z" + "iopub.execute_input": "2023-10-11T10:16:13.188631Z", + "iopub.status.busy": "2023-10-11T10:16:13.187699Z", + "iopub.status.idle": "2023-10-11T10:16:13.537046Z", + "shell.execute_reply": "2023-10-11T10:16:13.536202Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:14.396218Z", - "iopub.status.busy": "2023-10-06T06:44:14.395691Z", - "iopub.status.idle": "2023-10-06T06:44:14.400242Z", - "shell.execute_reply": "2023-10-06T06:44:14.399044Z" + "iopub.execute_input": "2023-10-11T10:16:13.541469Z", + "iopub.status.busy": "2023-10-11T10:16:13.540788Z", + "iopub.status.idle": "2023-10-11T10:16:13.545347Z", + "shell.execute_reply": "2023-10-11T10:16:13.544614Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:14.403794Z", - "iopub.status.busy": "2023-10-06T06:44:14.403371Z", - "iopub.status.idle": "2023-10-06T06:44:14.413607Z", - "shell.execute_reply": "2023-10-06T06:44:14.412909Z" + "iopub.execute_input": "2023-10-11T10:16:13.548582Z", + "iopub.status.busy": "2023-10-11T10:16:13.548159Z", + "iopub.status.idle": "2023-10-11T10:16:13.560156Z", + "shell.execute_reply": "2023-10-11T10:16:13.558936Z" }, "nbsphinx": "hidden" }, @@ -1017,43 +1017,29 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "150c8d8ad66d493b9f1037d6d305bd3c": { + "2187a5317f1445fc9127f6334a669a11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "424d34a394bb4874930a352fed327b8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_486e6072aa0e48bfa66c430b66b5f0b8", - "placeholder": "​", - "style": "IPY_MODEL_7ca17c532434424c8ada5df20f3a2c67", - "value": " 170498071/170498071 [00:04<00:00, 41576700.02it/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_843ceb611bc74db8a334d03975a66956", + "IPY_MODEL_9ca7b1c3a96b4d019fd43271debf17c1", + "IPY_MODEL_f9b27459060f414e9f8c796ddb711d9c" + ], + "layout": "IPY_MODEL_265106b7b67b47578424ade6aa125e14" } }, - "486e6072aa0e48bfa66c430b66b5f0b8": { + "265106b7b67b47578424ade6aa125e14": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1105,7 +1091,22 @@ "width": null } }, - "594942b396154d7ea39098412ed5ab6d": { + "7239fe90d76743afa44528ef490f4cd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "843ceb611bc74db8a334d03975a66956": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1120,13 +1121,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f5a463a192734f3b816fa4226f433b20", + "layout": "IPY_MODEL_f5e1643e798e40fca4aebc0ca34c4cf7", "placeholder": "​", - "style": "IPY_MODEL_150c8d8ad66d493b9f1037d6d305bd3c", + "style": "IPY_MODEL_7239fe90d76743afa44528ef490f4cd5", "value": "100%" } }, - "778adb2c672d42b38ad9a9dbde1f066d": { + "98de8f3a440f4d61aa012aa6c7a4afbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1142,22 +1143,31 @@ "description_width": "" } }, - "7ca17c532434424c8ada5df20f3a2c67": { + "9ca7b1c3a96b4d019fd43271debf17c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ddbba9dd2f7e4ba2b538ec7f3c57db09", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_98de8f3a440f4d61aa012aa6c7a4afbf", + "value": 170498071.0 } }, - "85bb3bc369df46a18567269e9470a462": { + "bb23ca25827842429d4d3f3ca044e55f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1209,7 +1219,22 @@ "width": null } }, - "8c4316e45d8b4109afcea3b3b1ecaf09": { + "bb78051e21e14dc58ad638173ad1aed4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ddbba9dd2f7e4ba2b538ec7f3c57db09": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1261,53 +1286,7 @@ "width": null } }, - "ccf6571d3adb4741985552a78e4d8fa2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_594942b396154d7ea39098412ed5ab6d", - "IPY_MODEL_ebc831a19e104c85a17c4d65ce3c62f8", - "IPY_MODEL_424d34a394bb4874930a352fed327b8b" - ], - "layout": "IPY_MODEL_8c4316e45d8b4109afcea3b3b1ecaf09" - } - }, - "ebc831a19e104c85a17c4d65ce3c62f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_85bb3bc369df46a18567269e9470a462", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_778adb2c672d42b38ad9a9dbde1f066d", - "value": 170498071.0 - } - }, - "f5a463a192734f3b816fa4226f433b20": { + "f5e1643e798e40fca4aebc0ca34c4cf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1358,6 +1337,27 @@ "visibility": null, "width": null } + }, + "f9b27459060f414e9f8c796ddb711d9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bb23ca25827842429d4d3f3ca044e55f", + "placeholder": "​", + "style": "IPY_MODEL_bb78051e21e14dc58ad638173ad1aed4", + "value": " 170498071/170498071 [00:02<00:00, 72669604.58it/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 020d5c7bf..b2f2a4e9c 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:20.188807Z", - "iopub.status.busy": "2023-10-06T06:44:20.188323Z", - "iopub.status.idle": "2023-10-06T06:44:21.435886Z", - "shell.execute_reply": "2023-10-06T06:44:21.435171Z" + "iopub.execute_input": "2023-10-11T10:16:18.972969Z", + "iopub.status.busy": "2023-10-11T10:16:18.972511Z", + "iopub.status.idle": "2023-10-11T10:16:20.274981Z", + "shell.execute_reply": "2023-10-11T10:16:20.274212Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:21.439404Z", - "iopub.status.busy": "2023-10-06T06:44:21.438796Z", - "iopub.status.idle": "2023-10-06T06:44:21.464741Z", - "shell.execute_reply": "2023-10-06T06:44:21.464035Z" + "iopub.execute_input": "2023-10-11T10:16:20.279070Z", + "iopub.status.busy": "2023-10-11T10:16:20.278677Z", + "iopub.status.idle": "2023-10-11T10:16:20.305714Z", + "shell.execute_reply": "2023-10-11T10:16:20.305003Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:21.467841Z", - "iopub.status.busy": "2023-10-06T06:44:21.467347Z", - "iopub.status.idle": "2023-10-06T06:44:21.470959Z", - "shell.execute_reply": "2023-10-06T06:44:21.470297Z" + "iopub.execute_input": "2023-10-11T10:16:20.309499Z", + "iopub.status.busy": "2023-10-11T10:16:20.309086Z", + "iopub.status.idle": "2023-10-11T10:16:20.312780Z", + "shell.execute_reply": "2023-10-11T10:16:20.312076Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:21.474127Z", - "iopub.status.busy": "2023-10-06T06:44:21.473568Z", - "iopub.status.idle": "2023-10-06T06:44:21.751928Z", - "shell.execute_reply": "2023-10-06T06:44:21.751138Z" + "iopub.execute_input": "2023-10-11T10:16:20.315961Z", + "iopub.status.busy": "2023-10-11T10:16:20.315631Z", + "iopub.status.idle": "2023-10-11T10:16:20.410714Z", + "shell.execute_reply": "2023-10-11T10:16:20.409898Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:21.755435Z", - "iopub.status.busy": "2023-10-06T06:44:21.754920Z", - "iopub.status.idle": "2023-10-06T06:44:22.091374Z", - "shell.execute_reply": "2023-10-06T06:44:22.090668Z" + "iopub.execute_input": "2023-10-11T10:16:20.414708Z", + "iopub.status.busy": "2023-10-11T10:16:20.414304Z", + "iopub.status.idle": "2023-10-11T10:16:20.773326Z", + "shell.execute_reply": "2023-10-11T10:16:20.772563Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:22.094691Z", - "iopub.status.busy": "2023-10-06T06:44:22.094223Z", - "iopub.status.idle": "2023-10-06T06:44:22.376398Z", - "shell.execute_reply": "2023-10-06T06:44:22.375739Z" + "iopub.execute_input": "2023-10-11T10:16:20.777081Z", + "iopub.status.busy": "2023-10-11T10:16:20.776566Z", + "iopub.status.idle": "2023-10-11T10:16:21.063336Z", + "shell.execute_reply": "2023-10-11T10:16:21.062687Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:22.379782Z", - "iopub.status.busy": "2023-10-06T06:44:22.379486Z", - "iopub.status.idle": "2023-10-06T06:44:22.384898Z", - "shell.execute_reply": "2023-10-06T06:44:22.384197Z" + "iopub.execute_input": "2023-10-11T10:16:21.067100Z", + "iopub.status.busy": "2023-10-11T10:16:21.066628Z", + "iopub.status.idle": "2023-10-11T10:16:21.072122Z", + "shell.execute_reply": "2023-10-11T10:16:21.071554Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:22.388039Z", - "iopub.status.busy": "2023-10-06T06:44:22.387598Z", - "iopub.status.idle": "2023-10-06T06:44:22.395712Z", - "shell.execute_reply": "2023-10-06T06:44:22.395000Z" + "iopub.execute_input": "2023-10-11T10:16:21.074893Z", + "iopub.status.busy": "2023-10-11T10:16:21.074440Z", + "iopub.status.idle": "2023-10-11T10:16:21.081812Z", + "shell.execute_reply": "2023-10-11T10:16:21.081267Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:22.398657Z", - "iopub.status.busy": "2023-10-06T06:44:22.398277Z", - "iopub.status.idle": "2023-10-06T06:44:22.401521Z", - "shell.execute_reply": "2023-10-06T06:44:22.400860Z" + "iopub.execute_input": "2023-10-11T10:16:21.084812Z", + "iopub.status.busy": "2023-10-11T10:16:21.084361Z", + "iopub.status.idle": "2023-10-11T10:16:21.087410Z", + "shell.execute_reply": "2023-10-11T10:16:21.086872Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:22.404233Z", - "iopub.status.busy": "2023-10-06T06:44:22.403998Z", - "iopub.status.idle": "2023-10-06T06:44:36.706587Z", - "shell.execute_reply": "2023-10-06T06:44:36.705934Z" + "iopub.execute_input": "2023-10-11T10:16:21.090213Z", + "iopub.status.busy": "2023-10-11T10:16:21.089763Z", + "iopub.status.idle": "2023-10-11T10:16:36.213624Z", + "shell.execute_reply": "2023-10-11T10:16:36.212898Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.710552Z", - "iopub.status.busy": "2023-10-06T06:44:36.709835Z", - "iopub.status.idle": "2023-10-06T06:44:36.718214Z", - "shell.execute_reply": "2023-10-06T06:44:36.717653Z" + "iopub.execute_input": "2023-10-11T10:16:36.217947Z", + "iopub.status.busy": "2023-10-11T10:16:36.217420Z", + "iopub.status.idle": "2023-10-11T10:16:36.227342Z", + "shell.execute_reply": "2023-10-11T10:16:36.226624Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.721133Z", - "iopub.status.busy": "2023-10-06T06:44:36.720716Z", - "iopub.status.idle": "2023-10-06T06:44:36.724780Z", - "shell.execute_reply": "2023-10-06T06:44:36.724226Z" + "iopub.execute_input": "2023-10-11T10:16:36.230618Z", + "iopub.status.busy": "2023-10-11T10:16:36.230039Z", + "iopub.status.idle": "2023-10-11T10:16:36.234621Z", + "shell.execute_reply": "2023-10-11T10:16:36.233913Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.727576Z", - "iopub.status.busy": "2023-10-06T06:44:36.727161Z", - "iopub.status.idle": "2023-10-06T06:44:36.731008Z", - "shell.execute_reply": "2023-10-06T06:44:36.730471Z" + "iopub.execute_input": "2023-10-11T10:16:36.237432Z", + "iopub.status.busy": "2023-10-11T10:16:36.237055Z", + "iopub.status.idle": "2023-10-11T10:16:36.241156Z", + "shell.execute_reply": "2023-10-11T10:16:36.240442Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.733921Z", - "iopub.status.busy": "2023-10-06T06:44:36.733491Z", - "iopub.status.idle": "2023-10-06T06:44:36.737030Z", - "shell.execute_reply": "2023-10-06T06:44:36.736471Z" + "iopub.execute_input": "2023-10-11T10:16:36.245201Z", + "iopub.status.busy": "2023-10-11T10:16:36.244553Z", + "iopub.status.idle": "2023-10-11T10:16:36.248400Z", + "shell.execute_reply": "2023-10-11T10:16:36.247715Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.739788Z", - "iopub.status.busy": "2023-10-06T06:44:36.739349Z", - "iopub.status.idle": "2023-10-06T06:44:36.749619Z", - "shell.execute_reply": "2023-10-06T06:44:36.749053Z" + "iopub.execute_input": "2023-10-11T10:16:36.251451Z", + "iopub.status.busy": "2023-10-11T10:16:36.250809Z", + "iopub.status.idle": "2023-10-11T10:16:36.261470Z", + "shell.execute_reply": "2023-10-11T10:16:36.260779Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.752678Z", - "iopub.status.busy": "2023-10-06T06:44:36.752182Z", - "iopub.status.idle": "2023-10-06T06:44:36.961281Z", - "shell.execute_reply": "2023-10-06T06:44:36.960683Z" + "iopub.execute_input": "2023-10-11T10:16:36.264543Z", + "iopub.status.busy": "2023-10-11T10:16:36.264169Z", + "iopub.status.idle": "2023-10-11T10:16:36.475717Z", + "shell.execute_reply": "2023-10-11T10:16:36.475081Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:36.964329Z", - "iopub.status.busy": "2023-10-06T06:44:36.963897Z", - "iopub.status.idle": "2023-10-06T06:44:37.147426Z", - "shell.execute_reply": "2023-10-06T06:44:37.146834Z" + "iopub.execute_input": "2023-10-11T10:16:36.478871Z", + "iopub.status.busy": "2023-10-11T10:16:36.478371Z", + "iopub.status.idle": "2023-10-11T10:16:36.664946Z", + "shell.execute_reply": "2023-10-11T10:16:36.664310Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:37.150574Z", - "iopub.status.busy": "2023-10-06T06:44:37.150124Z", - "iopub.status.idle": "2023-10-06T06:44:38.005164Z", - "shell.execute_reply": "2023-10-06T06:44:38.004524Z" + "iopub.execute_input": "2023-10-11T10:16:36.668419Z", + "iopub.status.busy": "2023-10-11T10:16:36.667655Z", + "iopub.status.idle": "2023-10-11T10:16:37.547694Z", + "shell.execute_reply": "2023-10-11T10:16:37.546993Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:38.009559Z", - "iopub.status.busy": "2023-10-06T06:44:38.008466Z", - "iopub.status.idle": "2023-10-06T06:44:38.126282Z", - "shell.execute_reply": "2023-10-06T06:44:38.125673Z" + "iopub.execute_input": "2023-10-11T10:16:37.551659Z", + "iopub.status.busy": "2023-10-11T10:16:37.550946Z", + "iopub.status.idle": "2023-10-11T10:16:37.678064Z", + "shell.execute_reply": "2023-10-11T10:16:37.677350Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:38.130026Z", - "iopub.status.busy": "2023-10-06T06:44:38.129553Z", - "iopub.status.idle": "2023-10-06T06:44:38.141898Z", - "shell.execute_reply": "2023-10-06T06:44:38.141346Z" + "iopub.execute_input": "2023-10-11T10:16:37.681349Z", + "iopub.status.busy": "2023-10-11T10:16:37.680929Z", + "iopub.status.idle": "2023-10-11T10:16:37.693007Z", + "shell.execute_reply": "2023-10-11T10:16:37.692356Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 887e283b1..89ccf1de6 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -954,13 +954,13 @@

3. Use cleanlab to find label issues

-
+
-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1360,7 +1360,7 @@

Get label quality scores -{"state": {"1f51d127129d407eb4fea986469e260a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "36af193474584b6c9f78e08975253853": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d2d1cab68d4042419767fd79062cadbc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1f51d127129d407eb4fea986469e260a", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_36af193474584b6c9f78e08975253853", "value": 244800.0}}, "4170a1cb9ad448ccbbedd42be8d03337": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7cc834cabc334188a671202a5d7c7e90": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c811b138be5640acb87fb8bf4ad643bc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4170a1cb9ad448ccbbedd42be8d03337", "placeholder": "\u200b", "style": "IPY_MODEL_7cc834cabc334188a671202a5d7c7e90", "value": "number of examples processed for estimating thresholds: "}}, "f6b3092af0d243ba8f2aa0acb24b6e9f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "849dd948df6d4bc58467f68a4be9065e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "167054c5ebb941edb2e8f149ac55d5cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f6b3092af0d243ba8f2aa0acb24b6e9f", "placeholder": "\u200b", "style": "IPY_MODEL_849dd948df6d4bc58467f68a4be9065e", "value": " 300000/? [00:00<00:00, 4645437.97it/s]"}}, "33c3b72ddcbe43ac871f51a4cfd58d0f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "336d03a0c73b4578928d5bc19103d16f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c811b138be5640acb87fb8bf4ad643bc", "IPY_MODEL_d2d1cab68d4042419767fd79062cadbc", "IPY_MODEL_167054c5ebb941edb2e8f149ac55d5cc"], "layout": "IPY_MODEL_33c3b72ddcbe43ac871f51a4cfd58d0f"}}, "e7e8ebd7bc2e4e2dad33f61ed20ab31b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf2e978e13464deca55856a6505714f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5bff0fa4c7104836b4146c945096493e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e7e8ebd7bc2e4e2dad33f61ed20ab31b", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bf2e978e13464deca55856a6505714f0", "value": 244800.0}}, "3995d9ac273343a7827b928b3898029b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7fabad8cda034a918af254fd5b01031f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f2e79a4412aa4a79bcb06be5bcef27f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3995d9ac273343a7827b928b3898029b", "placeholder": "\u200b", "style": "IPY_MODEL_7fabad8cda034a918af254fd5b01031f", "value": "number