diff --git a/master/.buildinfo b/master/.buildinfo index 78039c467..ebcaa394f 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 4e5d913a780751bc72c2effa411b9ce8 +config: 827cdadfd9bbfed7b2c4f18c442a8c73 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 13601831f..67136fc67 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 717f90bdc..811f5ad71 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 5dba224f2..13d402cb5 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 80c142594..d1febf6bb 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 6feaad910..9fa9c780a 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index ad37af443..db3686d17 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index c9ca4c4f4..b2dd7f34f 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 5d3f58292..19394bea3 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 1147b36e5..ff1fd813d 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 799c411cf..d24b78ad7 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index d57f6625b..a660ebc4b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 3a8e33151..0a48b57d4 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 79bfc25a2..55382b9db 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 0b9574205..6bb2493ca 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 449eee76f..1d395105a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index a27462f35..eb0ae0518 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 343225921..dc3850b2c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 1dedd0fbb..21f9bd5ca 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index c0a9f649a..b75eabe8d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 3c5447db4..f6ba7a0e7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index d178eec8c..b8cc6e58a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index a5119cd05..55b554e94 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index f364da857..da7cc6599 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 56364c735..81405848d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 019b77d94..7e9da80c4 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 28f1c6434..1544cc525 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 105d3fb90..0f477502e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index fdfedba59..3996f1df0 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index b22b22e9a..16de5168a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index adfac5a6f..a1235339e 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index d51d24984..265c9c30e 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 18454adad..712a08ad4 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index eb4ee932a..437ff3d2a 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index f91fd31d6..f8620f84c 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 5a14bced2..d02929fff 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 082e8d89c..a37398b4a 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index cd8ce7aa0..d6022c2dc 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 862ff08d2..5f1aa645c 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 9eee681ab..2fcb028d0 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 31435fcbe..c2314a033 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 3fc143133..c80a41cd4 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 8fd11b8d7..58ab9a879 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index fdd9837e5..1dd10cc3a 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index eb8b3eca2..47b867902 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 777da7188..2621938a1 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 6301ef9cd..402359950 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 5f2b4c7a6..dc1116c9b 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 6899d0c33..0bf2d790b 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 1b5370c0e..fb7e8e32f 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 9f335ab4b..dbc78dec3 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 0e3d633a3..89f5fdc92 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index d06906452..a8b1b8ff6 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index f2be01118..a9561a7e5 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 9297cfaae..1fd91195f 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 63a32ad74..3a18eedfe 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index c6a297aa9..824568ab8 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index a8597037e..ee66ef95e 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index ef1e1a417..d2c5692ae 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index eaa9443b5..b1bc659a1 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 6ee6f9f15..f1202d108 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index b03460221..465dc00f4 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 537d633a7..377cca30e 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 17b9b9757..3052083ec 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index f841b1343..64860e351 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 2301fc9f5..610916cb1 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 915edd54a..4da4bb27e 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index feef0e8bc..b30241216 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index fc23f9a23..dfd7cf9c2 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index a778393e8..660704716 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index ef992bc5c..cb49032fa 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 8f6ba8002..810cca154 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 5e7aa120a..00db09c90 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 7dd04a8b0..67afa2567 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index bf72187c9..d7f780a71 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 77330801b..3d4e10902 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index ce2daded3..690988462 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:37.437869Z", - "iopub.status.busy": "2024-02-08T04:23:37.437704Z", - "iopub.status.idle": "2024-02-08T04:23:42.061386Z", - "shell.execute_reply": "2024-02-08T04:23:42.060834Z" + "iopub.execute_input": "2024-02-08T05:10:02.917002Z", + "iopub.status.busy": "2024-02-08T05:10:02.916527Z", + "iopub.status.idle": "2024-02-08T05:10:07.657923Z", + "shell.execute_reply": "2024-02-08T05:10:07.657382Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:42.064278Z", - "iopub.status.busy": "2024-02-08T04:23:42.063634Z", - "iopub.status.idle": "2024-02-08T04:23:42.067011Z", - "shell.execute_reply": "2024-02-08T04:23:42.066572Z" + "iopub.execute_input": "2024-02-08T05:10:07.660471Z", + "iopub.status.busy": "2024-02-08T05:10:07.660125Z", + "iopub.status.idle": "2024-02-08T05:10:07.663317Z", + "shell.execute_reply": "2024-02-08T05:10:07.662893Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:42.069097Z", - "iopub.status.busy": "2024-02-08T04:23:42.068667Z", - "iopub.status.idle": "2024-02-08T04:23:42.072984Z", - "shell.execute_reply": "2024-02-08T04:23:42.072571Z" + "iopub.execute_input": "2024-02-08T05:10:07.665330Z", + "iopub.status.busy": "2024-02-08T05:10:07.665027Z", + "iopub.status.idle": "2024-02-08T05:10:07.669776Z", + "shell.execute_reply": "2024-02-08T05:10:07.669251Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:42.075051Z", - "iopub.status.busy": "2024-02-08T04:23:42.074736Z", - "iopub.status.idle": "2024-02-08T04:23:43.724199Z", - "shell.execute_reply": "2024-02-08T04:23:43.723557Z" + "iopub.execute_input": "2024-02-08T05:10:07.672050Z", + "iopub.status.busy": "2024-02-08T05:10:07.671631Z", + "iopub.status.idle": "2024-02-08T05:10:09.750342Z", + "shell.execute_reply": "2024-02-08T05:10:09.749629Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:43.726855Z", - "iopub.status.busy": "2024-02-08T04:23:43.726493Z", - "iopub.status.idle": "2024-02-08T04:23:43.737147Z", - "shell.execute_reply": "2024-02-08T04:23:43.736620Z" + "iopub.execute_input": "2024-02-08T05:10:09.753182Z", + "iopub.status.busy": "2024-02-08T05:10:09.752972Z", + "iopub.status.idle": "2024-02-08T05:10:09.763807Z", + "shell.execute_reply": "2024-02-08T05:10:09.763255Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:43.767830Z", - "iopub.status.busy": "2024-02-08T04:23:43.767487Z", - "iopub.status.idle": "2024-02-08T04:23:43.772841Z", - "shell.execute_reply": "2024-02-08T04:23:43.772416Z" + "iopub.execute_input": "2024-02-08T05:10:09.795006Z", + "iopub.status.busy": "2024-02-08T05:10:09.794780Z", + "iopub.status.idle": "2024-02-08T05:10:09.800317Z", + "shell.execute_reply": "2024-02-08T05:10:09.799889Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:43.774741Z", - "iopub.status.busy": "2024-02-08T04:23:43.774438Z", - "iopub.status.idle": "2024-02-08T04:23:44.224278Z", - "shell.execute_reply": "2024-02-08T04:23:44.223692Z" + "iopub.execute_input": "2024-02-08T05:10:09.802245Z", + "iopub.status.busy": "2024-02-08T05:10:09.801984Z", + "iopub.status.idle": "2024-02-08T05:10:10.244422Z", + "shell.execute_reply": "2024-02-08T05:10:10.243946Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:44.226457Z", - "iopub.status.busy": "2024-02-08T04:23:44.226155Z", - "iopub.status.idle": "2024-02-08T04:23:45.088191Z", - "shell.execute_reply": "2024-02-08T04:23:45.087551Z" + "iopub.execute_input": "2024-02-08T05:10:10.246554Z", + "iopub.status.busy": "2024-02-08T05:10:10.246209Z", + "iopub.status.idle": "2024-02-08T05:10:12.264120Z", + "shell.execute_reply": "2024-02-08T05:10:12.263508Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:45.090803Z", - "iopub.status.busy": "2024-02-08T04:23:45.090460Z", - "iopub.status.idle": "2024-02-08T04:23:45.111414Z", - "shell.execute_reply": "2024-02-08T04:23:45.110956Z" + "iopub.execute_input": "2024-02-08T05:10:12.266388Z", + "iopub.status.busy": "2024-02-08T05:10:12.266181Z", + "iopub.status.idle": "2024-02-08T05:10:12.286448Z", + "shell.execute_reply": "2024-02-08T05:10:12.285925Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:45.113435Z", - "iopub.status.busy": "2024-02-08T04:23:45.113098Z", - "iopub.status.idle": "2024-02-08T04:23:45.116173Z", - "shell.execute_reply": "2024-02-08T04:23:45.115668Z" + "iopub.execute_input": "2024-02-08T05:10:12.288404Z", + "iopub.status.busy": "2024-02-08T05:10:12.288148Z", + "iopub.status.idle": "2024-02-08T05:10:12.291115Z", + "shell.execute_reply": "2024-02-08T05:10:12.290695Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:45.118149Z", - "iopub.status.busy": "2024-02-08T04:23:45.117812Z", - "iopub.status.idle": "2024-02-08T04:23:59.306627Z", - "shell.execute_reply": "2024-02-08T04:23:59.306019Z" + "iopub.execute_input": "2024-02-08T05:10:12.293161Z", + "iopub.status.busy": "2024-02-08T05:10:12.292750Z", + "iopub.status.idle": "2024-02-08T05:10:27.611719Z", + "shell.execute_reply": "2024-02-08T05:10:27.611101Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:59.309354Z", - "iopub.status.busy": "2024-02-08T04:23:59.309011Z", - "iopub.status.idle": "2024-02-08T04:23:59.312813Z", - "shell.execute_reply": "2024-02-08T04:23:59.312348Z" + "iopub.execute_input": "2024-02-08T05:10:27.614471Z", + "iopub.status.busy": "2024-02-08T05:10:27.614135Z", + "iopub.status.idle": "2024-02-08T05:10:27.617829Z", + "shell.execute_reply": "2024-02-08T05:10:27.617331Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -689,10 +689,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:59.314928Z", - "iopub.status.busy": "2024-02-08T04:23:59.314501Z", - "iopub.status.idle": "2024-02-08T04:24:00.032474Z", - "shell.execute_reply": "2024-02-08T04:24:00.031862Z" + "iopub.execute_input": "2024-02-08T05:10:27.619869Z", + "iopub.status.busy": "2024-02-08T05:10:27.619513Z", + "iopub.status.idle": "2024-02-08T05:10:28.356958Z", + "shell.execute_reply": "2024-02-08T05:10:28.356238Z" }, "id": "i_drkY9YOcw4" }, @@ -726,10 +726,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.035309Z", - "iopub.status.busy": "2024-02-08T04:24:00.034952Z", - "iopub.status.idle": "2024-02-08T04:24:00.039558Z", - "shell.execute_reply": "2024-02-08T04:24:00.039087Z" + "iopub.execute_input": "2024-02-08T05:10:28.360007Z", + "iopub.status.busy": "2024-02-08T05:10:28.359524Z", + "iopub.status.idle": "2024-02-08T05:10:28.364554Z", + "shell.execute_reply": "2024-02-08T05:10:28.363944Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -776,10 +776,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.041924Z", - "iopub.status.busy": "2024-02-08T04:24:00.041579Z", - "iopub.status.idle": "2024-02-08T04:24:00.155311Z", - "shell.execute_reply": "2024-02-08T04:24:00.154672Z" + "iopub.execute_input": "2024-02-08T05:10:28.367123Z", + "iopub.status.busy": "2024-02-08T05:10:28.366593Z", + "iopub.status.idle": "2024-02-08T05:10:28.490652Z", + "shell.execute_reply": "2024-02-08T05:10:28.489988Z" } }, "outputs": [ @@ -816,10 +816,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.157926Z", - "iopub.status.busy": "2024-02-08T04:24:00.157470Z", - "iopub.status.idle": "2024-02-08T04:24:00.167299Z", - "shell.execute_reply": "2024-02-08T04:24:00.166840Z" + "iopub.execute_input": "2024-02-08T05:10:28.492892Z", + "iopub.status.busy": "2024-02-08T05:10:28.492640Z", + "iopub.status.idle": "2024-02-08T05:10:28.502745Z", + "shell.execute_reply": "2024-02-08T05:10:28.502187Z" }, "scrolled": true }, @@ -874,10 +874,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.169331Z", - "iopub.status.busy": "2024-02-08T04:24:00.168954Z", - "iopub.status.idle": "2024-02-08T04:24:00.176582Z", - "shell.execute_reply": "2024-02-08T04:24:00.176051Z" + "iopub.execute_input": "2024-02-08T05:10:28.504792Z", + "iopub.status.busy": "2024-02-08T05:10:28.504574Z", + "iopub.status.idle": "2024-02-08T05:10:28.512631Z", + "shell.execute_reply": "2024-02-08T05:10:28.512066Z" } }, "outputs": [ @@ -981,10 +981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.178497Z", - "iopub.status.busy": "2024-02-08T04:24:00.178235Z", - "iopub.status.idle": "2024-02-08T04:24:00.182121Z", - "shell.execute_reply": "2024-02-08T04:24:00.181573Z" + "iopub.execute_input": "2024-02-08T05:10:28.514750Z", + "iopub.status.busy": "2024-02-08T05:10:28.514376Z", + "iopub.status.idle": "2024-02-08T05:10:28.518724Z", + "shell.execute_reply": "2024-02-08T05:10:28.518182Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.184174Z", - "iopub.status.busy": "2024-02-08T04:24:00.183860Z", - "iopub.status.idle": "2024-02-08T04:24:00.189292Z", - "shell.execute_reply": "2024-02-08T04:24:00.188819Z" + "iopub.execute_input": "2024-02-08T05:10:28.520704Z", + "iopub.status.busy": "2024-02-08T05:10:28.520404Z", + "iopub.status.idle": "2024-02-08T05:10:28.525844Z", + "shell.execute_reply": "2024-02-08T05:10:28.525387Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1152,10 +1152,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.191324Z", - "iopub.status.busy": "2024-02-08T04:24:00.191003Z", - "iopub.status.idle": "2024-02-08T04:24:00.300680Z", - "shell.execute_reply": "2024-02-08T04:24:00.300220Z" + "iopub.execute_input": "2024-02-08T05:10:28.527919Z", + "iopub.status.busy": "2024-02-08T05:10:28.527730Z", + "iopub.status.idle": "2024-02-08T05:10:28.640795Z", + "shell.execute_reply": "2024-02-08T05:10:28.640230Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1209,10 +1209,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.302682Z", - "iopub.status.busy": "2024-02-08T04:24:00.302364Z", - "iopub.status.idle": "2024-02-08T04:24:00.405268Z", - "shell.execute_reply": "2024-02-08T04:24:00.404783Z" + "iopub.execute_input": "2024-02-08T05:10:28.643025Z", + "iopub.status.busy": "2024-02-08T05:10:28.642640Z", + "iopub.status.idle": "2024-02-08T05:10:28.750031Z", + "shell.execute_reply": "2024-02-08T05:10:28.749452Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1257,10 +1257,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.407387Z", - "iopub.status.busy": "2024-02-08T04:24:00.407045Z", - "iopub.status.idle": "2024-02-08T04:24:00.507174Z", - "shell.execute_reply": "2024-02-08T04:24:00.506629Z" + "iopub.execute_input": "2024-02-08T05:10:28.752108Z", + "iopub.status.busy": "2024-02-08T05:10:28.751895Z", + "iopub.status.idle": "2024-02-08T05:10:28.855700Z", + "shell.execute_reply": "2024-02-08T05:10:28.855171Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1301,10 +1301,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.509161Z", - "iopub.status.busy": "2024-02-08T04:24:00.508897Z", - "iopub.status.idle": "2024-02-08T04:24:00.609804Z", - "shell.execute_reply": "2024-02-08T04:24:00.609296Z" + "iopub.execute_input": "2024-02-08T05:10:28.857703Z", + "iopub.status.busy": "2024-02-08T05:10:28.857485Z", + "iopub.status.idle": "2024-02-08T05:10:28.964065Z", + "shell.execute_reply": "2024-02-08T05:10:28.963467Z" } }, "outputs": [ @@ -1352,10 +1352,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.611925Z", - "iopub.status.busy": "2024-02-08T04:24:00.611606Z", - "iopub.status.idle": "2024-02-08T04:24:00.615028Z", - "shell.execute_reply": "2024-02-08T04:24:00.614593Z" + "iopub.execute_input": "2024-02-08T05:10:28.966380Z", + "iopub.status.busy": "2024-02-08T05:10:28.966029Z", + "iopub.status.idle": "2024-02-08T05:10:28.969976Z", + "shell.execute_reply": "2024-02-08T05:10:28.969420Z" }, "nbsphinx": "hidden" }, @@ -1396,7 +1396,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00caf2fa7ce94a1ca1af3fc608cdd874": { + "00322415c3084906aed3bfc0fc4137e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1411,33 +1411,91 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9c694de214f04369bdf84ea2a4a53820", + "layout": "IPY_MODEL_09d99afba1d74d0a910126e1b1c28c9d", "placeholder": "​", - "style": "IPY_MODEL_0d909c5854a6419d8bf46d1b34d4bfc1", + "style": "IPY_MODEL_b784011f16db4888b20527c0b09c7995", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 140MB/s]" + "value": "embedding_model.ckpt: 100%" + } + }, + "02cba719e59748a9a093722bb87ad7bc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "09e345de2ab44e64aa9dda42f354fc5e": { + "05133e7fc5b549e896b19ea17c0a9470": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb90d513176f4f53baa7d68bd99c706d", + "placeholder": "​", + "style": "IPY_MODEL_6a986303e55648439d134870cc6dc1f0", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 2.12MB/s]" } }, - "0be9a5582bed44899891990cf3b7e6ca": { + "09d99afba1d74d0a910126e1b1c28c9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1490,7 +1548,7 @@ "width": null } }, - "0d909c5854a6419d8bf46d1b34d4bfc1": { + "16faa3717ace402099c0af876b0ea972": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1508,33 +1566,31 @@ "text_color": null } }, - "1110dbf49ecd4529bda8ae5a8f1dd895": { + "17e351c1dd3a43838b0c813f1d1792ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0be9a5582bed44899891990cf3b7e6ca", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4cb8607f3082430cb1873a8893f0bfbb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f105df57e4d44ad0b56e4c0d23447c9c", + "IPY_MODEL_d9e6ae1680db4f439f491945b731959c", + "IPY_MODEL_05133e7fc5b549e896b19ea17c0a9470" + ], + "layout": "IPY_MODEL_2d6e768687dc4dc28928ce8924d56bcd", "tabbable": null, - "tooltip": null, - "value": 2041.0 + "tooltip": null } }, - "12e8df3144be4da9a72db0291005881b": { + "19c14e16922c46539429b0f3c76cc36d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1549,40 +1605,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f90e0c618515482bb424955efd1b841c", - "IPY_MODEL_1110dbf49ecd4529bda8ae5a8f1dd895", - "IPY_MODEL_c5d242464a974d22a0e52330a3d839ba" + "IPY_MODEL_5c914c53cb5e4cdeb6d61f06b845f822", + "IPY_MODEL_7c86a16b43104acd82b6c23963847f61", + "IPY_MODEL_d6b0edcd2bb8437a89117c17518bed85" ], - "layout": "IPY_MODEL_401ef1f8383c4157b95e9dbec0a569d9", + "layout": "IPY_MODEL_44f0a77ddead4cd08e63f03a0b101c14", "tabbable": null, "tooltip": null } }, - "1387ef86e738414faeab3ad3904caf0b": { + "25545b6369f7469b8496bbc09b87b003": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bd8756a5451d4230a2e3c764128f0e61", - "IPY_MODEL_25967dd471d241868b18aacfad2f80ad", - "IPY_MODEL_00caf2fa7ce94a1ca1af3fc608cdd874" - ], - "layout": "IPY_MODEL_de8656deecc2472a95cfa864289cf715", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1797bdb86d8e4d4082f9e097a4986ecf": { + "28bfb0ec8bbf4ed9ad9e36c10a711209": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1635,7 +1685,7 @@ "width": null } }, - "1dae0c9337fd4ae691ff8244f130ae56": { + "2d6e768687dc4dc28928ce8924d56bcd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1688,7 +1738,7 @@ "width": null } }, - "1e00641d45664cf3bcf25bfd9ded9aae": { + "3153aabcab854857ad16e19942f577de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1741,51 +1791,54 @@ "width": null } }, - "25967dd471d241868b18aacfad2f80ad": { + "35c3def975d846cb8e9657d130bb2053": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8f947cac1dfb4430998c372771ae7550", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_922b4f4a09394610b8567cb628b3761d", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e6b9c284e804d2eb99f19f579ad1b9e", + "IPY_MODEL_af3da7864071482eb20d1495b6d5e485", + "IPY_MODEL_aa1c73555d2745d78847a90e52a17ef8" + ], + "layout": "IPY_MODEL_3153aabcab854857ad16e19942f577de", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "26df8d002b6e4defaa70711eea5f0fd4": { + "44cbf671229d421a9d727694cb483666": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f90fa8070f24b898cb5d2e09fde3135", + "placeholder": "​", + "style": "IPY_MODEL_25545b6369f7469b8496bbc09b87b003", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 777kB/s]" } }, - "27adc94a126e42eca62c7fbb62d37a05": { + "44f0a77ddead4cd08e63f03a0b101c14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1838,7 +1891,7 @@ "width": null } }, - "2fe86a5a6d75463ba4a135d1958734d3": { + "52b60c8257c44b00bff406d89f218b97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1891,7 +1944,31 @@ "width": null } }, - "367b28a197ef4109b62bef2f8702343f": { + "535dd9db9e9f4ca3b4e7ad45fce08903": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_00322415c3084906aed3bfc0fc4137e3", + "IPY_MODEL_be64c269bd864fd49e046244b585ce34", + "IPY_MODEL_9341551bd3c14f019a521b285c7176d3" + ], + "layout": "IPY_MODEL_a655f7d4b9274d3281e939b9574224e3", + "tabbable": null, + "tooltip": null + } + }, + "58a6d115314141608cead05e9bc4b0fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1944,7 +2021,7 @@ "width": null } }, - "3e8471b7623e49e9ba8a7f609b92d206": { + "5bb47e01ccd4433e9fb490ca2d72e174": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1997,7 +2074,30 @@ "width": null } }, - "401ef1f8383c4157b95e9dbec0a569d9": { + "5c914c53cb5e4cdeb6d61f06b845f822": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9c110ecb4a3142bd8978bd7c56eeac1c", + "placeholder": "​", + "style": "IPY_MODEL_f9a3626c114b4cc3a8e6528b82f7edc2", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "6366025152fb4914943ecbce38e36e06": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2050,7 +2150,7 @@ "width": null } }, - "4cb8607f3082430cb1873a8893f0bfbb": { + "67d8683d19954d26967f3928959517c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2066,56 +2166,7 @@ "description_width": "" } }, - "50b3b8ea8e764cdbb9e5d6f2db55f8f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cf8efc4c9cb84399a37464a1e187f6eb", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8bf3fcd1affe4651b2701906f33f4629", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "541613fe9afc46ebb8739e58d48f3708": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_27adc94a126e42eca62c7fbb62d37a05", - "placeholder": "​", - "style": "IPY_MODEL_72d82241972f41698dafa969085decb4", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 16.9MB/s]" - } - }, - "58ce53aea9f5489d8d630f058e577b43": { + "6a986303e55648439d134870cc6dc1f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2133,7 +2184,7 @@ "text_color": null } }, - "5caf5e5f16c249e691706889447f5f3c": { + "6b7457ca391342d69cbcfbb176ed3816": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,60 +2237,83 @@ "width": null } }, - "6055405df1504056b09b8a4f02683e06": { - "model_module": "@jupyter-widgets/base", + "6c331c9cb15e400daf71dc964257ce69": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "79aa5a4217f24706a0c8acdccb83bc89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7c86a16b43104acd82b6c23963847f61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cf0f6cfeecb944bbbf95b51dab7ffe38", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_79aa5a4217f24706a0c8acdccb83bc89", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "7ddd689d4714483c82a417f4068e0d50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6bab66ef9ab2415aa6ab316dc2c12977": { + "7f90fa8070f24b898cb5d2e09fde3135": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2292,133 +2366,30 @@ "width": null } }, - "72d82241972f41698dafa969085decb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "73cc609051ff4efd9ad519ad7af38b33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "782dc84a5c5f4cef9c80909afe6e60d4": { + "8e6b9c284e804d2eb99f19f579ad1b9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1797bdb86d8e4d4082f9e097a4986ecf", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_79dabf647200462baaf9667d1281752a", + "layout": "IPY_MODEL_96370a4da75f4d0cacf1c8ce1744a33a", + "placeholder": "​", + "style": "IPY_MODEL_f2159690386f475092a493a5820f3be5", "tabbable": null, "tooltip": null, - "value": 15856877.0 - } - }, - "79dabf647200462baaf9667d1281752a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7b1479cd4d034d77b4fb136713b4747b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a38d3e354f2448dca3a03b59c80e419d", - "IPY_MODEL_50b3b8ea8e764cdbb9e5d6f2db55f8f2", - "IPY_MODEL_541613fe9afc46ebb8739e58d48f3708" - ], - "layout": "IPY_MODEL_2fe86a5a6d75463ba4a135d1958734d3", - "tabbable": null, - "tooltip": null - } - }, - "7dc19e1157c147fa87d344fd7e0eabf6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f514a3b00a1b490b87e1057c9111a96f", - "IPY_MODEL_f72c8b8bccda4a1ea70840ece3838d42", - "IPY_MODEL_dabd132f187041fca1e66330d4fee9b3" - ], - "layout": "IPY_MODEL_367b28a197ef4109b62bef2f8702343f", - "tabbable": null, - "tooltip": null + "value": "classifier.ckpt: 100%" } }, - "7ddf581b1db042f8bf8b87912a9d17b7": { + "8eacd088a4794ed59341ed053be2eca2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2471,41 +2442,30 @@ "width": null } }, - "88a22d3905da41bd811a099ebd0345f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8bf3fcd1affe4651b2701906f33f4629": { + "9341551bd3c14f019a521b285c7176d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_02cba719e59748a9a093722bb87ad7bc", + "placeholder": "​", + "style": "IPY_MODEL_7ddd689d4714483c82a417f4068e0d50", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 143MB/s]" } }, - "8d514a589a884efaac95c4764d625669": { + "96370a4da75f4d0cacf1c8ce1744a33a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2558,7 +2518,7 @@ "width": null } }, - "8f947cac1dfb4430998c372771ae7550": { + "9640155152bb442393cce4d5448854aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2611,7 +2571,30 @@ "width": null } }, - "919fe5295cc140a0beeb66a390a5cd37": { + "9845814b2c264618ad67b3fec548ab50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5bb47e01ccd4433e9fb490ca2d72e174", + "placeholder": "​", + "style": "IPY_MODEL_16faa3717ace402099c0af876b0ea972", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "9c110ecb4a3142bd8978bd7c56eeac1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2664,47 +2647,25 @@ "width": null } }, - "922b4f4a09394610b8567cb628b3761d": { + "9e47ddeb6ba8434bacbf51fc5e3ebc23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "99ad1c23d83a4fdda42df4558f2b566e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_df6d32468abb43dead6ed88e8e3cd4dd", - "IPY_MODEL_782dc84a5c5f4cef9c80909afe6e60d4", - "IPY_MODEL_e21a8880e0be40d59186e562f368c4ab" - ], - "layout": "IPY_MODEL_6bab66ef9ab2415aa6ab316dc2c12977", - "tabbable": null, - "tooltip": null + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9c694de214f04369bdf84ea2a4a53820": { + "a655f7d4b9274d3281e939b9574224e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2757,7 +2718,7 @@ "width": null } }, - "a38d3e354f2448dca3a03b59c80e419d": { + "aa1c73555d2745d78847a90e52a17ef8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2772,15 +2733,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ddf581b1db042f8bf8b87912a9d17b7", + "layout": "IPY_MODEL_8eacd088a4794ed59341ed053be2eca2", "placeholder": "​", - "style": "IPY_MODEL_fa1bb1fa7d6d4fb5ba176d8faeeeba30", + "style": "IPY_MODEL_bc6713ec7b094832b9d6d7bc983795fd", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": " 15.9M/15.9M [00:00<00:00, 43.6MB/s]" } }, - "a72ed5077eff484fb5f20f78db412029": { + "af3da7864071482eb20d1495b6d5e485": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_58a6d115314141608cead05e9bc4b0fc", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d8cede267b5b4bf2ae4853e192b8dcf0", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "b784011f16db4888b20527c0b09c7995": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2798,48 +2785,77 @@ "text_color": null } }, - "bd8756a5451d4230a2e3c764128f0e61": { + "bc6713ec7b094832b9d6d7bc983795fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bdbb6dec26e24b4798b6f5d0034262d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6055405df1504056b09b8a4f02683e06", - "placeholder": "​", - "style": "IPY_MODEL_c1ac0d0617f94eb1a3de23bded46234e", + "layout": "IPY_MODEL_6366025152fb4914943ecbce38e36e06", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc74ddb244b84b949aced140694f4ce9", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": 3201.0 } }, - "c1ac0d0617f94eb1a3de23bded46234e": { + "be64c269bd864fd49e046244b585ce34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6b7457ca391342d69cbcfbb176ed3816", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6c331c9cb15e400daf71dc964257ce69", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 } }, - "c5b79d34ba494a079c8e8003c353bd42": { + "cf0f6cfeecb944bbbf95b51dab7ffe38": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2892,7 +2908,25 @@ "width": null } }, - "c5d242464a974d22a0e52330a3d839ba": { + "d296361623744768ba3fb4c5a26a3376": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d6b0edcd2bb8437a89117c17518bed85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2907,15 +2941,140 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5caf5e5f16c249e691706889447f5f3c", + "layout": "IPY_MODEL_9640155152bb442393cce4d5448854aa", "placeholder": "​", - "style": "IPY_MODEL_73cc609051ff4efd9ad519ad7af38b33", + "style": "IPY_MODEL_9e47ddeb6ba8434bacbf51fc5e3ebc23", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 511kB/s]" + "value": " 2.04k/2.04k [00:00<00:00, 473kB/s]" + } + }, + "d8cede267b5b4bf2ae4853e192b8dcf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d9e6ae1680db4f439f491945b731959c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_28bfb0ec8bbf4ed9ad9e36c10a711209", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67d8683d19954d26967f3928959517c7", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "e1de5a271a36422ba42b39bbb19705be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9845814b2c264618ad67b3fec548ab50", + "IPY_MODEL_bdbb6dec26e24b4798b6f5d0034262d3", + "IPY_MODEL_44cbf671229d421a9d727694cb483666" + ], + "layout": "IPY_MODEL_fcef3c54ae3a4557aa447cc447b97160", + "tabbable": null, + "tooltip": null + } + }, + "f105df57e4d44ad0b56e4c0d23447c9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52b60c8257c44b00bff406d89f218b97", + "placeholder": "​", + "style": "IPY_MODEL_d296361623744768ba3fb4c5a26a3376", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "f2159690386f475092a493a5820f3be5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cf8efc4c9cb84399a37464a1e187f6eb": { + "f9a3626c114b4cc3a8e6528b82f7edc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fb90d513176f4f53baa7d68bd99c706d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2968,7 +3127,7 @@ "width": null } }, - "d76f3855ae764e8c8b350d2f8f3fe336": { + "fc74ddb244b84b949aced140694f4ce9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2984,30 +3143,7 @@ "description_width": "" } }, - "dabd132f187041fca1e66330d4fee9b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3e8471b7623e49e9ba8a7f609b92d206", - "placeholder": "​", - "style": "IPY_MODEL_88a22d3905da41bd811a099ebd0345f2", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 821kB/s]" - } - }, - "de8656deecc2472a95cfa864289cf715": { + "fcef3c54ae3a4557aa447cc447b97160": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3059,142 +3195,6 @@ "visibility": null, "width": null } - }, - "df6d32468abb43dead6ed88e8e3cd4dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c5b79d34ba494a079c8e8003c353bd42", - "placeholder": "​", - "style": "IPY_MODEL_a72ed5077eff484fb5f20f78db412029", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "e21a8880e0be40d59186e562f368c4ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8d514a589a884efaac95c4764d625669", - "placeholder": "​", - "style": "IPY_MODEL_58ce53aea9f5489d8d630f058e577b43", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 223MB/s]" - } - }, - "f514a3b00a1b490b87e1057c9111a96f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1dae0c9337fd4ae691ff8244f130ae56", - "placeholder": "​", - "style": "IPY_MODEL_26df8d002b6e4defaa70711eea5f0fd4", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "f72c8b8bccda4a1ea70840ece3838d42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_919fe5295cc140a0beeb66a390a5cd37", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d76f3855ae764e8c8b350d2f8f3fe336", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "f90e0c618515482bb424955efd1b841c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1e00641d45664cf3bcf25bfd9ded9aae", - "placeholder": "​", - "style": "IPY_MODEL_09e345de2ab44e64aa9dda42f354fc5e", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "fa1bb1fa7d6d4fb5ba176d8faeeeba30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 5b5b6c3f5..fc6778fa9 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:03.904942Z", - "iopub.status.busy": "2024-02-08T04:24:03.904776Z", - "iopub.status.idle": "2024-02-08T04:24:04.993867Z", - "shell.execute_reply": "2024-02-08T04:24:04.993384Z" + "iopub.execute_input": "2024-02-08T05:10:32.271252Z", + "iopub.status.busy": "2024-02-08T05:10:32.270834Z", + "iopub.status.idle": "2024-02-08T05:10:33.407899Z", + "shell.execute_reply": "2024-02-08T05:10:33.407308Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:04.996272Z", - "iopub.status.busy": "2024-02-08T04:24:04.996028Z", - "iopub.status.idle": "2024-02-08T04:24:04.999384Z", - "shell.execute_reply": "2024-02-08T04:24:04.998983Z" + "iopub.execute_input": "2024-02-08T05:10:33.410461Z", + "iopub.status.busy": "2024-02-08T05:10:33.410017Z", + "iopub.status.idle": "2024-02-08T05:10:33.413059Z", + "shell.execute_reply": "2024-02-08T05:10:33.412623Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.001458Z", - "iopub.status.busy": "2024-02-08T04:24:05.001094Z", - "iopub.status.idle": "2024-02-08T04:24:05.010073Z", - "shell.execute_reply": "2024-02-08T04:24:05.009530Z" + "iopub.execute_input": "2024-02-08T05:10:33.415134Z", + "iopub.status.busy": "2024-02-08T05:10:33.414806Z", + "iopub.status.idle": "2024-02-08T05:10:33.423477Z", + "shell.execute_reply": "2024-02-08T05:10:33.422903Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.012117Z", - "iopub.status.busy": "2024-02-08T04:24:05.011944Z", - "iopub.status.idle": "2024-02-08T04:24:05.016583Z", - "shell.execute_reply": "2024-02-08T04:24:05.016032Z" + "iopub.execute_input": "2024-02-08T05:10:33.425487Z", + "iopub.status.busy": "2024-02-08T05:10:33.425188Z", + "iopub.status.idle": "2024-02-08T05:10:33.430413Z", + "shell.execute_reply": "2024-02-08T05:10:33.429836Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.018843Z", - "iopub.status.busy": "2024-02-08T04:24:05.018524Z", - "iopub.status.idle": "2024-02-08T04:24:05.198798Z", - "shell.execute_reply": "2024-02-08T04:24:05.198324Z" + "iopub.execute_input": "2024-02-08T05:10:33.432570Z", + "iopub.status.busy": "2024-02-08T05:10:33.432244Z", + "iopub.status.idle": "2024-02-08T05:10:33.622201Z", + "shell.execute_reply": "2024-02-08T05:10:33.621689Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.201211Z", - "iopub.status.busy": "2024-02-08T04:24:05.200875Z", - "iopub.status.idle": "2024-02-08T04:24:05.514597Z", - "shell.execute_reply": "2024-02-08T04:24:05.514050Z" + "iopub.execute_input": "2024-02-08T05:10:33.624564Z", + "iopub.status.busy": "2024-02-08T05:10:33.624249Z", + "iopub.status.idle": "2024-02-08T05:10:34.001363Z", + "shell.execute_reply": "2024-02-08T05:10:34.000781Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.516964Z", - "iopub.status.busy": "2024-02-08T04:24:05.516580Z", - "iopub.status.idle": "2024-02-08T04:24:05.539784Z", - "shell.execute_reply": "2024-02-08T04:24:05.539227Z" + "iopub.execute_input": "2024-02-08T05:10:34.003609Z", + "iopub.status.busy": "2024-02-08T05:10:34.003270Z", + "iopub.status.idle": "2024-02-08T05:10:34.027061Z", + "shell.execute_reply": "2024-02-08T05:10:34.026619Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.541965Z", - "iopub.status.busy": "2024-02-08T04:24:05.541548Z", - "iopub.status.idle": "2024-02-08T04:24:05.555212Z", - "shell.execute_reply": "2024-02-08T04:24:05.554675Z" + "iopub.execute_input": "2024-02-08T05:10:34.029263Z", + "iopub.status.busy": "2024-02-08T05:10:34.028920Z", + "iopub.status.idle": "2024-02-08T05:10:34.043155Z", + "shell.execute_reply": "2024-02-08T05:10:34.042687Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.557355Z", - "iopub.status.busy": "2024-02-08T04:24:05.557068Z", - "iopub.status.idle": "2024-02-08T04:24:07.165049Z", - "shell.execute_reply": "2024-02-08T04:24:07.164421Z" + "iopub.execute_input": "2024-02-08T05:10:34.045627Z", + "iopub.status.busy": "2024-02-08T05:10:34.045279Z", + "iopub.status.idle": "2024-02-08T05:10:35.722412Z", + "shell.execute_reply": "2024-02-08T05:10:35.721793Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.167703Z", - "iopub.status.busy": "2024-02-08T04:24:07.167183Z", - "iopub.status.idle": "2024-02-08T04:24:07.189438Z", - "shell.execute_reply": "2024-02-08T04:24:07.188870Z" + "iopub.execute_input": "2024-02-08T05:10:35.725162Z", + "iopub.status.busy": "2024-02-08T05:10:35.724516Z", + "iopub.status.idle": "2024-02-08T05:10:35.746556Z", + "shell.execute_reply": "2024-02-08T05:10:35.746094Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.191375Z", - "iopub.status.busy": "2024-02-08T04:24:07.191196Z", - "iopub.status.idle": "2024-02-08T04:24:07.209755Z", - "shell.execute_reply": "2024-02-08T04:24:07.209149Z" + "iopub.execute_input": "2024-02-08T05:10:35.748643Z", + "iopub.status.busy": "2024-02-08T05:10:35.748321Z", + "iopub.status.idle": "2024-02-08T05:10:35.766887Z", + "shell.execute_reply": "2024-02-08T05:10:35.766296Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:359: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.211886Z", - "iopub.status.busy": "2024-02-08T04:24:07.211462Z", - "iopub.status.idle": "2024-02-08T04:24:07.224227Z", - "shell.execute_reply": "2024-02-08T04:24:07.223745Z" + "iopub.execute_input": "2024-02-08T05:10:35.769395Z", + "iopub.status.busy": "2024-02-08T05:10:35.769056Z", + "iopub.status.idle": "2024-02-08T05:10:35.781775Z", + "shell.execute_reply": "2024-02-08T05:10:35.781323Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.226230Z", - "iopub.status.busy": "2024-02-08T04:24:07.226057Z", - "iopub.status.idle": "2024-02-08T04:24:07.249153Z", - "shell.execute_reply": "2024-02-08T04:24:07.248627Z" + "iopub.execute_input": "2024-02-08T05:10:35.783779Z", + "iopub.status.busy": "2024-02-08T05:10:35.783449Z", + "iopub.status.idle": "2024-02-08T05:10:35.806063Z", + "shell.execute_reply": "2024-02-08T05:10:35.805517Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fc5fad859ca84d33abae2fa882ff86d0", + "model_id": "856677d31c574d31b5d2d75aa30a01f8", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.251221Z", - "iopub.status.busy": "2024-02-08T04:24:07.250904Z", - "iopub.status.idle": "2024-02-08T04:24:07.264933Z", - "shell.execute_reply": "2024-02-08T04:24:07.264401Z" + "iopub.execute_input": "2024-02-08T05:10:35.808253Z", + "iopub.status.busy": "2024-02-08T05:10:35.807946Z", + "iopub.status.idle": "2024-02-08T05:10:35.821040Z", + "shell.execute_reply": "2024-02-08T05:10:35.820504Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.266890Z", - "iopub.status.busy": "2024-02-08T04:24:07.266714Z", - "iopub.status.idle": "2024-02-08T04:24:07.272307Z", - "shell.execute_reply": "2024-02-08T04:24:07.271878Z" + "iopub.execute_input": "2024-02-08T05:10:35.823282Z", + "iopub.status.busy": "2024-02-08T05:10:35.822896Z", + "iopub.status.idle": "2024-02-08T05:10:35.828664Z", + "shell.execute_reply": "2024-02-08T05:10:35.828126Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.274386Z", - "iopub.status.busy": "2024-02-08T04:24:07.274018Z", - "iopub.status.idle": "2024-02-08T04:24:07.290456Z", - "shell.execute_reply": "2024-02-08T04:24:07.289903Z" + "iopub.execute_input": "2024-02-08T05:10:35.830614Z", + "iopub.status.busy": "2024-02-08T05:10:35.830437Z", + "iopub.status.idle": "2024-02-08T05:10:35.847232Z", + "shell.execute_reply": "2024-02-08T05:10:35.846723Z" } }, "outputs": [ @@ -1430,30 +1430,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08306504fafe48699a259796de09b33d": { + "3f4c70def822414b8adb927ca8035b20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9885a0d19caf4000841fe5d767b5faa6", - "placeholder": "​", - "style": "IPY_MODEL_969462de888a4b3a9d8b18e1c4e88a9d", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "290ef15ee3164f8bb629fc5c1469d79f": { + "5820d61831c54177ac9cbf05159b6638": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1506,7 +1501,7 @@ "width": null } }, - "3e6e876426fb437a83b89f3a9035d7b3": { + "5da09ac927b24c5ab3967a0c0d76acc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1524,48 +1519,33 @@ "text_color": null } }, - "66179e16e7cd44fda0c21fa2d600d51a": { + "65ee8fb444c142abba93197926106271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9f85b76337c34b79b5e6d1475d27f33f", - "placeholder": "​", - "style": "IPY_MODEL_3e6e876426fb437a83b89f3a9035d7b3", + "layout": "IPY_MODEL_7463d397fb66435b862c806752e8051f", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dae2a3d3d8874a4ba9d1fa896add7e1c", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 10263.01 examples/s]" - } - }, - "969462de888a4b3a9d8b18e1c4e88a9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 132.0 } }, - "9885a0d19caf4000841fe5d767b5faa6": { + "7463d397fb66435b862c806752e8051f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1618,7 +1598,7 @@ "width": null } }, - "9da003a7f5744b429af2bcf754a04312": { + "76182b4915a146ceabb58afb55f55c48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1671,7 +1651,77 @@ "width": null } }, - "9f85b76337c34b79b5e6d1475d27f33f": { + "856677d31c574d31b5d2d75aa30a01f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9d1db50e4ed44d1191b342f425d4094f", + "IPY_MODEL_65ee8fb444c142abba93197926106271", + "IPY_MODEL_a248232e641849d5a815a4608c081bb3" + ], + "layout": "IPY_MODEL_5820d61831c54177ac9cbf05159b6638", + "tabbable": null, + "tooltip": null + } + }, + "9d1db50e4ed44d1191b342f425d4094f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a2fc17fdc07f4cacbcd755f78b60a122", + "placeholder": "​", + "style": "IPY_MODEL_5da09ac927b24c5ab3967a0c0d76acc7", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "a248232e641849d5a815a4608c081bb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76182b4915a146ceabb58afb55f55c48", + "placeholder": "​", + "style": "IPY_MODEL_3f4c70def822414b8adb927ca8035b20", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 10475.25 examples/s]" + } + }, + "a2fc17fdc07f4cacbcd755f78b60a122": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1724,57 +1774,7 @@ "width": null } }, - "cba59804ba2948f097754d198de05ce6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_290ef15ee3164f8bb629fc5c1469d79f", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd9e34d2f6ae481eae9840f795c74766", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "fc5fad859ca84d33abae2fa882ff86d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_08306504fafe48699a259796de09b33d", - "IPY_MODEL_cba59804ba2948f097754d198de05ce6", - "IPY_MODEL_66179e16e7cd44fda0c21fa2d600d51a" - ], - "layout": "IPY_MODEL_9da003a7f5744b429af2bcf754a04312", - "tabbable": null, - "tooltip": null - } - }, - "fd9e34d2f6ae481eae9840f795c74766": { + "dae2a3d3d8874a4ba9d1fa896add7e1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index ddd9a0288..25e9067f2 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:10.077451Z", - "iopub.status.busy": "2024-02-08T04:24:10.077285Z", - "iopub.status.idle": "2024-02-08T04:24:11.155222Z", - "shell.execute_reply": "2024-02-08T04:24:11.154747Z" + "iopub.execute_input": "2024-02-08T05:10:38.472695Z", + "iopub.status.busy": "2024-02-08T05:10:38.472201Z", + "iopub.status.idle": "2024-02-08T05:10:39.611994Z", + "shell.execute_reply": "2024-02-08T05:10:39.611431Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.157851Z", - "iopub.status.busy": "2024-02-08T04:24:11.157344Z", - "iopub.status.idle": "2024-02-08T04:24:11.160350Z", - "shell.execute_reply": "2024-02-08T04:24:11.159894Z" + "iopub.execute_input": "2024-02-08T05:10:39.614554Z", + "iopub.status.busy": "2024-02-08T05:10:39.614141Z", + "iopub.status.idle": "2024-02-08T05:10:39.617072Z", + "shell.execute_reply": "2024-02-08T05:10:39.616573Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.162368Z", - "iopub.status.busy": "2024-02-08T04:24:11.162049Z", - "iopub.status.idle": "2024-02-08T04:24:11.171024Z", - "shell.execute_reply": "2024-02-08T04:24:11.170577Z" + "iopub.execute_input": "2024-02-08T05:10:39.619338Z", + "iopub.status.busy": "2024-02-08T05:10:39.618908Z", + "iopub.status.idle": "2024-02-08T05:10:39.627921Z", + "shell.execute_reply": "2024-02-08T05:10:39.627474Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.172948Z", - "iopub.status.busy": "2024-02-08T04:24:11.172636Z", - "iopub.status.idle": "2024-02-08T04:24:11.177558Z", - "shell.execute_reply": "2024-02-08T04:24:11.177025Z" + "iopub.execute_input": "2024-02-08T05:10:39.629787Z", + "iopub.status.busy": "2024-02-08T05:10:39.629608Z", + "iopub.status.idle": "2024-02-08T05:10:39.634350Z", + "shell.execute_reply": "2024-02-08T05:10:39.633956Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.179804Z", - "iopub.status.busy": "2024-02-08T04:24:11.179485Z", - "iopub.status.idle": "2024-02-08T04:24:11.359601Z", - "shell.execute_reply": "2024-02-08T04:24:11.359130Z" + "iopub.execute_input": "2024-02-08T05:10:39.636490Z", + "iopub.status.busy": "2024-02-08T05:10:39.636186Z", + "iopub.status.idle": "2024-02-08T05:10:39.818117Z", + "shell.execute_reply": "2024-02-08T05:10:39.817616Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.361673Z", - "iopub.status.busy": "2024-02-08T04:24:11.361342Z", - "iopub.status.idle": "2024-02-08T04:24:11.674092Z", - "shell.execute_reply": "2024-02-08T04:24:11.673528Z" + "iopub.execute_input": "2024-02-08T05:10:39.820529Z", + "iopub.status.busy": "2024-02-08T05:10:39.820250Z", + "iopub.status.idle": "2024-02-08T05:10:40.140880Z", + "shell.execute_reply": "2024-02-08T05:10:40.140326Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.676225Z", - "iopub.status.busy": "2024-02-08T04:24:11.675875Z", - "iopub.status.idle": "2024-02-08T04:24:11.678464Z", - "shell.execute_reply": "2024-02-08T04:24:11.678032Z" + "iopub.execute_input": "2024-02-08T05:10:40.142919Z", + "iopub.status.busy": "2024-02-08T05:10:40.142708Z", + "iopub.status.idle": "2024-02-08T05:10:40.145476Z", + "shell.execute_reply": "2024-02-08T05:10:40.144960Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.680597Z", - "iopub.status.busy": "2024-02-08T04:24:11.680276Z", - "iopub.status.idle": "2024-02-08T04:24:11.714901Z", - "shell.execute_reply": "2024-02-08T04:24:11.714446Z" + "iopub.execute_input": "2024-02-08T05:10:40.147667Z", + "iopub.status.busy": "2024-02-08T05:10:40.147230Z", + "iopub.status.idle": "2024-02-08T05:10:40.182705Z", + "shell.execute_reply": "2024-02-08T05:10:40.182059Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.716854Z", - "iopub.status.busy": "2024-02-08T04:24:11.716532Z", - "iopub.status.idle": "2024-02-08T04:24:13.336051Z", - "shell.execute_reply": "2024-02-08T04:24:13.335483Z" + "iopub.execute_input": "2024-02-08T05:10:40.184847Z", + "iopub.status.busy": "2024-02-08T05:10:40.184645Z", + "iopub.status.idle": "2024-02-08T05:10:41.854206Z", + "shell.execute_reply": "2024-02-08T05:10:41.853603Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.338787Z", - "iopub.status.busy": "2024-02-08T04:24:13.338148Z", - "iopub.status.idle": "2024-02-08T04:24:13.354146Z", - "shell.execute_reply": "2024-02-08T04:24:13.353618Z" + "iopub.execute_input": "2024-02-08T05:10:41.856606Z", + "iopub.status.busy": "2024-02-08T05:10:41.856141Z", + "iopub.status.idle": "2024-02-08T05:10:41.872507Z", + "shell.execute_reply": "2024-02-08T05:10:41.872075Z" } }, "outputs": [ @@ -834,10 +834,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.356249Z", - "iopub.status.busy": "2024-02-08T04:24:13.355807Z", - "iopub.status.idle": "2024-02-08T04:24:13.361997Z", - "shell.execute_reply": "2024-02-08T04:24:13.361579Z" + "iopub.execute_input": "2024-02-08T05:10:41.874528Z", + "iopub.status.busy": "2024-02-08T05:10:41.874207Z", + "iopub.status.idle": "2024-02-08T05:10:41.880746Z", + "shell.execute_reply": "2024-02-08T05:10:41.880305Z" } }, "outputs": [ @@ -941,10 +941,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.363802Z", - "iopub.status.busy": "2024-02-08T04:24:13.363629Z", - "iopub.status.idle": "2024-02-08T04:24:13.369247Z", - "shell.execute_reply": "2024-02-08T04:24:13.368746Z" + "iopub.execute_input": "2024-02-08T05:10:41.882767Z", + "iopub.status.busy": "2024-02-08T05:10:41.882376Z", + "iopub.status.idle": "2024-02-08T05:10:41.888174Z", + "shell.execute_reply": "2024-02-08T05:10:41.887623Z" } }, "outputs": [ @@ -1011,10 +1011,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.371215Z", - "iopub.status.busy": "2024-02-08T04:24:13.370889Z", - "iopub.status.idle": "2024-02-08T04:24:13.380285Z", - "shell.execute_reply": "2024-02-08T04:24:13.379818Z" + "iopub.execute_input": "2024-02-08T05:10:41.890106Z", + "iopub.status.busy": "2024-02-08T05:10:41.889803Z", + "iopub.status.idle": "2024-02-08T05:10:41.899337Z", + "shell.execute_reply": "2024-02-08T05:10:41.898883Z" } }, "outputs": [ @@ -1187,10 +1187,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.382328Z", - "iopub.status.busy": "2024-02-08T04:24:13.382008Z", - "iopub.status.idle": "2024-02-08T04:24:13.390350Z", - "shell.execute_reply": "2024-02-08T04:24:13.389806Z" + "iopub.execute_input": "2024-02-08T05:10:41.901301Z", + "iopub.status.busy": "2024-02-08T05:10:41.901001Z", + "iopub.status.idle": "2024-02-08T05:10:41.910010Z", + "shell.execute_reply": "2024-02-08T05:10:41.909474Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.392298Z", - "iopub.status.busy": "2024-02-08T04:24:13.392122Z", - "iopub.status.idle": "2024-02-08T04:24:13.398813Z", - "shell.execute_reply": "2024-02-08T04:24:13.398333Z" + "iopub.execute_input": "2024-02-08T05:10:41.912045Z", + "iopub.status.busy": "2024-02-08T05:10:41.911721Z", + "iopub.status.idle": "2024-02-08T05:10:41.918528Z", + "shell.execute_reply": "2024-02-08T05:10:41.917933Z" }, "scrolled": true }, @@ -1434,10 +1434,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.400635Z", - "iopub.status.busy": "2024-02-08T04:24:13.400463Z", - "iopub.status.idle": "2024-02-08T04:24:13.409484Z", - "shell.execute_reply": "2024-02-08T04:24:13.409030Z" + "iopub.execute_input": "2024-02-08T05:10:41.920453Z", + "iopub.status.busy": "2024-02-08T05:10:41.920278Z", + "iopub.status.idle": "2024-02-08T05:10:41.929219Z", + "shell.execute_reply": "2024-02-08T05:10:41.928680Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index c71974eb9..6558306c0 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:15.765748Z", - "iopub.status.busy": "2024-02-08T04:24:15.765574Z", - "iopub.status.idle": "2024-02-08T04:24:16.795070Z", - "shell.execute_reply": "2024-02-08T04:24:16.794525Z" + "iopub.execute_input": "2024-02-08T05:10:44.644313Z", + "iopub.status.busy": "2024-02-08T05:10:44.643965Z", + "iopub.status.idle": "2024-02-08T05:10:45.688616Z", + "shell.execute_reply": "2024-02-08T05:10:45.688118Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:16.797646Z", - "iopub.status.busy": "2024-02-08T04:24:16.797376Z", - "iopub.status.idle": "2024-02-08T04:24:16.830922Z", - "shell.execute_reply": "2024-02-08T04:24:16.830494Z" + "iopub.execute_input": "2024-02-08T05:10:45.691313Z", + "iopub.status.busy": "2024-02-08T05:10:45.690729Z", + "iopub.status.idle": "2024-02-08T05:10:45.724820Z", + "shell.execute_reply": "2024-02-08T05:10:45.724373Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:16.833228Z", - "iopub.status.busy": "2024-02-08T04:24:16.832829Z", - "iopub.status.idle": "2024-02-08T04:24:17.007557Z", - "shell.execute_reply": "2024-02-08T04:24:17.007108Z" + "iopub.execute_input": "2024-02-08T05:10:45.727160Z", + "iopub.status.busy": "2024-02-08T05:10:45.726886Z", + "iopub.status.idle": "2024-02-08T05:10:46.053280Z", + "shell.execute_reply": "2024-02-08T05:10:46.052685Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.009572Z", - "iopub.status.busy": "2024-02-08T04:24:17.009249Z", - "iopub.status.idle": "2024-02-08T04:24:17.013364Z", - "shell.execute_reply": "2024-02-08T04:24:17.012916Z" + "iopub.execute_input": "2024-02-08T05:10:46.055274Z", + "iopub.status.busy": "2024-02-08T05:10:46.055096Z", + "iopub.status.idle": "2024-02-08T05:10:46.059483Z", + "shell.execute_reply": "2024-02-08T05:10:46.059061Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.015436Z", - "iopub.status.busy": "2024-02-08T04:24:17.015052Z", - "iopub.status.idle": "2024-02-08T04:24:17.022947Z", - "shell.execute_reply": "2024-02-08T04:24:17.022532Z" + "iopub.execute_input": "2024-02-08T05:10:46.061356Z", + "iopub.status.busy": "2024-02-08T05:10:46.061180Z", + "iopub.status.idle": "2024-02-08T05:10:46.068998Z", + "shell.execute_reply": "2024-02-08T05:10:46.068462Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.025093Z", - "iopub.status.busy": "2024-02-08T04:24:17.024762Z", - "iopub.status.idle": "2024-02-08T04:24:17.027322Z", - "shell.execute_reply": "2024-02-08T04:24:17.026869Z" + "iopub.execute_input": "2024-02-08T05:10:46.071329Z", + "iopub.status.busy": "2024-02-08T05:10:46.070934Z", + "iopub.status.idle": "2024-02-08T05:10:46.073569Z", + "shell.execute_reply": "2024-02-08T05:10:46.073034Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.029290Z", - "iopub.status.busy": "2024-02-08T04:24:17.028919Z", - "iopub.status.idle": "2024-02-08T04:24:19.950389Z", - "shell.execute_reply": "2024-02-08T04:24:19.949778Z" + "iopub.execute_input": "2024-02-08T05:10:46.075693Z", + "iopub.status.busy": "2024-02-08T05:10:46.075311Z", + "iopub.status.idle": "2024-02-08T05:10:49.069168Z", + "shell.execute_reply": "2024-02-08T05:10:49.068529Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:19.952956Z", - "iopub.status.busy": "2024-02-08T04:24:19.952760Z", - "iopub.status.idle": "2024-02-08T04:24:19.961906Z", - "shell.execute_reply": "2024-02-08T04:24:19.961482Z" + "iopub.execute_input": "2024-02-08T05:10:49.072035Z", + "iopub.status.busy": "2024-02-08T05:10:49.071566Z", + "iopub.status.idle": "2024-02-08T05:10:49.081166Z", + "shell.execute_reply": "2024-02-08T05:10:49.080626Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:19.963757Z", - "iopub.status.busy": "2024-02-08T04:24:19.963583Z", - "iopub.status.idle": "2024-02-08T04:24:21.654271Z", - "shell.execute_reply": "2024-02-08T04:24:21.653591Z" + "iopub.execute_input": "2024-02-08T05:10:49.083306Z", + "iopub.status.busy": "2024-02-08T05:10:49.082938Z", + "iopub.status.idle": "2024-02-08T05:10:50.854706Z", + "shell.execute_reply": "2024-02-08T05:10:50.854101Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.658232Z", - "iopub.status.busy": "2024-02-08T04:24:21.656789Z", - "iopub.status.idle": "2024-02-08T04:24:21.678656Z", - "shell.execute_reply": "2024-02-08T04:24:21.678162Z" + "iopub.execute_input": "2024-02-08T05:10:50.858580Z", + "iopub.status.busy": "2024-02-08T05:10:50.857300Z", + "iopub.status.idle": "2024-02-08T05:10:50.879437Z", + "shell.execute_reply": "2024-02-08T05:10:50.878954Z" }, "scrolled": true }, @@ -604,10 +604,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.682071Z", - "iopub.status.busy": "2024-02-08T04:24:21.681164Z", - "iopub.status.idle": "2024-02-08T04:24:21.692054Z", - "shell.execute_reply": "2024-02-08T04:24:21.691557Z" + "iopub.execute_input": "2024-02-08T05:10:50.882938Z", + "iopub.status.busy": "2024-02-08T05:10:50.882032Z", + "iopub.status.idle": "2024-02-08T05:10:50.893041Z", + "shell.execute_reply": "2024-02-08T05:10:50.892562Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.695395Z", - "iopub.status.busy": "2024-02-08T04:24:21.694500Z", - "iopub.status.idle": "2024-02-08T04:24:21.706939Z", - "shell.execute_reply": "2024-02-08T04:24:21.706457Z" + "iopub.execute_input": "2024-02-08T05:10:50.896506Z", + "iopub.status.busy": "2024-02-08T05:10:50.895585Z", + "iopub.status.idle": "2024-02-08T05:10:50.908611Z", + "shell.execute_reply": "2024-02-08T05:10:50.908107Z" } }, "outputs": [ @@ -843,10 +843,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.710338Z", - "iopub.status.busy": "2024-02-08T04:24:21.709437Z", - "iopub.status.idle": "2024-02-08T04:24:21.720293Z", - "shell.execute_reply": "2024-02-08T04:24:21.719792Z" + "iopub.execute_input": "2024-02-08T05:10:50.912109Z", + "iopub.status.busy": "2024-02-08T05:10:50.911187Z", + "iopub.status.idle": "2024-02-08T05:10:50.922679Z", + "shell.execute_reply": "2024-02-08T05:10:50.922154Z" } }, "outputs": [ @@ -960,10 +960,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.723706Z", - "iopub.status.busy": "2024-02-08T04:24:21.722805Z", - "iopub.status.idle": "2024-02-08T04:24:21.735120Z", - "shell.execute_reply": "2024-02-08T04:24:21.734643Z" + "iopub.execute_input": "2024-02-08T05:10:50.926355Z", + "iopub.status.busy": "2024-02-08T05:10:50.925435Z", + "iopub.status.idle": "2024-02-08T05:10:50.938703Z", + "shell.execute_reply": "2024-02-08T05:10:50.938205Z" } }, "outputs": [ @@ -1074,10 +1074,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.738473Z", - "iopub.status.busy": "2024-02-08T04:24:21.737583Z", - "iopub.status.idle": "2024-02-08T04:24:21.746396Z", - "shell.execute_reply": "2024-02-08T04:24:21.745995Z" + "iopub.execute_input": "2024-02-08T05:10:50.942221Z", + "iopub.status.busy": "2024-02-08T05:10:50.941325Z", + "iopub.status.idle": "2024-02-08T05:10:50.949786Z", + "shell.execute_reply": "2024-02-08T05:10:50.949253Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.748522Z", - "iopub.status.busy": "2024-02-08T04:24:21.748205Z", - "iopub.status.idle": "2024-02-08T04:24:21.754462Z", - "shell.execute_reply": "2024-02-08T04:24:21.753990Z" + "iopub.execute_input": "2024-02-08T05:10:50.952037Z", + "iopub.status.busy": "2024-02-08T05:10:50.951863Z", + "iopub.status.idle": "2024-02-08T05:10:50.959214Z", + "shell.execute_reply": "2024-02-08T05:10:50.958580Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.756270Z", - "iopub.status.busy": "2024-02-08T04:24:21.756105Z", - "iopub.status.idle": "2024-02-08T04:24:21.762342Z", - "shell.execute_reply": "2024-02-08T04:24:21.761938Z" + "iopub.execute_input": "2024-02-08T05:10:50.961632Z", + "iopub.status.busy": "2024-02-08T05:10:50.961204Z", + "iopub.status.idle": "2024-02-08T05:10:50.967968Z", + "shell.execute_reply": "2024-02-08T05:10:50.967526Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index a343bc01a..cde728b85 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:24.152987Z", - "iopub.status.busy": "2024-02-08T04:24:24.152814Z", - "iopub.status.idle": "2024-02-08T04:24:26.979321Z", - "shell.execute_reply": "2024-02-08T04:24:26.978774Z" + "iopub.execute_input": "2024-02-08T05:10:53.675209Z", + "iopub.status.busy": "2024-02-08T05:10:53.675032Z", + "iopub.status.idle": "2024-02-08T05:10:56.695488Z", + "shell.execute_reply": "2024-02-08T05:10:56.694928Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:26.981942Z", - "iopub.status.busy": "2024-02-08T04:24:26.981501Z", - "iopub.status.idle": "2024-02-08T04:24:26.984680Z", - "shell.execute_reply": "2024-02-08T04:24:26.984235Z" + "iopub.execute_input": "2024-02-08T05:10:56.698110Z", + "iopub.status.busy": "2024-02-08T05:10:56.697686Z", + "iopub.status.idle": "2024-02-08T05:10:56.700966Z", + "shell.execute_reply": "2024-02-08T05:10:56.700494Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:26.986618Z", - "iopub.status.busy": "2024-02-08T04:24:26.986247Z", - "iopub.status.idle": "2024-02-08T04:24:26.989286Z", - "shell.execute_reply": "2024-02-08T04:24:26.988817Z" + "iopub.execute_input": "2024-02-08T05:10:56.702836Z", + "iopub.status.busy": "2024-02-08T05:10:56.702650Z", + "iopub.status.idle": "2024-02-08T05:10:56.705591Z", + "shell.execute_reply": "2024-02-08T05:10:56.705163Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:26.991314Z", - "iopub.status.busy": "2024-02-08T04:24:26.990931Z", - "iopub.status.idle": "2024-02-08T04:24:27.051017Z", - "shell.execute_reply": "2024-02-08T04:24:27.050487Z" + "iopub.execute_input": "2024-02-08T05:10:56.707443Z", + "iopub.status.busy": "2024-02-08T05:10:56.707266Z", + "iopub.status.idle": "2024-02-08T05:10:56.857130Z", + "shell.execute_reply": "2024-02-08T05:10:56.856557Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:27.053038Z", - "iopub.status.busy": "2024-02-08T04:24:27.052859Z", - "iopub.status.idle": "2024-02-08T04:24:27.056268Z", - "shell.execute_reply": "2024-02-08T04:24:27.055786Z" + "iopub.execute_input": "2024-02-08T05:10:56.859322Z", + "iopub.status.busy": "2024-02-08T05:10:56.858985Z", + "iopub.status.idle": "2024-02-08T05:10:56.862842Z", + "shell.execute_reply": "2024-02-08T05:10:56.862386Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'cancel_transfer', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_about_to_expire', 'change_pin', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies'}\n" + "Classes: {'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:27.058211Z", - "iopub.status.busy": "2024-02-08T04:24:27.057883Z", - "iopub.status.idle": "2024-02-08T04:24:27.060749Z", - "shell.execute_reply": "2024-02-08T04:24:27.060214Z" + "iopub.execute_input": "2024-02-08T05:10:56.864824Z", + "iopub.status.busy": "2024-02-08T05:10:56.864458Z", + "iopub.status.idle": "2024-02-08T05:10:56.867610Z", + "shell.execute_reply": "2024-02-08T05:10:56.867073Z" } }, "outputs": [ @@ -365,17 +365,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:27.062782Z", - "iopub.status.busy": "2024-02-08T04:24:27.062466Z", - "iopub.status.idle": "2024-02-08T04:24:31.950077Z", - "shell.execute_reply": "2024-02-08T04:24:31.949442Z" + "iopub.execute_input": "2024-02-08T05:10:56.869601Z", + "iopub.status.busy": "2024-02-08T05:10:56.869297Z", + "iopub.status.idle": "2024-02-08T05:11:02.417087Z", + "shell.execute_reply": "2024-02-08T05:11:02.416542Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ba2de796b6ed4818b29822ffacaae295", + "model_id": "1561e5b2c3da47e99d3e688471792ec4", "version_major": 2, "version_minor": 0 }, @@ -389,7 +389,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4574bf2f2f8949f3b77cc1ab937f6920", + "model_id": "a4eb983299e24e20b98bcf4edf3d6aaf", "version_major": 2, "version_minor": 0 }, @@ -403,7 +403,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "10b5d7ddf6054afe956c23786e03c318", + "model_id": "c9439b97c3f0411e89621bacc52530c7", "version_major": 2, "version_minor": 0 }, @@ -417,7 +417,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f9c8133b87d44842b1e686734c9decb9", + "model_id": "c97f0e01e42646d9806c02b4b3648039", "version_major": 2, "version_minor": 0 }, @@ -431,7 +431,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b0b654a2f5d4df683b8c7db2f3f5510", + "model_id": "68e65ef8220340c6ba1e341cc09d6c20", "version_major": 2, "version_minor": 0 }, @@ -445,7 +445,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7019ca693bd54e7ab35a34a117d0820f", + "model_id": "52d773e347a940bc9a6cb1f89db261e4", "version_major": 2, "version_minor": 0 }, @@ -459,7 +459,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e56eab34ca074b7fbf5139bd0c1f2101", + "model_id": "3da1dc1bde4241479e3e0b4387114890", "version_major": 2, "version_minor": 0 }, @@ -521,10 +521,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:31.952979Z", - "iopub.status.busy": "2024-02-08T04:24:31.952531Z", - "iopub.status.idle": "2024-02-08T04:24:32.835570Z", - "shell.execute_reply": "2024-02-08T04:24:32.835003Z" + "iopub.execute_input": "2024-02-08T05:11:02.419508Z", + "iopub.status.busy": "2024-02-08T05:11:02.419310Z", + "iopub.status.idle": "2024-02-08T05:11:03.316290Z", + "shell.execute_reply": "2024-02-08T05:11:03.315674Z" }, "scrolled": true }, @@ -556,10 +556,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:32.838391Z", - "iopub.status.busy": "2024-02-08T04:24:32.838002Z", - "iopub.status.idle": "2024-02-08T04:24:32.840844Z", - "shell.execute_reply": "2024-02-08T04:24:32.840362Z" + "iopub.execute_input": "2024-02-08T05:11:03.319079Z", + "iopub.status.busy": "2024-02-08T05:11:03.318700Z", + "iopub.status.idle": "2024-02-08T05:11:03.321774Z", + "shell.execute_reply": "2024-02-08T05:11:03.321271Z" } }, "outputs": [], @@ -579,10 +579,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:32.843133Z", - "iopub.status.busy": "2024-02-08T04:24:32.842775Z", - "iopub.status.idle": "2024-02-08T04:24:34.335068Z", - "shell.execute_reply": "2024-02-08T04:24:34.334411Z" + "iopub.execute_input": "2024-02-08T05:11:03.324095Z", + "iopub.status.busy": "2024-02-08T05:11:03.323754Z", + "iopub.status.idle": "2024-02-08T05:11:04.915071Z", + "shell.execute_reply": "2024-02-08T05:11:04.914354Z" }, "scrolled": true }, @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.338885Z", - "iopub.status.busy": "2024-02-08T04:24:34.337574Z", - "iopub.status.idle": "2024-02-08T04:24:34.360089Z", - "shell.execute_reply": "2024-02-08T04:24:34.359580Z" + "iopub.execute_input": "2024-02-08T05:11:04.919293Z", + "iopub.status.busy": "2024-02-08T05:11:04.917907Z", + "iopub.status.idle": "2024-02-08T05:11:04.942137Z", + "shell.execute_reply": "2024-02-08T05:11:04.941575Z" }, "scrolled": true }, @@ -756,10 +756,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.363544Z", - "iopub.status.busy": "2024-02-08T04:24:34.362642Z", - "iopub.status.idle": "2024-02-08T04:24:34.373982Z", - "shell.execute_reply": "2024-02-08T04:24:34.373506Z" + "iopub.execute_input": "2024-02-08T05:11:04.946098Z", + "iopub.status.busy": "2024-02-08T05:11:04.945114Z", + "iopub.status.idle": "2024-02-08T05:11:04.957782Z", + "shell.execute_reply": "2024-02-08T05:11:04.957252Z" }, "scrolled": true }, @@ -869,10 +869,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.377441Z", - "iopub.status.busy": "2024-02-08T04:24:34.376515Z", - "iopub.status.idle": "2024-02-08T04:24:34.382932Z", - "shell.execute_reply": "2024-02-08T04:24:34.382450Z" + "iopub.execute_input": "2024-02-08T05:11:04.961569Z", + "iopub.status.busy": "2024-02-08T05:11:04.960621Z", + "iopub.status.idle": "2024-02-08T05:11:04.967520Z", + "shell.execute_reply": "2024-02-08T05:11:04.967014Z" } }, "outputs": [ @@ -910,10 +910,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.386293Z", - "iopub.status.busy": "2024-02-08T04:24:34.385389Z", - "iopub.status.idle": "2024-02-08T04:24:34.394603Z", - "shell.execute_reply": "2024-02-08T04:24:34.394127Z" + "iopub.execute_input": "2024-02-08T05:11:04.971133Z", + "iopub.status.busy": "2024-02-08T05:11:04.970211Z", + "iopub.status.idle": "2024-02-08T05:11:04.978788Z", + "shell.execute_reply": "2024-02-08T05:11:04.978188Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.396961Z", - "iopub.status.busy": "2024-02-08T04:24:34.396785Z", - "iopub.status.idle": "2024-02-08T04:24:34.403612Z", - "shell.execute_reply": "2024-02-08T04:24:34.403006Z" + "iopub.execute_input": "2024-02-08T05:11:04.982203Z", + "iopub.status.busy": "2024-02-08T05:11:04.981338Z", + "iopub.status.idle": "2024-02-08T05:11:04.990596Z", + "shell.execute_reply": "2024-02-08T05:11:04.990084Z" } }, "outputs": [ @@ -1116,10 +1116,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.405547Z", - "iopub.status.busy": "2024-02-08T04:24:34.405371Z", - "iopub.status.idle": "2024-02-08T04:24:34.411086Z", - "shell.execute_reply": "2024-02-08T04:24:34.410666Z" + "iopub.execute_input": "2024-02-08T05:11:04.993201Z", + "iopub.status.busy": "2024-02-08T05:11:04.993026Z", + "iopub.status.idle": "2024-02-08T05:11:05.000226Z", + "shell.execute_reply": "2024-02-08T05:11:04.999728Z" } }, "outputs": [ @@ -1227,10 +1227,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.413062Z", - "iopub.status.busy": "2024-02-08T04:24:34.412900Z", - "iopub.status.idle": "2024-02-08T04:24:34.420696Z", - "shell.execute_reply": "2024-02-08T04:24:34.420267Z" + "iopub.execute_input": "2024-02-08T05:11:05.002754Z", + "iopub.status.busy": "2024-02-08T05:11:05.002368Z", + "iopub.status.idle": "2024-02-08T05:11:05.011438Z", + "shell.execute_reply": "2024-02-08T05:11:05.010975Z" } }, "outputs": [ @@ -1341,10 +1341,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.422520Z", - "iopub.status.busy": "2024-02-08T04:24:34.422362Z", - "iopub.status.idle": "2024-02-08T04:24:34.427469Z", - "shell.execute_reply": "2024-02-08T04:24:34.427041Z" + "iopub.execute_input": "2024-02-08T05:11:05.013621Z", + "iopub.status.busy": "2024-02-08T05:11:05.013249Z", + "iopub.status.idle": "2024-02-08T05:11:05.018790Z", + "shell.execute_reply": "2024-02-08T05:11:05.018344Z" } }, "outputs": [ @@ -1412,10 +1412,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.429343Z", - "iopub.status.busy": "2024-02-08T04:24:34.429011Z", - "iopub.status.idle": "2024-02-08T04:24:34.434283Z", - "shell.execute_reply": "2024-02-08T04:24:34.433845Z" + "iopub.execute_input": "2024-02-08T05:11:05.020936Z", + "iopub.status.busy": "2024-02-08T05:11:05.020551Z", + "iopub.status.idle": "2024-02-08T05:11:05.025962Z", + "shell.execute_reply": "2024-02-08T05:11:05.025517Z" } }, "outputs": [ @@ -1494,10 +1494,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.436413Z", - "iopub.status.busy": "2024-02-08T04:24:34.435990Z", - "iopub.status.idle": "2024-02-08T04:24:34.439751Z", - "shell.execute_reply": "2024-02-08T04:24:34.439222Z" + "iopub.execute_input": "2024-02-08T05:11:05.027877Z", + "iopub.status.busy": "2024-02-08T05:11:05.027706Z", + "iopub.status.idle": "2024-02-08T05:11:05.031250Z", + "shell.execute_reply": "2024-02-08T05:11:05.030709Z" } }, "outputs": [ @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.441782Z", - "iopub.status.busy": "2024-02-08T04:24:34.441474Z", - "iopub.status.idle": "2024-02-08T04:24:34.446432Z", - "shell.execute_reply": "2024-02-08T04:24:34.445983Z" + "iopub.execute_input": "2024-02-08T05:11:05.033433Z", + "iopub.status.busy": "2024-02-08T05:11:05.033066Z", + "iopub.status.idle": "2024-02-08T05:11:05.038420Z", + "shell.execute_reply": "2024-02-08T05:11:05.037871Z" }, "nbsphinx": "hidden" }, @@ -1598,7 +1598,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05c4c20c0f414059b04fba7c3e39c36a": { + "021198b4e2184745ad8e9d340795e5f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "034f8b8fe0644b18ac5cbfb4d3584f61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1613,15 +1631,205 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_65571ac378ca4e29b1c5fe7afe007ea7", + "layout": "IPY_MODEL_8df0484cfa9b424ab22b8a1849e82c2a", "placeholder": "​", - "style": "IPY_MODEL_a3708e09caf14f2d8d4e2a5dfa2171f1", + "style": "IPY_MODEL_20efd0ad14644e4cb0dce36ce1985cb2", "tabbable": null, "tooltip": null, - "value": " 29.0/29.0 [00:00<00:00, 5.25kB/s]" + "value": "README.md: 100%" + } + }, + "0a678dbddd0844d29b4063456c21ae5e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0bf57d0b8f494dc984ab26b4aec70f1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "150be0f12ac94160b1b133e904ecb773": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1561e5b2c3da47e99d3e688471792ec4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e8c173fbbec04416b425b2af5acba601", + "IPY_MODEL_4cb3e235fac24f308be3f8c0c953be68", + "IPY_MODEL_ed24934c745b4d7a8ee40e838fca4dc7" + ], + "layout": "IPY_MODEL_df7c804ca61045d6b8e804dc0c5237ef", + "tabbable": null, + "tooltip": null + } + }, + "15bdf18d041041fab23473fab02e001b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "179d5095bde749efa193ed2f47c8ec70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e67841585e944b4abee51a14c3f4974b", + "placeholder": "​", + "style": "IPY_MODEL_0bf57d0b8f494dc984ab26b4aec70f1b", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "20efd0ad14644e4cb0dce36ce1985cb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "061f9097694c43129b356c9dda2f5f71": { + "2b7da3f795724596a39004d4ad4e0875": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "32ec2141a8d34ff39c02c5c6dc5d8784": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1674,25 +1882,192 @@ "width": null } }, - "075b4af9c1314f79ae437f8439d5f210": { + "339dbdd8b9c14a5bae2e59d4b15170dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "33ff472c944a4e3fa09cbf5dff937efd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d4c7898a9054d71a0621a2241bf701e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3d74814d8dd046219675c5755734d26c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3da1dc1bde4241479e3e0b4387114890": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3383123e17340c2ae53e922a8e3b50a", + "IPY_MODEL_8e74cf17d07e42bd84667d021af6d281", + "IPY_MODEL_f55ce828192342cfa65c32e045d9377c" + ], + "layout": "IPY_MODEL_8ccf73de3ba640f4a80ddb7927580eee", + "tabbable": null, + "tooltip": null + } + }, + "3dd154ef46e44fad8478b9f32ddcb835": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "473968c7b6654e23a573dd157d6f1f94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b91bb0fea9e04d84980466addd8c63d7", + "placeholder": "​", + "style": "IPY_MODEL_339dbdd8b9c14a5bae2e59d4b15170dc", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "4cb3e235fac24f308be3f8c0c953be68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a678dbddd0844d29b4063456c21ae5e", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f332c40a8cc84586aad25981b95f6ba3", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "4fa6b9dd27e541b896fc7a803227f368": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52c1fdcd87c74502b3bd12991ce27b5f", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c87beb0959be477b8c92c1b99b66a07c", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 } }, - "0b08a7a68f914ed387d4aaa62ab2abd8": { + "52c1fdcd87c74502b3bd12991ce27b5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1745,7 +2120,7 @@ "width": null } }, - "10b5d7ddf6054afe956c23786e03c318": { + "52d773e347a940bc9a6cb1f89db261e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1760,16 +2135,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_79138260b27342f195f8b54c96dd483c", - "IPY_MODEL_cd554dcc01314a668bf9d656cce5bd93", - "IPY_MODEL_5c6eb32d6a1a4e98ae8e19843d60b9f7" + "IPY_MODEL_8923087f37a9438fade14e61742eedcb", + "IPY_MODEL_8d85a7f40fd44e318667c323829a686b", + "IPY_MODEL_d6021b0797cf47c48c12d441689b6ece" ], - "layout": "IPY_MODEL_dde8fea970f144168dd91614ad770704", + "layout": "IPY_MODEL_c7ac1f873cad47bb99c943d296a08dc1", "tabbable": null, "tooltip": null } }, - "12278ade8d774dda8b83ef62c46e7bf0": { + "53977efabf0e4fd1ac2cfbd8b9299909": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1822,25 +2197,30 @@ "width": null } }, - "16db3ef2563c428db07cc995720fd60b": { + "5421452619ca43e0ab75f9312bb9a823": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d6d6705b9b5043ab90499b9b2a133895", + "placeholder": "​", + "style": "IPY_MODEL_3d4c7898a9054d71a0621a2241bf701e", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 381kB/s]" } }, - "195f817102d9402794bf9079cb339a90": { + "57d8181ffdd349059b0f4e0d54bc0cb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1893,59 +2273,33 @@ "width": null } }, - "19cb55bf36d049979bad585cd893d6f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1bf632e19e5a41d9b6c1dbf693c60025": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "22882672743e4499852bcd1cfd04cb6b": { + "60595731b6234aa1b1eb99a96951403c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d2020abfbe0d42568b67dd48deaf5771", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_33ff472c944a4e3fa09cbf5dff937efd", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "25b6f96ef73046acb382e06eed95a9b0": { + "630fb1d285cc43858751a7ed03e13e05": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1998,49 +2352,31 @@ "width": null } }, - "28dc38fb62db403e916cf1901e0eac60": { + "68e65ef8220340c6ba1e341cc09d6c20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b43cc3cd831e41d5bd0e2b797f183eb9", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2940ba312bed4cf1aff01307ea6657aa", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7a308c84baf247668683c8cebafe5c45", + "IPY_MODEL_60595731b6234aa1b1eb99a96951403c", + "IPY_MODEL_7f8db454447c49a99d58e18d9e2dc015" + ], + "layout": "IPY_MODEL_8af64d45919a45faa0a9ae0ba2113bfd", "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "2940ba312bed4cf1aff01307ea6657aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "2a8e628f50e848f09a59bc9583fccd69": { + "72af7d9b06864cebac6ae80818fd6e87": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2093,7 +2429,7 @@ "width": null } }, - "33fb171f948b4fbebe522e82a8f635d1": { + "75d2d192ce0a455390c4c1bf23fd90da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2108,65 +2444,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5415141935c44abc987ba27b640a2433", + "layout": "IPY_MODEL_b5fd00bb16154423b6b98a26d77c3bfd", "placeholder": "​", - "style": "IPY_MODEL_80342bdf063c4c4fb28c363f53c55644", + "style": "IPY_MODEL_9ac05e21bf774897a30f0e7c05b5f113", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": " 665/665 [00:00<00:00, 118kB/s]" } }, - "3573ea7c7abb4e7486cbbf4c00dbb4db": { + "7a308c84baf247668683c8cebafe5c45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_99ff95ff62df4df5a3136dbd6ff0ae78", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cf499178cb734c8e8c234b0739f04a66", + "layout": "IPY_MODEL_87fd54e4e0464a2f821e735ff0611334", + "placeholder": "​", + "style": "IPY_MODEL_ef96e30fab324207af7282262beb8867", "tabbable": null, "tooltip": null, - "value": 29.0 - } - }, - "3b0b654a2f5d4df683b8c7db2f3f5510": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fdc9e70ed67143f387275b16b30cbda3", - "IPY_MODEL_6fe5933973794b19a7f9a80e2130021a", - "IPY_MODEL_4125b59d7dc448f1853daa7aa3d93360" - ], - "layout": "IPY_MODEL_aa3f806e308e4ce2989b693846b4b968", - "tabbable": null, - "tooltip": null + "value": "tokenizer.json: 100%" } }, - "4125b59d7dc448f1853daa7aa3d93360": { + "7f8db454447c49a99d58e18d9e2dc015": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2181,110 +2490,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a309f785c95443bba289aa8e622ca78e", + "layout": "IPY_MODEL_dd56037ea9b6486b9a8462712c62c9be", "placeholder": "​", - "style": "IPY_MODEL_ef691929a94f415c97369477aab5cd71", + "style": "IPY_MODEL_896ee48a8fd545a095b7fce02f5bfc9e", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 30.5MB/s]" + "value": " 466k/466k [00:00<00:00, 3.48MB/s]" } }, - "4574bf2f2f8949f3b77cc1ab937f6920": { + "855f54aac4c04821a51e3f5456d1068a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eafeb34886b74034a6acf024f5bc7361", - "IPY_MODEL_eafee4a7753b4b9698f2cc1a46fb2fe4", - "IPY_MODEL_fad1a62376234d9b8983f0689863a88c" - ], - "layout": "IPY_MODEL_77c63cc5f6434b90ad2d4f8c110acc68", - "tabbable": null, - "tooltip": null - } - }, - "51a821a454224f29b345ad1b44db7f93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "52fe4fe74b7f49a8b033e42c924759dc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72af7d9b06864cebac6ae80818fd6e87", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_eca03b5e8a384f24a8997238a61a9bde", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "5415141935c44abc987ba27b640a2433": { + "87fd54e4e0464a2f821e735ff0611334": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2337,7 +2577,30 @@ "width": null } }, - "548b8c27626b464d80039345e2d114cc": { + "8923087f37a9438fade14e61742eedcb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32ec2141a8d34ff39c02c5c6dc5d8784", + "placeholder": "​", + "style": "IPY_MODEL_2b7da3f795724596a39004d4ad4e0875", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "896ee48a8fd545a095b7fce02f5bfc9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2355,7 +2618,7 @@ "text_color": null } }, - "59845ff1092b4af19dcd613cab1e8a6d": { + "8af64d45919a45faa0a9ae0ba2113bfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2408,25 +2671,7 @@ "width": null } }, - "5b3f834098234540932bbc4f5a823968": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5c6eb32d6a1a4e98ae8e19843d60b9f7": { + "8bb5868373be4fb09ccacc52f8bb437b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2441,68 +2686,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c06dccdf657d431b821c7e05c56556d9", + "layout": "IPY_MODEL_c8e970c8f3b940708a6fd1296bb49f78", "placeholder": "​", - "style": "IPY_MODEL_1bf632e19e5a41d9b6c1dbf693c60025", + "style": "IPY_MODEL_a7fd97981111428eba3d4c09a94bfe9c", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 126kB/s]" - } - }, - "65571ac378ca4e29b1c5fe7afe007ea7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 54.2M/54.2M [00:00<00:00, 234MB/s]" } }, - "66c0667e63fe4f78b640204ef49db3f9": { + "8ccf73de3ba640f4a80ddb7927580eee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2555,30 +2747,7 @@ "width": null } }, - "6f991a9a36cb43d1a3a7d481a665d9b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b93f2d32038140118f50fe537e638b84", - "placeholder": "​", - "style": "IPY_MODEL_19cb55bf36d049979bad585cd893d6f1", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "6fe5933973794b19a7f9a80e2130021a": { + "8d85a7f40fd44e318667c323829a686b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2594,41 +2763,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_195f817102d9402794bf9079cb339a90", - "max": 466062.0, + "layout": "IPY_MODEL_9f573602185c474bb663c3946b8371c6", + "max": 29.