of examples processed for checking labels: "}}, "fd1fa443e127492db49e901ad4c28c70": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "76c397db97b04d698eca6926024ee5ad": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2a00e8ffa1c943c99797d4c9a7c6e743": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_fd1fa443e127492db49e901ad4c28c70", "placeholder": "\u200b", "style": "IPY_MODEL_76c397db97b04d698eca6926024ee5ad", "value": " 300000/? [00:02<00:00, 111119.87it/s]"}}, "b2971b7b51e14ed6a843818812633f43": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e84dbe083ff345a8a028e51f15dfc8bd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f2e79a4412aa4a79bcb06be5bcef27f4", "IPY_MODEL_5bff0fa4c7104836b4146c945096493e", "IPY_MODEL_2a00e8ffa1c943c99797d4c9a7c6e743"], "layout": "IPY_MODEL_b2971b7b51e14ed6a843818812633f43"}}, "7774f79b49da4dd3b113649c658a529d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d57faf7b78f46b79b9785abbce739a3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d2bd249401614c7287e7502b0f213727": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7774f79b49da4dd3b113649c658a529d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9d57faf7b78f46b79b9785abbce739a3", "value": 30.0}}, "533e126940914949aa0663b359502445": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e7fc62e2c2046b8a524b85d72fff8e2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a33f40285b5e44a4b34a7fecec0e23d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_533e126940914949aa0663b359502445", "placeholder": "\u200b", "style": "IPY_MODEL_4e7fc62e2c2046b8a524b85d72fff8e2", "value": "images processed using softmin: 100%"}}, "d4d0c229f27f412eb7f99d20aa4b3107": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6ade89eb2c9b40798f092f048f711f99": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c318c2d95ab347419437c8ea6c4d97e1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d4d0c229f27f412eb7f99d20aa4b3107", "placeholder": "\u200b", "style": "IPY_MODEL_6ade89eb2c9b40798f092f048f711f99", "value": " 30/30 [00:02<00:00, 16.59it/s]"}}, "c32a77752484460aacf4d0e82f2b991b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "939204745b0f4982a168c635c9281d65": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a33f40285b5e44a4b34a7fecec0e23d8", "IPY_MODEL_d2bd249401614c7287e7502b0f213727", "IPY_MODEL_c318c2d95ab347419437c8ea6c4d97e1"], "layout": "IPY_MODEL_c32a77752484460aacf4d0e82f2b991b"}}}, "version_major": 2, "version_minor": 0} +{"state": {"7258609b786446f7b92392b9edc83a2e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ddf4726235b471287ba087aaca6f752": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "05625dee20734c23884a88910b162bb0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7258609b786446f7b92392b9edc83a2e", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8ddf4726235b471287ba087aaca6f752", "value": 244800.0}}, "cf637b7dcc8f419993311bb20c2c4eb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8f7130c6de834fcd86cfdb73e17e3e22": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a53260dd17754be08c522afb7425157a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cf637b7dcc8f419993311bb20c2c4eb3", "placeholder": "\u200b", "style": "IPY_MODEL_8f7130c6de834fcd86cfdb73e17e3e22", "value": "number of examples processed for estimating thresholds: "}}, "58769a21dd4345a5840de0747cdafb0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d02f8d91ca6f4b8782604de4f193d4da": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "da08aae6f8c14e198ee8d7a934da6746": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_58769a21dd4345a5840de0747cdafb0e", "placeholder": "\u200b", "style": "IPY_MODEL_d02f8d91ca6f4b8782604de4f193d4da", "value": " 300000/? [00:00<00:00, 3780741.31it/s]"}}, "89cfdf73c4d945359adcceef37adebf6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d24024213fa24b41a523a4e18640be86": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a53260dd17754be08c522afb7425157a", "IPY_MODEL_05625dee20734c23884a88910b162bb0", "IPY_MODEL_da08aae6f8c14e198ee8d7a934da6746"], "layout": "IPY_MODEL_89cfdf73c4d945359adcceef37adebf6"}}, "e9f539aac0f34cbc9dd52c54314549e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44e99e229f574e4b896a8ae16c47aa67": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "584f4088c6fd4a7da7a4d15793cb6074": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e9f539aac0f34cbc9dd52c54314549e1", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_44e99e229f574e4b896a8ae16c47aa67", "value": 244800.0}}, "02f67f8acfd9447cb63ca4583c175be7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf04f9c7993748be96def20f7a35fa44": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "91b407a811ee4ed8a27a89f44d6140bf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_02f67f8acfd9447cb63ca4583c175be7", "placeholder": "\u200b", "style": "IPY_MODEL_bf04f9c7993748be96def20f7a35fa44", "value": "number of examples processed for checking labels: "}}, "2da8d09c7abd43419959ff3e8aaec28c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79ac9db1e81c45de80f4c1900adef432": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "49b0de5cbc534b68bd1a55f5dfbb1126": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2da8d09c7abd43419959ff3e8aaec28c", "placeholder": "\u200b", "style": "IPY_MODEL_79ac9db1e81c45de80f4c1900adef432", "value": " 300000/? [00:01<00:00, 168383.75it/s]"}}, "5bb80d30b1b14a399bbdb989eedf2c7c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee1410e8ee504c9298c084a53ee9f179": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_91b407a811ee4ed8a27a89f44d6140bf", "IPY_MODEL_584f4088c6fd4a7da7a4d15793cb6074", "IPY_MODEL_49b0de5cbc534b68bd1a55f5dfbb1126"], "layout": "IPY_MODEL_5bb80d30b1b14a399bbdb989eedf2c7c"}}, "f64482910bc44324bec013719c15a8ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5005d98454ac4da68bc69e8f2e99fe54": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b78305818de9464485dfc2b5332bb221": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f64482910bc44324bec013719c15a8ef", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5005d98454ac4da68bc69e8f2e99fe54", "value": 30.0}}, "9e4b7b564abd401d805f0aea85492e0f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b0fc80c49c84fd99f47403d4a8fa63d": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "56d164ebb05d483cad178ef703a85fd8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9e4b7b564abd401d805f0aea85492e0f", "placeholder": "\u200b", "style": "IPY_MODEL_7b0fc80c49c84fd99f47403d4a8fa63d", "value": "images processed using softmin: 100%"}}, "853e4fd65b9a4a1e82439518d7e8b6ee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4218f4a8138146e4aa29e1f2d98bd1ae": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "124e688aaf6d4506b8acf07cfcb603eb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_853e4fd65b9a4a1e82439518d7e8b6ee", "placeholder": "\u200b", "style": "IPY_MODEL_4218f4a8138146e4aa29e1f2d98bd1ae", "value": " 30/30 [00:02<00:00, 15.64it/s]"}}, "dffda93c9b9c4ff6bf057a27145e14c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "621df82686744ab7968be80cacbaaa44": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_56d164ebb05d483cad178ef703a85fd8", "IPY_MODEL_b78305818de9464485dfc2b5332bb221", "IPY_MODEL_124e688aaf6d4506b8acf07cfcb603eb"], "layout": "IPY_MODEL_dffda93c9b9c4ff6bf057a27145e14c7"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 568140485..dff96ea6a 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:43.095134Z", - "iopub.status.busy": "2023-10-06T06:44:43.094899Z", - "iopub.status.idle": "2023-10-06T06:44:45.505572Z", - "shell.execute_reply": "2023-10-06T06:44:45.504646Z" + "iopub.execute_input": "2023-10-11T10:16:42.879562Z", + "iopub.status.busy": "2023-10-11T10:16:42.879290Z", + "iopub.status.idle": "2023-10-11T10:16:45.171421Z", + "shell.execute_reply": "2023-10-11T10:16:45.170196Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:44:45.509351Z", - "iopub.status.busy": "2023-10-06T06:44:45.508947Z", - "iopub.status.idle": "2023-10-06T06:45:45.764466Z", - "shell.execute_reply": "2023-10-06T06:45:45.763493Z" + "iopub.execute_input": "2023-10-11T10:16:45.176121Z", + "iopub.status.busy": "2023-10-11T10:16:45.175449Z", + "iopub.status.idle": "2023-10-11T10:17:46.462708Z", + "shell.execute_reply": "2023-10-11T10:17:46.461482Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:45.768835Z", - "iopub.status.busy": "2023-10-06T06:45:45.768189Z", - "iopub.status.idle": "2023-10-06T06:45:46.906225Z", - "shell.execute_reply": "2023-10-06T06:45:46.905522Z" + "iopub.execute_input": "2023-10-11T10:17:46.468279Z", + "iopub.status.busy": "2023-10-11T10:17:46.466743Z", + "iopub.status.idle": "2023-10-11T10:17:47.703296Z", + "shell.execute_reply": "2023-10-11T10:17:47.702514Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:46.910342Z", - "iopub.status.busy": "2023-10-06T06:45:46.909626Z", - "iopub.status.idle": "2023-10-06T06:45:46.914175Z", - "shell.execute_reply": "2023-10-06T06:45:46.913586Z" + "iopub.execute_input": "2023-10-11T10:17:47.708935Z", + "iopub.status.busy": "2023-10-11T10:17:47.708287Z", + "iopub.status.idle": "2023-10-11T10:17:47.714808Z", + "shell.execute_reply": "2023-10-11T10:17:47.714115Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:46.917128Z", - "iopub.status.busy": "2023-10-06T06:45:46.916692Z", - "iopub.status.idle": "2023-10-06T06:45:46.921191Z", - "shell.execute_reply": "2023-10-06T06:45:46.920520Z" + "iopub.execute_input": "2023-10-11T10:17:47.717978Z", + "iopub.status.busy": "2023-10-11T10:17:47.717499Z", + "iopub.status.idle": "2023-10-11T10:17:47.723159Z", + "shell.execute_reply": "2023-10-11T10:17:47.722398Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:46.924775Z", - "iopub.status.busy": "2023-10-06T06:45:46.924240Z", - "iopub.status.idle": "2023-10-06T06:45:46.928457Z", - "shell.execute_reply": "2023-10-06T06:45:46.927789Z" + "iopub.execute_input": "2023-10-11T10:17:47.726282Z", + "iopub.status.busy": "2023-10-11T10:17:47.725847Z", + "iopub.status.idle": "2023-10-11T10:17:47.732041Z", + "shell.execute_reply": "2023-10-11T10:17:47.729495Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:46.931629Z", - "iopub.status.busy": "2023-10-06T06:45:46.931206Z", - "iopub.status.idle": "2023-10-06T06:45:46.934510Z", - "shell.execute_reply": "2023-10-06T06:45:46.933862Z" + "iopub.execute_input": "2023-10-11T10:17:47.742692Z", + "iopub.status.busy": "2023-10-11T10:17:47.742200Z", + "iopub.status.idle": "2023-10-11T10:17:47.747083Z", + "shell.execute_reply": "2023-10-11T10:17:47.746497Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:45:46.937427Z", - "iopub.status.busy": "2023-10-06T06:45:46.936856Z", - "iopub.status.idle": "2023-10-06T06:46:57.007851Z", - "shell.execute_reply": "2023-10-06T06:46:57.006953Z" + "iopub.execute_input": "2023-10-11T10:17:47.750396Z", + "iopub.status.busy": "2023-10-11T10:17:47.749938Z", + "iopub.status.idle": "2023-10-11T10:18:51.614820Z", + "shell.execute_reply": "2023-10-11T10:18:51.613672Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "336d03a0c73b4578928d5bc19103d16f", + "model_id": "d24024213fa24b41a523a4e18640be86", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e84dbe083ff345a8a028e51f15dfc8bd", + "model_id": "ee1410e8ee504c9298c084a53ee9f179", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:46:57.012078Z", - "iopub.status.busy": "2023-10-06T06:46:57.011627Z", - "iopub.status.idle": "2023-10-06T06:46:57.970367Z", - "shell.execute_reply": "2023-10-06T06:46:57.969674Z" + "iopub.execute_input": "2023-10-11T10:18:51.619344Z", + "iopub.status.busy": "2023-10-11T10:18:51.618768Z", + "iopub.status.idle": "2023-10-11T10:18:52.599476Z", + "shell.execute_reply": "2023-10-11T10:18:52.598567Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:46:57.974184Z", - "iopub.status.busy": "2023-10-06T06:46:57.973503Z", - "iopub.status.idle": "2023-10-06T06:47:00.848809Z", - "shell.execute_reply": "2023-10-06T06:47:00.848132Z" + "iopub.execute_input": "2023-10-11T10:18:52.603006Z", + "iopub.status.busy": "2023-10-11T10:18:52.602342Z", + "iopub.status.idle": "2023-10-11T10:18:55.732067Z", + "shell.execute_reply": "2023-10-11T10:18:55.731136Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:00.852016Z", - "iopub.status.busy": "2023-10-06T06:47:00.851751Z", - "iopub.status.idle": "2023-10-06T06:47:39.439716Z", - "shell.execute_reply": "2023-10-06T06:47:39.439030Z" + "iopub.execute_input": "2023-10-11T10:18:55.735974Z", + "iopub.status.busy": "2023-10-11T10:18:55.735410Z", + "iopub.status.idle": "2023-10-11T10:19:35.144920Z", + "shell.execute_reply": "2023-10-11T10:19:35.144291Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 12899/4997436 [00:00<00:38, 128983.97it/s]" + " 0%| | 12761/4997436 [00:00<00:39, 127597.34it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 25932/4997436 [00:00<00:38, 129768.90it/s]" + " 1%| | 25581/4997436 [00:00<00:38, 127944.19it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 39095/4997436 [00:00<00:37, 130613.48it/s]" + " 1%| | 38462/4997436 [00:00<00:38, 128333.00it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 52247/4997436 [00:00<00:37, 130965.97it/s]" + " 1%| | 51440/4997436 [00:00<00:38, 128900.03it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 65399/4997436 [00:00<00:37, 131161.96it/s]" + " 1%|▏ | 64331/4997436 [00:00<00:38, 128376.89it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 78559/4997436 [00:00<00:37, 131308.05it/s]" + " 2%|▏ | 77170/4997436 [00:00<00:38, 127739.59it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 91690/4997436 [00:00<00:37, 130906.43it/s]" + " 2%|▏ | 89958/4997436 [00:00<00:38, 127781.33it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 104871/4997436 [00:00<00:37, 131188.54it/s]" + " 2%|▏ | 102737/4997436 [00:00<00:38, 127552.31it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 118022/4997436 [00:00<00:37, 131284.82it/s]" + " 2%|▏ | 115569/4997436 [00:00<00:38, 127787.56it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 131212/4997436 [00:01<00:37, 131471.00it/s]" + " 3%|▎ | 128358/4997436 [00:01<00:38, 127815.76it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 144366/4997436 [00:01<00:36, 131489.46it/s]" + " 3%|▎ | 141140/4997436 [00:01<00:38, 127792.15it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 157516/4997436 [00:01<00:36, 131268.13it/s]" + " 3%|▎ | 154077/4997436 [00:01<00:37, 128266.59it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 170670/4997436 [00:01<00:36, 131349.36it/s]" + " 3%|▎ | 166904/4997436 [00:01<00:37, 128054.23it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 183829/4997436 [00:01<00:36, 131420.39it/s]" + " 4%|▎ | 179914/4997436 [00:01<00:37, 128667.98it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 197074/4997436 [00:01<00:36, 131728.56it/s]" + " 4%|▍ | 192782/4997436 [00:01<00:37, 128593.83it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 210272/4997436 [00:01<00:36, 131801.59it/s]" + " 4%|▍ | 205784/4997436 [00:01<00:37, 129020.44it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 223453/4997436 [00:01<00:36, 131780.55it/s]" + " 4%|▍ | 218687/4997436 [00:01<00:37, 128867.00it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 236632/4997436 [00:01<00:36, 131747.67it/s]" + " 5%|▍ | 231721/4997436 [00:01<00:36, 129305.47it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 249860/4997436 [00:01<00:35, 131904.30it/s]" + " 5%|▍ | 244687/4997436 [00:01<00:36, 129408.26it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 263055/4997436 [00:02<00:35, 131916.54it/s]" + " 5%|▌ | 257767/4997436 [00:02<00:36, 129821.28it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 276260/4997436 [00:02<00:35, 131954.65it/s]" + " 5%|▌ | 270750/4997436 [00:02<00:36, 129558.26it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 289466/4997436 [00:02<00:35, 131984.32it/s]" + " 6%|▌ | 283707/4997436 [00:02<00:36, 129296.59it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 302665/4997436 [00:02<00:35, 131921.13it/s]" + " 6%|▌ | 296757/4997436 [00:02<00:36, 129653.26it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 315858/4997436 [00:02<00:35, 131921.75it/s]" + " 6%|▌ | 309723/4997436 [00:02<00:36, 129527.22it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 329071/4997436 [00:02<00:35, 131982.18it/s]" + " 6%|▋ | 322711/4997436 [00:02<00:36, 129628.45it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 342288/4997436 [00:02<00:35, 132034.31it/s]" + " 7%|▋ | 335747/4997436 [00:02<00:35, 129845.24it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 355546/4997436 [00:02<00:35, 132196.61it/s]" + " 7%|▋ | 348732/4997436 [00:02<00:35, 129604.34it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 368805/4997436 [00:02<00:34, 132312.57it/s]" + " 7%|▋ | 361693/4997436 [00:02<00:35, 129500.60it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 382037/4997436 [00:02<00:34, 132304.34it/s]" + " 7%|▋ | 374753/4997436 [00:02<00:35, 129826.75it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 395268/4997436 [00:03<00:34, 132302.86it/s]" + " 8%|▊ | 387830/4997436 [00:03<00:35, 130106.58it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 408499/4997436 [00:03<00:34, 132212.09it/s]" + " 8%|▊ | 400841/4997436 [00:03<00:35, 129732.30it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 421721/4997436 [00:03<00:34, 132187.85it/s]" + " 8%|▊ | 413941/4997436 [00:03<00:35, 130107.16it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 435023/4997436 [00:03<00:34, 132435.13it/s]" + " 9%|▊ | 426953/4997436 [00:03<00:35, 130084.21it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 448267/4997436 [00:03<00:34, 132432.08it/s]" + " 9%|▉ | 439962/4997436 [00:03<00:35, 129730.29it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 461513/4997436 [00:03<00:34, 132438.31it/s]" + " 9%|▉ | 452988/4997436 [00:03<00:34, 129885.71it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 474770/4997436 [00:03<00:34, 132475.10it/s]" + " 9%|▉ | 466063/4997436 [00:03<00:34, 130142.08it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 488018/4997436 [00:03<00:34, 132359.90it/s]" + " 10%|▉ | 479078/4997436 [00:03<00:34, 129913.55it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 501255/4997436 [00:03<00:33, 132282.98it/s]" + " 10%|▉ | 492083/4997436 [00:03<00:34, 129950.44it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 514506/4997436 [00:03<00:33, 132349.17it/s]" + " 10%|█ | 505086/4997436 [00:03<00:34, 129969.85it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 527741/4997436 [00:04<00:33, 132247.27it/s]" + " 10%|█ | 518084/4997436 [00:04<00:34, 129627.77it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 540966/4997436 [00:04<00:33, 132185.50it/s]" + " 11%|█ | 531048/4997436 [00:04<00:34, 129085.51it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 554185/4997436 [00:04<00:33, 132168.19it/s]" + " 11%|█ | 543958/4997436 [00:04<00:34, 128757.00it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 567402/4997436 [00:04<00:33, 131977.96it/s]" + " 11%|█ | 556904/4997436 [00:04<00:34, 128961.89it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 580600/4997436 [00:04<00:33, 131895.25it/s]" + " 11%|█▏ | 569801/4997436 [00:04<00:34, 128795.10it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 593794/4997436 [00:04<00:33, 131906.81it/s]" + " 12%|█▏ | 582681/4997436 [00:04<00:34, 128439.20it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 606985/4997436 [00:04<00:33, 131866.25it/s]" + " 12%|█▏ | 595526/4997436 [00:04<00:34, 128186.14it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 620172/4997436 [00:04<00:33, 131865.72it/s]" + " 12%|█▏ | 608398/4997436 [00:04<00:34, 128341.23it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 633359/4997436 [00:04<00:33, 131746.22it/s]" + " 12%|█▏ | 621247/4997436 [00:04<00:34, 128383.29it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 646535/4997436 [00:04<00:33, 131748.23it/s]" + " 13%|█▎ | 634175/4997436 [00:04<00:33, 128648.80it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 659747/4997436 [00:05<00:32, 131857.92it/s]" + " 13%|█▎ | 647049/4997436 [00:05<00:33, 128671.93it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 672974/4997436 [00:05<00:32, 131979.90it/s]" + " 13%|█▎ | 659917/4997436 [00:05<00:33, 128331.75it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 686182/4997436 [00:05<00:32, 132007.50it/s]" + " 13%|█▎ | 672751/4997436 [00:05<00:33, 128299.02it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 699383/4997436 [00:05<00:32, 131915.95it/s]" + " 14%|█▎ | 685637/4997436 [00:05<00:33, 128464.80it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 712575/4997436 [00:05<00:32, 131849.91it/s]" + " 14%|█▍ | 698484/4997436 [00:05<00:33, 128435.67it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 725761/4997436 [00:05<00:32, 131740.94it/s]" + " 14%|█▍ | 711524/4997436 [00:05<00:33, 129020.25it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 738936/4997436 [00:05<00:32, 131543.62it/s]" + " 14%|█▍ | 724427/4997436 [00:05<00:33, 128730.02it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 752125/4997436 [00:05<00:32, 131644.27it/s]" + " 15%|█▍ | 737334/4997436 [00:05<00:33, 128827.60it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 765338/4997436 [00:05<00:32, 131785.69it/s]" + " 15%|█▌ | 750354/4997436 [00:05<00:32, 129235.39it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 778561/4997436 [00:05<00:31, 131914.84it/s]" + " 15%|█▌ | 763278/4997436 [00:05<00:32, 128798.42it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 791807/4997436 [00:06<00:31, 132074.72it/s]" + " 16%|█▌ | 776277/4997436 [00:06<00:32, 129152.69it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 805045/4997436 [00:06<00:31, 132162.33it/s]" + " 16%|█▌ | 789265/4997436 [00:06<00:32, 129366.55it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 818286/4997436 [00:06<00:31, 132233.24it/s]" + " 16%|█▌ | 802203/4997436 [00:06<00:32, 129365.45it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 831510/4997436 [00:06<00:31, 132083.53it/s]" + " 16%|█▋ | 815140/4997436 [00:06<00:32, 129146.51it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 844759/4997436 [00:06<00:31, 132202.46it/s]" + " 17%|█▋ | 828055/4997436 [00:06<00:32, 128597.81it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 857999/4997436 [00:06<00:31, 132258.88it/s]" + " 17%|█▋ | 841040/4997436 [00:06<00:32, 128967.36it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 871225/4997436 [00:06<00:31, 131844.91it/s]" + " 17%|█▋ | 853938/4997436 [00:06<00:32, 128882.04it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 884410/4997436 [00:06<00:31, 131826.06it/s]" + " 17%|█▋ | 866827/4997436 [00:06<00:32, 128539.04it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 897593/4997436 [00:06<00:31, 131818.62it/s]" + " 18%|█▊ | 879801/4997436 [00:06<00:31, 128893.52it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 910802/4997436 [00:06<00:30, 131897.61it/s]" + " 18%|█▊ | 892691/4997436 [00:06<00:31, 128761.48it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 924017/4997436 [00:07<00:30, 131968.48it/s]" + " 18%|█▊ | 905627/4997436 [00:07<00:31, 128936.29it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 937214/4997436 [00:07<00:30, 131843.64it/s]" + " 18%|█▊ | 918629/4997436 [00:07<00:31, 129257.52it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 950410/4997436 [00:07<00:30, 131875.15it/s]" + " 19%|█▊ | 931555/4997436 [00:07<00:31, 129117.74it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 963627/4997436 [00:07<00:30, 131960.84it/s]" + " 19%|█▉ | 944467/4997436 [00:07<00:31, 128864.39it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 976844/4997436 [00:07<00:30, 132021.51it/s]" + " 19%|█▉ | 957354/4997436 [00:07<00:31, 128745.05it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 990089/4997436 [00:07<00:30, 132145.79it/s]" + " 19%|█▉ | 970342/4997436 [00:07<00:31, 129080.69it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1003304/4997436 [00:07<00:30, 131977.32it/s]" + " 20%|█▉ | 983251/4997436 [00:07<00:31, 128797.96it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1016505/4997436 [00:07<00:30, 131984.04it/s]" + " 20%|█▉ | 996164/4997436 [00:07<00:31, 128893.29it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1029717/4997436 [00:07<00:30, 132020.78it/s]" + " 20%|██ | 1009084/4997436 [00:07<00:30, 128981.20it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1042920/4997436 [00:07<00:29, 131975.56it/s]" + " 20%|██ | 1022004/4997436 [00:07<00:30, 129042.46it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1056122/4997436 [00:08<00:29, 131986.28it/s]" + " 21%|██ | 1034909/4997436 [00:08<00:30, 128952.80it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1069377/4997436 [00:08<00:29, 132152.33it/s]" + " 21%|██ | 1047805/4997436 [00:08<00:30, 128827.16it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1082615/4997436 [00:08<00:29, 132218.28it/s]" + " 21%|██ | 1060865/4997436 [00:08<00:30, 129355.18it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1095849/4997436 [00:08<00:29, 132251.99it/s]" + " 21%|██▏ | 1073801/4997436 [00:08<00:30, 129239.58it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1109075/4997436 [00:08<00:29, 132248.66it/s]" + " 22%|██▏ | 1086890/4997436 [00:08<00:30, 129730.90it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1122300/4997436 [00:08<00:29, 132225.93it/s]" + " 22%|██▏ | 1099866/4997436 [00:08<00:30, 129736.23it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1135523/4997436 [00:08<00:29, 132019.31it/s]" + " 22%|██▏ | 1112840/4997436 [00:08<00:29, 129636.21it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1148726/4997436 [00:08<00:29, 131974.28it/s]" + " 23%|██▎ | 1125804/4997436 [00:08<00:29, 129435.87it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1161999/4997436 [00:08<00:29, 132197.47it/s]" + " 23%|██▎ | 1138748/4997436 [00:08<00:29, 128665.60it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1175224/4997436 [00:08<00:28, 132212.12it/s]" + " 23%|██▎ | 1151665/4997436 [00:08<00:29, 128812.65it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1188446/4997436 [00:09<00:28, 131754.15it/s]" + " 23%|██▎ | 1164548/4997436 [00:09<00:29, 128757.32it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1201622/4997436 [00:09<00:28, 131581.20it/s]" + " 24%|██▎ | 1177467/4997436 [00:09<00:29, 128882.73it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1214809/4997436 [00:09<00:28, 131666.21it/s]" + " 24%|██▍ | 1190356/4997436 [00:09<00:29, 128698.11it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1227976/4997436 [00:09<00:28, 131612.43it/s]" + " 24%|██▍ | 1203227/4997436 [00:09<00:29, 128553.21it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1241162/4997436 [00:09<00:28, 131685.10it/s]" + " 24%|██▍ | 1216083/4997436 [00:09<00:29, 128150.45it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1254331/4997436 [00:09<00:28, 131613.27it/s]" + " 25%|██▍ | 1228939/4997436 [00:09<00:29, 128270.76it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1267493/4997436 [00:09<00:28, 131137.37it/s]" + " 25%|██▍ | 1241767/4997436 [00:09<00:29, 128248.59it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1280608/4997436 [00:09<00:28, 131026.58it/s]" + " 25%|██▌ | 1254698/4997436 [00:09<00:29, 128561.79it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1293820/4997436 [00:09<00:28, 131349.63it/s]" + " 25%|██▌ | 1267555/4997436 [00:09<00:29, 128390.71it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1307006/4997436 [00:09<00:28, 131500.11it/s]" + " 26%|██▌ | 1280395/4997436 [00:09<00:29, 127938.18it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1320157/4997436 [00:10<00:28, 131118.52it/s]" + " 26%|██▌ | 1293408/4997436 [00:10<00:28, 128590.46it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1333351/4997436 [00:10<00:27, 131362.83it/s]" + " 26%|██▌ | 1306268/4997436 [00:10<00:28, 128459.39it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1346576/4997436 [00:10<00:27, 131624.59it/s]" + " 26%|██▋ | 1319192/4997436 [00:10<00:28, 128690.88it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1359861/4997436 [00:10<00:27, 131987.72it/s]" + " 27%|██▋ | 1332062/4997436 [00:10<00:28, 128662.87it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1373183/4997436 [00:10<00:27, 132354.01it/s]" + " 27%|██▋ | 1344991/4997436 [00:10<00:28, 128848.93it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1386461/4997436 [00:10<00:27, 132479.94it/s]" + " 27%|██▋ | 1357877/4997436 [00:10<00:28, 128678.51it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1399711/4997436 [00:10<00:27, 132483.91it/s]" + " 27%|██▋ | 1370934/4997436 [00:10<00:28, 129240.89it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1412960/4997436 [00:10<00:27, 131831.36it/s]" + " 28%|██▊ | 1383859/4997436 [00:10<00:28, 129029.71it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1426144/4997436 [00:10<00:27, 131395.51it/s]" + " 28%|██▊ | 1396887/4997436 [00:10<00:27, 129400.21it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1439390/4997436 [00:10<00:27, 131710.60it/s]" + " 28%|██▊ | 1409931/4997436 [00:10<00:27, 129709.05it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1452651/4997436 [00:11<00:26, 131975.28it/s]" + " 28%|██▊ | 1422903/4997436 [00:11<00:27, 129550.93it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1465850/4997436 [00:11<00:26, 131569.12it/s]" + " 29%|██▊ | 1435884/4997436 [00:11<00:27, 129626.62it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1479089/4997436 [00:11<00:26, 131810.80it/s]" + " 29%|██▉ | 1448852/4997436 [00:11<00:27, 129640.52it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1492271/4997436 [00:11<00:26, 131799.39it/s]" + " 29%|██▉ | 1461817/4997436 [00:11<00:27, 129623.58it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1505452/4997436 [00:11<00:26, 131682.57it/s]" + " 30%|██▉ | 1474780/4997436 [00:11<00:27, 129184.62it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1518621/4997436 [00:11<00:26, 131682.77it/s]" + " 30%|██▉ | 1487699/4997436 [00:11<00:27, 128832.87it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1531857/4997436 [00:11<00:26, 131882.67it/s]" + " 30%|███ | 1500788/4997436 [00:11<00:27, 129444.22it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1545046/4997436 [00:11<00:26, 131880.94it/s]" + " 30%|███ | 1513733/4997436 [00:11<00:27, 128960.03it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1558261/4997436 [00:11<00:26, 131957.58it/s]" + " 31%|███ | 1526728/4997436 [00:11<00:26, 129251.84it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1571457/4997436 [00:11<00:26, 131734.12it/s]" + " 31%|███ | 1539670/4997436 [00:11<00:26, 129298.20it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1584631/4997436 [00:12<00:25, 131578.53it/s]" + " 31%|███ | 1552710/4997436 [00:12<00:26, 129625.16it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1597789/4997436 [00:12<00:25, 130932.29it/s]" + " 31%|███▏ | 1565880/4997436 [00:12<00:26, 130244.23it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1610890/4997436 [00:12<00:25, 130953.67it/s]" + " 32%|███▏ | 1578905/4997436 [00:12<00:26, 129801.42it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1624050/4997436 [00:12<00:25, 131145.08it/s]" + " 32%|███▏ | 1591920/4997436 [00:12<00:26, 129903.20it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1637165/4997436 [00:12<00:25, 131108.79it/s]" + " 32%|███▏ | 1604911/4997436 [00:12<00:26, 129285.07it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1650277/4997436 [00:12<00:25, 130945.50it/s]" + " 32%|███▏ | 1617880/4997436 [00:12<00:26, 129404.06it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1663372/4997436 [00:12<00:25, 130416.54it/s]" + " 33%|███▎ | 1630870/4997436 [00:12<00:25, 129549.04it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1676506/4997436 [00:12<00:25, 130690.91it/s]" + " 33%|███▎ | 1643826/4997436 [00:12<00:25, 129357.42it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1689678/4997436 [00:12<00:25, 130996.21it/s]" + " 33%|███▎ | 1656763/4997436 [00:12<00:25, 