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_22882672743e4499852bcd1cfd04cb6b", + "style": "IPY_MODEL_bd6009a6310e4144a110d0abce2d516c", "tabbable": null, "tooltip": null, - "value": 466062.0 - } - }, - "7019ca693bd54e7ab35a34a117d0820f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_33fb171f948b4fbebe522e82a8f635d1", - "IPY_MODEL_3573ea7c7abb4e7486cbbf4c00dbb4db", - "IPY_MODEL_05c4c20c0f414059b04fba7c3e39c36a" - ], - "layout": "IPY_MODEL_d4820887fab34d7aa5d017749535ca5a", - "tabbable": null, - "tooltip": null + "value": 29.0 } }, - "719a237222b54690a4fad2258458f5db": { + "8df0484cfa9b424ab22b8a1849e82c2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2681,7 +2826,7 @@ "width": null } }, - "727618f51486484ebf25abd7667d8585": { + "8e1ef3a403fd4439a965bdd4efc0b9bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2734,46 +2879,95 @@ "width": null } }, - "769ad2786fb94b64abd47d55a0185f89": { + "8e74cf17d07e42bd84667d021af6d281": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_66c0667e63fe4f78b640204ef49db3f9", - "placeholder": "​", - "style": "IPY_MODEL_548b8c27626b464d80039345e2d114cc", + "layout": "IPY_MODEL_57d8181ffdd349059b0f4e0d54bc0cb7", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c1e1f685331544929569f892e7b9ee1d", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 5.04MB/s]" + "value": 231508.0 } }, - "771a8766cdab4ad785bacfcb6678049a": { + "8f43c16335c540ab8f7a93bf771a579f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "993cbca4f53645b19626bd22f35ba7d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e4c71d2ff5d64eb6aa0d4662a386acc2", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3d74814d8dd046219675c5755734d26c", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "9ac05e21bf774897a30f0e7c05b5f113": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "77c63cc5f6434b90ad2d4f8c110acc68": { + "9f573602185c474bb663c3946b8371c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2807,67 +3001,26 @@ "grid_template_columns": null, "grid_template_rows": null, "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "79138260b27342f195f8b54c96dd483c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_84fcb9185cb24c2bb35cb63fc206306f", - "placeholder": "​", - "style": "IPY_MODEL_da0ad73cb5a4461da814a4966c49288b", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "80342bdf063c4c4fb28c363f53c55644": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "84fcb9185cb24c2bb35cb63fc206306f": { + "a1c6430a55e1404989798a6f9cab57f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2920,98 +3073,49 @@ "width": null } }, - "89e08a358e5343158f311de97e64e86f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_25b6f96ef73046acb382e06eed95a9b0", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c819332ea2af45bcb94184dff29e3992", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "8e235eab3f1a41e381934d3c0c4cc909": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_12278ade8d774dda8b83ef62c46e7bf0", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_980b57a51bd64aafb7274bbeef5aedbc", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "92d14363392d4016962ea3304006e83f": { + "a4eb983299e24e20b98bcf4edf3d6aaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_719a237222b54690a4fad2258458f5db", - "placeholder": "​", - "style": "IPY_MODEL_16db3ef2563c428db07cc995720fd60b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_034f8b8fe0644b18ac5cbfb4d3584f61", + "IPY_MODEL_993cbca4f53645b19626bd22f35ba7d2", + "IPY_MODEL_5421452619ca43e0ab75f9312bb9a823" + ], + "layout": "IPY_MODEL_fd746e8d6f214fb2851b8faf8ac27e12", "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" + "tooltip": null } }, - "980b57a51bd64aafb7274bbeef5aedbc": { + "a7fd97981111428eba3d4c09a94bfe9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "99ff95ff62df4df5a3136dbd6ff0ae78": { + "b5fd00bb16154423b6b98a26d77c3bfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3064,48 +3168,7 @@ "width": null } }, - "a03fce32c8334b4ca502e2c910e68cf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be8d6b4483874cfca87f9dd0bfd046b1", - "placeholder": "​", - "style": "IPY_MODEL_5b3f834098234540932bbc4f5a823968", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 73.2kB/s]" - } - }, - "a21d119ca8df41a58bf2b442dca19ee6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a309f785c95443bba289aa8e622ca78e": { + "b91bb0fea9e04d84980466addd8c63d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3158,48 +3221,39 @@ "width": null } }, - "a3708e09caf14f2d8d4e2a5dfa2171f1": { + "bd6009a6310e4144a110d0abce2d516c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "a4c82a9180ad4f978090dc6cfb8cfe36": { + "c1e1f685331544929569f892e7b9ee1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52fe4fe74b7f49a8b033e42c924759dc", - "placeholder": "​", - "style": "IPY_MODEL_075b4af9c1314f79ae437f8439d5f210", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "aa3f806e308e4ce2989b693846b4b968": { + "c7ac1f873cad47bb99c943d296a08dc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3252,7 +3306,23 @@ "width": null } }, - "ace1f49277f24628abeed56230d88df8": { + "c87beb0959be477b8c92c1b99b66a07c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c8e970c8f3b940708a6fd1296bb49f78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3305,7 +3375,55 @@ "width": null } }, - "b43cc3cd831e41d5bd0e2b797f183eb9": { + "c9439b97c3f0411e89621bacc52530c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_179d5095bde749efa193ed2f47c8ec70", + "IPY_MODEL_855f54aac4c04821a51e3f5456d1068a", + "IPY_MODEL_75d2d192ce0a455390c4c1bf23fd90da" + ], + "layout": "IPY_MODEL_dc599dc9e3a54add9467d2528fcf1736", + "tabbable": null, + "tooltip": null + } + }, + "c97f0e01e42646d9806c02b4b3648039": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_473968c7b6654e23a573dd157d6f1f94", + "IPY_MODEL_4fa6b9dd27e541b896fc7a803227f368", + "IPY_MODEL_8bb5868373be4fb09ccacc52f8bb437b" + ], + "layout": "IPY_MODEL_53977efabf0e4fd1ac2cfbd8b9299909", + "tabbable": null, + "tooltip": null + } + }, + "d2020abfbe0d42568b67dd48deaf5771": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3358,25 +3476,30 @@ "width": null } }, - "b7ecb1841b4049b6aa53b2a8d8f91012": { + "d6021b0797cf47c48c12d441689b6ece": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd50bba22beb482f9db42122f6ec0eb2", + "placeholder": "​", + "style": "IPY_MODEL_150be0f12ac94160b1b133e904ecb773", + "tabbable": null, + "tooltip": null, + "value": " 29.0/29.0 [00:00<00:00, 4.81kB/s]" } }, - "b93f2d32038140118f50fe537e638b84": { + "d6d6705b9b5043ab90499b9b2a133895": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3412,48 +3535,24 @@ "height": null, "justify_content": null, "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ba2de796b6ed4818b29822ffacaae295": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4c82a9180ad4f978090dc6cfb8cfe36", - "IPY_MODEL_89e08a358e5343158f311de97e64e86f", - "IPY_MODEL_a03fce32c8334b4ca502e2c910e68cf3" - ], - "layout": "IPY_MODEL_2a8e628f50e848f09a59bc9583fccd69", - "tabbable": null, - "tooltip": null + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "be8d6b4483874cfca87f9dd0bfd046b1": { + "d980c616b197411cb879c2eee14074f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3506,7 +3605,7 @@ "width": null } }, - "c06dccdf657d431b821c7e05c56556d9": { + "dc599dc9e3a54add9467d2528fcf1736": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3559,46 +3658,7 @@ "width": null } }, - "c819332ea2af45bcb94184dff29e3992": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cab475cc4878469a98fdbf2864a75825": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ccbee6a50109411d81c8cc8c15d7f4d4", - "placeholder": "​", - "style": "IPY_MODEL_b7ecb1841b4049b6aa53b2a8d8f91012", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 147MB/s]" - } - }, - "ccbee6a50109411d81c8cc8c15d7f4d4": { + "dd50bba22beb482f9db42122f6ec0eb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3651,33 +3711,7 @@ "width": null } }, - "cd554dcc01314a668bf9d656cce5bd93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_061f9097694c43129b356c9dda2f5f71", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_771a8766cdab4ad785bacfcb6678049a", - "tabbable": null, - "tooltip": null, - "value": 665.0 - } - }, - "cdcef8838f9847b8a6f388324f600c8b": { + "dd56037ea9b6486b9a8462712c62c9be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3730,23 +3764,7 @@ "width": null } }, - "cf499178cb734c8e8c234b0739f04a66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d4820887fab34d7aa5d017749535ca5a": { + "df7c804ca61045d6b8e804dc0c5237ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3799,59 +3817,30 @@ "width": null } }, - "d615c327f820490389d3a444df8d68f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d6bdbcbc558849e985053035358a37f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "da0ad73cb5a4461da814a4966c49288b": { + "e3383123e17340c2ae53e922a8e3b50a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e1ef3a403fd4439a965bdd4efc0b9bd", + "placeholder": "​", + "style": "IPY_MODEL_8f43c16335c540ab8f7a93bf771a579f", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "dde8fea970f144168dd91614ad770704": { + "e4c71d2ff5d64eb6aa0d4662a386acc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3904,7 +3893,7 @@ "width": null } }, - "e46151afb1e7450c8e8984491a7da0a1": { + "e67841585e944b4abee51a14c3f4974b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3957,80 +3946,69 @@ "width": null } }, - "e56eab34ca074b7fbf5139bd0c1f2101": { + "e8c173fbbec04416b425b2af5acba601": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_92d14363392d4016962ea3304006e83f", - "IPY_MODEL_28dc38fb62db403e916cf1901e0eac60", - "IPY_MODEL_769ad2786fb94b64abd47d55a0185f89" - ], - "layout": "IPY_MODEL_cdcef8838f9847b8a6f388324f600c8b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d980c616b197411cb879c2eee14074f0", + "placeholder": "​", + "style": "IPY_MODEL_3dd154ef46e44fad8478b9f32ddcb835", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "eafeb34886b74034a6acf024f5bc7361": { + "eca03b5e8a384f24a8997238a61a9bde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_727618f51486484ebf25abd7667d8585", - "placeholder": "​", - "style": "IPY_MODEL_d615c327f820490389d3a444df8d68f7", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eafee4a7753b4b9698f2cc1a46fb2fe4": { + "ed24934c745b4d7a8ee40e838fca4dc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_59845ff1092b4af19dcd613cab1e8a6d", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d6bdbcbc558849e985053035358a37f6", + "layout": "IPY_MODEL_630fb1d285cc43858751a7ed03e13e05", + "placeholder": "​", + "style": "IPY_MODEL_15bdf18d041041fab23473fab02e001b", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 391/391 [00:00<00:00, 66.1kB/s]" } }, - "ef691929a94f415c97369477aab5cd71": { + "ef96e30fab324207af7282262beb8867": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4048,31 +4026,23 @@ "text_color": null } }, - "f9c8133b87d44842b1e686734c9decb9": { + "f332c40a8cc84586aad25981b95f6ba3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6f991a9a36cb43d1a3a7d481a665d9b6", - "IPY_MODEL_8e235eab3f1a41e381934d3c0c4cc909", - "IPY_MODEL_cab475cc4878469a98fdbf2864a75825" - ], - "layout": "IPY_MODEL_ace1f49277f24628abeed56230d88df8", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fad1a62376234d9b8983f0689863a88c": { + "f55ce828192342cfa65c32e045d9377c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4087,35 +4057,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0b08a7a68f914ed387d4aaa62ab2abd8", + "layout": "IPY_MODEL_a1c6430a55e1404989798a6f9cab57f6", "placeholder": "​", - "style": "IPY_MODEL_a21d119ca8df41a58bf2b442dca19ee6", + "style": "IPY_MODEL_021198b4e2184745ad8e9d340795e5f3", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 405kB/s]" + "value": " 232k/232k [00:00<00:00, 1.94MB/s]" } }, - "fdc9e70ed67143f387275b16b30cbda3": { - "model_module": "@jupyter-widgets/controls", + "fd746e8d6f214fb2851b8faf8ac27e12": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e46151afb1e7450c8e8984491a7da0a1", - "placeholder": "​", - "style": "IPY_MODEL_51a821a454224f29b345ad1b44db7f93", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index cb94579f3..a78d1816e 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:37.613708Z", - "iopub.status.busy": "2024-02-08T04:24:37.613541Z", - "iopub.status.idle": "2024-02-08T04:24:38.638099Z", - "shell.execute_reply": "2024-02-08T04:24:38.637502Z" + "iopub.execute_input": "2024-02-08T05:11:08.323441Z", + "iopub.status.busy": "2024-02-08T05:11:08.323025Z", + "iopub.status.idle": "2024-02-08T05:11:09.474749Z", + "shell.execute_reply": "2024-02-08T05:11:09.474158Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:38.641015Z", - "iopub.status.busy": "2024-02-08T04:24:38.640442Z", - "iopub.status.idle": "2024-02-08T04:24:38.643303Z", - "shell.execute_reply": "2024-02-08T04:24:38.642787Z" + "iopub.execute_input": "2024-02-08T05:11:09.477547Z", + "iopub.status.busy": "2024-02-08T05:11:09.477141Z", + "iopub.status.idle": "2024-02-08T05:11:09.480630Z", + "shell.execute_reply": "2024-02-08T05:11:09.480196Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:38.645740Z", - "iopub.status.busy": "2024-02-08T04:24:38.645351Z", - "iopub.status.idle": "2024-02-08T04:24:38.657042Z", - "shell.execute_reply": "2024-02-08T04:24:38.656531Z" + "iopub.execute_input": "2024-02-08T05:11:09.482890Z", + "iopub.status.busy": "2024-02-08T05:11:09.482565Z", + "iopub.status.idle": "2024-02-08T05:11:09.494523Z", + "shell.execute_reply": "2024-02-08T05:11:09.494015Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:38.659120Z", - "iopub.status.busy": "2024-02-08T04:24:38.658837Z", - "iopub.status.idle": "2024-02-08T04:24:43.591617Z", - "shell.execute_reply": "2024-02-08T04:24:43.591122Z" + "iopub.execute_input": "2024-02-08T05:11:09.496748Z", + "iopub.status.busy": "2024-02-08T05:11:09.496386Z", + "iopub.status.idle": "2024-02-08T05:11:20.267416Z", + "shell.execute_reply": "2024-02-08T05:11:20.266899Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 01d99ce84..3305d8771 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:45.573789Z", - "iopub.status.busy": "2024-02-08T04:24:45.573620Z", - "iopub.status.idle": "2024-02-08T04:24:46.583993Z", - "shell.execute_reply": "2024-02-08T04:24:46.583448Z" + "iopub.execute_input": "2024-02-08T05:11:22.606201Z", + "iopub.status.busy": "2024-02-08T05:11:22.606025Z", + "iopub.status.idle": "2024-02-08T05:11:23.697394Z", + "shell.execute_reply": "2024-02-08T05:11:23.696773Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:46.586600Z", - "iopub.status.busy": "2024-02-08T04:24:46.586248Z", - "iopub.status.idle": "2024-02-08T04:24:46.590035Z", - "shell.execute_reply": "2024-02-08T04:24:46.589617Z" + "iopub.execute_input": "2024-02-08T05:11:23.700223Z", + "iopub.status.busy": "2024-02-08T05:11:23.699876Z", + "iopub.status.idle": "2024-02-08T05:11:23.703292Z", + "shell.execute_reply": "2024-02-08T05:11:23.702852Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:46.591939Z", - "iopub.status.busy": "2024-02-08T04:24:46.591737Z", - "iopub.status.idle": "2024-02-08T04:24:49.474373Z", - "shell.execute_reply": "2024-02-08T04:24:49.473737Z" + "iopub.execute_input": "2024-02-08T05:11:23.705486Z", + "iopub.status.busy": "2024-02-08T05:11:23.705156Z", + "iopub.status.idle": "2024-02-08T05:11:26.757434Z", + "shell.execute_reply": "2024-02-08T05:11:26.756799Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.477377Z", - "iopub.status.busy": "2024-02-08T04:24:49.476660Z", - "iopub.status.idle": "2024-02-08T04:24:49.508409Z", - "shell.execute_reply": "2024-02-08T04:24:49.507803Z" + "iopub.execute_input": "2024-02-08T05:11:26.760963Z", + "iopub.status.busy": "2024-02-08T05:11:26.759887Z", + "iopub.status.idle": "2024-02-08T05:11:26.801164Z", + "shell.execute_reply": "2024-02-08T05:11:26.800422Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.510776Z", - "iopub.status.busy": "2024-02-08T04:24:49.510550Z", - "iopub.status.idle": "2024-02-08T04:24:49.538544Z", - "shell.execute_reply": "2024-02-08T04:24:49.537958Z" + "iopub.execute_input": "2024-02-08T05:11:26.804151Z", + "iopub.status.busy": "2024-02-08T05:11:26.803670Z", + "iopub.status.idle": "2024-02-08T05:11:26.842192Z", + "shell.execute_reply": "2024-02-08T05:11:26.841538Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.541085Z", - "iopub.status.busy": "2024-02-08T04:24:49.540717Z", - "iopub.status.idle": "2024-02-08T04:24:49.543776Z", - "shell.execute_reply": "2024-02-08T04:24:49.543329Z" + "iopub.execute_input": "2024-02-08T05:11:26.845114Z", + "iopub.status.busy": "2024-02-08T05:11:26.844658Z", + "iopub.status.idle": "2024-02-08T05:11:26.847678Z", + "shell.execute_reply": "2024-02-08T05:11:26.847218Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.545731Z", - "iopub.status.busy": "2024-02-08T04:24:49.545364Z", - "iopub.status.idle": "2024-02-08T04:24:49.547897Z", - "shell.execute_reply": "2024-02-08T04:24:49.547441Z" + "iopub.execute_input": "2024-02-08T05:11:26.849841Z", + "iopub.status.busy": "2024-02-08T05:11:26.849441Z", + "iopub.status.idle": "2024-02-08T05:11:26.852121Z", + "shell.execute_reply": "2024-02-08T05:11:26.851641Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.549990Z", - "iopub.status.busy": "2024-02-08T04:24:49.549665Z", - "iopub.status.idle": "2024-02-08T04:24:49.572583Z", - "shell.execute_reply": "2024-02-08T04:24:49.572032Z" + "iopub.execute_input": "2024-02-08T05:11:26.854267Z", + "iopub.status.busy": "2024-02-08T05:11:26.853995Z", + "iopub.status.idle": "2024-02-08T05:11:26.880472Z", + "shell.execute_reply": "2024-02-08T05:11:26.879888Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5c0191b13eea419db01e0f9eecfae1ec", + "model_id": "78cba4b8da0f44b8997e2424fe19dbff", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "87fe2e877c264789adf23c7eddcce500", + "model_id": "be08b0354eb04e518b8a75f62d0d766e", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.579504Z", - "iopub.status.busy": "2024-02-08T04:24:49.579329Z", - "iopub.status.idle": "2024-02-08T04:24:49.585894Z", - "shell.execute_reply": "2024-02-08T04:24:49.585346Z" + "iopub.execute_input": "2024-02-08T05:11:26.886237Z", + "iopub.status.busy": "2024-02-08T05:11:26.885937Z", + "iopub.status.idle": "2024-02-08T05:11:26.892921Z", + "shell.execute_reply": "2024-02-08T05:11:26.892500Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.588062Z", - "iopub.status.busy": "2024-02-08T04:24:49.587674Z", - "iopub.status.idle": "2024-02-08T04:24:49.591088Z", - "shell.execute_reply": "2024-02-08T04:24:49.590626Z" + "iopub.execute_input": "2024-02-08T05:11:26.895076Z", + "iopub.status.busy": "2024-02-08T05:11:26.894752Z", + "iopub.status.idle": "2024-02-08T05:11:26.898037Z", + "shell.execute_reply": "2024-02-08T05:11:26.897543Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.593026Z", - "iopub.status.busy": "2024-02-08T04:24:49.592853Z", - "iopub.status.idle": "2024-02-08T04:24:49.599027Z", - "shell.execute_reply": "2024-02-08T04:24:49.598603Z" + "iopub.execute_input": "2024-02-08T05:11:26.900206Z", + "iopub.status.busy": "2024-02-08T05:11:26.899872Z", + "iopub.status.idle": "2024-02-08T05:11:26.906102Z", + "shell.execute_reply": "2024-02-08T05:11:26.905634Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.600879Z", - "iopub.status.busy": "2024-02-08T04:24:49.600710Z", - "iopub.status.idle": "2024-02-08T04:24:49.633862Z", - "shell.execute_reply": "2024-02-08T04:24:49.633169Z" + "iopub.execute_input": "2024-02-08T05:11:26.908120Z", + "iopub.status.busy": "2024-02-08T05:11:26.907792Z", + "iopub.status.idle": "2024-02-08T05:11:26.946506Z", + "shell.execute_reply": "2024-02-08T05:11:26.945866Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.636532Z", - "iopub.status.busy": "2024-02-08T04:24:49.636294Z", - "iopub.status.idle": "2024-02-08T04:24:49.666209Z", - "shell.execute_reply": "2024-02-08T04:24:49.665641Z" + "iopub.execute_input": "2024-02-08T05:11:26.949053Z", + "iopub.status.busy": "2024-02-08T05:11:26.948806Z", + "iopub.status.idle": "2024-02-08T05:11:26.989522Z", + "shell.execute_reply": "2024-02-08T05:11:26.988814Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.668847Z", - "iopub.status.busy": "2024-02-08T04:24:49.668487Z", - "iopub.status.idle": "2024-02-08T04:24:49.787733Z", - "shell.execute_reply": "2024-02-08T04:24:49.787119Z" + "iopub.execute_input": "2024-02-08T05:11:26.992540Z", + "iopub.status.busy": "2024-02-08T05:11:26.992114Z", + "iopub.status.idle": "2024-02-08T05:11:27.125524Z", + "shell.execute_reply": "2024-02-08T05:11:27.124909Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.790465Z", - "iopub.status.busy": "2024-02-08T04:24:49.789790Z", - "iopub.status.idle": "2024-02-08T04:24:52.854678Z", - "shell.execute_reply": "2024-02-08T04:24:52.853979Z" + "iopub.execute_input": "2024-02-08T05:11:27.128401Z", + "iopub.status.busy": "2024-02-08T05:11:27.127620Z", + "iopub.status.idle": "2024-02-08T05:11:30.193800Z", + "shell.execute_reply": "2024-02-08T05:11:30.193249Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:52.857015Z", - "iopub.status.busy": "2024-02-08T04:24:52.856827Z", - "iopub.status.idle": "2024-02-08T04:24:52.917026Z", - "shell.execute_reply": "2024-02-08T04:24:52.916549Z" + "iopub.execute_input": "2024-02-08T05:11:30.196165Z", + "iopub.status.busy": "2024-02-08T05:11:30.195794Z", + "iopub.status.idle": "2024-02-08T05:11:30.252447Z", + "shell.execute_reply": "2024-02-08T05:11:30.251888Z" } }, "outputs": [ @@ -1206,7 +1206,7 @@ }, { "cell_type": "markdown", - "id": "187c759b", + "id": "bfe43cbe", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "b9f3b94f", + "id": "20f126b1", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1227,13 +1227,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "a1c4f448", + "id": "16761bb6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:52.919102Z", - "iopub.status.busy": "2024-02-08T04:24:52.918777Z", - "iopub.status.idle": "2024-02-08T04:24:53.015984Z", - "shell.execute_reply": "2024-02-08T04:24:53.015447Z" + "iopub.execute_input": "2024-02-08T05:11:30.254698Z", + "iopub.status.busy": "2024-02-08T05:11:30.254370Z", + "iopub.status.idle": "2024-02-08T05:11:30.372246Z", + "shell.execute_reply": "2024-02-08T05:11:30.371679Z" } }, "outputs": [ @@ -1274,7 +1274,7 @@ }, { "cell_type": "markdown", - "id": "ca16f7a6", + "id": "856b641a", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1283,13 +1283,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "b7531f4e", + "id": "2aa056d4", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.018620Z", - "iopub.status.busy": "2024-02-08T04:24:53.018003Z", - "iopub.status.idle": "2024-02-08T04:24:53.093962Z", - "shell.execute_reply": "2024-02-08T04:24:53.093545Z" + "iopub.execute_input": "2024-02-08T05:11:30.375175Z", + "iopub.status.busy": "2024-02-08T05:11:30.374638Z", + "iopub.status.idle": "2024-02-08T05:11:30.437160Z", + "shell.execute_reply": "2024-02-08T05:11:30.436653Z" } }, "outputs": [ @@ -1325,7 +1325,7 @@ }, { "cell_type": "markdown", - "id": "73c03ed6", + "id": "ac654ffb", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1336,13 +1336,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "5dee6e03", + "id": "6706b5f4", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.096140Z", - "iopub.status.busy": "2024-02-08T04:24:53.095803Z", - "iopub.status.idle": "2024-02-08T04:24:53.103009Z", - "shell.execute_reply": "2024-02-08T04:24:53.102627Z" + "iopub.execute_input": "2024-02-08T05:11:30.439809Z", + "iopub.status.busy": "2024-02-08T05:11:30.439229Z", + "iopub.status.idle": "2024-02-08T05:11:30.447037Z", + "shell.execute_reply": "2024-02-08T05:11:30.446585Z" } }, "outputs": [], @@ -1444,7 +1444,7 @@ }, { "cell_type": "markdown", - "id": "b90c0ece", + "id": "5c1d612b", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1459,13 +1459,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "358dc020", + "id": "c1a1d9c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.105084Z", - "iopub.status.busy": "2024-02-08T04:24:53.104708Z", - "iopub.status.idle": "2024-02-08T04:24:53.124038Z", - "shell.execute_reply": "2024-02-08T04:24:53.123459Z" + "iopub.execute_input": "2024-02-08T05:11:30.449262Z", + "iopub.status.busy": "2024-02-08T05:11:30.448886Z", + "iopub.status.idle": "2024-02-08T05:11:30.470160Z", + "shell.execute_reply": "2024-02-08T05:11:30.469602Z" } }, "outputs": [ @@ -1482,7 +1482,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_5856/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_6088/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1516,13 +1516,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "00e7c49a", + "id": "9fb5b9a7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.125974Z", - "iopub.status.busy": "2024-02-08T04:24:53.125662Z", - "iopub.status.idle": "2024-02-08T04:24:53.128656Z", - "shell.execute_reply": "2024-02-08T04:24:53.128129Z" + "iopub.execute_input": "2024-02-08T05:11:30.472247Z", + "iopub.status.busy": "2024-02-08T05:11:30.471936Z", + "iopub.status.idle": "2024-02-08T05:11:30.475237Z", + "shell.execute_reply": "2024-02-08T05:11:30.474711Z" } }, "outputs": [ @@ -1617,60 +1617,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "015ef5b9c4e7426e8c19853cef8ae11f": { - "model_module": "@jupyter-widgets/base", + "05de50edb7344de49fc9a7e46146a0dc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1af8c90e7f0c44aea5a4c387ab84a8d8", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_77ad757771b14da99ddebe6c289b3a55", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "07139d1836db4802bef3d7af8515240e": { + "0a436d59bb2a44da9b77996fbb4f1350": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1688,7 +1661,7 @@ "text_color": null } }, - "0820f47cfe0b4a7980f5b74a53fbf2ce": { + "1af8c90e7f0c44aea5a4c387ab84a8d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1741,7 +1714,7 @@ "width": null } }, - "18531640627745059d5f010bdb7bd15d": { + "24876a59455840efb5334507693b3279": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1794,7 +1767,7 @@ "width": null } }, - "1947ea925a434cc286f1c01e91d3d6ce": { + "33e46e8ba5ca460a91916503bd38bfca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1847,7 +1820,7 @@ "width": null } }, - "1b89893bdf0b4718a7dbee8b73490988": { + "4b7e4a218ceb4e0199c05e6baf9563db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1865,7 +1838,7 @@ "text_color": null } }, - "2192c281f612451392e831350d44f234": { + "64188fff7d3b4928803ffdc0d6604409": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1881,141 +1854,74 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0820f47cfe0b4a7980f5b74a53fbf2ce", + "layout": "IPY_MODEL_33e46e8ba5ca460a91916503bd38bfca", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_cd4a1881ee4d4941911d65274d6cbec0", + "style": "IPY_MODEL_f5b660268d8b4fa98dc35fef101083e6", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "2db320790a99420bafd99e85985baec1": { + "6a7fd2b75cbb47cd9959697f813a7e15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24876a59455840efb5334507693b3279", + "placeholder": "​", + "style": "IPY_MODEL_4b7e4a218ceb4e0199c05e6baf9563db", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "2e68e04f2248495aa67f9947209a5a39": { - "model_module": "@jupyter-widgets/base", + "6f707802c6d94a6ebffdd90508ff706b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "445757af76f242048bbb86f1838b61a8": { - "model_module": "@jupyter-widgets/base", + "77ad757771b14da99ddebe6c289b3a55": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5c0191b13eea419db01e0f9eecfae1ec": { + "78cba4b8da0f44b8997e2424fe19dbff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2030,16 +1936,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9d4ac9b4b2794cc5b03c3f973ef0b271", - "IPY_MODEL_944841c00b3d4eb2b5bd71d1b09650b8", - "IPY_MODEL_ab568724990c41f38cb76413e1055586" + "IPY_MODEL_a6d12fb3e1e04e9181c76c877258b50b", + "IPY_MODEL_64188fff7d3b4928803ffdc0d6604409", + "IPY_MODEL_a280677f5a5746e5bd972a898597af15" ], - "layout": "IPY_MODEL_445757af76f242048bbb86f1838b61a8", + "layout": "IPY_MODEL_cfceb62eb6814512b4fcf377b41576c3", "tabbable": null, "tooltip": null } }, - "5cf06b9d4db141cbb8d2ec151a7a2fc3": { + "9113f59e9f8d4e9aa367f233fcdd78d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9ee53d1442404edfb08485845f6aedd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2092,57 +2016,30 @@ "width": null } }, - "87fe2e877c264789adf23c7eddcce500": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b990e7cad1234c46bbf220fbf0706a14", - "IPY_MODEL_2192c281f612451392e831350d44f234", - "IPY_MODEL_ac7c12a86b9445f49fb80f6d0e1b08e8" - ], - "layout": "IPY_MODEL_18531640627745059d5f010bdb7bd15d", - "tabbable": null, - "tooltip": null - } - }, - "944841c00b3d4eb2b5bd71d1b09650b8": { + "a280677f5a5746e5bd972a898597af15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1947ea925a434cc286f1c01e91d3d6ce", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cfee63cfdd5c4ce393aac7cb9a1c613f", + "layout": "IPY_MODEL_9ee53d1442404edfb08485845f6aedd1", + "placeholder": "​", + "style": "IPY_MODEL_6f707802c6d94a6ebffdd90508ff706b", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1037218.46it/s]" } }, - "9d4ac9b4b2794cc5b03c3f973ef0b271": { + "a6d12fb3e1e04e9181c76c877258b50b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2157,15 +2054,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e68e04f2248495aa67f9947209a5a39", + "layout": "IPY_MODEL_d3dda2aaa46a4d269cfd84ed685064f5", "placeholder": "​", - "style": "IPY_MODEL_1b89893bdf0b4718a7dbee8b73490988", + "style": "IPY_MODEL_9113f59e9f8d4e9aa367f233fcdd78d0", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "ab568724990c41f38cb76413e1055586": { + "b2680aa9e75c468cbb4efeebe945eea7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2180,95 +2077,198 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_015ef5b9c4e7426e8c19853cef8ae11f", + "layout": "IPY_MODEL_cfa42c442e2d40b5853652d9d73d091c", "placeholder": "​", - "style": "IPY_MODEL_c671d824811040228d0b53429fdbf8d7", + "style": "IPY_MODEL_0a436d59bb2a44da9b77996fbb4f1350", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1099597.32it/s]" + "value": " 10000/? [00:00<00:00, 1205398.32it/s]" } }, - "ac7c12a86b9445f49fb80f6d0e1b08e8": { + "be08b0354eb04e518b8a75f62d0d766e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5cf06b9d4db141cbb8d2ec151a7a2fc3", - "placeholder": "​", - "style": "IPY_MODEL_2db320790a99420bafd99e85985baec1", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6a7fd2b75cbb47cd9959697f813a7e15", + "IPY_MODEL_05de50edb7344de49fc9a7e46146a0dc", + "IPY_MODEL_b2680aa9e75c468cbb4efeebe945eea7" + ], + "layout": "IPY_MODEL_d8a8c3363a024dbdb7424268a378949d", "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1690910.70it/s]" + "tooltip": null } }, - "b990e7cad1234c46bbf220fbf0706a14": { - "model_module": "@jupyter-widgets/controls", + "cfa42c442e2d40b5853652d9d73d091c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cfb9b1763ab94885a6f99d429428964b", - "placeholder": "​", - "style": "IPY_MODEL_07139d1836db4802bef3d7af8515240e", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c671d824811040228d0b53429fdbf8d7": { - "model_module": "@jupyter-widgets/controls", + "cfceb62eb6814512b4fcf377b41576c3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cd4a1881ee4d4941911d65274d6cbec0": { - "model_module": "@jupyter-widgets/controls", + "d3dda2aaa46a4d269cfd84ed685064f5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cfb9b1763ab94885a6f99d429428964b": { + "d8a8c3363a024dbdb7424268a378949d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2321,7 +2321,7 @@ "width": null } }, - "cfee63cfdd5c4ce393aac7cb9a1c613f": { + "f5b660268d8b4fa98dc35fef101083e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index ca3884e75..6cc35451a 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:56.232543Z", - "iopub.status.busy": "2024-02-08T04:24:56.232378Z", - "iopub.status.idle": "2024-02-08T04:24:58.931394Z", - "shell.execute_reply": "2024-02-08T04:24:58.930789Z" + "iopub.execute_input": "2024-02-08T05:11:33.855472Z", + "iopub.status.busy": "2024-02-08T05:11:33.855301Z", + "iopub.status.idle": "2024-02-08T05:11:36.680229Z", + "shell.execute_reply": "2024-02-08T05:11:36.679587Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:58.934174Z", - "iopub.status.busy": "2024-02-08T04:24:58.933710Z", - "iopub.status.idle": "2024-02-08T04:24:58.937329Z", - "shell.execute_reply": "2024-02-08T04:24:58.936873Z" + "iopub.execute_input": "2024-02-08T05:11:36.682789Z", + "iopub.status.busy": "2024-02-08T05:11:36.682504Z", + "iopub.status.idle": "2024-02-08T05:11:36.686100Z", + "shell.execute_reply": "2024-02-08T05:11:36.685571Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:58.939174Z", - "iopub.status.busy": "2024-02-08T04:24:58.938911Z", - "iopub.status.idle": "2024-02-08T04:25:01.280745Z", - "shell.execute_reply": "2024-02-08T04:25:01.280238Z" + "iopub.execute_input": "2024-02-08T05:11:36.688210Z", + "iopub.status.busy": "2024-02-08T05:11:36.687886Z", + "iopub.status.idle": "2024-02-08T05:11:42.408324Z", + "shell.execute_reply": "2024-02-08T05:11:42.407756Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1eec2d01466b406faa6fd5ecda631e5d", + "model_id": "5c4b4cfac6fb41f2bb0be9cbeb8c1702", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e589d0c9f4074d929f567d526d1382cd", + "model_id": "e5ff19704e974b418104ac00b0017738", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ea33752ef0e44cc7a07b481740f0d64f", + "model_id": "bbfffb031cc24eb4ae644fb9173c9de0", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "105f329ad92c48cf972b910d94794f45", + "model_id": "e7800f2f49ce4746b2842751e0616d59", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:01.283006Z", - "iopub.status.busy": "2024-02-08T04:25:01.282600Z", - "iopub.status.idle": "2024-02-08T04:25:01.286183Z", - "shell.execute_reply": "2024-02-08T04:25:01.285712Z" + "iopub.execute_input": "2024-02-08T05:11:42.410325Z", + "iopub.status.busy": "2024-02-08T05:11:42.410111Z", + "iopub.status.idle": "2024-02-08T05:11:42.413871Z", + "shell.execute_reply": "2024-02-08T05:11:42.413354Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:01.288113Z", - "iopub.status.busy": "2024-02-08T04:25:01.287932Z", - "iopub.status.idle": "2024-02-08T04:25:12.545629Z", - "shell.execute_reply": "2024-02-08T04:25:12.545098Z" + "iopub.execute_input": "2024-02-08T05:11:42.415858Z", + "iopub.status.busy": "2024-02-08T05:11:42.415525Z", + "iopub.status.idle": "2024-02-08T05:11:53.750074Z", + "shell.execute_reply": "2024-02-08T05:11:53.749507Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ce69eb6fd8f34a5bad0f15df3a6b52b0", + "model_id": "e05b0e6e74fa464d816d0358a6dc76b4", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:12.548131Z", - "iopub.status.busy": "2024-02-08T04:25:12.547897Z", - "iopub.status.idle": "2024-02-08T04:25:30.917414Z", - "shell.execute_reply": "2024-02-08T04:25:30.916876Z" + "iopub.execute_input": "2024-02-08T05:11:53.752787Z", + "iopub.status.busy": "2024-02-08T05:11:53.752415Z", + "iopub.status.idle": "2024-02-08T05:12:12.431429Z", + "shell.execute_reply": "2024-02-08T05:12:12.430850Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.920125Z", - "iopub.status.busy": "2024-02-08T04:25:30.919726Z", - "iopub.status.idle": "2024-02-08T04:25:30.925627Z", - "shell.execute_reply": "2024-02-08T04:25:30.925174Z" + "iopub.execute_input": "2024-02-08T05:12:12.434281Z", + "iopub.status.busy": "2024-02-08T05:12:12.433867Z", + "iopub.status.idle": "2024-02-08T05:12:12.440057Z", + "shell.execute_reply": "2024-02-08T05:12:12.439494Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.927527Z", - "iopub.status.busy": "2024-02-08T04:25:30.927201Z", - "iopub.status.idle": "2024-02-08T04:25:30.930903Z", - "shell.execute_reply": "2024-02-08T04:25:30.930494Z" + "iopub.execute_input": "2024-02-08T05:12:12.442385Z", + "iopub.status.busy": "2024-02-08T05:12:12.441854Z", + "iopub.status.idle": "2024-02-08T05:12:12.446407Z", + "shell.execute_reply": "2024-02-08T05:12:12.445964Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.932869Z", - "iopub.status.busy": "2024-02-08T04:25:30.932550Z", - "iopub.status.idle": "2024-02-08T04:25:30.941233Z", - "shell.execute_reply": "2024-02-08T04:25:30.940796Z" + "iopub.execute_input": "2024-02-08T05:12:12.448647Z", + "iopub.status.busy": "2024-02-08T05:12:12.448313Z", + "iopub.status.idle": "2024-02-08T05:12:12.457542Z", + "shell.execute_reply": "2024-02-08T05:12:12.456967Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.943198Z", - "iopub.status.busy": "2024-02-08T04:25:30.942898Z", - "iopub.status.idle": "2024-02-08T04:25:30.970984Z", - "shell.execute_reply": "2024-02-08T04:25:30.970570Z" + "iopub.execute_input": "2024-02-08T05:12:12.459748Z", + "iopub.status.busy": "2024-02-08T05:12:12.459381Z", + "iopub.status.idle": "2024-02-08T05:12:12.486639Z", + "shell.execute_reply": "2024-02-08T05:12:12.486117Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.973114Z", - "iopub.status.busy": "2024-02-08T04:25:30.972691Z", - "iopub.status.idle": "2024-02-08T04:26:01.791285Z", - "shell.execute_reply": "2024-02-08T04:26:01.790653Z" + "iopub.execute_input": "2024-02-08T05:12:12.489022Z", + "iopub.status.busy": "2024-02-08T05:12:12.488682Z", + "iopub.status.idle": "2024-02-08T05:12:47.304575Z", + "shell.execute_reply": "2024-02-08T05:12:47.303948Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.545\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.393\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.360\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 5.035\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 3/40 [00:00<00:01, 27.78it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.39it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 51.02it/s]" + " 20%|██ | 8/40 [00:00<00:00, 39.50it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.17it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 46.73it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.86it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 53.72it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 62.77it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 57.38it/s]" ] }, { @@ -790,7 +790,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.88it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 57.39it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 40/40 [00:00<00:00, 53.69it/s]" ] }, { @@ -820,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.05it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.11it/s]" ] }, { @@ -828,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 48.24it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 37.60it/s]" ] }, { @@ -836,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 56.60it/s]" + " 32%|███▎ | 13/40 [00:00<00:00, 45.19it/s]" ] }, { @@ -844,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 62.68it/s]" + " 50%|█████ | 20/40 [00:00<00:00, 51.79it/s]" ] }, { @@ -852,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 66.11it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 56.06it/s]" ] }, { @@ -860,15 +868,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.45it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 59.66it/s]" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\n", - "Training on fold: 2 ...\n" + "\r", + "100%|██████████| 40/40 [00:00<00:00, 53.55it/s]" ] }, { @@ -882,14 +890,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.565\n" + "\n", + "Training on fold: 2 ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.153\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.325\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.956\n", "Computing feature embeddings ...\n" ] }, @@ -906,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.22it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.09it/s]" ] }, { @@ -914,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 48.56it/s]" + " 20%|██ | 8/40 [00:00<00:00, 40.71it/s]" ] }, { @@ -922,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 57.12it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 51.00it/s]" ] }, { @@ -930,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 63.37it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 53.38it/s]" ] }, { @@ -938,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 64.97it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 54.81it/s]" ] }, { @@ -946,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 39/40 [00:00<00:00, 68.47it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 58.74it/s]" ] }, { @@ -954,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.34it/s]" + "100%|██████████| 40/40 [00:00<00:00, 52.08it/s]" ] }, { @@ -984,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.37it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.35it/s]" ] }, { @@ -992,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 50.99it/s]" + " 20%|██ | 8/40 [00:00<00:00, 41.07it/s]" ] }, { @@ -1000,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.63it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 53.07it/s]" ] }, { @@ -1008,7 +1024,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 62.58it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 57.05it/s]" ] }, { @@ -1016,7 +1032,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 65.07it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 60.72it/s]" ] }, { @@ -1024,7 +1040,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 73.11it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 60.32it/s]" ] }, { @@ -1032,7 +1048,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.41it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.52it/s]" ] }, { @@ -1054,14 +1070,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.716\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.128\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.350\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.675\n", "Computing feature embeddings ...\n" ] }, @@ -1078,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.70it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.42it/s]" ] }, { @@ -1086,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 44.22it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 34.21it/s]" ] }, { @@ -1094,7 +1110,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 55.41it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 47.70it/s]" ] }, { @@ -1102,7 +1118,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 60.21it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 55.32it/s]" ] }, { @@ -1110,7 +1126,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 63.53it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 56.57it/s]" ] }, { @@ -1118,7 +1134,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 64.28it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 62.30it/s]" ] }, { @@ -1126,7 +1142,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 59.03it/s]" + "100%|██████████| 40/40 [00:00<00:00, 54.64it/s]" ] }, { @@ -1156,7 +1172,15 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.91it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 7.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 20%|██ | 8/40 [00:00<00:00, 38.53it/s]" ] }, { @@ -1164,7 +1188,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 48.77it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 46.74it/s]" ] }, { @@ -1172,7 +1196,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 58.27it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 52.27it/s]" ] }, { @@ -1180,7 +1204,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 62.12it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 57.88it/s]" ] }, { @@ -1188,7 +1212,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 64.03it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 64.33it/s]" ] }, { @@ -1196,7 +1220,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.44it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.15it/s]" ] }, { @@ -1273,10 +1297,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:26:01.793942Z", - "iopub.status.busy": "2024-02-08T04:26:01.793708Z", - "iopub.status.idle": "2024-02-08T04:26:01.808555Z", - "shell.execute_reply": "2024-02-08T04:26:01.808026Z" + "iopub.execute_input": "2024-02-08T05:12:47.307122Z", + "iopub.status.busy": "2024-02-08T05:12:47.306721Z", + "iopub.status.idle": "2024-02-08T05:12:47.321685Z", + "shell.execute_reply": "2024-02-08T05:12:47.321241Z" } }, "outputs": [], @@ -1301,10 +1325,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:26:01.810654Z", - "iopub.status.busy": "2024-02-08T04:26:01.810270Z", - "iopub.status.idle": "2024-02-08T04:26:02.254184Z", - "shell.execute_reply": "2024-02-08T04:26:02.253640Z" + "iopub.execute_input": "2024-02-08T05:12:47.324152Z", + "iopub.status.busy": "2024-02-08T05:12:47.323716Z", + "iopub.status.idle": "2024-02-08T05:12:47.795908Z", + "shell.execute_reply": "2024-02-08T05:12:47.795244Z" } }, "outputs": [], @@ -1324,10 +1348,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:26:02.256439Z", - "iopub.status.busy": "2024-02-08T04:26:02.256259Z", - "iopub.status.idle": "2024-02-08T04:29:26.370970Z", - "shell.execute_reply": "2024-02-08T04:29:26.370342Z" + "iopub.execute_input": "2024-02-08T05:12:47.798403Z", + "iopub.status.busy": "2024-02-08T05:12:47.798206Z", + "iopub.status.idle": "2024-02-08T05:16:16.134576Z", + "shell.execute_reply": "2024-02-08T05:16:16.133948Z" } }, "outputs": [ @@ -1366,7 +1390,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6e7d1c0d21c4730876e3dc529f3db41", + "model_id": "c7e1f8c4d56340c8bb108cd4fe09524c", "version_major": 2, "version_minor": 0 }, @@ -1405,10 +1429,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.373314Z", - "iopub.status.busy": "2024-02-08T04:29:26.372922Z", - "iopub.status.idle": "2024-02-08T04:29:26.818658Z", - "shell.execute_reply": "2024-02-08T04:29:26.818134Z" + "iopub.execute_input": "2024-02-08T05:16:16.137196Z", + "iopub.status.busy": "2024-02-08T05:16:16.136611Z", + "iopub.status.idle": "2024-02-08T05:16:16.606508Z", + "shell.execute_reply": "2024-02-08T05:16:16.605923Z" } }, "outputs": [ @@ -1556,10 +1580,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.821205Z", - "iopub.status.busy": "2024-02-08T04:29:26.820713Z", - "iopub.status.idle": "2024-02-08T04:29:26.881196Z", - "shell.execute_reply": "2024-02-08T04:29:26.880709Z" + "iopub.execute_input": "2024-02-08T05:16:16.609511Z", + "iopub.status.busy": "2024-02-08T05:16:16.609031Z", + "iopub.status.idle": "2024-02-08T05:16:16.672077Z", + "shell.execute_reply": "2024-02-08T05:16:16.671511Z" } }, "outputs": [ @@ -1663,10 +1687,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.883670Z", - "iopub.status.busy": "2024-02-08T04:29:26.883206Z", - "iopub.status.idle": "2024-02-08T04:29:26.891318Z", - "shell.execute_reply": "2024-02-08T04:29:26.890887Z" + "iopub.execute_input": "2024-02-08T05:16:16.674286Z", + "iopub.status.busy": "2024-02-08T05:16:16.673952Z", + "iopub.status.idle": "2024-02-08T05:16:16.682904Z", + "shell.execute_reply": "2024-02-08T05:16:16.682454Z" } }, "outputs": [ @@ -1796,10 +1820,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.893282Z", - "iopub.status.busy": "2024-02-08T04:29:26.892958Z", - "iopub.status.idle": "2024-02-08T04:29:26.897622Z", - "shell.execute_reply": "2024-02-08T04:29:26.897061Z" + "iopub.execute_input": "2024-02-08T05:16:16.685126Z", + "iopub.status.busy": "2024-02-08T05:16:16.684796Z", + "iopub.status.idle": "2024-02-08T05:16:16.689639Z", + "shell.execute_reply": "2024-02-08T05:16:16.689163Z" }, "nbsphinx": "hidden" }, @@ -1845,10 +1869,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.899634Z", - "iopub.status.busy": "2024-02-08T04:29:26.899324Z", - "iopub.status.idle": "2024-02-08T04:29:27.376843Z", - "shell.execute_reply": "2024-02-08T04:29:27.376264Z" + "iopub.execute_input": "2024-02-08T05:16:16.691789Z", + "iopub.status.busy": "2024-02-08T05:16:16.691422Z", + "iopub.status.idle": "2024-02-08T05:16:17.213029Z", + "shell.execute_reply": "2024-02-08T05:16:17.212410Z" } }, "outputs": [ @@ -1883,10 +1907,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.379088Z", - "iopub.status.busy": "2024-02-08T04:29:27.378755Z", - "iopub.status.idle": "2024-02-08T04:29:27.386489Z", - "shell.execute_reply": "2024-02-08T04:29:27.386057Z" + "iopub.execute_input": "2024-02-08T05:16:17.215467Z", + "iopub.status.busy": "2024-02-08T05:16:17.214996Z", + "iopub.status.idle": "2024-02-08T05:16:17.224959Z", + "shell.execute_reply": "2024-02-08T05:16:17.224479Z" } }, "outputs": [ @@ -2053,10 +2077,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.388581Z", - "iopub.status.busy": "2024-02-08T04:29:27.388218Z", - "iopub.status.idle": "2024-02-08T04:29:27.395182Z", - "shell.execute_reply": "2024-02-08T04:29:27.394738Z" + "iopub.execute_input": "2024-02-08T05:16:17.227422Z", + "iopub.status.busy": "2024-02-08T05:16:17.226963Z", + "iopub.status.idle": "2024-02-08T05:16:17.235643Z", + "shell.execute_reply": "2024-02-08T05:16:17.235180Z" }, "nbsphinx": "hidden" }, @@ -2132,10 +2156,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.397024Z", - "iopub.status.busy": "2024-02-08T04:29:27.396850Z", - "iopub.status.idle": "2024-02-08T04:29:27.833200Z", - "shell.execute_reply": "2024-02-08T04:29:27.832645Z" + "iopub.execute_input": "2024-02-08T05:16:17.237953Z", + "iopub.status.busy": "2024-02-08T05:16:17.237551Z", + "iopub.status.idle": "2024-02-08T05:16:17.722322Z", + "shell.execute_reply": "2024-02-08T05:16:17.721746Z" } }, "outputs": [ @@ -2172,10 +2196,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.835376Z", - "iopub.status.busy": "2024-02-08T04:29:27.834999Z", - "iopub.status.idle": "2024-02-08T04:29:27.850165Z", - "shell.execute_reply": "2024-02-08T04:29:27.849608Z" + "iopub.execute_input": "2024-02-08T05:16:17.724592Z", + "iopub.status.busy": "2024-02-08T05:16:17.724194Z", + "iopub.status.idle": "2024-02-08T05:16:17.740235Z", + "shell.execute_reply": "2024-02-08T05:16:17.739614Z" } }, "outputs": [ @@ -2332,10 +2356,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.852521Z", - "iopub.status.busy": "2024-02-08T04:29:27.852115Z", - "iopub.status.idle": "2024-02-08T04:29:27.857586Z", - "shell.execute_reply": "2024-02-08T04:29:27.857046Z" + "iopub.execute_input": "2024-02-08T05:16:17.742697Z", + "iopub.status.busy": "2024-02-08T05:16:17.742264Z", + "iopub.status.idle": "2024-02-08T05:16:17.749660Z", + "shell.execute_reply": "2024-02-08T05:16:17.749131Z" }, "nbsphinx": "hidden" }, @@ -2380,10 +2404,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.859645Z", - "iopub.status.busy": "2024-02-08T04:29:27.859344Z", - "iopub.status.idle": "2024-02-08T04:29:28.254342Z", - "shell.execute_reply": "2024-02-08T04:29:28.253785Z" + "iopub.execute_input": "2024-02-08T05:16:17.752010Z", + "iopub.status.busy": "2024-02-08T05:16:17.751625Z", + "iopub.status.idle": "2024-02-08T05:16:18.239460Z", + "shell.execute_reply": "2024-02-08T05:16:18.238912Z" } }, "outputs": [ @@ -2465,10 +2489,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.256536Z", - "iopub.status.busy": "2024-02-08T04:29:28.256361Z", - "iopub.status.idle": "2024-02-08T04:29:28.264799Z", - "shell.execute_reply": "2024-02-08T04:29:28.264244Z" + "iopub.execute_input": "2024-02-08T05:16:18.242461Z", + "iopub.status.busy": "2024-02-08T05:16:18.241984Z", + "iopub.status.idle": "2024-02-08T05:16:18.251716Z", + "shell.execute_reply": "2024-02-08T05:16:18.251180Z" } }, "outputs": [ @@ -2493,47 +2517,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2596,10 +2620,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.266967Z", - "iopub.status.busy": "2024-02-08T04:29:28.266794Z", - "iopub.status.idle": "2024-02-08T04:29:28.272101Z", - "shell.execute_reply": "2024-02-08T04:29:28.271528Z" + "iopub.execute_input": "2024-02-08T05:16:18.254337Z", + "iopub.status.busy": "2024-02-08T05:16:18.254007Z", + "iopub.status.idle": "2024-02-08T05:16:18.259914Z", + "shell.execute_reply": "2024-02-08T05:16:18.259362Z" }, "nbsphinx": "hidden" }, @@ -2636,10 +2660,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.274106Z", - "iopub.status.busy": "2024-02-08T04:29:28.273933Z", - "iopub.status.idle": "2024-02-08T04:29:28.448369Z", - "shell.execute_reply": "2024-02-08T04:29:28.447945Z" + "iopub.execute_input": "2024-02-08T05:16:18.262797Z", + "iopub.status.busy": "2024-02-08T05:16:18.261859Z", + "iopub.status.idle": "2024-02-08T05:16:18.467078Z", + "shell.execute_reply": "2024-02-08T05:16:18.466624Z" } }, "outputs": [ @@ -2681,10 +2705,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.450416Z", - "iopub.status.busy": "2024-02-08T04:29:28.450253Z", - "iopub.status.idle": "2024-02-08T04:29:28.457374Z", - "shell.execute_reply": "2024-02-08T04:29:28.456949Z" + "iopub.execute_input": "2024-02-08T05:16:18.469453Z", + "iopub.status.busy": "2024-02-08T05:16:18.469266Z", + "iopub.status.idle": "2024-02-08T05:16:18.477401Z", + "shell.execute_reply": "2024-02-08T05:16:18.476936Z" } }, "outputs": [ @@ -2709,47 +2733,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2770,10 +2794,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.459371Z", - "iopub.status.busy": "2024-02-08T04:29:28.459080Z", - "iopub.status.idle": "2024-02-08T04:29:28.664721Z", - "shell.execute_reply": "2024-02-08T04:29:28.664223Z" + "iopub.execute_input": "2024-02-08T05:16:18.479350Z", + "iopub.status.busy": "2024-02-08T05:16:18.479171Z", + "iopub.status.idle": "2024-02-08T05:16:18.652231Z", + "shell.execute_reply": "2024-02-08T05:16:18.651687Z" } }, "outputs": [ @@ -2813,10 +2837,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.666766Z", - "iopub.status.busy": "2024-02-08T04:29:28.666522Z", - "iopub.status.idle": "2024-02-08T04:29:28.670873Z", - "shell.execute_reply": "2024-02-08T04:29:28.670415Z" + "iopub.execute_input": "2024-02-08T05:16:18.654334Z", + "iopub.status.busy": "2024-02-08T05:16:18.654151Z", + "iopub.status.idle": "2024-02-08T05:16:18.658449Z", + "shell.execute_reply": "2024-02-08T05:16:18.658019Z" }, "nbsphinx": "hidden" }, @@ -2853,7 +2877,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "022361df31e04c07a94380f640f14be5": { + "1644edf88a214176b72d5e2999de8b8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1ec724c611f14ab38760c5b566b9582f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7a0422ab0104b88942f6e13074466fd", + "placeholder": "​", + "style": "IPY_MODEL_effe32e5f0a941f080bbc9527408df9b", + "tabbable": null, + "tooltip": null, + "value": " 10000/0 [00:00<00:00, 604906.98 examples/s]" + } + }, + "1f8b5c4b58024e64be421bef7eadc5d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2906,23 +2969,7 @@ "width": null } }, - "02a75c6b9edc4a8da0feb9bfb6765cbb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "030281198fd34a91972408f1da63fd2c": { + "285fd65ebfa84b7db898a122b01e9cf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2975,56 +3022,25 @@ "width": null } }, - "0b506b5e968a47e5bdac76006be1a8f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6777fbed25941949ac8a3d865aed819", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_db40575858474d3a843331bc41775ad3", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "0c77dd68f643447aa8f7a15a8f8d7c0d": { + "2aa613cbd16f441d9edaca57135cb071": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_62d335a76c35470a9d62b78583ff85f6", - "placeholder": "​", - "style": "IPY_MODEL_8944dd98d72349a5be7063852a21d1c5", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0dc71852ac254921bbed195ab4251c4f": { + "2b931418c3fd4234a23894c55017dfcf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3040,77 +3056,102 @@ "description_width": "" } }, - "105f329ad92c48cf972b910d94794f45": { - "model_module": "@jupyter-widgets/controls", + "2c0f9fff6e4c405fa1bfc4e835f67e87": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f905fd537338456d835ebeb8895ccb67", - "IPY_MODEL_6b4dbe42cec946a9860f4bf17694a897", - "IPY_MODEL_3c2c501bb364468ba6431695ddd1cb05" - ], - "layout": "IPY_MODEL_9cc620828b64434cb0d8bdaf6831e7ae", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "163f6d444ced4bd3a8aeef3fb3508584": { + "2cd5b2a3ff3c4ff2aed85ff949da477d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ec070a2ba34490b84dfd843b416f425", - "placeholder": "​", - "style": "IPY_MODEL_743d085136164ef5a0f8e5e72f4e15d8", + "layout": "IPY_MODEL_35a9338c6d8a4eaf862bc864ff5dd08b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e3ab4c006214c16ab971289caed8b54", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 2.0 } }, - "17b24e6d097243b8b8083d44d73119bc": { + "2e3ab4c006214c16ab971289caed8b54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb252788ddb9420a88bb9797d7813181", - "placeholder": "​", - "style": "IPY_MODEL_90005ad1662a4399b7be6a444a22baf4", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1a890e8102094b07bd098955bc285fc9": { + "35a9338c6d8a4eaf862bc864ff5dd08b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3163,7 +3204,25 @@ "width": null } }, - "1ec070a2ba34490b84dfd843b416f425": { + "363e5cd53b2a4843aff9e84163dbe4de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "36cdebc200c1419587f484aba7f952db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3216,116 +3275,16 @@ "width": null } }, - "1eec2d01466b406faa6fd5ecda631e5d": { + "37f8ad1027ad4b2182598247456a700e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_95e05aba0365417aab068330e8b9a12b", - "IPY_MODEL_0b506b5e968a47e5bdac76006be1a8f7", - "IPY_MODEL_23266deca5c24b548a53cd17dfc0c1ae" - ], - "layout": "IPY_MODEL_d4b0778e22ed4eadb1732422377e864c", - "tabbable": null, - "tooltip": null - } - }, - "200fde7945ec4df980b83907c2e129ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_022361df31e04c07a94380f640f14be5", - "placeholder": "​", - "style": "IPY_MODEL_c6726edea8694a65a03ad0e2fb31c97b", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: " - } - }, - "2191c71bc38844fda92806b5e0000cfa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "22793e0bfd4445869a5eb18544b4933c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, @@ -3334,46 +3293,7 @@ "text_color": null } }, - "23266deca5c24b548a53cd17dfc0c1ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b67fbc431ea48d79379601ba00ea8d4", - "placeholder": "​", - "style": "IPY_MODEL_af7256daba3e4d6fb5beb6e6efbedb1f", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 51.6MB/s]" - } - }, - "37fac0c2d47b4f4cbf18f1bb7348240e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3bbd7ddc822a40bb99e2eb7d57b32a62": { + "3de862f5c9be4a6dbdda8611c5e6dca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3426,7 +3346,7 @@ "width": null } }, - "3c2c501bb364468ba6431695ddd1cb05": { + "3f55ac718f964cec989f7482f3183b89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3441,15 +3361,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f0347dfa685c498e90e22335f0838175", + "layout": "IPY_MODEL_96e7054a006f4727bf45e5a42d11b2c2", "placeholder": "​", - "style": "IPY_MODEL_fa36e53aaef54fd689bfb9d08854a360", + "style": "IPY_MODEL_e0ebc204c13641a2b55191d60baf356f", "tabbable": null, "tooltip": null, - "value": " 10000/0 [00:00<00:00, 649162.53 examples/s]" + "value": "Map (num_proc=4): 100%" } }, - "48334b3517aa4ba7832a21e78f093fdd": { + "3fdf1f2465c1440b8c718c42a818ad75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3465,17 +3385,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9588000ebdf345bebf297a2c279caa6d", + "layout": "IPY_MODEL_e2c737cdcd6f4555b7e61b60589713ca", "max": 1.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0dc71852ac254921bbed195ab4251c4f", + "style": "IPY_MODEL_2b931418c3fd4234a23894c55017dfcf", "tabbable": null, "tooltip": null, "value": 1.0 } }, - "4b418860b14e47f58fd4b00a13032e44": { + "42a019e901584661bcd2c6b48c3bfd0d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4418d7b6a1184fb2a4103b6e70f569aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3528,7 +3466,7 @@ "width": null } }, - "4bba15efd9dc46a2a0ebd1291f8896dc": { + "471b6653307d4909b42ade69cf37da25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3581,7 +3519,65 @@ "width": null } }, - "53c815aed4304e5e9afdf1da25822e92": { + "493ed9042d5e4326adfc3d2585299355": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5174d8704fca4455bda38a72dfce3e9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5c4b4cfac6fb41f2bb0be9cbeb8c1702": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b07001a214c4c268b08c628a7ff9e8c", + "IPY_MODEL_c3de9a57ab064122bf5347d7f435c3e4", + "IPY_MODEL_677296d2bf664f35ad740d29f938fd5d" + ], + "layout": "IPY_MODEL_36cdebc200c1419587f484aba7f952db", + "tabbable": null, + "tooltip": null + } + }, + "5d70744021bd418c95053a103abb48af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3599,7 +3595,7 @@ "text_color": null } }, - "564801b11acd4cf59ad85465e6a2a44d": { + "6397b7759d21423b9c41a28075a672ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3652,7 +3648,30 @@ "width": null } }, - "60f912b3115d49cd827a4200e203f2c9": { + "677296d2bf664f35ad740d29f938fd5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e53626a1bc4048ddb632f06afadeb258", + "placeholder": "​", + "style": "IPY_MODEL_d6a1a3af52b34e20a14fd4ff35251275", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:01<00:00, 25.2MB/s]" + } + }, + "67d8a420ec26495abdcdb3b12e679851": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3668,60 +3687,65 @@ "description_width": "" } }, - "62d335a76c35470a9d62b78583ff85f6": { - "model_module": "@jupyter-widgets/base", + "68d54c5150274e5f8dcc0ad415e06a5a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6d967799b3234367929d5561fa93aa2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6698cd7395124e1a8376a76adf2c4453": { + "74d40d29ce84473bb02ef23b29a16b31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99867176270e42be92113eb850116874", + "IPY_MODEL_2cd5b2a3ff3c4ff2aed85ff949da477d", + "IPY_MODEL_9f33cb0947d349b78bad2c1cd8a403e5" + ], + "layout": "IPY_MODEL_b89c0aea8ebd4903ae202e5ffdb99c81", + "tabbable": null, + "tooltip": null + } + }, + "7562623f07f54b5cbff436c2d9c3b869": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3774,7 +3798,7 @@ "width": null } }, - "6a9836c5b18f438b8377e541518ee897": { + "77816eaf3dc34ead865eac35c87b2e04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3827,33 +3851,7 @@ "width": null } }, - "6b4dbe42cec946a9860f4bf17694a897": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f62babe0a6794ddfb0512fdd7ec0d2e6", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d16e6000e234533bcde9ed155252467", - "tabbable": null, - "tooltip": null, - "value": 1.0 - } - }, - "6b67fbc431ea48d79379601ba00ea8d4": { + "7930a46787484e95a506fe2ffde1ac01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3906,25 +3904,7 @@ "width": null } }, - "6caa5a8063894f4995c98e645d6ff9fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "743d085136164ef5a0f8e5e72f4e15d8": { + "79c541cc0f894a56a2797fbef2534db4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3942,73 +3922,7 @@ "text_color": null } }, - "76145457ff634734ab36f88825eb03f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "77468d8237894488926b994607e32290": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8be3516c6484667a59994d658e9fa5b", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60f912b3115d49cd827a4200e203f2c9", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "77d4a0e4587c4fd6954b30bf64d2759c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_17b24e6d097243b8b8083d44d73119bc", - "IPY_MODEL_bb5b1299d4bf4b4a8c5edb9c01e08f4a", - "IPY_MODEL_c63ff68274c34fac9f7ad054164174d4" - ], - "layout": "IPY_MODEL_edfeed6b7cf649fda36e013a4fdaa7ff", - "tabbable": null, - "tooltip": null - } - }, - "7f55f4f4deb242e49f6586cf22c09f47": { + "7a3e0d588f0248b28b5c9d27a4b7737c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4061,78 +3975,48 @@ "width": null } }, - "8039157c6cfa420f945b501e5a83bbe0": { + "7e37a4f7322147979cf7891faa98ee14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc77e2b0e4414a47ae304a5cf6344637", + "placeholder": "​", + "style": "IPY_MODEL_363e5cd53b2a4843aff9e84163dbe4de", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: " } }, - "8504f14162fd453a920ab503c6015fac": { - "model_module": "@jupyter-widgets/base", + "810dd6ae071b4bc39252b1d0c0529379": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "85da4e0901624e5d8bff898ceea6d901": { + "834eb2f7d0d74cb785e58552bdaab3c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4179,90 +4063,52 @@ "order": null, "overflow": null, "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "884ffee63a00480ea5edbb59b662c16f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a9836c5b18f438b8377e541518ee897", - "placeholder": "​", - "style": "IPY_MODEL_6caa5a8063894f4995c98e645d6ff9fe", - "tabbable": null, - "tooltip": null, - "value": " 60000/0 [00:00<00:00, 972945.69 examples/s]" - } - }, - "8944dd98d72349a5be7063852a21d1c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "90005ad1662a4399b7be6a444a22baf4": { + "8b07001a214c4c268b08c628a7ff9e8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_834eb2f7d0d74cb785e58552bdaab3c2", + "placeholder": "​", + "style": "IPY_MODEL_ae5b4be114cf49a3a236e2414ea9ec74", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "91107edd04e24ddfa18822baf8d28255": { + "8eac27d48e0d4eda8f3f1a29c903074b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "9588000ebdf345bebf297a2c279caa6d": { + "8f2272d60a3248e29fe79642f0ff3265": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4312,10 +4158,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "95e05aba0365417aab068330e8b9a12b": { + "903186124d324e7fb525fa3ff2403018": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4330,15 +4176,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4bba15efd9dc46a2a0ebd1291f8896dc", + "layout": "IPY_MODEL_285fd65ebfa84b7db898a122b01e9cf6", "placeholder": "​", - "style": "IPY_MODEL_d5749ba00c354619848ffd0fe274e6fd", + "style": "IPY_MODEL_5174d8704fca4455bda38a72dfce3e9e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 5.18M/5.18M [00:00<00:00, 15.5MB/s]" + } + }, + "923abd22bde14711966b7c5552bf4c5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6397b7759d21423b9c41a28075a672ed", + "placeholder": "​", + "style": "IPY_MODEL_79c541cc0f894a56a2797fbef2534db4", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: " } }, - "9cc620828b64434cb0d8bdaf6831e7ae": { + "96e7054a006f4727bf45e5a42d11b2c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4391,23 +4260,30 @@ "width": null } }, - "9d16e6000e234533bcde9ed155252467": { + "99867176270e42be92113eb850116874": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b207a5d2a3bf4b9285d84b1c2d7408c7", + "placeholder": "​", + "style": "IPY_MODEL_5d70744021bd418c95053a103abb48af", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "a2342367645f4628a390dd1f293fe17a": { + "9f33cb0947d349b78bad2c1cd8a403e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4422,57 +4298,94 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3bbd7ddc822a40bb99e2eb7d57b32a62", + "layout": "IPY_MODEL_7a3e0d588f0248b28b5c9d27a4b7737c", "placeholder": "​", - "style": "IPY_MODEL_f30bada11cdc4aa5a3be563b379969f3", + "style": "IPY_MODEL_e753e814b85c48f89b1839b325827653", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 62.3MB/s]" + "value": " 2/2 [00:00<00:00, 553.67it/s]" } }, - "a6e7d1c0d21c4730876e3dc529f3db41": { + "a5440438a96642aa822f3db19dd9d2b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_163f6d444ced4bd3a8aeef3fb3508584", - "IPY_MODEL_77468d8237894488926b994607e32290", - "IPY_MODEL_d63672f8f5a54edb893686a037241111" - ], - "layout": "IPY_MODEL_1a890e8102094b07bd098955bc285fc9", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee8b1d7e105c4d54aeff1bbda21c46cf", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67d8a420ec26495abdcdb3b12e679851", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "a76fc2e470334b3fbdbd3f0089500faa": { - "model_module": "@jupyter-widgets/controls", + "a8a5a7c2120f4f4e9594f6cc1ca2c60a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "af7256daba3e4d6fb5beb6e6efbedb1f": { + "ae5b4be114cf49a3a236e2414ea9ec74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4490,7 +4403,60 @@ "text_color": null } }, - "b3c252ad82284cfebb7d60516a02a5c8": { + "b207a5d2a3bf4b9285d84b1c2d7408c7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b3a233d32141401f8db7bc191a381641": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4505,15 +4471,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_030281198fd34a91972408f1da63fd2c", + "layout": "IPY_MODEL_fbc31c35b38e4af899f96c14b9989fb1", "placeholder": "​", - "style": "IPY_MODEL_8039157c6cfa420f945b501e5a83bbe0", + "style": "IPY_MODEL_37f8ad1027ad4b2182598247456a700e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 60000/0 [00:00<00:00, 909801.02 examples/s]" } }, - "bb252788ddb9420a88bb9797d7813181": { + "b89c0aea8ebd4903ae202e5ffdb99c81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4566,33 +4532,31 @@ "width": null } }, - "bb5b1299d4bf4b4a8c5edb9c01e08f4a": { + "bbfffb031cc24eb4ae644fb9173c9de0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6698cd7395124e1a8376a76adf2c4453", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_37fac0c2d47b4f4cbf18f1bb7348240e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_923abd22bde14711966b7c5552bf4c5e", + "IPY_MODEL_3fdf1f2465c1440b8c718c42a818ad75", + "IPY_MODEL_b3a233d32141401f8db7bc191a381641" + ], + "layout": "IPY_MODEL_ffd7dcc7b14a4ef798b2746aa3b3c7f0", "tabbable": null, - "tooltip": null, - "value": 2.0 + "tooltip": null } }, - "bf209122024e46c5ab88db5cb5138baf": { + "be05548dfdec494981be4be62e6a5d4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4607,15 +4571,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2191c71bc38844fda92806b5e0000cfa", + "layout": "IPY_MODEL_1f8b5c4b58024e64be421bef7eadc5d0", "placeholder": "​", - "style": "IPY_MODEL_a76fc2e470334b3fbdbd3f0089500faa", + "style": "IPY_MODEL_42a019e901584661bcd2c6b48c3bfd0d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7058.48 examples/s]" + "value": " 60000/60000 [00:38<00:00, 1621.13it/s]" } }, - "c0e317ca2efa410b9b4b1b686da287f3": { + "c1e31f34f2ff4836aeaad3e21d2121f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4631,40 +4595,90 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8504f14162fd453a920ab503c6015fac", + "layout": "IPY_MODEL_471b6653307d4909b42ade69cf37da25", "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_02a75c6b9edc4a8da0feb9bfb6765cbb", + "style": "IPY_MODEL_8eac27d48e0d4eda8f3f1a29c903074b", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "c3de9a57ab064122bf5347d7f435c3e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3de862f5c9be4a6dbdda8611c5e6dca5", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_493ed9042d5e4326adfc3d2585299355", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "c74f77bc004047b7b8662e029b1fcb07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7930a46787484e95a506fe2ffde1ac01", + "placeholder": "​", + "style": "IPY_MODEL_6d967799b3234367929d5561fa93aa2a", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "100%" } }, - "c63ff68274c34fac9f7ad054164174d4": { + "c7e1f8c4d56340c8bb108cd4fe09524c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85da4e0901624e5d8bff898ceea6d901", - "placeholder": "​", - "style": "IPY_MODEL_91107edd04e24ddfa18822baf8d28255", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c74f77bc004047b7b8662e029b1fcb07", + "IPY_MODEL_a5440438a96642aa822f3db19dd9d2b2", + "IPY_MODEL_be05548dfdec494981be4be62e6a5d4a" + ], + "layout": "IPY_MODEL_fddb77a232504422a0b397d40d2ebc1e", "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 521.03it/s]" + "tooltip": null } }, - "c6726edea8694a65a03ad0e2fb31c97b": { + "d6a1a3af52b34e20a14fd4ff35251275": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4682,7 +4696,7 @@ "text_color": null } }, - "c8be3516c6484667a59994d658e9fa5b": { + "d70aa7ea4b3b44ea9784c79850fb7af4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4732,10 +4746,62 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "dc7818977fcb49399992e292f7bab51d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a8a5a7c2120f4f4e9594f6cc1ca2c60a", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68d54c5150274e5f8dcc0ad415e06a5a", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "dfd15be73a8148cdb1ab8b91c3f276a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d70aa7ea4b3b44ea9784c79850fb7af4", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1644edf88a214176b72d5e2999de8b8e", + "tabbable": null, + "tooltip": null, + "value": 1.0 } }, - "ce69eb6fd8f34a5bad0f15df3a6b52b0": { + "e05b0e6e74fa464d816d0358a6dc76b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4750,16 +4816,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0c77dd68f643447aa8f7a15a8f8d7c0d", - "IPY_MODEL_e28a4e53150a428d98c3c546e1b45e03", - "IPY_MODEL_bf209122024e46c5ab88db5cb5138baf" + "IPY_MODEL_3f55ac718f964cec989f7482f3183b89", + "IPY_MODEL_dc7818977fcb49399992e292f7bab51d", + "IPY_MODEL_f98496a8928c4621ac3e712295d0f550" ], - "layout": "IPY_MODEL_7f55f4f4deb242e49f6586cf22c09f47", + "layout": "IPY_MODEL_8f2272d60a3248e29fe79642f0ff3265", "tabbable": null, "tooltip": null } }, - "cf33f9566dfc4d708dcbfd58fe688462": { + "e0ebc204c13641a2b55191d60baf356f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e2c737cdcd6f4555b7e61b60589713ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4809,10 +4893,10 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "d4b0778e22ed4eadb1732422377e864c": { + "e53626a1bc4048ddb632f06afadeb258": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4865,90 +4949,49 @@ "width": null } }, - "d5749ba00c354619848ffd0fe274e6fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d63672f8f5a54edb893686a037241111": { + "e5ff19704e974b418104ac00b0017738": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b418860b14e47f58fd4b00a13032e44", - "placeholder": "​", - "style": "IPY_MODEL_53c815aed4304e5e9afdf1da25822e92", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f69d38dc83a4401bb43f2a3672cfcb79", + "IPY_MODEL_c1e31f34f2ff4836aeaad3e21d2121f5", + "IPY_MODEL_903186124d324e7fb525fa3ff2403018" + ], + "layout": "IPY_MODEL_77816eaf3dc34ead865eac35c87b2e04", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1692.62it/s]" + "tooltip": null } }, - "db40575858474d3a843331bc41775ad3": { + "e753e814b85c48f89b1839b325827653": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e28a4e53150a428d98c3c546e1b45e03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ef735a55d4af44f0ae295a9724d55bf7", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_76145457ff634734ab36f88825eb03f4", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e589d0c9f4074d929f567d526d1382cd": { + "e7800f2f49ce4746b2842751e0616d59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4963,16 +5006,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b3c252ad82284cfebb7d60516a02a5c8", - "IPY_MODEL_c0e317ca2efa410b9b4b1b686da287f3", - "IPY_MODEL_a2342367645f4628a390dd1f293fe17a" + "IPY_MODEL_7e37a4f7322147979cf7891faa98ee14", + "IPY_MODEL_dfd15be73a8148cdb1ab8b91c3f276a7", + "IPY_MODEL_1ec724c611f14ab38760c5b566b9582f" ], - "layout": "IPY_MODEL_cf33f9566dfc4d708dcbfd58fe688462", + "layout": "IPY_MODEL_4418d7b6a1184fb2a4103b6e70f569aa", "tabbable": null, "tooltip": null } }, - "e6777fbed25941949ac8a3d865aed819": { + "ee8b1d7e105c4d54aeff1bbda21c46cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5025,31 +5068,48 @@ "width": null } }, - "ea33752ef0e44cc7a07b481740f0d64f": { + "effe32e5f0a941f080bbc9527408df9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f69d38dc83a4401bb43f2a3672cfcb79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_200fde7945ec4df980b83907c2e129ef", - "IPY_MODEL_48334b3517aa4ba7832a21e78f093fdd", - "IPY_MODEL_884ffee63a00480ea5edbb59b662c16f" - ], - "layout": "IPY_MODEL_ffae2d4faf394024b9fa81123e38597b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c0f9fff6e4c405fa1bfc4e835f67e87", + "placeholder": "​", + "style": "IPY_MODEL_2aa613cbd16f441d9edaca57135cb071", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "edfeed6b7cf649fda36e013a4fdaa7ff": { + "f7a0422ab0104b88942f6e13074466fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5102,7 +5162,30 @@ "width": null } }, - "ef735a55d4af44f0ae295a9724d55bf7": { + "f98496a8928c4621ac3e712295d0f550": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7562623f07f54b5cbff436c2d9c3b869", + "placeholder": "​", + "style": "IPY_MODEL_810dd6ae071b4bc39252b1d0c0529379", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6473.19 examples/s]" + } + }, + "fbc31c35b38e4af899f96c14b9989fb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5155,7 +5238,7 @@ "width": null } }, - "f0347dfa685c498e90e22335f0838175": { + "fc77e2b0e4414a47ae304a5cf6344637": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5208,25 +5291,7 @@ "width": null } }, - "f30bada11cdc4aa5a3be563b379969f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f62babe0a6794ddfb0512fdd7ec0d2e6": { + "fddb77a232504422a0b397d40d2ebc1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5276,51 +5341,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" - } - }, - "f905fd537338456d835ebeb8895ccb67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_564801b11acd4cf59ad85465e6a2a44d", - "placeholder": "​", - "style": "IPY_MODEL_22793e0bfd4445869a5eb18544b4933c", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: " - } - }, - "fa36e53aaef54fd689bfb9d08854a360": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "width": null } }, - "ffae2d4faf394024b9fa81123e38597b": { + "ffd7dcc7b14a4ef798b2746aa3b3c7f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 87da21dc3..0df9de925 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:32.645032Z", - "iopub.status.busy": "2024-02-08T04:29:32.644695Z", - "iopub.status.idle": "2024-02-08T04:29:33.720265Z", - "shell.execute_reply": "2024-02-08T04:29:33.719714Z" + "iopub.execute_input": "2024-02-08T05:16:23.904483Z", + "iopub.status.busy": "2024-02-08T05:16:23.904288Z", + "iopub.status.idle": "2024-02-08T05:16:25.064878Z", + "shell.execute_reply": "2024-02-08T05:16:25.064318Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.722754Z", - "iopub.status.busy": "2024-02-08T04:29:33.722495Z", - "iopub.status.idle": "2024-02-08T04:29:33.896878Z", - "shell.execute_reply": "2024-02-08T04:29:33.896375Z" + "iopub.execute_input": "2024-02-08T05:16:25.067486Z", + "iopub.status.busy": "2024-02-08T05:16:25.067046Z", + "iopub.status.idle": "2024-02-08T05:16:25.249068Z", + "shell.execute_reply": "2024-02-08T05:16:25.248446Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.899042Z", - "iopub.status.busy": "2024-02-08T04:29:33.898858Z", - "iopub.status.idle": "2024-02-08T04:29:33.910302Z", - "shell.execute_reply": "2024-02-08T04:29:33.909891Z" + "iopub.execute_input": "2024-02-08T05:16:25.251515Z", + "iopub.status.busy": "2024-02-08T05:16:25.251316Z", + "iopub.status.idle": "2024-02-08T05:16:25.263540Z", + "shell.execute_reply": "2024-02-08T05:16:25.263084Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.912102Z", - "iopub.status.busy": "2024-02-08T04:29:33.911929Z", - "iopub.status.idle": "2024-02-08T04:29:34.143692Z", - "shell.execute_reply": "2024-02-08T04:29:34.143115Z" + "iopub.execute_input": "2024-02-08T05:16:25.265557Z", + "iopub.status.busy": "2024-02-08T05:16:25.265345Z", + "iopub.status.idle": "2024-02-08T05:16:25.502662Z", + "shell.execute_reply": "2024-02-08T05:16:25.502081Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:34.146119Z", - "iopub.status.busy": "2024-02-08T04:29:34.145722Z", - "iopub.status.idle": "2024-02-08T04:29:34.171831Z", - "shell.execute_reply": "2024-02-08T04:29:34.171416Z" + "iopub.execute_input": "2024-02-08T05:16:25.504829Z", + "iopub.status.busy": "2024-02-08T05:16:25.504610Z", + "iopub.status.idle": "2024-02-08T05:16:25.531768Z", + "shell.execute_reply": "2024-02-08T05:16:25.531124Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:34.173843Z", - "iopub.status.busy": "2024-02-08T04:29:34.173536Z", - "iopub.status.idle": "2024-02-08T04:29:35.807810Z", - "shell.execute_reply": "2024-02-08T04:29:35.807175Z" + "iopub.execute_input": "2024-02-08T05:16:25.534300Z", + "iopub.status.busy": "2024-02-08T05:16:25.534072Z", + "iopub.status.idle": "2024-02-08T05:16:27.324472Z", + "shell.execute_reply": "2024-02-08T05:16:27.323774Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:35.810545Z", - "iopub.status.busy": "2024-02-08T04:29:35.809961Z", - "iopub.status.idle": "2024-02-08T04:29:35.825604Z", - "shell.execute_reply": "2024-02-08T04:29:35.825067Z" + "iopub.execute_input": "2024-02-08T05:16:27.327517Z", + "iopub.status.busy": "2024-02-08T05:16:27.326712Z", + "iopub.status.idle": "2024-02-08T05:16:27.344016Z", + "shell.execute_reply": "2024-02-08T05:16:27.343410Z" }, "scrolled": true }, @@ -603,10 +603,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:35.827648Z", - "iopub.status.busy": "2024-02-08T04:29:35.827315Z", - "iopub.status.idle": "2024-02-08T04:29:37.188484Z", - "shell.execute_reply": "2024-02-08T04:29:37.187888Z" + "iopub.execute_input": "2024-02-08T05:16:27.346267Z", + "iopub.status.busy": "2024-02-08T05:16:27.345912Z", + "iopub.status.idle": "2024-02-08T05:16:28.805475Z", + "shell.execute_reply": "2024-02-08T05:16:28.804859Z" }, "id": "AaHC5MRKjruT" }, @@ -725,10 +725,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.191219Z", - "iopub.status.busy": "2024-02-08T04:29:37.190509Z", - "iopub.status.idle": "2024-02-08T04:29:37.203596Z", - "shell.execute_reply": "2024-02-08T04:29:37.203132Z" + "iopub.execute_input": "2024-02-08T05:16:28.808277Z", + "iopub.status.busy": "2024-02-08T05:16:28.807550Z", + "iopub.status.idle": "2024-02-08T05:16:28.822035Z", + "shell.execute_reply": "2024-02-08T05:16:28.821504Z" }, "id": "Wy27rvyhjruU" }, @@ -777,10 +777,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.205575Z", - "iopub.status.busy": "2024-02-08T04:29:37.205257Z", - "iopub.status.idle": "2024-02-08T04:29:37.276055Z", - "shell.execute_reply": "2024-02-08T04:29:37.275466Z" + "iopub.execute_input": "2024-02-08T05:16:28.824303Z", + "iopub.status.busy": "2024-02-08T05:16:28.823967Z", + "iopub.status.idle": "2024-02-08T05:16:28.906213Z", + "shell.execute_reply": "2024-02-08T05:16:28.905616Z" }, "id": "Db8YHnyVjruU" }, @@ -887,10 +887,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.278425Z", - "iopub.status.busy": "2024-02-08T04:29:37.277958Z", - "iopub.status.idle": "2024-02-08T04:29:37.484301Z", - "shell.execute_reply": "2024-02-08T04:29:37.483767Z" + "iopub.execute_input": "2024-02-08T05:16:28.908687Z", + "iopub.status.busy": "2024-02-08T05:16:28.908315Z", + "iopub.status.idle": "2024-02-08T05:16:29.122035Z", + "shell.execute_reply": "2024-02-08T05:16:29.121452Z" }, "id": "iJqAHuS2jruV" }, @@ -927,10 +927,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.486294Z", - "iopub.status.busy": "2024-02-08T04:29:37.486111Z", - "iopub.status.idle": "2024-02-08T04:29:37.502750Z", - "shell.execute_reply": "2024-02-08T04:29:37.502299Z" + "iopub.execute_input": "2024-02-08T05:16:29.124454Z", + "iopub.status.busy": "2024-02-08T05:16:29.124090Z", + "iopub.status.idle": "2024-02-08T05:16:29.141232Z", + "shell.execute_reply": "2024-02-08T05:16:29.140709Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1396,10 +1396,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.504575Z", - "iopub.status.busy": "2024-02-08T04:29:37.504403Z", - "iopub.status.idle": "2024-02-08T04:29:37.514117Z", - "shell.execute_reply": "2024-02-08T04:29:37.513675Z" + "iopub.execute_input": "2024-02-08T05:16:29.143296Z", + "iopub.status.busy": "2024-02-08T05:16:29.143026Z", + "iopub.status.idle": "2024-02-08T05:16:29.153368Z", + "shell.execute_reply": "2024-02-08T05:16:29.152882Z" }, "id": "0lonvOYvjruV" }, @@ -1546,10 +1546,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.516079Z", - "iopub.status.busy": "2024-02-08T04:29:37.515743Z", - "iopub.status.idle": "2024-02-08T04:29:37.601813Z", - "shell.execute_reply": "2024-02-08T04:29:37.601272Z" + "iopub.execute_input": "2024-02-08T05:16:29.155357Z", + "iopub.status.busy": "2024-02-08T05:16:29.155177Z", + "iopub.status.idle": "2024-02-08T05:16:29.246946Z", + "shell.execute_reply": "2024-02-08T05:16:29.246397Z" }, "id": "MfqTCa3kjruV" }, @@ -1630,10 +1630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.604001Z", - "iopub.status.busy": "2024-02-08T04:29:37.603757Z", - "iopub.status.idle": "2024-02-08T04:29:37.719348Z", - "shell.execute_reply": "2024-02-08T04:29:37.718745Z" + "iopub.execute_input": "2024-02-08T05:16:29.249443Z", + "iopub.status.busy": "2024-02-08T05:16:29.249083Z", + "iopub.status.idle": "2024-02-08T05:16:29.393372Z", + "shell.execute_reply": "2024-02-08T05:16:29.392737Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1693,10 +1693,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.721930Z", - "iopub.status.busy": "2024-02-08T04:29:37.721478Z", - "iopub.status.idle": "2024-02-08T04:29:37.725255Z", - "shell.execute_reply": "2024-02-08T04:29:37.724725Z" + "iopub.execute_input": "2024-02-08T05:16:29.395694Z", + "iopub.status.busy": "2024-02-08T05:16:29.395428Z", + "iopub.status.idle": "2024-02-08T05:16:29.399352Z", + "shell.execute_reply": "2024-02-08T05:16:29.398811Z" }, "id": "0rXP3ZPWjruW" }, @@ -1734,10 +1734,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.727192Z", - "iopub.status.busy": "2024-02-08T04:29:37.726886Z", - "iopub.status.idle": "2024-02-08T04:29:37.730475Z", - "shell.execute_reply": "2024-02-08T04:29:37.729957Z" + "iopub.execute_input": "2024-02-08T05:16:29.401424Z", + "iopub.status.busy": "2024-02-08T05:16:29.401231Z", + "iopub.status.idle": "2024-02-08T05:16:29.404974Z", + "shell.execute_reply": "2024-02-08T05:16:29.404417Z" }, "id": "-iRPe8KXjruW" }, @@ -1792,10 +1792,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.732457Z", - "iopub.status.busy": "2024-02-08T04:29:37.732160Z", - "iopub.status.idle": "2024-02-08T04:29:37.769591Z", - "shell.execute_reply": "2024-02-08T04:29:37.769152Z" + "iopub.execute_input": "2024-02-08T05:16:29.406936Z", + "iopub.status.busy": "2024-02-08T05:16:29.406750Z", + "iopub.status.idle": "2024-02-08T05:16:29.445136Z", + "shell.execute_reply": "2024-02-08T05:16:29.444538Z" }, "id": "ZpipUliyjruW" }, @@ -1846,10 +1846,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.771657Z", - "iopub.status.busy": "2024-02-08T04:29:37.771341Z", - "iopub.status.idle": "2024-02-08T04:29:37.814037Z", - "shell.execute_reply": "2024-02-08T04:29:37.813596Z" + "iopub.execute_input": "2024-02-08T05:16:29.447272Z", + "iopub.status.busy": "2024-02-08T05:16:29.447037Z", + "iopub.status.idle": "2024-02-08T05:16:29.493067Z", + "shell.execute_reply": "2024-02-08T05:16:29.492437Z" }, "id": "SLq-3q4xjruX" }, @@ -1918,10 +1918,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.815990Z", - "iopub.status.busy": "2024-02-08T04:29:37.815690Z", - "iopub.status.idle": "2024-02-08T04:29:37.905459Z", - "shell.execute_reply": "2024-02-08T04:29:37.904784Z" + "iopub.execute_input": "2024-02-08T05:16:29.495258Z", + "iopub.status.busy": "2024-02-08T05:16:29.495057Z", + "iopub.status.idle": "2024-02-08T05:16:29.598321Z", + "shell.execute_reply": "2024-02-08T05:16:29.597712Z" }, "id": "g5LHhhuqFbXK" }, @@ -1953,10 +1953,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.907986Z", - "iopub.status.busy": "2024-02-08T04:29:37.907545Z", - "iopub.status.idle": "2024-02-08T04:29:37.987051Z", - "shell.execute_reply": "2024-02-08T04:29:37.986492Z" + "iopub.execute_input": "2024-02-08T05:16:29.601066Z", + "iopub.status.busy": "2024-02-08T05:16:29.600752Z", + "iopub.status.idle": "2024-02-08T05:16:29.709010Z", + "shell.execute_reply": "2024-02-08T05:16:29.708373Z" }, "id": "p7w8F8ezBcet" }, @@ -2013,10 +2013,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.989407Z", - "iopub.status.busy": "2024-02-08T04:29:37.989045Z", - "iopub.status.idle": "2024-02-08T04:29:38.193150Z", - "shell.execute_reply": "2024-02-08T04:29:38.192637Z" + "iopub.execute_input": "2024-02-08T05:16:29.711482Z", + "iopub.status.busy": "2024-02-08T05:16:29.711110Z", + "iopub.status.idle": "2024-02-08T05:16:29.921984Z", + "shell.execute_reply": "2024-02-08T05:16:29.921374Z" }, "id": "WETRL74tE_sU" }, @@ -2051,10 +2051,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.195237Z", - "iopub.status.busy": "2024-02-08T04:29:38.194911Z", - "iopub.status.idle": "2024-02-08T04:29:38.360571Z", - "shell.execute_reply": "2024-02-08T04:29:38.359936Z" + "iopub.execute_input": "2024-02-08T05:16:29.924291Z", + "iopub.status.busy": "2024-02-08T05:16:29.923945Z", + "iopub.status.idle": "2024-02-08T05:16:30.137676Z", + "shell.execute_reply": "2024-02-08T05:16:30.137058Z" }, "id": "kCfdx2gOLmXS" }, @@ -2216,10 +2216,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.363019Z", - "iopub.status.busy": "2024-02-08T04:29:38.362538Z", - "iopub.status.idle": "2024-02-08T04:29:38.368605Z", - "shell.execute_reply": "2024-02-08T04:29:38.368062Z" + "iopub.execute_input": "2024-02-08T05:16:30.140295Z", + "iopub.status.busy": "2024-02-08T05:16:30.139915Z", + "iopub.status.idle": "2024-02-08T05:16:30.146272Z", + "shell.execute_reply": "2024-02-08T05:16:30.145735Z" }, "id": "-uogYRWFYnuu" }, @@ -2273,10 +2273,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.370392Z", - "iopub.status.busy": "2024-02-08T04:29:38.370219Z", - "iopub.status.idle": "2024-02-08T04:29:38.582389Z", - "shell.execute_reply": "2024-02-08T04:29:38.581969Z" + "iopub.execute_input": "2024-02-08T05:16:30.148427Z", + "iopub.status.busy": "2024-02-08T05:16:30.148086Z", + "iopub.status.idle": "2024-02-08T05:16:30.366341Z", + "shell.execute_reply": "2024-02-08T05:16:30.365773Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2323,10 +2323,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.584400Z", - "iopub.status.busy": "2024-02-08T04:29:38.584220Z", - "iopub.status.idle": "2024-02-08T04:29:39.639347Z", - "shell.execute_reply": "2024-02-08T04:29:39.638773Z" + "iopub.execute_input": "2024-02-08T05:16:30.369080Z", + "iopub.status.busy": "2024-02-08T05:16:30.368616Z", + "iopub.status.idle": "2024-02-08T05:16:31.451674Z", + "shell.execute_reply": "2024-02-08T05:16:31.451027Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index dfa012bd1..3c2d16d5f 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:42.889519Z", - "iopub.status.busy": "2024-02-08T04:29:42.889351Z", - "iopub.status.idle": "2024-02-08T04:29:43.915960Z", - "shell.execute_reply": "2024-02-08T04:29:43.915405Z" + "iopub.execute_input": "2024-02-08T05:16:34.936998Z", + "iopub.status.busy": "2024-02-08T05:16:34.936817Z", + "iopub.status.idle": "2024-02-08T05:16:36.033944Z", + "shell.execute_reply": "2024-02-08T05:16:36.033316Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.918566Z", - "iopub.status.busy": "2024-02-08T04:29:43.918062Z", - "iopub.status.idle": "2024-02-08T04:29:43.921217Z", - "shell.execute_reply": "2024-02-08T04:29:43.920677Z" + "iopub.execute_input": "2024-02-08T05:16:36.036779Z", + "iopub.status.busy": "2024-02-08T05:16:36.036213Z", + "iopub.status.idle": "2024-02-08T05:16:36.039446Z", + "shell.execute_reply": "2024-02-08T05:16:36.038895Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.923276Z", - "iopub.status.busy": "2024-02-08T04:29:43.922951Z", - "iopub.status.idle": "2024-02-08T04:29:43.930415Z", - "shell.execute_reply": "2024-02-08T04:29:43.929991Z" + "iopub.execute_input": "2024-02-08T05:16:36.041728Z", + "iopub.status.busy": "2024-02-08T05:16:36.041326Z", + "iopub.status.idle": "2024-02-08T05:16:36.049301Z", + "shell.execute_reply": "2024-02-08T05:16:36.048798Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.932385Z", - "iopub.status.busy": "2024-02-08T04:29:43.932070Z", - "iopub.status.idle": "2024-02-08T04:29:43.978343Z", - "shell.execute_reply": "2024-02-08T04:29:43.977921Z" + "iopub.execute_input": "2024-02-08T05:16:36.051266Z", + "iopub.status.busy": "2024-02-08T05:16:36.051078Z", + "iopub.status.idle": "2024-02-08T05:16:36.098632Z", + "shell.execute_reply": "2024-02-08T05:16:36.098136Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.980378Z", - "iopub.status.busy": "2024-02-08T04:29:43.980064Z", - "iopub.status.idle": "2024-02-08T04:29:43.996196Z", - "shell.execute_reply": "2024-02-08T04:29:43.995736Z" + "iopub.execute_input": "2024-02-08T05:16:36.101112Z", + "iopub.status.busy": "2024-02-08T05:16:36.100774Z", + "iopub.status.idle": "2024-02-08T05:16:36.118463Z", + "shell.execute_reply": "2024-02-08T05:16:36.117914Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.998249Z", - "iopub.status.busy": "2024-02-08T04:29:43.997939Z", - "iopub.status.idle": "2024-02-08T04:29:44.001493Z", - "shell.execute_reply": "2024-02-08T04:29:44.001025Z" + "iopub.execute_input": "2024-02-08T05:16:36.120776Z", + "iopub.status.busy": "2024-02-08T05:16:36.120434Z", + "iopub.status.idle": "2024-02-08T05:16:36.124402Z", + "shell.execute_reply": "2024-02-08T05:16:36.123935Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.003462Z", - "iopub.status.busy": "2024-02-08T04:29:44.003206Z", - "iopub.status.idle": "2024-02-08T04:29:44.032086Z", - "shell.execute_reply": "2024-02-08T04:29:44.031667Z" + "iopub.execute_input": "2024-02-08T05:16:36.126729Z", + "iopub.status.busy": "2024-02-08T05:16:36.126390Z", + "iopub.status.idle": "2024-02-08T05:16:36.154633Z", + "shell.execute_reply": "2024-02-08T05:16:36.154141Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.033896Z", - "iopub.status.busy": "2024-02-08T04:29:44.033722Z", - "iopub.status.idle": "2024-02-08T04:29:44.059752Z", - "shell.execute_reply": "2024-02-08T04:29:44.059305Z" + "iopub.execute_input": "2024-02-08T05:16:36.157128Z", + "iopub.status.busy": "2024-02-08T05:16:36.156770Z", + "iopub.status.idle": "2024-02-08T05:16:36.183420Z", + "shell.execute_reply": "2024-02-08T05:16:36.182914Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.061575Z", - "iopub.status.busy": "2024-02-08T04:29:44.061407Z", - "iopub.status.idle": "2024-02-08T04:29:45.734046Z", - "shell.execute_reply": "2024-02-08T04:29:45.733523Z" + "iopub.execute_input": "2024-02-08T05:16:36.185904Z", + "iopub.status.busy": "2024-02-08T05:16:36.185669Z", + "iopub.status.idle": "2024-02-08T05:16:38.003463Z", + "shell.execute_reply": "2024-02-08T05:16:38.002793Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.736683Z", - "iopub.status.busy": "2024-02-08T04:29:45.736217Z", - "iopub.status.idle": "2024-02-08T04:29:45.742703Z", - "shell.execute_reply": "2024-02-08T04:29:45.742248Z" + "iopub.execute_input": "2024-02-08T05:16:38.006228Z", + "iopub.status.busy": "2024-02-08T05:16:38.005857Z", + "iopub.status.idle": "2024-02-08T05:16:38.012858Z", + "shell.execute_reply": "2024-02-08T05:16:38.012286Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.744717Z", - "iopub.status.busy": "2024-02-08T04:29:45.744395Z", - "iopub.status.idle": "2024-02-08T04:29:45.756449Z", - "shell.execute_reply": "2024-02-08T04:29:45.756029Z" + "iopub.execute_input": "2024-02-08T05:16:38.015175Z", + "iopub.status.busy": "2024-02-08T05:16:38.014963Z", + "iopub.status.idle": "2024-02-08T05:16:38.028000Z", + "shell.execute_reply": "2024-02-08T05:16:38.027502Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.758369Z", - "iopub.status.busy": "2024-02-08T04:29:45.757999Z", - "iopub.status.idle": "2024-02-08T04:29:45.764109Z", - "shell.execute_reply": "2024-02-08T04:29:45.763637Z" + "iopub.execute_input": "2024-02-08T05:16:38.030095Z", + "iopub.status.busy": "2024-02-08T05:16:38.029746Z", + "iopub.status.idle": "2024-02-08T05:16:38.036269Z", + "shell.execute_reply": "2024-02-08T05:16:38.035718Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.766108Z", - "iopub.status.busy": "2024-02-08T04:29:45.765938Z", - "iopub.status.idle": "2024-02-08T04:29:45.768411Z", - "shell.execute_reply": "2024-02-08T04:29:45.767997Z" + "iopub.execute_input": "2024-02-08T05:16:38.038467Z", + "iopub.status.busy": "2024-02-08T05:16:38.038157Z", + "iopub.status.idle": "2024-02-08T05:16:38.040886Z", + "shell.execute_reply": "2024-02-08T05:16:38.040428Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.770202Z", - "iopub.status.busy": "2024-02-08T04:29:45.770034Z", - "iopub.status.idle": "2024-02-08T04:29:45.773298Z", - "shell.execute_reply": "2024-02-08T04:29:45.772779Z" + "iopub.execute_input": "2024-02-08T05:16:38.042877Z", + "iopub.status.busy": "2024-02-08T05:16:38.042548Z", + "iopub.status.idle": "2024-02-08T05:16:38.046125Z", + "shell.execute_reply": "2024-02-08T05:16:38.045579Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.775318Z", - "iopub.status.busy": "2024-02-08T04:29:45.775018Z", - "iopub.status.idle": "2024-02-08T04:29:45.777581Z", - "shell.execute_reply": "2024-02-08T04:29:45.777139Z" + "iopub.execute_input": "2024-02-08T05:16:38.048464Z", + "iopub.status.busy": "2024-02-08T05:16:38.048004Z", + "iopub.status.idle": "2024-02-08T05:16:38.050984Z", + "shell.execute_reply": "2024-02-08T05:16:38.050453Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.779440Z", - "iopub.status.busy": "2024-02-08T04:29:45.779263Z", - "iopub.status.idle": "2024-02-08T04:29:45.783182Z", - "shell.execute_reply": "2024-02-08T04:29:45.782669Z" + "iopub.execute_input": "2024-02-08T05:16:38.052798Z", + "iopub.status.busy": "2024-02-08T05:16:38.052624Z", + "iopub.status.idle": "2024-02-08T05:16:38.056584Z", + "shell.execute_reply": "2024-02-08T05:16:38.056047Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.785161Z", - "iopub.status.busy": "2024-02-08T04:29:45.784866Z", - "iopub.status.idle": "2024-02-08T04:29:45.813727Z", - "shell.execute_reply": "2024-02-08T04:29:45.813180Z" + "iopub.execute_input": "2024-02-08T05:16:38.058708Z", + "iopub.status.busy": "2024-02-08T05:16:38.058392Z", + "iopub.status.idle": "2024-02-08T05:16:38.088017Z", + "shell.execute_reply": "2024-02-08T05:16:38.087505Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.816053Z", - "iopub.status.busy": "2024-02-08T04:29:45.815717Z", - "iopub.status.idle": "2024-02-08T04:29:45.820279Z", - "shell.execute_reply": "2024-02-08T04:29:45.819724Z" + "iopub.execute_input": "2024-02-08T05:16:38.090547Z", + "iopub.status.busy": "2024-02-08T05:16:38.090159Z", + "iopub.status.idle": "2024-02-08T05:16:38.095177Z", + "shell.execute_reply": "2024-02-08T05:16:38.094708Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index b4eaced1c..321e2cd0f 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:48.353289Z", - "iopub.status.busy": "2024-02-08T04:29:48.353111Z", - "iopub.status.idle": "2024-02-08T04:29:49.444617Z", - "shell.execute_reply": "2024-02-08T04:29:49.444025Z" + "iopub.execute_input": "2024-02-08T05:16:40.856017Z", + "iopub.status.busy": "2024-02-08T05:16:40.855833Z", + "iopub.status.idle": "2024-02-08T05:16:42.014133Z", + "shell.execute_reply": "2024-02-08T05:16:42.013543Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.447013Z", - "iopub.status.busy": "2024-02-08T04:29:49.446776Z", - "iopub.status.idle": "2024-02-08T04:29:49.635510Z", - "shell.execute_reply": "2024-02-08T04:29:49.635070Z" + "iopub.execute_input": "2024-02-08T05:16:42.016876Z", + "iopub.status.busy": "2024-02-08T05:16:42.016360Z", + "iopub.status.idle": "2024-02-08T05:16:42.218815Z", + "shell.execute_reply": "2024-02-08T05:16:42.218247Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.638063Z", - "iopub.status.busy": "2024-02-08T04:29:49.637575Z", - "iopub.status.idle": "2024-02-08T04:29:49.650235Z", - "shell.execute_reply": "2024-02-08T04:29:49.649787Z" + "iopub.execute_input": "2024-02-08T05:16:42.221496Z", + "iopub.status.busy": "2024-02-08T05:16:42.221090Z", + "iopub.status.idle": "2024-02-08T05:16:42.234145Z", + "shell.execute_reply": "2024-02-08T05:16:42.233583Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.652052Z", - "iopub.status.busy": "2024-02-08T04:29:49.651879Z", - "iopub.status.idle": "2024-02-08T04:29:52.291472Z", - "shell.execute_reply": "2024-02-08T04:29:52.290880Z" + "iopub.execute_input": "2024-02-08T05:16:42.236297Z", + "iopub.status.busy": "2024-02-08T05:16:42.235977Z", + "iopub.status.idle": "2024-02-08T05:16:44.901042Z", + "shell.execute_reply": "2024-02-08T05:16:44.900491Z" } }, "outputs": [ @@ -452,10 +452,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:52.293864Z", - "iopub.status.busy": "2024-02-08T04:29:52.293436Z", - "iopub.status.idle": "2024-02-08T04:29:53.631829Z", - "shell.execute_reply": "2024-02-08T04:29:53.631305Z" + "iopub.execute_input": "2024-02-08T05:16:44.903080Z", + "iopub.status.busy": "2024-02-08T05:16:44.902895Z", + "iopub.status.idle": "2024-02-08T05:16:46.267342Z", + "shell.execute_reply": "2024-02-08T05:16:46.266780Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:53.634214Z", - "iopub.status.busy": "2024-02-08T04:29:53.633866Z", - "iopub.status.idle": "2024-02-08T04:29:53.637796Z", - "shell.execute_reply": "2024-02-08T04:29:53.637329Z" + "iopub.execute_input": "2024-02-08T05:16:46.269717Z", + "iopub.status.busy": "2024-02-08T05:16:46.269521Z", + "iopub.status.idle": "2024-02-08T05:16:46.273330Z", + "shell.execute_reply": "2024-02-08T05:16:46.272768Z" } }, "outputs": [ @@ -542,10 +542,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:53.639682Z", - "iopub.status.busy": "2024-02-08T04:29:53.639363Z", - "iopub.status.idle": "2024-02-08T04:29:55.324199Z", - "shell.execute_reply": "2024-02-08T04:29:55.323510Z" + "iopub.execute_input": "2024-02-08T05:16:46.275279Z", + "iopub.status.busy": "2024-02-08T05:16:46.275095Z", + "iopub.status.idle": "2024-02-08T05:16:48.035444Z", + "shell.execute_reply": "2024-02-08T05:16:48.034751Z" } }, "outputs": [ @@ -592,10 +592,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:55.327072Z", - "iopub.status.busy": "2024-02-08T04:29:55.326288Z", - "iopub.status.idle": "2024-02-08T04:29:55.333737Z", - "shell.execute_reply": "2024-02-08T04:29:55.333247Z" + "iopub.execute_input": "2024-02-08T05:16:48.038270Z", + "iopub.status.busy": "2024-02-08T05:16:48.037668Z", + "iopub.status.idle": "2024-02-08T05:16:48.047299Z", + "shell.execute_reply": "2024-02-08T05:16:48.046721Z" } }, "outputs": [ @@ -631,10 +631,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:55.335798Z", - "iopub.status.busy": "2024-02-08T04:29:55.335474Z", - "iopub.status.idle": "2024-02-08T04:29:57.891579Z", - "shell.execute_reply": "2024-02-08T04:29:57.891036Z" + "iopub.execute_input": "2024-02-08T05:16:48.049551Z", + "iopub.status.busy": "2024-02-08T05:16:48.049235Z", + "iopub.status.idle": "2024-02-08T05:16:50.851686Z", + "shell.execute_reply": "2024-02-08T05:16:50.851097Z" } }, "outputs": [ @@ -669,10 +669,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.893710Z", - "iopub.status.busy": "2024-02-08T04:29:57.893400Z", - "iopub.status.idle": "2024-02-08T04:29:57.896999Z", - "shell.execute_reply": "2024-02-08T04:29:57.896544Z" + "iopub.execute_input": "2024-02-08T05:16:50.853883Z", + "iopub.status.busy": "2024-02-08T05:16:50.853693Z", + "iopub.status.idle": "2024-02-08T05:16:50.857552Z", + "shell.execute_reply": "2024-02-08T05:16:50.857089Z" } }, "outputs": [ @@ -717,10 +717,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.899030Z", - "iopub.status.busy": "2024-02-08T04:29:57.898717Z", - "iopub.status.idle": "2024-02-08T04:29:57.903151Z", - "shell.execute_reply": "2024-02-08T04:29:57.902749Z" + "iopub.execute_input": "2024-02-08T05:16:50.859787Z", + "iopub.status.busy": "2024-02-08T05:16:50.859387Z", + "iopub.status.idle": "2024-02-08T05:16:50.863737Z", + "shell.execute_reply": "2024-02-08T05:16:50.863177Z" } }, "outputs": [], @@ -743,10 +743,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.905054Z", - "iopub.status.busy": "2024-02-08T04:29:57.904735Z", - "iopub.status.idle": "2024-02-08T04:29:57.907794Z", - "shell.execute_reply": "2024-02-08T04:29:57.907351Z" + "iopub.execute_input": "2024-02-08T05:16:50.865877Z", + "iopub.status.busy": "2024-02-08T05:16:50.865570Z", + "iopub.status.idle": "2024-02-08T05:16:50.868733Z", + "shell.execute_reply": "2024-02-08T05:16:50.868285Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index a7d95ad7d..55126c31d 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:00.072576Z", - "iopub.status.busy": "2024-02-08T04:30:00.072400Z", - "iopub.status.idle": "2024-02-08T04:30:01.151131Z", - "shell.execute_reply": "2024-02-08T04:30:01.150594Z" + "iopub.execute_input": "2024-02-08T05:16:53.515571Z", + "iopub.status.busy": "2024-02-08T05:16:53.515376Z", + "iopub.status.idle": "2024-02-08T05:16:54.692984Z", + "shell.execute_reply": "2024-02-08T05:16:54.692402Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:01.153731Z", - "iopub.status.busy": "2024-02-08T04:30:01.153297Z", - "iopub.status.idle": "2024-02-08T04:30:02.565179Z", - "shell.execute_reply": "2024-02-08T04:30:02.564498Z" + "iopub.execute_input": "2024-02-08T05:16:54.695708Z", + "iopub.status.busy": "2024-02-08T05:16:54.695183Z", + "iopub.status.idle": "2024-02-08T05:16:56.971954Z", + "shell.execute_reply": "2024-02-08T05:16:56.971232Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.567869Z", - "iopub.status.busy": "2024-02-08T04:30:02.567469Z", - "iopub.status.idle": "2024-02-08T04:30:02.570763Z", - "shell.execute_reply": "2024-02-08T04:30:02.570298Z" + "iopub.execute_input": "2024-02-08T05:16:56.974618Z", + "iopub.status.busy": "2024-02-08T05:16:56.974215Z", + "iopub.status.idle": "2024-02-08T05:16:56.977451Z", + "shell.execute_reply": "2024-02-08T05:16:56.976971Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.572807Z", - "iopub.status.busy": "2024-02-08T04:30:02.572487Z", - "iopub.status.idle": "2024-02-08T04:30:02.578556Z", - "shell.execute_reply": "2024-02-08T04:30:02.578057Z" + "iopub.execute_input": "2024-02-08T05:16:56.979612Z", + "iopub.status.busy": "2024-02-08T05:16:56.979284Z", + "iopub.status.idle": "2024-02-08T05:16:56.985472Z", + "shell.execute_reply": "2024-02-08T05:16:56.984924Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.580776Z", - "iopub.status.busy": "2024-02-08T04:30:02.580450Z", - "iopub.status.idle": "2024-02-08T04:30:03.070565Z", - "shell.execute_reply": "2024-02-08T04:30:03.069979Z" + "iopub.execute_input": "2024-02-08T05:16:56.987779Z", + "iopub.status.busy": "2024-02-08T05:16:56.987416Z", + "iopub.status.idle": "2024-02-08T05:16:57.488799Z", + "shell.execute_reply": "2024-02-08T05:16:57.488201Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.073533Z", - "iopub.status.busy": "2024-02-08T04:30:03.073160Z", - "iopub.status.idle": "2024-02-08T04:30:03.078436Z", - "shell.execute_reply": "2024-02-08T04:30:03.077957Z" + "iopub.execute_input": "2024-02-08T05:16:57.491360Z", + "iopub.status.busy": "2024-02-08T05:16:57.491015Z", + "iopub.status.idle": "2024-02-08T05:16:57.496482Z", + "shell.execute_reply": "2024-02-08T05:16:57.495900Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.080496Z", - "iopub.status.busy": "2024-02-08T04:30:03.080241Z", - "iopub.status.idle": "2024-02-08T04:30:03.083913Z", - "shell.execute_reply": "2024-02-08T04:30:03.083409Z" + "iopub.execute_input": "2024-02-08T05:16:57.498525Z", + "iopub.status.busy": "2024-02-08T05:16:57.498273Z", + "iopub.status.idle": "2024-02-08T05:16:57.502766Z", + "shell.execute_reply": "2024-02-08T05:16:57.502239Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.085945Z", - "iopub.status.busy": "2024-02-08T04:30:03.085650Z", - "iopub.status.idle": "2024-02-08T04:30:03.803366Z", - "shell.execute_reply": "2024-02-08T04:30:03.802737Z" + "iopub.execute_input": "2024-02-08T05:16:57.505115Z", + "iopub.status.busy": "2024-02-08T05:16:57.504739Z", + "iopub.status.idle": "2024-02-08T05:16:58.169542Z", + "shell.execute_reply": "2024-02-08T05:16:58.168969Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.805530Z", - "iopub.status.busy": "2024-02-08T04:30:03.805328Z", - "iopub.status.idle": "2024-02-08T04:30:03.997894Z", - "shell.execute_reply": "2024-02-08T04:30:03.997434Z" + "iopub.execute_input": "2024-02-08T05:16:58.171773Z", + "iopub.status.busy": "2024-02-08T05:16:58.171556Z", + "iopub.status.idle": "2024-02-08T05:16:58.345846Z", + "shell.execute_reply": "2024-02-08T05:16:58.345282Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.000019Z", - "iopub.status.busy": "2024-02-08T04:30:03.999818Z", - "iopub.status.idle": "2024-02-08T04:30:04.004151Z", - "shell.execute_reply": "2024-02-08T04:30:04.003695Z" + "iopub.execute_input": "2024-02-08T05:16:58.348393Z", + "iopub.status.busy": "2024-02-08T05:16:58.347973Z", + "iopub.status.idle": "2024-02-08T05:16:58.352484Z", + "shell.execute_reply": "2024-02-08T05:16:58.351962Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.006153Z", - "iopub.status.busy": "2024-02-08T04:30:04.005847Z", - "iopub.status.idle": "2024-02-08T04:30:04.453260Z", - "shell.execute_reply": "2024-02-08T04:30:04.452625Z" + "iopub.execute_input": "2024-02-08T05:16:58.354696Z", + "iopub.status.busy": "2024-02-08T05:16:58.354301Z", + "iopub.status.idle": "2024-02-08T05:16:58.825617Z", + "shell.execute_reply": "2024-02-08T05:16:58.824990Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.455432Z", - "iopub.status.busy": "2024-02-08T04:30:04.455094Z", - "iopub.status.idle": "2024-02-08T04:30:04.785572Z", - "shell.execute_reply": "2024-02-08T04:30:04.785061Z" + "iopub.execute_input": "2024-02-08T05:16:58.828381Z", + "iopub.status.busy": "2024-02-08T05:16:58.828004Z", + "iopub.status.idle": "2024-02-08T05:16:59.167061Z", + "shell.execute_reply": "2024-02-08T05:16:59.166481Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.787885Z", - "iopub.status.busy": "2024-02-08T04:30:04.787540Z", - "iopub.status.idle": "2024-02-08T04:30:05.150648Z", - "shell.execute_reply": "2024-02-08T04:30:05.150060Z" + "iopub.execute_input": "2024-02-08T05:16:59.169884Z", + "iopub.status.busy": "2024-02-08T05:16:59.169506Z", + "iopub.status.idle": "2024-02-08T05:16:59.539761Z", + "shell.execute_reply": "2024-02-08T05:16:59.539127Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:05.153992Z", - "iopub.status.busy": "2024-02-08T04:30:05.153625Z", - "iopub.status.idle": "2024-02-08T04:30:05.568258Z", - "shell.execute_reply": "2024-02-08T04:30:05.567723Z" + "iopub.execute_input": "2024-02-08T05:16:59.542851Z", + "iopub.status.busy": "2024-02-08T05:16:59.542457Z", + "iopub.status.idle": "2024-02-08T05:16:59.990032Z", + "shell.execute_reply": "2024-02-08T05:16:59.989412Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:05.572539Z", - "iopub.status.busy": "2024-02-08T04:30:05.572099Z", - "iopub.status.idle": "2024-02-08T04:30:06.017524Z", - "shell.execute_reply": "2024-02-08T04:30:06.016975Z" + "iopub.execute_input": "2024-02-08T05:16:59.994566Z", + "iopub.status.busy": "2024-02-08T05:16:59.994002Z", + "iopub.status.idle": "2024-02-08T05:17:00.455591Z", + "shell.execute_reply": "2024-02-08T05:17:00.454958Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.020497Z", - "iopub.status.busy": "2024-02-08T04:30:06.020166Z", - "iopub.status.idle": "2024-02-08T04:30:06.234814Z", - "shell.execute_reply": "2024-02-08T04:30:06.234375Z" + "iopub.execute_input": "2024-02-08T05:17:00.458928Z", + "iopub.status.busy": "2024-02-08T05:17:00.458572Z", + "iopub.status.idle": "2024-02-08T05:17:00.677651Z", + "shell.execute_reply": "2024-02-08T05:17:00.677072Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.237004Z", - "iopub.status.busy": "2024-02-08T04:30:06.236672Z", - "iopub.status.idle": "2024-02-08T04:30:06.434144Z", - "shell.execute_reply": "2024-02-08T04:30:06.433613Z" + "iopub.execute_input": "2024-02-08T05:17:00.680076Z", + "iopub.status.busy": "2024-02-08T05:17:00.679705Z", + "iopub.status.idle": "2024-02-08T05:17:00.882051Z", + "shell.execute_reply": "2024-02-08T05:17:00.881407Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.436337Z", - "iopub.status.busy": "2024-02-08T04:30:06.436003Z", - "iopub.status.idle": "2024-02-08T04:30:06.438847Z", - "shell.execute_reply": "2024-02-08T04:30:06.438407Z" + "iopub.execute_input": "2024-02-08T05:17:00.885010Z", + "iopub.status.busy": "2024-02-08T05:17:00.884519Z", + "iopub.status.idle": "2024-02-08T05:17:00.887731Z", + "shell.execute_reply": "2024-02-08T05:17:00.887166Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.440735Z", - "iopub.status.busy": "2024-02-08T04:30:06.440417Z", - "iopub.status.idle": "2024-02-08T04:30:07.319773Z", - "shell.execute_reply": "2024-02-08T04:30:07.319187Z" + "iopub.execute_input": "2024-02-08T05:17:00.889952Z", + "iopub.status.busy": "2024-02-08T05:17:00.889687Z", + "iopub.status.idle": "2024-02-08T05:17:01.918413Z", + "shell.execute_reply": "2024-02-08T05:17:01.917826Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.322027Z", - "iopub.status.busy": "2024-02-08T04:30:07.321586Z", - "iopub.status.idle": "2024-02-08T04:30:07.426875Z", - "shell.execute_reply": "2024-02-08T04:30:07.426398Z" + "iopub.execute_input": "2024-02-08T05:17:01.921475Z", + "iopub.status.busy": "2024-02-08T05:17:01.921090Z", + "iopub.status.idle": "2024-02-08T05:17:02.038832Z", + "shell.execute_reply": "2024-02-08T05:17:02.038270Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.429007Z", - "iopub.status.busy": "2024-02-08T04:30:07.428667Z", - "iopub.status.idle": "2024-02-08T04:30:07.537965Z", - "shell.execute_reply": "2024-02-08T04:30:07.537475Z" + "iopub.execute_input": "2024-02-08T05:17:02.041133Z", + "iopub.status.busy": "2024-02-08T05:17:02.040771Z", + "iopub.status.idle": "2024-02-08T05:17:02.182078Z", + "shell.execute_reply": "2024-02-08T05:17:02.181503Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.540187Z", - "iopub.status.busy": "2024-02-08T04:30:07.539991Z", - "iopub.status.idle": "2024-02-08T04:30:08.230961Z", - "shell.execute_reply": "2024-02-08T04:30:08.230413Z" + "iopub.execute_input": "2024-02-08T05:17:02.184372Z", + "iopub.status.busy": "2024-02-08T05:17:02.184010Z", + "iopub.status.idle": "2024-02-08T05:17:02.969079Z", + "shell.execute_reply": "2024-02-08T05:17:02.968512Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:08.233141Z", - "iopub.status.busy": "2024-02-08T04:30:08.232960Z", - "iopub.status.idle": "2024-02-08T04:30:08.236653Z", - "shell.execute_reply": "2024-02-08T04:30:08.236116Z" + "iopub.execute_input": "2024-02-08T05:17:02.971374Z", + "iopub.status.busy": "2024-02-08T05:17:02.971169Z", + "iopub.status.idle": "2024-02-08T05:17:02.974933Z", + "shell.execute_reply": "2024-02-08T05:17:02.974480Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 65c66de70..d3b8139b6 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:10.403237Z", - "iopub.status.busy": "2024-02-08T04:30:10.403065Z", - "iopub.status.idle": "2024-02-08T04:30:13.024182Z", - "shell.execute_reply": "2024-02-08T04:30:13.023553Z" + "iopub.execute_input": "2024-02-08T05:17:05.426264Z", + "iopub.status.busy": "2024-02-08T05:17:05.425848Z", + "iopub.status.idle": "2024-02-08T05:17:08.282874Z", + "shell.execute_reply": "2024-02-08T05:17:08.282291Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.026721Z", - "iopub.status.busy": "2024-02-08T04:30:13.026419Z", - "iopub.status.idle": "2024-02-08T04:30:13.342311Z", - "shell.execute_reply": "2024-02-08T04:30:13.341724Z" + "iopub.execute_input": "2024-02-08T05:17:08.285746Z", + "iopub.status.busy": "2024-02-08T05:17:08.285258Z", + "iopub.status.idle": "2024-02-08T05:17:08.637966Z", + "shell.execute_reply": "2024-02-08T05:17:08.637382Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.344795Z", - "iopub.status.busy": "2024-02-08T04:30:13.344495Z", - "iopub.status.idle": "2024-02-08T04:30:13.348857Z", - "shell.execute_reply": "2024-02-08T04:30:13.348325Z" + "iopub.execute_input": "2024-02-08T05:17:08.640554Z", + "iopub.status.busy": "2024-02-08T05:17:08.640185Z", + "iopub.status.idle": "2024-02-08T05:17:08.644567Z", + "shell.execute_reply": "2024-02-08T05:17:08.644001Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.351075Z", - "iopub.status.busy": "2024-02-08T04:30:13.350701Z", - "iopub.status.idle": "2024-02-08T04:30:17.722194Z", - "shell.execute_reply": "2024-02-08T04:30:17.721653Z" + "iopub.execute_input": "2024-02-08T05:17:08.646865Z", + "iopub.status.busy": "2024-02-08T05:17:08.646554Z", + "iopub.status.idle": "2024-02-08T05:17:15.879028Z", + "shell.execute_reply": "2024-02-08T05:17:15.878437Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1966080/170498071 [00:00<00:08, 19659740.68it/s]" + " 0%| | 32768/170498071 [00:00<11:11, 253804.05it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 13729792/170498071 [00:00<00:02, 77179148.66it/s]" + " 0%| | 229376/170498071 [00:00<02:51, 993776.00it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 25460736/170498071 [00:00<00:01, 95453009.47it/s]" + " 1%| | 884736/170498071 [00:00<00:59, 2843619.98it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37191680/170498071 [00:00<00:01, 104050694.82it/s]" + " 2%|▏ | 3604480/170498071 [00:00<00:16, 9937863.72it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 48922624/170498071 [00:00<00:01, 108754354.22it/s]" + " 6%|▌ | 9568256/170498071 [00:00<00:07, 22733434.66it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 60653568/170498071 [00:00<00:00, 111599175.08it/s]" + " 9%|▉ | 15532032/170498071 [00:00<00:04, 33124010.85it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 72417280/170498071 [00:00<00:00, 113485568.58it/s]" + " 11%|█ | 19070976/170498071 [00:00<00:04, 33331594.97it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 84148224/170498071 [00:00<00:00, 114683185.40it/s]" + " 15%|█▍ | 25001984/170498071 [00:00<00:03, 38542476.09it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 95879168/170498071 [00:00<00:00, 115452930.26it/s]" + " 17%|█▋ | 29491200/170498071 [00:01<00:03, 40313666.10it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 107610112/170498071 [00:01<00:00, 116001177.88it/s]" + " 20%|██ | 34439168/170498071 [00:01<00:03, 42784554.31it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 119341056/170498071 [00:01<00:00, 116178766.29it/s]" + " 23%|██▎ | 38797312/170498071 [00:01<00:03, 42575855.01it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 131137536/170498071 [00:01<00:00, 116661736.90it/s]" + " 26%|██▌ | 43909120/170498071 [00:01<00:02, 44133340.46it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 142868480/170498071 [00:01<00:00, 116808215.89it/s]" + " 28%|██▊ | 48365568/170498071 [00:01<00:02, 44213290.62it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 154599424/170498071 [00:01<00:00, 116920831.64it/s]" + " 31%|███▏ | 53280768/170498071 [00:01<00:02, 45603815.05it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 166330368/170498071 [00:01<00:00, 116990077.48it/s]" + " 34%|███▍ | 57868288/170498071 [00:01<00:02, 44811305.61it/s]" ] }, { @@ -372,7 +372,191 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 110845448.51it/s]" + " 37%|███▋ | 62685184/170498071 [00:01<00:02, 45437448.27it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 39%|███▉ | 67272704/170498071 [00:01<00:02, 45126177.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 42%|████▏ | 72122368/170498071 [00:02<00:02, 46040805.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 45%|████▌ | 76742656/170498071 [00:02<00:02, 45311156.87it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 48%|████▊ | 81854464/170498071 [00:02<00:01, 46283694.59it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 51%|█████ | 86507520/170498071 [00:02<00:01, 45720127.96it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 54%|█████▎ | 91455488/170498071 [00:02<00:01, 46807783.76it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▋ | 96174080/170498071 [00:02<00:01, 45884858.81it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▉ | 100892672/170498071 [00:02<00:01, 45622214.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 105480192/170498071 [00:02<00:01, 45635391.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▍ | 110297088/170498071 [00:02<00:01, 45956041.49it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 67%|██████▋ | 114917376/170498071 [00:02<00:01, 45582206.50it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 70%|███████ | 119799808/170498071 [00:03<00:01, 46514478.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 73%|███████▎ | 124485632/170498071 [00:03<00:01, 45639548.48it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 76%|███████▌ | 129335296/170498071 [00:03<00:00, 46446998.37it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▊ | 133988352/170498071 [00:03<00:00, 45593760.64it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████▏ | 138739712/170498071 [00:03<00:00, 46153655.26it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 143392768/170498071 [00:03<00:00, 45504976.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148209664/170498071 [00:03<00:00, 46079464.34it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|████████▉ | 152829952/170498071 [00:03<00:00, 45516536.27it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 157646848/170498071 [00:03<00:00, 46018066.70it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162267136/170498071 [00:03<00:00, 45503104.22it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 167280640/170498071 [00:04<00:00, 46441485.40it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:04<00:00, 41107986.54it/s]" ] }, { @@ -490,10 +674,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:17.724373Z", - "iopub.status.busy": "2024-02-08T04:30:17.724096Z", - "iopub.status.idle": "2024-02-08T04:30:17.728698Z", - "shell.execute_reply": "2024-02-08T04:30:17.728278Z" + "iopub.execute_input": "2024-02-08T05:17:15.881245Z", + "iopub.status.busy": "2024-02-08T05:17:15.881053Z", + "iopub.status.idle": "2024-02-08T05:17:15.886298Z", + "shell.execute_reply": "2024-02-08T05:17:15.885876Z" }, "nbsphinx": "hidden" }, @@ -544,10 +728,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:17.730711Z", - "iopub.status.busy": "2024-02-08T04:30:17.730452Z", - "iopub.status.idle": "2024-02-08T04:30:18.284987Z", - "shell.execute_reply": "2024-02-08T04:30:18.284485Z" + "iopub.execute_input": "2024-02-08T05:17:15.888349Z", + "iopub.status.busy": "2024-02-08T05:17:15.888018Z", + "iopub.status.idle": "2024-02-08T05:17:16.439381Z", + "shell.execute_reply": "2024-02-08T05:17:16.438746Z" } }, "outputs": [ @@ -580,10 +764,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.287052Z", - "iopub.status.busy": "2024-02-08T04:30:18.286769Z", - "iopub.status.idle": "2024-02-08T04:30:18.804685Z", - "shell.execute_reply": "2024-02-08T04:30:18.804072Z" + "iopub.execute_input": "2024-02-08T05:17:16.441539Z", + "iopub.status.busy": "2024-02-08T05:17:16.441332Z", + "iopub.status.idle": "2024-02-08T05:17:16.983160Z", + "shell.execute_reply": "2024-02-08T05:17:16.982529Z" } }, "outputs": [ @@ -621,10 +805,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.806777Z", - "iopub.status.busy": "2024-02-08T04:30:18.806483Z", - "iopub.status.idle": "2024-02-08T04:30:18.809916Z", - "shell.execute_reply": "2024-02-08T04:30:18.809486Z" + "iopub.execute_input": "2024-02-08T05:17:16.985466Z", + "iopub.status.busy": "2024-02-08T05:17:16.985047Z", + "iopub.status.idle": "2024-02-08T05:17:16.988712Z", + "shell.execute_reply": "2024-02-08T05:17:16.988153Z" } }, "outputs": [], @@ -647,17 +831,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.811865Z", - "iopub.status.busy": "2024-02-08T04:30:18.811527Z", - "iopub.status.idle": "2024-02-08T04:30:31.364282Z", - "shell.execute_reply": "2024-02-08T04:30:31.363667Z" + "iopub.execute_input": "2024-02-08T05:17:16.990864Z", + "iopub.status.busy": "2024-02-08T05:17:16.990531Z", + "iopub.status.idle": "2024-02-08T05:17:30.384574Z", + "shell.execute_reply": "2024-02-08T05:17:30.383954Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8ec90718ebe14457846ef833a3f69479", + "model_id": "825668b38db748b986e9bda15e51e13b", "version_major": 2, "version_minor": 0 }, @@ -716,10 +900,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:31.366608Z", - "iopub.status.busy": "2024-02-08T04:30:31.366233Z", - "iopub.status.idle": "2024-02-08T04:30:32.923298Z", - "shell.execute_reply": "2024-02-08T04:30:32.922745Z" + "iopub.execute_input": "2024-02-08T05:17:30.387065Z", + "iopub.status.busy": "2024-02-08T05:17:30.386677Z", + "iopub.status.idle": "2024-02-08T05:17:31.989176Z", + "shell.execute_reply": "2024-02-08T05:17:31.988590Z" } }, "outputs": [ @@ -763,10 +947,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:32.926239Z", - "iopub.status.busy": "2024-02-08T04:30:32.925792Z", - "iopub.status.idle": "2024-02-08T04:30:33.332069Z", - "shell.execute_reply": "2024-02-08T04:30:33.331464Z" + "iopub.execute_input": "2024-02-08T05:17:31.991570Z", + "iopub.status.busy": "2024-02-08T05:17:31.991111Z", + "iopub.status.idle": "2024-02-08T05:17:32.449002Z", + "shell.execute_reply": "2024-02-08T05:17:32.448403Z" } }, "outputs": [ @@ -802,10 +986,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:33.334561Z", - "iopub.status.busy": "2024-02-08T04:30:33.334085Z", - "iopub.status.idle": "2024-02-08T04:30:33.961207Z", - "shell.execute_reply": "2024-02-08T04:30:33.960621Z" + "iopub.execute_input": "2024-02-08T05:17:32.451718Z", + "iopub.status.busy": "2024-02-08T05:17:32.451216Z", + "iopub.status.idle": "2024-02-08T05:17:33.151860Z", + "shell.execute_reply": "2024-02-08T05:17:33.151313Z" } }, "outputs": [ @@ -855,10 +1039,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:33.963531Z", - "iopub.status.busy": "2024-02-08T04:30:33.963345Z", - "iopub.status.idle": "2024-02-08T04:30:34.255761Z", - "shell.execute_reply": "2024-02-08T04:30:34.255221Z" + "iopub.execute_input": "2024-02-08T05:17:33.154439Z", + "iopub.status.busy": "2024-02-08T05:17:33.154055Z", + "iopub.status.idle": "2024-02-08T05:17:33.500788Z", + "shell.execute_reply": "2024-02-08T05:17:33.500203Z" } }, "outputs": [ @@ -906,10 +1090,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.257730Z", - "iopub.status.busy": "2024-02-08T04:30:34.257550Z", - "iopub.status.idle": "2024-02-08T04:30:34.485252Z", - "shell.execute_reply": "2024-02-08T04:30:34.484849Z" + "iopub.execute_input": "2024-02-08T05:17:33.503176Z", + "iopub.status.busy": "2024-02-08T05:17:33.502822Z", + "iopub.status.idle": "2024-02-08T05:17:33.757736Z", + "shell.execute_reply": "2024-02-08T05:17:33.757170Z" } }, "outputs": [ @@ -965,10 +1149,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.487726Z", - "iopub.status.busy": "2024-02-08T04:30:34.487222Z", - "iopub.status.idle": "2024-02-08T04:30:34.562718Z", - "shell.execute_reply": "2024-02-08T04:30:34.562255Z" + "iopub.execute_input": "2024-02-08T05:17:33.763168Z", + "iopub.status.busy": "2024-02-08T05:17:33.762933Z", + "iopub.status.idle": "2024-02-08T05:17:33.854185Z", + "shell.execute_reply": "2024-02-08T05:17:33.853691Z" } }, "outputs": [], @@ -989,10 +1173,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.565151Z", - "iopub.status.busy": "2024-02-08T04:30:34.564820Z", - "iopub.status.idle": "2024-02-08T04:30:44.672053Z", - "shell.execute_reply": "2024-02-08T04:30:44.671463Z" + "iopub.execute_input": "2024-02-08T05:17:33.856930Z", + "iopub.status.busy": "2024-02-08T05:17:33.856640Z", + "iopub.status.idle": "2024-02-08T05:17:44.539894Z", + "shell.execute_reply": "2024-02-08T05:17:44.539169Z" } }, "outputs": [ @@ -1029,10 +1213,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:44.674407Z", - "iopub.status.busy": "2024-02-08T04:30:44.674085Z", - "iopub.status.idle": "2024-02-08T04:30:46.341098Z", - "shell.execute_reply": "2024-02-08T04:30:46.340559Z" + "iopub.execute_input": "2024-02-08T05:17:44.542602Z", + "iopub.status.busy": "2024-02-08T05:17:44.542199Z", + "iopub.status.idle": "2024-02-08T05:17:46.479367Z", + "shell.execute_reply": "2024-02-08T05:17:46.478694Z" } }, "outputs": [ @@ -1063,10 +1247,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.343980Z", - "iopub.status.busy": "2024-02-08T04:30:46.343183Z", - "iopub.status.idle": "2024-02-08T04:30:46.549529Z", - "shell.execute_reply": "2024-02-08T04:30:46.549050Z" + "iopub.execute_input": "2024-02-08T05:17:46.482458Z", + "iopub.status.busy": "2024-02-08T05:17:46.481971Z", + "iopub.status.idle": "2024-02-08T05:17:46.688532Z", + "shell.execute_reply": "2024-02-08T05:17:46.687903Z" } }, "outputs": [], @@ -1080,10 +1264,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.551949Z", - "iopub.status.busy": "2024-02-08T04:30:46.551608Z", - "iopub.status.idle": "2024-02-08T04:30:46.554597Z", - "shell.execute_reply": "2024-02-08T04:30:46.554192Z" + "iopub.execute_input": "2024-02-08T05:17:46.691136Z", + "iopub.status.busy": "2024-02-08T05:17:46.690740Z", + "iopub.status.idle": "2024-02-08T05:17:46.694886Z", + "shell.execute_reply": "2024-02-08T05:17:46.694321Z" } }, "outputs": [], @@ -1105,10 +1289,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.556571Z", - "iopub.status.busy": "2024-02-08T04:30:46.556256Z", - "iopub.status.idle": "2024-02-08T04:30:46.564143Z", - "shell.execute_reply": "2024-02-08T04:30:46.563713Z" + "iopub.execute_input": "2024-02-08T05:17:46.697187Z", + "iopub.status.busy": "2024-02-08T05:17:46.696860Z", + "iopub.status.idle": "2024-02-08T05:17:46.705406Z", + "shell.execute_reply": "2024-02-08T05:17:46.704905Z" }, "nbsphinx": "hidden" }, @@ -1153,30 +1337,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "55278c78cbd94215b2c837195ceeb854": { + "038ec4553cd7485f8bc6b775cc1ac431": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8291224fafb44311a21cd1a944c03a26", - "placeholder": "​", - "style": "IPY_MODEL_7c0f27427fd7458e803f7842e3c2b7b0", + "layout": "IPY_MODEL_c1c41233fe614d279ca59c66cbba997a", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_143179c01bf94cc88f3717bb18023e8a", "tabbable": null, "tooltip": null, - "value": "model.safetensors: 100%" + "value": 102469840.0 } }, - "7c0f27427fd7458e803f7842e3c2b7b0": { + "03d4c196de6b49fabaae303aaa5e1201": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1194,7 +1381,23 @@ "text_color": null } }, - "8291224fafb44311a21cd1a944c03a26": { + "143179c01bf94cc88f3717bb18023e8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5a00804c5fce4ec18bb7db14fd32b417": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1247,54 +1450,7 @@ "width": null } }, - "8a2fc69f5c3f4e30bde00e979493715a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a1d3abd8ccac4d8ca172e65b1644272f", - "placeholder": "​", - "style": "IPY_MODEL_e94269c930c348fc97e754247d9595ed", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 220MB/s]" - } - }, - "8ec90718ebe14457846ef833a3f69479": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_55278c78cbd94215b2c837195ceeb854", - "IPY_MODEL_e8cf996d0fe94c3cb5e2785fee2bf584", - "IPY_MODEL_8a2fc69f5c3f4e30bde00e979493715a" - ], - "layout": "IPY_MODEL_a02d42e775b44528a4ec1f675c156ebe", - "tabbable": null, - "tooltip": null - } - }, - "a02d42e775b44528a4ec1f675c156ebe": { + "70630cd3b71546b196c328130764cfd7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1347,7 +1503,54 @@ "width": null } }, - "a1d3abd8ccac4d8ca172e65b1644272f": { + "7638661cf1ea4bdf9057cf8fb2ed8155": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5a00804c5fce4ec18bb7db14fd32b417", + "placeholder": "​", + "style": "IPY_MODEL_03d4c196de6b49fabaae303aaa5e1201", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 126MB/s]" + } + }, + "825668b38db748b986e9bda15e51e13b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c60e04d7447e4f17a454ef9c1b22babd", + "IPY_MODEL_038ec4553cd7485f8bc6b775cc1ac431", + "IPY_MODEL_7638661cf1ea4bdf9057cf8fb2ed8155" + ], + "layout": "IPY_MODEL_70630cd3b71546b196c328130764cfd7", + "tabbable": null, + "tooltip": null + } + }, + "845005c35b004bdb8957033ab5ca8657": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1400,49 +1603,7 @@ "width": null } }, - "b4faa0e3178b4731a79084ed65896fc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e8cf996d0fe94c3cb5e2785fee2bf584": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ee3ee555896b49de84d08c251eed995d", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b4faa0e3178b4731a79084ed65896fc6", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "e94269c930c348fc97e754247d9595ed": { + "95c4ac1a954348fa9148c8ee12f7fb4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1460,7 +1621,7 @@ "text_color": null } }, - "ee3ee555896b49de84d08c251eed995d": { + "c1c41233fe614d279ca59c66cbba997a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1512,6 +1673,29 @@ "visibility": null, "width": null } + }, + "c60e04d7447e4f17a454ef9c1b22babd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_845005c35b004bdb8957033ab5ca8657", + "placeholder": "​", + "style": "IPY_MODEL_95c4ac1a954348fa9148c8ee12f7fb4e", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index ff8035f20..c13537792 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:50.751304Z", - "iopub.status.busy": "2024-02-08T04:30:50.751133Z", - "iopub.status.idle": "2024-02-08T04:30:51.823240Z", - "shell.execute_reply": "2024-02-08T04:30:51.822703Z" + "iopub.execute_input": "2024-02-08T05:17:51.413127Z", + "iopub.status.busy": "2024-02-08T05:17:51.412706Z", + "iopub.status.idle": "2024-02-08T05:17:52.611238Z", + "shell.execute_reply": "2024-02-08T05:17:52.610680Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.825744Z", - "iopub.status.busy": "2024-02-08T04:30:51.825364Z", - "iopub.status.idle": "2024-02-08T04:30:51.842820Z", - "shell.execute_reply": "2024-02-08T04:30:51.842387Z" + "iopub.execute_input": "2024-02-08T05:17:52.614217Z", + "iopub.status.busy": "2024-02-08T05:17:52.613717Z", + "iopub.status.idle": "2024-02-08T05:17:52.633243Z", + "shell.execute_reply": "2024-02-08T05:17:52.632743Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.844983Z", - "iopub.status.busy": "2024-02-08T04:30:51.844515Z", - "iopub.status.idle": "2024-02-08T04:30:51.847432Z", - "shell.execute_reply": "2024-02-08T04:30:51.846998Z" + "iopub.execute_input": "2024-02-08T05:17:52.635825Z", + "iopub.status.busy": "2024-02-08T05:17:52.635484Z", + "iopub.status.idle": "2024-02-08T05:17:52.638626Z", + "shell.execute_reply": "2024-02-08T05:17:52.638180Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.849404Z", - "iopub.status.busy": "2024-02-08T04:30:51.849113Z", - "iopub.status.idle": "2024-02-08T04:30:52.062082Z", - "shell.execute_reply": "2024-02-08T04:30:52.061561Z" + "iopub.execute_input": "2024-02-08T05:17:52.640735Z", + "iopub.status.busy": "2024-02-08T05:17:52.640434Z", + "iopub.status.idle": "2024-02-08T05:17:52.920965Z", + "shell.execute_reply": "2024-02-08T05:17:52.920349Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.064034Z", - "iopub.status.busy": "2024-02-08T04:30:52.063840Z", - "iopub.status.idle": "2024-02-08T04:30:52.239826Z", - "shell.execute_reply": "2024-02-08T04:30:52.239268Z" + "iopub.execute_input": "2024-02-08T05:17:52.923467Z", + "iopub.status.busy": "2024-02-08T05:17:52.923019Z", + "iopub.status.idle": "2024-02-08T05:17:53.115689Z", + "shell.execute_reply": "2024-02-08T05:17:53.115011Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.242089Z", - "iopub.status.busy": "2024-02-08T04:30:52.241901Z", - "iopub.status.idle": "2024-02-08T04:30:52.445021Z", - "shell.execute_reply": "2024-02-08T04:30:52.444475Z" + "iopub.execute_input": "2024-02-08T05:17:53.118435Z", + "iopub.status.busy": "2024-02-08T05:17:53.118062Z", + "iopub.status.idle": "2024-02-08T05:17:53.371491Z", + "shell.execute_reply": "2024-02-08T05:17:53.370876Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.446996Z", - "iopub.status.busy": "2024-02-08T04:30:52.446821Z", - "iopub.status.idle": "2024-02-08T04:30:52.450930Z", - "shell.execute_reply": "2024-02-08T04:30:52.450482Z" + "iopub.execute_input": "2024-02-08T05:17:53.373865Z", + "iopub.status.busy": "2024-02-08T05:17:53.373626Z", + "iopub.status.idle": "2024-02-08T05:17:53.378358Z", + "shell.execute_reply": "2024-02-08T05:17:53.377808Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.452716Z", - "iopub.status.busy": "2024-02-08T04:30:52.452542Z", - "iopub.status.idle": "2024-02-08T04:30:52.458401Z", - "shell.execute_reply": "2024-02-08T04:30:52.457979Z" + "iopub.execute_input": "2024-02-08T05:17:53.380695Z", + "iopub.status.busy": "2024-02-08T05:17:53.380265Z", + "iopub.status.idle": "2024-02-08T05:17:53.387022Z", + "shell.execute_reply": "2024-02-08T05:17:53.386397Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.460493Z", - "iopub.status.busy": "2024-02-08T04:30:52.460074Z", - "iopub.status.idle": "2024-02-08T04:30:52.462570Z", - "shell.execute_reply": "2024-02-08T04:30:52.462147Z" + "iopub.execute_input": "2024-02-08T05:17:53.389333Z", + "iopub.status.busy": "2024-02-08T05:17:53.389109Z", + "iopub.status.idle": "2024-02-08T05:17:53.392037Z", + "shell.execute_reply": "2024-02-08T05:17:53.391331Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.464422Z", - "iopub.status.busy": "2024-02-08T04:30:52.464251Z", - "iopub.status.idle": "2024-02-08T04:31:00.593329Z", - "shell.execute_reply": "2024-02-08T04:31:00.592695Z" + "iopub.execute_input": "2024-02-08T05:17:53.394330Z", + "iopub.status.busy": "2024-02-08T05:17:53.394004Z", + "iopub.status.idle": "2024-02-08T05:18:01.926806Z", + "shell.execute_reply": "2024-02-08T05:18:01.926205Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.596169Z", - "iopub.status.busy": "2024-02-08T04:31:00.595573Z", - "iopub.status.idle": "2024-02-08T04:31:00.602431Z", - "shell.execute_reply": "2024-02-08T04:31:00.601900Z" + "iopub.execute_input": "2024-02-08T05:18:01.930017Z", + "iopub.status.busy": "2024-02-08T05:18:01.929420Z", + "iopub.status.idle": "2024-02-08T05:18:01.937267Z", + "shell.execute_reply": "2024-02-08T05:18:01.936715Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.604583Z", - "iopub.status.busy": "2024-02-08T04:31:00.604256Z", - "iopub.status.idle": "2024-02-08T04:31:00.607660Z", - "shell.execute_reply": "2024-02-08T04:31:00.607238Z" + "iopub.execute_input": "2024-02-08T05:18:01.939696Z", + "iopub.status.busy": "2024-02-08T05:18:01.939307Z", + "iopub.status.idle": "2024-02-08T05:18:01.943488Z", + "shell.execute_reply": "2024-02-08T05:18:01.942900Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.609663Z", - "iopub.status.busy": "2024-02-08T04:31:00.609347Z", - "iopub.status.idle": "2024-02-08T04:31:00.612323Z", - "shell.execute_reply": "2024-02-08T04:31:00.611787Z" + "iopub.execute_input": "2024-02-08T05:18:01.945734Z", + "iopub.status.busy": "2024-02-08T05:18:01.945405Z", + "iopub.status.idle": "2024-02-08T05:18:01.948895Z", + "shell.execute_reply": "2024-02-08T05:18:01.948338Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.614282Z", - "iopub.status.busy": "2024-02-08T04:31:00.613967Z", - "iopub.status.idle": "2024-02-08T04:31:00.616872Z", - "shell.execute_reply": "2024-02-08T04:31:00.616427Z" + "iopub.execute_input": "2024-02-08T05:18:01.951160Z", + "iopub.status.busy": "2024-02-08T05:18:01.950717Z", + "iopub.status.idle": "2024-02-08T05:18:01.953844Z", + "shell.execute_reply": "2024-02-08T05:18:01.953404Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.618846Z", - "iopub.status.busy": "2024-02-08T04:31:00.618530Z", - "iopub.status.idle": "2024-02-08T04:31:00.626345Z", - "shell.execute_reply": "2024-02-08T04:31:00.625821Z" + "iopub.execute_input": "2024-02-08T05:18:01.956220Z", + "iopub.status.busy": "2024-02-08T05:18:01.955844Z", + "iopub.status.idle": "2024-02-08T05:18:01.964834Z", + "shell.execute_reply": "2024-02-08T05:18:01.964236Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.628449Z", - "iopub.status.busy": "2024-02-08T04:31:00.628141Z", - "iopub.status.idle": "2024-02-08T04:31:00.747556Z", - "shell.execute_reply": "2024-02-08T04:31:00.747054Z" + "iopub.execute_input": "2024-02-08T05:18:01.967310Z", + "iopub.status.busy": "2024-02-08T05:18:01.966842Z", + "iopub.status.idle": "2024-02-08T05:18:02.090316Z", + "shell.execute_reply": "2024-02-08T05:18:02.089645Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.749632Z", - "iopub.status.busy": "2024-02-08T04:31:00.749285Z", - "iopub.status.idle": "2024-02-08T04:31:00.867709Z", - "shell.execute_reply": "2024-02-08T04:31:00.867227Z" + "iopub.execute_input": "2024-02-08T05:18:02.092988Z", + "iopub.status.busy": "2024-02-08T05:18:02.092569Z", + "iopub.status.idle": "2024-02-08T05:18:02.204658Z", + "shell.execute_reply": "2024-02-08T05:18:02.203939Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.869752Z", - "iopub.status.busy": "2024-02-08T04:31:00.869575Z", - "iopub.status.idle": "2024-02-08T04:31:01.355217Z", - "shell.execute_reply": "2024-02-08T04:31:01.354754Z" + "iopub.execute_input": "2024-02-08T05:18:02.207487Z", + "iopub.status.busy": "2024-02-08T05:18:02.207236Z", + "iopub.status.idle": "2024-02-08T05:18:02.771856Z", + "shell.execute_reply": "2024-02-08T05:18:02.771183Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:01.357253Z", - "iopub.status.busy": "2024-02-08T04:31:01.357080Z", - "iopub.status.idle": "2024-02-08T04:31:01.434382Z", - "shell.execute_reply": "2024-02-08T04:31:01.433913Z" + "iopub.execute_input": "2024-02-08T05:18:02.774657Z", + "iopub.status.busy": "2024-02-08T05:18:02.774189Z", + "iopub.status.idle": "2024-02-08T05:18:02.854230Z", + "shell.execute_reply": "2024-02-08T05:18:02.853626Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:01.436548Z", - "iopub.status.busy": "2024-02-08T04:31:01.436195Z", - "iopub.status.idle": "2024-02-08T04:31:01.445937Z", - "shell.execute_reply": "2024-02-08T04:31:01.445389Z" + "iopub.execute_input": "2024-02-08T05:18:02.856474Z", + "iopub.status.busy": "2024-02-08T05:18:02.856273Z", + "iopub.status.idle": "2024-02-08T05:18:02.866501Z", + "shell.execute_reply": "2024-02-08T05:18:02.865955Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 282a261ca..50fa2ea52 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:04.090778Z", - "iopub.status.busy": "2024-02-08T04:31:04.090311Z", - "iopub.status.idle": "2024-02-08T04:31:06.685136Z", - "shell.execute_reply": "2024-02-08T04:31:06.684460Z" + "iopub.execute_input": "2024-02-08T05:18:06.194836Z", + "iopub.status.busy": "2024-02-08T05:18:06.194464Z", + "iopub.status.idle": "2024-02-08T05:18:11.509123Z", + "shell.execute_reply": "2024-02-08T05:18:11.508442Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:06.687749Z", - "iopub.status.busy": "2024-02-08T04:31:06.687374Z", - "iopub.status.idle": "2024-02-08T04:32:33.192723Z", - "shell.execute_reply": "2024-02-08T04:32:33.192050Z" + "iopub.execute_input": "2024-02-08T05:18:11.511765Z", + "iopub.status.busy": "2024-02-08T05:18:11.511386Z", + "iopub.status.idle": "2024-02-08T05:19:01.334173Z", + "shell.execute_reply": "2024-02-08T05:19:01.333418Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:33.195218Z", - "iopub.status.busy": "2024-02-08T04:32:33.194983Z", - "iopub.status.idle": "2024-02-08T04:32:34.284442Z", - "shell.execute_reply": "2024-02-08T04:32:34.283882Z" + "iopub.execute_input": "2024-02-08T05:19:01.337024Z", + "iopub.status.busy": "2024-02-08T05:19:01.336645Z", + "iopub.status.idle": "2024-02-08T05:19:02.446829Z", + "shell.execute_reply": "2024-02-08T05:19:02.446265Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.287010Z", - "iopub.status.busy": "2024-02-08T04:32:34.286715Z", - "iopub.status.idle": "2024-02-08T04:32:34.289859Z", - "shell.execute_reply": "2024-02-08T04:32:34.289423Z" + "iopub.execute_input": "2024-02-08T05:19:02.449563Z", + "iopub.status.busy": "2024-02-08T05:19:02.449077Z", + "iopub.status.idle": "2024-02-08T05:19:02.452514Z", + "shell.execute_reply": "2024-02-08T05:19:02.451942Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.291762Z", - "iopub.status.busy": "2024-02-08T04:32:34.291582Z", - "iopub.status.idle": "2024-02-08T04:32:34.295486Z", - "shell.execute_reply": "2024-02-08T04:32:34.295037Z" + "iopub.execute_input": "2024-02-08T05:19:02.454973Z", + "iopub.status.busy": "2024-02-08T05:19:02.454564Z", + "iopub.status.idle": "2024-02-08T05:19:02.458751Z", + "shell.execute_reply": "2024-02-08T05:19:02.458289Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.297355Z", - "iopub.status.busy": "2024-02-08T04:32:34.297179Z", - "iopub.status.idle": "2024-02-08T04:32:34.300716Z", - "shell.execute_reply": "2024-02-08T04:32:34.300269Z" + "iopub.execute_input": "2024-02-08T05:19:02.461004Z", + "iopub.status.busy": "2024-02-08T05:19:02.460655Z", + "iopub.status.idle": "2024-02-08T05:19:02.464367Z", + "shell.execute_reply": "2024-02-08T05:19:02.463921Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.302700Z", - "iopub.status.busy": "2024-02-08T04:32:34.302414Z", - "iopub.status.idle": "2024-02-08T04:32:34.305247Z", - "shell.execute_reply": "2024-02-08T04:32:34.304818Z" + "iopub.execute_input": "2024-02-08T05:19:02.466454Z", + "iopub.status.busy": "2024-02-08T05:19:02.466133Z", + "iopub.status.idle": "2024-02-08T05:19:02.468853Z", + "shell.execute_reply": "2024-02-08T05:19:02.468435Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.307210Z", - "iopub.status.busy": "2024-02-08T04:32:34.306903Z", - "iopub.status.idle": "2024-02-08T04:33:50.468781Z", - "shell.execute_reply": "2024-02-08T04:33:50.468192Z" + "iopub.execute_input": "2024-02-08T05:19:02.470767Z", + "iopub.status.busy": "2024-02-08T05:19:02.470482Z", + "iopub.status.idle": "2024-02-08T05:20:19.455463Z", + "shell.execute_reply": "2024-02-08T05:20:19.454724Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "633c79ed95ab41e0aabbd57dbd3ecb08", + "model_id": "c8c2e28ad93b4bdd9fc175ec25c69050", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7cc6878891b34dc6b9eee074c27b9942", + "model_id": "ea58fb54e03a45d5b2072a4db0195034", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:50.471202Z", - "iopub.status.busy": "2024-02-08T04:33:50.471016Z", - "iopub.status.idle": "2024-02-08T04:33:51.129982Z", - "shell.execute_reply": "2024-02-08T04:33:51.129389Z" + "iopub.execute_input": "2024-02-08T05:20:19.458139Z", + "iopub.status.busy": "2024-02-08T05:20:19.457915Z", + "iopub.status.idle": "2024-02-08T05:20:20.138783Z", + "shell.execute_reply": "2024-02-08T05:20:20.138296Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:51.132369Z", - "iopub.status.busy": "2024-02-08T04:33:51.131864Z", - "iopub.status.idle": "2024-02-08T04:33:53.739824Z", - "shell.execute_reply": "2024-02-08T04:33:53.739233Z" + "iopub.execute_input": "2024-02-08T05:20:20.141021Z", + "iopub.status.busy": "2024-02-08T05:20:20.140710Z", + "iopub.status.idle": "2024-02-08T05:20:22.899351Z", + "shell.execute_reply": "2024-02-08T05:20:22.898717Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:53.741963Z", - "iopub.status.busy": "2024-02-08T04:33:53.741658Z", - "iopub.status.idle": "2024-02-08T04:34:26.078889Z", - "shell.execute_reply": "2024-02-08T04:34:26.078349Z" + "iopub.execute_input": "2024-02-08T05:20:22.901657Z", + "iopub.status.busy": "2024-02-08T05:20:22.901306Z", + "iopub.status.idle": "2024-02-08T05:20:55.974341Z", + "shell.execute_reply": "2024-02-08T05:20:55.973829Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15263/4997817 [00:00<00:32, 152620.32it/s]" + " 0%| | 15219/4997817 [00:00<00:32, 152175.63it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 30666/4997817 [00:00<00:32, 153444.23it/s]" + " 1%| | 30515/4997817 [00:00<00:32, 152628.96it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46403/4997817 [00:00<00:31, 155233.62it/s]" + " 1%| | 45778/4997817 [00:00<00:32, 152070.29it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 62088/4997817 [00:00<00:31, 155869.58it/s]" + " 1%| | 60986/4997817 [00:00<00:32, 151671.35it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 77755/4997817 [00:00<00:31, 156156.65it/s]" + " 2%|▏ | 76154/4997817 [00:00<00:32, 151334.04it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 93461/4997817 [00:00<00:31, 156459.90it/s]" + " 2%|▏ | 91408/4997817 [00:00<00:32, 151739.35it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 109145/4997817 [00:00<00:31, 156582.99it/s]" + " 2%|▏ | 106583/4997817 [00:00<00:32, 151262.88it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 124865/4997817 [00:00<00:31, 156775.77it/s]" + " 2%|▏ | 121799/4997817 [00:00<00:32, 151497.04it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 140561/4997817 [00:00<00:30, 156832.47it/s]" + " 3%|▎ | 136950/4997817 [00:00<00:32, 151116.12it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 156296/4997817 [00:01<00:30, 156990.78it/s]" + " 3%|▎ | 152062/4997817 [00:01<00:32, 150719.47it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 171996/4997817 [00:01<00:30, 156816.52it/s]" + " 3%|▎ | 167152/4997817 [00:01<00:32, 150772.00it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 187678/4997817 [00:01<00:30, 156789.10it/s]" + " 4%|▎ | 182311/4997817 [00:01<00:31, 151017.94it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 203449/4997817 [00:01<00:30, 157064.19it/s]" + " 4%|▍ | 197414/4997817 [00:01<00:32, 149004.91it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 219271/4997817 [00:01<00:30, 157411.47it/s]" + " 4%|▍ | 212321/4997817 [00:01<00:32, 148494.46it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 235039/4997817 [00:01<00:30, 157491.41it/s]" + " 5%|▍ | 227688/4997817 [00:01<00:31, 150033.39it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 250894/4997817 [00:01<00:30, 157807.98it/s]" + " 5%|▍ | 242927/4997817 [00:01<00:31, 150733.98it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 266675/4997817 [00:01<00:29, 157776.96it/s]" + " 5%|▌ | 258207/4997817 [00:01<00:31, 151349.15it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 282453/4997817 [00:01<00:29, 157761.99it/s]" + " 5%|▌ | 273519/4997817 [00:01<00:31, 151877.06it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 298230/4997817 [00:01<00:29, 157339.46it/s]" + " 6%|▌ | 288818/4997817 [00:01<00:30, 152206.19it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 313965/4997817 [00:02<00:29, 157107.54it/s]" + " 6%|▌ | 304086/4997817 [00:02<00:30, 152346.07it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 329811/4997817 [00:02<00:29, 157509.28it/s]" + " 6%|▋ | 319322/4997817 [00:02<00:30, 152226.57it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 345563/4997817 [00:02<00:30, 153954.15it/s]" + " 7%|▋ | 334625/4997817 [00:02<00:30, 152465.32it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 361251/4997817 [00:02<00:29, 154814.53it/s]" + " 7%|▋ | 349873/4997817 [00:02<00:30, 152288.21it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 376940/4997817 [00:02<00:29, 155427.51it/s]" + " 7%|▋ | 365103/4997817 [00:02<00:31, 149042.74it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 392762/4997817 [00:02<00:29, 156257.19it/s]" + " 8%|▊ | 380408/4997817 [00:02<00:30, 150221.43it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 408619/4997817 [00:02<00:29, 156944.77it/s]" + " 8%|▊ | 395607/4997817 [00:02<00:30, 150742.66it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 424451/4997817 [00:02<00:29, 157351.99it/s]" + " 8%|▊ | 410867/4997817 [00:02<00:30, 151292.06it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 440219/4997817 [00:02<00:28, 157448.13it/s]" + " 9%|▊ | 426153/4997817 [00:02<00:30, 151755.55it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 456014/4997817 [00:02<00:28, 157594.94it/s]" + " 9%|▉ | 441466/4997817 [00:02<00:29, 152163.81it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 471810/4997817 [00:03<00:28, 157702.43it/s]" + " 9%|▉ | 456687/4997817 [00:03<00:29, 152154.88it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 487647/4997817 [00:03<00:28, 157900.06it/s]" + " 9%|▉ | 472009/4997817 [00:03<00:29, 152471.31it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 503447/4997817 [00:03<00:28, 157926.90it/s]" + " 10%|▉ | 487319/4997817 [00:03<00:29, 152657.18it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 519243/4997817 [00:03<00:28, 157933.03it/s]" + " 10%|█ | 502587/4997817 [00:03<00:29, 152587.42it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 535046/4997817 [00:03<00:28, 157960.35it/s]" + " 10%|█ | 517878/4997817 [00:03<00:29, 152680.31it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 550843/4997817 [00:03<00:28, 157126.81it/s]" + " 11%|█ | 533228/4997817 [00:03<00:29, 152922.25it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 566561/4997817 [00:03<00:28, 157141.74it/s]" + " 11%|█ | 548521/4997817 [00:03<00:29, 152579.62it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 582279/4997817 [00:03<00:28, 157149.98it/s]" + " 11%|█▏ | 563780/4997817 [00:03<00:29, 152366.87it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 597995/4997817 [00:03<00:28, 157124.65it/s]" + " 12%|█▏ | 579068/4997817 [00:03<00:28, 152516.68it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 613708/4997817 [00:03<00:27, 156897.25it/s]" + " 12%|█▏ | 594320/4997817 [00:03<00:28, 152104.13it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 629508/4997817 [00:04<00:27, 157224.86it/s]" + " 12%|█▏ | 609531/4997817 [00:04<00:28, 152101.48it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 645231/4997817 [00:04<00:27, 157177.39it/s]" + " 13%|█▎ | 624752/4997817 [00:04<00:28, 152131.73it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 660949/4997817 [00:04<00:27, 156978.60it/s]" + " 13%|█▎ | 639966/4997817 [00:04<00:28, 151079.04it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 676648/4997817 [00:04<00:27, 156760.78it/s]" + " 13%|█▎ | 655076/4997817 [00:04<00:28, 151049.89it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 692325/4997817 [00:04<00:27, 156208.63it/s]" + " 13%|█▎ | 670183/4997817 [00:04<00:30, 143565.20it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 707947/4997817 [00:04<00:27, 156090.54it/s]" + " 14%|█▎ | 685377/4997817 [00:04<00:29, 145979.48it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 723563/4997817 [00:04<00:27, 156108.57it/s]" + " 14%|█▍ | 700538/4997817 [00:04<00:29, 147618.75it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739191/4997817 [00:04<00:27, 156158.25it/s]" + " 14%|█▍ | 715680/4997817 [00:04<00:28, 148734.34it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 754807/4997817 [00:04<00:27, 156048.28it/s]" + " 15%|█▍ | 730868/4997817 [00:04<00:28, 149661.46it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 770497/4997817 [00:04<00:27, 156302.41it/s]" + " 15%|█▍ | 746099/4997817 [00:04<00:28, 150444.15it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 786317/4997817 [00:05<00:26, 156868.27it/s]" + " 15%|█▌ | 761372/4997817 [00:05<00:28, 151122.68it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 802017/4997817 [00:05<00:26, 156904.88it/s]" + " 16%|█▌ | 776857/4997817 [00:05<00:27, 152232.63it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 817708/4997817 [00:05<00:27, 153225.26it/s]" + " 16%|█▌ | 792347/4997817 [00:05<00:27, 153026.64it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 833392/4997817 [00:05<00:26, 154288.53it/s]" + " 16%|█▌ | 807768/4997817 [00:05<00:27, 153377.03it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 849328/4997817 [00:05<00:26, 155788.65it/s]" + " 16%|█▋ | 823303/4997817 [00:05<00:27, 153966.34it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 865122/4997817 [00:05<00:26, 156427.57it/s]" + " 17%|█▋ | 838868/4997817 [00:05<00:26, 154469.02it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 880887/4997817 [00:05<00:26, 156788.95it/s]" + " 17%|█▋ | 854393/4997817 [00:05<00:26, 154699.52it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 896614/4997817 [00:05<00:26, 156931.70it/s]" + " 17%|█▋ | 869879/4997817 [00:05<00:26, 154744.14it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 912312/4997817 [00:05<00:26, 156914.97it/s]" + " 18%|█▊ | 885355/4997817 [00:05<00:26, 154662.03it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 928025/4997817 [00:05<00:25, 156976.92it/s]" + " 18%|█▊ | 900823/4997817 [00:05<00:26, 154618.28it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 943726/4997817 [00:06<00:25, 156932.85it/s]" + " 18%|█▊ | 916286/4997817 [00:06<00:26, 154561.85it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 959463/4997817 [00:06<00:25, 157062.64it/s]" + " 19%|█▊ | 931866/4997817 [00:06<00:26, 154930.84it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 975171/4997817 [00:06<00:25, 156949.11it/s]" + " 19%|█▉ | 947360/4997817 [00:06<00:26, 154896.54it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 990867/4997817 [00:06<00:25, 156556.37it/s]" + " 19%|█▉ | 962850/4997817 [00:06<00:26, 154866.84it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1006550/4997817 [00:06<00:25, 156635.05it/s]" + " 20%|█▉ | 978337/4997817 [00:06<00:25, 154782.30it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1022215/4997817 [00:06<00:25, 156528.27it/s]" + " 20%|█▉ | 993816/4997817 [00:06<00:25, 154378.72it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1037881/4997817 [00:06<00:25, 156565.86it/s]" + " 20%|██ | 1009295/4997817 [00:06<00:25, 154498.77it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1053699/4997817 [00:06<00:25, 157047.75it/s]" + " 21%|██ | 1024770/4997817 [00:06<00:25, 154570.08it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1069405/4997817 [00:06<00:25, 157030.48it/s]" + " 21%|██ | 1040292/4997817 [00:06<00:25, 154762.00it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1085109/4997817 [00:06<00:24, 157023.73it/s]" + " 21%|██ | 1055833/4997817 [00:06<00:25, 154953.40it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1100812/4997817 [00:07<00:24, 157017.91it/s]" + " 21%|██▏ | 1071368/4997817 [00:07<00:25, 155068.69it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1116514/4997817 [00:07<00:24, 156868.74it/s]" + " 22%|██▏ | 1086875/4997817 [00:07<00:25, 154910.98it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1132201/4997817 [00:07<00:24, 156856.61it/s]" + " 22%|██▏ | 1102367/4997817 [00:07<00:25, 154771.95it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1147887/4997817 [00:07<00:24, 156805.11it/s]" + " 22%|██▏ | 1117845/4997817 [00:07<00:25, 154473.84it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1163580/4997817 [00:07<00:24, 156840.13it/s]" + " 23%|██▎ | 1133293/4997817 [00:07<00:25, 153830.15it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1179265/4997817 [00:07<00:24, 