129310.31it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1702830/4997436 [00:12<00:25, 131150.05it/s]" + " 33%|███▎ | 1669695/4997436 [00:12<00:25, 129128.47it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1715946/4997436 [00:13<00:25, 131127.78it/s]" + " 34%|███▎ | 1682609/4997436 [00:13<00:25, 129071.74it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1729060/4997436 [00:13<00:24, 131021.40it/s]" + " 34%|███▍ | 1695562/4997436 [00:13<00:25, 129205.27it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1742284/4997436 [00:13<00:24, 131384.90it/s]" + " 34%|███▍ | 1708602/4997436 [00:13<00:25, 129558.94it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1755435/4997436 [00:13<00:24, 131420.36it/s]" + " 34%|███▍ | 1721679/4997436 [00:13<00:25, 129919.86it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1768619/4997436 [00:13<00:24, 131543.38it/s]" + " 35%|███▍ | 1734802/4997436 [00:13<00:25, 130308.36it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1781774/4997436 [00:13<00:24, 131314.38it/s]" + " 35%|███▍ | 1747833/4997436 [00:13<00:24, 129999.33it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1794914/4997436 [00:13<00:24, 131335.84it/s]" + " 35%|███▌ | 1760834/4997436 [00:13<00:25, 128986.95it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1808099/4997436 [00:13<00:24, 131486.10it/s]" + " 35%|███▌ | 1773735/4997436 [00:13<00:25, 128482.05it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1821292/4997436 [00:13<00:24, 131617.32it/s]" + " 36%|███▌ | 1786683/4997436 [00:13<00:24, 128774.44it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1834454/4997436 [00:13<00:24, 131476.34it/s]" + " 36%|███▌ | 1799562/4997436 [00:13<00:24, 128753.65it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1847630/4997436 [00:14<00:23, 131559.12it/s]" + " 36%|███▋ | 1812529/4997436 [00:14<00:24, 129024.21it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1860811/4997436 [00:14<00:23, 131632.29it/s]" + " 37%|███▋ | 1825433/4997436 [00:14<00:24, 128999.80it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1874019/4997436 [00:14<00:23, 131763.92it/s]" + " 37%|███▋ | 1838371/4997436 [00:14<00:24, 129111.27it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1887196/4997436 [00:14<00:23, 131714.46it/s]" + " 37%|███▋ | 1851283/4997436 [00:14<00:24, 128908.52it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1900413/4997436 [00:14<00:23, 131849.10it/s]" + " 37%|███▋ | 1864313/4997436 [00:14<00:24, 129323.07it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1913628/4997436 [00:14<00:23, 131937.20it/s]" + " 38%|███▊ | 1877255/4997436 [00:14<00:24, 129350.30it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1926827/4997436 [00:14<00:23, 131951.19it/s]" + " 38%|███▊ | 1890191/4997436 [00:14<00:24, 129340.40it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1940023/4997436 [00:14<00:23, 131701.66it/s]" + " 38%|███▊ | 1903126/4997436 [00:14<00:23, 129278.82it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1953194/4997436 [00:14<00:23, 131568.51it/s]" + " 38%|███▊ | 1916054/4997436 [00:14<00:23, 128953.19it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1966351/4997436 [00:14<00:23, 131562.13it/s]" + " 39%|███▊ | 1928950/4997436 [00:14<00:23, 128939.81it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1979508/4997436 [00:15<00:22, 131413.02it/s]" + " 39%|███▉ | 1941845/4997436 [00:15<00:23, 128706.27it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1992650/4997436 [00:15<00:22, 131143.40it/s]" + " 39%|███▉ | 1954793/4997436 [00:15<00:23, 128933.70it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2005765/4997436 [00:15<00:23, 128013.28it/s]" + " 39%|███▉ | 1967687/4997436 [00:15<00:23, 128808.25it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2018583/4997436 [00:15<00:23, 126973.67it/s]" + " 40%|███▉ | 1980568/4997436 [00:15<00:23, 128542.98it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2031292/4997436 [00:15<00:24, 121783.43it/s]" + " 40%|███▉ | 1993423/4997436 [00:15<00:23, 128309.73it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2043603/4997436 [00:15<00:24, 122160.82it/s]" + " 40%|████ | 2006255/4997436 [00:15<00:23, 128216.31it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2056633/4997436 [00:15<00:23, 124527.00it/s]" + " 40%|████ | 2019080/4997436 [00:15<00:23, 128223.77it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2069692/4997436 [00:15<00:23, 126305.02it/s]" + " 41%|████ | 2032008/4997436 [00:15<00:23, 128536.29it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2082761/4997436 [00:15<00:22, 127597.17it/s]" + " 41%|████ | 2044862/4997436 [00:15<00:22, 128402.35it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2095863/4997436 [00:15<00:22, 128611.77it/s]" + " 41%|████ | 2057718/4997436 [00:15<00:22, 128445.10it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2108940/4997436 [00:16<00:22, 129251.08it/s]" + " 41%|████▏ | 2070563/4997436 [00:16<00:22, 128022.52it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2122076/4997436 [00:16<00:22, 129876.52it/s]" + " 42%|████▏ | 2083366/4997436 [00:16<00:22, 127792.18it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2135072/4997436 [00:16<00:22, 129653.80it/s]" + " 42%|████▏ | 2096146/4997436 [00:16<00:22, 127487.15it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2148178/4997436 [00:16<00:21, 130070.80it/s]" + " 42%|████▏ | 2108899/4997436 [00:16<00:22, 127463.94it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2161308/4997436 [00:16<00:21, 130436.91it/s]" + " 42%|████▏ | 2121768/4997436 [00:16<00:22, 127827.29it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2174388/4997436 [00:16<00:21, 130541.37it/s]" + " 43%|████▎ | 2134620/4997436 [00:16<00:22, 128032.03it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2187446/4997436 [00:16<00:21, 130548.88it/s]" + " 43%|████▎ | 2147424/4997436 [00:16<00:22, 127851.03it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2200520/4997436 [00:16<00:21, 130603.68it/s]" + " 43%|████▎ | 2160211/4997436 [00:16<00:22, 127853.00it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2213582/4997436 [00:16<00:21, 130100.88it/s]" + " 43%|████▎ | 2172997/4997436 [00:16<00:22, 127071.02it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2226594/4997436 [00:16<00:21, 129971.53it/s]" + " 44%|████▎ | 2185865/4997436 [00:16<00:22, 127547.27it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2239614/4997436 [00:17<00:21, 130038.05it/s]" + " 44%|████▍ | 2198621/4997436 [00:17<00:21, 127394.52it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2252671/4997436 [00:17<00:21, 130193.34it/s]" + " 44%|████▍ | 2211362/4997436 [00:17<00:21, 126818.61it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2265691/4997436 [00:17<00:21, 129763.60it/s]" + " 45%|████▍ | 2224103/4997436 [00:17<00:21, 126991.27it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2278678/4997436 [00:17<00:20, 129793.23it/s]" + " 45%|████▍ | 2236832/4997436 [00:17<00:21, 127075.59it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2291682/4997436 [00:17<00:20, 129864.71it/s]" + " 45%|████▌ | 2249611/4997436 [00:17<00:21, 127285.17it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2304669/4997436 [00:17<00:20, 129716.56it/s]" + " 45%|████▌ | 2262340/4997436 [00:17<00:21, 126764.35it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2317729/4997436 [00:17<00:20, 129978.41it/s]" + " 46%|████▌ | 2275018/4997436 [00:17<00:21, 126513.71it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2330728/4997436 [00:17<00:20, 129764.02it/s]" + " 46%|████▌ | 2287786/4997436 [00:17<00:21, 126859.11it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2343900/4997436 [00:17<00:20, 130345.96it/s]" + " 46%|████▌ | 2300496/4997436 [00:17<00:21, 126928.39it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2357040/4997436 [00:17<00:20, 130657.90it/s]" + " 46%|████▋ | 2313309/4997436 [00:17<00:21, 127285.03it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2370272/4997436 [00:18<00:20, 131152.65it/s]" + " 47%|████▋ | 2326038/4997436 [00:18<00:21, 127019.77it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2383450/4997436 [00:18<00:19, 131336.52it/s]" + " 47%|████▋ | 2339051/4997436 [00:18<00:20, 127946.57it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2396584/4997436 [00:18<00:19, 131099.75it/s]" + " 47%|████▋ | 2351985/4997436 [00:18<00:20, 128361.68it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2409695/4997436 [00:18<00:19, 131095.37it/s]" + " 47%|████▋ | 2364832/4997436 [00:18<00:20, 128391.60it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2422805/4997436 [00:18<00:19, 130830.79it/s]" + " 48%|████▊ | 2377672/4997436 [00:18<00:20, 128283.60it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2435952/4997436 [00:18<00:19, 131019.07it/s]" + " 48%|████▊ | 2390676/4997436 [00:18<00:20, 128805.49it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2449087/4997436 [00:18<00:19, 131115.89it/s]" + " 48%|████▊ | 2403609/4997436 [00:18<00:20, 128959.70it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2462199/4997436 [00:18<00:19, 130984.18it/s]" + " 48%|████▊ | 2416552/4997436 [00:18<00:19, 129098.52it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2475298/4997436 [00:18<00:19, 130683.29it/s]" + " 49%|████▊ | 2429529/4997436 [00:18<00:19, 129295.75it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488378/4997436 [00:18<00:19, 130715.82it/s]" + " 49%|████▉ | 2442459/4997436 [00:18<00:19, 129175.42it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2501479/4997436 [00:19<00:19, 130799.84it/s]" + " 49%|████▉ | 2455458/4997436 [00:19<00:19, 129416.47it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2514564/4997436 [00:19<00:18, 130812.47it/s]" + " 49%|████▉ | 2468497/4997436 [00:19<00:19, 129704.20it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2527646/4997436 [00:19<00:18, 130712.12it/s]" + " 50%|████▉ | 2481468/4997436 [00:19<00:19, 129416.66it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2540718/4997436 [00:19<00:18, 130394.82it/s]" + " 50%|████▉ | 2494472/4997436 [00:19<00:19, 129599.65it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2553768/4997436 [00:19<00:18, 130425.12it/s]" + " 50%|█████ | 2507435/4997436 [00:19<00:19, 129606.37it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2566814/4997436 [00:19<00:18, 130432.81it/s]" + " 50%|█████ | 2520396/4997436 [00:19<00:19, 129496.36it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2579858/4997436 [00:19<00:18, 130369.72it/s]" + " 51%|█████ | 2533370/4997436 [00:19<00:19, 129564.58it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2592896/4997436 [00:19<00:18, 130055.28it/s]" + " 51%|█████ | 2546327/4997436 [00:19<00:19, 128746.69it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2605983/4997436 [00:19<00:18, 130296.78it/s]" + " 51%|█████ | 2559203/4997436 [00:19<00:18, 128552.09it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2619013/4997436 [00:19<00:18, 130176.86it/s]" + " 51%|█████▏ | 2572059/4997436 [00:19<00:18, 127876.60it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2632050/4997436 [00:20<00:18, 130232.69it/s]" + " 52%|█████▏ | 2584848/4997436 [00:20<00:18, 127605.00it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2645074/4997436 [00:20<00:18, 130164.35it/s]" + " 52%|█████▏ | 2597689/4997436 [00:20<00:18, 127841.18it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2658179/4997436 [00:20<00:17, 130427.21it/s]" + " 52%|█████▏ | 2610474/4997436 [00:20<00:18, 127736.89it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2671272/4997436 [00:20<00:17, 130573.93it/s]" + " 52%|█████▏ | 2623249/4997436 [00:20<00:18, 127689.34it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2684330/4997436 [00:20<00:17, 130546.21it/s]" + " 53%|█████▎ | 2636019/4997436 [00:20<00:18, 127569.38it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2697385/4997436 [00:20<00:17, 130383.07it/s]" + " 53%|█████▎ | 2648786/4997436 [00:20<00:18, 127595.43it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2710424/4997436 [00:20<00:17, 130197.60it/s]" + " 53%|█████▎ | 2661546/4997436 [00:20<00:18, 127395.30it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2723465/4997436 [00:20<00:17, 130257.89it/s]" + " 54%|█████▎ | 2674286/4997436 [00:20<00:18, 127088.34it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2736648/4997436 [00:20<00:17, 130726.67it/s]" + " 54%|█████▍ | 2686996/4997436 [00:20<00:18, 126904.25it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2749721/4997436 [00:20<00:17, 130643.41it/s]" + " 54%|█████▍ | 2699687/4997436 [00:20<00:18, 126610.26it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2762838/4997436 [00:21<00:17, 130797.60it/s]" + " 54%|█████▍ | 2712349/4997436 [00:21<00:18, 125773.85it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2775918/4997436 [00:21<00:17, 130594.52it/s]" + " 55%|█████▍ | 2725322/4997436 [00:21<00:17, 126948.27it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2789004/4997436 [00:21<00:16, 130671.55it/s]" + " 55%|█████▍ | 2738178/4997436 [00:21<00:17, 127425.02it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2802112/4997436 [00:21<00:16, 130792.02it/s]" + " 55%|█████▌ | 2750958/4997436 [00:21<00:17, 127534.50it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2815272/4997436 [00:21<00:16, 131030.97it/s]" + " 55%|█████▌ | 2763713/4997436 [00:21<00:17, 127084.33it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2828417/4997436 [00:21<00:16, 131152.98it/s]" + " 56%|█████▌ | 2776423/4997436 [00:21<00:17, 127071.58it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2841533/4997436 [00:21<00:16, 131119.69it/s]" + " 56%|█████▌ | 2789133/4997436 [00:21<00:17, 127076.85it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2854646/4997436 [00:21<00:16, 130829.42it/s]" + " 56%|█████▌ | 2801842/4997436 [00:21<00:17, 126861.09it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2867765/4997436 [00:21<00:16, 130933.21it/s]" + " 56%|█████▋ | 2814556/4997436 [00:21<00:17, 126940.49it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2880859/4997436 [00:21<00:16, 130701.42it/s]" + " 57%|█████▋ | 2827251/4997436 [00:21<00:17, 126921.72it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2893930/4997436 [00:22<00:16, 130296.83it/s]" + " 57%|█████▋ | 2839944/4997436 [00:22<00:17, 126542.49it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2907021/4997436 [00:22<00:16, 130476.50it/s]" + " 57%|█████▋ | 2852703/4997436 [00:22<00:16, 126852.44it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2920069/4997436 [00:22<00:15, 130274.62it/s]" + " 57%|█████▋ | 2865389/4997436 [00:22<00:16, 126746.38it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2933097/4997436 [00:22<00:15, 130189.92it/s]" + " 58%|█████▊ | 2878169/4997436 [00:22<00:16, 127057.56it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2946163/4997436 [00:22<00:15, 130328.58it/s]" + " 58%|█████▊ | 2890967/4997436 [00:22<00:16, 127330.36it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2959196/4997436 [00:22<00:15, 130245.72it/s]" + " 58%|█████▊ | 2903703/4997436 [00:22<00:16, 127334.82it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2972221/4997436 [00:22<00:15, 130153.82it/s]" + " 58%|█████▊ | 2916437/4997436 [00:22<00:16, 127299.65it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2985237/4997436 [00:22<00:15, 130127.56it/s]" + " 59%|█████▊ | 2929168/4997436 [00:22<00:16, 127235.77it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2998378/4997436 [00:22<00:15, 130508.74it/s]" + " 59%|█████▉ | 2941892/4997436 [00:22<00:16, 126966.06it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3011511/4997436 [00:22<00:15, 130752.30it/s]" + " 59%|█████▉ | 2954680/4997436 [00:22<00:16, 127236.43it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3024597/4997436 [00:23<00:15, 130780.14it/s]" + " 59%|█████▉ | 2967404/4997436 [00:23<00:16, 126873.64it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3037714/4997436 [00:23<00:14, 130893.24it/s]" + " 60%|█████▉ | 2980211/4997436 [00:23<00:15, 127226.59it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3050804/4997436 [00:23<00:14, 130672.66it/s]" + " 60%|█████▉ | 2992934/4997436 [00:23<00:15, 126770.92it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3063889/4997436 [00:23<00:14, 130722.74it/s]" + " 60%|██████ | 3005612/4997436 [00:23<00:15, 126742.70it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3076962/4997436 [00:23<00:14, 128458.30it/s]" + " 60%|██████ | 3018287/4997436 [00:23<00:15, 126055.90it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3090064/4997436 [00:23<00:14, 129214.92it/s]" + " 61%|██████ | 3031026/4997436 [00:23<00:15, 126450.11it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3103151/4997436 [00:23<00:14, 129704.02it/s]" + " 61%|██████ | 3043697/4997436 [00:23<00:15, 126524.82it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3116220/4997436 [00:23<00:14, 129996.76it/s]" + " 61%|██████ | 3056538/4997436 [00:23<00:15, 127084.31it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3129363/4997436 [00:23<00:14, 130420.57it/s]" + " 61%|██████▏ | 3069446/4997436 [00:23<00:15, 127677.62it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3142536/4997436 [00:23<00:14, 130810.23it/s]" + " 62%|██████▏ | 3082215/4997436 [00:23<00:15, 126928.77it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3155636/4997436 [00:24<00:14, 130864.08it/s]" + " 62%|██████▏ | 3095031/4997436 [00:24<00:14, 127293.82it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3168724/4997436 [00:24<00:13, 130826.85it/s]" + " 62%|██████▏ | 3107873/4997436 [00:24<00:14, 127626.48it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3181851/4997436 [00:24<00:13, 130956.66it/s]" + " 62%|██████▏ | 3120637/4997436 [00:24<00:14, 127587.33it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3195001/4997436 [00:24<00:13, 131115.70it/s]" + " 63%|██████▎ | 3133397/4997436 [00:24<00:14, 127022.75it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3208114/4997436 [00:24<00:13, 131051.74it/s]" + " 63%|██████▎ | 3146125/4997436 [00:24<00:14, 127097.08it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3221220/4997436 [00:24<00:13, 130790.57it/s]" + " 63%|██████▎ | 3159048/4997436 [00:24<00:14, 127732.85it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3234326/4997436 [00:24<00:13, 130868.94it/s]" + " 63%|██████▎ | 3171849/4997436 [00:24<00:14, 127812.65it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3247451/4997436 [00:24<00:13, 130980.52it/s]" + " 64%|██████▎ | 3184689/4997436 [00:24<00:14, 127985.87it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3260550/4997436 [00:24<00:13, 130808.33it/s]" + " 64%|██████▍ | 3197494/4997436 [00:24<00:14, 128001.83it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3273632/4997436 [00:24<00:13, 130652.05it/s]" + " 64%|██████▍ | 3210295/4997436 [00:24<00:13, 127672.46it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3286698/4997436 [00:25<00:13, 130638.33it/s]" + " 64%|██████▍ | 3223063/4997436 [00:25<00:13, 127636.32it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3299762/4997436 [00:25<00:13, 130359.84it/s]" + " 65%|██████▍ | 3235827/4997436 [00:25<00:13, 127612.77it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3312799/4997436 [00:25<00:12, 130199.16it/s]" + " 65%|██████▌ | 3248589/4997436 [00:25<00:13, 127222.89it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3325832/4997436 [00:25<00:12, 130237.04it/s]" + " 65%|██████▌ | 3261312/4997436 [00:25<00:13, 126688.51it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3338856/4997436 [00:25<00:12, 130136.70it/s]" + " 66%|██████▌ | 3274065/4997436 [00:25<00:13, 126936.79it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3351904/4997436 [00:25<00:12, 130237.58it/s]" + " 66%|██████▌ | 3286849/4997436 [00:25<00:13, 127203.18it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3364956/4997436 [00:25<00:12, 130318.79it/s]" + " 66%|██████▌ | 3299632/4997436 [00:25<00:13, 127386.05it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3378049/4997436 [00:25<00:12, 130499.78it/s]" + " 66%|██████▋ | 3312463/4997436 [00:25<00:13, 127658.30it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3391100/4997436 [00:25<00:12, 130481.99it/s]" + " 67%|██████▋ | 3325409/4997436 [00:25<00:13, 128195.85it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3404149/4997436 [00:25<00:12, 130418.42it/s]" + " 67%|██████▋ | 3338229/4997436 [00:25<00:12, 128133.13it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3417191/4997436 [00:26<00:12, 130247.83it/s]" + " 67%|██████▋ | 3351077/4997436 [00:26<00:12, 128232.45it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3430216/4997436 [00:26<00:12, 130195.70it/s]" + " 67%|██████▋ | 3363901/4997436 [00:26<00:12, 127494.36it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3443236/4997436 [00:26<00:11, 130170.90it/s]" + " 68%|██████▊ | 3376729/4997436 [00:26<00:12, 127725.10it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3456254/4997436 [00:26<00:11, 130065.49it/s]" + " 68%|██████▊ | 3389591/4997436 [00:26<00:12, 127990.37it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3469276/4997436 [00:26<00:11, 130108.85it/s]" + " 68%|██████▊ | 3402391/4997436 [00:26<00:12, 127848.04it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3482296/4997436 [00:26<00:11, 130133.60it/s]" + " 68%|██████▊ | 3415177/4997436 [00:26<00:12, 127739.54it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3495341/4997436 [00:26<00:11, 130227.00it/s]" + " 69%|██████▊ | 3427983/4997436 [00:26<00:12, 127833.04it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3508364/4997436 [00:26<00:11, 130194.62it/s]" + " 69%|██████▉ | 3440767/4997436 [00:26<00:12, 126917.51it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3521384/4997436 [00:26<00:11, 130109.77it/s]" + " 69%|██████▉ | 3453628/4997436 [00:26<00:12, 127418.18it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3534529/4997436 [00:26<00:11, 130508.74it/s]" + " 69%|██████▉ | 3466372/4997436 [00:26<00:12, 127318.83it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3547609/4997436 [00:27<00:11, 130594.52it/s]" + " 70%|██████▉ | 3479181/4997436 [00:27<00:11, 127544.02it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3560762/4997436 [00:27<00:10, 130872.09it/s]" + " 70%|██████▉ | 3491937/4997436 [00:27<00:11, 127379.17it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3573878/4997436 [00:27<00:10, 130957.07it/s]" + " 70%|███████ | 3504870/4997436 [00:27<00:11, 127960.03it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3587020/4997436 [00:27<00:10, 131093.89it/s]" + " 70%|███████ | 3517667/4997436 [00:27<00:11, 127588.52it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3600130/4997436 [00:27<00:10, 131083.95it/s]" + " 71%|███████ | 3530478/4997436 [00:27<00:11, 127741.55it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3613239/4997436 [00:27<00:10, 130965.73it/s]" + " 71%|███████ | 3543253/4997436 [00:27<00:11, 127419.36it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3626336/4997436 [00:27<00:10, 130875.66it/s]" + " 71%|███████ | 3556090/4997436 [00:27<00:11, 127700.32it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3639424/4997436 [00:27<00:10, 130850.07it/s]" + " 71%|███████▏ | 3568976/4997436 [00:27<00:11, 128045.86it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3652569/4997436 [00:27<00:10, 131025.72it/s]" + " 72%|███████▏ | 3581781/4997436 [00:27<00:11, 128014.05it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3665695/4997436 [00:27<00:10, 131092.44it/s]" + " 72%|███████▏ | 3594583/4997436 [00:27<00:10, 127625.80it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3678805/4997436 [00:28<00:10, 130852.73it/s]" + " 72%|███████▏ | 3607465/4997436 [00:28<00:10, 127980.25it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3692023/4997436 [00:28<00:09, 131246.27it/s]" + " 72%|███████▏ | 3620475/4997436 [00:28<00:10, 128612.98it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3705240/4997436 [00:28<00:09, 131520.57it/s]" + " 73%|███████▎ | 3633337/4997436 [00:28<00:10, 128308.06it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3718428/4997436 [00:28<00:09, 131626.09it/s]" + " 73%|███████▎ | 3646169/4997436 [00:28<00:10, 128173.99it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3731641/4997436 [00:28<00:09, 131774.77it/s]" + " 73%|███████▎ | 3659036/4997436 [00:28<00:10, 128320.69it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3744819/4997436 [00:28<00:09, 131700.20it/s]" + " 73%|███████▎ | 3671869/4997436 [00:28<00:10, 128226.94it/s]" ] }, { @@ -2826,7 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3757990/4997436 [00:28<00:09, 131577.34it/s]" + " 74%|███████▎ | 3684770/4997436 [00:28<00:10, 128459.26it/s]" ] }, { @@ -2834,7 +2834,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3771148/4997436 [00:28<00:09, 130721.78it/s]" + " 74%|███████▍ | 3697617/4997436 [00:28<00:10, 128375.85it/s]" ] }, { @@ -2842,7 +2842,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3784222/4997436 [00:28<00:09, 130477.09it/s]" + " 74%|███████▍ | 3710490/4997436 [00:28<00:10, 128477.77it/s]" ] }, { @@ -2850,7 +2850,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3797300/4997436 [00:28<00:09, 130563.45it/s]" + " 75%|███████▍ | 3723338/4997436 [00:29<00:09, 128020.27it/s]" ] }, { @@ -2858,7 +2858,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3810357/4997436 [00:29<00:09, 130077.82it/s]" + " 75%|███████▍ | 3736372/4997436 [00:29<00:09, 128710.24it/s]" ] }, { @@ -2866,7 +2866,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3823478/4997436 [00:29<00:09, 130414.28it/s]" + " 75%|███████▌ | 3749244/4997436 [00:29<00:09, 128021.86it/s]" ] }, { @@ -2874,7 +2874,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3836666/4997436 [00:29<00:08, 130849.28it/s]" + " 75%|███████▌ | 3762048/4997436 [00:29<00:09, 127885.93it/s]" ] }, { @@ -2882,7 +2882,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3849752/4997436 [00:29<00:08, 130832.64it/s]" + " 76%|███████▌ | 3774970/4997436 [00:29<00:09, 128282.09it/s]" ] }, { @@ -2890,7 +2890,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3862910/4997436 [00:29<00:08, 131054.87it/s]" + " 76%|███████▌ | 3787799/4997436 [00:29<00:09, 128004.58it/s]" ] }, { @@ -2898,7 +2898,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3876073/4997436 [00:29<00:08, 131224.50it/s]" + " 76%|███████▌ | 3800600/4997436 [00:29<00:09, 127364.86it/s]" ] }, { @@ -2906,7 +2906,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3889244/4997436 [00:29<00:08, 131368.55it/s]" + " 76%|███████▋ | 3813479/4997436 [00:29<00:09, 127786.46it/s]" ] }, { @@ -2914,7 +2914,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3902382/4997436 [00:29<00:08, 131193.10it/s]" + " 77%|███████▋ | 3826259/4997436 [00:29<00:09, 127434.78it/s]" ] }, { @@ -2922,7 +2922,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3915502/4997436 [00:29<00:08, 131071.54it/s]" + " 77%|███████▋ | 3839076/4997436 [00:29<00:09, 127651.92it/s]" ] }, { @@ -2930,7 +2930,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3928610/4997436 [00:29<00:08, 131031.91it/s]" + " 77%|███████▋ | 3852025/4997436 [00:30<00:08, 128198.44it/s]" ] }, { @@ -2938,7 +2938,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3941714/4997436 [00:30<00:08, 130779.73it/s]" + " 77%|███████▋ | 3864921/4997436 [00:30<00:08, 128422.16it/s]" ] }, { @@ -2946,7 +2946,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3954816/4997436 [00:30<00:07, 130850.37it/s]" + " 78%|███████▊ | 3877824/4997436 [00:30<00:08, 128601.02it/s]" ] }, { @@ -2954,7 +2954,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3967974/4997436 [00:30<00:07, 131067.54it/s]" + " 78%|███████▊ | 3890734/4997436 [00:30<00:08, 128748.54it/s]" ] }, { @@ -2962,7 +2962,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3981081/4997436 [00:30<00:07, 130825.02it/s]" + " 78%|███████▊ | 3903610/4997436 [00:30<00:08, 128244.65it/s]" ] }, { @@ -2970,7 +2970,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3994227/4997436 [00:30<00:07, 131011.22it/s]" + " 78%|███████▊ | 3916436/4997436 [00:30<00:08, 128174.54it/s]" ] }, { @@ -2978,7 +2978,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4007342/4997436 [00:30<00:07, 131048.81it/s]" + " 79%|███████▊ | 3929384/4997436 [00:30<00:08, 128561.00it/s]" ] }, { @@ -2986,7 +2986,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4020447/4997436 [00:30<00:07, 130187.67it/s]" + " 79%|███████▉ | 3942241/4997436 [00:30<00:08, 128278.40it/s]" ] }, { @@ -2994,7 +2994,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4033521/4997436 [00:30<00:07, 130348.99it/s]" + " 79%|███████▉ | 3955071/4997436 [00:30<00:08, 128282.52it/s]" ] }, { @@ -3002,7 +3002,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4046580/4997436 [00:30<00:07, 130417.90it/s]" + " 79%|███████▉ | 3967988/4997436 [00:30<00:08, 128544.67it/s]" ] }, { @@ -3010,7 +3010,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4059724/4997436 [00:30<00:07, 130721.98it/s]" + " 80%|███████▉ | 3980880/4997436 [00:31<00:07, 128653.37it/s]" ] }, { @@ -3018,7 +3018,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4072827/4997436 [00:31<00:07, 130810.33it/s]" + " 80%|███████▉ | 3993746/4997436 [00:31<00:07, 128122.24it/s]" ] }, { @@ -3026,7 +3026,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4085927/4997436 [00:31<00:06, 130863.26it/s]" + " 80%|████████ | 4006601/4997436 [00:31<00:07, 128248.40it/s]" ] }, { @@ -3034,7 +3034,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4099014/4997436 [00:31<00:06, 130157.26it/s]" + " 80%|████████ | 4019509/4997436 [00:31<00:07, 128494.16it/s]" ] }, { @@ -3042,7 +3042,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4112059/4997436 [00:31<00:06, 130242.69it/s]" + " 81%|████████ | 4032359/4997436 [00:31<00:07, 128321.42it/s]" ] }, { @@ -3050,7 +3050,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4125085/4997436 [00:31<00:06, 130141.75it/s]" + " 81%|████████ | 4045192/4997436 [00:31<00:07, 127042.81it/s]" ] }, { @@ -3058,7 +3058,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4138100/4997436 [00:31<00:06, 130116.04it/s]" + " 81%|████████ | 4057965/4997436 [00:31<00:07, 127244.26it/s]" ] }, { @@ -3066,7 +3066,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4151166/4997436 [00:31<00:06, 130276.78it/s]" + " 81%|████████▏ | 4070752/4997436 [00:31<00:07, 127426.18it/s]" ] }, { @@ -3074,7 +3074,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4164289/4997436 [00:31<00:06, 130560.97it/s]" + " 82%|████████▏ | 4083497/4997436 [00:31<00:07, 127187.94it/s]" ] }, { @@ -3082,7 +3082,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4177346/4997436 [00:31<00:06, 130382.33it/s]" + " 82%|████████▏ | 4096217/4997436 [00:31<00:07, 127123.22it/s]" ] }, { @@ -3090,7 +3090,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4190385/4997436 [00:31<00:06, 129905.02it/s]" + " 82%|████████▏ | 4108978/4997436 [00:32<00:06, 127266.35it/s]" ] }, { @@ -3098,7 +3098,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4203376/4997436 [00:32<00:06, 129732.84it/s]" + " 82%|████████▏ | 4121731/4997436 [00:32<00:06, 127341.56it/s]" ] }, { @@ -3106,7 +3106,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4216350/4997436 [00:32<00:06, 129454.73it/s]" + " 83%|████████▎ | 4134562/4997436 [00:32<00:06, 127627.72it/s]" ] }, { @@ -3114,7 +3114,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4229456/4997436 [00:32<00:05, 129932.19it/s]" + " 83%|████████▎ | 4147370/4997436 [00:32<00:06, 127759.71it/s]" ] }, { @@ -3122,7 +3122,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4242508/4997436 [00:32<00:05, 130105.57it/s]" + " 83%|████████▎ | 4160147/4997436 [00:32<00:06, 127141.72it/s]" ] }, { @@ -3130,7 +3130,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4255709/4997436 [00:32<00:05, 130674.02it/s]" + " 84%|████████▎ | 4172862/4997436 [00:32<00:06, 126899.87it/s]" ] }, { @@ -3138,7 +3138,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4268777/4997436 [00:32<00:05, 130592.74it/s]" + " 84%|████████▍ | 