156735.23it/s]" + " 23%|██▎ | 1148677/4997817 [00:07<00:25, 152795.48it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1194966/4997817 [00:07<00:24, 156815.51it/s]" + " 23%|██▎ | 1164033/4997817 [00:07<00:25, 153020.57it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1210648/4997817 [00:07<00:24, 156722.01it/s]" + " 24%|██▎ | 1179445/4997817 [00:07<00:24, 153346.10it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1226321/4997817 [00:07<00:24, 156153.98it/s]" + " 24%|██▍ | 1194827/4997817 [00:07<00:24, 153485.79it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1241937/4997817 [00:07<00:24, 156124.87it/s]" + " 24%|██▍ | 1210177/4997817 [00:07<00:24, 153406.60it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1257558/4997817 [00:08<00:23, 156148.50it/s]" + " 25%|██▍ | 1225519/4997817 [00:08<00:24, 153329.14it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1273179/4997817 [00:08<00:23, 156164.18it/s]" + " 25%|██▍ | 1240853/4997817 [00:08<00:24, 152990.60it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1288823/4997817 [00:08<00:23, 156245.31it/s]" + " 25%|██▌ | 1256153/4997817 [00:08<00:24, 152916.47it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1304448/4997817 [00:08<00:24, 149122.57it/s]" + " 25%|██▌ | 1271445/4997817 [00:08<00:24, 152236.93it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1320201/4997817 [00:08<00:24, 151560.64it/s]" + " 26%|██▌ | 1286713/4997817 [00:08<00:24, 152365.67it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1335784/4997817 [00:08<00:23, 152810.29it/s]" + " 26%|██▌ | 1302067/4997817 [00:08<00:24, 152714.43it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1351437/4997817 [00:08<00:23, 153905.86it/s]" + " 26%|██▋ | 1317531/4997817 [00:08<00:24, 153287.37it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1367067/4997817 [00:08<00:23, 154615.30it/s]" + " 27%|██▋ | 1332993/4997817 [00:08<00:23, 153682.36it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1382626/4997817 [00:08<00:23, 154902.96it/s]" + " 27%|██▋ | 1348485/4997817 [00:08<00:23, 154049.29it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1398347/4997817 [00:08<00:23, 155589.95it/s]" + " 27%|██▋ | 1363898/4997817 [00:08<00:23, 154071.65it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1414047/4997817 [00:09<00:22, 156009.20it/s]" + " 28%|██▊ | 1379399/4997817 [00:09<00:23, 154351.60it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1429657/4997817 [00:09<00:22, 155598.60it/s]" + " 28%|██▊ | 1394835/4997817 [00:09<00:23, 154191.34it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1445223/4997817 [00:09<00:22, 155576.53it/s]" + " 28%|██▊ | 1410321/4997817 [00:09<00:23, 154389.90it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1460785/4997817 [00:09<00:23, 151230.69it/s]" + " 29%|██▊ | 1425761/4997817 [00:09<00:23, 154373.66it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1476499/4997817 [00:09<00:23, 152962.50it/s]" + " 29%|██▉ | 1441199/4997817 [00:09<00:23, 154033.50it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1492193/4997817 [00:09<00:22, 154135.92it/s]" + " 29%|██▉ | 1456681/4997817 [00:09<00:22, 154241.61it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1507910/4997817 [00:09<00:22, 155034.80it/s]" + " 29%|██▉ | 1472106/4997817 [00:09<00:23, 149708.68it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1523500/4997817 [00:09<00:22, 155291.00it/s]" + " 30%|██▉ | 1487442/4997817 [00:09<00:23, 150778.12it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1539068/4997817 [00:09<00:22, 155405.46it/s]" + " 30%|███ | 1502934/4997817 [00:09<00:22, 151998.09it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1554740/4997817 [00:09<00:22, 155797.39it/s]" + " 30%|███ | 1518481/4997817 [00:09<00:22, 153026.59it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1570325/4997817 [00:10<00:22, 155632.09it/s]" + " 31%|███ | 1533971/4997817 [00:10<00:22, 153580.89it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1585935/4997817 [00:10<00:21, 155771.47it/s]" + " 31%|███ | 1549477/4997817 [00:10<00:22, 154018.67it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1601515/4997817 [00:10<00:21, 155577.69it/s]" + " 31%|███▏ | 1564939/4997817 [00:10<00:22, 154195.91it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1617101/4997817 [00:10<00:21, 155645.58it/s]" + " 32%|███▏ | 1580364/4997817 [00:10<00:22, 153889.50it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1632667/4997817 [00:10<00:22, 148235.31it/s]" + " 32%|███▏ | 1595792/4997817 [00:10<00:22, 154004.33it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1648018/4997817 [00:10<00:22, 149759.46it/s]" + " 32%|███▏ | 1611227/4997817 [00:10<00:21, 154106.29it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1663496/4997817 [00:10<00:22, 151227.25it/s]" + " 33%|███▎ | 1626640/4997817 [00:10<00:21, 153914.83it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1679092/4997817 [00:10<00:21, 152620.63it/s]" + " 33%|███▎ | 1642067/4997817 [00:10<00:21, 154017.91it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1694624/4997817 [00:10<00:21, 153418.04it/s]" + " 33%|███▎ | 1657470/4997817 [00:10<00:21, 153883.75it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1710114/4997817 [00:10<00:21, 153856.65it/s]" + " 33%|███▎ | 1672885/4997817 [00:10<00:21, 153960.13it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1725618/4997817 [00:11<00:21, 154206.80it/s]" + " 34%|███▍ | 1688410/4997817 [00:11<00:21, 154345.25it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1741184/4997817 [00:11<00:21, 154637.42it/s]" + " 34%|███▍ | 1703989/4997817 [00:11<00:21, 154777.26it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1756809/4997817 [00:11<00:20, 155118.45it/s]" + " 34%|███▍ | 1719468/4997817 [00:11<00:21, 154729.80it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1772353/4997817 [00:11<00:20, 155210.55it/s]" + " 35%|███▍ | 1734942/4997817 [00:11<00:21, 154566.62it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1787879/4997817 [00:11<00:20, 155071.46it/s]" + " 35%|███▌ | 1750507/4997817 [00:11<00:20, 154890.07it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1803441/4997817 [00:11<00:20, 155232.57it/s]" + " 35%|███▌ | 1766005/4997817 [00:11<00:20, 154914.31it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1818967/4997817 [00:11<00:20, 155131.89it/s]" + " 36%|███▌ | 1781497/4997817 [00:11<00:21, 147546.06it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1834552/4997817 [00:11<00:20, 155345.75it/s]" + " 36%|███▌ | 1796958/4997817 [00:11<00:21, 149591.06it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1850088/4997817 [00:11<00:20, 155196.47it/s]" + " 36%|███▋ | 1812454/4997817 [00:11<00:21, 151160.60it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1865620/4997817 [00:11<00:20, 155230.31it/s]" + " 37%|███▋ | 1827877/4997817 [00:11<00:20, 152061.89it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1881152/4997817 [00:12<00:20, 155254.90it/s]" + " 37%|███▋ | 1843464/4997817 [00:12<00:20, 153189.44it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1896678/4997817 [00:12<00:19, 155248.93it/s]" + " 37%|███▋ | 1858984/4997817 [00:12<00:20, 153786.46it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1912204/4997817 [00:12<00:19, 155052.44it/s]" + " 38%|███▊ | 1874464/4997817 [00:12<00:20, 154084.92it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1927782/4997817 [00:12<00:19, 155267.04it/s]" + " 38%|███▊ | 1889886/4997817 [00:12<00:20, 154001.26it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1943309/4997817 [00:12<00:20, 147382.65it/s]" + " 38%|███▊ | 1905352/4997817 [00:12<00:20, 154197.03it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1958900/4997817 [00:12<00:20, 149845.53it/s]" + " 38%|███▊ | 1920784/4997817 [00:12<00:19, 154230.24it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1974144/4997817 [00:12<00:20, 150601.16it/s]" + " 39%|███▊ | 1936212/4997817 [00:12<00:20, 148546.66it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1989777/4997817 [00:12<00:19, 152285.11it/s]" + " 39%|███▉ | 1951414/4997817 [00:12<00:20, 149557.92it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2005339/4997817 [00:12<00:19, 153271.17it/s]" + " 39%|███▉ | 1966912/4997817 [00:12<00:20, 151149.78it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2020923/4997817 [00:12<00:19, 154032.12it/s]" + " 40%|███▉ | 1982262/4997817 [00:12<00:19, 151843.47it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2036556/4997817 [00:13<00:19, 154716.13it/s]" + " 40%|███▉ | 1997680/4997817 [00:13<00:19, 152533.87it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2052197/4997817 [00:13<00:18, 155218.30it/s]" + " 40%|████ | 2012949/4997817 [00:13<00:19, 152506.11it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2067791/4997817 [00:13<00:18, 155431.62it/s]" + " 41%|████ | 2028211/4997817 [00:13<00:19, 152396.45it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2083480/4997817 [00:13<00:18, 155866.53it/s]" + " 41%|████ | 2043459/4997817 [00:13<00:19, 152411.03it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2099072/4997817 [00:13<00:18, 153960.26it/s]" + " 41%|████ | 2058765/4997817 [00:13<00:19, 152604.20it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2114477/4997817 [00:13<00:19, 149462.47it/s]" + " 41%|████▏ | 2074030/4997817 [00:13<00:19, 152499.64it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2129964/4997817 [00:13<00:18, 151036.87it/s]" + " 42%|████▏ | 2089285/4997817 [00:13<00:19, 152513.02it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2145511/4997817 [00:13<00:18, 152339.93it/s]" + " 42%|████▏ | 2104539/4997817 [00:13<00:19, 151666.67it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2161091/4997817 [00:13<00:18, 153360.76it/s]" + " 42%|████▏ | 2119708/4997817 [00:13<00:19, 151082.79it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2176618/4997817 [00:14<00:18, 153926.20it/s]" + " 43%|████▎ | 2134819/4997817 [00:13<00:18, 150954.13it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2192023/4997817 [00:14<00:18, 153927.27it/s]" + " 43%|████▎ | 2149966/4997817 [00:14<00:18, 151105.70it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2207487/4997817 [00:14<00:18, 154138.21it/s]" + " 43%|████▎ | 2165078/4997817 [00:14<00:18, 150864.63it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2222907/4997817 [00:14<00:18, 154133.22it/s]" + " 44%|████▎ | 2180212/4997817 [00:14<00:18, 151004.51it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2238462/4997817 [00:14<00:17, 154555.13it/s]" + " 44%|████▍ | 2195377/4997817 [00:14<00:18, 151195.99it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2254046/4997817 [00:14<00:17, 154936.96it/s]" + " 44%|████▍ | 2210676/4997817 [00:14<00:18, 151731.76it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2269542/4997817 [00:14<00:17, 154628.66it/s]" + " 45%|████▍ | 2225850/4997817 [00:14<00:18, 151531.53it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2285034/4997817 [00:14<00:17, 154712.81it/s]" + " 45%|████▍ | 2241004/4997817 [00:14<00:18, 151333.79it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2300521/4997817 [00:14<00:17, 154756.29it/s]" + " 45%|████▌ | 2256138/4997817 [00:14<00:18, 150729.51it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2316076/4997817 [00:14<00:17, 154990.85it/s]" + " 45%|████▌ | 2271212/4997817 [00:14<00:18, 150197.98it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2331731/4997817 [00:15<00:17, 155457.59it/s]" + " 46%|████▌ | 2286233/4997817 [00:15<00:18, 150187.72it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2347419/4997817 [00:15<00:17, 155882.10it/s]" + " 46%|████▌ | 2301330/4997817 [00:15<00:17, 150418.31it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2363116/4997817 [00:15<00:16, 156205.14it/s]" + " 46%|████▋ | 2316399/4997817 [00:15<00:17, 150498.24it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2378808/4997817 [00:15<00:16, 156417.45it/s]" + " 47%|████▋ | 2331548/4997817 [00:15<00:17, 150793.94it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2394450/4997817 [00:15<00:16, 156396.45it/s]" + " 47%|████▋ | 2346781/4997817 [00:15<00:17, 151253.19it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2410090/4997817 [00:15<00:16, 156233.00it/s]" + " 47%|████▋ | 2362004/4997817 [00:15<00:17, 151542.75it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2425714/4997817 [00:15<00:16, 153347.97it/s]" + " 48%|████▊ | 2377162/4997817 [00:15<00:17, 151551.14it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2441355/4997817 [00:15<00:16, 154251.91it/s]" + " 48%|████▊ | 2392436/4997817 [00:15<00:17, 151906.04it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2456999/4997817 [00:15<00:16, 154899.45it/s]" + " 48%|████▊ | 2407643/4997817 [00:15<00:17, 151953.19it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2472573/4997817 [00:15<00:16, 155147.20it/s]" + " 48%|████▊ | 2423011/4997817 [00:15<00:16, 152469.29it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488269/4997817 [00:16<00:16, 155687.39it/s]" + " 49%|████▉ | 2438258/4997817 [00:16<00:16, 152457.99it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2503888/4997817 [00:16<00:16, 155834.72it/s]" + " 49%|████▉ | 2453589/4997817 [00:16<00:16, 152711.08it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2519475/4997817 [00:16<00:15, 155805.85it/s]" + " 49%|████▉ | 2468861/4997817 [00:16<00:16, 152406.11it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2535058/4997817 [00:16<00:15, 155369.20it/s]" + " 50%|████▉ | 2484102/4997817 [00:16<00:16, 152383.37it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2550597/4997817 [00:16<00:15, 155179.21it/s]" + " 50%|█████ | 2499341/4997817 [00:16<00:16, 152361.67it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2566117/4997817 [00:16<00:15, 155127.40it/s]" + " 50%|█████ | 2514736/4997817 [00:16<00:16, 152835.48it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2581758/4997817 [00:16<00:15, 155508.94it/s]" + " 51%|█████ | 2530062/4997817 [00:16<00:16, 152961.70it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2597417/4997817 [00:16<00:15, 155829.62it/s]" + " 51%|█████ | 2545402/4997817 [00:16<00:16, 153090.00it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2613047/4997817 [00:16<00:15, 155967.82it/s]" + " 51%|█████ | 2560712/4997817 [00:16<00:15, 152472.61it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2628736/4997817 [00:16<00:15, 156242.26it/s]" + " 52%|█████▏ | 2576006/4997817 [00:16<00:15, 152608.52it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2644396/4997817 [00:17<00:15, 156346.54it/s]" + " 52%|█████▏ | 2591361/4997817 [00:17<00:15, 152887.01it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2660031/4997817 [00:17<00:14, 156281.93it/s]" + " 52%|█████▏ | 2606651/4997817 [00:17<00:15, 152751.10it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2675660/4997817 [00:17<00:14, 156120.12it/s]" + " 52%|█████▏ | 2621927/4997817 [00:17<00:15, 152635.77it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2691280/4997817 [00:17<00:14, 156142.76it/s]" + " 53%|█████▎ | 2637191/4997817 [00:17<00:15, 152547.55it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2706895/4997817 [00:17<00:14, 155947.37it/s]" + " 53%|█████▎ | 2652472/4997817 [00:17<00:15, 152623.26it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2722572/4997817 [00:17<00:14, 156193.18it/s]" + " 53%|█████▎ | 2667735/4997817 [00:17<00:15, 152574.74it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2738193/4997817 [00:17<00:14, 156195.92it/s]" + " 54%|█████▎ | 2682993/4997817 [00:17<00:15, 152551.51it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2753813/4997817 [00:17<00:14, 150301.55it/s]" + " 54%|█████▍ | 2698249/4997817 [00:17<00:15, 152430.35it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2769422/4997817 [00:17<00:14, 151987.78it/s]" + " 54%|█████▍ | 2713493/4997817 [00:17<00:14, 152302.06it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2785064/4997817 [00:17<00:14, 153289.24it/s]" + " 55%|█████▍ | 2728724/4997817 [00:17<00:15, 151063.24it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2800777/4997817 [00:18<00:14, 154423.61it/s]" + " 55%|█████▍ | 2743939/4997817 [00:18<00:14, 151383.79it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2816532/4997817 [00:18<00:14, 155351.64it/s]" + " 55%|█████▌ | 2759158/4997817 [00:18<00:14, 151621.64it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2832326/4997817 [00:18<00:13, 156121.44it/s]" + " 56%|█████▌ | 2774348/4997817 [00:18<00:14, 151702.75it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2848000/4997817 [00:18<00:13, 156304.73it/s]" + " 56%|█████▌ | 2789597/4997817 [00:18<00:14, 151936.90it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2863639/4997817 [00:18<00:13, 156075.36it/s]" + " 56%|█████▌ | 2804823/4997817 [00:18<00:14, 152032.20it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2879282/4997817 [00:18<00:13, 156179.98it/s]" + " 56%|█████▋ | 2820027/4997817 [00:18<00:14, 152028.49it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2894905/4997817 [00:18<00:13, 156130.38it/s]" + " 57%|█████▋ | 2835231/4997817 [00:18<00:14, 151863.98it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2910521/4997817 [00:18<00:13, 155588.20it/s]" + " 57%|█████▋ | 2850481/4997817 [00:18<00:14, 152051.86it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2926101/4997817 [00:18<00:13, 155647.77it/s]" + " 57%|█████▋ | 2865687/4997817 [00:18<00:14, 152021.10it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2941668/4997817 [00:18<00:13, 155279.31it/s]" + " 58%|█████▊ | 2880890/4997817 [00:18<00:13, 151948.23it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2957198/4997817 [00:19<00:13, 155117.95it/s]" + " 58%|█████▊ | 2896119/4997817 [00:19<00:13, 152047.99it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2972765/4997817 [00:19<00:13, 155281.18it/s]" + " 58%|█████▊ | 2911324/4997817 [00:19<00:13, 151894.90it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2988398/4997817 [00:19<00:12, 155591.93it/s]" + " 59%|█████▊ | 2926514/4997817 [00:19<00:13, 151707.99it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3003958/4997817 [00:19<00:12, 155555.18it/s]" + " 59%|█████▉ | 2941685/4997817 [00:19<00:13, 151331.30it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3019690/4997817 [00:19<00:12, 156080.74it/s]" + " 59%|█████▉ | 2956862/4997817 [00:19<00:13, 151461.27it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3035372/4997817 [00:19<00:12, 156299.79it/s]" + " 59%|█████▉ | 2972034/4997817 [00:19<00:13, 151534.88it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3051003/4997817 [00:19<00:12, 154260.07it/s]" + " 60%|█████▉ | 2987200/4997817 [00:19<00:13, 151569.37it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3066480/4997817 [00:19<00:12, 154409.21it/s]" + " 60%|██████ | 3002482/4997817 [00:19<00:13, 151940.96it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3082098/4997817 [00:19<00:12, 154934.80it/s]" + " 60%|██████ | 3017677/4997817 [00:19<00:13, 151819.15it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3097722/4997817 [00:19<00:12, 155321.11it/s]" + " 61%|██████ | 3032885/4997817 [00:19<00:12, 151894.65it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3113318/4997817 [00:20<00:12, 155509.63it/s]" + " 61%|██████ | 3048113/4997817 [00:20<00:12, 152008.14it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3128913/4997817 [00:20<00:12, 155639.58it/s]" + " 61%|██████▏ | 3063393/4997817 [00:20<00:12, 152242.46it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3144479/4997817 [00:20<00:11, 155436.41it/s]" + " 62%|██████▏ | 3078624/4997817 [00:20<00:12, 152259.82it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3160024/4997817 [00:20<00:11, 155424.44it/s]" + " 62%|██████▏ | 3093999/4997817 [00:20<00:12, 152703.83it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3175636/4997817 [00:20<00:11, 155631.16it/s]" + " 62%|██████▏ | 3109270/4997817 [00:20<00:12, 152597.70it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3191241/4997817 [00:20<00:11, 155756.16it/s]" + " 63%|██████▎ | 3124545/4997817 [00:20<00:12, 152640.02it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3206843/4997817 [00:20<00:11, 155833.52it/s]" + " 63%|██████▎ | 3139820/4997817 [00:20<00:12, 152672.28it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3222427/4997817 [00:20<00:11, 155273.07it/s]" + " 63%|██████▎ | 3155088/4997817 [00:20<00:12, 152185.95it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3237981/4997817 [00:20<00:11, 155351.19it/s]" + " 63%|██████▎ | 3170307/4997817 [00:20<00:12, 152112.32it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3253517/4997817 [00:20<00:11, 154931.20it/s]" + " 64%|██████▎ | 3185530/4997817 [00:20<00:11, 152144.01it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3269081/4997817 [00:21<00:11, 155140.63it/s]" + " 64%|██████▍ | 3200769/4997817 [00:21<00:11, 152215.78it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3284643/4997817 [00:21<00:11, 155282.26it/s]" + " 64%|██████▍ | 3215991/4997817 [00:21<00:11, 152101.57it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3300172/4997817 [00:21<00:10, 154899.59it/s]" + " 65%|██████▍ | 3231212/4997817 [00:21<00:11, 152132.03it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3315734/4997817 [00:21<00:10, 155110.38it/s]" + " 65%|██████▍ | 3246456/4997817 [00:21<00:11, 152222.64it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3331370/4997817 [00:21<00:10, 155482.10it/s]" + " 65%|██████▌ | 3261753/4997817 [00:21<00:11, 152443.70it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3346919/4997817 [00:21<00:10, 155478.18it/s]" + " 66%|██████▌ | 3277013/4997817 [00:21<00:11, 152488.65it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3362526/4997817 [00:21<00:10, 155654.59it/s]" + " 66%|██████▌ | 3292262/4997817 [00:21<00:11, 152111.15it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3378092/4997817 [00:21<00:10, 155458.59it/s]" + " 66%|██████▌ | 3307474/4997817 [00:21<00:11, 151890.48it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3393723/4997817 [00:21<00:10, 155711.81it/s]" + " 66%|██████▋ | 3322664/4997817 [00:21<00:11, 151792.11it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3409391/4997817 [00:21<00:10, 155999.46it/s]" + " 67%|██████▋ | 3338019/4997817 [00:21<00:10, 152314.90it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3425019/4997817 [00:22<00:10, 156082.27it/s]" + " 67%|██████▋ | 3353323/4997817 [00:22<00:10, 152529.53it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3440777/4997817 [00:22<00:09, 156528.39it/s]" + " 67%|██████▋ | 3368577/4997817 [00:22<00:10, 152460.16it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3456471/4997817 [00:22<00:09, 156650.75it/s]" + " 68%|██████▊ | 3383824/4997817 [00:22<00:10, 152309.28it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3472159/4997817 [00:22<00:09, 156718.43it/s]" + " 68%|██████▊ | 3399056/4997817 [00:22<00:10, 151943.79it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3487831/4997817 [00:22<00:09, 156663.27it/s]" + " 68%|██████▊ | 3414251/4997817 [00:22<00:10, 151765.12it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3503498/4997817 [00:22<00:09, 156604.19it/s]" + " 69%|██████▊ | 3429493/4997817 [00:22<00:10, 151958.92it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3519159/4997817 [00:22<00:09, 156242.75it/s]" + " 69%|██████▉ | 3444690/4997817 [00:22<00:10, 151836.87it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3534858/4997817 [00:22<00:09, 156463.62it/s]" + " 69%|██████▉ | 3459874/4997817 [00:22<00:10, 151774.03it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3550505/4997817 [00:22<00:09, 149036.13it/s]" + " 70%|██████▉ | 3475111/4997817 [00:22<00:10, 151949.21it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3566172/4997817 [00:22<00:09, 151244.49it/s]" + " 70%|██████▉ | 3490307/4997817 [00:22<00:09, 151945.21it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3581958/4997817 [00:23<00:09, 153178.22it/s]" + " 70%|███████ | 3505502/4997817 [00:23<00:09, 149425.36it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3597789/4997817 [00:23<00:09, 154690.37it/s]" + " 70%|███████ | 3520675/4997817 [00:23<00:09, 150104.81it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3613468/4997817 [00:23<00:08, 155310.76it/s]" + " 71%|███████ | 3536035/4997817 [00:23<00:09, 151141.36it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3629200/4997817 [00:23<00:08, 155906.08it/s]" + " 71%|███████ | 3551305/4997817 [00:23<00:09, 151603.89it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3644976/4997817 [00:23<00:08, 156457.28it/s]" + " 71%|███████▏ | 3566631/4997817 [00:23<00:09, 152096.15it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3660681/4997817 [00:23<00:08, 156631.04it/s]" + " 72%|███████▏ | 3582057/4997817 [00:23<00:09, 152739.92it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3676412/4997817 [00:23<00:08, 156830.70it/s]" + " 72%|███████▏ | 3597451/4997817 [00:23<00:09, 153097.47it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3692102/4997817 [00:23<00:08, 156763.32it/s]" + " 72%|███████▏ | 3612812/4997817 [00:23<00:09, 153248.53it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3707783/4997817 [00:23<00:08, 156228.59it/s]" + " 73%|███████▎ | 3628145/4997817 [00:23<00:08, 153269.81it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3723410/4997817 [00:23<00:08, 156001.90it/s]" + " 73%|███████▎ | 3643473/4997817 [00:23<00:08, 153075.54it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3739013/4997817 [00:24<00:08, 155896.92it/s]" + " 73%|███████▎ | 3658782/4997817 [00:24<00:08, 152987.26it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3754680/4997817 [00:24<00:07, 156126.72it/s]" + " 74%|███████▎ | 3674219/4997817 [00:24<00:08, 153400.11it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3770294/4997817 [00:24<00:07, 155956.77it/s]" + " 74%|███████▍ | 3689609/4997817 [00:24<00:08, 153548.76it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3785910/4997817 [00:24<00:07, 156016.86it/s]" + " 74%|███████▍ | 3704965/4997817 [00:24<00:08, 153215.87it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3801513/4997817 [00:24<00:07, 155964.71it/s]" + " 74%|███████▍ | 3720330/4997817 [00:24<00:08, 153308.02it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3817120/4997817 [00:24<00:07, 155992.84it/s]" + " 75%|███████▍ | 3735745/4997817 [00:24<00:08, 153557.19it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3832720/4997817 [00:24<00:07, 155983.55it/s]" + " 75%|███████▌ | 3751101/4997817 [00:24<00:08, 153486.47it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3848345/4997817 [00:24<00:07, 156059.90it/s]" + " 75%|███████▌ | 3766504/4997817 [00:24<00:08, 153647.63it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3863952/4997817 [00:24<00:07, 148367.40it/s]" + " 76%|███████▌ | 3781869/4997817 [00:24<00:07, 153439.48it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3879632/4997817 [00:24<00:07, 150805.37it/s]" + " 76%|███████▌ | 3797284/4997817 [00:24<00:07, 153648.41it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3895335/4997817 [00:25<00:07, 152623.35it/s]" + " 76%|███████▋ | 3812649/4997817 [00:25<00:07, 153206.91it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3911069/4997817 [00:25<00:07, 154010.55it/s]" + " 77%|███████▋ | 3828069/4997817 [00:25<00:07, 153502.20it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3926784/4997817 [00:25<00:06, 154938.94it/s]" + " 77%|███████▋ | 3843420/4997817 [00:25<00:07, 153333.71it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3942544/4997817 [00:25<00:06, 155727.99it/s]" + " 77%|███████▋ | 3858826/4997817 [00:25<00:07, 153549.42it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3958159/4997817 [00:25<00:06, 155850.31it/s]" + " 78%|███████▊ | 3874182/4997817 [00:25<00:07, 153524.89it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3973923/4997817 [00:25<00:06, 156382.04it/s]" + " 78%|███████▊ | 3889575/4997817 [00:25<00:07, 153644.24it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3989706/4997817 [00:25<00:06, 156813.02it/s]" + " 78%|███████▊ | 3904940/4997817 [00:25<00:07, 153484.99it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4005509/4997817 [00:25<00:06, 157173.90it/s]" + " 78%|███████▊ | 3920289/4997817 [00:25<00:07, 153285.72it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4021268/4997817 [00:25<00:06, 157297.01it/s]" + " 79%|███████▊ | 3935618/4997817 [00:25<00:06, 153225.79it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4037002/4997817 [00:25<00:06, 156864.65it/s]" + " 79%|███████▉ | 3951084/4997817 [00:25<00:06, 153653.44it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4052692/4997817 [00:26<00:06, 156360.66it/s]" + " 79%|███████▉ | 3966477/4997817 [00:26<00:06, 153733.07it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4068403/4997817 [00:26<00:05, 156583.00it/s]" + " 80%|███████▉ | 3981879/4997817 [00:26<00:06, 153815.61it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4084170/4997817 [00:26<00:05, 156906.95it/s]" + " 80%|███████▉ | 3997261/4997817 [00:26<00:06, 153450.15it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4099862/4997817 [00:26<00:05, 156560.68it/s]" + " 80%|████████ | 4012607/4997817 [00:26<00:06, 153340.19it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4115633/4997817 [00:26<00:05, 156901.80it/s]" + " 81%|████████ | 4027942/4997817 [00:26<00:06, 153204.17it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4131413/4997817 [00:26<00:05, 157169.61it/s]" + " 81%|████████ | 4043263/4997817 [00:26<00:06, 153101.59it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4147174/4997817 [00:26<00:05, 157300.90it/s]" + " 81%|████████ | 4058574/4997817 [00:26<00:06, 152649.60it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4162905/4997817 [00:26<00:05, 157101.40it/s]" + " 82%|████████▏ | 4073840/4997817 [00:26<00:06, 152492.42it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4178673/4997817 [00:26<00:05, 157271.82it/s]" + " 82%|████████▏ | 4089090/4997817 [00:26<00:05, 152227.07it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4194401/4997817 [00:26<00:05, 154293.22it/s]" + " 82%|████████▏ | 4104313/4997817 [00:26<00:05, 150900.00it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4210003/4997817 [00:27<00:05, 154802.00it/s]" + " 82%|████████▏ | 4119406/4997817 [00:27<00:05, 150874.09it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4225675/4997817 [00:27<00:04, 155369.63it/s]" + " 83%|████████▎ | 4134496/4997817 [00:27<00:05, 150440.82it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4241497/4997817 [00:27<00:04, 156216.58it/s]" + " 83%|████████▎ | 4149652/4997817 [00:27<00:05, 150772.45it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4257316/4997817 [00:27<00:04, 156802.39it/s]" + " 83%|████████▎ | 4164918/4997817 [00:27<00:05, 151334.08it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4273149/4997817 [00:27<00:04, 157256.33it/s]" + " 84%|████████▎ | 4180089/4997817 [00:27<00:05, 151445.14it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4288963/4997817 [00:27<00:04, 157517.68it/s]" + " 84%|████████▍ | 4195260/4997817 [00:27<00:05, 151520.79it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4304819/4997817 [00:27<00:04, 157827.29it/s]" + " 84%|████████▍ | 4210505/4997817 [00:27<00:05, 151795.15it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4320680/4997817 [00:27<00:04, 158060.62it/s]" + " 85%|████████▍ | 4225702/4997817 [00:27<00:05, 151845.96it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4336553/4997817 [00:27<00:04, 158259.05it/s]" + " 85%|████████▍ | 4240887/4997817 [00:27<00:04, 151794.49it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4352399/4997817 [00:27<00:04, 158317.30it/s]" + " 85%|████████▌ | 4256251/4997817 [00:27<00:04, 152343.50it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4368232/4997817 [00:28<00:03, 157914.38it/s]" + " 85%|████████▌ | 4271644/4997817 [00:28<00:04, 152816.49it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4384025/4997817 [00:28<00:03, 157847.90it/s]" + " 86%|████████▌ | 4286926/4997817 [00:28<00:04, 151759.69it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4399840/4997817 [00:28<00:03, 157937.40it/s]" + " 86%|████████▌ | 4302104/4997817 [00:28<00:04, 151725.74it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4415688/4997817 [00:28<00:03, 158096.40it/s]" + " 86%|████████▋ | 4317364/4997817 [00:28<00:04, 151983.82it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4431584/4997817 [00:28<00:03, 158353.82it/s]" + " 87%|████████▋ | 4332692/4997817 [00:28<00:04, 152369.94it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4447420/4997817 [00:28<00:03, 158329.46it/s]" + " 87%|████████▋ | 4347991/4997817 [00:28<00:04, 152552.06it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4463254/4997817 [00:28<00:03, 158306.64it/s]" + " 87%|████████▋ | 4363327/4997817 [00:28<00:04, 152790.89it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4479095/4997817 [00:28<00:03, 158337.00it/s]" + " 88%|████████▊ | 4378607/4997817 [00:28<00:04, 148458.18it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4494929/4997817 [00:28<00:03, 158263.94it/s]" + " 88%|████████▊ | 4393480/4997817 [00:28<00:04, 142262.87it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4510756/4997817 [00:28<00:03, 157835.36it/s]" + " 88%|████████▊ | 4408792/4997817 [00:28<00:04, 145373.58it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4526540/4997817 [00:29<00:02, 157699.84it/s]" + " 89%|████████▊ | 4424149/4997817 [00:29<00:03, 147753.67it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4542329/4997817 [00:29<00:02, 157754.78it/s]" + " 89%|████████▉ | 4439438/4997817 [00:29<00:03, 149259.24it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4558105/4997817 [00:29<00:02, 157720.35it/s]" + " 89%|████████▉ | 4454678/4997817 [00:29<00:03, 150183.80it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4573998/4997817 [00:29<00:02, 158079.44it/s]" + " 89%|████████▉ | 4469725/4997817 [00:29<00:03, 143754.53it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4589845/4997817 [00:29<00:02, 158195.87it/s]" + " 90%|████████▉ | 4484985/4997817 [00:29<00:03, 146305.35it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4605665/4997817 [00:29<00:02, 158104.94it/s]" + " 90%|█████████ | 4500321/4997817 [00:29<00:03, 148363.06it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4621476/4997817 [00:29<00:02, 157979.37it/s]" + " 90%|█████████ | 4515705/4997817 [00:29<00:03, 149972.16it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4637312/4997817 [00:29<00:02, 158092.68it/s]" + " 91%|█████████ | 4530858/4997817 [00:29<00:03, 150429.10it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4653156/4997817 [00:29<00:02, 158194.47it/s]" + " 91%|█████████ | 4546128/4997817 [00:29<00:02, 151102.00it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4668976/4997817 [00:29<00:02, 157925.00it/s]" + " 91%|█████████▏| 4561495/4997817 [00:29<00:02, 151865.67it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4684769/4997817 [00:30<00:01, 157455.42it/s]" + " 92%|█████████▏| 4576696/4997817 [00:30<00:02, 151896.16it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4700543/4997817 [00:30<00:01, 157536.86it/s]" + " 92%|█████████▏| 4591896/4997817 [00:30<00:02, 151748.87it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4716321/4997817 [00:30<00:01, 157608.67it/s]" + " 92%|█████████▏| 4607105/4997817 [00:30<00:02, 151849.63it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4732087/4997817 [00:30<00:01, 157621.05it/s]" + " 92%|█████████▏| 4622426/4997817 [00:30<00:02, 152253.40it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4747850/4997817 [00:30<00:01, 157549.04it/s]" + " 93%|█████████▎| 4637655/4997817 [00:30<00:02, 152253.97it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4763606/4997817 [00:30<00:01, 157330.93it/s]" + " 93%|█████████▎| 4652942/4997817 [00:30<00:02, 152435.88it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4779340/4997817 [00:30<00:01, 156851.46it/s]" + " 93%|█████████▎| 4668228/4997817 [00:30<00:02, 152559.13it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4795062/4997817 [00:30<00:01, 156958.89it/s]" + " 94%|█████████▎| 4683506/4997817 [00:30<00:02, 152624.09it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4810759/4997817 [00:30<00:01, 156924.75it/s]" + " 94%|█████████▍| 4698770/4997817 [00:30<00:01, 152408.14it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4826479/4997817 [00:30<00:01, 157004.31it/s]" + " 94%|█████████▍| 4714012/4997817 [00:30<00:01, 152314.36it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4842180/4997817 [00:31<00:01, 153018.17it/s]" + " 95%|█████████▍| 4729244/4997817 [00:31<00:01, 152253.45it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4857754/4997817 [00:31<00:00, 153817.46it/s]" + " 95%|█████████▍| 4744470/4997817 [00:31<00:01, 148906.69it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4873365/4997817 [00:31<00:00, 154494.84it/s]" + " 95%|█████████▌| 4759678/4997817 [00:31<00:01, 149840.73it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4888941/4997817 [00:31<00:00, 154867.71it/s]" + " 96%|█████████▌| 4774923/4997817 [00:31<00:01, 150611.02it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4904521/4997817 [00:31<00:00, 155143.07it/s]" + " 96%|█████████▌| 4790208/4997817 [00:31<00:01, 151275.27it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4920058/4997817 [00:31<00:00, 155210.22it/s]" + " 96%|█████████▌| 4805406/4997817 [00:31<00:01, 151482.40it/s]" ] }, { @@ -3051,7 +3051,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4935639/4997817 [00:31<00:00, 155386.51it/s]" + " 96%|█████████▋| 4820694/4997817 [00:31<00:01, 151896.91it/s]" ] }, { @@ -3059,7 +3059,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4951237/4997817 [00:31<00:00, 155562.98it/s]" + " 97%|█████████▋| 4836084/4997817 [00:31<00:01, 152492.81it/s]" ] }, { @@ -3067,7 +3067,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4966796/4997817 [00:31<00:00, 155195.74it/s]" + " 97%|█████████▋| 4851423/4997817 [00:31<00:00, 152757.88it/s]" ] }, { @@ -3075,7 +3075,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4982344/4997817 [00:32<00:00, 155277.39it/s]" + " 97%|█████████▋| 4866834/4997817 [00:31<00:00, 153161.56it/s]" ] }, { @@ -3083,7 +3083,71 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:32<00:00, 155619.15it/s]" + " 98%|█████████▊| 4882152/4997817 [00:32<00:00, 153112.21it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4897502/4997817 [00:32<00:00, 153224.32it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4912826/4997817 [00:32<00:00, 151174.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4928122/4997817 [00:32<00:00, 151703.79it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4943431/4997817 [00:32<00:00, 152115.73it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4958721/4997817 [00:32<00:00, 152348.60it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4973960/4997817 [00:32<00:00, 152357.87it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4989221/4997817 [00:32<00:00, 152431.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997817/4997817 [00:32<00:00, 152152.96it/s]" ] }, { @@ -3322,10 +3386,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:26.080952Z", - "iopub.status.busy": "2024-02-08T04:34:26.080738Z", - "iopub.status.idle": "2024-02-08T04:34:40.605218Z", - "shell.execute_reply": "2024-02-08T04:34:40.604703Z" + "iopub.execute_input": "2024-02-08T05:20:55.976566Z", + "iopub.status.busy": "2024-02-08T05:20:55.976226Z", + "iopub.status.idle": "2024-02-08T05:21:10.548967Z", + "shell.execute_reply": "2024-02-08T05:21:10.548301Z" } }, "outputs": [], @@ -3339,10 +3403,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:40.607807Z", - "iopub.status.busy": "2024-02-08T04:34:40.607375Z", - "iopub.status.idle": "2024-02-08T04:34:44.392874Z", - "shell.execute_reply": "2024-02-08T04:34:44.392299Z" + "iopub.execute_input": "2024-02-08T05:21:10.551900Z", + "iopub.status.busy": "2024-02-08T05:21:10.551425Z", + "iopub.status.idle": "2024-02-08T05:21:14.388658Z", + "shell.execute_reply": "2024-02-08T05:21:14.388077Z" } }, "outputs": [ @@ -3411,17 +3475,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:44.395119Z", - "iopub.status.busy": "2024-02-08T04:34:44.394713Z", - "iopub.status.idle": "2024-02-08T04:34:45.738548Z", - "shell.execute_reply": "2024-02-08T04:34:45.738044Z" + "iopub.execute_input": "2024-02-08T05:21:14.390938Z", + "iopub.status.busy": "2024-02-08T05:21:14.390532Z", + "iopub.status.idle": "2024-02-08T05:21:15.799224Z", + "shell.execute_reply": "2024-02-08T05:21:15.798611Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fc2a058975cf4670b5ea53ada4efa60e", + "model_id": "30b77994083048219d1b9180228c2b4b", "version_major": 2, "version_minor": 0 }, @@ -3451,10 +3515,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:45.740842Z", - "iopub.status.busy": "2024-02-08T04:34:45.740635Z", - "iopub.status.idle": "2024-02-08T04:34:46.298623Z", - "shell.execute_reply": "2024-02-08T04:34:46.297981Z" + "iopub.execute_input": "2024-02-08T05:21:15.801674Z", + "iopub.status.busy": "2024-02-08T05:21:15.801489Z", + "iopub.status.idle": "2024-02-08T05:21:16.360971Z", + "shell.execute_reply": "2024-02-08T05:21:16.360335Z" } }, "outputs": [], @@ -3468,10 +3532,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:46.301137Z", - "iopub.status.busy": "2024-02-08T04:34:46.300933Z", - "iopub.status.idle": "2024-02-08T04:34:52.298498Z", - "shell.execute_reply": "2024-02-08T04:34:52.297918Z" + "iopub.execute_input": "2024-02-08T05:21:16.363401Z", + "iopub.status.busy": "2024-02-08T05:21:16.363219Z", + "iopub.status.idle": "2024-02-08T05:21:22.539869Z", + "shell.execute_reply": "2024-02-08T05:21:22.539266Z" } }, "outputs": [ @@ -3544,10 +3608,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:52.300651Z", - "iopub.status.busy": "2024-02-08T04:34:52.300470Z", - "iopub.status.idle": "2024-02-08T04:34:52.355976Z", - "shell.execute_reply": "2024-02-08T04:34:52.355420Z" + "iopub.execute_input": "2024-02-08T05:21:22.542055Z", + "iopub.status.busy": "2024-02-08T05:21:22.541716Z", + "iopub.status.idle": "2024-02-08T05:21:22.598351Z", + "shell.execute_reply": "2024-02-08T05:21:22.597802Z" }, "nbsphinx": "hidden" }, @@ -3591,25 +3655,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1b82d325bec94a47b9760cfd2a39a0df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "21c9e447d7fc49baaa07a5dcce1a412b": { + "0d25ab13f4d04ef39fede621e03c9b68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3662,30 +3708,41 @@ "width": null } }, - "23e3234032514e6680b01e2f25da0326": { + "0df6444b371a41e586ef22dd0d96e299": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9244d510c1fe4a9f858e8d747a5fb295", - "placeholder": "​", - "style": "IPY_MODEL_66b9efd6c0844f4a916d16ba72b3d48e", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00, 1.39it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "29cb9371753c4992adc2f03e9fded233": { + "103b031096294a14966691d435d6a362": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "106210816124408ca0e833f78c8c2750": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3700,15 +3757,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2dc1e15160a4a7da0af031122d9a662", + "layout": "IPY_MODEL_b4cfe9721e084dcf8d5ed3d647c40487", "placeholder": "​", - "style": "IPY_MODEL_4b1015e6ccde4c4299ac75c1f98dcb22", + "style": "IPY_MODEL_d01add5fe210416992ea136cad4f9a50", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "30f03336498f4516a6d36df879f490a1": { + "1165496d989d4c618a382d0b049e90f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3761,7 +3818,7 @@ "width": null } }, - "31f64f3801d34603bcb678d8d88d83f6": { + "132a2934c1e94813804517068cca530c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3814,7 +3871,33 @@ "width": null } }, - "4017c8df71354bda92d5349ae9fef4f0": { + "256b1a27f64b492eb415fe31f617f17e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_38c1a2e3eb594faea8eb2159dc493400", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_26bfc64f16c340dfb305f1ed58a36893", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "26bfc64f16c340dfb305f1ed58a36893": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3830,74 +3913,80 @@ "description_width": "" } }, - "4b1015e6ccde4c4299ac75c1f98dcb22": { + "2dada95fdc0c47b88fb6c50ae7618090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aa8d1da8c49c4d2a884a06dab1f31831", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_605b331b013a4216a3a1d69843abfb9d", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "4cf90d57769c4f3aae212728b54aba6a": { + "30b77994083048219d1b9180228c2b4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31f64f3801d34603bcb678d8d88d83f6", - "placeholder": "​", - "style": "IPY_MODEL_c3029038eaec4733a5f0438439b843e5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cfc0a965d67648e0a57cd05e92e22c4b", + "IPY_MODEL_256b1a27f64b492eb415fe31f617f17e", + "IPY_MODEL_326727f0539e449b89ff29010c44925d" + ], + "layout": "IPY_MODEL_1165496d989d4c618a382d0b049e90f3", "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 437.20it/s]" + "tooltip": null } }, - "4e185115a3fe481bb647f7f4518b4dfc": { + "326727f0539e449b89ff29010c44925d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e24577d1ffb640629f4e974978dd12fe", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d8067231e5354369991d63ab259e569b", + "layout": "IPY_MODEL_0d25ab13f4d04ef39fede621e03c9b68", + "placeholder": "​", + "style": "IPY_MODEL_0df6444b371a41e586ef22dd0d96e299", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": " 30/30 [00:01<00:00, 22.03it/s]" } }, - "5003464293884ffa8065ab5b42f55410": { + "38c1a2e3eb594faea8eb2159dc493400": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3950,80 +4039,7 @@ "width": null } }, - "54e4956dd0ef45b88635518452443a61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc49518bd58b48719e6296222d8ba180", - "placeholder": "​", - "style": "IPY_MODEL_716682390a83470282205d2427adfa3c", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.39it/s]" - } - }, - "58627b4f134842dca11108614dae515e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21c9e447d7fc49baaa07a5dcce1a412b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_80f77a5f99b34520abdbf09b57cc9c05", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "633c79ed95ab41e0aabbd57dbd3ecb08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_db25e0c95dbd4fe58acc9c2e49009d2a", - "IPY_MODEL_58627b4f134842dca11108614dae515e", - "IPY_MODEL_4cf90d57769c4f3aae212728b54aba6a" - ], - "layout": "IPY_MODEL_924a2835da754654ae4815fa9f5ef2fb", - "tabbable": null, - "tooltip": null - } - }, - "66b9efd6c0844f4a916d16ba72b3d48e": { + "4e5ddda315dd424898bc3e19b40c8911": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4041,7 +4057,7 @@ "text_color": null } }, - "716682390a83470282205d2427adfa3c": { + "515057138d954b6ebf522b421c89d5f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4059,7 +4075,7 @@ "text_color": null } }, - "77a6a651adfb453fa5d94c5e24358725": { + "53b94fb45c8f40ac801a8583ce8a7a73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4074,39 +4090,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7dbf6f5ff049453eb1a13021b098acfa", + "layout": "IPY_MODEL_797d2e014b75484db3c4d231eb1ea0b4", "placeholder": "​", - "style": "IPY_MODEL_1b82d325bec94a47b9760cfd2a39a0df", + "style": "IPY_MODEL_85a1f5bf0cac46fa928b2505eed353ee", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:22<00:00, 1.36it/s]" } }, - "7cc6878891b34dc6b9eee074c27b9942": { + "605b331b013a4216a3a1d69843abfb9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_29cb9371753c4992adc2f03e9fded233", - "IPY_MODEL_4e185115a3fe481bb647f7f4518b4dfc", - "IPY_MODEL_23e3234032514e6680b01e2f25da0326" - ], - "layout": "IPY_MODEL_30f03336498f4516a6d36df879f490a1", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7dbf6f5ff049453eb1a13021b098acfa": { + "6d2092724d374342be5b8f9b4a89b9d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4159,23 +4167,7 @@ "width": null } }, - "80f77a5f99b34520abdbf09b57cc9c05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9244d510c1fe4a9f858e8d747a5fb295": { + "797d2e014b75484db3c4d231eb1ea0b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4228,7 +4220,43 @@ "width": null } }, - "924a2835da754654ae4815fa9f5ef2fb": { + "85a1f5bf0cac46fa928b2505eed353ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8b227e07b4534bf5bb14643f40e77d70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a1e0af03c0aa4af59354b9330442282e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4281,7 +4309,7 @@ "width": null } }, - "92739bcd527e4b43b2729ff01f60f8f6": { + "a38d8339b17a4450931b440a9b5583fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4297,35 +4325,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5003464293884ffa8065ab5b42f55410", + "layout": "IPY_MODEL_fde2f9b7dcca4cb7b2e34c2392682342", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4017c8df71354bda92d5349ae9fef4f0", + "style": "IPY_MODEL_103b031096294a14966691d435d6a362", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "aa70cd8ed63c447d882958ff5fbe6dd6": { - "model_module": "@jupyter-widgets/controls", + "aa8d1da8c49c4d2a884a06dab1f31831": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ad6f45a3725e4aafa3404454d480c462": { + "b476da5146714d8d93cca98c05787c7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4378,7 +4441,7 @@ "width": null } }, - "b02aada907ae490897286a7070c2059f": { + "b4cfe9721e084dcf8d5ed3d647c40487": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4431,7 +4494,54 @@ "width": null } }, - "c3029038eaec4733a5f0438439b843e5": { + "c8c2e28ad93b4bdd9fc175ec25c69050": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_106210816124408ca0e833f78c8c2750", + "IPY_MODEL_2dada95fdc0c47b88fb6c50ae7618090", + "IPY_MODEL_ecfa15309b0748c9a716660fa9b963b0" + ], + "layout": "IPY_MODEL_b476da5146714d8d93cca98c05787c7a", + "tabbable": null, + "tooltip": null + } + }, + "cfc0a965d67648e0a57cd05e92e22c4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a1e0af03c0aa4af59354b9330442282e", + "placeholder": "​", + "style": "IPY_MODEL_4e5ddda315dd424898bc3e19b40c8911", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "d01add5fe210416992ea136cad4f9a50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4449,23 +4559,31 @@ "text_color": null } }, - "d8067231e5354369991d63ab259e569b": { + "ea58fb54e03a45d5b2072a4db0195034": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f71171dbaac542ab888563268f45ef8c", + "IPY_MODEL_a38d8339b17a4450931b440a9b5583fd", + "IPY_MODEL_53b94fb45c8f40ac801a8583ce8a7a73" + ], + "layout": "IPY_MODEL_f5093f8381674d4c92872ec4fd9fa6e4", + "tabbable": null, + "tooltip": null } }, - "db25e0c95dbd4fe58acc9c2e49009d2a": { + "ecfa15309b0748c9a716660fa9b963b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4480,68 +4598,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b02aada907ae490897286a7070c2059f", + "layout": "IPY_MODEL_132a2934c1e94813804517068cca530c", "placeholder": "​", - "style": "IPY_MODEL_aa70cd8ed63c447d882958ff5fbe6dd6", + "style": "IPY_MODEL_515057138d954b6ebf522b421c89d5f2", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "e24577d1ffb640629f4e974978dd12fe": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 30/30 [00:00<00:00, 423.89it/s]" } }, - "f2dc1e15160a4a7da0af031122d9a662": { + "f5093f8381674d4c92872ec4fd9fa6e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4594,31 +4659,30 @@ "width": null } }, - "fc2a058975cf4670b5ea53ada4efa60e": { + "f71171dbaac542ab888563268f45ef8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_77a6a651adfb453fa5d94c5e24358725", - "IPY_MODEL_92739bcd527e4b43b2729ff01f60f8f6", - "IPY_MODEL_54e4956dd0ef45b88635518452443a61" - ], - "layout": "IPY_MODEL_ad6f45a3725e4aafa3404454d480c462", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d2092724d374342be5b8f9b4a89b9d9", + "placeholder": "​", + "style": "IPY_MODEL_8b227e07b4534bf5bb14643f40e77d70", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "fc49518bd58b48719e6296222d8ba180": { + "fde2f9b7dcca4cb7b2e34c2392682342": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 2936ca8bb..b9ef97a18 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:56.168205Z", - "iopub.status.busy": "2024-02-08T04:34:56.168034Z", - "iopub.status.idle": "2024-02-08T04:34:57.205458Z", - "shell.execute_reply": "2024-02-08T04:34:57.204912Z" + "iopub.execute_input": "2024-02-08T05:21:26.796223Z", + "iopub.status.busy": "2024-02-08T05:21:26.796052Z", + "iopub.status.idle": "2024-02-08T05:21:27.890548Z", + "shell.execute_reply": "2024-02-08T05:21:27.889969Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.208050Z", - "iopub.status.busy": "2024-02-08T04:34:57.207540Z", - "iopub.status.idle": "2024-02-08T04:34:57.225990Z", - "shell.execute_reply": "2024-02-08T04:34:57.225451Z" + "iopub.execute_input": "2024-02-08T05:21:27.893054Z", + "iopub.status.busy": "2024-02-08T05:21:27.892746Z", + "iopub.status.idle": "2024-02-08T05:21:27.911932Z", + "shell.execute_reply": "2024-02-08T05:21:27.911437Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.228346Z", - "iopub.status.busy": "2024-02-08T04:34:57.227916Z", - "iopub.status.idle": "2024-02-08T04:34:57.283231Z", - "shell.execute_reply": "2024-02-08T04:34:57.282803Z" + "iopub.execute_input": "2024-02-08T05:21:27.914373Z", + "iopub.status.busy": "2024-02-08T05:21:27.913935Z", + "iopub.status.idle": "2024-02-08T05:21:28.082310Z", + "shell.execute_reply": "2024-02-08T05:21:28.081788Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.285089Z", - "iopub.status.busy": "2024-02-08T04:34:57.284916Z", - "iopub.status.idle": "2024-02-08T04:34:57.288911Z", - "shell.execute_reply": "2024-02-08T04:34:57.288480Z" + "iopub.execute_input": "2024-02-08T05:21:28.084545Z", + "iopub.status.busy": "2024-02-08T05:21:28.084209Z", + "iopub.status.idle": "2024-02-08T05:21:28.088771Z", + "shell.execute_reply": "2024-02-08T05:21:28.088328Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.290970Z", - "iopub.status.busy": "2024-02-08T04:34:57.290645Z", - "iopub.status.idle": "2024-02-08T04:34:57.298491Z", - "shell.execute_reply": "2024-02-08T04:34:57.298062Z" + "iopub.execute_input": "2024-02-08T05:21:28.090816Z", + "iopub.status.busy": "2024-02-08T05:21:28.090483Z", + "iopub.status.idle": "2024-02-08T05:21:28.098465Z", + "shell.execute_reply": "2024-02-08T05:21:28.098061Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.300467Z", - "iopub.status.busy": "2024-02-08T04:34:57.300291Z", - "iopub.status.idle": "2024-02-08T04:34:57.302706Z", - "shell.execute_reply": "2024-02-08T04:34:57.302290Z" + "iopub.execute_input": "2024-02-08T05:21:28.100552Z", + "iopub.status.busy": "2024-02-08T05:21:28.100251Z", + "iopub.status.idle": "2024-02-08T05:21:28.102793Z", + "shell.execute_reply": "2024-02-08T05:21:28.102365Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.304634Z", - "iopub.status.busy": "2024-02-08T04:34:57.304375Z", - "iopub.status.idle": "2024-02-08T04:34:57.820042Z", - "shell.execute_reply": "2024-02-08T04:34:57.819446Z" + "iopub.execute_input": "2024-02-08T05:21:28.104759Z", + "iopub.status.busy": "2024-02-08T05:21:28.104437Z", + "iopub.status.idle": "2024-02-08T05:21:28.627194Z", + "shell.execute_reply": "2024-02-08T05:21:28.626590Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.822290Z", - "iopub.status.busy": "2024-02-08T04:34:57.822100Z", - "iopub.status.idle": "2024-02-08T04:34:59.439361Z", - "shell.execute_reply": "2024-02-08T04:34:59.438712Z" + "iopub.execute_input": "2024-02-08T05:21:28.629718Z", + "iopub.status.busy": "2024-02-08T05:21:28.629519Z", + "iopub.status.idle": "2024-02-08T05:21:30.345006Z", + "shell.execute_reply": "2024-02-08T05:21:30.344349Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.441941Z", - "iopub.status.busy": "2024-02-08T04:34:59.441397Z", - "iopub.status.idle": "2024-02-08T04:34:59.451265Z", - "shell.execute_reply": "2024-02-08T04:34:59.450745Z" + "iopub.execute_input": "2024-02-08T05:21:30.347698Z", + "iopub.status.busy": "2024-02-08T05:21:30.347087Z", + "iopub.status.idle": "2024-02-08T05:21:30.357476Z", + "shell.execute_reply": "2024-02-08T05:21:30.357044Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.453333Z", - "iopub.status.busy": "2024-02-08T04:34:59.453038Z", - "iopub.status.idle": "2024-02-08T04:34:59.456989Z", - "shell.execute_reply": "2024-02-08T04:34:59.456463Z" + "iopub.execute_input": "2024-02-08T05:21:30.359601Z", + "iopub.status.busy": "2024-02-08T05:21:30.359266Z", + "iopub.status.idle": "2024-02-08T05:21:30.363308Z", + "shell.execute_reply": "2024-02-08T05:21:30.362856Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.458991Z", - "iopub.status.busy": "2024-02-08T04:34:59.458687Z", - "iopub.status.idle": "2024-02-08T04:34:59.465944Z", - "shell.execute_reply": "2024-02-08T04:34:59.465410Z" + "iopub.execute_input": "2024-02-08T05:21:30.365471Z", + "iopub.status.busy": "2024-02-08T05:21:30.365138Z", + "iopub.status.idle": "2024-02-08T05:21:30.372669Z", + "shell.execute_reply": "2024-02-08T05:21:30.372107Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.468039Z", - "iopub.status.busy": "2024-02-08T04:34:59.467734Z", - "iopub.status.idle": "2024-02-08T04:34:59.578269Z", - "shell.execute_reply": "2024-02-08T04:34:59.577713Z" + "iopub.execute_input": "2024-02-08T05:21:30.374752Z", + "iopub.status.busy": "2024-02-08T05:21:30.374445Z", + "iopub.status.idle": "2024-02-08T05:21:30.486095Z", + "shell.execute_reply": "2024-02-08T05:21:30.485529Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.580205Z", - "iopub.status.busy": "2024-02-08T04:34:59.579900Z", - "iopub.status.idle": "2024-02-08T04:34:59.582454Z", - "shell.execute_reply": "2024-02-08T04:34:59.582023Z" + "iopub.execute_input": "2024-02-08T05:21:30.488417Z", + "iopub.status.busy": "2024-02-08T05:21:30.488030Z", + "iopub.status.idle": "2024-02-08T05:21:30.490919Z", + "shell.execute_reply": "2024-02-08T05:21:30.490384Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.584391Z", - "iopub.status.busy": "2024-02-08T04:34:59.584095Z", - "iopub.status.idle": "2024-02-08T04:35:01.501613Z", - "shell.execute_reply": "2024-02-08T04:35:01.500883Z" + "iopub.execute_input": "2024-02-08T05:21:30.493045Z", + "iopub.status.busy": "2024-02-08T05:21:30.492674Z", + "iopub.status.idle": "2024-02-08T05:21:32.504865Z", + "shell.execute_reply": "2024-02-08T05:21:32.504227Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:01.504393Z", - "iopub.status.busy": "2024-02-08T04:35:01.503839Z", - "iopub.status.idle": "2024-02-08T04:35:01.514594Z", - "shell.execute_reply": "2024-02-08T04:35:01.514050Z" + "iopub.execute_input": "2024-02-08T05:21:32.507962Z", + "iopub.status.busy": "2024-02-08T05:21:32.507270Z", + "iopub.status.idle": "2024-02-08T05:21:32.519238Z", + "shell.execute_reply": "2024-02-08T05:21:32.518685Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:01.516381Z", - "iopub.status.busy": "2024-02-08T04:35:01.516208Z", - "iopub.status.idle": "2024-02-08T04:35:01.562095Z", - "shell.execute_reply": "2024-02-08T04:35:01.561636Z" + "iopub.execute_input": "2024-02-08T05:21:32.521281Z", + "iopub.status.busy": "2024-02-08T05:21:32.521095Z", + "iopub.status.idle": "2024-02-08T05:21:32.670893Z", + "shell.execute_reply": "2024-02-08T05:21:32.670418Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index d24d88255..e6bc10dc9 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:04.398007Z", - "iopub.status.busy": "2024-02-08T04:35:04.397665Z", - "iopub.status.idle": "2024-02-08T04:35:06.939373Z", - "shell.execute_reply": "2024-02-08T04:35:06.938787Z" + "iopub.execute_input": "2024-02-08T05:21:36.479014Z", + "iopub.status.busy": "2024-02-08T05:21:36.478839Z", + "iopub.status.idle": "2024-02-08T05:21:39.260693Z", + "shell.execute_reply": "2024-02-08T05:21:39.260048Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.942203Z", - "iopub.status.busy": "2024-02-08T04:35:06.941711Z", - "iopub.status.idle": "2024-02-08T04:35:06.945187Z", - "shell.execute_reply": "2024-02-08T04:35:06.944736Z" + "iopub.execute_input": "2024-02-08T05:21:39.263272Z", + "iopub.status.busy": "2024-02-08T05:21:39.262890Z", + "iopub.status.idle": "2024-02-08T05:21:39.266644Z", + "shell.execute_reply": "2024-02-08T05:21:39.266095Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.947082Z", - "iopub.status.busy": "2024-02-08T04:35:06.946758Z", - "iopub.status.idle": "2024-02-08T04:35:06.949800Z", - "shell.execute_reply": "2024-02-08T04:35:06.949361Z" + "iopub.execute_input": "2024-02-08T05:21:39.268836Z", + "iopub.status.busy": "2024-02-08T05:21:39.268440Z", + "iopub.status.idle": "2024-02-08T05:21:39.271716Z", + "shell.execute_reply": "2024-02-08T05:21:39.271145Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.951625Z", - "iopub.status.busy": "2024-02-08T04:35:06.951369Z", - "iopub.status.idle": "2024-02-08T04:35:06.997911Z", - "shell.execute_reply": "2024-02-08T04:35:06.997500Z" + "iopub.execute_input": "2024-02-08T05:21:39.273756Z", + "iopub.status.busy": "2024-02-08T05:21:39.273496Z", + "iopub.status.idle": "2024-02-08T05:21:39.431458Z", + "shell.execute_reply": "2024-02-08T05:21:39.430885Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.999896Z", - "iopub.status.busy": "2024-02-08T04:35:06.999613Z", - "iopub.status.idle": "2024-02-08T04:35:07.003072Z", - "shell.execute_reply": "2024-02-08T04:35:07.002534Z" + "iopub.execute_input": "2024-02-08T05:21:39.433686Z", + "iopub.status.busy": "2024-02-08T05:21:39.433349Z", + "iopub.status.idle": "2024-02-08T05:21:39.436960Z", + "shell.execute_reply": "2024-02-08T05:21:39.436501Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.004956Z", - "iopub.status.busy": "2024-02-08T04:35:07.004665Z", - "iopub.status.idle": "2024-02-08T04:35:07.007970Z", - "shell.execute_reply": "2024-02-08T04:35:07.007435Z" + "iopub.execute_input": "2024-02-08T05:21:39.438986Z", + "iopub.status.busy": "2024-02-08T05:21:39.438652Z", + "iopub.status.idle": "2024-02-08T05:21:39.442126Z", + "shell.execute_reply": "2024-02-08T05:21:39.441657Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'getting_spare_card', 'card_about_to_expire'}\n" + "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'change_pin', 'getting_spare_card'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.009913Z", - "iopub.status.busy": "2024-02-08T04:35:07.009601Z", - "iopub.status.idle": "2024-02-08T04:35:07.012666Z", - "shell.execute_reply": "2024-02-08T04:35:07.012208Z" + "iopub.execute_input": "2024-02-08T05:21:39.444139Z", + "iopub.status.busy": "2024-02-08T05:21:39.443815Z", + "iopub.status.idle": "2024-02-08T05:21:39.446990Z", + "shell.execute_reply": "2024-02-08T05:21:39.446538Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.014589Z", - "iopub.status.busy": "2024-02-08T04:35:07.014274Z", - "iopub.status.idle": "2024-02-08T04:35:07.017484Z", - "shell.execute_reply": "2024-02-08T04:35:07.017043Z" + "iopub.execute_input": "2024-02-08T05:21:39.449158Z", + "iopub.status.busy": "2024-02-08T05:21:39.448790Z", + "iopub.status.idle": "2024-02-08T05:21:39.452098Z", + "shell.execute_reply": "2024-02-08T05:21:39.451644Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.019577Z", - "iopub.status.busy": "2024-02-08T04:35:07.019165Z", - "iopub.status.idle": "2024-02-08T04:35:10.758978Z", - "shell.execute_reply": "2024-02-08T04:35:10.758450Z" + "iopub.execute_input": "2024-02-08T05:21:39.454177Z", + "iopub.status.busy": "2024-02-08T05:21:39.453859Z", + "iopub.status.idle": "2024-02-08T05:21:43.818413Z", + "shell.execute_reply": "2024-02-08T05:21:43.817812Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.761717Z", - "iopub.status.busy": "2024-02-08T04:35:10.761342Z", - "iopub.status.idle": "2024-02-08T04:35:10.764293Z", - "shell.execute_reply": "2024-02-08T04:35:10.763801Z" + "iopub.execute_input": "2024-02-08T05:21:43.821245Z", + "iopub.status.busy": "2024-02-08T05:21:43.820824Z", + "iopub.status.idle": "2024-02-08T05:21:43.824334Z", + "shell.execute_reply": "2024-02-08T05:21:43.823797Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.766209Z", - "iopub.status.busy": "2024-02-08T04:35:10.765897Z", - "iopub.status.idle": "2024-02-08T04:35:10.768449Z", - "shell.execute_reply": "2024-02-08T04:35:10.768026Z" + "iopub.execute_input": "2024-02-08T05:21:43.826165Z", + "iopub.status.busy": "2024-02-08T05:21:43.825990Z", + "iopub.status.idle": "2024-02-08T05:21:43.828635Z", + "shell.execute_reply": "2024-02-08T05:21:43.828168Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.770307Z", - "iopub.status.busy": "2024-02-08T04:35:10.769984Z", - "iopub.status.idle": "2024-02-08T04:35:13.014309Z", - "shell.execute_reply": "2024-02-08T04:35:13.013691Z" + "iopub.execute_input": "2024-02-08T05:21:43.830526Z", + "iopub.status.busy": "2024-02-08T05:21:43.830206Z", + "iopub.status.idle": "2024-02-08T05:21:46.180921Z", + "shell.execute_reply": "2024-02-08T05:21:46.180150Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.017176Z", - "iopub.status.busy": "2024-02-08T04:35:13.016589Z", - "iopub.status.idle": "2024-02-08T04:35:13.024329Z", - "shell.execute_reply": "2024-02-08T04:35:13.023868Z" + "iopub.execute_input": "2024-02-08T05:21:46.184093Z", + "iopub.status.busy": "2024-02-08T05:21:46.183446Z", + "iopub.status.idle": "2024-02-08T05:21:46.191352Z", + "shell.execute_reply": "2024-02-08T05:21:46.190879Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.026211Z", - "iopub.status.busy": "2024-02-08T04:35:13.026031Z", - "iopub.status.idle": "2024-02-08T04:35:13.030054Z", - "shell.execute_reply": "2024-02-08T04:35:13.029615Z" + "iopub.execute_input": "2024-02-08T05:21:46.193506Z", + "iopub.status.busy": "2024-02-08T05:21:46.193111Z", + "iopub.status.idle": "2024-02-08T05:21:46.197017Z", + "shell.execute_reply": "2024-02-08T05:21:46.196578Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.031935Z", - "iopub.status.busy": "2024-02-08T04:35:13.031746Z", - "iopub.status.idle": "2024-02-08T04:35:13.034748Z", - "shell.execute_reply": "2024-02-08T04:35:13.034239Z" + "iopub.execute_input": "2024-02-08T05:21:46.198840Z", + "iopub.status.busy": "2024-02-08T05:21:46.198669Z", + "iopub.status.idle": "2024-02-08T05:21:46.201986Z", + "shell.execute_reply": "2024-02-08T05:21:46.201534Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.036619Z", - "iopub.status.busy": "2024-02-08T04:35:13.036448Z", - "iopub.status.idle": "2024-02-08T04:35:13.039213Z", - "shell.execute_reply": "2024-02-08T04:35:13.038788Z" + "iopub.execute_input": "2024-02-08T05:21:46.203999Z", + "iopub.status.busy": "2024-02-08T05:21:46.203703Z", + "iopub.status.idle": "2024-02-08T05:21:46.206673Z", + "shell.execute_reply": "2024-02-08T05:21:46.206231Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.041004Z", - "iopub.status.busy": "2024-02-08T04:35:13.040835Z", - "iopub.status.idle": "2024-02-08T04:35:13.047467Z", - "shell.execute_reply": "2024-02-08T04:35:13.047008Z" + "iopub.execute_input": "2024-02-08T05:21:46.208666Z", + "iopub.status.busy": "2024-02-08T05:21:46.208364Z", + "iopub.status.idle": "2024-02-08T05:21:46.215877Z", + "shell.execute_reply": "2024-02-08T05:21:46.215417Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.049366Z", - "iopub.status.busy": "2024-02-08T04:35:13.049196Z", - "iopub.status.idle": "2024-02-08T04:35:13.273122Z", - "shell.execute_reply": "2024-02-08T04:35:13.272656Z" + "iopub.execute_input": "2024-02-08T05:21:46.217922Z", + "iopub.status.busy": "2024-02-08T05:21:46.217631Z", + "iopub.status.idle": "2024-02-08T05:21:46.445403Z", + "shell.execute_reply": "2024-02-08T05:21:46.444769Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.275446Z", - "iopub.status.busy": "2024-02-08T04:35:13.275087Z", - "iopub.status.idle": "2024-02-08T04:35:13.485654Z", - "shell.execute_reply": "2024-02-08T04:35:13.485184Z" + "iopub.execute_input": "2024-02-08T05:21:46.447993Z", + "iopub.status.busy": "2024-02-08T05:21:46.447582Z", + "iopub.status.idle": "2024-02-08T05:21:46.623478Z", + "shell.execute_reply": "2024-02-08T05:21:46.622935Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.488027Z", - "iopub.status.busy": "2024-02-08T04:35:13.487654Z", - "iopub.status.idle": "2024-02-08T04:35:13.491219Z", - "shell.execute_reply": "2024-02-08T04:35:13.490753Z" + "iopub.execute_input": "2024-02-08T05:21:46.626118Z", + "iopub.status.busy": "2024-02-08T05:21:46.625719Z", + "iopub.status.idle": "2024-02-08T05:21:46.629542Z", + "shell.execute_reply": "2024-02-08T05:21:46.629055Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index b9cc787dc..c62fcd633 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:16.410970Z", - "iopub.status.busy": "2024-02-08T04:35:16.410808Z", - "iopub.status.idle": "2024-02-08T04:35:17.885044Z", - "shell.execute_reply": "2024-02-08T04:35:17.884466Z" + "iopub.execute_input": "2024-02-08T05:21:50.726788Z", + "iopub.status.busy": "2024-02-08T05:21:50.726620Z", + "iopub.status.idle": "2024-02-08T05:21:52.600696Z", + "shell.execute_reply": "2024-02-08T05:21:52.600068Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-08 04:35:16-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-02-08 05:21:50-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,9 +94,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.250, 2400:52e0:1a00::718:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "143.244.50.89, 2400:52e0:1a01::954:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|143.244.50.89|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +116,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K 4.92MB/s in 0.2s \r\n", "\r\n", - "2024-02-08 04:35:16 (6.64 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-02-08 05:21:51 (4.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,9 +138,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-08 04:35:17-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.32.209, 52.216.241.92, 52.217.130.65, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.32.209|:443... connected.\r\n" + "--2024-02-08 05:21:51-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.109.243, 52.216.165.75, 52.216.36.145, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.109.243|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" ] }, { @@ -160,7 +174,15 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 63%[===========> ] 10.25M 51.1MB/s " + "pred_probs.npz 1%[ ] 193.53K 925KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 20%[===> ] 3.38M 8.07MB/s " ] }, { @@ -168,9 +190,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 48.1MB/s in 0.3s \r\n", + "pred_probs.npz 91%[=================> ] 14.89M 23.7MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 25.5MB/s in 0.6s \r\n", "\r\n", - "2024-02-08 04:35:17 (48.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-02-08 05:21:52 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -187,10 +210,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:17.887413Z", - "iopub.status.busy": "2024-02-08T04:35:17.887079Z", - "iopub.status.idle": "2024-02-08T04:35:18.908219Z", - "shell.execute_reply": "2024-02-08T04:35:18.907684Z" + "iopub.execute_input": "2024-02-08T05:21:52.603109Z", + "iopub.status.busy": "2024-02-08T05:21:52.602917Z", + "iopub.status.idle": "2024-02-08T05:21:53.718005Z", + "shell.execute_reply": "2024-02-08T05:21:53.717446Z" }, "nbsphinx": "hidden" }, @@ -201,7 +224,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -227,10 +250,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:18.910770Z", - "iopub.status.busy": "2024-02-08T04:35:18.910302Z", - "iopub.status.idle": "2024-02-08T04:35:18.913807Z", - "shell.execute_reply": "2024-02-08T04:35:18.913374Z" + "iopub.execute_input": "2024-02-08T05:21:53.720615Z", + "iopub.status.busy": "2024-02-08T05:21:53.720142Z", + "iopub.status.idle": "2024-02-08T05:21:53.723864Z", + "shell.execute_reply": "2024-02-08T05:21:53.723387Z" } }, "outputs": [], @@ -280,10 +303,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:18.915726Z", - "iopub.status.busy": "2024-02-08T04:35:18.915411Z", - "iopub.status.idle": "2024-02-08T04:35:18.918230Z", - "shell.execute_reply": "2024-02-08T04:35:18.917797Z" + "iopub.execute_input": "2024-02-08T05:21:53.726015Z", + "iopub.status.busy": "2024-02-08T05:21:53.725691Z", + "iopub.status.idle": "2024-02-08T05:21:53.728578Z", + "shell.execute_reply": "2024-02-08T05:21:53.728151Z" }, "nbsphinx": "hidden" }, @@ -301,10 +324,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:18.920142Z", - "iopub.status.busy": "2024-02-08T04:35:18.919798Z", - "iopub.status.idle": "2024-02-08T04:35:27.926989Z", - "shell.execute_reply": "2024-02-08T04:35:27.926383Z" + "iopub.execute_input": "2024-02-08T05:21:53.730588Z", + "iopub.status.busy": "2024-02-08T05:21:53.730254Z", + "iopub.status.idle": "2024-02-08T05:22:02.922587Z", + "shell.execute_reply": "2024-02-08T05:22:02.922022Z" } }, "outputs": [], @@ -378,10 +401,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:27.929541Z", - "iopub.status.busy": "2024-02-08T04:35:27.929340Z", - "iopub.status.idle": "2024-02-08T04:35:27.934958Z", - "shell.execute_reply": "2024-02-08T04:35:27.934409Z" + "iopub.execute_input": "2024-02-08T05:22:02.925250Z", + "iopub.status.busy": "2024-02-08T05:22:02.924929Z", + "iopub.status.idle": "2024-02-08T05:22:02.930371Z", + "shell.execute_reply": "2024-02-08T05:22:02.929886Z" }, "nbsphinx": "hidden" }, @@ -421,10 +444,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:27.936904Z", - "iopub.status.busy": "2024-02-08T04:35:27.936728Z", - "iopub.status.idle": "2024-02-08T04:35:28.262039Z", - "shell.execute_reply": "2024-02-08T04:35:28.261376Z" + "iopub.execute_input": "2024-02-08T05:22:02.932624Z", + "iopub.status.busy": "2024-02-08T05:22:02.932228Z", + "iopub.status.idle": "2024-02-08T05:22:03.297995Z", + "shell.execute_reply": "2024-02-08T05:22:03.297346Z" } }, "outputs": [], @@ -461,10 +484,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:28.264636Z", - "iopub.status.busy": "2024-02-08T04:35:28.264297Z", - "iopub.status.idle": "2024-02-08T04:35:28.268345Z", - "shell.execute_reply": "2024-02-08T04:35:28.267788Z" + "iopub.execute_input": "2024-02-08T05:22:03.300463Z", + "iopub.status.busy": "2024-02-08T05:22:03.300279Z", + "iopub.status.idle": "2024-02-08T05:22:03.304705Z", + "shell.execute_reply": "2024-02-08T05:22:03.304158Z" } }, "outputs": [ @@ -536,10 +559,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:28.270309Z", - "iopub.status.busy": "2024-02-08T04:35:28.270030Z", - "iopub.status.idle": "2024-02-08T04:35:30.566284Z", - "shell.execute_reply": "2024-02-08T04:35:30.565622Z" + "iopub.execute_input": "2024-02-08T05:22:03.306754Z", + "iopub.status.busy": "2024-02-08T05:22:03.306423Z", + "iopub.status.idle": "2024-02-08T05:22:05.755355Z", + "shell.execute_reply": "2024-02-08T05:22:05.754674Z" } }, "outputs": [], @@ -561,10 +584,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:30.569402Z", - "iopub.status.busy": "2024-02-08T04:35:30.568623Z", - "iopub.status.idle": "2024-02-08T04:35:30.572686Z", - "shell.execute_reply": "2024-02-08T04:35:30.572133Z" + "iopub.execute_input": "2024-02-08T05:22:05.758476Z", + "iopub.status.busy": "2024-02-08T05:22:05.757736Z", + "iopub.status.idle": "2024-02-08T05:22:05.761956Z", + "shell.execute_reply": "2024-02-08T05:22:05.761494Z" } }, "outputs": [ @@ -600,10 +623,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:30.574726Z", - "iopub.status.busy": "2024-02-08T04:35:30.574428Z", - "iopub.status.idle": "2024-02-08T04:35:30.579908Z", - "shell.execute_reply": "2024-02-08T04:35:30.579362Z" + "iopub.execute_input": "2024-02-08T05:22:05.764107Z", + "iopub.status.busy": "2024-02-08T05:22:05.763785Z", + "iopub.status.idle": "2024-02-08T05:22:05.768721Z", + "shell.execute_reply": "2024-02-08T05:22:05.768190Z" } }, "outputs": [ @@ -781,10 +804,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:30.581974Z", - "iopub.status.busy": "2024-02-08T04:35:30.581604Z", - "iopub.status.idle": "2024-02-08T04:35:30.607040Z", - "shell.execute_reply": "2024-02-08T04:35:30.606608Z" + "iopub.execute_input": "2024-02-08T05:22:05.770716Z", + "iopub.status.busy": "2024-02-08T05:22:05.770545Z", + "iopub.status.idle": "2024-02-08T05:22:05.796512Z", + "shell.execute_reply": "2024-02-08T05:22:05.795932Z" } }, "outputs": [ @@ -886,10 +909,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:30.609082Z", - "iopub.status.busy": "2024-02-08T04:35:30.608778Z", - "iopub.status.idle": "2024-02-08T04:35:30.612868Z", - "shell.execute_reply": "2024-02-08T04:35:30.612332Z" + "iopub.execute_input": "2024-02-08T05:22:05.798717Z", + "iopub.status.busy": "2024-02-08T05:22:05.798431Z", + "iopub.status.idle": "2024-02-08T05:22:05.803963Z", + "shell.execute_reply": "2024-02-08T05:22:05.803248Z" } }, "outputs": [ @@ -963,10 +986,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:30.614887Z", - "iopub.status.busy": "2024-02-08T04:35:30.614588Z", - "iopub.status.idle": "2024-02-08T04:35:32.021894Z", - "shell.execute_reply": "2024-02-08T04:35:32.021397Z" + "iopub.execute_input": "2024-02-08T05:22:05.805972Z", + "iopub.status.busy": "2024-02-08T05:22:05.805666Z", + "iopub.status.idle": "2024-02-08T05:22:07.269804Z", + "shell.execute_reply": "2024-02-08T05:22:07.269179Z" } }, "outputs": [ @@ -1138,10 +1161,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:32.024066Z", - "iopub.status.busy": "2024-02-08T04:35:32.023695Z", - "iopub.status.idle": "2024-02-08T04:35:32.027757Z", - "shell.execute_reply": "2024-02-08T04:35:32.027319Z" + "iopub.execute_input": "2024-02-08T05:22:07.272129Z", + "iopub.status.busy": "2024-02-08T05:22:07.271782Z", + "iopub.status.idle": "2024-02-08T05:22:07.276036Z", + "shell.execute_reply": "2024-02-08T05:22:07.275437Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index 9b5397fb1..3a9939887 100644 Binary files a/master/.doctrees/tutorials/audio.doctree and b/master/.doctrees/tutorials/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 5c5d8cdef..8b824e5e8 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 08924fedb..7446e6aca 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 24b447a44..729649e4a 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index a3a49f4c8..be65fd5ec 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index bbaf2d2ac..bf799ab83 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 7670e9cd8..1361f8144 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 89a18d30b..69f9c2f7a 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index 0c00b3b98..6fe140a30 100644 Binary files a/master/.doctrees/tutorials/image.doctree and b/master/.doctrees/tutorials/image.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 333deda9c..fdc89b7fa 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index b9e4bba19..74e6f739c 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 7264d330f..6e3441895 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 1b2a6ed23..d040aa998 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index 162ebe5b7..875dfeaa0 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 36f146234..34afb17cb 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index d41d170a1..d0845d218 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 635cf971f..114df6e61 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 874d44b5d..447bbfb29 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree index 19735f9f6..74e86ab85 100644 Binary files a/master/.doctrees/tutorials/tabular.doctree and b/master/.doctrees/tutorials/tabular.doctree differ diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index 4c94f9734..84c266ca8 100644 Binary files a/master/.doctrees/tutorials/text.doctree and b/master/.doctrees/tutorials/text.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 1dcd0190e..8c473daec 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_modules/cleanlab/datalab/internal/issue_finder.html b/master/_modules/cleanlab/datalab/internal/issue_finder.html index 4481f1e05..8d440d56a 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_finder.html +++ b/master/_modules/cleanlab/datalab/internal/issue_finder.html @@ -591,10 +591,20 @@

Source code for cleanlab.datalab.internal.issue_finder

"class_imbalance": [], "null": ["features"], } -_REGRESSION_ARGS_DICT = {"label": ["features", "predictions"]} +_REGRESSION_ARGS_DICT = { + "label": ["features", "predictions"], + "outlier": ["features", "knn_graph"], + "near_duplicate": ["features", "knn_graph"], + "non_iid": ["features", "knn_graph"], + "null": ["features"], +} _MULTILABEL_ARGS_DICT = { "label": ["pred_probs"], + "outlier": ["features", "knn_graph"], + "near_duplicate": ["features", "knn_graph"], + "non_iid": ["features", "knn_graph"], + "null": ["features"], } @@ -655,9 +665,13 @@

Source code for cleanlab.datalab.internal.issue_finder

args_dict = { k: {k2: v2 for k2, v2 in v.items() if v2 is not None} for k, v in args_dict.items() - if v or k == "label" or keep_empty_argument(k) # Allow label issues to require no arguments + if v or keep_empty_argument(k) } + # Only keep issue types that have at least one argument + # or those that require no arguments. + args_dict = {k: v for k, v in args_dict.items() if (v or keep_empty_argument(k))} + return args_dict @@ -679,6 +693,10 @@

Source code for cleanlab.datalab.internal.issue_finder

if v or keep_empty_argument(k) # Allow label issues to require no arguments } + # Only keep issue types that have at least one argument + # or those that require no arguments. + args_dict = {k: v for k, v in args_dict.items() if (v or keep_empty_argument(k))} + return args_dict @@ -938,6 +956,7 @@

Source code for cleanlab.datalab.internal.issue_finder

if model_output is not None: # A basic trick to assign the model output to the correct argument + # E.g. Datalab accepts only `pred_probs`, but those are assigned to the `predictions` argument for regression-related issue_managers kwargs.update({model_output.argument: model_output.collect()}) # Determine which parameters are required for each issue type @@ -964,7 +983,11 @@

Source code for cleanlab.datalab.internal.issue_finder

warnings.warn("No labels were provided. " "The 'label' issue type will not be run.") issue_types_copy.pop("label") - outlier_check_needs_features = "outlier" in issue_types_copy and not self.datalab.has_labels + outlier_check_needs_features = ( + self.task == "classification" + and "outlier" in issue_types_copy + and not self.datalab.has_labels + ) if outlier_check_needs_features: no_features = features is None no_knn_graph = knn_graph is None diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html b/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html index 9e89bce07..f5b422638 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html @@ -726,14 +726,14 @@

Source code for cleanlab.datalab.internal.issue_manager.noniid

""" if features is None and pred_probs is not None: self._skip_storing_knn_graph_for_pred_probs = True + + if knn_graph is not None and not metric_changes: + return None features_to_use = self._determine_features(features, pred_probs) if self.metric is None: self.metric = "cosine" if features_to_use.shape[1] > 3 else "euclidean" - if knn_graph is not None and not metric_changes: - return None - knn = NearestNeighbors(n_neighbors=self.k, metric=self.metric) if self.metric != knn.metric: diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html b/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html index 47b917162..debe5ff0e 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html @@ -597,8 +597,20 @@

Source code for cleanlab.datalab.internal.issue_manager_factory

"data_valuation": DataValuationIssueManager, "null": NullIssueManager, }, - "regression": {"label": RegressionLabelIssueManager}, - "multilabel": {"label": MultilabelIssueManager}, + "regression": { + "label": RegressionLabelIssueManager, + "outlier": OutlierIssueManager, + "near_duplicate": NearDuplicateIssueManager, + "non_iid": NonIIDIssueManager, + "null": NullIssueManager, + }, + "multilabel": { + "label": MultilabelIssueManager, + "outlier": OutlierIssueManager, + "near_duplicate": NearDuplicateIssueManager, + "non_iid": NonIIDIssueManager, + "null": NullIssueManager, + }, } """Registry of issue managers that can be constructed from a string and used in the Datalab class. @@ -741,8 +753,20 @@