4185553/4997436 [00:32<00:06, 125420.78it/s]" ] }, { @@ -3146,7 +3146,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4281980/4997436 [00:32<00:05, 131020.25it/s]" + " 84%|████████▍ | 4198201/4997436 [00:32<00:06, 125731.76it/s]" ] }, { @@ -3154,7 +3154,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4295101/4997436 [00:32<00:05, 131075.10it/s]" + " 84%|████████▍ | 4210801/4997436 [00:32<00:06, 125807.44it/s]" ] }, { @@ -3162,7 +3162,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4308284/4997436 [00:32<00:05, 131298.91it/s]" + " 85%|████████▍ | 4223466/4997436 [00:32<00:06, 126055.81it/s]" ] }, { @@ -3170,7 +3170,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4321472/4997436 [00:32<00:05, 131469.80it/s]" + " 85%|████████▍ | 4236347/4997436 [00:33<00:05, 126874.10it/s]" ] }, { @@ -3178,7 +3178,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4334620/4997436 [00:33<00:05, 131421.50it/s]" + " 85%|████████▌ | 4249206/4997436 [00:33<00:05, 127385.04it/s]" ] }, { @@ -3186,7 +3186,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4347763/4997436 [00:33<00:04, 131377.69it/s]" + " 85%|████████▌ | 4262163/4997436 [00:33<00:05, 128035.18it/s]" ] }, { @@ -3194,7 +3194,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4360901/4997436 [00:33<00:04, 131198.26it/s]" + " 86%|████████▌ | 4274968/4997436 [00:33<00:05, 127964.98it/s]" ] }, { @@ -3202,7 +3202,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4374048/4997436 [00:33<00:04, 131277.27it/s]" + " 86%|████████▌ | 4287955/4997436 [00:33<00:05, 128531.70it/s]" ] }, { @@ -3210,7 +3210,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4387202/4997436 [00:33<00:04, 131354.08it/s]" + " 86%|████████▌ | 4300879/4997436 [00:33<00:05, 128740.34it/s]" ] }, { @@ -3218,7 +3218,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4400360/4997436 [00:33<00:04, 131417.43it/s]" + " 86%|████████▋ | 4313910/4997436 [00:33<00:05, 129208.08it/s]" ] }, { @@ -3226,7 +3226,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4413516/4997436 [00:33<00:04, 131458.62it/s]" + " 87%|████████▋ | 4326832/4997436 [00:33<00:05, 128975.28it/s]" ] }, { @@ -3234,7 +3234,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4426735/4997436 [00:33<00:04, 131676.58it/s]" + " 87%|████████▋ | 4339730/4997436 [00:33<00:05, 128693.04it/s]" ] }, { @@ -3242,7 +3242,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4439903/4997436 [00:33<00:04, 131236.49it/s]" + " 87%|████████▋ | 4352604/4997436 [00:33<00:05, 128704.19it/s]" ] }, { @@ -3250,7 +3250,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4453027/4997436 [00:33<00:04, 131088.31it/s]" + " 87%|████████▋ | 4365521/4997436 [00:34<00:04, 128839.38it/s]" ] }, { @@ -3258,7 +3258,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4466171/4997436 [00:34<00:04, 131190.87it/s]" + " 88%|████████▊ | 4378446/4997436 [00:34<00:04, 128957.46it/s]" ] }, { @@ -3266,7 +3266,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4479327/4997436 [00:34<00:03, 131300.41it/s]" + " 88%|████████▊ | 4391342/4997436 [00:34<00:04, 128948.31it/s]" ] }, { @@ -3274,7 +3274,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4492458/4997436 [00:34<00:03, 131097.67it/s]" + " 88%|████████▊ | 4404237/4997436 [00:34<00:04, 128630.30it/s]" ] }, { @@ -3282,7 +3282,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4505568/4997436 [00:34<00:03, 131044.99it/s]" + " 88%|████████▊ | 4417185/4997436 [00:34<00:04, 128881.64it/s]" ] }, { @@ -3290,7 +3290,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4518673/4997436 [00:34<00:03, 130995.08it/s]" + " 89%|████████▊ | 4430115/4997436 [00:34<00:04, 129003.67it/s]" ] }, { @@ -3298,7 +3298,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4531783/4997436 [00:34<00:03, 131023.18it/s]" + " 89%|████████▉ | 4443104/4997436 [00:34<00:04, 129266.07it/s]" ] }, { @@ -3306,7 +3306,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4544930/4997436 [00:34<00:03, 131153.75it/s]" + " 89%|████████▉ | 4456031/4997436 [00:34<00:04, 129146.74it/s]" ] }, { @@ -3314,7 +3314,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4558166/4997436 [00:34<00:03, 131513.33it/s]" + " 89%|████████▉ | 4468946/4997436 [00:34<00:04, 129105.70it/s]" ] }, { @@ -3322,7 +3322,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4571318/4997436 [00:34<00:03, 131485.85it/s]" + " 90%|████████▉ | 4481867/4997436 [00:34<00:03, 129134.04it/s]" ] }, { @@ -3330,7 +3330,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4584467/4997436 [00:34<00:03, 131242.73it/s]" + " 90%|████████▉ | 4494786/4997436 [00:35<00:03, 129148.18it/s]" ] }, { @@ -3338,7 +3338,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4597592/4997436 [00:35<00:03, 131068.62it/s]" + " 90%|█████████ | 4507701/4997436 [00:35<00:03, 128898.77it/s]" ] }, { @@ -3346,7 +3346,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4610699/4997436 [00:35<00:02, 130872.16it/s]" + " 90%|█████████ | 4520786/4997436 [00:35<00:03, 129480.84it/s]" ] }, { @@ -3354,7 +3354,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4623787/4997436 [00:35<00:02, 130631.30it/s]" + " 91%|█████████ | 4533735/4997436 [00:35<00:03, 128673.34it/s]" ] }, { @@ -3362,7 +3362,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4636851/4997436 [00:35<00:02, 130382.64it/s]" + " 91%|█████████ | 4546604/4997436 [00:35<00:03, 128505.64it/s]" ] }, { @@ -3370,7 +3370,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4649890/4997436 [00:35<00:02, 130220.59it/s]" + " 91%|█████████ | 4559456/4997436 [00:35<00:03, 128238.35it/s]" ] }, { @@ -3378,7 +3378,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4662933/4997436 [00:35<00:02, 130279.53it/s]" + " 91%|█████████▏| 4572413/4997436 [00:35<00:03, 128632.70it/s]" ] }, { @@ -3386,7 +3386,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4675962/4997436 [00:35<00:02, 130147.85it/s]" + " 92%|█████████▏| 4585277/4997436 [00:35<00:03, 128590.28it/s]" ] }, { @@ -3394,7 +3394,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4689031/4997436 [00:35<00:02, 130308.01it/s]" + " 92%|█████████▏| 4598137/4997436 [00:35<00:03, 128435.07it/s]" ] }, { @@ -3402,7 +3402,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4702120/4997436 [00:35<00:02, 130479.00it/s]" + " 92%|█████████▏| 4610981/4997436 [00:35<00:03, 128255.61it/s]" ] }, { @@ -3410,7 +3410,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4715203/4997436 [00:36<00:02, 130581.69it/s]" + " 93%|█████████▎| 4623807/4997436 [00:36<00:02, 127915.76it/s]" ] }, { @@ -3418,7 +3418,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4728262/4997436 [00:36<00:02, 130378.40it/s]" + " 93%|█████████▎| 4636796/4997436 [00:36<00:02, 128502.58it/s]" ] }, { @@ -3426,7 +3426,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4741310/4997436 [00:36<00:01, 130407.00it/s]" + " 93%|█████████▎| 4649647/4997436 [00:36<00:02, 128104.96it/s]" ] }, { @@ -3434,7 +3434,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4754402/4997436 [00:36<00:01, 130558.05it/s]" + " 93%|█████████▎| 4662578/4997436 [00:36<00:02, 128463.02it/s]" ] }, { @@ -3442,7 +3442,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4767461/4997436 [00:36<00:01, 130564.77it/s]" + " 94%|█████████▎| 4675427/4997436 [00:36<00:02, 128468.75it/s]" ] }, { @@ -3450,7 +3450,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4780518/4997436 [00:36<00:01, 130479.82it/s]" + " 94%|█████████▍| 4688275/4997436 [00:36<00:02, 128432.73it/s]" ] }, { @@ -3458,7 +3458,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4793567/4997436 [00:36<00:01, 130433.32it/s]" + " 94%|█████████▍| 4701119/4997436 [00:36<00:02, 128275.84it/s]" ] }, { @@ -3466,7 +3466,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4806668/4997436 [00:36<00:01, 130604.06it/s]" + " 94%|█████████▍| 4713947/4997436 [00:36<00:02, 128162.85it/s]" ] }, { @@ -3474,7 +3474,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4819729/4997436 [00:36<00:01, 129887.45it/s]" + " 95%|█████████▍| 4726764/4997436 [00:36<00:02, 127807.77it/s]" ] }, { @@ -3482,7 +3482,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4832758/4997436 [00:36<00:01, 130006.07it/s]" + " 95%|█████████▍| 4739546/4997436 [00:36<00:02, 127678.77it/s]" ] }, { @@ -3490,7 +3490,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4845783/4997436 [00:37<00:01, 130077.39it/s]" + " 95%|█████████▌| 4752338/4997436 [00:37<00:01, 127748.31it/s]" ] }, { @@ -3498,7 +3498,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4858834/4997436 [00:37<00:01, 130203.96it/s]" + " 95%|█████████▌| 4765113/4997436 [00:37<00:01, 127316.42it/s]" ] }, { @@ -3506,7 +3506,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4871855/4997436 [00:37<00:00, 130191.95it/s]" + " 96%|█████████▌| 4777845/4997436 [00:37<00:01, 127249.17it/s]" ] }, { @@ -3514,7 +3514,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4884875/4997436 [00:37<00:00, 130169.01it/s]" + " 96%|█████████▌| 4790571/4997436 [00:37<00:01, 127225.96it/s]" ] }, { @@ -3522,7 +3522,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4897893/4997436 [00:37<00:00, 130130.31it/s]" + " 96%|█████████▌| 4803320/4997436 [00:37<00:01, 127302.84it/s]" ] }, { @@ -3530,7 +3530,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4910923/4997436 [00:37<00:00, 130178.23it/s]" + " 96%|█████████▋| 4816051/4997436 [00:37<00:01, 127070.64it/s]" ] }, { @@ -3538,7 +3538,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4924004/4997436 [00:37<00:00, 130364.70it/s]" + " 97%|█████████▋| 4828789/4997436 [00:37<00:01, 127160.54it/s]" ] }, { @@ -3546,7 +3546,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4937049/4997436 [00:37<00:00, 130385.93it/s]" + " 97%|█████████▋| 4841619/4997436 [00:37<00:01, 127498.18it/s]" ] }, { @@ -3554,7 +3554,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4950088/4997436 [00:37<00:00, 130181.95it/s]" + " 97%|█████████▋| 4854383/4997436 [00:37<00:01, 127538.80it/s]" ] }, { @@ -3562,7 +3562,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4963107/4997436 [00:37<00:00, 130006.10it/s]" + " 97%|█████████▋| 4867276/4997436 [00:37<00:01, 127951.72it/s]" ] }, { @@ -3570,7 +3570,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4976165/4997436 [00:38<00:00, 130175.56it/s]" + " 98%|█████████▊| 4880077/4997436 [00:38<00:00, 127965.48it/s]" ] }, { @@ -3578,7 +3578,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4989183/4997436 [00:38<00:00, 130002.63it/s]" + " 98%|█████████▊| 4892874/4997436 [00:38<00:00, 127529.87it/s]" ] }, { @@ -3586,7 +3586,71 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997436/4997436 [00:38<00:00, 130927.69it/s]" + " 98%|█████████▊| 4905745/4997436 [00:38<00:00, 127879.70it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4918749/4997436 [00:38<00:00, 128522.27it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4931681/4997436 [00:38<00:00, 128757.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4944558/4997436 [00:38<00:00, 128694.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4957428/4997436 [00:38<00:00, 128348.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4970264/4997436 [00:38<00:00, 127022.11it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4982970/4997436 [00:38<00:00, 126848.39it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4995657/4997436 [00:38<00:00, 126109.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997436/4997436 [00:38<00:00, 128276.27it/s]" ] }, { @@ -3825,10 +3889,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:39.443366Z", - "iopub.status.busy": "2023-10-06T06:47:39.442705Z", - "iopub.status.idle": "2023-10-06T06:47:49.817388Z", - "shell.execute_reply": "2023-10-06T06:47:49.814757Z" + "iopub.execute_input": "2023-10-11T10:19:35.148300Z", + "iopub.status.busy": "2023-10-11T10:19:35.147632Z", + "iopub.status.idle": "2023-10-11T10:19:48.201026Z", + "shell.execute_reply": "2023-10-11T10:19:48.197594Z" } }, "outputs": [], @@ -3842,10 +3906,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:49.824505Z", - "iopub.status.busy": "2023-10-06T06:47:49.823545Z", - "iopub.status.idle": "2023-10-06T06:47:53.829402Z", - "shell.execute_reply": "2023-10-06T06:47:53.828476Z" + "iopub.execute_input": "2023-10-11T10:19:48.210210Z", + "iopub.status.busy": "2023-10-11T10:19:48.209525Z", + "iopub.status.idle": "2023-10-11T10:19:52.588224Z", + "shell.execute_reply": "2023-10-11T10:19:52.587532Z" } }, "outputs": [ @@ -3914,17 +3978,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:53.833842Z", - "iopub.status.busy": "2023-10-06T06:47:53.833175Z", - "iopub.status.idle": "2023-10-06T06:47:55.805247Z", - "shell.execute_reply": "2023-10-06T06:47:55.804550Z" + "iopub.execute_input": "2023-10-11T10:19:52.591451Z", + "iopub.status.busy": "2023-10-11T10:19:52.590941Z", + "iopub.status.idle": "2023-10-11T10:19:54.698010Z", + "shell.execute_reply": "2023-10-11T10:19:54.697195Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "939204745b0f4982a168c635c9281d65", + "model_id": "621df82686744ab7968be80cacbaaa44", "version_major": 2, "version_minor": 0 }, @@ -3954,10 +4018,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:55.808460Z", - "iopub.status.busy": "2023-10-06T06:47:55.808070Z", - "iopub.status.idle": "2023-10-06T06:47:56.078221Z", - "shell.execute_reply": "2023-10-06T06:47:56.077541Z" + "iopub.execute_input": "2023-10-11T10:19:54.702025Z", + "iopub.status.busy": "2023-10-11T10:19:54.701595Z", + "iopub.status.idle": "2023-10-11T10:19:54.983490Z", + "shell.execute_reply": "2023-10-11T10:19:54.982691Z" } }, "outputs": [], @@ -3971,10 +4035,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:47:56.082113Z", - "iopub.status.busy": "2023-10-06T06:47:56.081500Z", - "iopub.status.idle": "2023-10-06T06:48:02.736266Z", - "shell.execute_reply": "2023-10-06T06:48:02.735404Z" + "iopub.execute_input": "2023-10-11T10:19:54.987693Z", + "iopub.status.busy": "2023-10-11T10:19:54.987030Z", + "iopub.status.idle": "2023-10-11T10:20:02.233342Z", + "shell.execute_reply": "2023-10-11T10:20:02.232534Z" } }, "outputs": [ @@ -4047,10 +4111,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:02.739693Z", - "iopub.status.busy": "2023-10-06T06:48:02.739222Z", - "iopub.status.idle": "2023-10-06T06:48:02.866296Z", - "shell.execute_reply": "2023-10-06T06:48:02.865580Z" + "iopub.execute_input": "2023-10-11T10:20:02.236951Z", + "iopub.status.busy": "2023-10-11T10:20:02.236471Z", + "iopub.status.idle": "2023-10-11T10:20:02.347742Z", + "shell.execute_reply": "2023-10-11T10:20:02.347040Z" }, "nbsphinx": "hidden" }, @@ -4094,28 +4158,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "167054c5ebb941edb2e8f149ac55d5cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f6b3092af0d243ba8f2aa0acb24b6e9f", - "placeholder": "​", - "style": "IPY_MODEL_849dd948df6d4bc58467f68a4be9065e", - "value": " 300000/? [00:00<00:00, 4645437.97it/s]" - } - }, - "1f51d127129d407eb4fea986469e260a": { + "02f67f8acfd9447cb63ca4583c175be7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4167,50 +4210,52 @@ "width": null } }, - "2a00e8ffa1c943c99797d4c9a7c6e743": { + "05625dee20734c23884a88910b162bb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fd1fa443e127492db49e901ad4c28c70", - "placeholder": "​", - "style": "IPY_MODEL_76c397db97b04d698eca6926024ee5ad", - "value": " 300000/? [00:02<00:00, 111119.87it/s]" + "layout": "IPY_MODEL_7258609b786446f7b92392b9edc83a2e", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8ddf4726235b471287ba087aaca6f752", + "value": 244800.0 } }, - "336d03a0c73b4578928d5bc19103d16f": { + "124e688aaf6d4506b8acf07cfcb603eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c811b138be5640acb87fb8bf4ad643bc", - "IPY_MODEL_d2d1cab68d4042419767fd79062cadbc", - "IPY_MODEL_167054c5ebb941edb2e8f149ac55d5cc" - ], - "layout": "IPY_MODEL_33c3b72ddcbe43ac871f51a4cfd58d0f" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_853e4fd65b9a4a1e82439518d7e8b6ee", + "placeholder": "​", + "style": "IPY_MODEL_4218f4a8138146e4aa29e1f2d98bd1ae", + "value": " 30/30 [00:02<00:00, 15.64it/s]" } }, - "33c3b72ddcbe43ac871f51a4cfd58d0f": { + "2da8d09c7abd43419959ff3e8aaec28c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4262,7 +4307,22 @@ "width": null } }, - "36af193474584b6c9f78e08975253853": { + "4218f4a8138146e4aa29e1f2d98bd1ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "44e99e229f574e4b896a8ae16c47aa67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4278,7 +4338,89 @@ "description_width": "" } }, - "3995d9ac273343a7827b928b3898029b": { + "49b0de5cbc534b68bd1a55f5dfbb1126": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2da8d09c7abd43419959ff3e8aaec28c", + "placeholder": "​", + "style": "IPY_MODEL_79ac9db1e81c45de80f4c1900adef432", + "value": " 300000/? [00:01<00:00, 168383.75it/s]" + } + }, + "5005d98454ac4da68bc69e8f2e99fe54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56d164ebb05d483cad178ef703a85fd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9e4b7b564abd401d805f0aea85492e0f", + "placeholder": "​", + "style": "IPY_MODEL_7b0fc80c49c84fd99f47403d4a8fa63d", + "value": "images processed using softmin: 100%" + } + }, + "584f4088c6fd4a7da7a4d15793cb6074": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e9f539aac0f34cbc9dd52c54314549e1", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44e99e229f574e4b896a8ae16c47aa67", + "value": 244800.0 + } + }, + "58769a21dd4345a5840de0747cdafb0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4330,7 +4472,7 @@ "width": null } }, - "4170a1cb9ad448ccbbedd42be8d03337": { + "5bb80d30b1b14a399bbdb989eedf2c7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4382,22 +4524,29 @@ "width": null } }, - "4e7fc62e2c2046b8a524b85d72fff8e2": { + "621df82686744ab7968be80cacbaaa44": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_56d164ebb05d483cad178ef703a85fd8", + "IPY_MODEL_b78305818de9464485dfc2b5332bb221", + "IPY_MODEL_124e688aaf6d4506b8acf07cfcb603eb" + ], + "layout": "IPY_MODEL_dffda93c9b9c4ff6bf057a27145e14c7" } }, - "533e126940914949aa0663b359502445": { + "7258609b786446f7b92392b9edc83a2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4449,31 +4598,7 @@ "width": null } }, - "5bff0fa4c7104836b4146c945096493e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e7e8ebd7bc2e4e2dad33f61ed20ab31b", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bf2e978e13464deca55856a6505714f0", - "value": 244800.0 - } - }, - "6ade89eb2c9b40798f092f048f711f99": { + "79ac9db1e81c45de80f4c1900adef432": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4488,7 +4613,7 @@ "description_width": "" } }, - "76c397db97b04d698eca6926024ee5ad": { + "7b0fc80c49c84fd99f47403d4a8fa63d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4503,7 +4628,7 @@ "description_width": "" } }, - "7774f79b49da4dd3b113649c658a529d": { + "853e4fd65b9a4a1e82439518d7e8b6ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4555,111 +4680,7 @@ "width": null } }, - "7cc834cabc334188a671202a5d7c7e90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7fabad8cda034a918af254fd5b01031f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "849dd948df6d4bc58467f68a4be9065e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "939204745b0f4982a168c635c9281d65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a33f40285b5e44a4b34a7fecec0e23d8", - "IPY_MODEL_d2bd249401614c7287e7502b0f213727", - "IPY_MODEL_c318c2d95ab347419437c8ea6c4d97e1" - ], - "layout": "IPY_MODEL_c32a77752484460aacf4d0e82f2b991b" - } - }, - "9d57faf7b78f46b79b9785abbce739a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a33f40285b5e44a4b34a7fecec0e23d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_533e126940914949aa0663b359502445", - "placeholder": "​", - "style": "IPY_MODEL_4e7fc62e2c2046b8a524b85d72fff8e2", - "value": "images processed using softmin: 100%" - } - }, - "b2971b7b51e14ed6a843818812633f43": { + "89cfdf73c4d945359adcceef37adebf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4711,7 +4732,7 @@ "width": null } }, - "bf2e978e13464deca55856a6505714f0": { + "8ddf4726235b471287ba087aaca6f752": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4727,7 +4748,22 @@ "description_width": "" } }, - "c318c2d95ab347419437c8ea6c4d97e1": { + "8f7130c6de834fcd86cfdb73e17e3e22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "91b407a811ee4ed8a27a89f44d6140bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4742,13 +4778,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d4d0c229f27f412eb7f99d20aa4b3107", + "layout": "IPY_MODEL_02f67f8acfd9447cb63ca4583c175be7", "placeholder": "​", - "style": "IPY_MODEL_6ade89eb2c9b40798f092f048f711f99", - "value": " 30/30 [00:02<00:00, 16.59it/s]" + "style": "IPY_MODEL_bf04f9c7993748be96def20f7a35fa44", + "value": "number of examples processed for checking labels: " } }, - "c32a77752484460aacf4d0e82f2b991b": { + "9e4b7b564abd401d805f0aea85492e0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4800,7 +4836,7 @@ "width": null } }, - "c811b138be5640acb87fb8bf4ad643bc": { + "a53260dd17754be08c522afb7425157a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4815,13 +4851,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4170a1cb9ad448ccbbedd42be8d03337", + "layout": "IPY_MODEL_cf637b7dcc8f419993311bb20c2c4eb3", "placeholder": "​", - "style": "IPY_MODEL_7cc834cabc334188a671202a5d7c7e90", + "style": "IPY_MODEL_8f7130c6de834fcd86cfdb73e17e3e22", "value": "number of examples processed for estimating thresholds: " } }, - "d2bd249401614c7287e7502b0f213727": { + "b78305818de9464485dfc2b5332bb221": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4837,39 +4873,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7774f79b49da4dd3b113649c658a529d", + "layout": "IPY_MODEL_f64482910bc44324bec013719c15a8ef", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9d57faf7b78f46b79b9785abbce739a3", + "style": "IPY_MODEL_5005d98454ac4da68bc69e8f2e99fe54", "value": 30.0 } }, - "d2d1cab68d4042419767fd79062cadbc": { + "bf04f9c7993748be96def20f7a35fa44": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1f51d127129d407eb4fea986469e260a", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36af193474584b6c9f78e08975253853", - "value": 244800.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "d4d0c229f27f412eb7f99d20aa4b3107": { + "cf637b7dcc8f419993311bb20c2c4eb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4921,7 +4948,65 @@ "width": null } }, - "e7e8ebd7bc2e4e2dad33f61ed20ab31b": { + "d02f8d91ca6f4b8782604de4f193d4da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d24024213fa24b41a523a4e18640be86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a53260dd17754be08c522afb7425157a", + "IPY_MODEL_05625dee20734c23884a88910b162bb0", + "IPY_MODEL_da08aae6f8c14e198ee8d7a934da6746" + ], + "layout": "IPY_MODEL_89cfdf73c4d945359adcceef37adebf6" + } + }, + "da08aae6f8c14e198ee8d7a934da6746": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_58769a21dd4345a5840de0747cdafb0e", + "placeholder": "​", + "style": "IPY_MODEL_d02f8d91ca6f4b8782604de4f193d4da", + "value": " 300000/? [00:00<00:00, 3780741.31it/s]" + } + }, + "dffda93c9b9c4ff6bf057a27145e14c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4973,50 +5058,7 @@ "width": null } }, - "e84dbe083ff345a8a028e51f15dfc8bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f2e79a4412aa4a79bcb06be5bcef27f4", - "IPY_MODEL_5bff0fa4c7104836b4146c945096493e", - "IPY_MODEL_2a00e8ffa1c943c99797d4c9a7c6e743" - ], - "layout": "IPY_MODEL_b2971b7b51e14ed6a843818812633f43" - } - }, - "f2e79a4412aa4a79bcb06be5bcef27f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3995d9ac273343a7827b928b3898029b", - "placeholder": "​", - "style": "IPY_MODEL_7fabad8cda034a918af254fd5b01031f", - "value": "number of examples processed for checking labels: " - } - }, - "f6b3092af0d243ba8f2aa0acb24b6e9f": { + "e9f539aac0f34cbc9dd52c54314549e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5068,7 +5110,29 @@ "width": null } }, - "fd1fa443e127492db49e901ad4c28c70": { + "ee1410e8ee504c9298c084a53ee9f179": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_91b407a811ee4ed8a27a89f44d6140bf", + "IPY_MODEL_584f4088c6fd4a7da7a4d15793cb6074", + "IPY_MODEL_49b0de5cbc534b68bd1a55f5dfbb1126" + ], + "layout": "IPY_MODEL_5bb80d30b1b14a399bbdb989eedf2c7c" + } + }, + "f64482910bc44324bec013719c15a8ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 5ac2fe1f4..a1c0b3634 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:06.705520Z", - "iopub.status.busy": "2023-10-06T06:48:06.705263Z", - "iopub.status.idle": "2023-10-06T06:48:08.476124Z", - "shell.execute_reply": "2023-10-06T06:48:08.475398Z" + "iopub.execute_input": "2023-10-11T10:20:06.426153Z", + "iopub.status.busy": "2023-10-11T10:20:06.424960Z", + "iopub.status.idle": "2023-10-11T10:20:08.312459Z", + "shell.execute_reply": "2023-10-11T10:20:08.311668Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.479839Z", - "iopub.status.busy": "2023-10-06T06:48:08.479307Z", - "iopub.status.idle": "2023-10-06T06:48:08.534683Z", - "shell.execute_reply": "2023-10-06T06:48:08.533985Z" + "iopub.execute_input": "2023-10-11T10:20:08.316573Z", + "iopub.status.busy": "2023-10-11T10:20:08.315903Z", + "iopub.status.idle": "2023-10-11T10:20:08.374318Z", + "shell.execute_reply": "2023-10-11T10:20:08.373580Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.538076Z", - "iopub.status.busy": "2023-10-06T06:48:08.537601Z", - "iopub.status.idle": "2023-10-06T06:48:08.683076Z", - "shell.execute_reply": "2023-10-06T06:48:08.682361Z" + "iopub.execute_input": "2023-10-11T10:20:08.378375Z", + "iopub.status.busy": "2023-10-11T10:20:08.377961Z", + "iopub.status.idle": "2023-10-11T10:20:08.421283Z", + "shell.execute_reply": "2023-10-11T10:20:08.420592Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.686539Z", - "iopub.status.busy": "2023-10-06T06:48:08.685870Z", - "iopub.status.idle": "2023-10-06T06:48:08.690722Z", - "shell.execute_reply": "2023-10-06T06:48:08.689927Z" + "iopub.execute_input": "2023-10-11T10:20:08.424814Z", + "iopub.status.busy": "2023-10-11T10:20:08.424331Z", + "iopub.status.idle": "2023-10-11T10:20:08.431600Z", + "shell.execute_reply": "2023-10-11T10:20:08.430958Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.693380Z", - "iopub.status.busy": "2023-10-06T06:48:08.693150Z", - "iopub.status.idle": "2023-10-06T06:48:08.704186Z", - "shell.execute_reply": "2023-10-06T06:48:08.703577Z" + "iopub.execute_input": "2023-10-11T10:20:08.434862Z", + "iopub.status.busy": "2023-10-11T10:20:08.434495Z", + "iopub.status.idle": "2023-10-11T10:20:08.446243Z", + "shell.execute_reply": "2023-10-11T10:20:08.445536Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.707660Z", - "iopub.status.busy": "2023-10-06T06:48:08.707308Z", - "iopub.status.idle": "2023-10-06T06:48:08.711447Z", - "shell.execute_reply": "2023-10-06T06:48:08.710865Z" + "iopub.execute_input": "2023-10-11T10:20:08.449490Z", + "iopub.status.busy": "2023-10-11T10:20:08.448897Z", + "iopub.status.idle": "2023-10-11T10:20:08.453400Z", + "shell.execute_reply": "2023-10-11T10:20:08.452778Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:08.714811Z", - "iopub.status.busy": "2023-10-06T06:48:08.714344Z", - "iopub.status.idle": "2023-10-06T06:48:09.510043Z", - "shell.execute_reply": "2023-10-06T06:48:09.509357Z" + "iopub.execute_input": "2023-10-11T10:20:08.456780Z", + "iopub.status.busy": "2023-10-11T10:20:08.456260Z", + "iopub.status.idle": "2023-10-11T10:20:09.291447Z", + "shell.execute_reply": "2023-10-11T10:20:09.290689Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:09.513901Z", - "iopub.status.busy": "2023-10-06T06:48:09.513515Z", - "iopub.status.idle": "2023-10-06T06:48:12.158603Z", - "shell.execute_reply": "2023-10-06T06:48:12.157675Z" + "iopub.execute_input": "2023-10-11T10:20:09.295697Z", + "iopub.status.busy": "2023-10-11T10:20:09.295072Z", + "iopub.status.idle": "2023-10-11T10:20:12.163392Z", + "shell.execute_reply": "2023-10-11T10:20:12.162218Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.163152Z", - "iopub.status.busy": "2023-10-06T06:48:12.162048Z", - "iopub.status.idle": "2023-10-06T06:48:12.177283Z", - "shell.execute_reply": "2023-10-06T06:48:12.176559Z" + "iopub.execute_input": "2023-10-11T10:20:12.168334Z", + "iopub.status.busy": "2023-10-11T10:20:12.167038Z", + "iopub.status.idle": "2023-10-11T10:20:12.182361Z", + "shell.execute_reply": "2023-10-11T10:20:12.181700Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.180755Z", - "iopub.status.busy": "2023-10-06T06:48:12.180380Z", - "iopub.status.idle": "2023-10-06T06:48:12.186704Z", - "shell.execute_reply": "2023-10-06T06:48:12.186081Z" + "iopub.execute_input": "2023-10-11T10:20:12.185611Z", + "iopub.status.busy": "2023-10-11T10:20:12.185132Z", + "iopub.status.idle": "2023-10-11T10:20:12.190973Z", + "shell.execute_reply": "2023-10-11T10:20:12.190303Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.189576Z", - "iopub.status.busy": "2023-10-06T06:48:12.189334Z", - "iopub.status.idle": "2023-10-06T06:48:12.197944Z", - "shell.execute_reply": "2023-10-06T06:48:12.197320Z" + "iopub.execute_input": "2023-10-11T10:20:12.194281Z", + "iopub.status.busy": "2023-10-11T10:20:12.193819Z", + "iopub.status.idle": "2023-10-11T10:20:12.203832Z", + "shell.execute_reply": "2023-10-11T10:20:12.203169Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.201032Z", - "iopub.status.busy": "2023-10-06T06:48:12.200795Z", - "iopub.status.idle": "2023-10-06T06:48:12.364588Z", - "shell.execute_reply": "2023-10-06T06:48:12.363817Z" + "iopub.execute_input": "2023-10-11T10:20:12.207186Z", + "iopub.status.busy": "2023-10-11T10:20:12.206721Z", + "iopub.status.idle": "2023-10-11T10:20:12.384041Z", + "shell.execute_reply": "2023-10-11T10:20:12.383160Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.367973Z", - "iopub.status.busy": "2023-10-06T06:48:12.367326Z", - "iopub.status.idle": "2023-10-06T06:48:12.371048Z", - "shell.execute_reply": "2023-10-06T06:48:12.370339Z" + "iopub.execute_input": "2023-10-11T10:20:12.387949Z", + "iopub.status.busy": "2023-10-11T10:20:12.387435Z", + "iopub.status.idle": "2023-10-11T10:20:12.390968Z", + "shell.execute_reply": "2023-10-11T10:20:12.390261Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:12.374095Z", - "iopub.status.busy": "2023-10-06T06:48:12.373702Z", - "iopub.status.idle": "2023-10-06T06:48:14.726368Z", - "shell.execute_reply": "2023-10-06T06:48:14.725347Z" + "iopub.execute_input": "2023-10-11T10:20:12.394163Z", + "iopub.status.busy": "2023-10-11T10:20:12.393777Z", + "iopub.status.idle": "2023-10-11T10:20:14.833454Z", + "shell.execute_reply": "2023-10-11T10:20:14.832244Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:14.730739Z", - "iopub.status.busy": "2023-10-06T06:48:14.730260Z", - "iopub.status.idle": "2023-10-06T06:48:14.749131Z", - "shell.execute_reply": "2023-10-06T06:48:14.748396Z" + "iopub.execute_input": "2023-10-11T10:20:14.837861Z", + "iopub.status.busy": "2023-10-11T10:20:14.837245Z", + "iopub.status.idle": "2023-10-11T10:20:14.854013Z", + "shell.execute_reply": "2023-10-11T10:20:14.853268Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:14.752786Z", - "iopub.status.busy": "2023-10-06T06:48:14.752371Z", - "iopub.status.idle": "2023-10-06T06:48:14.882905Z", - "shell.execute_reply": "2023-10-06T06:48:14.882206Z" + "iopub.execute_input": "2023-10-11T10:20:14.857412Z", + "iopub.status.busy": "2023-10-11T10:20:14.856850Z", + "iopub.status.idle": "2023-10-11T10:20:14.880967Z", + "shell.execute_reply": "2023-10-11T10:20:14.880339Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 013bdb77d..4484ab812 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -963,7 +963,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'supported_cards_and_currencies', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'cancel_transfer', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin'}
+Classes: {'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'beneficiary_not_allowed', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'cancel_transfer'}
 

Let’s print the first example in the train set.

@@ -1028,7 +1028,7 @@

2. Load and format the text dataset
 No sentence-transformers model found with name /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator. Creating a new one with MEAN pooling.
-Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.weight', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense_prediction.weight']
+Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.weight']
 - This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
 - This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
 
diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index 71a358b39..3ea30015a 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:22.941002Z", - "iopub.status.busy": "2023-10-06T06:48:22.940576Z", - "iopub.status.idle": "2023-10-06T06:48:25.588403Z", - "shell.execute_reply": "2023-10-06T06:48:25.587664Z" + "iopub.execute_input": "2023-10-11T10:20:20.225113Z", + "iopub.status.busy": "2023-10-11T10:20:20.224832Z", + "iopub.status.idle": "2023-10-11T10:20:23.000840Z", + "shell.execute_reply": "2023-10-11T10:20:23.000055Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.592265Z", - "iopub.status.busy": "2023-10-06T06:48:25.591688Z", - "iopub.status.idle": "2023-10-06T06:48:25.597061Z", - "shell.execute_reply": "2023-10-06T06:48:25.596400Z" + "iopub.execute_input": "2023-10-11T10:20:23.005118Z", + "iopub.status.busy": "2023-10-11T10:20:23.004408Z", + "iopub.status.idle": "2023-10-11T10:20:23.009263Z", + "shell.execute_reply": "2023-10-11T10:20:23.008581Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.599877Z", - "iopub.status.busy": "2023-10-06T06:48:25.599480Z", - "iopub.status.idle": "2023-10-06T06:48:25.603211Z", - "shell.execute_reply": "2023-10-06T06:48:25.602544Z" + "iopub.execute_input": "2023-10-11T10:20:23.012298Z", + "iopub.status.busy": "2023-10-11T10:20:23.011922Z", + "iopub.status.idle": "2023-10-11T10:20:23.015755Z", + "shell.execute_reply": "2023-10-11T10:20:23.015065Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.606008Z", - "iopub.status.busy": "2023-10-06T06:48:25.605766Z", - "iopub.status.idle": "2023-10-06T06:48:25.761219Z", - "shell.execute_reply": "2023-10-06T06:48:25.760521Z" + "iopub.execute_input": "2023-10-11T10:20:23.019137Z", + "iopub.status.busy": "2023-10-11T10:20:23.018583Z", + "iopub.status.idle": "2023-10-11T10:20:23.051361Z", + "shell.execute_reply": "2023-10-11T10:20:23.050531Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.764619Z", - "iopub.status.busy": "2023-10-06T06:48:25.764196Z", - "iopub.status.idle": "2023-10-06T06:48:25.769238Z", - "shell.execute_reply": "2023-10-06T06:48:25.768496Z" + "iopub.execute_input": "2023-10-11T10:20:23.055400Z", + "iopub.status.busy": "2023-10-11T10:20:23.054883Z", + "iopub.status.idle": "2023-10-11T10:20:23.060856Z", + "shell.execute_reply": "2023-10-11T10:20:23.060141Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.773611Z", - "iopub.status.busy": "2023-10-06T06:48:25.772275Z", - "iopub.status.idle": "2023-10-06T06:48:25.779157Z", - "shell.execute_reply": "2023-10-06T06:48:25.778471Z" + "iopub.execute_input": "2023-10-11T10:20:23.063969Z", + "iopub.status.busy": "2023-10-11T10:20:23.063574Z", + "iopub.status.idle": "2023-10-11T10:20:23.067856Z", + "shell.execute_reply": "2023-10-11T10:20:23.067280Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'cancel_transfer', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin'}\n" + "Classes: {'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'beneficiary_not_allowed', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'cancel_transfer'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.782746Z", - "iopub.status.busy": "2023-10-06T06:48:25.782367Z", - "iopub.status.idle": "2023-10-06T06:48:25.787825Z", - "shell.execute_reply": "2023-10-06T06:48:25.787126Z" + "iopub.execute_input": "2023-10-11T10:20:23.071118Z", + "iopub.status.busy": "2023-10-11T10:20:23.070562Z", + "iopub.status.idle": "2023-10-11T10:20:23.074611Z", + "shell.execute_reply": "2023-10-11T10:20:23.073912Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.791289Z", - "iopub.status.busy": "2023-10-06T06:48:25.790745Z", - "iopub.status.idle": "2023-10-06T06:48:25.797314Z", - "shell.execute_reply": "2023-10-06T06:48:25.796615Z" + "iopub.execute_input": "2023-10-11T10:20:23.078031Z", + "iopub.status.busy": "2023-10-11T10:20:23.077664Z", + "iopub.status.idle": "2023-10-11T10:20:23.081801Z", + "shell.execute_reply": "2023-10-11T10:20:23.081112Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:25.800846Z", - "iopub.status.busy": "2023-10-06T06:48:25.800314Z", - "iopub.status.idle": "2023-10-06T06:48:30.081084Z", - "shell.execute_reply": "2023-10-06T06:48:30.080427Z" + "iopub.execute_input": "2023-10-11T10:20:23.085131Z", + "iopub.status.busy": "2023-10-11T10:20:23.084690Z", + "iopub.status.idle": "2023-10-11T10:20:26.891533Z", + "shell.execute_reply": "2023-10-11T10:20:26.890816Z" } }, "outputs": [ @@ -470,7 +470,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.weight', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense_prediction.weight']\n", + "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.weight']\n", "- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] @@ -511,10 +511,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:30.085323Z", - "iopub.status.busy": "2023-10-06T06:48:30.084736Z", - "iopub.status.idle": "2023-10-06T06:48:30.088074Z", - "shell.execute_reply": "2023-10-06T06:48:30.087471Z" + "iopub.execute_input": "2023-10-11T10:20:26.895502Z", + "iopub.status.busy": "2023-10-11T10:20:26.894979Z", + "iopub.status.idle": "2023-10-11T10:20:26.898194Z", + "shell.execute_reply": "2023-10-11T10:20:26.897652Z" } }, "outputs": [], @@ -536,10 +536,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:30.091070Z", - "iopub.status.busy": "2023-10-06T06:48:30.090576Z", - "iopub.status.idle": "2023-10-06T06:48:30.093704Z", - "shell.execute_reply": "2023-10-06T06:48:30.093163Z" + "iopub.execute_input": "2023-10-11T10:20:26.901052Z", + "iopub.status.busy": "2023-10-11T10:20:26.900594Z", + "iopub.status.idle": "2023-10-11T10:20:26.903646Z", + "shell.execute_reply": "2023-10-11T10:20:26.903113Z" } }, "outputs": [], @@ -554,10 +554,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:30.096457Z", - "iopub.status.busy": "2023-10-06T06:48:30.095984Z", - "iopub.status.idle": "2023-10-06T06:48:32.851203Z", - "shell.execute_reply": "2023-10-06T06:48:32.850176Z" + "iopub.execute_input": "2023-10-11T10:20:26.906333Z", + "iopub.status.busy": "2023-10-11T10:20:26.905885Z", + "iopub.status.idle": "2023-10-11T10:20:29.690692Z", + "shell.execute_reply": "2023-10-11T10:20:29.689609Z" }, "scrolled": true }, @@ -580,10 +580,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.856226Z", - "iopub.status.busy": "2023-10-06T06:48:32.855166Z", - "iopub.status.idle": "2023-10-06T06:48:32.868208Z", - "shell.execute_reply": "2023-10-06T06:48:32.867548Z" + "iopub.execute_input": "2023-10-11T10:20:29.696101Z", + "iopub.status.busy": "2023-10-11T10:20:29.694721Z", + "iopub.status.idle": "2023-10-11T10:20:29.708080Z", + "shell.execute_reply": "2023-10-11T10:20:29.707445Z" } }, "outputs": [ @@ -684,10 +684,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.871131Z", - "iopub.status.busy": "2023-10-06T06:48:32.870885Z", - "iopub.status.idle": "2023-10-06T06:48:32.877262Z", - "shell.execute_reply": "2023-10-06T06:48:32.876563Z" + "iopub.execute_input": "2023-10-11T10:20:29.711789Z", + "iopub.status.busy": "2023-10-11T10:20:29.711254Z", + "iopub.status.idle": "2023-10-11T10:20:29.716905Z", + "shell.execute_reply": "2023-10-11T10:20:29.716284Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.880600Z", - "iopub.status.busy": "2023-10-06T06:48:32.880035Z", - "iopub.status.idle": "2023-10-06T06:48:32.884120Z", - "shell.execute_reply": "2023-10-06T06:48:32.883421Z" + "iopub.execute_input": "2023-10-11T10:20:29.720082Z", + "iopub.status.busy": "2023-10-11T10:20:29.719511Z", + "iopub.status.idle": "2023-10-11T10:20:29.724851Z", + "shell.execute_reply": "2023-10-11T10:20:29.724057Z" } }, "outputs": [ @@ -739,10 +739,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.888064Z", - "iopub.status.busy": "2023-10-06T06:48:32.887483Z", - "iopub.status.idle": "2023-10-06T06:48:32.891338Z", - "shell.execute_reply": "2023-10-06T06:48:32.890638Z" + "iopub.execute_input": "2023-10-11T10:20:29.727953Z", + "iopub.status.busy": "2023-10-11T10:20:29.727488Z", + "iopub.status.idle": "2023-10-11T10:20:29.731191Z", + "shell.execute_reply": "2023-10-11T10:20:29.730517Z" } }, "outputs": [], @@ -762,10 +762,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.894241Z", - "iopub.status.busy": "2023-10-06T06:48:32.893861Z", - "iopub.status.idle": "2023-10-06T06:48:32.903248Z", - "shell.execute_reply": "2023-10-06T06:48:32.902537Z" + "iopub.execute_input": "2023-10-11T10:20:29.734345Z", + "iopub.status.busy": "2023-10-11T10:20:29.733739Z", + "iopub.status.idle": "2023-10-11T10:20:29.743059Z", + "shell.execute_reply": "2023-10-11T10:20:29.742371Z" } }, "outputs": [ @@ -890,10 +890,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:32.906575Z", - "iopub.status.busy": "2023-10-06T06:48:32.906006Z", - "iopub.status.idle": "2023-10-06T06:48:33.207593Z", - "shell.execute_reply": "2023-10-06T06:48:33.206881Z" + "iopub.execute_input": "2023-10-11T10:20:29.746123Z", + "iopub.status.busy": "2023-10-11T10:20:29.745754Z", + "iopub.status.idle": "2023-10-11T10:20:30.014255Z", + "shell.execute_reply": "2023-10-11T10:20:30.013649Z" }, "scrolled": true }, @@ -932,10 +932,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:33.210599Z", - "iopub.status.busy": "2023-10-06T06:48:33.210169Z", - "iopub.status.idle": "2023-10-06T06:48:33.558244Z", - "shell.execute_reply": "2023-10-06T06:48:33.557661Z" + "iopub.execute_input": "2023-10-11T10:20:30.017653Z", + "iopub.status.busy": "2023-10-11T10:20:30.017034Z", + "iopub.status.idle": "2023-10-11T10:20:30.325313Z", + "shell.execute_reply": "2023-10-11T10:20:30.324685Z" }, "scrolled": true }, @@ -968,10 +968,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:33.561421Z", - "iopub.status.busy": "2023-10-06T06:48:33.560703Z", - "iopub.status.idle": "2023-10-06T06:48:33.565548Z", - "shell.execute_reply": "2023-10-06T06:48:33.564977Z" + "iopub.execute_input": "2023-10-11T10:20:30.328564Z", + "iopub.status.busy": "2023-10-11T10:20:30.328133Z", + "iopub.status.idle": "2023-10-11T10:20:30.333033Z", + "shell.execute_reply": "2023-10-11T10:20:30.332457Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 8fda05b35..634a768d5 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -856,16 +856,16 @@

1. Install required dependencies and download data diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index a0b33531f..67e4a6b53 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:39.062593Z", - "iopub.status.busy": "2023-10-06T06:48:39.062349Z", - "iopub.status.idle": "2023-10-06T06:48:41.080789Z", - "shell.execute_reply": "2023-10-06T06:48:41.079948Z" + "iopub.execute_input": "2023-10-11T10:20:35.372720Z", + "iopub.status.busy": "2023-10-11T10:20:35.372440Z", + "iopub.status.idle": "2023-10-11T10:20:36.884484Z", + "shell.execute_reply": "2023-10-11T10:20:36.883317Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-10-06 06:48:39-- https://data.deepai.org/conll2003.zip\r\n", + "--2023-10-11 10:20:35-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "143.244.50.91, 2400:52e0:1a01::992:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.50.91|:443... " + "185.93.1.244, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... " ] }, { @@ -103,7 +103,14 @@ "output_type": "stream", "text": [ "connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -116,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.05s \r\n", + "conll2003.zip 100%[===================>] 959.94K 6.21MB/s in 0.2s \r\n", "\r\n", - "2023-10-06 06:48:39 (18.7 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2023-10-11 10:20:35 (6.21 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -138,22 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-10-06 06:48:39-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.226.177, 52.216.102.19, 52.217.174.249, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.226.177|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2023-10-11 10:20:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.8.193, 52.217.136.137, 52.217.167.25, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.8.193|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,33 +168,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 1%[ ] 270.53K 1.26MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 26%[====> ] 4.30M 10.3MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 88%[================> ] 14.44M 22.9MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 25.5MB/s in 0.6s \r\n", + "pred_probs.npz 96%[==================> ] 15.71M 42.6MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 43.8MB/s in 0.4s \r\n", "\r\n", - "2023-10-06 06:48:40 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2023-10-11 10:20:36 (43.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -217,10 +188,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:41.084349Z", - "iopub.status.busy": "2023-10-06T06:48:41.083848Z", - "iopub.status.idle": "2023-10-06T06:48:42.231954Z", - "shell.execute_reply": "2023-10-06T06:48:42.231231Z" + "iopub.execute_input": "2023-10-11T10:20:36.889183Z", + "iopub.status.busy": "2023-10-11T10:20:36.888442Z", + "iopub.status.idle": "2023-10-11T10:20:38.125163Z", + "shell.execute_reply": "2023-10-11T10:20:38.124378Z" }, "nbsphinx": "hidden" }, @@ -231,7 +202,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@bd32f1114ba1b602348fd96f944c7cc531ca44c3\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55b838944c7721c9078acbe408f98c5584efe0ba\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -257,10 +228,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:42.235937Z", - "iopub.status.busy": "2023-10-06T06:48:42.235371Z", - "iopub.status.idle": "2023-10-06T06:48:42.240956Z", - "shell.execute_reply": "2023-10-06T06:48:42.240319Z" + "iopub.execute_input": "2023-10-11T10:20:38.129580Z", + "iopub.status.busy": "2023-10-11T10:20:38.129007Z", + "iopub.status.idle": "2023-10-11T10:20:38.134710Z", + "shell.execute_reply": "2023-10-11T10:20:38.134069Z" } }, "outputs": [], @@ -310,10 +281,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:42.244317Z", - "iopub.status.busy": "2023-10-06T06:48:42.243940Z", - "iopub.status.idle": "2023-10-06T06:48:42.248613Z", - "shell.execute_reply": "2023-10-06T06:48:42.248010Z" + "iopub.execute_input": "2023-10-11T10:20:38.138320Z", + "iopub.status.busy": "2023-10-11T10:20:38.137946Z", + "iopub.status.idle": "2023-10-11T10:20:38.142685Z", + "shell.execute_reply": "2023-10-11T10:20:38.142077Z" }, "nbsphinx": "hidden" }, @@ -331,10 +302,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:42.251798Z", - "iopub.status.busy": "2023-10-06T06:48:42.251295Z", - "iopub.status.idle": "2023-10-06T06:48:52.469139Z", - "shell.execute_reply": "2023-10-06T06:48:52.468465Z" + "iopub.execute_input": "2023-10-11T10:20:38.146010Z", + "iopub.status.busy": "2023-10-11T10:20:38.145652Z", + "iopub.status.idle": "2023-10-11T10:20:49.925919Z", + "shell.execute_reply": "2023-10-11T10:20:49.925051Z" } }, "outputs": [], @@ -408,10 +379,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:52.472915Z", - "iopub.status.busy": "2023-10-06T06:48:52.472368Z", - "iopub.status.idle": "2023-10-06T06:48:52.480311Z", - "shell.execute_reply": "2023-10-06T06:48:52.479695Z" + "iopub.execute_input": "2023-10-11T10:20:49.931392Z", + "iopub.status.busy": "2023-10-11T10:20:49.929842Z", + "iopub.status.idle": "2023-10-11T10:20:49.938772Z", + "shell.execute_reply": "2023-10-11T10:20:49.938131Z" }, "nbsphinx": "hidden" }, @@ -451,10 +422,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:52.482880Z", - "iopub.status.busy": "2023-10-06T06:48:52.482653Z", - "iopub.status.idle": "2023-10-06T06:48:53.043420Z", - "shell.execute_reply": "2023-10-06T06:48:53.042728Z" + "iopub.execute_input": "2023-10-11T10:20:49.942138Z", + "iopub.status.busy": "2023-10-11T10:20:49.941760Z", + "iopub.status.idle": "2023-10-11T10:20:50.546735Z", + "shell.execute_reply": "2023-10-11T10:20:50.545987Z" } }, "outputs": [], @@ -491,10 +462,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:53.047045Z", - "iopub.status.busy": "2023-10-06T06:48:53.046379Z", - "iopub.status.idle": "2023-10-06T06:48:53.053247Z", - "shell.execute_reply": "2023-10-06T06:48:53.052503Z" + "iopub.execute_input": "2023-10-11T10:20:50.550832Z", + "iopub.status.busy": "2023-10-11T10:20:50.550567Z", + "iopub.status.idle": "2023-10-11T10:20:50.557200Z", + "shell.execute_reply": "2023-10-11T10:20:50.556539Z" } }, "outputs": [ @@ -566,10 +537,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:53.056073Z", - "iopub.status.busy": "2023-10-06T06:48:53.055685Z", - "iopub.status.idle": "2023-10-06T06:48:55.478985Z", - "shell.execute_reply": "2023-10-06T06:48:55.477915Z" + "iopub.execute_input": "2023-10-11T10:20:50.560296Z", + "iopub.status.busy": "2023-10-11T10:20:50.560051Z", + "iopub.status.idle": "2023-10-11T10:20:53.164180Z", + "shell.execute_reply": "2023-10-11T10:20:53.162922Z" } }, "outputs": [], @@ -591,10 +562,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:55.483908Z", - "iopub.status.busy": "2023-10-06T06:48:55.482651Z", - "iopub.status.idle": "2023-10-06T06:48:55.492318Z", - "shell.execute_reply": "2023-10-06T06:48:55.491607Z" + "iopub.execute_input": "2023-10-11T10:20:53.169416Z", + "iopub.status.busy": "2023-10-11T10:20:53.168197Z", + "iopub.status.idle": "2023-10-11T10:20:53.179163Z", + "shell.execute_reply": "2023-10-11T10:20:53.178325Z" } }, "outputs": [ @@ -630,10 +601,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:55.495323Z", - "iopub.status.busy": "2023-10-06T06:48:55.494958Z", - "iopub.status.idle": "2023-10-06T06:48:55.516458Z", - "shell.execute_reply": "2023-10-06T06:48:55.515817Z" + "iopub.execute_input": "2023-10-11T10:20:53.182564Z", + "iopub.status.busy": "2023-10-11T10:20:53.181988Z", + "iopub.status.idle": "2023-10-11T10:20:53.204709Z", + "shell.execute_reply": "2023-10-11T10:20:53.203893Z" } }, "outputs": [ @@ -811,10 +782,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:55.519718Z", - "iopub.status.busy": "2023-10-06T06:48:55.519469Z", - "iopub.status.idle": "2023-10-06T06:48:55.563433Z", - "shell.execute_reply": "2023-10-06T06:48:55.562735Z" + "iopub.execute_input": "2023-10-11T10:20:53.209238Z", + "iopub.status.busy": "2023-10-11T10:20:53.207924Z", + "iopub.status.idle": "2023-10-11T10:20:53.252601Z", + "shell.execute_reply": "2023-10-11T10:20:53.251876Z" } }, "outputs": [ @@ -916,10 +887,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:55.566930Z", - "iopub.status.busy": "2023-10-06T06:48:55.566554Z", - "iopub.status.idle": "2023-10-06T06:48:55.578505Z", - "shell.execute_reply": "2023-10-06T06:48:55.577882Z" + "iopub.execute_input": "2023-10-11T10:20:53.256218Z", + "iopub.status.busy": "2023-10-11T10:20:53.255719Z", + "iopub.status.idle": "2023-10-11T10:20:53.268236Z", + "shell.execute_reply": "2023-10-11T10:20:53.267453Z" } }, "outputs": [ @@ -993,10 +964,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:55.581920Z", - "iopub.status.busy": "2023-10-06T06:48:55.581414Z", - "iopub.status.idle": "2023-10-06T06:48:57.688051Z", - "shell.execute_reply": "2023-10-06T06:48:57.687356Z" + "iopub.execute_input": "2023-10-11T10:20:53.272320Z", + "iopub.status.busy": "2023-10-11T10:20:53.271007Z", + "iopub.status.idle": "2023-10-11T10:20:55.580759Z", + "shell.execute_reply": "2023-10-11T10:20:55.579898Z" } }, "outputs": [ @@ -1168,10 +1139,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2023-10-06T06:48:57.691531Z", - "iopub.status.busy": "2023-10-06T06:48:57.691138Z", - "iopub.status.idle": "2023-10-06T06:48:57.697369Z", - "shell.execute_reply": "2023-10-06T06:48:57.696764Z" + "iopub.execute_input": "2023-10-11T10:20:55.584678Z", + "iopub.status.busy": "2023-10-11T10:20:55.584019Z", + "iopub.status.idle": "2023-10-11T10:20:55.589801Z", + "shell.execute_reply": "2023-10-11T10:20:55.589179Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 562b67c19..b965a49e3 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.5.0", - commit_hash: "bd32f1114ba1b602348fd96f944c7cc531ca44c3", + commit_hash: "55b838944c7721c9078acbe408f98c5584efe0ba", }; \ No newline at end of file