Source code for cleanlab.datalab.internal.issue_manager_factory

"non_iid", "class_imbalance", ], - "regression": ["label"], - "multilabel": ["label"], + "regression": [ + "null", + "label", + "outlier", + "near_duplicate", + "non_iid", + ], + "multilabel": [ + "null", + "label", + "outlier", + "near_duplicate", + "non_iid", + ], } if task not in default_issue_types_dict: task = "classification" diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index b9108c63a..0347ebe64 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 82e264190..bc4ecad4f 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 7093706d7..e939b997d 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index e881d022e..25369df12 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index d206dd99d..ab30df3c0 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index acd57bf48..845881f51 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 935593655..73fb0146e 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 1b012620e..2170b7fb8 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 1bfb268aa..96773272f 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index e5a868fb3..236ad0508 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index c3884c797..a8b57cfe7 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 8c851e7f1..49754aa89 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 6597dcf0b..526d0895d 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index a93fd7cd5..3aa099444 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index 42bd5152a..2ed48cdfe 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index ef1b06281..c3725526f 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 03c1e6e8c..6f8922b04 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 73, 75, 76, 83, 85, 86], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 75, 76, 83, 85, 86], "generate_noise_matrix_from_trac": [0, 1, 75, 76, 83, 85, 86], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 34, 38, 40, 41, 42, 43, 44, 45, 57, 80, 82, 94], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 87, 88, 89, 90, 91, 92, 93, 94], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 72, 73, 75, 80, 84, 89], "benchmark": [1, 31, 72, 73, 75, 76, 83, 85, 86], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89], "": [1, 2, 3, 8, 16, 30, 31, 35, 38, 41, 43, 45, 50, 51, 55, 57, 58, 59, 60, 62, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "core": [1, 4, 34, 36, 64, 66], "algorithm": [1, 2, 6, 8, 27, 32, 45, 50, 59, 68, 70, 72, 81, 83, 85, 94], "These": [1, 2, 3, 6, 8, 19, 31, 33, 35, 36, 37, 48, 50, 51, 54, 58, 59, 63, 67, 68, 70, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "introduc": [1, 74, 81, 83], "synthet": [1, 85, 86, 91], "nois": [1, 2, 3, 30, 36, 39, 45, 51, 75, 76, 80, 85], "label": [1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 18, 19, 20, 25, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 80, 84, 88, 89], "classif": [1, 3, 4, 5, 8, 12, 14, 28, 30, 34, 36, 39, 41, 42, 45, 50, 51, 52, 53, 54, 59, 60, 68, 69, 70, 71, 72, 73, 75, 76, 84, 85, 88, 89, 90, 91], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 33, 34, 35, 36, 39, 41, 45, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 84, 85, 89, 92], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 33, 48, 52, 55, 58, 67, 71, 78, 79, 82, 83, 87, 94], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 30, 31, 32, 33, 34, 35, 36, 41, 43, 45, 48, 50, 55, 58, 59, 60, 72, 81, 82], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 30, 31, 32, 34, 35, 36, 39, 45, 49, 50, 51, 52, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 30, 41, 45, 46, 59, 60, 62, 67, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94], "valid": [1, 2, 3, 4, 8, 10, 30, 36, 37, 39, 40, 41, 43, 45, 50, 52, 55, 58, 60, 62, 63, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "matric": [1, 3, 39, 81], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 30, 31, 35, 36, 39, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 32, 33, 34, 35, 36, 38, 40, 45, 48, 50, 52, 59, 61, 63, 66, 70, 72, 74, 75, 78, 79, 80, 82, 84, 85, 86, 90, 93], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "possibl": [1, 2, 3, 8, 30, 31, 35, 36, 38, 39, 41, 52, 53, 54, 55, 57, 58, 59, 60, 62, 68, 70, 71, 76, 81, 83, 85, 86, 87, 90, 91, 94], "noisi": [1, 2, 3, 8, 30, 32, 35, 36, 39, 45, 51, 52, 54, 60, 62, 63, 64, 66, 67, 73, 75, 76, 78, 79, 81, 84, 85], "given": [1, 2, 3, 8, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 30, 36, 38, 39, 42, 45, 46, 52, 55, 57, 58, 59, 60, 78, 87, 88], "trace": [1, 75, 76, 83, 85, 86], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 30, 31, 32, 34, 35, 36, 38, 39, 41, 43, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "more": [1, 2, 3, 4, 5, 8, 11, 14, 16, 22, 30, 31, 34, 35, 38, 41, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 72, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 91, 94], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 83, 85, 86, 87, 91, 92, 93, 94], "noise_matrix": [1, 2, 3, 8, 39, 45, 75, 76, 83, 85, 86], "py": [1, 3, 28, 31, 32, 36, 39, 41, 74, 75, 76, 79, 81, 83, 85, 86, 93], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 34, 36, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 75, 83, 85], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 74, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88, 90, 91, 93], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71], "prior": [1, 2, 3, 30, 36, 39, 41], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 30, 34, 36, 39, 42, 43, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "p": [1, 2, 3, 8, 30, 36, 38, 39, 45, 50, 58, 59, 60, 64, 78, 79, 83, 85, 94], "true_label": [1, 2, 3, 30, 39, 45, 83, 85], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 75, 76, 81, 83, 85, 86, 87, 88, 91, 92, 94], "check": [1, 2, 4, 7, 8, 10, 14, 23, 31, 34, 35, 40, 46, 49, 55, 58, 62, 72, 74, 75, 76, 81, 82, 83, 85, 86, 90, 92, 93], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 32, 35, 39, 41, 43, 57, 62, 76, 79, 81, 83, 85, 86, 87, 88, 90, 93], "achiev": [1, 2, 31, 32, 35, 62, 81, 85, 94], "better": [1, 4, 36, 50, 52, 60, 62, 63, 72, 74, 76, 78, 79, 81, 83, 86, 87, 88, 93, 94], "than": [1, 2, 3, 5, 8, 22, 24, 27, 30, 36, 45, 49, 50, 55, 57, 59, 60, 62, 66, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 94], "random": [1, 2, 3, 5, 8, 16, 27, 34, 41, 50, 60, 62, 74, 75, 76, 78, 81, 82, 83, 85, 86, 88, 92], "perform": [1, 2, 5, 8, 22, 24, 27, 31, 35, 41, 58, 62, 72, 75, 81, 83, 85, 86, 89, 90, 92, 93], "averag": [1, 3, 8, 20, 24, 30, 31, 35, 41, 43, 50, 51, 58, 59, 60, 81, 85, 88], "amount": [1, 3, 82], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 79, 82, 92, 93], "np": [1, 2, 3, 4, 5, 14, 16, 27, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 94], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 30, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "shape": [1, 2, 3, 4, 14, 16, 30, 32, 34, 36, 38, 39, 40, 41, 43, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 80, 81, 83, 86, 87, 88, 91, 94], "condit": [1, 2, 3, 39, 44, 45, 60, 82, 83, 94], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 91, 94], "k_": [1, 2, 3, 39, 45], "k_y": [1, 2, 3, 39, 45], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93], "fraction": [1, 2, 3, 8, 18, 32, 39, 45, 50, 62, 78, 81], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93, 94], "everi": [1, 2, 3, 4, 14, 31, 35, 36, 39, 44, 45, 52, 60, 62, 63, 74, 75, 76, 78, 79, 81, 82, 85, 87, 89, 91, 92, 94], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94], "other": [1, 2, 3, 4, 8, 14, 20, 23, 30, 31, 33, 34, 35, 36, 39, 42, 45, 46, 48, 50, 51, 54, 58, 59, 60, 62, 67, 74, 75, 76, 78, 79, 81, 82, 83, 86, 88, 91, 94], "assum": [1, 2, 3, 10, 36, 39, 44, 45, 60, 64, 67, 81, 86, 88, 91, 94], "column": [1, 2, 3, 4, 8, 10, 11, 26, 30, 34, 36, 39, 41, 42, 44, 45, 50, 51, 52, 54, 55, 58, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "sum": [1, 2, 3, 22, 27, 30, 39, 41, 45, 51, 52, 54, 57, 62, 75, 76, 81, 82, 83, 85, 86, 91, 94], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 80, 81, 89], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 18, 20, 21, 22, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 86, 87, 91, 92, 94], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 41, 44, 45, 50, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 34, 35, 36, 45, 50, 51, 52, 54, 55, 71, 74, 76, 78, 79, 80, 81, 82, 83, 90, 93, 94], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 60, 62, 63, 68, 70, 71, 72, 74, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 91, 94], "perfect": [1, 2, 30, 62, 83, 87], "exactli": [1, 3, 8, 30, 31, 35, 36, 53, 59, 75, 76, 78, 79, 82, 83], "yield": [1, 31, 35], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 48, 50, 51, 54, 57, 59, 60, 62, 63, 66, 70, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "below": [1, 3, 4, 8, 30, 31, 34, 35, 36, 38, 41, 50, 51, 52, 57, 58, 66, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "we": [1, 2, 3, 4, 5, 8, 11, 20, 31, 34, 35, 36, 41, 45, 46, 50, 57, 58, 60, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "loop": [1, 3, 39, 45, 82, 87], "implement": [1, 2, 3, 4, 7, 12, 20, 31, 32, 34, 35, 39, 45, 62, 72, 74, 75, 78, 88, 89, 92], "what": [1, 4, 7, 8, 14, 28, 30, 32, 34, 36, 50, 51, 55, 57, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "doe": [1, 2, 3, 8, 34, 35, 36, 41, 46, 57, 58, 62, 64, 66, 70, 74, 75, 76, 78, 79, 82, 86, 90, 91, 93], "do": [1, 2, 4, 8, 30, 34, 35, 45, 46, 59, 60, 64, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "fast": 1, "explain": [1, 8], "python": [1, 2, 35, 49, 62, 74, 75, 76, 79, 80, 88, 93], "pseudocod": [1, 89], "happen": [1, 8, 36, 52, 79, 85, 91], "n": [1, 2, 3, 4, 5, 30, 31, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 74, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "without": [1, 2, 4, 8, 10, 12, 18, 31, 35, 54, 62, 72, 74, 79, 83, 87, 88, 93], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 40, 43, 44, 45, 49, 50, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "distinct": [1, 16, 45, 94], "natur": [1, 8, 85, 88], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 91, 94], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "count_joint": 1, "len": [1, 2, 3, 5, 30, 34, 39, 44, 45, 46, 59, 60, 62, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "y": [1, 2, 3, 4, 6, 16, 26, 27, 35, 39, 41, 45, 46, 49, 58, 62, 63, 74, 75, 76, 78, 81, 83, 85, 86, 88, 90, 93], "round": [1, 34, 36, 45, 62, 81, 90], "astyp": [1, 85], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 54, 58, 59, 60, 62, 64, 66, 67, 68, 71, 74, 75, 82, 87, 88], "rang": [1, 3, 4, 5, 10, 39, 41, 43, 45, 58, 62, 63, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 94], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 30, 34, 36, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94], "pragma": 1, "cover": [1, 3, 73, 80], "choic": [1, 6, 36, 43, 81, 82, 86, 88], "replac": [1, 44, 49, 60, 75, 76, 79, 80, 81, 82, 85, 88, 92, 93], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 60, 74, 75, 76], "05": [1, 8, 22, 26, 44, 58, 62, 68, 70, 78, 80, 81, 83, 87, 91], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 75, 76, 83, 85, 86], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 81, 82, 83, 85, 86, 91], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 33, 35, 41, 62, 74, 75, 76, 78, 80, 83, 85, 86, 92], "max_it": [1, 74, 79, 88, 93], "10000": [1, 34, 80, 81], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 46, 49, 50, 52, 58, 59, 60, 62, 64, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "diagon": [1, 3, 4, 36, 39, 45], "equal": [1, 3, 8, 10, 52, 57, 67, 89], "creat": [1, 2, 7, 14, 16, 31, 34, 35, 36, 45, 62, 72, 74, 78, 79, 81, 82, 91, 93, 94], "impli": [1, 8, 30, 51, 58], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 43, 44, 45, 50, 51, 52, 54, 57, 58, 62, 66, 70, 74, 75, 76, 83, 85, 86], "entri": [1, 3, 4, 30, 31, 35, 36, 38, 42, 43, 45, 50, 51, 52, 55, 78, 79, 83, 86, 87, 92, 93], "maximum": [1, 8, 59, 67, 71, 91], "minimum": [1, 6, 8, 18, 36, 38, 52, 57, 70], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 31, 35, 36, 57, 62, 75, 81, 83, 85, 87, 88], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 81, 82, 91], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 49, 50, 51, 52, 55, 57, 58, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 30, 31, 34, 35, 36, 39, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "necessari": [1, 2, 3, 5, 8, 10, 44, 75], "In": [1, 2, 3, 8, 30, 31, 34, 35, 50, 51, 53, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 31, 35, 45, 50, 54, 58, 62, 67, 71, 72, 74, 76, 79, 81, 85, 86, 88, 90, 92, 93], "satisfi": [1, 3, 30], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 29, 31, 32, 33, 34, 35, 36, 39, 45, 48, 49, 52, 59, 60, 62, 64, 72, 73, 74, 80, 81, 83, 89], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 31, 34, 35, 36, 41, 46, 49, 50, 51, 52, 54, 57, 58, 59, 60, 62, 66, 67, 68, 70, 76, 79, 80, 81, 82, 86, 87, 90, 93, 94], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 31, 35, 36, 39, 41, 45, 49, 52, 54, 55, 57, 59, 60, 62, 63, 75, 76, 78, 79, 82, 85, 89, 90, 91, 92, 93, 94], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "rate": [1, 2, 3, 8, 32, 45, 74, 94], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 41, 43, 45, 49, 50, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 75, 76, 78, 79, 81, 85, 86, 88, 89, 90, 91, 92, 93, 94], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 31, 34, 35, 36, 41, 45, 50, 55, 57, 58, 59, 60, 62, 63, 67, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "you": [1, 2, 3, 4, 5, 8, 12, 14, 30, 31, 33, 34, 35, 36, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "high": [1, 2, 14, 34, 36, 45, 57, 60, 62, 75, 76, 80, 82, 83, 87, 90, 91, 92, 93, 94], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 50, 51, 55, 57, 58, 59, 60, 62, 64, 67, 71, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94], "imposs": [1, 8, 83], "also": [1, 2, 3, 4, 5, 8, 20, 30, 31, 34, 35, 36, 41, 44, 49, 50, 59, 62, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "low": [1, 8, 45, 50, 72, 75, 76, 79, 83, 87, 91], "zero": [1, 3, 4, 31, 35, 38, 45, 46, 75, 82, 86, 87, 88], "forc": [1, 2, 3, 4, 35, 75, 94], "instead": [1, 2, 3, 8, 11, 14, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 52, 54, 58, 59, 60, 62, 63, 66, 68, 70, 73, 74, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 93, 94], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 30, 31, 34, 35, 36, 38, 39, 44, 45, 46, 49, 50, 59, 60, 62, 64, 66, 70, 71, 72, 74, 75, 76, 79, 82, 85, 86, 87, 88, 89, 90, 91, 93, 94], "guarante": [1, 3, 4, 13, 19, 25, 31, 33, 35, 37, 39, 48, 73], "produc": [1, 2, 4, 8, 14, 41, 50, 60, 62, 64, 66, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "higher": [1, 4, 8, 30, 36, 38, 39, 41, 43, 50, 51, 62, 76, 79, 81, 87], "opposit": [1, 94], "occur": [1, 3, 8, 30, 44, 57, 75, 76, 81, 82, 88], "small": [1, 3, 8, 30, 34, 41, 45, 51, 58, 79, 80, 82, 86, 88, 93], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 34, 35, 41, 43, 44, 46, 49, 54, 57, 62, 63, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "max": [1, 36, 59, 60, 76, 82, 88], "tri": [1, 31, 35, 89], "befor": [1, 2, 3, 31, 35, 43, 45, 59, 62, 67, 79, 81, 83, 85, 88, 90, 92, 93], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 30, 31, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 86, 90, 91, 92], "left": [1, 2, 36, 38, 43, 45, 52, 55, 58, 75, 76, 86, 87, 88, 91], "stochast": 1, "exceed": 1, "m": [1, 4, 31, 35, 40, 41, 50, 55, 57, 58, 59, 75, 76, 80, 85, 86, 87, 94], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 31, 35, 49, 81, 83, 91], "length": [1, 4, 10, 22, 23, 30, 32, 36, 45, 52, 55, 59, 60, 62, 64, 67, 71, 74, 86, 88, 91, 92, 94], "must": [1, 2, 3, 4, 14, 30, 31, 32, 33, 35, 36, 39, 41, 42, 45, 48, 49, 50, 51, 52, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 85, 89, 91, 94], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 30, 34, 36, 42, 45, 46, 50, 52, 58, 64, 66, 67, 68, 70, 71, 74, 81, 85, 86, 87, 91, 92, 93, 94], "ball": [1, 80], "bin": [1, 3, 52, 75, 76, 88], "ensur": [1, 2, 8, 31, 35, 45, 46, 57, 60, 62, 74, 75, 76, 79, 81, 82, 83, 88, 89, 90, 92, 93], "most": [1, 3, 4, 5, 8, 14, 30, 34, 36, 41, 49, 50, 51, 52, 55, 57, 58, 59, 60, 63, 66, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93], "least": [1, 8, 16, 27, 30, 34, 50, 51, 57, 60, 70, 76, 81, 82, 85, 88, 91], "int_arrai": [1, 45], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "model": [2, 3, 4, 8, 14, 16, 26, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 44, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89, 91, 94], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 29, 30, 31, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 68, 70, 71, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "regular": [2, 3, 34, 49], "multi": [2, 3, 8, 30, 31, 34, 35, 36, 40, 41, 42, 45, 46, 51, 52, 53, 54, 59, 60, 72, 81, 83, 84], "task": [2, 4, 5, 8, 10, 12, 13, 14, 26, 28, 30, 34, 39, 41, 42, 43, 45, 50, 52, 60, 62, 72, 74, 79, 80, 81, 83, 86, 88, 91, 93, 94], "cleanlearn": [2, 3, 8, 21, 26, 31, 45, 49, 61, 62, 63, 72, 73, 90, 92, 93], "wrap": [2, 31, 35, 49, 59, 62, 72, 75, 76, 78, 79, 83, 90, 92, 93], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49, 58, 59, 62, 67, 74, 75, 76, 78, 79, 82, 83, 87, 92, 93], "sklearn": [2, 3, 4, 6, 8, 16, 27, 30, 35, 41, 45, 49, 59, 62, 63, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93], "classifi": [2, 3, 35, 41, 45, 50, 53, 59, 60, 72, 73, 74, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 94], "adher": [2, 35, 62], "estim": [2, 3, 4, 7, 11, 20, 30, 34, 35, 36, 39, 45, 50, 51, 52, 57, 59, 62, 64, 66, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 94], "api": [2, 3, 12, 49, 55, 58, 59, 62, 73, 81, 90], "defin": [2, 3, 4, 5, 8, 12, 20, 30, 31, 32, 34, 35, 36, 60, 62, 64, 74, 75, 76, 78, 81, 85, 88, 94], "four": [2, 8, 80, 83, 94], "clf": [2, 3, 4, 41, 62, 72, 78, 81, 83, 86, 92], "fit": [2, 3, 4, 6, 8, 16, 33, 35, 48, 49, 59, 61, 62, 72, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94], "sample_weight": [2, 35, 62, 83], "predict_proba": [2, 4, 30, 33, 35, 41, 48, 49, 74, 75, 76, 78, 79, 81, 83, 85, 86, 88, 92], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 30, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 88, 90, 91, 93, 94], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 36, 38, 41, 43, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 88, 90, 92, 93], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 41, 42, 45, 48, 49, 50, 51, 52, 53, 57, 59, 60, 61, 62, 67, 68, 69, 70, 71, 73, 77, 82, 84, 89, 93], "e": [2, 3, 4, 8, 10, 20, 30, 31, 34, 35, 36, 39, 41, 42, 45, 46, 50, 51, 52, 53, 55, 58, 59, 60, 62, 64, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 41, 45, 59, 62, 72, 75, 76, 78, 79, 81, 83, 85, 86, 90, 92], "element": [2, 3, 4, 30, 36, 38, 45, 50, 52, 60, 67, 68, 70, 74, 79, 81, 93, 94], "first": [2, 4, 8, 15, 22, 23, 30, 34, 41, 45, 50, 51, 55, 58, 60, 62, 74, 75, 78, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "index": [2, 8, 22, 30, 36, 44, 45, 46, 51, 60, 62, 67, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 30, 31, 34, 35, 36, 38, 39, 41, 43, 44, 45, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 30, 31, 33, 34, 35, 36, 37, 41, 45, 46, 48, 50, 55, 57, 59, 62, 74, 75, 76, 78, 79, 82, 83, 85, 86, 88, 89, 92], "sampl": [2, 3, 4, 6, 8, 14, 18, 36, 38, 41, 52, 55, 58, 60, 62, 63, 72, 73, 80, 81, 83, 84, 86, 87, 90, 91, 93, 94], "size": [2, 8, 27, 31, 34, 35, 36, 41, 52, 57, 58, 62, 64, 66, 78, 81, 82, 83, 85, 86, 87, 89, 91, 93], "here": [2, 4, 5, 8, 12, 34, 36, 39, 49, 50, 51, 52, 54, 55, 58, 59, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "re": [2, 4, 31, 35, 44, 50, 62, 72, 74, 75, 78, 79, 81, 90, 91, 92, 93, 94], "weight": [2, 8, 31, 32, 35, 41, 50, 57, 60, 62, 74, 75, 76, 79, 93], "loss": [2, 32, 49, 60, 62, 82], "while": [2, 3, 8, 31, 34, 35, 40, 41, 45, 62, 72, 81, 82, 83, 85, 86, 90], "train": [2, 3, 4, 8, 14, 16, 31, 32, 33, 35, 41, 45, 49, 50, 55, 58, 59, 62, 63, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 94], "support": [2, 3, 4, 10, 34, 41, 45, 46, 59, 60, 70, 72, 73, 74, 75, 76, 81, 82], "your": [2, 3, 4, 7, 8, 14, 30, 31, 33, 34, 35, 36, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 66, 67, 73, 74, 78, 80, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "recommend": [2, 4, 8, 11, 14, 34, 36, 50, 75, 76, 81, 82, 89, 90], "furthermor": 2, "correctli": [2, 3, 8, 30, 31, 35, 36, 39, 46, 51, 52, 57, 58, 62, 64, 79, 81, 86, 87, 90, 91, 93], "clonabl": [2, 62], "via": [2, 4, 8, 11, 14, 16, 20, 30, 32, 34, 35, 41, 45, 50, 55, 58, 59, 60, 62, 63, 66, 70, 74, 75, 76, 78, 79, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 57, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 94], "clone": [2, 62, 86], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 54, 58, 62, 68, 73, 74, 75, 81, 83, 85, 86, 87, 88, 94], "multipl": [2, 3, 4, 10, 11, 30, 36, 44, 50, 51, 52, 54, 57, 58, 62, 72, 75, 76, 81, 82, 84, 86, 87, 90], "g": [2, 3, 4, 8, 10, 20, 30, 31, 35, 36, 42, 45, 52, 53, 55, 58, 59, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "manual": [2, 62, 74, 81, 88, 89, 90, 92, 93, 94], "pytorch": [2, 31, 32, 35, 62, 72, 74, 81, 84, 86, 91], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 45, 49, 59, 62, 74, 75, 76, 79, 81, 83, 86, 88, 89, 91, 93, 94], "__init__": [2, 32, 62, 82], "independ": [2, 3, 8, 51, 62, 79, 89, 94], "compat": [2, 31, 34, 35, 49, 62, 63, 66, 70, 72, 81, 89, 90, 92, 93], "neural": [2, 32, 49, 59, 62, 74, 81, 82, 86, 88], "network": [2, 31, 32, 35, 49, 59, 62, 74, 79, 81, 82, 86, 88, 93], "typic": [2, 31, 35, 59, 62, 74, 76, 78, 79, 82, 88, 89, 92, 93], "initi": [2, 3, 11, 16, 31, 35, 50, 62, 79, 81, 92], "insid": [2, 35, 62, 81, 83], "There": [2, 3, 72, 83, 85], "two": [2, 3, 8, 16, 22, 30, 31, 34, 35, 42, 45, 55, 57, 58, 73, 75, 76, 78, 79, 81, 82, 83, 86, 90, 91, 93, 94], "new": [2, 5, 12, 20, 31, 34, 35, 40, 44, 45, 50, 62, 74, 75, 79, 80, 81, 88, 89, 93, 94], "notion": 2, "confid": [2, 3, 8, 20, 30, 34, 36, 39, 41, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 66, 70, 72, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 94], "packag": [2, 4, 5, 7, 8, 9, 13, 29, 33, 36, 37, 45, 48, 55, 58, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "prune": [2, 3, 36, 52, 62, 73, 87], "everyth": [2, 58, 83], "els": [2, 58, 75, 80, 81, 82, 85, 86, 87], "mathemat": [2, 3, 8, 39], "keep": [2, 11, 12, 45, 72, 75, 80, 81, 91], "belong": [2, 3, 8, 30, 36, 38, 39, 51, 52, 53, 54, 59, 60, 64, 68, 70, 71, 76, 82, 83, 86, 88, 91, 94], "2": [2, 3, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 63, 67, 68, 70, 71, 80, 81, 89], "error": [2, 3, 4, 8, 31, 35, 36, 38, 39, 45, 51, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 70, 73, 74, 75, 76, 78, 79, 80, 84, 92], "erron": [2, 3, 30, 36, 39, 45, 51, 52, 60, 62, 63, 64, 88, 90], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 34, 41, 43, 44, 50, 54, 57, 62, 63, 68, 70, 71, 72, 78, 79, 81, 86, 87, 88, 90, 91, 92, 93, 94], "linear_model": [2, 4, 30, 45, 62, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logisticregress": [2, 3, 4, 30, 45, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logreg": 2, "cl": [2, 12, 26, 62, 72, 81, 83, 90, 92, 93], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 31, 34, 35, 36, 40, 41, 45, 49, 50, 52, 59, 60, 62, 68, 72, 74, 75, 76, 79, 80, 81, 83, 85, 87, 88, 90, 93], "x_train": [2, 75, 76, 83, 85, 86, 90, 92], "labels_maybe_with_error": 2, "had": [2, 3, 62, 87], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 33, 34, 35, 36, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 84, 85, 89, 90, 93], "pred": [2, 36, 45, 89, 90, 92, 93], "x_test": [2, 75, 76, 83, 86, 90, 92], "might": [2, 50, 62, 67, 75, 76, 81, 82, 87, 92, 93], "case": [2, 3, 11, 30, 41, 50, 62, 74, 75, 76, 78, 80, 81, 82, 83, 88, 90, 92, 93, 94], "standard": [2, 3, 4, 26, 30, 36, 49, 51, 52, 54, 60, 62, 72, 75, 76, 78, 80, 83, 87, 92], "adapt": [2, 31, 33, 45, 48, 62, 88], "skorch": [2, 62, 72, 81], "kera": [2, 48, 55, 58, 62, 72, 81, 87], "scikera": [2, 49, 62, 81], "open": [2, 34, 80, 87, 94], "doesn": [2, 62, 72], "t": [2, 3, 8, 15, 23, 31, 32, 34, 35, 36, 41, 43, 44, 54, 59, 60, 62, 68, 70, 71, 72, 75, 76, 78, 79, 80, 82, 83, 86, 87, 94], "alreadi": [2, 4, 8, 14, 31, 34, 35, 39, 49, 50, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 92, 93], "exist": [2, 4, 8, 10, 16, 31, 34, 35, 44, 49, 55, 57, 59, 62, 72, 73, 75, 76, 79, 85, 93, 94], "made": [2, 4, 14, 31, 35, 62, 79, 81, 82, 85, 87, 89, 90, 92, 93], "easi": [2, 39, 62, 75, 76, 80, 81, 83, 86], "inherit": [2, 5, 32, 62], "baseestim": [2, 35, 62], "yourmodel": [2, 62], "def": [2, 5, 12, 31, 35, 49, 62, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 31, 32, 34, 35, 36, 41, 59, 60, 62, 75, 79, 80, 82, 86, 91, 92, 93, 94], "refer": [2, 8, 14, 31, 35, 51, 52, 54, 55, 57, 58, 62, 66, 67, 75, 76, 78, 79, 81, 82, 83, 86, 89, 90], "origin": [2, 4, 8, 35, 36, 44, 45, 49, 51, 52, 55, 58, 59, 62, 63, 66, 68, 70, 75, 78, 79, 81, 82, 83, 87, 88, 90, 92, 93, 94], "total": [2, 3, 30, 34, 45, 51, 71, 81, 82, 91], "state": [2, 3, 4, 31, 32, 35, 40, 62, 83, 86, 87, 94], "art": [2, 32, 83, 86], "northcutt": [2, 3, 30, 59, 60], "et": [2, 3, 30, 32, 59, 60], "al": [2, 3, 30, 32, 59, 60], "2021": [2, 3, 30, 59, 60], "weak": [2, 58], "supervis": [2, 8, 75, 76, 81, 85], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 33, 34, 35, 36, 40, 44, 45, 48, 55, 58, 59, 60, 62, 64, 68, 70, 73, 75, 84, 89], "uncertainti": [2, 8, 38, 59, 62, 81, 88, 90], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 31, 35, 36, 39, 41, 50, 57, 58, 62, 72, 75, 76, 79, 81, 82, 83, 86, 89, 93], "work": [2, 3, 4, 5, 8, 10, 26, 30, 31, 34, 35, 36, 39, 44, 45, 46, 49, 50, 60, 62, 72, 73, 75, 76, 80, 88, 90, 93], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 35, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 94], "deep": [2, 33, 35, 48, 49, 62, 79], "see": [2, 3, 4, 11, 30, 31, 34, 35, 36, 41, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "subfield": 2, "theori": [2, 83], "machin": [2, 4, 12, 14, 28, 33, 48, 62, 75, 76, 80, 85], "across": [2, 3, 4, 5, 8, 11, 20, 30, 34, 41, 51, 58, 59, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 89], "varieti": [2, 81, 92, 93], "like": [2, 3, 4, 5, 8, 12, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 51, 54, 55, 57, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "pu": [2, 45], "input": [2, 3, 4, 8, 14, 22, 30, 31, 34, 35, 39, 41, 44, 45, 46, 49, 58, 62, 72, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "discret": [2, 36, 39, 45, 59, 60, 64, 66, 67], "vector": [2, 3, 4, 8, 14, 36, 39, 41, 42, 45, 59, 60, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 93, 94], "would": [2, 3, 4, 31, 34, 35, 36, 45, 52, 62, 72, 75, 81, 82, 83, 88, 90, 93, 94], "obtain": [2, 4, 6, 8, 14, 36, 50, 52, 55, 58, 60, 63, 74, 76, 79, 81, 85, 87, 89, 91, 94], "been": [2, 30, 36, 39, 44, 45, 50, 51, 55, 57, 59, 60, 62, 74, 75, 78, 81, 83, 85, 86, 87, 88, 91, 94], "dure": [2, 8, 14, 59, 62, 74, 78, 79, 81, 83, 86, 89, 90, 92, 93, 94], "denot": [2, 3, 39, 41, 45, 52, 59, 60, 70], "tild": 2, "paper": [2, 8, 50, 59, 68, 70, 80, 83, 85, 88, 90, 94], "cv_n_fold": [2, 3, 62, 93], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 35, 36, 38, 40, 41, 45, 50, 51, 54, 55, 58, 62, 63, 70, 75, 79, 80, 81, 86, 87, 88, 89, 91, 93, 94], "converge_latent_estim": [2, 3], "pulearn": [2, 45], "find_label_issues_kwarg": [2, 8, 62, 73, 81, 83], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 52, 68, 81], "clean": [2, 57, 60, 62, 63, 72, 75, 76, 80, 90, 92, 93], "even": [2, 3, 30, 34, 38, 39, 45, 62, 74, 81, 83, 85, 86, 87], "messi": [2, 62, 83], "ridden": [2, 62], "autom": [2, 62, 72, 76, 80, 81], "robust": [2, 39, 62, 76, 81], "prone": [2, 62], "out": [2, 3, 4, 8, 14, 24, 31, 35, 36, 41, 49, 52, 53, 55, 58, 59, 60, 62, 63, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94], "current": [2, 3, 5, 8, 11, 12, 20, 31, 35, 36, 41, 50, 57, 62, 75, 76, 81, 85, 87], "intend": [2, 11, 12, 13, 14, 28, 37, 50, 66, 70, 74, 75, 76, 79, 83], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 54, 57, 58, 59, 60, 62, 64, 66, 67, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 87, 89, 92, 93, 94], "follow": [2, 3, 8, 12, 26, 30, 31, 34, 35, 41, 43, 50, 51, 55, 57, 58, 59, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "experiment": [2, 31, 32, 34, 35, 52, 73, 81], "wrapper": [2, 4, 49, 74, 90, 92, 93], "around": [2, 4, 57, 75, 76, 87, 88, 94], "fasttext": [2, 48], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 59, 62, 78, 79, 80, 81, 91, 92, 93, 94], "along": [2, 41, 52, 70, 75, 76, 81, 82, 88], "dimens": [2, 45, 64, 67, 81, 82, 88, 91], "select": [2, 7, 8, 22, 50, 60, 81, 82, 85, 88], "split": [2, 3, 4, 8, 10, 34, 41, 44, 45, 62, 74, 75, 76, 78, 79, 80, 82, 83, 86, 89, 92, 94], "cross": [2, 3, 8, 30, 36, 39, 40, 41, 52, 55, 58, 60, 62, 63, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "fold": [2, 3, 30, 36, 39, 62, 74, 78, 80, 81, 87, 91, 92], "By": [2, 4, 30, 51, 52, 62, 75, 81, 91], "need": [2, 3, 8, 30, 31, 34, 35, 36, 51, 52, 54, 59, 62, 72, 74, 75, 76, 79, 81, 83, 85, 86, 87, 91, 93], "holdout": [2, 3, 62], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 45, 50, 51, 52, 54, 57, 58, 59, 60, 62, 63, 64, 66, 72, 73, 75, 76, 80, 83, 84, 87, 88, 90, 91, 93], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 29, 31, 33, 34, 35, 36, 48, 50, 59, 62, 73, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 91, 92, 93, 94], "numer": [2, 3, 4, 8, 11, 20, 26, 41, 57, 59, 62, 67, 72, 73, 74, 75, 76, 77, 79, 82, 83, 85, 86, 88, 90, 92, 93], "consist": [2, 3, 31, 35, 45, 50, 91, 94], "latent": [2, 3, 39], "thei": [2, 3, 4, 13, 19, 22, 25, 31, 32, 33, 35, 36, 37, 43, 45, 49, 52, 57, 60, 62, 63, 66, 70, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93, 94], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 39, 45, 51, 62, 76, 79], "close": [2, 3, 8, 34, 39, 59, 74, 75, 76, 78, 79, 81, 82, 83, 87], "form": [2, 3, 8, 31, 32, 35, 39, 44, 45, 60, 62, 81], "equival": [2, 3, 31, 35, 39, 59, 88], "iter": [2, 3, 30, 31, 35, 36, 45, 51, 52, 62, 81, 85, 91], "enforc": [2, 31, 35, 45], "perfectli": [2, 30, 51, 83], "certain": [2, 3, 4, 31, 35, 49, 58, 62, 75, 76, 80, 87, 88], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 40, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 70, 75, 76, 81, 82, 94], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 31, 34, 35, 36, 38, 41, 44, 49, 50, 52, 59, 60, 62, 68, 70, 75], "filter": [2, 3, 8, 34, 44, 51, 53, 54, 56, 58, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81, 82, 87, 90, 91, 92, 93, 94], "find_label_issu": [2, 3, 8, 26, 34, 36, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 81, 87, 90, 91, 92, 93, 94], "particularli": [2, 72, 85, 88], "filter_bi": [2, 3, 34, 36, 52, 73, 81], "frac_nois": [2, 36, 52, 68, 81], "min_examples_per_class": [2, 36, 52, 76, 81, 83], "impact": [2, 8, 75, 76, 82], "ml": [2, 4, 8, 13, 62, 72, 75, 76, 78, 79, 82, 85, 86, 92, 93], "accuraci": [2, 32, 60, 74, 81, 82, 83, 85, 88, 90, 91, 92, 93], "n_job": [2, 34, 36, 52, 64, 66, 68, 81, 88, 91], "disabl": [2, 31, 35, 36, 88], "process": [2, 3, 5, 11, 14, 31, 34, 35, 36, 44, 50, 52, 58, 64, 66, 68, 74, 75, 81, 85, 89, 93], "caus": [2, 36, 41, 75, 76, 81], "rank": [2, 3, 8, 30, 34, 36, 41, 51, 52, 53, 55, 56, 58, 59, 61, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 87, 88, 90, 91, 92, 93, 94], "get_label_quality_scor": [2, 34, 36, 37, 41, 50, 52, 53, 54, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 70, 73, 83, 87, 90, 91, 94], "adjust_pred_prob": [2, 8, 54, 59, 60, 83], "control": [2, 4, 7, 8, 14, 34, 36, 50, 58, 59, 62, 68, 70, 75, 76, 80, 81], "how": [2, 3, 4, 8, 11, 12, 14, 20, 30, 31, 32, 34, 35, 39, 45, 50, 51, 54, 55, 57, 59, 60, 62, 66, 70, 72, 75, 76, 78, 79, 80, 82, 87, 88, 89, 90, 91, 92, 93], "much": [2, 8, 30, 34, 36, 62, 81, 83, 85, 88], "output": [2, 3, 4, 8, 14, 31, 32, 35, 39, 45, 49, 50, 51, 55, 57, 58, 59, 62, 66, 67, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 87, 88, 89, 90, 93], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 45, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "suppress": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67, 91, 94], "statement": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67], "big": [2, 34, 52, 58, 62, 83], "limit": [2, 4, 14, 34, 52, 87, 91, 94], "memori": [2, 31, 34, 35, 52, 58, 64, 66, 75, 91], "label_issues_batch": [2, 33, 52, 81], "find_label_issues_batch": [2, 33, 34, 52, 81], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 45, 46, 50, 51, 52, 54, 55, 58, 59, 60, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 92, 93], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 34, 57, 58, 59, 60, 66, 70, 75, 87, 88, 91, 94], "inverse_noise_matrix": [2, 3, 8, 39, 45, 73, 83], "label_issu": [2, 34, 36, 52, 55, 62, 64, 73, 74, 79, 81, 82, 83, 86, 90, 92, 93], "clf_kwarg": [2, 3, 8, 62], "clf_final_kwarg": [2, 62], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 30, 34, 36, 38, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 66, 70, 72, 74, 78, 79, 82, 83, 85, 87, 89, 90], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 34, 35, 36, 38, 43, 45, 52, 54, 55, 58, 60, 62, 63, 64, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 90, 91, 92, 93, 94], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 30, 34, 36, 52, 55, 58, 60, 62, 63, 64, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 90, 91, 92, 93, 94], "final": [2, 8, 62, 78, 87, 89, 90, 92], "remain": [2, 62, 73, 82, 86, 90, 92, 93, 94], "datasetlik": [2, 45, 62], "beyond": [2, 4, 5, 7, 9, 29, 72, 91], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 40, 49, 50, 51, 62, 70, 74, 75, 76, 78, 79, 81, 83, 85, 90, 92, 93, 94], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 40, 45, 46, 49, 50, 51, 62, 67, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 93, 94], "scipi": [2, 4, 11, 45], "spars": [2, 4, 8, 11, 14, 16, 27, 45, 46, 78], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 31, 32, 35, 74, 79, 80, 82, 88, 93], "util": [2, 4, 8, 14, 28, 31, 32, 35, 37, 50, 55, 58, 62, 72, 73, 74, 75, 76, 81, 82, 83, 88], "tensorflow": [2, 45, 49, 72, 74, 81], "object": [2, 4, 8, 10, 11, 14, 28, 31, 32, 34, 35, 41, 45, 46, 49, 52, 55, 56, 57, 58, 59, 62, 70, 72, 74, 76, 78, 82, 83, 84, 86, 90, 93], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 66, 67, 68, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 86, 87, 90, 93, 94], "index_list": 2, "subset": [2, 3, 4, 14, 30, 34, 36, 45, 60, 67, 71, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 92, 93, 94], "wa": [2, 3, 10, 12, 34, 45, 50, 51, 57, 59, 71, 74, 75, 76, 78, 79, 81, 83, 86, 87, 89, 91, 92, 93, 94], "abl": [2, 3, 8, 62, 74, 81, 83, 85, 86], "format": [2, 3, 4, 8, 10, 31, 34, 35, 36, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 70, 71, 74, 75, 76, 78, 80, 82, 85, 90, 91, 92, 94], "make": [2, 3, 16, 31, 34, 35, 41, 49, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "sure": [2, 34, 36, 41, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 92, 93], "shuffl": [2, 8, 45, 74, 79, 82, 86, 88], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 35, 39, 41, 44, 45, 50, 55, 57, 62, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "batch": [2, 34, 45, 49, 50, 64, 66, 81, 82, 88], "order": [2, 4, 8, 30, 31, 35, 36, 39, 40, 41, 45, 50, 51, 52, 55, 58, 59, 60, 64, 67, 68, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 87, 90, 91, 93, 94], "destroi": [2, 45], "oper": [2, 31, 34, 35, 45, 49, 60, 72, 79, 81, 88, 92, 93], "eg": [2, 8, 45, 55, 58, 75, 76, 81], "repeat": [2, 45, 50, 85, 88], "appli": [2, 31, 33, 35, 36, 41, 42, 44, 45, 54, 59, 68, 74, 75, 76, 78, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93], "array_lik": [2, 3, 30, 36, 45, 52, 59, 63], "some": [2, 3, 4, 8, 12, 20, 30, 31, 33, 35, 36, 39, 44, 45, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "seri": [2, 3, 34, 45, 46, 62, 70, 81], "row": [2, 3, 4, 8, 11, 23, 30, 34, 36, 38, 39, 45, 50, 51, 52, 54, 59, 60, 62, 67, 68, 70, 71, 74, 75, 78, 79, 80, 81, 82, 85, 86, 88, 92, 94], "rather": [2, 3, 22, 30, 45, 49, 50, 57, 66, 70, 85, 89, 91, 93, 94], "leav": [2, 36], "per": [2, 3, 11, 30, 34, 36, 41, 44, 50, 51, 52, 54, 57, 58, 60, 63, 64, 66, 70, 76, 81, 87, 94], "determin": [2, 3, 8, 14, 20, 22, 26, 30, 34, 36, 41, 45, 50, 52, 55, 57, 60, 66, 70, 75, 81, 85, 87, 88, 90], "cutoff": [2, 3, 88], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 30, 31, 35, 36, 45, 50, 57, 59, 60, 63, 66, 70, 74, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93], "section": [2, 3, 5, 8, 73, 78, 82, 87], "3": [2, 3, 4, 5, 8, 30, 31, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 52, 59, 60, 62, 63, 68, 70, 80, 81, 89], "equat": [2, 3, 39], "advanc": [2, 3, 4, 7, 8, 14, 57, 59, 70, 73, 76, 77, 83], "user": [2, 3, 4, 8, 12, 14, 23, 28, 31, 35, 36, 57, 59, 60, 62, 66, 70, 83], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 31, 34, 35, 36, 41, 44, 50, 51, 52, 55, 57, 59, 60, 62, 63, 71, 73, 74, 76, 79, 82, 85, 87, 90, 93], "automat": [2, 3, 4, 22, 30, 72, 78, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "greater": [2, 3, 4, 7, 8, 24, 34, 45, 57, 76, 80, 81, 94], "count": [2, 20, 22, 30, 34, 36, 39, 45, 51, 52, 58, 73, 81, 82, 87], "observ": [2, 3, 39, 74, 75, 76, 85, 88, 90], "mislabel": [2, 8, 30, 34, 36, 39, 50, 51, 52, 55, 57, 60, 66, 68, 70, 72, 74, 78, 79, 81, 82, 83, 86, 87, 90, 92, 93], "one": [2, 3, 4, 8, 22, 30, 31, 34, 35, 36, 41, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 82, 85, 88, 89, 90, 92, 93, 94], "get_label_issu": [2, 33, 34, 61, 62, 83, 90, 92, 93], "either": [2, 3, 5, 8, 31, 34, 35, 36, 50, 52, 57, 59, 60, 64, 66, 76, 81, 86, 87], "boolean": [2, 5, 8, 20, 34, 36, 44, 50, 52, 55, 60, 62, 64, 66, 67, 72, 74, 76, 79, 81, 82, 87, 90, 91, 93], "label_issues_mask": [2, 36, 60, 62, 73], "indic": [2, 3, 4, 5, 8, 11, 20, 30, 34, 35, 36, 38, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "its": [2, 4, 7, 8, 14, 31, 34, 35, 36, 43, 44, 52, 55, 58, 59, 60, 62, 64, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94], "return_indices_ranked_bi": [2, 34, 36, 52, 68, 73, 81, 83, 92, 93], "significantli": [2, 82, 83, 85, 89], "reduc": [2, 34, 36, 45, 74, 81], "time": [2, 8, 31, 34, 35, 45, 50, 73, 75, 80, 81, 82, 83, 87, 88, 90, 91, 92, 93, 94], "take": [2, 4, 8, 30, 31, 35, 40, 41, 45, 49, 60, 78, 82, 85, 86, 87, 92, 94], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 29, 31, 34, 35, 62, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "skip": [2, 8, 31, 35, 62, 74, 81, 86, 94], "slow": [2, 3], "step": [2, 5, 22, 41, 58, 81, 82, 83, 85, 89], "caution": [2, 4, 81], "previous": [2, 4, 11, 45, 59, 62, 73, 74, 75, 78, 79, 85, 89, 92], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 40, 41, 45, 62, 75, 78, 81, 82, 90, 91, 92, 94], "individu": [2, 8, 11, 22, 31, 35, 50, 54, 57, 60, 62, 68, 70, 73, 76, 78, 81, 85, 86, 87, 92, 94], "still": [2, 34, 35, 45, 59, 74, 81, 82, 88, 92], "extra": [2, 31, 35, 45, 49, 50, 51, 62, 79, 81, 82, 85, 88], "receiv": [2, 8, 31, 35, 51, 54, 55, 62, 64, 68, 76, 87], "overwritten": [2, 62], "callabl": [2, 3, 31, 35, 41, 44, 49, 54, 81], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 34, 35, 37, 40, 44, 45, 58, 60, 62, 67, 74, 75, 76, 81, 82, 83, 86, 94], "appropri": [2, 8, 14, 52, 60, 75, 78, 86, 87], "earli": [2, 82], "stop": [2, 82], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 30, 45, 59, 75, 78, 82, 86, 90, 92, 94], "f": [2, 5, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "ignor": [2, 31, 35, 44, 49, 62, 67, 71, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "allow": [2, 30, 31, 34, 35, 38, 45, 50, 58, 59, 62, 64, 66, 74, 81, 82, 89, 91, 93], "access": [2, 8, 11, 31, 35, 62, 76, 79, 82, 86, 93], "hyperparamet": [2, 54, 59, 82], "purpos": [2, 75, 76, 81, 86, 90], "want": [2, 4, 8, 30, 34, 46, 50, 52, 62, 75, 79, 80, 82, 85, 87, 88, 89, 91, 93, 94], "explicitli": [2, 6, 8, 35, 62, 81], "yourself": [2, 4, 34, 76], "altern": [2, 5, 8, 41, 45, 49, 50, 60, 73, 74, 78, 79, 81, 82, 83, 85, 86, 88, 90, 93], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 31, 34, 35, 36, 45, 49, 50, 52, 59, 60, 62, 66, 67, 70, 71, 72, 75, 76, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93], "effect": [2, 8, 23, 31, 35, 50, 59, 62, 78, 79, 81, 82, 88], "offer": [2, 4, 74, 75, 76, 79, 81, 83, 86, 93], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 50, 62, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 59, 62, 75, 92], "label_issues_df": [2, 62, 82], "similar": [2, 8, 30, 31, 35, 45, 50, 54, 55, 57, 59, 62, 66, 70, 75, 76, 78, 79, 81, 82, 83, 87, 88, 91], "document": [2, 3, 4, 8, 12, 14, 30, 31, 34, 35, 36, 41, 44, 49, 51, 52, 54, 57, 58, 59, 62, 66, 67, 68, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 45, 55, 62, 75, 76], "were": [2, 3, 4, 30, 35, 51, 57, 70, 74, 78, 81, 83, 85, 87, 89, 91, 92], "present": [2, 3, 4, 8, 10, 11, 18, 30, 45, 59, 67, 72, 78, 81, 82, 88], "actual": [2, 3, 4, 30, 50, 51, 60, 76, 81, 83, 94], "num_class": [2, 30, 34, 45, 49, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 92, 93], "uniqu": [2, 27, 45, 67, 75, 81, 86, 88], "given_label": [2, 4, 26, 30, 39, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93, 94], "normal": [2, 3, 16, 22, 27, 36, 38, 41, 43, 44, 45, 60, 81, 83, 88], "trick": [2, 81], "distribut": [2, 3, 4, 8, 22, 24, 30, 35, 36, 40, 43, 50, 58, 59, 60, 72, 75, 76, 78, 79, 82, 87, 88], "account": [2, 30, 50, 54, 59, 60, 79, 81, 83, 85, 86, 88, 90, 93], "word": [2, 3, 44, 70, 71, 81], "remov": [2, 8, 27, 30, 31, 35, 36, 62, 72, 79, 80, 81, 82, 86, 88, 90, 92, 93], "so": [2, 3, 4, 5, 8, 12, 22, 30, 31, 34, 35, 36, 45, 50, 51, 57, 60, 62, 66, 70, 74, 75, 76, 79, 82, 83, 88, 91], "proportion": [2, 8, 36], "just": [2, 3, 4, 8, 11, 30, 32, 34, 45, 49, 60, 62, 64, 72, 73, 74, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 31, 32, 35, 36, 41, 44, 45, 50, 52, 54, 59, 60, 62, 63, 64, 72, 74, 79, 80, 81, 82, 83, 88, 89, 90, 92, 93], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 43, 53, 55, 56, 57, 58, 59, 60, 61, 62, 65, 69, 72, 75, 77, 82, 84, 86, 90, 91, 92, 93, 94], "arg": [2, 10, 20, 23, 27, 31, 32, 35, 41, 45, 60, 62], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 49, 62, 64, 66, 68, 81], "test": [2, 8, 22, 35, 41, 49, 62, 72, 75, 76, 78, 79, 82, 89, 90, 92, 93, 94], "expect": [2, 3, 31, 35, 36, 41, 50, 59, 60, 62, 81, 83, 85, 86, 87, 90, 92, 93, 94], "class_predict": 2, "evalu": [2, 8, 31, 32, 33, 34, 35, 58, 62, 74, 75, 76, 81, 82, 83, 85, 89, 90, 91, 92, 93], "simpli": [2, 30, 60, 75, 76, 78, 79, 81, 83, 86, 90, 91, 93, 94], "quantifi": [2, 4, 5, 8, 11, 36, 54, 59, 62, 72, 76, 78, 79, 82, 83, 87], "save_spac": [2, 8, 61, 62], "potenti": [2, 8, 30, 36, 44, 52, 55, 58, 60, 62, 64, 66, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "cach": [2, 79, 93], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 45, 46, 49, 50, 51, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 90, 91, 92, 93], "unlik": [2, 8, 36, 38, 41, 49, 51, 52, 54, 70, 75, 85, 86, 88, 90], "both": [2, 4, 8, 14, 22, 30, 31, 35, 36, 45, 50, 52, 60, 64, 66, 71, 72, 75, 81, 82, 83, 85, 94], "mask": [2, 34, 36, 44, 45, 52, 55, 60, 62, 64, 66, 67, 72, 80, 81, 85, 87, 91, 94], "prefer": [2, 60, 68], "plan": 2, "subsequ": [2, 3, 31, 35, 79, 81, 83, 87, 93], "invok": [2, 31, 35, 83, 89], "scratch": [2, 62], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 29, 31, 34, 35, 36, 49, 50, 52, 54, 58, 59, 60, 62, 63, 64, 66, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "share": [2, 60, 62], "mostli": [2, 45, 57, 62, 86], "longer": [2, 40, 41, 44, 62, 73, 79, 81, 87, 93], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 62, 70, 75, 76, 80, 81, 94], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 38, 50, 51, 54, 58, 62, 67, 70, 74, 75, 78, 79, 80, 81, 82, 83, 85, 88], "docstr": [2, 30, 31, 35, 45, 62, 80, 83], "unless": [2, 31, 35, 62, 81], "our": [2, 3, 8, 49, 50, 60, 62, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "is_label_issu": [2, 26, 62, 74, 75, 76, 78, 79, 82, 83, 86, 90, 93], "entir": [2, 8, 22, 34, 36, 39, 51, 52, 57, 60, 62, 64, 66, 67, 72, 75, 76, 81, 87, 88, 89, 91, 94], "accur": [2, 3, 4, 8, 14, 30, 34, 36, 50, 51, 52, 55, 58, 60, 62, 63, 64, 66, 67, 73, 76, 78, 79, 81, 82, 85, 90], "label_qu": [2, 50, 62, 83, 85, 90, 93], "measur": [2, 30, 50, 51, 62, 72, 80, 81, 83, 85, 86, 91, 92, 94], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 30, 34, 36, 38, 41, 50, 51, 52, 54, 55, 57, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 90, 92, 93], "lower": [2, 4, 5, 8, 11, 24, 34, 41, 43, 50, 51, 54, 57, 58, 60, 62, 63, 66, 70, 74, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 93, 94], "eas": 2, "comparison": [2, 31, 35, 58, 83, 85, 87, 90], "against": [2, 31, 35, 75, 78, 81, 85, 86], "predicted_label": [2, 4, 26, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93], "ad": [2, 31, 35, 76, 85, 90], "precis": [2, 52, 55, 58, 81, 83, 91, 94], "definit": [2, 5, 41, 62, 78, 92], "accessor": [2, 62], "describ": [2, 8, 16, 50, 59, 60, 62, 68, 70, 83, 85, 86, 87, 89, 94], "precomput": [2, 4, 39, 62, 80], "clear": [2, 31, 35, 62, 79, 90, 93], "save": [2, 4, 14, 31, 34, 35, 58, 62, 81, 87, 91, 94], "space": [2, 8, 59, 62, 78, 80, 82], "place": [2, 31, 35, 45, 62, 85, 92], "larg": [2, 34, 62, 78, 79, 81, 82, 87, 88, 91, 94], "deploi": [2, 62, 78, 79, 81, 82], "care": [2, 8, 31, 35, 62, 79, 81, 83], "avail": [2, 4, 5, 10, 12, 28, 35, 62, 81, 83, 85, 87, 90], "cannot": [2, 4, 10, 12, 45, 89, 94], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 41, 62], "__init_subclass__": [2, 33, 35, 61, 62], "set_": [2, 35, 62], "_request": [2, 35, 62], "pep": [2, 35, 62], "487": [2, 35, 62], "look": [2, 4, 5, 14, 31, 35, 45, 62, 67, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 91, 92, 94], "inform": [2, 4, 5, 8, 11, 14, 28, 31, 35, 45, 50, 51, 55, 58, 62, 67, 70, 71, 72, 74, 75, 78, 79, 83, 85, 88, 91, 94], "__metadata_request__": [2, 35, 62], "infer": [2, 35, 45, 62, 67, 71, 82, 85, 86, 90, 92, 93], "signatur": [2, 31, 35, 62], "accept": [2, 31, 35, 60, 62, 75, 76], "metadata": [2, 35, 62, 78, 79, 82, 94], "through": [2, 4, 5, 35, 62, 74, 76, 79, 80, 81, 85, 87, 88, 90, 93], "develop": [2, 7, 35, 62, 81, 83, 94], "request": [2, 35, 62, 76, 79, 80, 86, 92, 93, 94], "those": [2, 3, 8, 34, 35, 36, 49, 50, 52, 58, 62, 66, 70, 71, 72, 74, 81, 82, 87, 91], "http": [2, 4, 5, 7, 8, 9, 16, 29, 31, 32, 34, 35, 38, 45, 55, 58, 59, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "www": [2, 35, 62, 88], "org": [2, 16, 31, 32, 35, 45, 59, 62, 81, 83, 94], "dev": [2, 35, 62], "0487": [2, 35, 62], "get_metadata_rout": [2, 33, 35, 61, 62], "rout": [2, 35, 62], "pleas": [2, 31, 35, 49, 62, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "guid": [2, 5, 35, 62, 73, 82], "mechan": [2, 31, 35, 62], "metadatarequest": [2, 35, 62], "encapsul": [2, 14, 35, 57, 62], "get_param": [2, 33, 35, 48, 49, 61, 62], "subobject": [2, 35, 62], "param": [2, 8, 31, 35, 49, 59, 62, 81], "name": [2, 4, 5, 8, 10, 11, 30, 31, 35, 40, 41, 45, 49, 50, 51, 58, 62, 67, 71, 74, 76, 79, 80, 81, 82, 83, 86, 91, 93, 94], "set_fit_request": [2, 33, 35, 61, 62], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 39, 41, 44, 45, 49, 50, 51, 55, 57, 58, 60, 62, 67, 71, 74, 75, 81, 85, 86, 87, 94], "unchang": [2, 31, 35, 62, 94], "relev": [2, 14, 22, 35, 62, 82], "enable_metadata_rout": [2, 35, 62], "set_config": [2, 35, 62], "meta": [2, 35, 62], "rais": [2, 4, 10, 11, 31, 35, 38, 41, 62, 74, 81], "alia": [2, 31, 35, 62], "metadata_rout": [2, 35, 62], "retain": [2, 35, 45, 62], "chang": [2, 31, 34, 35, 38, 62, 70, 74, 75, 79, 81, 87, 88, 93, 94], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 29, 31, 33, 35, 37, 38, 45, 48, 49, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "sub": [2, 35, 57, 62], "pipelin": [2, 35, 62], "otherwis": [2, 8, 30, 31, 34, 35, 36, 42, 44, 45, 52, 59, 62, 64, 66, 67, 71, 79, 81, 93], "updat": [2, 11, 31, 34, 35, 62, 73, 75, 82], "set_param": [2, 33, 35, 48, 49, 61, 62], "simpl": [2, 31, 35, 36, 50, 60, 62, 75, 76, 78, 79, 82, 85, 88, 90, 92, 93], "well": [2, 3, 8, 31, 35, 38, 39, 50, 52, 58, 60, 62, 67, 70, 71, 73, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88], "nest": [2, 31, 35, 46, 62, 68, 70, 71, 94], "latter": [2, 31, 35, 62, 88], "compon": [2, 35, 62], "__": [2, 35, 62], "set_score_request": [2, 61, 62], "structur": [3, 59, 78, 92], "unobserv": 3, "less": [3, 4, 8, 27, 34, 41, 50, 59, 60, 64, 66, 70, 76, 78, 80, 81, 82, 83, 87, 94], "channel": [3, 74, 83], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 30, 39, 45, 51, 76, 80, 93], "inv": 3, "confident_joint": [3, 20, 30, 36, 45, 51, 52, 73, 81, 83], "un": 3, "under": [3, 8, 31, 35, 51, 58, 59, 76, 88], "joint": [3, 30, 36, 39, 45, 51, 52, 80], "num_label_issu": [3, 34, 36, 52, 67, 71, 73], "estimation_method": [3, 34], "off_diagon": 3, "multi_label": [3, 30, 36, 45, 46, 52, 86], "don": [3, 72, 76, 78, 79, 82, 83, 87], "statis": 3, "compute_confident_joint": [3, 30, 36, 45, 52, 83], "off": [3, 36, 45, 57, 82, 83, 87, 88], "j": [3, 4, 30, 31, 35, 36, 52, 55, 58, 59, 68, 70, 71, 75, 76, 83, 91, 94], "confident_learn": [3, 36, 52, 83], "off_diagonal_calibr": 3, "calibr": [3, 36, 45, 50, 85], "cj": [3, 39, 45], "axi": [3, 27, 39, 41, 43, 64, 67, 74, 75, 76, 81, 82, 83, 85, 86, 88, 90, 91], "bincount": [3, 75, 76, 83, 85, 86], "alwai": [3, 8, 31, 35, 45, 74, 83, 90, 92, 93], "estimate_issu": 3, "over": [3, 8, 31, 34, 35, 57, 58, 64, 66, 76, 78, 80, 81, 82, 83, 88, 90, 92], "As": [3, 5, 72, 75, 76, 79, 83, 90, 94], "add": [3, 4, 5, 10, 11, 31, 35, 49, 58, 74, 75, 76, 79, 81, 82, 83, 86, 93], "approach": [3, 30, 34, 36, 78, 83, 86, 88, 90, 92], "custom": [3, 5, 8, 9, 26, 31, 34, 35, 41, 44, 60, 76, 79, 83, 93], "know": [3, 75, 76, 78, 79, 81, 82, 83, 85], "cut": [3, 57, 72, 83], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 88, 94], "underestim": 3, "few": [3, 58, 72, 76, 81, 85, 86, 87, 88, 94], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 40, 41, 44, 54, 55, 57, 58, 60, 63, 70, 80, 81, 86, 91, 94], "detail": [3, 4, 8, 12, 14, 30, 31, 35, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 66, 67, 68, 72, 73, 74, 86, 88, 94], "num_issu": [3, 5, 34, 74, 75, 76, 78, 79, 82, 83], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 36, 41, 50, 80, 81, 87, 90, 93, 94], "p_": [3, 30, 36], "pair": [3, 4, 8, 30, 36, 83], "v": [3, 8, 34, 51, 52, 54, 60, 75, 76, 86, 87, 88, 89], "rest": [3, 4, 5, 7, 8, 9, 29, 51, 52, 54, 62, 75, 76, 78, 79, 81, 82, 83, 85, 90, 92, 93], "fashion": [3, 4, 64, 92], "2x2": 3, "incorrectli": [3, 30, 51, 52, 55, 78, 94], "calibrated_cj": 3, "c": [3, 8, 44, 52, 60, 72, 74, 75, 76, 78, 79, 81, 83, 86, 87, 88, 89, 90, 92], "whose": [3, 4, 8, 24, 31, 35, 39, 44, 50, 54, 57, 63, 66, 70, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 91, 94], "truli": [3, 88, 91], "estimate_joint": [3, 30, 83], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 52, 58, 83, 87, 89, 91, 94], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 50, 51, 58, 67, 87, 88], "done": [3, 8, 62, 75, 81, 83, 86, 88, 89], "overfit": [3, 8, 55, 58, 74, 75, 76, 78, 79, 82, 89, 92], "classifict": 3, "singl": [3, 4, 22, 30, 31, 35, 41, 42, 45, 50, 51, 57, 58, 59, 60, 70, 74, 75, 81, 83, 86, 87, 92], "baselin": [3, 31, 36, 88, 90, 93], "proxi": 3, "union": [3, 4, 10, 41, 45, 46, 52, 58, 62, 66, 70, 81], "tupl": [3, 27, 31, 35, 39, 40, 42, 44, 45, 50, 52, 58, 66, 68, 70, 71, 74, 94], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 34, 39, 50, 64, 66, 72, 81, 82, 91, 93], "practic": [3, 76, 82, 83, 88, 90, 92, 93], "complet": [3, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "gist": 3, "cj_ish": 3, "guess": [3, 39, 83, 85], "8": [3, 4, 5, 6, 40, 41, 42, 44, 54, 68, 70, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "parallel": [3, 36, 58, 68, 80], "again": [3, 49, 81, 88, 92], "simplifi": [3, 12], "understand": [3, 7, 30, 51, 58, 76, 83, 90, 91, 94], "100": [3, 31, 35, 60, 75, 76, 78, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94], "optim": [3, 31, 32, 35, 49, 82, 85], "speed": [3, 36, 80, 81, 90, 93], "dtype": [3, 21, 22, 27, 31, 35, 44, 45, 54, 70, 74, 87], "enumer": [3, 31, 35, 74, 75, 76, 82, 94], "s_label": 3, "confident_bin": 3, "6": [3, 4, 35, 41, 45, 70, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "num_confident_bin": 3, "argmax": [3, 36, 60, 64, 67, 74, 81, 83, 87, 88, 91], "elif": 3, "estimate_lat": 3, "py_method": [3, 39], "cnt": [3, 39], "1d": [3, 4, 14, 34, 36, 41, 42, 45, 46, 54, 63, 74, 92], "eqn": [3, 39], "margin": [3, 36, 39, 41, 60], "marginal_p": [3, 39], "shorthand": [3, 11], "proport": [3, 8, 30, 51, 83, 89], "poorli": [3, 39, 92], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 83], "variabl": [3, 5, 12, 23, 45, 62, 63, 74, 75, 78, 83, 86, 90], "exact": [3, 39, 75, 76, 78, 82, 92], "within": [3, 4, 8, 13, 31, 32, 35, 37, 52, 57, 66, 68, 70, 75, 76, 81, 82, 87, 91], "percent": 3, "often": [3, 30, 39, 51, 81, 83, 89, 91], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 45, 46, 58, 74, 75, 78, 79, 81, 82, 86, 87, 88, 93], "wai": [3, 4, 49, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 89, 92, 93], "pro": 3, "con": 3, "pred_proba": [3, 89], "combin": [3, 30, 75, 80, 81, 82, 83, 89, 90], "becaus": [3, 39, 45, 57, 79, 81, 83, 85, 87], "littl": [3, 34, 80, 87, 94], "uniform": [3, 60, 80, 81, 83], "20": [3, 5, 71, 74, 79, 80, 81, 82, 83, 87, 91, 94], "Such": [3, 82, 88], "bound": [3, 21, 31, 35, 44, 54, 55, 57, 58, 87], "reason": [3, 20, 31, 35], "comment": [3, 44, 94], "end": [3, 4, 31, 35, 58, 82, 88, 91, 94], "file": [3, 4, 10, 33, 34, 48, 58, 74, 75, 78, 79, 80, 81, 87, 88, 91, 92, 94], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 83], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 73, 75, 76, 78, 79, 82, 83, 91, 92, 94], "five": [3, 55, 58, 83, 87], "estimate_cv_predicted_prob": [3, 83], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33, 34], "amongst": [3, 8, 87], "confident_threshold": [3, 8, 20, 34, 59], "unifi": 4, "audit": [4, 7, 10, 11, 14, 74, 77, 78, 79, 81, 82, 83, 86, 87], "kind": [4, 5, 74, 75, 78, 79, 80, 82, 83], "addit": [4, 5, 7, 8, 9, 11, 28, 29, 31, 35, 41, 46, 50, 58, 68, 74, 75, 78, 79, 83, 85, 88, 89, 92, 93], "depend": [4, 5, 7, 8, 9, 10, 11, 29, 33, 36, 38, 45, 48, 52, 59, 62, 63, 72], "instal": [4, 5, 7, 8, 9, 29, 31, 33, 34, 35, 36, 48, 49, 64, 66], "pip": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "development": [4, 5, 7, 9, 29], "git": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "github": [4, 5, 7, 9, 29, 31, 32, 45, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "com": [4, 5, 7, 9, 29, 31, 32, 34, 38, 45, 59, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "egg": [4, 5, 7, 9, 29, 72, 80], "label_nam": [4, 5, 6, 8, 10, 16, 27, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "image_kei": [4, 82], "interfac": [4, 72, 81, 83], "librari": [4, 8, 35, 55, 58, 59, 72, 75, 79, 80, 81, 93], "goal": 4, "track": [4, 11, 12, 72, 75, 80, 81, 83], "intermedi": [4, 7, 76], "statist": [4, 8, 11, 20, 22, 30, 50, 51, 58, 76, 78, 79, 83], "convert": [4, 10, 31, 35, 42, 43, 46, 50, 57, 66, 70, 73, 74, 79, 80, 81, 82, 85, 86, 87, 93], "hug": [4, 10, 82], "face": [4, 10, 14, 80, 82, 86], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 41, 50, 51, 57, 59, 75, 76, 79, 81, 82, 83, 85, 87], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 35, 45, 50, 51, 63, 67, 70, 71, 78, 79, 81, 85, 86, 93, 94], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 40, 45, 50, 51, 54, 55, 57, 58, 75, 76, 78, 79, 83, 85, 86, 87], "path": [4, 10, 31, 34, 35, 58, 74, 75, 81, 87], "local": [4, 10, 31, 32, 35, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 41, 59, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 84, 85, 88], "txt": [4, 10, 94], "csv": [4, 10, 78, 79, 90, 92, 93], "json": [4, 10], "hub": [4, 10], "regress": [4, 5, 10, 12, 14, 19, 26, 28, 75, 76, 79, 84, 85, 88, 93], "imag": [4, 7, 30, 35, 55, 57, 58, 59, 64, 66, 67, 72, 75, 76, 80, 81, 84, 85, 86, 87, 89, 91], "point": [4, 5, 8, 16, 22, 31, 35, 75, 76, 78, 79, 81, 82, 83, 85], "field": [4, 8, 31, 35], "themselv": [4, 90, 92, 93], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 44, 68, 70, 76, 82, 84, 91], "load_dataset": [4, 10, 82], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 31, 35], "has_label": [4, 10], "class_nam": [4, 10, 18, 30, 51, 58, 67, 71, 72, 80, 83, 87, 91, 94], "empti": [4, 10, 39, 50, 76, 81, 86], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 78], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 74, 75, 76, 78, 79, 81, 82, 83, 86], "sort": [4, 14, 34, 36, 41, 50, 52, 55, 57, 58, 60, 66, 68, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "common": [4, 11, 14, 76, 77, 80, 81, 83, 86, 87, 91], "real": [4, 14, 72, 75, 76, 81, 83, 85, 86, 90, 91], "world": [4, 14, 72, 75, 76, 81, 83, 85, 90, 91], "interact": [4, 14, 79, 81], "embed": [4, 8, 14, 59, 72, 74, 75, 76, 78, 79, 83, 86, 93], "thereof": [4, 14], "insight": [4, 14, 58, 85], "act": [4, 8, 57, 75], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 34, 36, 64, 66], "best": [4, 14, 40, 50, 60, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 92, 93, 94], "2d": [4, 14, 34, 41, 42, 44, 45, 50, 74, 86, 92], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 51, 74, 75, 76, 78, 79, 82, 83], "represent": [4, 8, 14, 31, 35, 42, 52, 72, 74, 75, 76, 79, 81, 82, 83, 88, 93], "num_featur": [4, 14, 31, 35, 49], "distanc": [4, 8, 14, 16, 22, 24, 27, 43, 57, 59, 78, 88], "nearest": [4, 8, 14, 21, 22, 24, 43, 59, 76, 79, 88], "neighbor": [4, 8, 14, 16, 21, 22, 24, 43, 59, 75, 76, 78, 79, 81, 82, 88], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 45, 62, 80, 90], "csr": 4, "evenli": 4, "omit": [4, 57, 58, 82, 87], "itself": [4, 31, 35, 87], "three": [4, 8, 30, 50, 51, 62, 67, 74, 75, 76, 78, 80, 83, 85, 89, 90, 91, 92, 94], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 32, 35, 41, 72, 78, 86, 94], "th": [4, 40, 44, 45, 50, 52, 55, 57, 58, 59, 68, 70, 71, 79, 86, 87, 94], "ascend": [4, 30, 51, 82, 83], "segment": [4, 64, 66, 67, 84], "reflect": [4, 78, 79, 85, 87, 88, 90, 92, 93], "maintain": 4, "posit": [4, 31, 35, 43, 45, 58, 80, 88], "nearestneighbor": [4, 8, 16, 59, 78, 88], "kneighbors_graph": [4, 16, 78], "illustr": 4, "todens": 4, "second": [4, 41, 45, 58, 60, 75, 81, 83, 94], "duplic": [4, 7, 19, 20, 31, 35, 72, 75, 83, 86], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49], "neither": [4, 8, 12, 87], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 50, 81, 85, 94], "unspecifi": [4, 14, 36, 52], "interest": [4, 14, 20, 67, 71, 79, 83, 91, 92, 93, 94], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 62, 63, 80, 90, 94], "random_st": [4, 74, 75, 76, 82, 83, 86, 88, 92], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 34, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86], "comprehens": [4, 72, 82, 86], "nbr": 4, "n_neighbor": [4, 8, 16, 59], "metric": [4, 8, 17, 22, 27, 45, 49, 58, 59, 74, 78, 79, 82, 83, 90, 92, 93], "euclidean": [4, 8, 57, 59, 78], "mode": [4, 16, 31, 34, 35, 88], "4x4": 4, "float64": [4, 22, 31, 35, 70], "compress": [4, 8, 45, 64, 66], "toarrai": 4, "NOT": [4, 34, 79], "23606798": 4, "41421356": 4, "configur": [4, 14, 41, 76], "suppos": [4, 8, 55, 88, 90, 92, 93], "who": [4, 57, 78, 83, 92, 94], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "clean_learning_kwarg": [4, 8, 21, 26], "labelissuemanag": [4, 8, 19, 21], "prune_method": [4, 73], "prune_by_noise_r": [4, 36, 52, 83], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 71, 72, 74, 75, 76, 78, 79, 83, 86, 94], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 48, 49, 51, 56, 65, 66, 68, 69, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 87, 91, 94], "show": [4, 22, 31, 35, 40, 45, 58, 67, 71, 76, 78, 79, 80, 81, 82, 83, 85, 88, 90, 91, 92, 94], "top": [4, 8, 30, 34, 36, 45, 52, 55, 58, 60, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 90, 93, 94], "suffer": [4, 8, 11, 20, 52, 60, 71, 94], "onc": [4, 20, 30, 31, 35, 75, 81, 83, 86, 87, 92], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 41, 50, 51, 54, 57, 58, 62, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87, 94], "sever": [4, 5, 8, 10, 11, 20, 31, 34, 35, 36, 54, 57, 59, 60, 66, 70, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 92, 93, 94], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 72, 74, 75, 76, 78, 79, 81, 82, 86, 88, 90, 92, 93, 94], "With": [4, 34, 79, 83, 85, 90, 91, 93, 94], "usag": [4, 34, 49], "issue_summari": [4, 8, 11, 75], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 37, 60, 72, 75, 76, 83, 84, 86], "someth": [4, 5, 31, 35, 60, 87], "123": [4, 75, 76], "456": [4, 74, 92, 93], "nearest_neighbor": 4, "7": [4, 41, 42, 49, 68, 70, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93, 94], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 54, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "distance_to_nearest_neighbor": [4, 75, 76, 78, 79, 82, 83], "789": 4, "get_issu": [4, 8, 11, 74, 76, 78, 79, 81, 82, 86], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75, 76], "focu": [4, 11, 79, 91, 94], "full": [4, 8, 11, 34, 58, 82, 94], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 67, 71, 72, 91], "valueerror": [4, 10, 11, 38, 41, 81], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 67, 76, 78, 79, 82, 83, 87], "lie": [4, 8, 59, 60, 74, 75, 76, 78, 79, 82, 83, 93], "directli": [4, 12, 14, 28, 34, 49, 50, 76, 79, 87, 90, 93], "compar": [4, 50, 59, 70, 75, 76, 78, 83, 87], "get_issue_summari": [4, 11, 76], "get_info": [4, 11, 76, 79], "yet": [4, 15, 19, 23, 80, 85], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 31, 35, 75], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 74, 75, 82], "load": [4, 10, 34, 58, 80, 81, 82, 83, 87, 88, 91, 94], "futur": [4, 8, 20, 31, 35, 50, 72, 74, 75, 79, 81, 93], "overwrit": [4, 75], "separ": [4, 30, 41, 54, 75, 76, 81, 82, 87, 89], "static": 4, "rememb": [4, 79, 81, 83], "part": [4, 8, 31, 35, 36, 55, 57, 58, 74, 75, 80, 91, 94], "ident": [4, 8, 20, 45, 79], "walk": 5, "alongsid": [5, 31, 35, 75, 81], "pre": [5, 6, 8, 31, 35, 75, 76, 82, 91, 94], "runtim": [5, 31, 34, 35, 62, 64, 66, 74, 81, 82], "issue_manager_factori": [5, 12, 75], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "thing": [5, 35, 83, 90, 93], "next": [5, 50, 72, 74, 78, 79, 81, 85, 87, 90, 92, 93, 94], "dummi": 5, "randint": [5, 27, 41, 75, 76, 81], "mark": [5, 8, 73, 87, 88, 90], "regard": [5, 76, 83], "rand": [5, 41, 75, 76], "is_": [5, 8, 75], "_issu": [5, 8, 75], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "whole": [5, 22, 31, 35, 76], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "popul": [5, 76, 79], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": [5, 87], "raw_scor": 5, "bit": 5, "involv": [5, 34, 67, 71, 81, 86], "intermediate_arg": 5, "min": [5, 41, 57, 70, 75, 81, 88], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 75], "instanti": [5, 14, 34, 49, 59, 74, 76, 78, 93], "477762": 5, "286455": 5, "term": [5, 8, 39, 45, 58, 74, 75, 76, 78, 79, 82, 83], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "003042": 5, "058117": 5, "11": [5, 49, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "121908": 5, "15": [5, 43, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "169312": 5, "17": [5, 74, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 75, 76, 80, 83], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 80, 87, 94], "dbscan": [6, 8, 27, 81], "hdbscan": [6, 81], "etc": [6, 8, 20, 31, 35, 39, 49, 50, 68, 72, 75, 76, 78, 79, 81, 83, 86], "sensit": [6, 8, 43], "ep": [6, 27, 58], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 72, 74, 81, 82, 85, 86, 92, 93], "kmean": [6, 81], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 81], "cluster_id": [6, 8, 27, 81], "labels_": 6, "underperforming_group": [6, 8, 19, 81], "search": [7, 8, 18, 22, 23, 44, 62, 81, 89], "nondefault": 7, "Near": [7, 81], "iid": [7, 22, 78, 83], "imbal": [7, 19, 54, 59, 60, 76], "null": [7, 19, 76, 79, 82, 83], "valuat": [7, 16], "togeth": [7, 8, 39, 75, 76, 78, 79, 82, 83, 90, 93, 94], "built": [7, 41], "own": [7, 31, 33, 35, 48, 54, 55, 58, 64, 68, 74, 76, 78, 79, 81, 82, 85, 86, 90, 91, 92, 93, 94], "prerequisit": 7, "basic": [7, 35, 49, 78, 79, 88], "page": [8, 76, 81, 83], "variou": [8, 11, 26, 33, 46, 48, 72, 75, 76, 78, 79, 80, 83, 85, 87, 92], "sai": [8, 31, 35, 86, 91], "why": [8, 79], "matter": [8, 30, 51, 79, 93], "_score": 8, "flag": [8, 20, 22, 36, 41, 51, 52, 55, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 90, 91, 93], "badli": [8, 57, 94], "code": [8, 31, 35, 39, 45, 49, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "issue_scor": 8, "outlier_scor": [8, 24, 75, 76, 78, 79, 82, 83, 88], "atyp": [8, 59, 75, 76, 78, 79, 82, 83, 88], "datapoint": [8, 27, 36, 41, 45, 60, 63, 72, 74, 75, 76, 78, 79, 81, 89, 90, 92, 93], "is_issu": [8, 20], "is_outlier_issu": [8, 75, 76, 78, 79, 82, 83], "annot": [8, 30, 40, 50, 51, 52, 54, 55, 57, 58, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91], "transform": [8, 41, 43, 45, 59, 60, 76, 79, 82, 88, 92, 93, 94], "dissimilar": [8, 78, 79], "preced": 8, "cosin": [8, 59, 88], "incorrect": [8, 57, 60, 63, 74, 75, 76, 78, 79, 82, 83, 87, 90, 92], "due": [8, 34, 36, 60, 64, 66, 74, 75, 76, 78, 79, 82, 83], "appear": [8, 30, 40, 51, 52, 55, 63, 76, 78, 79, 82, 90, 91], "likelihood": [8, 34, 36, 52, 57, 59, 60, 64, 68], "now": [8, 34, 73, 74, 76, 85, 87, 88, 90, 92, 93, 94], "u": [8, 74, 75, 78, 81, 82, 83, 85, 86, 89, 90, 91, 92, 93, 94], "token": [8, 44, 66, 67, 68, 69, 70, 71, 81, 83, 84], "calcul": [8, 16, 22, 34, 41, 50, 54, 55, 57, 58, 59, 62, 66, 80, 82], "hamper": [8, 80, 82], "analyt": [8, 72, 81, 85], "lead": [8, 57, 60, 82, 87], "draw": [8, 75, 76], "conclus": [8, 79], "try": [8, 34, 36, 49, 50, 64, 66, 72, 76, 78, 79, 81, 82, 83, 91], "veri": [8, 30, 51, 55, 57, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93], "rare": [8, 36, 58, 75, 76, 78, 79, 81, 82, 83], "anomal": [8, 60, 75, 76, 78, 79, 82, 83], "articl": [8, 34, 81], "ai": [8, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94], "blog": 8, "unexpect": [8, 31, 35, 79], "consequ": 8, "inspect": [8, 74, 76, 82, 83, 87, 90, 93], "neg": [8, 57, 58, 75, 76, 80], "affect": [8, 31, 35, 64, 70, 79, 81], "extrem": [8, 75, 76, 78, 79, 81, 82, 83], "rel": [8, 30, 50, 51, 59, 75, 76, 78, 79, 82, 83, 88], "record": [8, 31, 35, 74, 78, 90], "abbrevi": 8, "misspel": 8, "typo": [8, 71], "resolut": 8, "video": [8, 80], "audio": [8, 75, 76, 81, 84], "minor": [8, 44], "variat": 8, "translat": 8, "d": [8, 43, 78, 79, 83, 86, 92, 94], "constant": [8, 27, 62], "median": [8, 26, 43], "question": [8, 20, 72, 83], "nearli": [8, 20, 76, 78, 79, 82], "awar": [8, 73, 83], "presenc": [8, 83], "signific": [8, 78, 79, 83], "violat": [8, 78, 79, 83], "assumpt": [8, 78, 79, 83], "changepoint": [8, 78, 79, 83], "shift": [8, 78, 79, 83], "drift": [8, 76, 78, 83], "autocorrel": [8, 78, 79, 83], "almost": [8, 78, 79, 83], "adjac": [8, 78, 79, 83], "tend": [8, 30, 39, 78, 79, 83, 91, 94], "sequenti": [8, 31, 35, 49, 82], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 44, 45, 70, 78, 79, 80, 83, 89, 92, 94], "x1": [8, 55, 58, 87], "x2": [8, 55, 58, 87], "10th": 8, "100th": 8, "90": [8, 70, 78, 82, 83, 89, 90, 91, 92], "similarli": [8, 31, 35, 75, 78, 81, 82, 87], "math": [8, 82], "behind": [8, 59, 83], "fundament": 8, "proper": [8, 45, 50, 55, 58, 79, 82, 85, 87, 92], "closer": [8, 57, 87], "scenario": [8, 60, 75, 76], "underli": [8, 59, 68, 70, 94], "stem": [8, 59, 88], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 86, 88], "partit": [8, 89], "ahead": 8, "good": [8, 31, 35, 43, 49, 51, 57, 60, 64, 66, 67, 72, 78, 79, 82], "fix": [8, 50, 79, 83, 90, 93], "problem": [8, 34, 41, 67, 72, 75, 76, 79, 81, 82], "deploy": [8, 83, 90, 92, 93], "overlook": [8, 57, 87], "fact": 8, "thu": [8, 30, 35, 51, 74, 78, 79, 83, 89, 92, 94], "diagnos": [8, 76, 81], "rarest": [8, 76], "q": [8, 87], "fall": [8, 57, 66, 70, 83, 87, 88], "subpar": 8, "special": [8, 44], "techniqu": [8, 87], "smote": 8, "asymmetr": [8, 30], "properli": [8, 34, 40, 45, 46, 64, 81, 86, 88, 90, 91], "too": [8, 36, 41, 59, 76, 81, 82, 87], "dark": [8, 91], "bright": [8, 94], "blurri": [8, 82], "abnorm": [8, 58, 82, 87], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 50, 58, 76, 81, 82, 85, 86, 87, 91], "get_self_confidence_for_each_label": [8, 41, 60], "power": [8, 78, 79, 80, 82, 83, 94], "r": [8, 34, 62, 75, 76, 90, 91], "tabular": [8, 72, 75, 76, 77, 81, 84, 85], "categor": [8, 59, 75, 76, 77, 81, 90, 92], "encod": [8, 42, 58, 64, 67, 78, 79, 81, 90, 91, 92, 93], "miss": [8, 23, 31, 35, 45, 55, 57, 78, 81, 87, 90], "pattern": 8, "contribut": [8, 16, 87], "isn": [8, 15, 23], "approxim": [8, 16, 34, 59, 85], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 59, 78, 88], "scalabl": 8, "sacrific": 8, "One": [8, 45, 59, 81], "quantif": 8, "exert": [8, 76], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 75, 76, 78, 79, 81, 82, 83], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 76, 78, 79, 82, 83], "non_iid_kwarg": 8, "class_imbal": [8, 18, 76, 78, 79, 82, 83], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 30, 72, 80], "health_summary_kwarg": 8, "tandem": [8, 80], "view": [8, 31, 35, 36, 66, 68, 70, 72, 74, 75, 76, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "ood_kwarg": 8, "outofdistribut": [8, 24, 59, 88], "outsid": 8, "outlierissuemanag": [8, 12, 19, 24, 75], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 18, 19], "underperforminggroupissuemanag": [8, 19, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 72, 76, 78, 79, 82, 84], "nullissuemanag": [8, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 19], "datavaluationissuemanag": [8, 16, 19], "codeblock": 8, "demonstr": [8, 34, 75, 76, 79, 81, 82, 83, 85, 86, 87, 90, 91], "howev": [8, 31, 35, 45, 74, 78, 79, 82, 85, 89, 91, 92, 93], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 75, 80, 82, 85, 87, 91, 94], "fewer": [8, 36, 45, 87], "vice": [8, 51], "versa": [8, 51], "light": [8, 80, 82, 87, 91], "29": [8, 80, 82, 85, 86, 87, 88, 91, 94], "low_inform": [8, 82], "odd_aspect_ratio": [8, 82], "35": [8, 75, 80, 85, 86, 87, 91, 94], "odd_siz": [8, 82], "10": [8, 16, 17, 21, 22, 27, 31, 32, 58, 59, 60, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "doc": [8, 31, 35, 72, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "data_issu": [9, 13, 14, 28, 75], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 31, 35, 49, 60, 75, 76, 82, 85], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 82, 85, 90], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "map_to_int": 10, "is_multilabel": 10, "hold": 10, "abc": [10, 20], "is_avail": [10, 82], "multilabel": [10, 13, 42, 86], "multiclass": [10, 13, 41, 45, 50, 86], "serv": [11, 14, 85], "central": [11, 94], "repositori": 11, "strategi": [11, 41, 81], "being": [11, 30, 31, 35, 36, 41, 44, 45, 60, 78, 81, 83, 90, 91, 92], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 31, 34, 35, 36, 45, 52, 55, 58, 62, 64, 66, 75, 76, 81], "recomput": [11, 93], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 30, 51, 72], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 31, 35, 59, 75], "my_issu": 12, "stabl": [13, 19, 25, 33, 37, 45, 48, 59, 73], "unregist": 13, "instati": 14, "public": [14, 83, 87, 91, 94], "creation": [14, 35], "execut": [14, 31, 35, 75, 81, 87], "coordin": [14, 55, 57, 58, 87, 94], "behavior": [14, 30, 31, 35, 58, 81], "At": [14, 58, 81], "associ": [14, 31, 35, 58, 85], "get_available_issue_typ": 14, "direct": [15, 23, 31, 35], "valuabl": 16, "vstack": [16, 45, 80, 81, 82, 83, 85, 86], "25": [16, 22, 31, 41, 43, 76, 80, 82, 83, 85, 86, 87, 91, 94], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 44, 45], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 75, 76, 81, 82, 83, 85, 86], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 83], "ab": [16, 83, 87], "1911": 16, "07128": 16, "larger": [16, 62, 64, 66, 79, 80, 81, 82], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 35, 79, 88, 93], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 41, 44, 45, 74, 75, 80, 82, 83, 86, 92], "near_duplicate_set": [17, 19, 75, 76, 78, 79, 81, 82, 83], "occurr": [17, 18, 20, 22, 23, 24, 27, 44], "median_nn_dist": 17, "near_duplicate_scor": [17, 75, 76, 78, 79, 81, 82, 83], "class_imbalance_scor": [18, 76], "bleed": [19, 25, 33], "edg": [19, 25, 33, 57, 72, 83, 94], "sharp": [19, 25, 33], "get_health_summari": [19, 21], "ood": [19, 24, 59, 60, 75, 76, 79, 82, 83, 88], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "regressionlabelissuemanag": [19, 25, 26], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 91], "priori": [20, 83], "global": [20, 31, 35], "anoth": [20, 30, 34, 44, 57, 60, 78, 79, 81, 83, 85, 88, 93], "abstract": 20, "applic": [21, 50, 81, 83, 85, 86, 94], "typevar": [21, 31, 35, 44, 54, 57, 58], "scalartyp": 21, "covari": [21, 62, 90], "summary_dict": 21, "label_scor": [21, 26, 74, 75, 76, 78, 79, 82, 83, 86], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 34, 41, 60, 64, 66, 87, 91], "empir": [22, 40, 50], "cumul": 22, "ecdf": 22, "histogram": [22, 78, 90], "absolut": [22, 26], "dimension": [22, 45, 74, 83, 88], "trial": 22, "non_iid_scor": [22, 76, 78, 79, 83], "null_track": 23, "extend": [23, 42, 82, 87, 88, 94], "superclass": 23, "arbitrari": [23, 30, 66, 70, 75, 88, 90], "prompt": 23, "address": [23, 75, 76, 79, 81, 93], "enabl": [23, 35], "null_scor": [23, 76], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 30, 31, 35, 36, 45, 58, 93, 94], "50": [27, 35, 81, 82, 83, 85, 87, 88, 91], "keepdim": [27, 81], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 74, 85], "npt": 27, "int_": 27, "id": [27, 50, 75, 81, 82, 85], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": 27, "exclud": [28, 67, 71, 75, 81, 94], "get_report": 28, "overview": [30, 74, 76, 78, 79, 82, 85, 87, 88, 90, 92, 93, 94], "modifi": [30, 31, 34, 35, 45, 81, 83], "help": [30, 31, 35, 58, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "rank_classes_by_label_qu": [30, 76], "merg": [30, 44, 72, 80, 81, 94], "find_overlapping_class": [30, 81, 83], "problemat": [30, 51, 67, 71, 74, 87, 94], "unnorm": [30, 51, 83], "abov": [30, 31, 34, 35, 45, 50, 57, 58, 60, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "model_select": [30, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 90, 92, 93], "cross_val_predict": [30, 35, 74, 75, 76, 78, 79, 81, 83, 85, 89, 90, 92, 93], "get_data_labels_from_dataset": 30, "yourfavoritemodel": [30, 83], "cv": [30, 41, 74, 75, 76, 78, 83, 85, 92], "df": [30, 45, 71, 74, 81], "overall_label_qu": [30, 51], "col": 30, "prob": [30, 44, 83, 89], "divid": [30, 51, 60], "label_nois": [30, 51], "human": [30, 80, 91, 94], "clearli": [30, 60, 82, 87, 91], "num": [30, 51, 80, 83], "overlap": [30, 72, 80, 81, 83], "ontolog": 30, "publish": [30, 94], "therefor": [30, 60], "vehicl": [30, 80], "truck": [30, 80, 88, 91], "intuit": [30, 51], "car": [30, 80, 87, 91], "frequent": [30, 50, 78, 81, 90], "characterist": 30, "l": [30, 31, 35, 55, 57, 58], "class1": 30, "class2": 30, "relationship": 30, "match": [30, 31, 35, 36, 41, 50, 51, 60, 75, 76, 80, 82, 87, 89, 91], "dog": [30, 45, 51, 53, 67, 80, 81, 88, 89, 94], "cat": [30, 45, 51, 53, 80, 81, 88, 89], "captur": [30, 74, 87, 88, 91], "co": [30, 31, 32], "noisy_label": [30, 75, 76, 86], "overlapping_class": 30, "descend": [30, 31, 35, 41, 51, 58], "overall_label_health_scor": [30, 51, 83], "suggest": [30, 50, 51, 57, 79, 81, 82, 90, 93], "half": [30, 31, 33, 35, 51, 80, 94], "health_scor": [30, 51], "classes_by_label_qu": [30, 76], "cnn": [31, 33, 35, 82], "cifar": [31, 32, 80, 88], "teach": [31, 32], "bhanml": 31, "blob": 31, "master": [31, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "call_bn": [31, 33], "bn": 31, "input_channel": 31, "n_output": 31, "dropout_r": 31, "top_bn": 31, "architectur": [31, 35], "shown": [31, 58, 75, 81, 85, 88, 89, 91, 94], "forward": [31, 32, 33, 35, 82, 85], "overridden": [31, 35], "although": [31, 35, 59, 78, 92], "recip": [31, 35], "afterward": [31, 35], "sinc": [31, 35, 38, 46, 51, 58, 66, 70, 81, 85, 86, 87, 89, 94], "former": [31, 35], "hook": [31, 35, 80], "silent": [31, 34, 35], "t_destin": [31, 33, 35], "__call__": [31, 33, 35, 37, 41], "add_modul": [31, 33, 35], "child": [31, 35], "fn": [31, 35, 58], "recurs": [31, 35, 41], "submodul": [31, 35], "children": [31, 33, 35, 94], "nn": [31, 32, 35, 82], "init": [31, 35, 83], "no_grad": [31, 35, 82, 88], "init_weight": [31, 35], "linear": [31, 35, 79, 82, 93], "fill_": [31, 35], "net": [31, 35, 74, 80, 82], "in_featur": [31, 35], "out_featur": [31, 35], "bia": [31, 35, 82], "tensor": [31, 32, 35, 74, 79, 82, 88, 93], "requires_grad": [31, 35], "bfloat16": [31, 33, 35], "cast": [31, 35, 74], "buffer": [31, 33, 35], "datatyp": [31, 35], "member": [31, 35, 41, 75, 76], "xdoctest": [31, 35], "undefin": [31, 35], "var": [31, 35], "buf": [31, 35], "20l": [31, 35], "1l": [31, 35], "5l": [31, 35], "call_super_init": [31, 33, 35], "immedi": [31, 35, 88], "compil": [31, 33, 35, 49], "cpu": [31, 33, 35, 36, 74, 82], "move": [31, 35, 41, 73, 80], "cuda": [31, 33, 35, 74, 82], "devic": [31, 35, 74, 82], "gpu": [31, 35, 74, 79, 93], "live": [31, 35], "copi": [31, 35, 62, 74, 75, 76, 78, 81, 86, 89, 90, 92], "doubl": [31, 33, 35], "dump_patch": [31, 33, 35], "eval": [31, 33, 35, 82, 86, 88], "dropout": [31, 35], "batchnorm": [31, 35], "grad": [31, 35], "extra_repr": [31, 33, 35], "line": [31, 35, 72, 75, 80, 85, 88, 94], "get_buff": [31, 33, 35], "target": [31, 32, 35, 62, 63, 88, 90], "throw": [31, 35], "get_submodul": [31, 33, 35], "explan": [31, 35], "fulli": [31, 35, 49, 81], "qualifi": [31, 35], "referenc": [31, 35], "attributeerror": [31, 35], "invalid": [31, 35, 79], "resolv": [31, 35, 94], "get_extra_st": [31, 33, 35], "state_dict": [31, 33, 35], "set_extra_st": [31, 33, 35], "build": [31, 35, 82, 91], "picklabl": [31, 35], "serial": [31, 35], "backward": [31, 35, 82], "break": [31, 35, 82, 87], "pickl": [31, 35, 87], "get_paramet": [31, 33, 35], "let": [31, 35, 59, 60, 74, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "net_b": [31, 35], "net_c": [31, 35], "conv": [31, 35], "conv2d": [31, 35, 82], "16": [31, 35, 41, 66, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "33": [31, 35, 80, 87, 91], "kernel_s": [31, 35], "stride": [31, 35], "200": [31, 35, 60, 80, 87, 94], "diagram": [31, 35, 89], "degre": [31, 35, 90], "queri": [31, 35, 76, 81, 82, 86], "named_modul": [31, 33, 35], "o": [31, 35, 43, 44, 74, 75, 76, 80, 81, 83, 86, 87, 94], "transit": [31, 35], "ipu": [31, 33, 35], "load_state_dict": [31, 33, 35], "strict": [31, 35, 41], "persist": [31, 35], "strictli": [31, 35], "inplac": [31, 35, 85], "preserv": [31, 35, 45], "namedtupl": [31, 35], "missing_kei": [31, 35], "unexpected_kei": [31, 35], "runtimeerror": [31, 35], "idx": [31, 35, 45, 46, 58, 75, 81, 82, 83, 85, 87, 88], "named_buff": [31, 33, 35], "prefix": [31, 35, 74, 94], "remove_dupl": [31, 35], "prepend": [31, 35], "running_var": [31, 35], "named_children": [31, 33, 35], "conv4": [31, 35], "conv5": [31, 35], "memo": [31, 35], "named_paramet": [31, 33, 35], "register_backward_hook": [31, 33, 35], "deprec": [31, 35, 38, 74, 79, 81, 93], "favor": [31, 35], "register_full_backward_hook": [31, 33, 35], "removablehandl": [31, 35], "register_buff": [31, 33, 35], "running_mean": [31, 35], "register_forward_hook": [31, 33, 35], "with_kwarg": [31, 35], "always_cal": [31, 35], "won": [31, 35, 75, 76, 81, 86], "possibli": [31, 35, 78, 92], "fire": [31, 35, 80], "register_module_forward_hook": [31, 35], "regardless": [31, 35, 75, 76], "register_forward_pre_hook": [31, 33, 35], "And": [31, 35], "forward_pr": [31, 35], "register_module_forward_pre_hook": [31, 35], "gradient": [31, 35, 78, 82, 90], "respect": [31, 35, 55, 58, 83, 87], "grad_input": [31, 35], "grad_output": [31, 35], "technic": [31, 35], "caller": [31, 35], "register_module_full_backward_hook": [31, 35], "register_full_backward_pre_hook": [31, 33, 35], "backward_pr": [31, 35], "register_module_full_backward_pre_hook": [31, 35], "register_load_state_dict_post_hook": [31, 33, 35], "post": [31, 35], "incompatible_kei": [31, 35], "modif": [31, 35], "thrown": [31, 35], "register_modul": [31, 33, 35], "register_paramet": [31, 33, 35], "register_state_dict_pre_hook": [31, 33, 35], "keep_var": [31, 35], "requires_grad_": [31, 33, 35], "autograd": [31, 35], "freez": [31, 35, 74, 79, 93], "finetun": [31, 35], "gan": [31, 35], "share_memori": [31, 33, 35], "share_memory_": [31, 35], "destin": [31, 35], "shallow": [31, 35], "releas": [31, 35, 73, 74, 81], "design": [31, 35], "ordereddict": [31, 35], "detach": [31, 35, 82], "non_block": [31, 35], "memory_format": [31, 35], "channels_last": [31, 35], "Its": [31, 35, 41, 51, 57], "complex": [31, 35, 74], "integr": [31, 35, 72], "asynchron": [31, 35], "host": [31, 35], "pin": [31, 35, 79, 80, 93], "desir": [31, 35, 44, 58], "4d": [31, 35], "ignore_w": [31, 35], "determinist": [31, 35, 74], "1913": [31, 35], "3420": [31, 35], "5113": [31, 35], "2325": [31, 35], "env": [31, 35], "torch_doctest_cuda1": [31, 35], "gpu1": [31, 35], "1914": [31, 35], "5112": [31, 35], "2324": [31, 35], "float16": [31, 35], "cdoubl": [31, 35], "3741": [31, 35], "2382": [31, 35], "5593": [31, 35], "4443": [31, 35], "complex128": [31, 35], "6122": [31, 35], "1150": [31, 35], "to_empti": [31, 33, 35], "storag": [31, 35, 79, 93], "dst_type": [31, 35], "xpu": [31, 33, 35], "zero_grad": [31, 33, 35, 82], "set_to_non": [31, 35], "reset": [31, 35], "context": [31, 35, 87], "noisili": [32, 83], "han": 32, "2018": 32, "cifar_cnn": [32, 33], "loss_coteach": [32, 33], "y_1": 32, "y_2": 32, "forget_r": 32, "class_weight": 32, "logit": [32, 49, 82], "decim": [32, 45], "quickli": [32, 74, 78, 79, 81, 82, 86, 88, 91, 92, 94], "forget": [32, 41, 94], "rate_schedul": 32, "epoch": [32, 33, 35, 81, 82], "initialize_lr_schedul": [32, 33], "lr": [32, 33, 35], "001": [32, 60, 81], "250": [32, 75, 76, 83, 87, 94], "epoch_decay_start": 32, "80": [32, 78, 82, 86, 90, 91, 92], "schedul": 32, "adjust": [32, 36, 54, 59, 60, 72, 83], "beta": 32, "adam": 32, "adjust_learning_r": [32, 33], "alpha_plan": 32, "beta1_plan": 32, "forget_rate_schedul": [32, 33], "num_gradu": 32, "expon": 32, "tell": [32, 79, 82, 83, 93], "train_load": [32, 35], "model1": [32, 83], "optimizer1": 32, "model2": [32, 83], "optimizer2": 32, "dataload": [32, 82, 88], "parser": 32, "parse_arg": 32, "num_iter_per_epoch": 32, "print_freq": 32, "topk": 32, "top1": 32, "top5": 32, "test_load": 32, "offici": [33, 48, 94], "wish": [33, 48, 88, 91, 94], "adj_confident_thresholds_shar": [33, 34], "labels_shar": [33, 34], "pred_probs_shar": [33, 34], "labelinspector": [33, 34, 81], "get_num_issu": [33, 34], "get_quality_scor": [33, 34], "update_confident_threshold": [33, 34], "score_label_qu": [33, 34], "split_arr": [33, 34], "mnist_pytorch": 33, "get_mnist_dataset": [33, 35], "get_sklearn_digits_dataset": [33, 35], "simplenet": [33, 35], "batch_siz": [33, 34, 35, 64, 66, 81, 82, 88, 91], "log_interv": [33, 35], "momentum": [33, 35], "no_cuda": [33, 35], "test_batch_s": [33, 35, 82], "loader": [33, 35, 82], "set_predict_proba_request": [33, 35], "set_predict_request": [33, 35], "coteach": [33, 73], "mini": [34, 64, 66, 81], "low_self_confid": [34, 36, 52], "self_confid": [34, 36, 37, 41, 52, 54, 60, 68, 70, 81, 83, 92, 93], "conveni": [34, 74, 79, 93], "script": 34, "labels_fil": [34, 81], "pred_probs_fil": [34, 81], "quality_score_kwarg": 34, "num_issue_kwarg": 34, "return_mask": 34, "variant": [34, 50, 91], "read": [34, 38, 76, 81, 83, 88, 94], "zarr": [34, 81], "memmap": [34, 91], "pythonspe": 34, "mmap": [34, 81], "hdf5": 34, "further": [34, 51, 52, 54, 57, 58, 66, 67, 74, 81], "yourfil": 34, "npy": [34, 80, 81, 91], "mmap_mod": [34, 91], "tip": [34, 36, 49, 81], "save_arrai": 34, "your_arrai": 34, "disk": [34, 80, 81], "npz": [34, 94], "maxim": [34, 50, 64, 66, 91], "multiprocess": [34, 36, 52, 64, 66, 81, 82], "linux": [34, 64, 66], "physic": [34, 36, 64, 66, 87], "psutil": [34, 36, 64, 66], "labels_arrai": [34, 46], "predprob": 34, "pred_probs_arrai": 34, "back": [34, 58, 75, 81, 87, 88], "store_result": 34, "becom": [34, 88], "verifi": [34, 81, 85, 88], "long": [34, 50, 59, 85], "enough": [34, 45, 81], "chunk": [34, 89], "ram": [34, 80], "faster": [34, 59, 62, 64, 66, 81, 83], "end_index": 34, "labels_batch": 34, "pred_probs_batch": 34, "batch_result": 34, "indices_of_examples_with_issu": [34, 81], "shortcut": 34, "encount": [34, 36, 64], "1000": [34, 74, 79, 81, 88], "aggreg": [34, 37, 41, 50, 54, 57, 60, 70, 81, 83, 85], "fetch": [34, 74, 76], "seen": [34, 81, 88, 94], "far": [34, 50], "label_quality_scor": [34, 54, 57, 60, 63, 83, 87, 90], "method1": 34, "method2": 34, "normalized_margin": [34, 36, 37, 41, 52, 54, 60, 68, 70], "low_normalized_margin": [34, 36, 52], "issue_indic": [34, 57, 82], "update_num_issu": 34, "arr": [34, 81], "chunksiz": 34, "convnet": 35, "bespok": [35, 49], "download": [35, 74, 81, 88], "mnist": [35, 72, 74, 80], "handwritten": 35, "digit": [35, 74, 80], "last": [35, 41, 55, 58, 75, 76, 81, 85, 87, 94], "sklearn_digits_test_s": 35, "hard": [35, 80, 88], "64": [35, 78, 82, 83, 87, 91, 92, 94], "01": [35, 60, 62, 74, 82, 83, 86, 87, 88, 91], "templat": 35, "flexibli": 35, "among": [35, 50, 83], "test_set": 35, "Be": 35, "overrid": 35, "train_idx": [35, 45, 88], "train_label": [35, 88, 93], "scikit": [35, 45, 59, 72, 74, 75, 76, 78, 79, 81, 84, 90, 93], "encourag": [36, 52, 60, 63], "multilabel_classif": [36, 51, 52, 54, 60, 81], "pred_probs_by_class": 36, "prune_count_matrix_col": 36, "rank_by_kwarg": [36, 52, 60, 83], "num_to_remove_per_class": [36, 52], "bad": [36, 52, 57, 60, 79, 81, 93], "seem": [36, 83, 86], "aren": 36, "confidence_weighted_entropi": [36, 37, 41, 52, 54, 60, 68, 70], "label_issues_idx": [36, 60], "entropi": [36, 38, 40, 41, 59, 60], "prune_by_class": [36, 52, 83], "predicted_neq_given": [36, 52, 83], "prune_counts_matrix": 36, "smallest": [36, 60], "unus": 36, "number_of_mislabeled_examples_in_class_k": 36, "delet": [36, 72, 81, 93], "thread": [36, 52], "window": [36, 74, 80], "shorter": [36, 55], "find_predicted_neq_given": 36, "find_label_issues_using_argmax_confusion_matrix": 36, "remove_noise_from_class": [37, 45], "clip_noise_r": [37, 45], "clip_valu": [37, 45], "value_count": [37, 45, 81], "value_counts_fill_missing_class": [37, 45], "get_missing_class": [37, 45], "round_preserving_sum": [37, 45], "round_preserving_row_tot": [37, 45], "estimate_pu_f1": [37, 45], "confusion_matrix": [37, 45], "print_square_matrix": [37, 45], "print_noise_matrix": [37, 45, 83], "print_inverse_noise_matrix": [37, 45], "print_joint_matrix": [37, 45, 83], "compress_int_arrai": [37, 45], "train_val_split": [37, 45], "subset_x_i": [37, 45], "subset_label": [37, 45], "subset_data": [37, 45], "extract_indices_tf": [37, 45], "unshuffle_tensorflow_dataset": [37, 45], "is_torch_dataset": [37, 45], "is_tensorflow_dataset": [37, 45], "csr_vstack": [37, 45], "append_extra_datapoint": [37, 45], "get_num_class": [37, 45], "num_unique_class": [37, 45], "get_unique_class": [37, 45], "format_label": [37, 45], "smart_display_datafram": [37, 45], "force_two_dimens": [37, 45], "latent_algebra": [37, 73], "compute_ps_py_inv_noise_matrix": [37, 39], "compute_py_inv_noise_matrix": [37, 39], "compute_inv_noise_matrix": [37, 39], "compute_noise_matrix_from_invers": [37, 39], "compute_pi": [37, 39], "compute_pyx": [37, 39], "label_quality_util": 37, "get_normalized_entropi": [37, 38], "multilabel_util": [37, 86], "stack_compl": [37, 42], "get_onehot_num_class": [37, 42], "int2onehot": [37, 42, 86], "onehot2int": [37, 42, 86], "multilabel_scor": [37, 54], "classlabelscor": [37, 41], "from_str": [37, 41], "__contains__": [37, 41], "__getitem__": [37, 41], "__iter__": [37, 41], "__len__": [37, 41], "exponential_moving_averag": [37, 41, 54], "softmin": [37, 41, 54, 57, 66, 70], "possible_method": [37, 41], "multilabelscor": [37, 41], "get_class_label_quality_scor": [37, 41], "multilabel_pi": [37, 41], "get_cross_validated_multilabel_pred_prob": [37, 41], "transform_distances_to_scor": [37, 43], "token_classification_util": [37, 94], "get_sent": [37, 44, 94], "filter_sent": [37, 44, 94], "process_token": [37, 44], "merge_prob": [37, 44], "color_sent": [37, 44], "assert_valid_input": [37, 46], "assert_valid_class_label": [37, 46], "assert_nonempty_input": [37, 46], "assert_indexing_work": [37, 46], "labels_to_arrai": [37, 46], "labels_to_list_multilabel": [37, 46], "min_allowed_prob": 38, "wikipedia": 38, "activ": [38, 40, 50, 72, 85], "towardsdatasci": 38, "cheatsheet": 38, "ec57bc067c0b": 38, "clip": [38, 45, 74], "behav": 38, "unnecessari": [38, 81], "slightli": [38, 92, 93], "interv": [38, 41, 88], "herein": 39, "inexact": 39, "cours": 39, "propag": 39, "throughout": [39, 45, 62, 74, 85, 91, 94], "easili": [39, 73, 74, 76, 78, 79, 83, 85, 86, 88, 89, 90, 91, 92, 93], "increas": [39, 57, 59, 60, 74, 75, 81, 85, 86, 94], "dot": [39, 70, 81], "true_labels_class_count": 39, "pyx": 39, "multiannot": 40, "assert_valid_inputs_multiannot": 40, "labels_multiannot": [40, 50], "ensembl": [40, 41, 50, 60, 78, 81, 86, 88, 90, 92], "allow_single_label": 40, "annotator_id": 40, "assert_valid_pred_prob": 40, "pred_probs_unlabel": [40, 50], "format_multiannotator_label": [40, 50, 85], "lexicograph": [40, 45], "formatted_label": [40, 45], "old": [40, 45, 73, 74, 80], "check_consensus_label_class": 40, "consensus_label": [40, 50, 85], "consensus_method": [40, 50], "consensu": [40, 50, 72, 84, 94], "establish": [40, 90, 93], "compute_soft_cross_entropi": 40, "soft": [40, 80], "find_best_temp_scal": 40, "coarse_search_rang": [40, 62, 81], "fine_search_s": [40, 62, 81], "temperatur": [40, 41, 57, 66, 70], "scale": [40, 43, 80, 81, 88, 91, 92], "factor": [40, 41, 43, 64, 66], "minim": [40, 57, 88], "temp_scale_pred_prob": 40, "temp": 40, "sharpen": [40, 80], "smoothen": 40, "qualnam": 41, "boundari": [41, 75, 76], "enum": 41, "get_normalized_margin_for_each_label": [41, 60], "get_confidence_weighted_entropy_for_each_label": [41, 60], "75": [41, 75, 76, 80, 85, 86, 87, 90, 91, 94], "scorer": 41, "typeerror": 41, "12": [41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "alias": 41, "alpha": [41, 54, 57, 75, 76, 83, 86, 90], "exponenti": 41, "ema": 41, "s_1": 41, "s_k": 41, "ema_k": 41, "accord": [41, 52, 78, 79, 83, 94], "formula": [41, 43], "_t": 41, "cdot": 41, "s_t": 41, "qquad": 41, "leq": 41, "_1": 41, "give": [41, 60, 83, 85, 91], "recent": [41, 94], "success": 41, "previou": [41, 81, 82, 87], "discount": 41, "s_ema": 41, "175": [41, 82, 83, 87], "underflow": 41, "nan": [41, 50, 78, 85, 90, 92], "aggregated_scor": 41, "base_scor": 41, "base_scorer_kwarg": 41, "aggregator_kwarg": [41, 54], "n_sampl": 41, "n_label": 41, "binari": [41, 45, 52, 54, 83, 94], "worst": [41, 85], "class_label_quality_scor": 41, "42": [41, 79, 80, 82, 87, 88, 91, 94], "452": 41, "new_scor": 41, "575": 41, "get_label_quality_scores_per_class": [41, 53, 54], "ml_scorer": 41, "binar": [41, 42], "reformat": [41, 74], "wider": 41, "splitter": 41, "kfold": [41, 82], "onevsrestclassifi": [41, 86], "randomforestclassifi": [41, 83, 86], "n_split": [41, 76, 82, 86], "pred_prob_slic": 42, "onehot": 42, "hot": [42, 52, 58, 64, 67, 78, 80, 81, 90, 91, 92], "onehot_matrix": 42, "avg_dist": 43, "scaling_factor": 43, "exp": [43, 59, 60, 75], "dt": 43, "right": [43, 55, 58, 79, 86, 87, 88, 93], "strength": [43, 58], "pronounc": 43, "differenti": 43, "ly": 43, "rule": [43, 44, 80], "thumb": 43, "ood_features_scor": [43, 59, 88], "88988177": 43, "80519832": 43, "token_classif": [44, 68, 70, 71, 81], "sentenc": [44, 68, 70, 71, 79, 93], "readabl": 44, "lambda": [44, 74, 75, 81, 85], "long_sent": 44, "headlin": 44, "charact": [44, 45], "s1": 44, "s2": 44, "processed_token": 44, "alecnlcb": 44, "entiti": [44, 72, 81, 94], "mapped_ent": 44, "unique_ident": 44, "loc": [44, 75, 76, 82, 94], "nbitbas": [44, 54], "probs_merg": 44, "55": [44, 80, 82, 87, 91], "0125": [44, 70], "0375": 44, "075": 44, "025": 44, "color": [44, 67, 75, 76, 78, 83, 86, 88, 90, 91], "red": [44, 58, 75, 76, 80, 83, 86, 87, 88, 91], "colored_sent": 44, "termcolor": 44, "31msentenc": 44, "0m": 44, "ancillari": 45, "class_without_nois": 45, "any_other_class": 45, "choos": [45, 60, 78, 81, 83, 90, 92], "tradition": 45, "new_sum": 45, "fill": 45, "wherea": [45, 52, 89], "come": [45, 75, 76, 81, 82, 88, 91], "major": [45, 50, 73, 82, 88], "versu": [45, 83], "obviou": 45, "cgdeboer": 45, "iteround": 45, "reach": 45, "prob_s_eq_1": 45, "claesen": 45, "f1": [45, 58, 79, 83], "BE": 45, "left_nam": 45, "top_nam": 45, "titl": [45, 75, 76, 83, 86, 88], "short_titl": 45, "round_plac": 45, "pretti": [45, 83], "joint_matrix": 45, "num_possible_valu": 45, "holdout_idx": 45, "extract": [45, 59, 74, 79, 85, 88, 91, 93], "allow_shuffl": 45, "turn": [45, 72, 87], "shuffledataset": 45, "histori": 45, "pre_x": 45, "buffer_s": 45, "csr_matric": 45, "append": [45, 74, 80, 81, 82, 83, 85, 86, 87, 88, 94], "bottom": [45, 55, 58, 87], "to_data": 45, "from_data": 45, "taken": 45, "label_matrix": 45, "canon": 45, "displai": [45, 58, 67, 71, 74, 79, 83, 93, 94], "jupyt": [45, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "notebook": [45, 50, 74, 76, 80, 81, 83, 85, 86, 87, 91, 94], "consol": 45, "html": [45, 55, 58, 59, 78, 81, 83], "allow_missing_class": 46, "allow_one_class": 46, "length_x": 46, "labellik": 46, "labels_list": [46, 52], "keraswrappermodel": [48, 49, 72], "keraswrappersequenti": [48, 49], "tf": [49, 74], "legaci": 49, "lack": 49, "keraswrapp": 49, "huggingface_keras_imdb": 49, "unit": [49, 94], "model_kwarg": [49, 62], "compile_kwarg": 49, "sparsecategoricalcrossentropi": 49, "layer": [49, 74, 79, 88, 93], "dens": 49, "my_keras_model": 49, "from_logit": 49, "declar": 49, "apply_softmax": 49, "analysi": 50, "analyz": [50, 72, 83, 85, 86], "get_label_quality_multiannot": [50, 85], "vote": 50, "crowdsourc": [50, 72, 85], "dawid": [50, 85], "skene": [50, 85], "analog": [50, 80, 85], "chosen": [50, 60, 81, 85], "crowdlab": [50, 85], "unlabel": [50, 78, 79, 82, 85, 88, 91], "decid": [50, 79, 80, 85, 90, 93, 94], "get_active_learning_scor": [50, 85], "activelab": [50, 85], "priorit": [50, 57, 87, 91, 94], "showcas": 50, "main": 50, "best_qual": 50, "quality_method": 50, "calibrate_prob": 50, "return_detailed_qu": 50, "return_annotator_stat": 50, "return_weight": 50, "label_quality_score_kwarg": 50, "necessarili": [50, 58, 79, 83], "did": [50, 51, 74, 78, 83, 85, 90, 92, 93], "majority_vot": 50, "ti": 50, "broken": [50, 58, 80], "highest": [50, 58, 75, 82, 89], "0th": 50, "consensus_quality_scor": [50, 85], "annotator_agr": [50, 85], "reman": 50, "1st": 50, "2nd": [50, 64], "3rd": 50, "consensus_label_suffix": 50, "consensus_quality_score_suffix": 50, "suffix": 50, "emsembl": 50, "weigh": [50, 80], "agreement": [50, 85], "agre": 50, "prevent": [50, 81], "overconfid": [50, 89], "wrong": [50, 55, 57, 73, 75, 76, 79, 81, 83, 87, 93], "detailed_label_qu": [50, 85], "annotator_stat": [50, 85], "model_weight": 50, "annotator_weight": 50, "warn": [50, 75, 76, 81], "labels_info": 50, "num_annot": [50, 85], "deriv": [50, 85], "quality_annotator_1": 50, "quality_annotator_2": 50, "quality_annotator_m": 50, "annotator_qu": [50, 85], "num_examples_label": [50, 85], "agreement_with_consensu": [50, 85], "worst_class": [50, 85], "trustworthi": [50, 85, 90], "get_label_quality_multiannotator_ensembl": 50, "weigtht": 50, "budget": 50, "retrain": [50, 90, 93], "active_learning_scor": 50, "improv": [50, 76, 80, 81, 82, 83, 90, 91, 92, 93], "active_learning_scores_unlabel": 50, "get_active_learning_scores_ensembl": 50, "henc": [50, 74, 75, 85], "get_majority_vote_label": [50, 85], "event": 50, "lastli": [50, 78], "convert_long_to_wide_dataset": 50, "labels_multiannotator_long": 50, "wide": [50, 74, 92, 93], "suitabl": [50, 78, 92], "labels_multiannotator_wid": 50, "common_multilabel_issu": [51, 53], "mutual": [51, 86], "exclus": [51, 86], "rank_classes_by_multilabel_qu": [51, 53], "overall_multilabel_health_scor": [51, 53], "multilabel_health_summari": [51, 53], "classes_by_multilabel_qu": 51, "inner": [52, 66], "find_multilabel_issues_per_class": [52, 53], "per_class_label_issu": 52, "label_issues_list": 52, "pred_probs_list": [52, 60, 82, 83], "anim": [53, 88], "rat": 53, "predat": 53, "pet": 53, "reptil": 53, "manner": [54, 85, 90, 92, 93], "box": [55, 57, 58, 80, 87], "object_detect": [55, 57, 58, 87], "return_indices_ranked_by_scor": [55, 87], "overlapping_label_check": [55, 57], "suboptim": [55, 57], "locat": [55, 57, 87, 91, 94], "bbox": [55, 58, 87], "image_nam": [55, 58], "y1": [55, 58, 87], "y2": [55, 58, 87], "later": [55, 58, 59, 93, 94], "corner": [55, 58, 87], "xyxi": [55, 58, 87], "io": [55, 58, 74, 80], "keras_cv": [55, 58], "bounding_box": [55, 58, 87], "detectron": [55, 58, 87], "detectron2": [55, 58, 87], "readthedoc": [55, 58], "en": [55, 58], "latest": [55, 58], "visual": [55, 56, 58, 75, 76, 82, 90, 92, 94], "draw_box": [55, 58], "mmdetect": [55, 58, 87], "swap": [55, 57, 67, 71], "penal": [55, 57], "concern": [55, 57, 72, 76], "issues_from_scor": [56, 57, 65, 66, 67, 69, 70, 71, 87, 91, 94], "compute_overlooked_box_scor": [56, 57], "compute_badloc_box_scor": [56, 57], "compute_swap_box_scor": [56, 57], "pool_box_scores_per_imag": [56, 57], "object_counts_per_imag": [56, 58, 87], "bounding_box_size_distribut": [56, 58, 87], "class_label_distribut": [56, 58, 87], "get_sorted_bbox_count_idx": [56, 58], "plot_class_size_distribut": [56, 58], "plot_class_distribut": [56, 58], "get_average_per_class_confusion_matrix": [56, 58], "calculate_per_class_metr": [56, 58], "aggregation_weight": 57, "imperfect": [57, 81], "chose": [57, 85, 87], "imperfectli": [57, 87], "dirti": [57, 60, 63, 90], "subtyp": 57, "badloc": 57, "nonneg": 57, "high_probability_threshold": 57, "auxiliary_input": [57, 58], "vari": [57, 76], "iou": [57, 58], "heavili": 57, "auxiliarytypesdict": 57, "pred_label": [57, 93], "pred_label_prob": 57, "pred_bbox": 57, "lab_label": 57, "lab_bbox": 57, "similarity_matrix": 57, "min_possible_similar": 57, "scores_overlook": 57, "low_probability_threshold": 57, "scores_badloc": 57, "accident": [57, 78, 79, 81, 93], "scores_swap": 57, "box_scor": 57, "image_scor": [57, 66, 91], "discov": [58, 76, 94], "auxiliari": [58, 88, 91], "_get_valid_inputs_for_compute_scor": 58, "object_count": 58, "down": 58, "bbox_siz": 58, "class_distribut": 58, "plot": [58, 75, 76, 83, 86, 88, 90, 91], "sorted_idx": [58, 88], "class_to_show": 58, "hidden": [58, 88], "max_class_to_show": 58, "prediction_threshold": 58, "overlai": [58, 87], "figsiz": [58, 75, 76, 82, 83, 86, 88], "save_path": [58, 87], "blue": [58, 80, 83, 87], "overlaid": 58, "side": [58, 80, 87], "figur": [58, 83, 86, 88, 90], "extens": [58, 83, 85], "png": [58, 87], "pdf": [58, 59], "svg": 58, "matplotlib": [58, 75, 76, 82, 83, 86, 87, 88, 90], "num_proc": [58, 82], "intersect": [58, 81], "tp": 58, "fp": 58, "ground": [58, 80, 83, 85, 90], "truth": [58, 83, 85, 90], "bias": 58, "avg_metr": 58, "distionari": 58, "95": [58, 68, 70, 78, 80, 83, 90, 91], "per_class_metr": 58, "Of": 59, "li": 59, "smaller": [59, 86, 87], "find_top_issu": [59, 60, 88], "reli": [59, 74, 75, 76, 79, 87, 88, 93], "dist_metr": 59, "dim": [59, 82, 91], "subtract": [59, 60], "renorm": [59, 60, 81], "least_confid": 59, "sum_": 59, "log": [59, 60, 73], "softmax": [59, 66, 70, 82], "literatur": 59, "gen": 59, "liu": 59, "lochman": 59, "zach": 59, "openaccess": 59, "thecvf": 59, "content": [59, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "cvpr2023": 59, "liu_gen_pushing_the_limits_of_softmax": 59, "based_out": 59, "distribution_detection_cvpr_2023_pap": 59, "fit_scor": [59, 88], "ood_predictions_scor": 59, "pretrain": [59, 74, 79, 88, 93], "adjust_confident_threshold": 59, "probabilist": [59, 74, 75, 76, 78, 79, 88, 89, 92], "order_label_issu": [60, 73], "whichev": [60, 89], "argsort": [60, 79, 82, 83, 87, 88, 90, 93], "max_": 60, "get_label_quality_ensemble_scor": [60, 81, 83], "weight_ensemble_members_bi": 60, "custom_weight": 60, "log_loss_search_t_valu": 60, "0001": [60, 80], "scheme": 60, "log_loss_search": 60, "log_loss": [60, 79], "1e0": 60, "1e1": 60, "1e2": 60, "2e2": 60, "quality_scor": [60, 88], "forth": 60, "top_issue_indic": 60, "rank_bi": [60, 73], "weird": [60, 71], "minu": 60, "prob_label": 60, "max_prob_not_label": 60, "idea": [60, 87], "AND": [60, 79], "get_epistemic_uncertainti": [61, 62], "get_aleatoric_uncertainti": [61, 62], "corrupt": [62, 90], "linearregress": [62, 81, 90], "y_with_nois": 62, "n_boot": [62, 81], "include_aleatoric_uncertainti": [62, 81], "sole": [62, 75, 85, 88, 92], "bootstrap": [62, 81, 90], "resampl": [62, 74, 81], "epistem": [62, 81, 88, 90], "aleator": [62, 81, 90], "model_final_kwarg": 62, "coars": 62, "thorough": [62, 81], "fine": [62, 74, 79, 88, 93], "grain": 62, "grid": 62, "varianc": [62, 83], "epistemic_uncertainti": 62, "residu": [62, 63, 81], "deviat": [62, 87, 90], "ie": 62, "aleatoric_uncertainti": 62, "outr": 63, "contin": 63, "raw": [63, 72, 73, 76, 80, 82, 85, 87, 88], "aka": [63, 74, 83, 87, 94], "00323821": 63, "33692597": 63, "00191686": 63, "semant": [64, 66, 67, 84], "pixel": [64, 66, 67, 88, 91], "h": [64, 66, 67, 91], "height": [64, 66, 67, 91], "w": [64, 66, 67, 91], "width": [64, 66, 67, 91], "labels_one_hot": [64, 67, 91], "stream": [64, 88, 94], "downsampl": [64, 66, 91], "shrink": [64, 66], "divis": [64, 66, 75], "display_issu": [65, 66, 67, 68, 69, 70, 71, 91, 94], "common_label_issu": [65, 67, 69, 71, 91, 94], "filter_by_class": [65, 67, 91], "segmant": [66, 67], "num_pixel_issu": [66, 91], "product": [66, 81, 82], "pixel_scor": [66, 91], "highlight": [67, 71, 75, 76, 78, 87, 91], "enter": 67, "legend": [67, 75, 76, 86, 87, 90, 91], "colormap": 67, "background": 67, "person": [67, 81, 87, 91, 94], "ambigu": [67, 71, 74, 79, 80, 83, 93, 94], "systemat": [67, 71, 85], "misunderstood": [67, 71], "issues_df": [67, 82], "class_index": 67, "issues_subset": [67, 71], "filter_by_token": [69, 71, 94], "token_score_method": 70, "sentence_score_method": 70, "sentence_score_kwarg": 70, "compris": [70, 71], "token_scor": [70, 94], "converg": 70, "toward": 70, "_softmin_sentence_scor": 70, "sentence_scor": [70, 94], "token_info": 70, "70": [70, 78, 88, 91], "02": [70, 75, 76, 82, 83, 87, 88, 91, 94], "03": [70, 78, 80, 83, 87, 91, 94], "04": [70, 78, 82, 87, 91, 94], "08": [70, 83, 87, 88, 91, 94], "commonli": [71, 73, 75, 76, 86, 94], "But": [71, 79, 83, 94], "restrict": [71, 81], "reliabl": [72, 74, 81, 85, 91, 92], "thousand": 72, "imagenet": [72, 80], "popular": [72, 85, 87], "centric": [72, 78, 79, 82, 84], "capabl": 72, "minut": [72, 74, 78, 79, 80, 85, 86, 87, 90, 91, 92, 93, 94], "conda": 72, "feature_embed": [72, 88], "Then": [72, 81, 82, 90, 92, 93], "your_dataset": [72, 74, 75, 76, 78, 79, 81, 82], "column_name_of_label": [72, 74, 75, 76, 78, 79, 82], "plagu": [72, 76], "untrain": 72, "\u30c4": 72, "label_issues_info": [72, 76], "sklearn_compatible_model": 72, "framework": [72, 86, 87], "complianc": 72, "tag": [72, 86, 94], "sequenc": 72, "recognit": [72, 74, 81, 94], "train_data": [72, 88, 90, 92, 93], "gotten": 72, "test_data": [72, 83, 86, 88, 90, 92, 93], "deal": [72, 76], "tutori": [72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "feel": [72, 74, 76, 81], "free": [72, 74, 76, 78, 79, 81, 82, 83], "ask": [72, 81], "slack": [72, 81], "project": [72, 90], "welcom": 72, "commun": [72, 81], "guidelin": [72, 87], "piec": 72, "studio": [72, 76, 78, 79, 81, 82], "platform": [72, 78, 79, 81, 82], "automl": [72, 81], "foundat": 72, "smart": [72, 78, 79, 81, 82], "edit": [72, 81], "easier": [72, 83], "unreli": [72, 74, 78, 79, 92], "link": [72, 74, 80, 87], "older": 73, "outlin": 73, "substitut": 73, "v2": [73, 78, 92], "get_noise_indic": 73, "psx": 73, "sorted_index_method": 73, "order_label_error": 73, "label_errors_bool": 73, "latent_estim": 73, "num_label_error": 73, "learningwithnoisylabel": 73, "neatli": 73, "organ": [73, 78, 80, 92, 94], "reorgan": 73, "baseline_method": 73, "incorpor": [73, 83], "research": [73, 83], "polyplex": 73, "terminologi": 73, "label_error": 73, "quickstart": [74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "spoken": 74, "500": [74, 88, 94], "english": [74, 80], "pronunci": 74, "wav": 74, "huggingfac": [74, 75, 76, 82], "voxceleb": 74, "speech": [74, 94], "your_pred_prob": [74, 75, 76, 78, 79], "tensorflow_io": 74, "huggingface_hub": 74, "branch": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "reproduc": [74, 78, 83, 85], "command": 74, "wget": [74, 87, 91, 94], "navig": 74, "browser": 74, "jakobovski": 74, "archiv": [74, 94], "v1": 74, "tar": [74, 88], "gz": [74, 88], "mkdir": [74, 94], "spoken_digit": 74, "xf": 74, "6_nicolas_32": 74, "data_path": 74, "listdir": 74, "nondeterminist": 74, "file_nam": 74, "endswith": 74, "file_path": 74, "join": [74, 81, 82], "39": [74, 75, 79, 80, 81, 82, 87, 90, 91, 93, 94], "7_george_26": 74, "0_nicolas_24": 74, "0_nicolas_6": 74, "listen": 74, "display_exampl": 74, "click": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "expand": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "pulldown": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "colab": [74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "tfio": 74, "pathlib": 74, "ipython": 74, "load_wav_16k_mono": 74, "filenam": 74, "khz": 74, "file_cont": 74, "read_fil": 74, "sample_r": 74, "decode_wav": 74, "desired_channel": 74, "squeez": 74, "rate_in": 74, "rate_out": 74, "16000": 74, "wav_file_nam": 74, "audio_r": 74, "wav_file_exampl": 74, "plai": [74, 80, 81], "button": 74, "wav_file_name_exampl": 74, "7_jackson_43": 74, "hear": 74, "extractor": 74, "encoderclassifi": 74, "spkrec": 74, "xvect": 74, "feature_extractor": 74, "from_hparam": 74, "run_opt": 74, "uncom": 74, "ffmpeg": 74, "system": [74, 78, 79, 82, 91], "backend": 74, "wav_audio_file_path": 74, "head": [74, 76, 78, 79, 80, 82, 83, 85, 90, 92, 93], "torchaudio": 74, "extract_audio_embed": 74, "emb": [74, 82], "signal": 74, "encode_batch": 74, "embeddings_list": [74, 82], "embeddings_arrai": 74, "opt": [74, 76, 79, 93], "hostedtoolcach": [74, 76, 79, 93], "x64": [74, 76, 79, 93], "lib": [74, 76, 79, 93], "python3": [74, 76, 79, 93], "site": [74, 76, 79, 93], "650": 74, "userwarn": [74, 75, 76, 79, 93], "stft": 74, "return_complex": 74, "view_as_r": 74, "recov": 74, "trigger": 74, "aten": 74, "src": 74, "nativ": 74, "spectralop": 74, "cpp": 74, "863": [74, 93], "_vf": 74, "n_fft": 74, "hop_length": 74, "win_length": 74, "attr": 74, "512": [74, 82], "14": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "196311": 74, "319459": 74, "478975": 74, "2890875": 74, "8170238": 74, "89265": 74, "24": [74, 80, 82, 83, 85, 87, 91], "898056": 74, "256195": 74, "559641": 74, "559721": 74, "62067": 74, "285245": 74, "21": [74, 75, 80, 81, 83, 87, 91, 94], "709627": 74, "5033693": 74, "913803": 74, "819831": 74, "1831515": 74, "208763": 74, "084257": 74, "3210397": 74, "005453": 74, "216152": 74, "478235": 74, "6821785": 74, "053807": 74, "242471": 74, "091424": 74, "78334856": 74, "03954": 74, "23": [74, 80, 82, 83, 87, 91], "569176": 74, "19": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93], "761097": 74, "1258295": 74, "753237": 74, "3508866": 74, "598274": 74, "23712": 74, "2500": 74, "leverag": [74, 79, 81, 83, 85, 93], "tune": [74, 79, 80, 88, 93], "computation": [74, 79, 93], "intens": [74, 79, 93], "held": [74, 78, 79, 80, 87, 88, 89, 92], "straightforward": [74, 78, 92], "benefit": [74, 89, 91, 92], "tol": 74, "num_crossval_fold": [74, 78, 85, 92], "decreas": [74, 81], "never": [74, 83, 86, 88, 89], "accuracy_scor": [74, 79, 83, 92, 93], "cv_accuraci": 74, "9708": 74, "probabilit": [74, 93], "9976": 74, "986": 74, "002161": 74, "176": [74, 80, 83, 86], "002483": 74, "2318": 74, "004411": 74, "1005": 74, "004857": 74, "1871": 74, "007494": 74, "investig": 74, "040587": 74, "999207": 74, "999377": 74, "975220": 74, "999367": 74, "18": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93], "identified_label_issu": [74, 79], "lowest_quality_label": [74, 79, 83, 90, 93], "sort_valu": [74, 76, 78, 79, 81, 82, 83, 85, 86], "516": 74, "1946": 74, "469": 74, "2132": 74, "worth": [74, 83], "iloc": [74, 78, 79, 90, 92, 93], "6_yweweler_25": 74, "7_nicolas_43": 74, "6_theo_27": 74, "6_yweweler_36": 74, "6_yweweler_14": 74, "6_yweweler_35": 74, "6_nicolas_8": 74, "sound": 74, "quit": [74, 88], "22": [74, 75, 80, 82, 83, 86, 87, 88, 91, 94], "blindli": [74, 81, 90, 92, 93], "trust": [74, 81, 83, 85, 89, 90, 92, 93], "underneath": 75, "hood": 75, "alert": 75, "introduct": 75, "mayb": [75, 76, 79], "examin": [75, 76, 78, 87, 92], "your_feature_matrix": [75, 76], "toi": [75, 76, 80, 82, 83, 85], "train_test_split": [75, 76, 88, 92, 93], "inf": [75, 76], "mid": [75, 76], "bins_map": [75, 76], "create_data": [75, 76], "y_bin": [75, 76], "y_i": [75, 76], "y_bin_idx": [75, 76], "y_train": [75, 76, 83, 90], "y_test": [75, 76, 83, 90], "y_train_idx": [75, 76], "y_test_idx": [75, 76], "test_siz": [75, 76, 92, 93], "slide": [75, 76, 80], "decis": [75, 76, 92], "frame": [75, 76], "x_out": [75, 76], "tini": [75, 76], "concaten": [75, 76, 81, 89], "y_out": [75, 76], "y_out_bin": [75, 76], "y_out_bin_idx": [75, 76], "exact_duplicate_idx": [75, 76], "x_duplic": [75, 76], "y_duplic": [75, 76], "y_duplicate_idx": [75, 76], "noisy_labels_idx": [75, 76, 86], "scatter": [75, 76, 83, 86, 90], "black": [75, 76, 80, 90], "cyan": [75, 76], "pyplot": [75, 76, 82, 83, 86, 88, 90], "plt": [75, 76, 82, 83, 86, 88, 90], "plot_data": [75, 76, 83, 86, 90], "fig": [75, 76, 80, 82, 88, 90], "ax": [75, 76, 82, 88, 90], "subplot": [75, 76, 82, 88], "set_titl": [75, 76, 82, 88], "set_xlabel": [75, 76], "x_1": [75, 76], "fontsiz": [75, 76, 82, 83, 86], "set_ylabel": [75, 76], "x_2": [75, 76], "set_xlim": [75, 76], "set_ylim": [75, 76], "linestyl": [75, 76], "circl": [75, 76, 83, 86], "misclassifi": [75, 76], "zip": [75, 76, 82, 87, 94], "label_err": [75, 76], "180": [75, 76, 87], "marker": [75, 76], "facecolor": [75, 76], "edgecolor": [75, 76], "linewidth": [75, 76, 88], "dup": [75, 76], "first_legend": [75, 76], "align": [75, 76], "title_fontproperti": [75, 76], "semibold": [75, 76], "second_legend": [75, 76], "45": [75, 76, 80, 82, 83, 87, 91], "gca": [75, 76], "add_artist": [75, 76], "tight_layout": [75, 76], "ideal": [75, 76], "logist": [75, 76, 79, 85, 88, 93], "remaind": 75, "modal": [75, 76, 81, 85], "132": [75, 76, 83, 87], "9318": 75, "77": [75, 76, 78, 87, 88, 91, 92], "006940": 75, "007830": 75, "40": [75, 76, 79, 80, 82, 91], "014828": 75, "107": [75, 76, 83, 86], "021241": 75, "120": [75, 76, 92], "026407": 75, "notic": [75, 83, 85, 87], "3558": [75, 76], "126": [75, 76, 83, 87], "006636": [75, 76], "130": [75, 76, 94], "012571": [75, 76], "129": [75, 76], "127": [75, 76], "014909": [75, 76], "128": [75, 76, 82], "017443": [75, 76], "6160": [75, 76], "is_near_duplicate_issu": [75, 76, 78, 79, 81, 82, 83], "131": [75, 76, 91], "000000e": [75, 76], "00": [75, 76, 78, 80, 82, 88, 91, 92], "000002": [75, 76], "463180e": [75, 76], "07": [75, 76, 78, 82, 83, 87, 91], "51": [75, 76, 78, 80, 82, 83, 87, 91, 94], "161148": [75, 76], "859087e": [75, 76], "30": [75, 76, 80, 81, 82, 86, 91, 94], "3453": 75, "029542": 75, "031182": 75, "057961": 75, "058244": 75, "home": [75, 76, 79, 80, 93], "runner": [75, 76, 79, 93], "329": [75, 82, 87], "359": 75, "338": 75, "34": [75, 80, 83, 85, 87, 91, 94], "54": [75, 80, 83, 87, 91], "039122": 75, "53": [75, 76, 78, 80, 86, 87, 91, 92], "044598": 75, "105": [75, 87], "105196": 75, "133654": 75, "43": [75, 80, 83, 87, 91], "168033": 75, "125": 75, "101107": 75, "37": [75, 80, 91], "183382": 75, "109": [75, 80, 87], "209259": 75, "211042": 75, "221316": 75, "average_ood_scor": 75, "34530442089193386": 75, "52": [75, 80, 87, 91, 94], "169820": 75, "087324e": 75, "89": [75, 78, 87, 90, 91, 93], "92": [75, 83, 87, 91, 92, 94], "259024": 75, "583757e": 75, "91": [75, 87, 88, 91], "346458": 75, "341292e": 75, "specfi": 75, "new_lab": 75, "scoring_funct": 75, "div": 75, "rem": 75, "inv_scal": 75, "49": [75, 80, 83, 87, 88, 91], "superstitionissuemanag": 75, "unlucki": 75, "superstit": 75, "to_seri": 75, "issues_mask": 75, "summary_scor": 75, "9242": 75, "is_superstition_issu": 75, "superstition_scor": 75, "26": [75, 80, 82, 83, 85, 87, 91], "047581": 75, "090635": 75, "129591": 75, "65": [75, 82, 87, 91, 92, 94], "164840": 75, "demo": [76, 78, 86, 92], "lurk": [76, 82, 83], "_split": 76, "737": 76, "thoroughli": 76, "preprocess": [76, 78, 88, 90, 92, 93], "904": 76, "review": [76, 78, 79, 80, 81, 83, 87, 90, 91, 92, 93, 94], "8561": 76, "001908": 76, "58": [76, 78, 80, 82, 83, 87, 91, 92], "003564": 76, "007331": 76, "008963": 76, "009664": 76, "0227": 76, "is_class_imbalance_issu": 76, "022727": 76, "86": [76, 78, 82, 83, 87, 90, 91, 92], "87": [76, 82, 87, 90, 91, 93], "auto": [76, 80, 81, 90, 92, 93], "conceptu": 76, "856061": 76, "355772": 76, "616034": 76, "821750": 76, "betweeen": 76, "is_null_issu": 76, "is_non_iid_issu": [76, 78, 79, 83], "859131": 76, "417707": 76, "664083": 76, "970324": 76, "816953": 76, "375317": 76, "641516": 76, "890575": 76, "531021": 76, "460593": 76, "601188": 76, "826147": 76, "752808": 76, "321635": 76, "562539": 76, "948362": 76, "090243": 76, "472909": 76, "746763": 76, "878267": 76, "examples_w_issu": [76, 81], "013445": 76, "025184": 76, "026376": 76, "inde": [76, 79], "miscellan": [76, 94], "428571": 76, "111111": 76, "571429": 76, "407407": 76, "592593": 76, "337838": 76, "092593": 76, "662162": 76, "333333": [76, 80], "952381": 76, "666667": 76, "portion": 76, "huge": [76, 83], "worri": [76, 79], "critic": 76, "highli": [76, 82], "sql": [78, 92], "databas": [78, 92], "excel": [78, 92], "parquet": [78, 92], "student": [78, 90, 92, 94], "grade": [78, 90, 92], "900": [78, 90, 92], "exam": [78, 90, 92], "letter": [78, 92, 94], "hundr": [78, 92], "histgradientboostingclassifi": 78, "standardscal": [78, 88, 92], "grades_data": [78, 92], "read_csv": [78, 79, 90, 92, 93], "stud_id": [78, 92], "exam_1": [78, 90, 92], "exam_2": [78, 90, 92], "exam_3": [78, 90, 92], "letter_grad": [78, 92], "f48f73": [78, 92], "0bd4e7": [78, 92], "81": [78, 79, 87, 90, 91, 92, 94], "great": [78, 80, 92], "particip": [78, 92], "cb9d7a": [78, 92], "61": [78, 82, 83, 87, 90, 91, 92], "94": [78, 80, 83, 87, 90, 91, 92], "78": [78, 80, 82, 83, 87, 90, 91, 92], "9acca4": [78, 92], "48": [78, 80, 82, 83, 87, 91, 92, 94], "x_raw": [78, 92], "cat_featur": 78, "x_encod": [78, 92], "get_dummi": [78, 90, 92], "drop_first": [78, 92], "numeric_featur": [78, 92], "scaler": [78, 88, 92], "x_process": [78, 92], "fit_transform": [78, 92], "bring": [78, 79, 82, 85, 90, 92, 93], "byod": [78, 79, 82, 85, 90, 92, 93], "boost": [78, 81, 85, 90], "xgboost": [78, 81, 90], "think": [78, 79, 81, 86, 91, 94], "carefulli": [78, 79, 82, 92], "nonzero": 78, "suspici": [78, 92], "tabl": [78, 80, 85, 92], "358": 78, "294": [78, 87], "46": [78, 80, 83, 87, 91], "941": 78, "7109": 78, "000005": [78, 79], "886": 78, "000059": 78, "709": 78, "000104": 78, "723": 78, "000169": 78, "689": 78, "000181": 78, "3590": 78, "051882e": 78, "683133e": 78, "536582e": 78, "406589e": 78, "324246e": 78, "6165": 78, "582": 78, "185": [78, 80, 87, 94], "187": [78, 80], "27": [78, 80, 82, 83, 87, 91, 94], "898": 78, "637": [78, 92], "0014": [78, 80], "595": 78, "702427": 78, "147": [78, 83, 87], "711186": 78, "157": [78, 83], "721394": 78, "771": 78, "731979": 78, "740335": 78, "0014153602099278074": 78, "issue_result": 78, "000842": 78, "555944": 78, "004374": 78, "sorted_issu": 78, "73": [78, 80, 82, 86, 87, 90, 91], "deserv": 78, "outlier_result": 78, "sorted_outli": 78, "56": [78, 80, 82, 88, 90, 91], "96": [78, 80, 83, 86, 87, 90, 91], "lt": [78, 79, 80, 82, 85, 88, 91], "style": [78, 91], "font": 78, "18px": 78, "ff00ff": 78, "bac": 78, "unintend": [78, 79], "mistak": [78, 79, 82, 92, 93], "duplicate_result": 78, "690": 78, "246": [78, 87], "perhap": [78, 83, 85], "twice": 78, "67": [78, 80, 87, 90, 91], "wari": [78, 79, 81], "super": [78, 79, 82], "intent": [79, 93], "servic": [79, 81, 93], "onlin": [79, 93], "bank": [79, 80, 93], "banking77": [79, 93], "oo": [79, 93], "000": [79, 80, 82, 93, 94], "categori": [79, 82, 93], "scope": [79, 93], "dive": 79, "your_featur": 79, "sentence_transform": [79, 93], "sentencetransform": [79, 93], "payment": [79, 93], "cancel_transf": [79, 93], "transfer": [79, 93], "fund": [79, 93], "cancel": [79, 93], "transact": [79, 93], "my": [79, 93], "revert": [79, 93], "morn": [79, 93], "realis": [79, 93], "yesterdai": [79, 93], "rent": [79, 93], "realli": [79, 85, 91, 93], "tomorrow": [79, 93], "raw_text": [79, 93], "lost_or_stolen_phon": [79, 93], "apple_pay_or_google_pai": [79, 93], "visa_or_mastercard": [79, 93], "beneficiary_not_allow": [79, 93], "card_about_to_expir": [79, 93], "change_pin": [79, 93], "getting_spare_card": [79, 93], "card_payment_fee_charg": [79, 93], "supported_cards_and_curr": [79, 93], "utter": [79, 93], "continu": [79, 81, 82, 85, 87, 90, 92, 93, 94], "suit": [79, 80, 81, 93], "electra": [79, 93], "discrimin": [79, 93], "googl": [79, 93], "text_embed": 79, "No": [79, 81, 93], "google_electra": [79, 93], "pool": [79, 81, 88, 93], "_util": [79, 93], "831": [79, 93], "typedstorag": [79, 93], "untypedstorag": [79, 93], "untyped_storag": [79, 93], "fget": [79, 93], "__get__": [79, 93], "owner": [79, 93], "400": [79, 93], "data_dict": [79, 83, 85], "85": [79, 87, 91], "38": [79, 80, 82, 87, 91], "9710": 79, "981": 79, "974": 79, "000146": 79, "982": [79, 80], "000224": 79, "971": 79, "000507": 79, "980": [79, 80], "000960": 79, "3584": 79, "994": 79, "009642": 79, "999": 79, "013067": 79, "013841": 79, "433": 79, "014722": 79, "989": 79, "018224": 79, "6070": 79, "160": [79, 90], "095724": 79, "148": 79, "006237": 79, "546": 79, "099341": 79, "514": 79, "006485": 79, "481": 79, "123418": 79, "008165": 79, "0000": [79, 80, 83], "313": [79, 87], "564102": 79, "572258": 79, "28": [79, 80, 82, 83, 85, 91, 94], "574915": 79, "31": [79, 80, 82, 83, 85, 87, 91], "575507": 79, "575874": 79, "792090": 79, "257611": 79, "698710": 79, "182121": 79, "771619": 79, "to_numpi": [79, 81, 90, 93], "data_with_suggested_label": 79, "suggested_label": 79, "charg": [79, 93], "cash": [79, 93], "holidai": [79, 93], "sent": [79, 93, 94], "card": [79, 80, 93], "mine": [79, 93], "expir": [79, 93], "me": [79, 93], "withdraw": 79, "monei": 79, "whoever": [79, 93], "outlier_issu": [79, 82], "lowest_quality_outli": 79, "OR": 79, "636c65616e6c616220697320617765736f6d6521": 79, "phone": [79, 80], "gone": 79, "gt": [79, 85, 94], "samp": 79, "br": 79, "press": [79, 94], "nonsens": 79, "sens": 79, "detriment": 79, "duplicate_issu": 79, "fee": 79, "pai": 79, "go": [79, 80, 83], "strongli": 79, "p_valu": 79, "benign": 79, "shortlist": [79, 90, 93], "curat": [79, 84], "mnist_test_set": 80, "imagenet_val_set": 80, "tench": 80, "goldfish": 80, "white": [80, 94], "shark": 80, "tiger": 80, "hammerhead": 80, "electr": 80, "rai": 80, "stingrai": 80, "cock": 80, "hen": 80, "ostrich": 80, "brambl": 80, "goldfinch": 80, "hous": 80, "finch": 80, "junco": 80, "indigo": 80, "bunt": 80, "american": [80, 94], "robin": 80, "bulbul": 80, "jai": 80, "magpi": 80, "chickade": 80, "dipper": 80, "kite": 80, "bald": 80, "eagl": 80, "vultur": 80, "grei": 80, "owl": 80, "salamand": 80, "smooth": 80, "newt": 80, "spot": [80, 87], "axolotl": 80, "bullfrog": 80, "tree": 80, "frog": [80, 88], "tail": 80, "loggerhead": 80, "sea": 80, "turtl": 80, "leatherback": 80, "mud": 80, "terrapin": 80, "band": 80, "gecko": 80, "green": [80, 94], "iguana": 80, "carolina": 80, "anol": 80, "desert": 80, "grassland": 80, "whiptail": 80, "lizard": 80, "agama": 80, "frill": 80, "neck": 80, "allig": 80, "gila": 80, "monster": 80, "european": 80, "chameleon": 80, "komodo": 80, "dragon": 80, "nile": 80, "crocodil": 80, "triceratop": 80, "worm": 80, "snake": 80, "ring": 80, "eastern": 80, "hog": 80, "nose": 80, "kingsnak": 80, "garter": 80, "water": 80, "vine": 80, "night": 80, "boa": 80, "constrictor": 80, "african": 80, "rock": 80, "indian": 80, "cobra": 80, "mamba": 80, "saharan": 80, "horn": 80, "viper": 80, "diamondback": 80, "rattlesnak": 80, "sidewind": 80, "trilobit": 80, "harvestman": 80, "scorpion": 80, "yellow": 80, "garden": 80, "spider": 80, "barn": 80, "southern": 80, "widow": 80, "tarantula": 80, "wolf": 80, "tick": 80, "centiped": 80, "grous": 80, "ptarmigan": 80, "ruf": 80, "prairi": 80, "peacock": 80, "quail": 80, "partridg": 80, "parrot": 80, "macaw": 80, "sulphur": 80, "crest": 80, "cockatoo": 80, "lorikeet": 80, "coucal": 80, "bee": 80, "eater": 80, "hornbil": 80, "hummingbird": 80, "jacamar": 80, "toucan": 80, "duck": [80, 93], "breast": 80, "mergans": 80, "goos": 80, "swan": 80, "tusker": 80, "echidna": 80, "platypu": 80, "wallabi": 80, "koala": 80, "wombat": 80, "jellyfish": 80, "anemon": 80, "brain": 80, "coral": 80, "flatworm": 80, "nematod": 80, "conch": 80, "snail": 80, "slug": 80, "chiton": 80, "chamber": 80, "nautilu": 80, "dung": 80, "crab": 80, "fiddler": 80, "king": 80, "lobster": 80, "spini": 80, "crayfish": 80, "hermit": 80, "isopod": 80, "stork": 80, "spoonbil": 80, "flamingo": 80, "heron": 80, "egret": 80, "bittern": 80, "crane": 80, "bird": [80, 88], "limpkin": 80, "gallinul": 80, "coot": 80, "bustard": 80, "ruddi": 80, "turnston": 80, "dunlin": 80, "redshank": 80, "dowitch": 80, "oystercatch": 80, "pelican": 80, "penguin": 80, "albatross": 80, "whale": 80, "killer": 80, "dugong": 80, "lion": 80, "chihuahua": 80, "japanes": 80, "chin": 80, "maltes": 80, "pekinges": 80, "shih": 80, "tzu": 80, "charl": 80, "spaniel": 80, "papillon": 80, "terrier": 80, "rhodesian": 80, "ridgeback": 80, "afghan": [80, 94], "hound": 80, "basset": 80, "beagl": 80, "bloodhound": 80, "bluetick": 80, "coonhound": 80, "tan": 80, "walker": 80, "foxhound": 80, "redbon": 80, "borzoi": 80, "irish": 80, "wolfhound": 80, "italian": 80, "greyhound": 80, "whippet": 80, "ibizan": 80, "norwegian": 80, "elkhound": 80, "otterhound": 80, "saluki": 80, "scottish": 80, "deerhound": 80, "weimaran": 80, "staffordshir": 80, "bull": 80, "bedlington": 80, "border": 80, "kerri": 80, "norfolk": 80, "norwich": 80, "yorkshir": 80, "wire": 80, "fox": 80, "lakeland": 80, "sealyham": 80, "airedal": 80, "cairn": 80, "australian": 80, "dandi": 80, "dinmont": 80, "boston": 80, "miniatur": 80, "schnauzer": 80, "giant": 80, "tibetan": 80, "silki": 80, "coat": [80, 82], "wheaten": 80, "west": 80, "highland": 80, "lhasa": 80, "apso": 80, "flat": 80, "retriev": 80, "curli": 80, "golden": 80, "labrador": 80, "chesapeak": 80, "bai": 80, "german": [80, 94], "shorthair": 80, "pointer": 80, "vizsla": 80, "setter": 80, "gordon": 80, "brittani": 80, "clumber": 80, "springer": 80, "welsh": 80, "cocker": 80, "sussex": 80, "kuvasz": 80, "schipperk": 80, "groenendael": 80, "malinoi": 80, "briard": 80, "kelpi": 80, "komondor": 80, "sheepdog": 80, "shetland": 80, "colli": 80, "bouvier": 80, "de": 80, "flandr": 80, "rottweil": 80, "shepherd": 80, "dobermann": 80, "pinscher": 80, "swiss": [80, 94], "mountain": 80, "bernes": 80, "appenzel": 80, "sennenhund": 80, "entlebuch": 80, "boxer": 80, "bullmastiff": 80, "mastiff": 80, "french": 80, "bulldog": 80, "dane": 80, "st": 80, "bernard": 80, "huski": 80, "alaskan": 80, "malamut": 80, "siberian": 80, "dalmatian": 80, "affenpinsch": 80, "basenji": 80, "pug": 80, "leonberg": 80, "newfoundland": 80, "pyrenean": 80, "samoi": 80, "pomeranian": 80, "chow": 80, "keeshond": 80, "griffon": 80, "bruxelloi": 80, "pembrok": 80, "corgi": 80, "cardigan": 80, "poodl": 80, "mexican": 80, "hairless": 80, "tundra": 80, "coyot": 80, "dingo": 80, "dhole": 80, "wild": 80, "hyena": 80, "kit": 80, "arctic": 80, "tabbi": 80, "persian": 80, "siames": 80, "egyptian": 80, "mau": 80, "cougar": 80, "lynx": 80, "leopard": 80, "snow": 80, "jaguar": 80, "cheetah": 80, "brown": [80, 91], "bear": 80, "polar": 80, "sloth": 80, "mongoos": 80, "meerkat": 80, "beetl": 80, "ladybug": 80, "longhorn": 80, "leaf": 80, "rhinocero": 80, "weevil": 80, "fly": 80, "ant": 80, "grasshopp": 80, "cricket": 80, "stick": 80, "insect": 80, "cockroach": 80, "manti": 80, "cicada": 80, "leafhopp": 80, "lacew": 80, "dragonfli": 80, "damselfli": 80, "admir": 80, "ringlet": 80, "monarch": 80, "butterfli": 80, "gossam": 80, "wing": 80, "starfish": 80, "urchin": 80, "cucumb": 80, "cottontail": 80, "rabbit": 80, "hare": 80, "angora": 80, "hamster": 80, "porcupin": 80, "squirrel": 80, "marmot": 80, "beaver": 80, "guinea": 80, "pig": 80, "sorrel": 80, "zebra": 80, "boar": 80, "warthog": 80, "hippopotamu": 80, "ox": 80, "buffalo": 80, "bison": 80, "bighorn": 80, "sheep": 80, "alpin": 80, "ibex": 80, "hartebeest": 80, "impala": 80, "gazel": 80, "dromedari": 80, "llama": 80, "weasel": 80, "mink": 80, "polecat": 80, "foot": 80, "ferret": 80, "otter": 80, "skunk": 80, "badger": 80, "armadillo": 80, "toed": 80, "orangutan": 80, "gorilla": 80, "chimpanze": 80, "gibbon": 80, "siamang": 80, "guenon": 80, "pata": 80, "monkei": 80, "baboon": 80, "macaqu": 80, "langur": 80, "colobu": 80, "probosci": 80, "marmoset": 80, "capuchin": 80, "howler": 80, "titi": 80, "geoffroi": 80, "lemur": 80, "indri": 80, "asian": 80, "eleph": 80, "bush": 80, "snoek": 80, "eel": 80, "coho": 80, "salmon": 80, "beauti": 80, "clownfish": 80, "sturgeon": 80, "garfish": 80, "lionfish": 80, "pufferfish": 80, "abacu": 80, "abaya": 80, "academ": 80, "gown": 80, "accordion": 80, "acoust": 80, "guitar": 80, "aircraft": 80, "carrier": 80, "airlin": 80, "airship": 80, "altar": 80, "ambul": 80, "amphibi": 80, "clock": [80, 94], "apiari": 80, "apron": 80, "wast": 80, "assault": 80, "rifl": 80, "backpack": 80, "bakeri": 80, "balanc": 80, "beam": 80, "balloon": 80, "ballpoint": 80, "pen": 80, "aid": 80, "banjo": 80, "balust": 80, "barbel": 80, "barber": 80, "chair": [80, 87], "barbershop": 80, "baromet": 80, "barrel": 80, "wheelbarrow": 80, "basebal": 80, "basketbal": 80, "bassinet": 80, "bassoon": 80, "swim": 80, "cap": 80, "bath": 80, "towel": 80, "bathtub": 80, "station": 80, "wagon": 80, "lighthous": 80, "beaker": 80, "militari": 80, "beer": 80, "bottl": 80, "glass": 80, "bell": 80, "cot": 80, "bib": 80, "bicycl": [80, 91], "bikini": 80, "binder": 80, "binocular": 80, "birdhous": 80, "boathous": 80, "bobsleigh": 80, "bolo": 80, "tie": 80, "poke": 80, "bonnet": 80, "bookcas": 80, "bookstor": 80, "bow": 80, "brass": 80, "bra": 80, "breakwat": 80, "breastplat": 80, "broom": 80, "bucket": 80, "buckl": 80, "bulletproof": 80, "vest": 80, "butcher": 80, "shop": 80, "taxicab": 80, "cauldron": 80, "candl": 80, "cannon": 80, "cano": 80, "mirror": [80, 87], "carousel": 80, "tool": [80, 83, 85], "carton": 80, "wheel": 80, "teller": 80, "cassett": 80, "player": 80, "castl": 80, "catamaran": 80, "cd": 80, "cello": 80, "mobil": [80, 94], "chain": 80, "fenc": [80, 91], "mail": 80, "chainsaw": 80, "chest": 80, "chiffoni": 80, "chime": 80, "china": 80, "cabinet": 80, "christma": 80, "stock": 80, "church": 80, "movi": 80, "theater": 80, "cleaver": 80, "cliff": 80, "dwell": 80, "cloak": 80, "clog": 80, "cocktail": 80, "shaker": 80, "coffe": 80, "mug": 80, "coffeemak": 80, "coil": 80, "lock": 80, "keyboard": 80, "confectioneri": 80, "ship": [80, 88], "corkscrew": 80, "cornet": 80, "cowboi": 80, "boot": 80, "hat": 80, "cradl": 80, "crash": 80, "helmet": 80, "crate": 80, "infant": 80, "bed": 80, "crock": 80, "pot": 80, "croquet": 80, "crutch": 80, "cuirass": 80, "dam": 80, "desk": 80, "desktop": 80, "rotari": 80, "dial": 80, "telephon": 80, "diaper": 80, "watch": 80, "dine": 80, "dishcloth": 80, "dishwash": 80, "disc": 80, "brake": 80, "dock": 80, "sled": 80, "dome": 80, "doormat": 80, "drill": 80, "rig": 80, "drum": 80, "drumstick": 80, "dumbbel": 80, "dutch": 80, "oven": 80, "fan": 80, "locomot": 80, "entertain": 80, "center": 80, "envelop": 80, "espresso": 80, "powder": 80, "feather": 80, "fireboat": 80, "engin": [80, 91], "screen": 80, "sheet": 80, "flagpol": 80, "flute": 80, "footbal": 80, "forklift": 80, "fountain": 80, "poster": 80, "freight": 80, "fry": 80, "pan": 80, "fur": 80, "garbag": 80, "ga": 80, "pump": 80, "goblet": 80, "kart": 80, "golf": 80, "cart": 80, "gondola": 80, "gong": 80, "grand": 80, "piano": 80, "greenhous": 80, "grill": 80, "groceri": 80, "guillotin": 80, "barrett": 80, "hair": 80, "sprai": 80, "hammer": 80, "dryer": 80, "hand": [80, 83], "handkerchief": 80, "drive": 80, "harmonica": 80, "harp": 80, "harvest": 80, "hatchet": 80, "holster": 80, "honeycomb": 80, "hoop": 80, "skirt": 80, "horizont": 80, "bar": 80, "hors": [80, 88, 93], "drawn": 80, "hourglass": 80, "ipod": 80, "cloth": 80, "iron": 80, "jack": 80, "lantern": 80, "jean": 80, "jeep": 80, "shirt": [80, 82], "jigsaw": 80, "puzzl": 80, "pull": 80, "rickshaw": 80, "joystick": 80, "kimono": 80, "knee": 80, "pad": 80, "knot": 80, "ladl": 80, "lampshad": 80, "laptop": 80, "lawn": 80, "mower": 80, "knife": 80, "lifeboat": 80, "lighter": 80, "limousin": 80, "ocean": 80, "liner": 80, "lipstick": 80, "slip": 80, "shoe": 80, "lotion": 80, "speaker": 80, "loup": 80, "sawmil": 80, "magnet": 80, "compass": 80, "bag": [80, 82, 88, 89], "mailbox": 80, "tight": 80, "tank": 80, "manhol": 80, "maraca": 80, "marimba": 80, "maypol": 80, "maze": 80, "cup": [80, 87], "medicin": 80, "megalith": 80, "microphon": 80, "microwav": 80, "milk": 80, "minibu": 80, "miniskirt": 80, "minivan": 80, "missil": 80, "mitten": 80, "mix": 80, "bowl": 80, "modem": 80, "monasteri": 80, "monitor": 80, "mope": 80, "mortar": 80, "mosqu": 80, "mosquito": 80, "scooter": 80, "bike": 80, "tent": 80, "mous": [80, 81], "mousetrap": 80, "van": 80, "muzzl": 80, "nail": 80, "brace": 80, "necklac": 80, "nippl": 80, "obelisk": 80, "obo": 80, "ocarina": 80, "odomet": 80, "oil": 80, "oscilloscop": 80, "overskirt": 80, "bullock": 80, "oxygen": 80, "packet": 80, "paddl": 80, "padlock": 80, "paintbrush": 80, "pajama": 80, "palac": [80, 94], "parachut": 80, "park": 80, "bench": 80, "meter": 80, "passeng": 80, "patio": 80, "payphon": 80, "pedest": 80, "pencil": 80, "perfum": 80, "petri": 80, "dish": 80, "photocopi": 80, "plectrum": 80, "pickelhaub": 80, "picket": 80, "pickup": 80, "pier": 80, "piggi": 80, "pill": 80, "pillow": 80, "ping": 80, "pong": 80, "pinwheel": 80, "pirat": 80, "pitcher": 80, "plane": 80, "planetarium": 80, "plastic": 80, "plate": 80, "rack": 80, "plow": 80, "plunger": 80, "polaroid": 80, "camera": 80, "pole": [80, 91], "polic": 80, "poncho": 80, "billiard": 80, "soda": 80, "potter": 80, "prayer": 80, "rug": 80, "printer": 80, "prison": 80, "projectil": 80, "projector": 80, "hockei": 80, "puck": 80, "punch": 80, "purs": 80, "quill": 80, "quilt": 80, "race": 80, "racket": 80, "radiat": 80, "radio": 80, "telescop": 80, "rain": 80, "recreat": 80, "reel": 80, "reflex": 80, "refriger": 80, "remot": 80, "restaur": 80, "revolv": 80, "rotisseri": 80, "eras": 80, "rugbi": 80, "ruler": 80, "safe": 80, "safeti": 80, "salt": 80, "sandal": [80, 82], "sarong": 80, "saxophon": 80, "scabbard": 80, "school": 80, "bu": [80, 91], "schooner": 80, "scoreboard": 80, "crt": 80, "screw": 80, "screwdriv": 80, "seat": 80, "belt": 80, "sew": 80, "shield": 80, "shoji": 80, "basket": 80, "shovel": 80, "shower": 80, "curtain": 80, "ski": 80, "sleep": 80, "door": 80, "slot": 80, "snorkel": 80, "snowmobil": 80, "snowplow": 80, "soap": 80, "dispens": 80, "soccer": [80, 94], "sock": 80, "solar": 80, "thermal": 80, "collector": 80, "sombrero": 80, "soup": 80, "heater": 80, "shuttl": 80, "spatula": 80, "motorboat": 80, "web": 80, "spindl": 80, "sport": [80, 94], "spotlight": 80, "stage": 80, "steam": 80, "arch": 80, "bridg": 80, "steel": 80, "stethoscop": 80, "scarf": 80, "stone": 80, "wall": [80, 91], "stopwatch": 80, "stove": 80, "strainer": 80, "tram": 80, "stretcher": 80, "couch": 80, "stupa": 80, "submarin": 80, "sundial": 80, "sunglass": 80, "sunscreen": 80, "suspens": 80, "mop": 80, "sweatshirt": 80, "swimsuit": 80, "swing": 80, "switch": 80, "syring": 80, "lamp": 80, "tape": 80, "teapot": 80, "teddi": 80, "televis": [80, 94], "tenni": 80, "thatch": 80, "roof": 80, "front": 80, "thimbl": 80, "thresh": 80, "throne": 80, "tile": 80, "toaster": 80, "tobacco": 80, "toilet": 80, "totem": 80, "tow": 80, "tractor": 80, "semi": 80, "trailer": 80, "trai": 80, "trench": 80, "tricycl": 80, "trimaran": 80, "tripod": 80, "triumphal": 80, "trolleybu": 80, "trombon": 80, "tub": 80, "turnstil": 80, "typewrit": 80, "umbrella": 80, "unicycl": 80, "upright": 80, "vacuum": 80, "cleaner": 80, "vase": 80, "vault": 80, "velvet": 80, "vend": 80, "vestment": 80, "viaduct": 80, "violin": 80, "volleybal": 80, "waffl": 80, "wallet": 80, "wardrob": 80, "sink": 80, "wash": 80, "jug": 80, "tower": 80, "whiskei": 80, "whistl": 80, "wig": 80, "shade": [80, 91], "windsor": 80, "wine": 80, "wok": 80, "wooden": 80, "spoon": 80, "wool": 80, "rail": 80, "shipwreck": 80, "yawl": 80, "yurt": 80, "websit": 80, "comic": 80, "book": 80, "crossword": 80, "traffic": [80, 87, 91], "sign": [80, 91, 94], "dust": 80, "jacket": [80, 87], "menu": 80, "guacamol": 80, "consomm": 80, "trifl": 80, "ic": 80, "cream": 80, "pop": 80, "baguett": 80, "bagel": 80, "pretzel": 80, "cheeseburg": 80, "mash": 80, "potato": 80, "cabbag": 80, "broccoli": 80, "cauliflow": 80, "zucchini": 80, "spaghetti": 80, "squash": 80, "acorn": 80, "butternut": 80, "artichok": 80, "pepper": 80, "cardoon": 80, "mushroom": 80, "granni": 80, "smith": 80, "strawberri": 80, "orang": 80, "lemon": 80, "pineappl": 80, "banana": 80, "jackfruit": 80, "custard": 80, "appl": 80, "pomegran": 80, "hai": 80, "carbonara": 80, "chocol": 80, "syrup": 80, "dough": 80, "meatloaf": 80, "pizza": 80, "pie": 80, "burrito": 80, "eggnog": 80, "alp": 80, "bubbl": 80, "reef": 80, "geyser": 80, "lakeshor": 80, "promontori": 80, "shoal": 80, "seashor": 80, "vallei": 80, "volcano": 80, "bridegroom": 80, "scuba": 80, "diver": 80, "rapese": 80, "daisi": 80, "ladi": 80, "slipper": 80, "corn": 80, "rose": 80, "hip": 80, "chestnut": 80, "fungu": 80, "agar": 80, "gyromitra": 80, "stinkhorn": 80, "earth": 80, "star": 80, "wood": 80, "bolet": 80, "ear": 80, "cifar10_test_set": 80, "airplan": [80, 88], "automobil": [80, 88], "deer": [80, 88], "cifar100_test_set": 80, "aquarium_fish": 80, "babi": 80, "boi": 80, "camel": 80, "caterpillar": 80, "cattl": [80, 94], "cloud": 80, "dinosaur": 80, "dolphin": 80, "flatfish": 80, "forest": 80, "girl": 80, "kangaroo": 80, "lawn_mow": 80, "man": 80, "maple_tre": 80, "motorcycl": [80, 91], "oak_tre": 80, "orchid": 80, "palm_tre": 80, "pear": 80, "pickup_truck": 80, "pine_tre": 80, "plain": 80, "poppi": 80, "possum": 80, "raccoon": 80, "road": [80, 91], "rocket": 80, "seal": 80, "shrew": 80, "skyscrap": 80, "streetcar": 80, "sunflow": 80, "sweet_pepp": 80, "trout": 80, "tulip": 80, "willow_tre": 80, "woman": [80, 87], "caltech256": 80, "ak47": 80, "bat": 80, "glove": 80, "birdbath": 80, "blimp": 80, "bonsai": 80, "boom": 80, "breadmak": 80, "buddha": 80, "bulldoz": 80, "cactu": 80, "cake": 80, "tire": 80, "cartman": 80, "cereal": 80, "chandeli": 80, "chess": 80, "board": 80, "chimp": 80, "chopstick": 80, "coffin": 80, "coin": 80, "comet": 80, "cormor": 80, "globe": 80, "diamond": 80, "dice": 80, "doorknob": 80, "drink": 80, "straw": 80, "dumb": 80, "eiffel": 80, "elk": 80, "ewer": 80, "eyeglass": 80, "fern": 80, "fighter": 80, "jet": [80, 90], "extinguish": 80, "hydrant": 80, "firework": 80, "flashlight": 80, "floppi": 80, "fri": 80, "frisbe": 80, "galaxi": 80, "giraff": 80, "goat": 80, "gate": 80, "grape": 80, "pick": [80, 81], "hamburg": 80, "hammock": 80, "harpsichord": 80, "hawksbil": 80, "helicopt": 80, "hibiscu": 80, "homer": 80, "simpson": 80, "horsesho": 80, "air": 80, "skeleton": 80, "ibi": 80, "cone": 80, "iri": 80, "jesu": 80, "christ": 80, "joi": 80, "kayak": 80, "ketch": 80, "ladder": 80, "lath": 80, "licens": 80, "lightbulb": 80, "lightn": 80, "mandolin": 80, "mar": 80, "mattress": 80, "megaphon": 80, "menorah": 80, "microscop": 80, "minaret": 80, "minotaur": 80, "motorbik": 80, "mussel": 80, "neckti": 80, "octopu": 80, "palm": 80, "pilot": 80, "paperclip": 80, "shredder": 80, "pci": 80, "peopl": [80, 87], "pez": 80, "picnic": 80, "pram": 80, "prai": 80, "pyramid": 80, "rainbow": 80, "roulett": 80, "saddl": 80, "saturn": 80, "segwai": 80, "propel": 80, "sextant": 80, "music": 80, "skateboard": 80, "smokestack": 80, "sneaker": 80, "boat": 80, "stain": 80, "steer": 80, "stirrup": 80, "superman": 80, "sushi": 80, "armi": [80, 94], "sword": 80, "tambourin": 80, "teepe": 80, "court": 80, "theodolit": 80, "tomato": 80, "tombston": 80, "tour": 80, "pisa": 80, "treadmil": 80, "fork": 80, "tweezer": 80, "unicorn": 80, "vcr": 80, "waterfal": 80, "watermelon": 80, "weld": 80, "windmil": 80, "xylophon": 80, "yarmulk": 80, "yo": 80, "toad": 80, "twenty_news_test_set": 80, "alt": 80, "atheism": 80, "comp": 80, "graphic": [80, 91], "misc": [80, 94], "sy": 80, "ibm": 80, "pc": 80, "hardwar": 80, "mac": 80, "forsal": 80, "rec": 80, "sci": 80, "crypt": 80, "electron": 80, "med": 80, "soc": 80, "religion": 80, "christian": [80, 94], "talk": [80, 94], "polit": 80, "gun": 80, "mideast": 80, "amazon": 80, "neutral": 80, "imdb_test_set": 80, "all_class": 80, "20news_test_set": 80, "_load_classes_predprobs_label": 80, "dataset_nam": 80, "labelerror": 80, "url_bas": 80, "5392f6c71473055060be3044becdde1cbc18284d": 80, "url_label": 80, "original_test_label": 80, "_original_label": 80, "url_prob": 80, "cross_validated_predicted_prob": 80, "_pyx": 80, "num_part": 80, "datatset": 80, "bytesio": 80, "allow_pickl": 80, "pred_probs_part": 80, "url": 80, "_of_": 80, "nload": 80, "imdb": 80, "ve": [80, 81, 83, 85, 87], "interpret": [80, 81, 83, 86], "capit": 80, "29780": 80, "256": [80, 81, 87], "780": 80, "medic": [80, 94], "doctor": 80, "254": [80, 87], "359223": 80, "640777": 80, "184": [80, 83], "258427": 80, "341176": 80, "263158": 80, "658824": 80, "337349": 80, "246575": 80, "662651": 80, "248": 80, "330000": 80, "355769": 80, "670000": 80, "251": [80, 87], "167": [80, 83, 87], "252": 80, "112": 80, "253": [80, 87], "022989": 80, "255": [80, 82], "049505": 80, "190": [80, 83, 87], "66": [80, 82, 91], "002216": 80, "000974": 80, "59": [80, 82, 87, 91], "88": [80, 81, 82, 83, 86, 87, 90, 91], "000873": 80, "000739": 80, "79": [80, 87, 91, 92], "32635": 80, "32636": 80, "47": [80, 87, 91], "32637": 80, "32638": 80, "32639": 80, "32640": 80, "051": 80, "93": [80, 87, 90, 91, 92, 94], "002242": 80, "997758": 80, "002088": 80, "001045": 80, "997912": 80, "002053": 80, "997947": 80, "001980": 80, "000991": 80, "998020": 80, "001946": 80, "002915": 80, "998054": 80, "001938": 80, "002904": 80, "998062": 80, "001020": 80, "998980": 80, "001018": 80, "002035": 80, "998982": 80, "999009": 80, "0003": 80, "0002": 80, "36": [80, 82, 88, 91, 94], "41": [80, 87, 90, 91], "44": [80, 82, 86, 87, 91, 93], "71": [80, 83, 87, 90, 91], "071": 80, "067269": 80, "929": 80, "046": 80, "058243": 80, "954": 80, "035": 80, "032096": 80, "965": 80, "031": 80, "012232": 80, "969": 80, "022": 80, "025896": 80, "978": 80, "020": [80, 83], "013092": 80, "018": 80, "013065": 80, "016": 80, "030542": 80, "984": 80, "013": 80, "020833": 80, "987": 80, "012": 80, "010020": 80, "988": 80, "0073": 80, "0020": 80, "0016": 80, "0015": 80, "0013": 80, "0012": 80, "0010": 80, "0008": 80, "0007": 80, "0006": 80, "0005": 80, "0004": 80, "244": [80, 87], "98": [80, 81, 82, 88, 90, 91], "452381": 80, "459770": 80, "72": [80, 82, 83, 86, 90, 91], "523364": 80, "460784": 80, "446602": 80, "57": [80, 82, 83, 91], "68": [80, 82, 83, 87, 91, 92], "103774": 80, "030612": 80, "97": [80, 81, 83, 87, 90, 91, 92, 94], "110092": 80, "049020": 80, "99": [80, 83, 91, 92], "0034": 80, "0032": 80, "0026": 80, "0025": 80, "4945": 80, "4946": 80, "4947": 80, "4948": 80, "4949": 80, "4950": 80, "846": 80, "82": [80, 83, 87, 90, 91], "7532": 80, "532": 80, "034483": 80, "009646": 80, "965517": 80, "030457": 80, "020513": 80, "969543": 80, "028061": 80, "035443": 80, "971939": 80, "025316": 80, "005168": 80, "974684": 80, "049751": 80, "979487": 80, "019920": 80, "042802": 80, "980080": 80, "017677": 80, "005115": 80, "982323": 80, "012987": 80, "005236": 80, "987013": 80, "012723": 80, "025126": 80, "987277": 80, "010989": 80, "008264": 80, "989011": 80, "010283": 80, "027778": 80, "989717": 80, "009677": 80, "990323": 80, "007614": 80, "010127": 80, "992386": 80, "005051": 80, "994949": 80, "005025": 80, "994975": 80, "005013": 80, "994987": 80, "001859": 80, "001328": 80, "000929": 80, "000664": 80, "186": [80, 83], "188": [80, 83, 86], "189": [80, 83], "snippet": 81, "nlp": [81, 94], "mind": [81, 83], "number_of_class": 81, "total_number_of_data_point": 81, "drop": [81, 85, 90, 93], "feed": 81, "alphabet": 81, "labels_proper_format": 81, "your_classifi": 81, "issues_datafram": 81, "class_predicted_for_flagged_exampl": 81, "class_predicted_for_all_exampl": 81, "grant": 81, "datataset": 81, "fair": [81, 83], "game": 81, "speedup": [81, 88], "flexibl": 81, "tempfil": 81, "mkdtemp": 81, "sped": 81, "anywai": 81, "pred_probs_merg": 81, "merge_rare_class": 81, "count_threshold": 81, "class_mapping_orig2new": 81, "heath_summari": 81, "num_examples_per_class": 81, "rare_class": 81, "num_classes_merg": 81, "other_class": 81, "labels_merg": 81, "new_c": 81, "merged_prob": 81, "hstack": [81, 82, 83, 85], "new_class": 81, "original_class": 81, "num_check": 81, "ones_array_ref": 81, "isclos": 81, "though": [81, 83, 94], "successfulli": 81, "meaning": [81, 88], "virtuou": [81, 85], "cycl": [81, 85], "jointli": 81, "junk": 81, "clutter": 81, "unknown": 81, "caltech": 81, "combined_boolean_mask": 81, "mask1": 81, "mask2": 81, "gradientboostingclassifi": [81, 83], "true_error": [81, 83, 86], "101": [81, 87], "102": [81, 86, 87], "104": [81, 83, 87], "model_to_find_error": 81, "model_to_return": 81, "cl0": 81, "randomizedsearchcv": 81, "expens": 81, "param_distribut": 81, "learning_r": [81, 83], "max_depth": [81, 83], "magnitud": 81, "coeffici": [81, 90], "optin": 81, "environ": [81, 83], "rerun": [81, 83], "cell": [81, 83], "On": [81, 83, 87], "unabl": [81, 83], "render": [81, 83], "nbviewer": [81, 83], "nbsp": [81, 83], "cleanlearninginot": [81, 83], "fittedcleanlearn": [81, 83], "linearregressionlinearregress": 81, "n_init": 81, "fit_predict": 81, "continuous_column": 81, "categorical_column": 81, "data_df": 81, "feature_a": 81, "feature_b": 81, "unexpectedli": 81, "emphas": 81, "especi": [81, 82, 90, 92, 93], "crucial": 81, "merge_duplicate_set": 81, "merge_kei": 81, "construct_group_kei": 81, "merged_set": 81, "consolidate_set": 81, "tolist": [81, 86], "issubset": 81, "frozenset": 81, "sets_list": 81, "mutabl": 81, "new_set": 81, "current_set": 81, "intersecting_set": 81, "lowest_score_strategi": 81, "sub_df": 81, "idxmin": 81, "filter_near_dupl": 81, "strategy_fn": 81, "strategy_kwarg": 81, "duplicate_row": 81, "group_kei": 81, "to_keep_indic": 81, "groupbi": 81, "explod": 81, "to_remov": 81, "isin": [81, 88], "kept": 81, "near_duplicate_issu": [81, 82], "ids_to_remove_seri": 81, "tmp": 81, "ipykernel_5856": 81, "1995098996": 81, "deprecationwarn": 81, "dataframegroupbi": 81, "include_group": 81, "silenc": 81, "assist": 81, "streamlin": 81, "ux": 81, "agpl": 81, "compani": 81, "commerci": 81, "alter": 81, "email": 81, "discuss": 81, "anywher": 81, "profession": 81, "expert": 81, "60": [82, 83, 91], "excess": 82, "torchvis": [82, 88], "tensordataset": 82, "stratifiedkfold": [82, 86], "tqdm": 82, "fashion_mnist": 82, "num_row": 82, "60000": 82, "pil": 82, "transformed_dataset": 82, "with_format": 82, "unsqueez": 82, "cpu_count": 82, "torch_dataset": 82, "quick": [82, 86], "relu": 82, "batchnorm2d": 82, "maxpool2d": 82, "lazylinear": 82, "flatten": 82, "get_test_accuraci": 82, "testload": [82, 88], "energi": 82, "trainload": [82, 88], "n_epoch": 82, "patienc": 82, "criterion": 82, "crossentropyloss": 82, "adamw": 82, "best_test_accuraci": 82, "start_epoch": 82, "running_loss": 82, "best_epoch": 82, "end_epoch": 82, "3f": [82, 90], "acc": [82, 83], "time_taken": 82, "compute_embed": 82, "compute_pred_prob": 82, "train_batch_s": 82, "num_work": 82, "worker": [82, 94], "train_id_list": 82, "test_id_list": 82, "train_id": 82, "test_id": 82, "embeddings_model": 82, "ntrain": 82, "trainset": 82, "testset": 82, "pin_memori": 82, "fold_embed": 82, "fold_pred_prob": 82, "finish": 82, "482": 82, "720": 82, "545": 82, "195": 82, "360": 82, "stderr": [82, 88, 91], "sphinxverbatim": [82, 88, 91, 94], "78it": [82, 91], "02it": [82, 91], "17it": [82, 91], "62": [82, 83, 87, 90, 91], "63": [82, 83, 87, 88, 90, 91, 94], "86it": [82, 91], "77it": [82, 91], "88it": [82, 88, 91], "05it": [82, 91], "24it": [82, 91], "60it": [82, 91], "68it": [82, 88, 91], "11it": [82, 91], "45it": [82, 91], "493": 82, "060": 82, "565": 82, "330": [82, 87], "505": 82, "325": 82, "22it": [82, 88, 91], "56it": 82, "12it": [82, 91], "37it": [82, 91], "97it": [82, 91], "47it": [82, 88, 91], "34it": 82, "99it": [82, 91], "63it": [82, 91], "58it": [82, 88, 91], "07it": [82, 91], "41it": [82, 91], "476": 82, "340": 82, "716": 82, "328": [82, 87], "310": 82, "350": 82, "70it": [82, 91], "21it": [82, 91], "53it": [82, 91], "28it": [82, 91], "03it": [82, 91], "91it": [82, 91], "27it": [82, 91], "44it": [82, 91], "reorder": 82, "vision": 82, "grayscal": 82, "exce": 82, "max_preval": 82, "7714": 82, "3772": 82, "3585": 82, "166": 82, "3651": 82, "27080": 82, "873833e": 82, "40378": 82, "915575e": 82, "25316": 82, "390277e": 82, "06": [82, 83, 87, 91, 94], "2090": 82, "751164e": 82, "14999": 82, "881301e": 82, "9569": 82, "11262": 82, "000003": 82, "19228": 82, "000010": 82, "dress": 82, "32657": 82, "000013": 82, "21282": 82, "000016": 82, "53564": 82, "000018": 82, "pullov": 82, "6321": 82, "30968": 82, "001267": 82, "30659": 82, "000022": [82, 94], "47824": 82, "001454": 82, "3370": 82, "000026": 82, "54565": 82, "001854": 82, "9762": 82, "258": 82, "47139": 82, "000033": 82, "166980": 82, "986195": 82, "997205": 82, "948781": 82, "999358": 82, "54078": 82, "17371": 82, "000025": 82, "plot_label_issue_exampl": 82, "ncol": [82, 88], "nrow": [82, 88], "ceil": 82, "axes_list": 82, "label_issue_indic": 82, "gl": 82, "sl": 82, "fontdict": 82, "imshow": [82, 88], "cmap": [82, 90], "grai": 82, "subplots_adjust": 82, "hspace": 82, "outsiz": 82, "outlier_issues_df": 82, "depict": [82, 86, 87, 88, 89, 91], "plot_outlier_issues_exampl": 82, "n_comparison_imag": 82, "sample_from_class": 82, "number_of_sampl": 82, "non_outlier_indic": 82, "isnul": 82, "non_outlier_indices_excluding_curr": 82, "sampled_indic": 82, "label_scores_of_sampl": 82, "top_score_indic": 82, "top_label_indic": 82, "sampled_imag": 82, "get_image_given_label_and_sampl": 82, "image_from_dataset": 82, "corresponding_label": 82, "comparison_imag": 82, "images_to_plot": 82, "idlist": 82, "iterrow": 82, "closest": 82, "counterpart": 82, "near_duplicate_issues_df": 82, "plot_near_duplicate_issue_exampl": 82, "seen_id_pair": 82, "get_image_and_given_label_and_predicted_label": 82, "duplicate_imag": 82, "nd_set": 82, "challeng": 82, "dark_issu": 82, "reveal": [82, 87, 91], "dark_scor": 82, "dark_issues_df": 82, "is_dark_issu": 82, "34848": 82, "203922": 82, "50270": 82, "204588": 82, "3936": 82, "213098": 82, "733": 82, "217686": 82, "8094": 82, "230118": 82, "plot_image_issue_exampl": 82, "difficult": 82, "disproportion": 82, "lowinfo_issu": 82, "low_information_scor": 82, "lowinfo_issues_df": 82, "is_low_information_issu": 82, "53050": 82, "067975": 82, "40875": 82, "089929": 82, "9594": 82, "092601": 82, "34825": 82, "107744": 82, "37530": 82, "108516": 82, "lot": 82, "depth": 83, "survei": [83, 94], "focus": [83, 85, 86, 87], "scienc": 83, "multivariate_norm": [83, 85, 86], "make_data": [83, 85], "cov": [83, 85, 86], "avg_trac": [83, 86], "test_label": [83, 86, 88, 93], "py_tru": 83, "noise_matrix_tru": 83, "noise_marix": 83, "s_test": 83, "noisy_test_label": 83, "purpl": 83, "val": 83, "namespac": 83, "exec": 83, "markerfacecolor": [83, 86], "markeredgecolor": [83, 86, 90], "markers": [83, 86, 90], "markeredgewidth": [83, 86, 90], "realist": 83, "7560": 83, "637318e": 83, "896262e": 83, "548391e": 83, "923417e": 83, "375075e": 83, "3454": 83, "014051": 83, "020451": 83, "249": [83, 87], "042594": 83, "043859": 83, "045954": 83, "6120": 83, "023714": 83, "007136": 83, "119": [83, 87], "107266": 83, "103": [83, 87], "033738": 83, "238": [83, 87], "119505": 83, "236": [83, 87], "037843": 83, "222": 83, "614915": 83, "122": [83, 87], "624422": 83, "625965": 83, "626079": 83, "118": 83, "627675": 83, "695223": 83, "323529": 83, "523015": 83, "013720": 83, "675727": 83, "646521": 83, "anyth": 83, "enhanc": [83, 85, 87], "magic": 83, "83": [83, 87, 90, 91, 92, 94], "liter": 83, "identif": 83, "x27": 83, "logisticregressionlogisticregress": 83, "ever": 83, "092": 83, "040": 83, "024": 83, "004": 83, "surpris": 83, "1705": 83, "01936": 83, "ton": 83, "yourfavoritemodel1": 83, "merged_label": 83, "merged_test_label": 83, "newli": [83, 85], "yourfavoritemodel2": 83, "yourfavoritemodel3": 83, "cl3": 83, "takeawai": 83, "That": [83, 86], "randomli": 83, "my_test_pred_prob": 83, "my_test_pr": 83, "issues_test": 83, "corrected_test_label": 83, "pretend": 83, "cl_test_pr": 83, "69": [83, 90, 91], "fairli": 83, "label_acc": 83, "percentag": 83, "offset": 83, "nquestion": 83, "overestim": 83, "answer": 83, "experienc": 83, "76": [83, 86, 87, 90, 91, 92], "knowledg": 83, "quantiti": [83, 90], "prioiri": 83, "known": 83, "versatil": 83, "label_issues_indic": 83, "213": [83, 87], "212": [83, 92], "218": [83, 87], "152": 83, "197": [83, 87], "196": [83, 87], "170": 83, "214": 83, "164": [83, 86], "198": [83, 87], "191": [83, 87], "121": [83, 93], "117": [83, 90], "206": [83, 87], "115": [83, 87], "193": 83, "194": 83, "201": [83, 87], "174": 83, "163": 83, "150": [83, 85, 87], "169": 83, "151": [83, 87], "168": 83, "precision_scor": 83, "recall_scor": 83, "f1_score": 83, "true_label_issu": 83, "filter_by_list": 83, "718750": [83, 85], "807018": 83, "912": 83, "733333": 83, "800000": 83, "721311": 83, "792793": 83, "908": 83, "676923": 83, "765217": 83, "892": 83, "567901": 83, "702290": 83, "844": 83, "gaug": 83, "label_issues_count": 83, "155": [83, 87], "156": 83, "172": [83, 86], "easiest": 83, "modular": 83, "penalti": 83, "l2": 83, "model3": 83, "n_estim": 83, "cv_pred_probs_1": 83, "cv_pred_probs_2": 83, "cv_pred_probs_3": 83, "label_quality_scores_best": 83, "cv_pred_probs_ensembl": 83, "label_quality_scores_bett": 83, "superior": [83, 89], "workflow": [84, 90], "speechbrain": 84, "timm": 84, "glad": 85, "multiannotator_label": 85, "300": [85, 94], "noisier": 85, "111": [85, 90], "local_data": [85, 86], "true_labels_train": [85, 86], "noise_matrix_bett": 85, "noise_matrix_wors": 85, "transpos": [85, 88], "dropna": 85, "zfill": 85, "row_na_check": 85, "notna": 85, "reset_index": 85, "a0001": 85, "a0002": 85, "a0003": 85, "a0004": 85, "a0005": 85, "a0006": 85, "a0007": 85, "a0008": 85, "a0009": 85, "a0010": 85, "a0041": 85, "a0042": 85, "a0043": 85, "a0044": 85, "a0045": 85, "a0046": 85, "a0047": 85, "a0048": 85, "a0049": 85, "a0050": 85, "na": 85, "60856743": 85, "41693214": 85, "40908785": 85, "87147629": 85, "64941785": 85, "10774851": 85, "0524466": 85, "71853246": 85, "37169848": 85, "66031048": 85, "multiannotator_util": 85, "crude": 85, "straight": 85, "majority_vote_label": 85, "736118": 85, "757751": 85, "782232": 85, "715565": 85, "824256": 85, "quality_annotator_a0001": 85, "quality_annotator_a0002": 85, "quality_annotator_a0003": 85, "quality_annotator_a0004": 85, "quality_annotator_a0005": 85, "quality_annotator_a0006": 85, "quality_annotator_a0007": 85, "quality_annotator_a0008": 85, "quality_annotator_a0009": 85, "quality_annotator_a0010": 85, "quality_annotator_a0041": 85, "quality_annotator_a0042": 85, "quality_annotator_a0043": 85, "quality_annotator_a0044": 85, "quality_annotator_a0045": 85, "quality_annotator_a0046": 85, "quality_annotator_a0047": 85, "quality_annotator_a0048": 85, "quality_annotator_a0049": 85, "quality_annotator_a0050": 85, "070564": 85, "216078": 85, "119188": 85, "alongisd": 85, "244981": 85, "208333": 85, "295979": 85, "294118": 85, "324197": 85, "310345": 85, "355316": 85, "346154": 85, "439732": 85, "480000": 85, "a0031": 85, "523205": 85, "580645": 85, "a0034": 85, "535313": 85, "607143": 85, "a0021": 85, "606999": 85, "a0015": 85, "609526": 85, "678571": 85, "a0011": 85, "621103": 85, "692308": 85, "wors": 85, "improved_consensus_label": 85, "majority_vote_accuraci": 85, "cleanlab_label_accuraci": 85, "8581081081081081": 85, "9797297297297297": 85, "besid": 85, "sorted_consensus_quality_scor": 85, "worst_qual": 85, "better_qu": 85, "worst_quality_accuraci": 85, "better_quality_accuraci": 85, "9893238434163701": 85, "improved_pred_prob": 85, "treat": [85, 86, 90, 94], "analzi": 85, "copyright": 86, "advertis": 86, "violenc": 86, "nsfw": 86, "suppli": [86, 87], "celeba": 86, "make_multilabel_data": 86, "boxes_coordin": 86, "box_multilabel": 86, "make_multi": 86, "bx1": 86, "by1": 86, "bx2": 86, "by2": 86, "label_list": 86, "ur": 86, "upper": 86, "inidx": 86, "logical_and": 86, "inv_d": 86, "labels_idx": 86, "true_labels_test": 86, "dict_unique_label": 86, "get_color_arrai": 86, "dcolor": 86, "aa4400": 86, "55227f": 86, "55a100": 86, "00ff00": 86, "007f7f": 86, "386b55": 86, "0000ff": 86, "simplic": 86, "advis": 86, "y_onehot": 86, "single_class_label": 86, "stratifi": [86, 89], "kf": 86, "train_index": 86, "test_index": 86, "clf_cv": 86, "x_train_cv": 86, "x_test_cv": 86, "y_train_cv": 86, "y_test_cv": 86, "y_pred_cv": 86, "saw": 86, "num_to_displai": 86, "09": [86, 87, 91], "275": 86, "267": 86, "225": 86, "171": 86, "234": 86, "165": 86, "227": [86, 87], "262": [86, 87], "263": [86, 87], "266": [86, 87], "139": 86, "143": [86, 87], "216": [86, 87, 94], "265": 86, "159": [86, 87], "despit": [86, 94], "suspect": 86, "888": 86, "8224": 86, "9632": 86, "968": 86, "6512": 86, "0444": 86, "774": 86, "labels_binary_format": 86, "labels_list_format": 86, "surround": 87, "scene": 87, "coco": 87, "everydai": 87, "has_label_issu": 87, "insal": 87, "nc": [87, 91, 94], "s3": [87, 91, 94], "amazonaw": [87, 91, 94], "objectdetectionbenchmark": 87, "tutorial_obj": 87, "pkl": 87, "example_imag": 87, "unzip": [87, 94], "_separate_label": 87, "_separate_predict": 87, "begin": 87, "image_path": 87, "rb": 87, "image_to_visu": 87, "seg_map": 87, "334": 87, "float32": 87, "bboxes_ignor": 87, "290": 87, "286": 87, "285": 87, "224": 87, "231": 87, "293": 87, "235": 87, "289": 87, "282": 87, "74": [87, 90, 91, 92], "281": 87, "271": 87, "280": 87, "277": 87, "279": 87, "287": 87, "299": 87, "276": 87, "307": 87, "321": 87, "326": 87, "333": 87, "261": 87, "319": 87, "257": 87, "295": 87, "283": 87, "243": 87, "303": 87, "316": 87, "247": 87, "323": 87, "327": 87, "226": 87, "228": 87, "232": 87, "219": 87, "239": 87, "240": 87, "209": [87, 94], "242": 87, "202": 87, "230": 87, "215": 87, "220": 87, "229": 87, "217": [87, 94], "237": 87, "207": 87, "204": 87, "84": [87, 88, 90, 91], "205": 87, "223": 87, "153": 87, "149": 87, "140": 87, "124": 87, "268": 87, "273": 87, "108": 87, "284": 87, "110": 87, "136": 87, "145": 87, "173": 87, "297": 87, "317": 87, "192": 87, "332": 87, "324": 87, "203": 87, "320": 87, "314": 87, "199": 87, "291": 87, "000000481413": 87, "jpg": 87, "42398": 87, "44503": 87, "337": [87, 93], "29968": 87, "336": 87, "21005": 87, "9978472": 87, "forgot": 87, "drew": 87, "label_issue_idx": 87, "num_examples_to_show": 87, "138": 87, "candid": 87, "97489622": 87, "70610878": 87, "98764951": 87, "88899237": 87, "99085805": 87, "issue_idx": 87, "95569726e": 87, "03354841e": 87, "57510169e": 87, "58447666e": 87, "39755858e": 87, "issue_to_visu": 87, "000000009483": 87, "95569726168054e": 87, "addition": [87, 91], "visibl": 87, "missmatch": 87, "likelei": 87, "agnost": 87, "vaidat": 87, "inconsist": 87, "000000395701": 87, "033548411774308e": 87, "armchair": 87, "tv": 87, "000000154004": 87, "38300759625496356": 87, "foreground": 87, "000000448410": 87, "0008575101690203273": 87, "crowd": 87, "alon": 87, "explor": [87, 88], "resembl": [87, 88], "000000499768": 87, "9748962231208227": 87, "000000521141": 87, "8889923658893665": 87, "000000143931": 87, "9876495074395956": 87, "uncov": 87, "irregular": 87, "aim": [87, 91, 94], "anomali": 87, "unusu": [87, 88], "object_detection_util": 87, "calculate_bounding_box_area": 87, "num_imgs_to_show": 87, "lab_object_count": 87, "pred_object_count": 87, "000000430073": 87, "000000183709": 87, "000000189475": 87, "studi": 87, "label_norm": 87, "pred_norm": 87, "area": [87, 91], "lab_area": 87, "pred_area": 87, "lab_area_mean": 87, "lab_area_std": 87, "max_deviation_valu": 87, "max_deviation_class": 87, "deviation_valu": 87, "deviation_class": 87, "mean_area": 87, "std_area": 87, "class_area": 87, "deviations_awai": 87, "max_deviation_index": 87, "num_imgs_to_show_per_class": 87, "class_num": 87, "sorted_indic": 87, "000000422886": 87, "000000341828": 87, "000000461009": 87, "train_feature_embed": 88, "ood_train_feature_scor": 88, "test_feature_embed": 88, "ood_test_feature_scor": 88, "ood_train_predictions_scor": 88, "train_pred_prob": 88, "ood_test_predictions_scor": 88, "test_pred_prob": 88, "pylab": 88, "rcparam": 88, "baggingclassifi": 88, "therebi": 88, "rescal": 88, "transform_norm": 88, "totensor": 88, "root": 88, "animal_class": 88, "non_animal_class": 88, "animal_idx": 88, "test_idx": 88, "toronto": 88, "edu": 88, "kriz": 88, "170498071": 88, "1966080": 88, "19659740": 88, "13729792": 88, "77179148": 88, "66it": [88, 91], "25460736": 88, "95453009": 88, "37191680": 88, "104050694": 88, "82it": [88, 91], "48922624": 88, "108754354": 88, "60653568": 88, "111599175": 88, "08it": [88, 91], "72417280": 88, "113485568": 88, "84148224": 88, "114683185": 88, "40it": [88, 91], "95879168": 88, "115452930": 88, "26it": [88, 91], "107610112": 88, "116001177": 88, "119341056": 88, "116178766": 88, "29it": [88, 91], "131137536": 88, "116661736": 88, "90it": [88, 91], "142868480": 88, "116808215": 88, "89it": [88, 91], "154599424": 88, "116920831": 88, "64it": [88, 91], "166330368": 88, "116990077": 88, "48it": [88, 91], "110845448": 88, "51it": [88, 91], "5000": 88, "plot_imag": 88, "visualize_outli": 88, "txt_class": 88, "img": [88, 90], "npimg": 88, "show_label": 88, "data_subset": 88, "resnet50": 88, "corpu": 88, "2048": 88, "embed_imag": 88, "create_model": 88, "strang": 88, "odd": 88, "train_ood_features_scor": 88, "top_train_ood_features_idx": 88, "fun": 88, "negat": 88, "homogen": 88, "bottom_train_ood_features_idx": 88, "test_ood_features_scor": 88, "top_ood_features_idx": 88, "inevit": 88, "trade": 88, "5th": 88, "percentil": 88, "fifth_percentil": 88, "plt_rang": 88, "hist": 88, "train_outlier_scor": 88, "ylabel": 88, "axvlin": 88, "test_outlier_scor": 88, "ood_features_indic": 88, "revisit": 88, "return_invers": 88, "train_feature_embeddings_sc": 88, "test_feature_embeddings_sc": 88, "train_pred_label": 88, "9702": 88, "train_ood_predictions_scor": 88, "test_ood_predictions_scor": 88, "mainli": [88, 94], "lost": 88, "unsuit": 89, "ok": [89, 94], "convention": 89, "aforement": 89, "hypothet": 89, "contrast": 89, "tradit": 89, "disjoint": 89, "out_of_sample_pred_probs_for_a": 89, "out_of_sample_pred_probs_for_b": 89, "out_of_sample_pred_probs_for_c": 89, "out_of_sample_pred_prob": 89, "price": 90, "incom": 90, "ag": 90, "histgradientboostingregressor": 90, "r2_score": 90, "student_grades_r": 90, "final_scor": 90, "true_final_scor": 90, "homework": 90, "3d": 90, "hue": 90, "mpl_toolkit": 90, "mplot3d": 90, "axes3d": 90, "errors_idx": 90, "add_subplot": 90, "z": 90, "colorbar": 90, "errors_mask": 90, "feature_column": 90, "predicted_column": 90, "x_train_raw": 90, "x_test_raw": 90, "categorical_featur": [90, 92], "randomforestregressor": 90, "636197": 90, "499503": 90, "843478": 90, "776647": 90, "350358": 90, "170547": 90, "706969": 90, "984759": 90, "812515": 90, "795928": 90, "identified_issu": [90, 93], "141": 90, "659": 90, "367": 90, "318": 90, "305": 90, "560": 90, "657": 90, "688": 90, "view_datapoint": 90, "concat": 90, "consum": [90, 93], "baseline_model": [90, 93], "preds_og": 90, "r2_og": 90, "838": 90, "robustli": [90, 92, 93], "acceler": [90, 93], "found_label_issu": 90, "preds_cl": 90, "r2_cl": 90, "926": 90, "effort": [90, 92, 93], "favorit": 90, "13091885": 90, "48412548": 90, "00695165": 90, "44421119": 90, "43029854": 90, "synthia": 91, "imagesegment": 91, "given_mask": 91, "predicted_mask": 91, "set_printopt": [91, 94], "sky": 91, "sidewalk": 91, "veget": 91, "terrain": 91, "rider": 91, "pred_probs_filepath": 91, "1088": 91, "1920": 91, "label_filepath": 91, "synthia_class": 91, "maunal": 91, "100000": 91, "244800": 91, "leftmost": 91, "middl": [91, 94], "infact": 91, "rightmost": 91, "discrep": 91, "4997817": 91, "15263": 91, "152620": 91, "32it": 91, "30666": 91, "153444": 91, "23it": 91, "46403": 91, "155233": 91, "62it": 91, "62088": 91, "155869": 91, "77755": 91, "156156": 91, "65it": 91, "93461": 91, "156459": 91, "109145": 91, "156582": 91, "124865": 91, "156775": 91, "140561": 91, "156832": 91, "156296": 91, "156990": 91, "171996": 91, "156816": 91, "52it": 91, "187678": 91, "156789": 91, "10it": 91, "203449": 91, "157064": 91, "19it": 91, "219271": 91, "157411": 91, "235039": 91, "157491": 91, "250894": 91, "157807": 91, "98it": 91, "266675": 91, "157776": 91, "96it": 91, "282453": 91, "157761": 91, "298230": 91, "157339": 91, "46it": 91, "313965": 91, "157107": 91, "54it": 91, "329811": 91, "157509": 91, "345563": 91, "153954": 91, "15it": 91, "361251": 91, "154814": 91, "376940": 91, "155427": 91, "392762": 91, "156257": 91, "408619": 91, "156944": 91, "424451": 91, "157351": 91, "440219": 91, "157448": 91, "13it": 91, "456014": 91, "157594": 91, "94it": 91, "471810": 91, "157702": 91, "43it": 91, "487647": 91, "157900": 91, "06it": 91, "503447": 91, "157926": 91, "519243": 91, "157933": 91, "535046": 91, "157960": 91, "35it": 91, "550843": 91, "157126": 91, "81it": 91, "566561": 91, "157141": 91, "74it": 91, "582279": 91, "157149": 91, "597995": 91, "157124": 91, "613708": 91, "156897": 91, "25it": 91, "629508": 91, "157224": 91, "645231": 91, "157177": 91, "39it": 91, "660949": 91, "156978": 91, "676648": 91, "156760": 91, "692325": 91, "156208": 91, "707947": 91, "156090": 91, "723563": 91, "156108": 91, "57it": 91, "739191": 91, "156158": 91, "754807": 91, "156048": 91, "770497": 91, "156302": 91, "786317": 91, "156868": 91, "802017": 91, "156904": 91, "817708": 91, "153225": 91, "833392": 91, "154288": 91, "849328": 91, "155788": 91, "865122": 91, "156427": 91, "880887": 91, "156788": 91, "95it": 91, "896614": 91, "156931": 91, "912312": 91, "156914": 91, "928025": 91, "156976": 91, "92it": 91, "943726": 91, "156932": 91, "85it": 91, "959463": 91, "157062": 91, "975171": 91, "156949": 91, "990867": 91, "156556": 91, "1006550": 91, "156635": 91, "1022215": 91, "156528": 91, "1037881": 91, "156565": 91, "1053699": 91, "157047": 91, "75it": 91, "1069405": 91, "157030": 91, "1085109": 91, "157023": 91, "73it": 91, "1100812": 91, "157017": 91, "1116514": 91, "1132201": 91, "156856": 91, "61it": 91, "1147887": 91, "156805": 91, "1163580": 91, "156840": 91, "1179265": 91, "156735": 91, "1194966": 91, "156815": 91, "1210648": 91, "156722": 91, "01it": 91, "1226321": 91, "156153": 91, "1241937": 91, "156124": 91, "87it": 91, "1257558": 91, "156148": 91, "50it": 91, "1273179": 91, "156164": 91, "18it": 91, "1288823": 91, "156245": 91, "31it": 91, "1304448": 91, "149122": 91, "1320201": 91, "151560": 91, "1335784": 91, "152810": 91, "1351437": 91, "153905": 91, "1367067": 91, "154615": 91, "30it": 91, "1382626": 91, "154902": 91, "1398347": 91, "155589": 91, "1414047": 91, "156009": 91, "20it": 91, "1429657": 91, "155598": 91, "1445223": 91, "155576": 91, "1460785": 91, "151230": 91, "69it": 91, "1476499": 91, "152962": 91, "1492193": 91, "154135": 91, "1507910": 91, "155034": 91, "80it": 91, "1523500": 91, "155291": 91, "00it": 91, "1539068": 91, "155405": 91, "1554740": 91, "155797": 91, "1570325": 91, "155632": 91, "09it": 91, "1585935": 91, "155771": 91, "1601515": 91, "155577": 91, "1617101": 91, "155645": 91, "1632667": 91, "148235": 91, "1648018": 91, "149759": 91, "1663496": 91, "151227": 91, "1679092": 91, "1694624": 91, "153418": 91, "04it": 91, "1710114": 91, "153856": 91, "1725618": 91, "154206": 91, "1741184": 91, "154637": 91, "42it": 91, "1756809": 91, "155118": 91, "1772353": 91, "155210": 91, "55it": 91, "1787879": 91, "155071": 91, "1803441": 91, "155232": 91, "1818967": 91, "155131": 91, "1834552": 91, "155345": 91, "1850088": 91, "155196": 91, "1865620": 91, "155230": 91, "1881152": 91, "155254": 91, "1896678": 91, "155248": 91, "93it": 91, "1912204": 91, "155052": 91, "1927782": 91, "155267": 91, "1943309": 91, "147382": 91, "1958900": 91, "149845": 91, "1974144": 91, "150601": 91, "16it": 91, "1989777": 91, "152285": 91, "2005339": 91, "153271": 91, "2020923": 91, "154032": 91, "2036556": 91, "154716": 91, "2052197": 91, "155218": 91, "2067791": 91, "155431": 91, "2083480": 91, "155866": 91, "2099072": 91, "153960": 91, "2114477": 91, "149462": 91, "2129964": 91, "151036": 91, "2145511": 91, "152339": 91, "2161091": 91, "153360": 91, "76it": 91, "2176618": 91, "153926": 91, "2192023": 91, "153927": 91, "2207487": 91, "154138": 91, "2222907": 91, "154133": 91, "2238462": 91, "154555": 91, "2254046": 91, "154936": 91, "2269542": 91, "154628": 91, "2285034": 91, "154712": 91, "2300521": 91, "154756": 91, "2316076": 91, "154990": 91, "2331731": 91, "155457": 91, "59it": 91, "2347419": 91, "155882": 91, "2363116": 91, "156205": 91, "14it": 91, "2378808": 91, "156417": 91, "2394450": 91, "156396": 91, "2410090": 91, "156233": 91, "2425714": 91, "153347": 91, "2441355": 91, "154251": 91, "2456999": 91, "154899": 91, "2472573": 91, "155147": 91, "2488269": 91, "155687": 91, "2503888": 91, "155834": 91, "72it": 91, "2519475": 91, "155805": 91, "2535058": 91, "155369": 91, "2550597": 91, "155179": 91, "2566117": 91, "155127": 91, "2581758": 91, "155508": 91, "2597417": 91, "155829": 91, "2613047": 91, "155967": 91, "2628736": 91, "156242": 91, "2644396": 91, "156346": 91, "2660031": 91, "156281": 91, "2675660": 91, "156120": 91, "2691280": 91, "156142": 91, "2706895": 91, "155947": 91, "2722572": 91, "156193": 91, "2738193": 91, "156195": 91, "2753813": 91, "150301": 91, "2769422": 91, "151987": 91, "2785064": 91, "153289": 91, "2800777": 91, "154423": 91, "2816532": 91, "155351": 91, "2832326": 91, "156121": 91, "2848000": 91, "156304": 91, "2863639": 91, "156075": 91, "36it": 91, "2879282": 91, "156179": 91, "2894905": 91, "156130": 91, "38it": 91, "2910521": 91, "155588": 91, "2926101": 91, "155647": 91, "2941668": 91, "155279": 91, "2957198": 91, "155117": 91, "2972765": 91, "155281": 91, "2988398": 91, "155591": 91, "3003958": 91, "155555": 91, "3019690": 91, "156080": 91, "3035372": 91, "156299": 91, "79it": 91, "3051003": 91, "154260": 91, "3066480": 91, "154409": 91, "3082098": 91, "154934": 91, "3097722": 91, "155321": 91, "3113318": 91, "155509": 91, "3128913": 91, "155639": 91, "3144479": 91, "155436": 91, "3160024": 91, "155424": 91, "3175636": 91, "155631": 91, "3191241": 91, "155756": 91, "3206843": 91, "155833": 91, "3222427": 91, "155273": 91, "3237981": 91, "3253517": 91, "154931": 91, "3269081": 91, "155140": 91, "3284643": 91, "155282": 91, "3300172": 91, "3315734": 91, "155110": 91, "3331370": 91, "155482": 91, "3346919": 91, "155478": 91, "3362526": 91, "155654": 91, "3378092": 91, "155458": 91, "3393723": 91, "155711": 91, "3409391": 91, "155999": 91, "3425019": 91, "156082": 91, "3440777": 91, "3456471": 91, "156650": 91, "3472159": 91, "156718": 91, "3487831": 91, "156663": 91, "3503498": 91, "156604": 91, "3519159": 91, "3534858": 91, "156463": 91, "3550505": 91, "149036": 91, "3566172": 91, "151244": 91, "49it": 91, "3581958": 91, "153178": 91, "3597789": 91, "154690": 91, "3613468": 91, "155310": 91, "3629200": 91, "155906": 91, "3644976": 91, "156457": 91, "3660681": 91, "156631": 91, "3676412": 91, "156830": 91, "3692102": 91, "156763": 91, "3707783": 91, "156228": 91, "3723410": 91, "156001": 91, "3739013": 91, "155896": 91, "3754680": 91, "156126": 91, "3770294": 91, "155956": 91, "3785910": 91, "156016": 91, "3801513": 91, "155964": 91, "71it": 91, "3817120": 91, "155992": 91, "84it": 91, "3832720": 91, "155983": 91, "3848345": 91, "156059": 91, "3863952": 91, "148367": 91, "3879632": 91, "150805": 91, "3895335": 91, "152623": 91, "3911069": 91, "154010": 91, "3926784": 91, "154938": 91, "3942544": 91, "155727": 91, "3958159": 91, "155850": 91, "3973923": 91, "156382": 91, "3989706": 91, "156813": 91, "4005509": 91, "157173": 91, "4021268": 91, "157297": 91, "4037002": 91, "156864": 91, "4052692": 91, "156360": 91, "4068403": 91, "156583": 91, "4084170": 91, "156906": 91, "4099862": 91, "156560": 91, "4115633": 91, "156901": 91, "4131413": 91, "157169": 91, "4147174": 91, "157300": 91, "4162905": 91, "157101": 91, "4178673": 91, "157271": 91, "4194401": 91, "154293": 91, "4210003": 91, "154802": 91, "4225675": 91, "4241497": 91, "156216": 91, "4257316": 91, "156802": 91, "4273149": 91, "157256": 91, "33it": 91, "4288963": 91, "157517": 91, "4304819": 91, "157827": 91, "4320680": 91, "158060": 91, "4336553": 91, "158259": 91, "4352399": 91, "158317": 91, "4368232": 91, "157914": 91, "4384025": 91, "157847": 91, "4399840": 91, "157937": 91, "4415688": 91, "158096": 91, "4431584": 91, "158353": 91, "4447420": 91, "158329": 91, "4463254": 91, "158306": 91, "4479095": 91, "158337": 91, "4494929": 91, "158263": 91, "4510756": 91, "157835": 91, "4526540": 91, "157699": 91, "4542329": 91, "157754": 91, "4558105": 91, "157720": 91, "4573998": 91, "158079": 91, "4589845": 91, "158195": 91, "4605665": 91, "158104": 91, "4621476": 91, "157979": 91, "4637312": 91, "158092": 91, "4653156": 91, "158194": 91, "4668976": 91, "157925": 91, "4684769": 91, "157455": 91, "4700543": 91, "157536": 91, "4716321": 91, "157608": 91, "67it": 91, "4732087": 91, "157621": 91, "4747850": 91, "157549": 91, "4763606": 91, "157330": 91, "4779340": 91, "156851": 91, "4795062": 91, "156958": 91, "4810759": 91, "156924": 91, "4826479": 91, "157004": 91, "4842180": 91, "153018": 91, "4857754": 91, "153817": 91, "4873365": 91, "154494": 91, "4888941": 91, "154867": 91, "4904521": 91, "155143": 91, "4920058": 91, "4935639": 91, "155386": 91, "4951237": 91, "155562": 91, "4966796": 91, "155195": 91, "4982344": 91, "155277": 91, "155619": 91, "3263230": 91, "783379": 91, "275110": 91, "255792": 91, "78225": 91, "55990": 91, "54427": 91, "33591": 91, "24645": 91, "21308": 91, "15045": 91, "14171": 91, "13832": 91, "13498": 91, "11490": 91, "9164": 91, "8769": 91, "6999": 91, "6031": 91, "5011": 91, "mistakenli": 91, "class_issu": 91, "domin": 91, "extratreesclassifi": 92, "extratre": 92, "ranked_label_issu": [92, 93], "labelencod": [92, 93], "labels_raw": 92, "interg": [92, 93], "tress": 92, "827": 92, "cheat": 92, "0pt": 92, "233": 92, "labels_train": 92, "labels_test": 92, "acc_og": [92, 93], "783068783068783": 92, "acc_cl": [92, 93], "8095238095238095": 92, "earlier": [93, 94], "raw_label": 93, "raw_train_text": 93, "raw_test_text": 93, "raw_train_label": 93, "raw_test_label": 93, "encond": 93, "train_text": 93, "test_text": 93, "858371": 93, "547274": 93, "826228": 93, "966008": 93, "792449": 93, "646": 93, "390": 93, "628": 93, "702": 93, "135": 93, "735": 93, "print_as_df": 93, "inverse_transform": 93, "fight": 93, "bunch": 94, "conll": 94, "2003": 94, "love": 94, "n_i": 94, "optional_list_of_ordered_class_nam": 94, "deepai": 94, "conll2003": 94, "rm": 94, "tokenclassif": 94, "2024": 94, "2400": 94, "52e0": 94, "1a00": 94, "718": 94, "connect": 94, "443": 94, "await": 94, "982975": 94, "960k": 94, "kb": 94, "959": 94, "94k": 94, "mb": 94, "directori": 94, "inflat": 94, "182": 94, "241": 94, "17045998": 94, "16m": 94, "octet": 94, "25m": 94, "1mb": 94, "26m": 94, "bert": 94, "read_npz": 94, "filepath": 94, "corrsespond": 94, "iob2": 94, "given_ent": 94, "entity_map": 94, "readfil": 94, "sep": 94, "startswith": 94, "docstart": 94, "isalpha": 94, "isupp": 94, "indices_to_preview": 94, "nsentenc": 94, "eu": 94, "reject": 94, "boycott": 94, "british": 94, "lamb": 94, "00030412": 94, "00023826": 94, "99936208": 94, "00007009": 94, "00002545": 94, "99998795": 94, "00000401": 94, "00000218": 94, "00000455": 94, "00000131": 94, "00000749": 94, "99996115": 94, "00001371": 94, "0000087": 94, "00000895": 94, "99998936": 94, "00000382": 94, "00000178": 94, "00000366": 94, "00000137": 94, "99999101": 94, "00000266": 94, "00000174": 94, "0000035": 94, "00000109": 94, "99998768": 94, "00000482": 94, "00000202": 94, "00000438": 94, "0000011": 94, "00000465": 94, "99996392": 94, "00001105": 94, "0000116": 94, "00000878": 94, "99998671": 94, "00000364": 94, "00000213": 94, "00000472": 94, "00000281": 94, "99999073": 94, "00000211": 94, "00000159": 94, "00000442": 94, "00000115": 94, "peter": 94, "blackburn": 94, "00000358": 94, "00000529": 94, "99995623": 94, "0000129": 94, "0000024": 94, "00001812": 94, "99994141": 94, "00001645": 94, "00002162": 94, "brussel": 94, "1996": 94, "00001172": 94, "00000821": 94, "00004661": 94, "0000618": 94, "99987167": 94, "99999061": 94, "00000201": 94, "00000195": 94, "00000408": 94, "00000135": 94, "2254": 94, "2907": 94, "19392": 94, "9962": 94, "8904": 94, "19303": 94, "12918": 94, "9256": 94, "11855": 94, "18392": 94, "20426": 94, "19402": 94, "14744": 94, "19371": 94, "4645": 94, "10331": 94, "9430": 94, "6143": 94, "18367": 94, "12914": 94, "todai": 94, "weather": 94, "march": 94, "scalfaro": 94, "northern": 94, "himself": 94, "said": 94, "germani": 94, "nastja": 94, "rysich": 94, "north": 94, "spla": 94, "fought": 94, "khartoum": 94, "govern": 94, "south": 94, "1983": 94, "autonomi": 94, "animist": 94, "region": 94, "moslem": 94, "arabis": 94, "mayor": 94, "antonio": 94, "gonzalez": 94, "garcia": 94, "revolutionari": 94, "parti": 94, "wednesdai": 94, "troop": 94, "raid": 94, "farm": 94, "stole": 94, "rape": 94, "women": 94, "spring": 94, "chg": 94, "hrw": 94, "12pct": 94, "princ": 94, "photo": 94, "moment": 94, "spokeswoman": 94, "rainier": 94, "told": 94, "reuter": 94, "danila": 94, "carib": 94, "w224": 94, "equip": 94, "radiomet": 94, "earn": 94, "19996": 94, "london": 94, "denom": 94, "sale": 94, "uk": 94, "jp": 94, "fr": 94, "maccabi": 94, "hapoel": 94, "haifa": 94, "tel": 94, "aviv": 94, "hospit": 94, "rever": 94, "roman": 94, "cathol": 94, "nun": 94, "admit": 94, "calcutta": 94, "week": 94, "ago": 94, "fever": 94, "vomit": 94, "allianc": 94, "embattl": 94, "kabul": 94, "salang": 94, "highwai": 94, "mondai": 94, "tuesdai": 94, "suprem": 94, "council": 94, "led": 94, "jumbish": 94, "milli": 94, "movement": 94, "warlord": 94, "abdul": 94, "rashid": 94, "dostum": 94, "dollar": 94, "exchang": 94, "3570": 94, "12049": 94, "born": 94, "1937": 94, "provinc": 94, "anhui": 94, "dai": 94, "came": 94, "shanghai": 94, "citi": 94, "prolif": 94, "author": 94, "teacher": 94, "chines": 94, "16764": 94, "1990": 94, "historian": 94, "alan": 94, "john": 94, "percival": 94, "taylor": 94, "di": 94, "20446": 94, "pace": 94, "bowler": 94, "ian": 94, "harvei": 94, "claim": 94, "victoria": 94, "15514": 94, "cotti": 94, "osc": 94, "foreign": 94, "minist": 94, "7525": 94, "sultan": 94, "specter": 94, "met": 94, "crown": 94, "abdullah": 94, "defenc": 94, "aviat": 94, "jeddah": 94, "saudi": 94, "agenc": 94, "2288": 94, "hi": 94, "customari": 94, "outfit": 94, "champion": 94, "damp": 94, "scalp": 94, "canada": 94, "reign": 94, "olymp": 94, "donovan": 94, "bailei": 94, "1992": 94, "linford": 94, "christi": 94, "britain": 94, "1984": 94, "1988": 94, "carl": 94, "lewi": 94, "ambigi": 94, "punctuat": 94, "chicago": 94, "digest": 94, "philadelphia": 94, "usda": 94, "york": 94, "token_issu": 94, "471": 94, "kean": 94, "year": 94, "contract": 94, "manchest": 94, "19072": 94, "societi": 94, "million": 94, "bite": 94, "deliv": 94, "19910": 94, "father": 94, "clarenc": 94, "woolmer": 94, "renam": 94, "uttar": 94, "pradesh": 94, "india": 94, "ranji": 94, "trophi": 94, "nation": 94, "championship": 94, "captain": 94, "1949": 94, "15658": 94, "19879": 94, "iii": 94, "brian": 94, "shimer": 94, "randi": 94, "jone": 94, "19104": 94}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [30, 0, 0, "-", "dataset"], [33, 0, 0, "-", "experimental"], [36, 0, 0, "-", "filter"], [37, 0, 0, "-", "internal"], [48, 0, 0, "-", "models"], [50, 0, 0, "-", "multiannotator"], [53, 0, 0, "-", "multilabel_classification"], [56, 0, 0, "-", "object_detection"], [59, 0, 0, "-", "outlier"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "regression"], [65, 0, 0, "-", "segmentation"], [69, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.dataset": [[30, 1, 1, "", "find_overlapping_classes"], [30, 1, 1, "", "health_summary"], [30, 1, 1, "", "overall_label_health_score"], [30, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[31, 0, 0, "-", "cifar_cnn"], [32, 0, 0, "-", "coteaching"], [34, 0, 0, "-", "label_issues_batched"], [35, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[31, 2, 1, "", "CNN"], [31, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[31, 6, 1, "", "T_destination"], [31, 3, 1, "", "__call__"], [31, 3, 1, "", "add_module"], [31, 3, 1, "", "apply"], [31, 3, 1, "", "bfloat16"], [31, 3, 1, "", "buffers"], [31, 6, 1, "", "call_super_init"], [31, 3, 1, "", "children"], [31, 3, 1, "", "compile"], [31, 3, 1, "", "cpu"], [31, 3, 1, "", "cuda"], [31, 3, 1, "", "double"], [31, 6, 1, "", "dump_patches"], [31, 3, 1, "", "eval"], [31, 3, 1, "", "extra_repr"], [31, 3, 1, "", "float"], [31, 3, 1, "id0", "forward"], [31, 3, 1, "", "get_buffer"], [31, 3, 1, "", "get_extra_state"], [31, 3, 1, "", "get_parameter"], [31, 3, 1, "", "get_submodule"], [31, 3, 1, "", "half"], [31, 3, 1, "", "ipu"], [31, 3, 1, "", "load_state_dict"], [31, 3, 1, "", "modules"], [31, 3, 1, "", "named_buffers"], [31, 3, 1, "", "named_children"], [31, 3, 1, "", "named_modules"], [31, 3, 1, "", "named_parameters"], [31, 3, 1, "", "parameters"], [31, 3, 1, "", "register_backward_hook"], [31, 3, 1, "", "register_buffer"], [31, 3, 1, "", "register_forward_hook"], [31, 3, 1, "", "register_forward_pre_hook"], [31, 3, 1, "", "register_full_backward_hook"], [31, 3, 1, "", "register_full_backward_pre_hook"], [31, 3, 1, "", "register_load_state_dict_post_hook"], [31, 3, 1, "", "register_module"], [31, 3, 1, "", "register_parameter"], [31, 3, 1, "", "register_state_dict_pre_hook"], [31, 3, 1, "", "requires_grad_"], [31, 3, 1, "", "set_extra_state"], [31, 3, 1, "", "share_memory"], [31, 3, 1, "", "state_dict"], [31, 3, 1, "", "to"], [31, 3, 1, "", "to_empty"], [31, 3, 1, "", "train"], [31, 6, 1, "", "training"], [31, 3, 1, "", "type"], [31, 3, 1, "", "xpu"], [31, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[32, 1, 1, "", "adjust_learning_rate"], [32, 1, 1, "", "evaluate"], [32, 1, 1, "", "forget_rate_scheduler"], [32, 1, 1, "", "initialize_lr_scheduler"], [32, 1, 1, "", "loss_coteaching"], [32, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[34, 2, 1, "", "LabelInspector"], [34, 7, 1, "", "adj_confident_thresholds_shared"], [34, 1, 1, "", "find_label_issues_batched"], [34, 7, 1, "", "labels_shared"], [34, 7, 1, "", "pred_probs_shared"], [34, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[34, 3, 1, "", "get_confident_thresholds"], [34, 3, 1, "", "get_label_issues"], [34, 3, 1, "", "get_num_issues"], [34, 3, 1, "", "get_quality_scores"], [34, 3, 1, "", "score_label_quality"], [34, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[35, 2, 1, "", "CNN"], [35, 2, 1, "", "SimpleNet"], [35, 1, 1, "", "get_mnist_dataset"], [35, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[35, 3, 1, "", "__init_subclass__"], [35, 6, 1, "", "batch_size"], [35, 6, 1, "", "dataset"], [35, 6, 1, "", "epochs"], [35, 3, 1, "id0", "fit"], [35, 3, 1, "", "get_metadata_routing"], [35, 3, 1, "", "get_params"], [35, 6, 1, "", "loader"], [35, 6, 1, "", "log_interval"], [35, 6, 1, "", "lr"], [35, 6, 1, "", "momentum"], [35, 6, 1, "", "no_cuda"], [35, 3, 1, "id1", "predict"], [35, 3, 1, "id4", "predict_proba"], [35, 6, 1, "", "seed"], [35, 3, 1, "", "set_fit_request"], [35, 3, 1, "", "set_params"], [35, 3, 1, "", "set_predict_proba_request"], [35, 3, 1, "", "set_predict_request"], [35, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[35, 6, 1, "", "T_destination"], [35, 3, 1, "", "__call__"], [35, 3, 1, "", "add_module"], [35, 3, 1, "", "apply"], [35, 3, 1, "", "bfloat16"], [35, 3, 1, "", "buffers"], [35, 6, 1, "", "call_super_init"], [35, 3, 1, "", "children"], [35, 3, 1, "", "compile"], [35, 3, 1, "", "cpu"], [35, 3, 1, "", "cuda"], [35, 3, 1, "", "double"], [35, 6, 1, "", "dump_patches"], [35, 3, 1, "", "eval"], [35, 3, 1, "", "extra_repr"], [35, 3, 1, "", "float"], [35, 3, 1, "", "forward"], [35, 3, 1, "", "get_buffer"], [35, 3, 1, "", "get_extra_state"], [35, 3, 1, "", "get_parameter"], [35, 3, 1, "", "get_submodule"], [35, 3, 1, "", "half"], [35, 3, 1, "", "ipu"], [35, 3, 1, "", "load_state_dict"], [35, 3, 1, "", "modules"], [35, 3, 1, "", "named_buffers"], [35, 3, 1, "", "named_children"], [35, 3, 1, "", "named_modules"], [35, 3, 1, "", "named_parameters"], [35, 3, 1, "", "parameters"], [35, 3, 1, "", "register_backward_hook"], [35, 3, 1, "", "register_buffer"], [35, 3, 1, "", "register_forward_hook"], [35, 3, 1, "", "register_forward_pre_hook"], [35, 3, 1, "", "register_full_backward_hook"], [35, 3, 1, "", "register_full_backward_pre_hook"], [35, 3, 1, "", "register_load_state_dict_post_hook"], [35, 3, 1, "", "register_module"], [35, 3, 1, "", "register_parameter"], [35, 3, 1, "", "register_state_dict_pre_hook"], [35, 3, 1, "", "requires_grad_"], [35, 3, 1, "", "set_extra_state"], [35, 3, 1, "", "share_memory"], [35, 3, 1, "", "state_dict"], [35, 3, 1, "", "to"], [35, 3, 1, "", "to_empty"], [35, 3, 1, "", "train"], [35, 6, 1, "", "training"], [35, 3, 1, "", "type"], [35, 3, 1, "", "xpu"], [35, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[36, 1, 1, "", "find_label_issues"], [36, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [36, 1, 1, "", "find_predicted_neq_given"], [36, 7, 1, "", "pred_probs_by_class"], [36, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[38, 0, 0, "-", "label_quality_utils"], [39, 0, 0, "-", "latent_algebra"], [40, 0, 0, "-", "multiannotator_utils"], [41, 0, 0, "-", "multilabel_scorer"], [42, 0, 0, "-", "multilabel_utils"], [43, 0, 0, "-", "outlier"], [44, 0, 0, "-", "token_classification_utils"], [45, 0, 0, "-", "util"], [46, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[38, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, 1, 1, "", "compute_inv_noise_matrix"], [39, 1, 1, "", "compute_noise_matrix_from_inverse"], [39, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [39, 1, 1, "", "compute_py"], [39, 1, 1, "", "compute_py_inv_noise_matrix"], [39, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[40, 1, 1, "", "assert_valid_inputs_multiannotator"], [40, 1, 1, "", "assert_valid_pred_probs"], [40, 1, 1, "", "check_consensus_label_classes"], [40, 1, 1, "", "compute_soft_cross_entropy"], [40, 1, 1, "", "find_best_temp_scaler"], [40, 1, 1, "", "format_multiannotator_labels"], [40, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[41, 2, 1, "", "Aggregator"], [41, 2, 1, "", "ClassLabelScorer"], [41, 2, 1, "", "MultilabelScorer"], [41, 1, 1, "", "exponential_moving_average"], [41, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [41, 1, 1, "", "get_label_quality_scores"], [41, 1, 1, "", "multilabel_py"], [41, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[41, 3, 1, "", "__call__"], [41, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[41, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [41, 6, 1, "", "NORMALIZED_MARGIN"], [41, 6, 1, "", "SELF_CONFIDENCE"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "__contains__"], [41, 3, 1, "", "__getitem__"], [41, 3, 1, "", "__iter__"], [41, 3, 1, "", "__len__"], [41, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[41, 3, 1, "", "__call__"], [41, 3, 1, "", "aggregate"], [41, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[42, 1, 1, "", "get_onehot_num_classes"], [42, 1, 1, "", "int2onehot"], [42, 1, 1, "", "onehot2int"], [42, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[43, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, 1, 1, "", "color_sentence"], [44, 1, 1, "", "filter_sentence"], [44, 1, 1, "", "get_sentence"], [44, 1, 1, "", "mapping"], [44, 1, 1, "", "merge_probs"], [44, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[45, 1, 1, "", "append_extra_datapoint"], [45, 1, 1, "", "clip_noise_rates"], [45, 1, 1, "", "clip_values"], [45, 1, 1, "", "compress_int_array"], [45, 1, 1, "", "confusion_matrix"], [45, 1, 1, "", "csr_vstack"], [45, 1, 1, "", "estimate_pu_f1"], [45, 1, 1, "", "extract_indices_tf"], [45, 1, 1, "", "force_two_dimensions"], [45, 1, 1, "", "format_labels"], [45, 1, 1, "", "get_missing_classes"], [45, 1, 1, "", "get_num_classes"], [45, 1, 1, "", "get_unique_classes"], [45, 1, 1, "", "is_tensorflow_dataset"], [45, 1, 1, "", "is_torch_dataset"], [45, 1, 1, "", "num_unique_classes"], [45, 1, 1, "", "print_inverse_noise_matrix"], [45, 1, 1, "", "print_joint_matrix"], [45, 1, 1, "", "print_noise_matrix"], [45, 1, 1, "", "print_square_matrix"], [45, 1, 1, "", "remove_noise_from_class"], [45, 1, 1, "", "round_preserving_row_totals"], [45, 1, 1, "", "round_preserving_sum"], [45, 1, 1, "", "smart_display_dataframe"], [45, 1, 1, "", "subset_X_y"], [45, 1, 1, "", "subset_data"], [45, 1, 1, "", "subset_labels"], [45, 1, 1, "", "train_val_split"], [45, 1, 1, "", "unshuffle_tensorflow_dataset"], [45, 1, 1, "", "value_counts"], [45, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[46, 1, 1, "", "assert_indexing_works"], [46, 1, 1, "", "assert_nonempty_input"], [46, 1, 1, "", "assert_valid_class_labels"], [46, 1, 1, "", "assert_valid_inputs"], [46, 1, 1, "", "labels_to_array"], [46, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[49, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[49, 2, 1, "", "KerasWrapperModel"], [49, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[50, 1, 1, "", "convert_long_to_wide_dataset"], [50, 1, 1, "", "get_active_learning_scores"], [50, 1, 1, "", "get_active_learning_scores_ensemble"], [50, 1, 1, "", "get_label_quality_multiannotator"], [50, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [50, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[51, 0, 0, "-", "dataset"], [52, 0, 0, "-", "filter"], [54, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[51, 1, 1, "", "common_multilabel_issues"], [51, 1, 1, "", "multilabel_health_summary"], [51, 1, 1, "", "overall_multilabel_health_score"], [51, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, 1, 1, "", "find_label_issues"], [52, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[54, 1, 1, "", "get_label_quality_scores"], [54, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"], [58, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[55, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[57, 1, 1, "", "compute_badloc_box_scores"], [57, 1, 1, "", "compute_overlooked_box_scores"], [57, 1, 1, "", "compute_swap_box_scores"], [57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "issues_from_scores"], [57, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[58, 1, 1, "", "bounding_box_size_distribution"], [58, 1, 1, "", "calculate_per_class_metrics"], [58, 1, 1, "", "class_label_distribution"], [58, 1, 1, "", "get_average_per_class_confusion_matrix"], [58, 1, 1, "", "get_sorted_bbox_count_idxs"], [58, 1, 1, "", "object_counts_per_image"], [58, 1, 1, "", "plot_class_distribution"], [58, 1, 1, "", "plot_class_size_distributions"], [58, 1, 1, "", "visualize"]], "cleanlab.outlier": [[59, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[59, 3, 1, "", "fit"], [59, 3, 1, "", "fit_score"], [59, 3, 1, "", "score"]], "cleanlab.rank": [[60, 1, 1, "", "find_top_issues"], [60, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [60, 1, 1, "", "get_label_quality_ensemble_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "get_normalized_margin_for_each_label"], [60, 1, 1, "", "get_self_confidence_for_each_label"], [60, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[62, 0, 0, "-", "learn"], [63, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[62, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[62, 3, 1, "", "__init_subclass__"], [62, 3, 1, "", "find_label_issues"], [62, 3, 1, "", "fit"], [62, 3, 1, "", "get_aleatoric_uncertainty"], [62, 3, 1, "", "get_epistemic_uncertainty"], [62, 3, 1, "", "get_label_issues"], [62, 3, 1, "", "get_metadata_routing"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "save_space"], [62, 3, 1, "", "score"], [62, 3, 1, "", "set_fit_request"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[63, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"], [67, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[64, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[67, 1, 1, "", "common_label_issues"], [67, 1, 1, "", "display_issues"], [67, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[71, 1, 1, "", "common_label_issues"], [71, 1, 1, "", "display_issues"], [71, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 74, 78, 79, 81, 82, 83, 86, 92, 93, 94], "count": [3, 83], "datalab": [4, 5, 7, 8, 9, 75, 76, 77, 78, 79, 83], "creat": [5, 75, 76, 83, 85], "your": [5, 72, 75, 76, 79, 81, 83], "own": 5, "issu": [5, 7, 8, 19, 26, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 75], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 75], "us": [5, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "gener": 6, "cluster": [6, 81], "id": 6, "guid": [7, 9], "type": [7, 8, 83], "custom": [7, 75], "can": [8, 76, 80, 81, 83, 85], "detect": [8, 76, 78, 79, 81, 83, 87, 88], "estim": [8, 83, 85], "each": 8, "label": [8, 21, 26, 72, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "outlier": [8, 24, 43, 59, 78, 79, 82, 88], "Near": [8, 76, 78, 79, 82], "duplic": [8, 17, 76, 78, 79, 81, 82], "non": [8, 79], "iid": [8, 79], "class": [8, 73, 83, 91], "imbal": [8, 18], "imag": [8, 82, 88], "specif": [8, 19, 91], "underperform": [8, 81], "group": [8, 81], "null": [8, 23], "data": [8, 10, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87, 88, 90, 91, 92, 94], "valuat": 8, "option": 8, "paramet": [8, 83], "get": [9, 75, 76, 85, 86, 87, 91, 94], "start": [9, 80], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 37], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 81, 83], "task": 19, "noniid": 22, "regress": [25, 61, 62, 63, 81, 90], "prioriti": 26, "order": 26, "find": [26, 72, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "underperforming_group": 27, "report": [28, 82], "dataset": [30, 51, 72, 76, 79, 80, 81, 82, 83, 86, 87, 88, 90, 91, 93, 94], "cifar_cnn": 31, "coteach": 32, "experiment": 33, "label_issues_batch": 34, "mnist_pytorch": 35, "filter": [36, 52, 55, 64, 68, 83], "label_quality_util": 38, "latent_algebra": 39, "multiannotator_util": 40, "multilabel_scor": 41, "multilabel_util": 42, "token_classification_util": 44, "util": 45, "valid": [46, 82, 89], "fasttext": 47, "model": [48, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "kera": 49, "multiannot": [50, 85], "multilabel_classif": 53, "rank": [54, 57, 60, 63, 66, 70, 83], "object_detect": 56, "summari": [58, 67, 71], "learn": [62, 76, 81, 83, 92], "segment": [65, 91], "token_classif": [69, 94], "cleanlab": [72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "open": [72, 81], "sourc": [72, 81], "document": 72, "quickstart": 72, "1": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "instal": [72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "2": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "common": [72, 73, 94], "3": [72, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "handl": [72, 81], "error": [72, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "train": [72, 74, 81, 88, 90, 92, 93], "robust": [72, 83, 90, 92, 93], "noisi": [72, 83, 90, 92, 93], "4": [72, 74, 75, 76, 78, 79, 82, 83, 85, 87, 88, 90, 92, 93], "curat": [72, 80], "fix": [72, 81], "level": [72, 80, 83, 94], "5": [72, 74, 76, 78, 82, 83, 85, 90, 92], "improv": [72, 85], "via": [72, 83, 85], "mani": [72, 83], "other": [72, 85, 87, 90], "techniqu": 72, "contribut": 72, "easi": [72, 78, 79, 82], "mode": [72, 78, 79, 82], "how": [73, 81, 83, 85, 86, 94], "migrat": 73, "version": 73, "0": 73, "from": [73, 75, 76, 83, 90, 92, 93], "pre": [73, 74, 81, 88], "function": [73, 75], "name": 73, "chang": 73, "modul": [73, 83], "new": 73, "remov": 73, "argument": [73, 75], "variabl": 73, "audio": 74, "speechbrain": 74, "depend": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "import": [74, 75, 76, 80, 82, 83, 85], "them": [74, 80, 83], "load": [74, 75, 76, 78, 79, 90, 92, 93], "featur": [74, 82, 88], "fit": 74, "linear": 74, "comput": [74, 78, 79, 81, 82, 85, 89, 92], "out": [74, 75, 76, 78, 79, 82, 85, 89, 92], "sampl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "predict": [74, 75, 76, 78, 79, 82, 85, 86, 87, 89, 92], "probabl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "workflow": [75, 83], "audit": [75, 76], "requir": [75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "classifi": [75, 76], "instanti": 75, "object": [75, 87], "increment": 75, "search": 75, "specifi": [75, 81], "nondefault": 75, "save": 75, "ad": 75, "A": 76, "unifi": 76, "all": [76, 83], "kind": [76, 87], "skip": [76, 80, 83, 85], "detail": [76, 80, 83, 85], "more": [76, 83, 90, 92, 93], "about": 76, "addit": 76, "inform": [76, 82], "tutori": [77, 80, 84], "tabular": [78, 92], "numer": 78, "categor": 78, "column": 78, "process": [78, 88, 90, 92], "select": [78, 92], "construct": 78, "k": [78, 82, 89], "nearest": 78, "neighbour": 78, "graph": 78, "text": [79, 93, 94], "format": [79, 81, 86, 87, 93], "defin": [79, 82, 90, 93], "drift": 79, "fetch": [80, 82], "evalu": 80, "health": [80, 83], "8": [80, 83], "popular": 80, "faq": 81, "what": [81, 83, 89], "do": [81, 83], "i": [81, 83, 89], "infer": 81, "correct": 81, "exampl": [81, 82, 83, 88], "ha": 81, "flag": 81, "should": 81, "v": 81, "test": [81, 83, 88], "big": 81, "limit": 81, "memori": 81, "why": 81, "isn": 81, "t": 81, "cleanlearn": [81, 83], "work": [81, 83, 85, 94], "me": 81, "differ": [81, 87], "clean": [81, 83], "final": 81, "hyperparamet": 81, "tune": 81, "onli": 81, "one": [81, 83, 86, 91], "doe": [81, 85, 94], "take": 81, "so": 81, "long": 81, "slice": 81, "when": [81, 83], "identifi": [81, 87], "run": 81, "licens": 81, "under": 81, "an": 81, "answer": 81, "question": 81, "pytorch": [82, 88], "normal": 82, "fashion": 82, "mnist": 82, "prepar": 82, "fold": [82, 89], "cross": [82, 89], "embed": [82, 88], "7": [82, 83], "view": 82, "most": [82, 94], "like": 82, "sever": 82, "set": [82, 83], "dark": 82, "top": [82, 91], "low": 82, "The": 83, "centric": 83, "ai": 83, "machin": 83, "find_label_issu": 83, "line": 83, "code": 83, "visual": [83, 87, 88, 91], "twenti": 83, "lowest": 83, "qualiti": [83, 85, 86, 87, 91, 94], "see": 83, "now": 83, "let": 83, "": 83, "happen": 83, "we": 83, "merg": 83, "seafoam": 83, "green": 83, "yellow": 83, "too": 83, "you": 83, "re": 83, "6": 83, "One": 83, "score": [83, 85, 86, 87, 91, 94], "rule": 83, "overal": [83, 91], "accur": 83, "thi": 83, "directli": 83, "fulli": 83, "character": 83, "nois": 83, "matrix": [83, 86], "joint": 83, "prior": 83, "true": 83, "distribut": 83, "flip": 83, "rate": 83, "ani": 83, "again": 83, "support": 83, "lot": 83, "method": 83, "filter_bi": 83, "automat": 83, "everi": 83, "uniqu": 83, "num_label_issu": 83, "threshold": 83, "found": 83, "Not": 83, "sure": 83, "ensembl": 83, "multipl": [83, 85], "predictor": 83, "consensu": 85, "annot": 85, "initi": 85, "major": 85, "vote": 85, "better": 85, "statist": 85, "compar": 85, "inspect": 85, "potenti": [85, 90, 93], "retrain": 85, "further": 85, "multi": 86, "given": 86, "hot": 86, "binari": 86, "download": [87, 91, 94], "objectlab": 87, "exploratori": 87, "analysi": 87, "timm": 88, "cifar10": 88, "some": 88, "pred_prob": [88, 91, 94], "wai": 90, "semant": 91, "which": 91, "ar": 91, "commonli": 91, "mislabel": [91, 94], "focus": 91, "scikit": 92, "token": 94, "word": 94, "sentenc": 94, "contain": 94, "particular": 94}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [37, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [43, "module-cleanlab.internal.outlier"], [59, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [61, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "dataset": [[30, "module-cleanlab.dataset"], [51, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "experimental": [[33, "experimental"]], "label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[36, "module-cleanlab.filter"], [52, "module-cleanlab.multilabel_classification.filter"], [55, "filter"], [64, "filter"], [68, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "util": [[45, "module-cleanlab.internal.util"]], "validation": [[46, "module-cleanlab.internal.validation"]], "fasttext": [[47, "fasttext"]], "models": [[48, "models"]], "keras": [[49, "module-cleanlab.models.keras"]], "multiannotator": [[50, "module-cleanlab.multiannotator"]], "multilabel_classification": [[53, "multilabel-classification"]], "rank": [[54, "module-cleanlab.multilabel_classification.rank"], [57, "module-cleanlab.object_detection.rank"], [60, "module-cleanlab.rank"], [66, "module-cleanlab.segmentation.rank"], [70, "module-cleanlab.token_classification.rank"]], "object_detection": [[56, "object-detection"]], "summary": [[58, "summary"], [67, "module-cleanlab.segmentation.summary"], [71, "module-cleanlab.token_classification.summary"]], "regression.learn": [[62, "module-cleanlab.regression.learn"]], "regression.rank": [[63, "module-cleanlab.regression.rank"]], "segmentation": [[65, "segmentation"]], "token_classification": [[69, "token-classification"]], "cleanlab open-source documentation": [[72, "cleanlab-open-source-documentation"]], "Quickstart": [[72, "quickstart"]], "1. Install cleanlab": [[72, "install-cleanlab"]], "2. Find common issues in your data": [[72, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[72, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[72, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[72, "improve-your-data-via-many-other-techniques"]], "Contributing": [[72, "contributing"]], "Easy Mode": [[72, "easy-mode"], [78, "Easy-Mode"], [79, "Easy-Mode"], [82, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[73, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[73, "function-and-class-name-changes"]], "Module name changes": [[73, "module-name-changes"]], "New modules": [[73, "new-modules"]], "Removed modules": [[73, "removed-modules"]], "Common argument and variable name changes": [[73, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[74, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[74, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[74, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[74, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[74, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[74, "5.-Use-cleanlab-to-find-label-issues"], [78, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[75, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[75, "Install-and-import-required-dependencies"]], "Create and load the data": [[75, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[75, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[75, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[75, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[75, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[75, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[75, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[76, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[76, "1.-Install-and-import-required-dependencies"], [82, "1.-Install-and-import-required-dependencies"], [85, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[76, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[76, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[76, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[76, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[76, "Get-additional-information"]], "Near duplicate issues": [[76, "Near-duplicate-issues"], [82, "Near-duplicate-issues"]], "Datalab Tutorials": [[77, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[78, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[78, "1.-Install-required-dependencies"], [79, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [92, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"]], "2. Load and process the data": [[78, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [92, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[78, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [92, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[78, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[78, "Label-issues"], [79, "Label-issues"], [82, "Label-issues"]], "Outlier issues": [[78, "Outlier-issues"], [79, "Outlier-issues"], [82, "Outlier-issues"]], "Near-duplicate issues": [[78, "Near-duplicate-issues"], [79, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[79, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[79, "2.-Load-and-format-the-text-dataset"], [93, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[79, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[79, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[80, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[80, "Install-dependencies-and-import-them"], [83, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[80, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[80, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[81, "FAQ"]], "What data can cleanlab detect issues in?": [[81, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[81, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[81, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[81, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[81, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[81, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[81, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[81, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[81, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[81, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[81, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[81, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[81, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[81, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[82, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[82, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[82, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[82, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[82, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[82, "7.-Use-cleanlab-to-find-issues"]], "View report": [[82, "View-report"]], "View most likely examples with label errors": [[82, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[82, "View-most-severe-outliers"]], "View sets of near duplicate images": [[82, "View-sets-of-near-duplicate-images"]], "Dark images": [[82, "Dark-images"]], "View top examples of dark images": [[82, "View-top-examples-of-dark-images"]], "Low information images": [[82, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[83, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[83, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[83, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[83, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[83, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[83, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[83, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[83, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[83, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[83, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[83, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[83, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[83, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[83, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[83, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[83, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[83, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[83, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[83, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[84, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[85, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[85, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[85, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[85, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[85, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[85, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[85, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[85, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[85, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[86, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[86, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[86, "2.-Format-data,-labels,-and-model-predictions"], [87, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[86, "3.-Use-cleanlab-to-find-label-issues"], [87, "3.-Use-cleanlab-to-find-label-issues"], [91, "3.-Use-cleanlab-to-find-label-issues"], [94, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[86, "Label-quality-scores"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[86, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Finding Label Errors in Object Detection Datasets": [[87, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[87, "1.-Install-required-dependencies-and-download-data"], [91, "1.-Install-required-dependencies-and-download-data"], [94, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[87, "Get-label-quality-scores"], [91, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[87, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[87, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[87, "Other-uses-of-visualize"]], "Exploratory data analysys": [[87, "Exploratory-data-analysys"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[88, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[88, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[88, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[88, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[88, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[88, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[89, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[89, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[89, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[90, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[90, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[90, "4.-Train-a-more-robust-model-from-noisy-labels"], [93, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[90, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[91, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[91, "2.-Get-data,-labels,-and-pred_probs"], [94, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[91, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[91, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[91, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[92, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[92, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[92, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[93, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[93, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[94, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[94, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[94, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[94, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[94, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [30, "module-cleanlab.dataset"], [31, "module-cleanlab.experimental.cifar_cnn"], [32, "module-cleanlab.experimental.coteaching"], [33, "module-cleanlab.experimental"], [34, "module-cleanlab.experimental.label_issues_batched"], [35, "module-cleanlab.experimental.mnist_pytorch"], [36, "module-cleanlab.filter"], [37, "module-cleanlab.internal"], [38, "module-cleanlab.internal.label_quality_utils"], [39, "module-cleanlab.internal.latent_algebra"], [40, "module-cleanlab.internal.multiannotator_utils"], [41, "module-cleanlab.internal.multilabel_scorer"], [42, "module-cleanlab.internal.multilabel_utils"], [43, "module-cleanlab.internal.outlier"], [44, "module-cleanlab.internal.token_classification_utils"], [45, "module-cleanlab.internal.util"], [46, "module-cleanlab.internal.validation"], [48, "module-cleanlab.models"], [49, "module-cleanlab.models.keras"], [50, "module-cleanlab.multiannotator"], [51, "module-cleanlab.multilabel_classification.dataset"], [52, "module-cleanlab.multilabel_classification.filter"], [53, "module-cleanlab.multilabel_classification"], [54, "module-cleanlab.multilabel_classification.rank"], [55, "module-cleanlab.object_detection.filter"], [56, "module-cleanlab.object_detection"], [57, "module-cleanlab.object_detection.rank"], [58, "module-cleanlab.object_detection.summary"], [59, "module-cleanlab.outlier"], [60, "module-cleanlab.rank"], [61, "module-cleanlab.regression"], [62, "module-cleanlab.regression.learn"], [63, "module-cleanlab.regression.rank"], [64, "module-cleanlab.segmentation.filter"], [65, "module-cleanlab.segmentation"], [66, "module-cleanlab.segmentation.rank"], [67, "module-cleanlab.segmentation.summary"], [68, "module-cleanlab.token_classification.filter"], [69, "module-cleanlab.token_classification"], [70, "module-cleanlab.token_classification.rank"], [71, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "cleanlab.dataset": [[30, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.forward"], [31, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[33, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [35, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [35, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [35, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[36, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[36, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[36, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[37, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[38, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[43, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[43, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[45, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[46, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[48, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[49, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[50, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[51, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[53, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[54, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[55, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[55, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[56, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[57, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[58, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[59, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[59, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[60, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[61, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[62, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[62, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[62, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[63, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[63, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[64, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[64, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[65, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[66, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[67, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[68, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[68, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[69, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[70, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[71, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 73, 75, 76, 83, 85, 86], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 75, 76, 83, 85, 86], "generate_noise_matrix_from_trac": [0, 1, 75, 76, 83, 85, 86], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 34, 38, 40, 41, 42, 43, 44, 45, 57, 80, 82, 94], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 87, 88, 89, 90, 91, 92, 93, 94], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 72, 73, 75, 80, 84, 89], "benchmark": [1, 31, 72, 73, 75, 76, 83, 85, 86], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89], "": [1, 2, 3, 8, 16, 30, 31, 35, 38, 41, 43, 45, 50, 51, 55, 57, 58, 59, 60, 62, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "core": [1, 4, 34, 36, 64, 66], "algorithm": [1, 2, 6, 8, 27, 32, 45, 50, 59, 68, 70, 72, 81, 83, 85, 94], "These": [1, 2, 3, 6, 8, 19, 31, 33, 35, 36, 37, 48, 50, 51, 54, 58, 59, 63, 67, 68, 70, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "introduc": [1, 74, 81, 83], "synthet": [1, 85, 86, 91], "nois": [1, 2, 3, 30, 36, 39, 45, 51, 75, 76, 80, 85], "label": [1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 18, 19, 20, 25, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 80, 84, 88, 89], "classif": [1, 3, 4, 5, 8, 12, 14, 28, 30, 34, 36, 39, 41, 42, 45, 50, 51, 52, 53, 54, 59, 60, 68, 69, 70, 71, 72, 73, 75, 76, 84, 85, 88, 89, 90, 91], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 33, 34, 35, 36, 39, 41, 45, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 84, 85, 89, 92], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 33, 48, 52, 55, 58, 67, 71, 78, 79, 82, 83, 87, 94], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 30, 31, 32, 33, 34, 35, 36, 41, 43, 45, 48, 50, 55, 58, 59, 60, 72, 81, 82], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 30, 31, 32, 34, 35, 36, 39, 45, 49, 50, 51, 52, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 30, 41, 45, 46, 59, 60, 62, 67, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94], "valid": [1, 2, 3, 4, 8, 10, 30, 36, 37, 39, 40, 41, 43, 45, 50, 52, 55, 58, 60, 62, 63, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "matric": [1, 3, 39, 81], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 30, 31, 35, 36, 39, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 32, 33, 34, 35, 36, 38, 40, 45, 48, 50, 52, 59, 61, 63, 66, 70, 72, 74, 75, 78, 79, 80, 82, 84, 85, 86, 90, 93], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "possibl": [1, 2, 3, 8, 30, 31, 35, 36, 38, 39, 41, 52, 53, 54, 55, 57, 58, 59, 60, 62, 68, 70, 71, 76, 81, 83, 85, 86, 87, 90, 91, 94], "noisi": [1, 2, 3, 8, 30, 32, 35, 36, 39, 45, 51, 52, 54, 60, 62, 63, 64, 66, 67, 73, 75, 76, 78, 79, 81, 84, 85], "given": [1, 2, 3, 8, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 30, 36, 38, 39, 42, 45, 46, 52, 55, 57, 58, 59, 60, 78, 87, 88], "trace": [1, 75, 76, 83, 85, 86], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 30, 31, 32, 34, 35, 36, 38, 39, 41, 43, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "more": [1, 2, 3, 4, 5, 8, 11, 14, 16, 22, 30, 31, 34, 35, 38, 41, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 72, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 91, 94], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 83, 85, 86, 87, 91, 92, 93, 94], "noise_matrix": [1, 2, 3, 8, 39, 45, 75, 76, 83, 85, 86], "py": [1, 3, 28, 31, 32, 36, 39, 41, 74, 75, 76, 79, 81, 83, 85, 86, 93], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 34, 36, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 75, 83, 85], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 74, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88, 90, 91, 93], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71], "prior": [1, 2, 3, 30, 36, 39, 41], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 30, 34, 36, 39, 42, 43, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "p": [1, 2, 3, 8, 30, 36, 38, 39, 45, 50, 58, 59, 60, 64, 78, 79, 83, 85, 94], "true_label": [1, 2, 3, 30, 39, 45, 83, 85], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 75, 76, 81, 83, 85, 86, 87, 88, 91, 92, 94], "check": [1, 2, 4, 7, 8, 10, 14, 23, 31, 34, 35, 40, 46, 49, 55, 58, 62, 72, 74, 75, 76, 81, 82, 83, 85, 86, 90, 92, 93], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 32, 35, 39, 41, 43, 57, 62, 76, 79, 81, 83, 85, 86, 87, 88, 90, 93], "achiev": [1, 2, 31, 32, 35, 62, 81, 85, 94], "better": [1, 4, 36, 50, 52, 60, 62, 63, 72, 74, 76, 78, 79, 81, 83, 86, 87, 88, 93, 94], "than": [1, 2, 3, 5, 8, 22, 24, 27, 30, 36, 45, 49, 50, 55, 57, 59, 60, 62, 66, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 94], "random": [1, 2, 3, 5, 8, 16, 27, 34, 41, 50, 60, 62, 74, 75, 76, 78, 81, 82, 83, 85, 86, 88, 92], "perform": [1, 2, 5, 8, 22, 24, 27, 31, 35, 41, 58, 62, 72, 75, 81, 83, 85, 86, 89, 90, 92, 93], "averag": [1, 3, 8, 20, 24, 30, 31, 35, 41, 43, 50, 51, 58, 59, 60, 81, 85, 88], "amount": [1, 3, 82], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 79, 82, 92, 93], "np": [1, 2, 3, 4, 5, 14, 16, 27, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 94], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 30, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "shape": [1, 2, 3, 4, 14, 16, 30, 32, 34, 36, 38, 39, 40, 41, 43, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 80, 81, 83, 86, 87, 88, 91, 94], "condit": [1, 2, 3, 39, 44, 45, 60, 82, 83, 94], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 91, 94], "k_": [1, 2, 3, 39, 45], "k_y": [1, 2, 3, 39, 45], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93], "fraction": [1, 2, 3, 8, 18, 32, 39, 45, 50, 62, 78, 81], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93, 94], "everi": [1, 2, 3, 4, 14, 31, 35, 36, 39, 44, 45, 52, 60, 62, 63, 74, 75, 76, 78, 79, 81, 82, 85, 87, 89, 91, 92, 94], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94], "other": [1, 2, 3, 4, 8, 14, 20, 23, 30, 31, 33, 34, 35, 36, 39, 42, 45, 46, 48, 50, 51, 54, 58, 59, 60, 62, 67, 74, 75, 76, 78, 79, 81, 82, 83, 86, 88, 91, 94], "assum": [1, 2, 3, 10, 36, 39, 44, 45, 60, 64, 67, 81, 86, 88, 91, 94], "column": [1, 2, 3, 4, 8, 10, 11, 26, 30, 34, 36, 39, 41, 42, 44, 45, 50, 51, 52, 54, 55, 58, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "sum": [1, 2, 3, 22, 27, 30, 39, 41, 45, 51, 52, 54, 57, 62, 75, 76, 81, 82, 83, 85, 86, 91, 94], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 80, 81, 89], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 18, 20, 21, 22, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 86, 87, 91, 92, 94], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 41, 44, 45, 50, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 34, 35, 36, 45, 50, 51, 52, 54, 55, 71, 74, 76, 78, 79, 80, 81, 82, 83, 90, 93, 94], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 60, 62, 63, 68, 70, 71, 72, 74, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 91, 94], "perfect": [1, 2, 30, 62, 83, 87], "exactli": [1, 3, 8, 30, 31, 35, 36, 53, 59, 75, 76, 78, 79, 82, 83], "yield": [1, 31, 35], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 48, 50, 51, 54, 57, 59, 60, 62, 63, 66, 70, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "below": [1, 3, 4, 8, 30, 31, 34, 35, 36, 38, 41, 50, 51, 52, 57, 58, 66, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "we": [1, 2, 3, 4, 5, 8, 11, 20, 31, 34, 35, 36, 41, 45, 46, 50, 57, 58, 60, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "loop": [1, 3, 39, 45, 82, 87], "implement": [1, 2, 3, 4, 7, 12, 20, 31, 32, 34, 35, 39, 45, 62, 72, 74, 75, 78, 88, 89, 92], "what": [1, 4, 7, 8, 14, 28, 30, 32, 34, 36, 50, 51, 55, 57, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "doe": [1, 2, 3, 8, 34, 35, 36, 41, 46, 57, 58, 62, 64, 66, 70, 74, 75, 76, 78, 79, 82, 86, 90, 91, 93], "do": [1, 2, 4, 8, 30, 34, 35, 45, 46, 59, 60, 64, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "fast": 1, "explain": [1, 8], "python": [1, 2, 35, 49, 62, 74, 75, 76, 79, 80, 88, 93], "pseudocod": [1, 89], "happen": [1, 8, 36, 52, 79, 85, 91], "n": [1, 2, 3, 4, 5, 30, 31, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 74, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "without": [1, 2, 4, 8, 10, 12, 18, 31, 35, 54, 62, 72, 74, 79, 83, 87, 88, 93], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 40, 43, 44, 45, 49, 50, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "distinct": [1, 16, 45, 94], "natur": [1, 8, 85, 88], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 91, 94], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "count_joint": 1, "len": [1, 2, 3, 5, 30, 34, 39, 44, 45, 46, 59, 60, 62, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "y": [1, 2, 3, 4, 6, 16, 26, 27, 35, 39, 41, 45, 46, 49, 58, 62, 63, 74, 75, 76, 78, 81, 83, 85, 86, 88, 90, 93], "round": [1, 34, 36, 45, 62, 81, 90], "astyp": [1, 85], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 54, 58, 59, 60, 62, 64, 66, 67, 68, 71, 74, 75, 82, 87, 88], "rang": [1, 3, 4, 5, 10, 39, 41, 43, 45, 58, 62, 63, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 94], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 30, 34, 36, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94], "pragma": 1, "cover": [1, 3, 73, 80], "choic": [1, 6, 36, 43, 81, 82, 86, 88], "replac": [1, 44, 49, 60, 75, 76, 79, 80, 81, 82, 85, 88, 92, 93], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 60, 74, 75, 76], "05": [1, 8, 22, 26, 44, 58, 62, 68, 70, 78, 80, 81, 83, 87, 91, 94], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 75, 76, 83, 85, 86], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 81, 82, 83, 85, 86, 91], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 33, 35, 41, 62, 74, 75, 76, 78, 80, 83, 85, 86, 92], "max_it": [1, 74, 79, 88, 93], "10000": [1, 34, 80, 81], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 46, 49, 50, 52, 58, 59, 60, 62, 64, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "diagon": [1, 3, 4, 36, 39, 45], "equal": [1, 3, 8, 10, 52, 57, 67, 89], "creat": [1, 2, 7, 14, 16, 31, 34, 35, 36, 45, 62, 72, 74, 78, 79, 81, 82, 91, 93, 94], "impli": [1, 8, 30, 51, 58], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 43, 44, 45, 50, 51, 52, 54, 57, 58, 62, 66, 70, 74, 75, 76, 83, 85, 86], "entri": [1, 3, 4, 30, 31, 35, 36, 38, 42, 43, 45, 50, 51, 52, 55, 78, 79, 83, 86, 87, 92, 93], "maximum": [1, 8, 59, 67, 71, 91], "minimum": [1, 6, 8, 18, 36, 38, 52, 57, 70], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 31, 35, 36, 57, 62, 75, 81, 83, 85, 87, 88], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 81, 82, 91], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 49, 50, 51, 52, 55, 57, 58, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 30, 31, 34, 35, 36, 39, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "necessari": [1, 2, 3, 5, 8, 10, 44, 75], "In": [1, 2, 3, 8, 30, 31, 34, 35, 50, 51, 53, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 31, 35, 45, 50, 54, 58, 62, 67, 71, 72, 74, 76, 79, 81, 85, 86, 88, 90, 92, 93], "satisfi": [1, 3, 30], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 29, 31, 32, 33, 34, 35, 36, 39, 45, 48, 49, 52, 59, 60, 62, 64, 72, 73, 74, 80, 81, 83, 89], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 31, 34, 35, 36, 41, 46, 49, 50, 51, 52, 54, 57, 58, 59, 60, 62, 66, 67, 68, 70, 76, 79, 80, 81, 82, 86, 87, 90, 93, 94], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 31, 35, 36, 39, 41, 45, 49, 52, 54, 55, 57, 59, 60, 62, 63, 75, 76, 78, 79, 82, 85, 89, 90, 91, 92, 93, 94], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "rate": [1, 2, 3, 8, 32, 45, 74, 94], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 41, 43, 45, 49, 50, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 75, 76, 78, 79, 81, 85, 86, 88, 89, 90, 91, 92, 93, 94], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 31, 34, 35, 36, 41, 45, 50, 55, 57, 58, 59, 60, 62, 63, 67, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "you": [1, 2, 3, 4, 5, 8, 12, 14, 30, 31, 33, 34, 35, 36, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "high": [1, 2, 14, 34, 36, 45, 57, 60, 62, 75, 76, 80, 82, 83, 87, 90, 91, 92, 93, 94], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 50, 51, 55, 57, 58, 59, 60, 62, 64, 67, 71, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94], "imposs": [1, 8, 83], "also": [1, 2, 3, 4, 5, 8, 20, 30, 31, 34, 35, 36, 41, 44, 49, 50, 59, 62, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "low": [1, 8, 45, 50, 72, 75, 76, 79, 83, 87, 91], "zero": [1, 3, 4, 31, 35, 38, 45, 46, 75, 82, 86, 87, 88], "forc": [1, 2, 3, 4, 35, 75, 94], "instead": [1, 2, 3, 8, 11, 14, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 52, 54, 58, 59, 60, 62, 63, 66, 68, 70, 73, 74, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 93, 94], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 30, 31, 34, 35, 36, 38, 39, 44, 45, 46, 49, 50, 59, 60, 62, 64, 66, 70, 71, 72, 74, 75, 76, 79, 82, 85, 86, 87, 88, 89, 90, 91, 93, 94], "guarante": [1, 3, 4, 13, 19, 25, 31, 33, 35, 37, 39, 48, 73], "produc": [1, 2, 4, 8, 14, 41, 50, 60, 62, 64, 66, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "higher": [1, 4, 8, 30, 36, 38, 39, 41, 43, 50, 51, 62, 76, 79, 81, 87], "opposit": [1, 94], "occur": [1, 3, 8, 30, 44, 57, 75, 76, 81, 82, 88], "small": [1, 3, 8, 30, 34, 41, 45, 51, 58, 79, 80, 82, 86, 88, 93], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 34, 35, 41, 43, 44, 46, 49, 54, 57, 62, 63, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "max": [1, 36, 59, 60, 76, 82, 88], "tri": [1, 31, 35, 89], "befor": [1, 2, 3, 31, 35, 43, 45, 59, 62, 67, 79, 81, 83, 85, 88, 90, 92, 93], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 30, 31, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 86, 90, 91, 92], "left": [1, 2, 36, 38, 43, 45, 52, 55, 58, 75, 76, 86, 87, 88, 91], "stochast": 1, "exceed": 1, "m": [1, 4, 31, 35, 40, 41, 50, 55, 57, 58, 59, 75, 76, 80, 85, 86, 87, 94], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 31, 35, 49, 81, 83, 91], "length": [1, 4, 10, 22, 23, 30, 32, 36, 45, 52, 55, 59, 60, 62, 64, 67, 71, 74, 86, 88, 91, 92, 94], "must": [1, 2, 3, 4, 14, 30, 31, 32, 33, 35, 36, 39, 41, 42, 45, 48, 49, 50, 51, 52, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 85, 89, 91, 94], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 30, 34, 36, 42, 45, 46, 50, 52, 58, 64, 66, 67, 68, 70, 71, 74, 81, 85, 86, 87, 91, 92, 93, 94], "ball": [1, 80], "bin": [1, 3, 52, 75, 76, 88], "ensur": [1, 2, 8, 31, 35, 45, 46, 57, 60, 62, 74, 75, 76, 79, 81, 82, 83, 88, 89, 90, 92, 93], "most": [1, 3, 4, 5, 8, 14, 30, 34, 36, 41, 49, 50, 51, 52, 55, 57, 58, 59, 60, 63, 66, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93], "least": [1, 8, 16, 27, 30, 34, 50, 51, 57, 60, 70, 76, 81, 82, 85, 88, 91], "int_arrai": [1, 45], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "model": [2, 3, 4, 8, 14, 16, 26, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 44, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89, 91, 94], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 29, 30, 31, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 68, 70, 71, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "regular": [2, 3, 34, 49], "multi": [2, 3, 8, 30, 31, 34, 35, 36, 40, 41, 42, 45, 46, 51, 52, 53, 54, 59, 60, 72, 81, 83, 84], "task": [2, 4, 5, 8, 10, 12, 13, 14, 26, 28, 30, 34, 39, 41, 42, 43, 45, 50, 52, 60, 62, 72, 74, 79, 80, 81, 83, 86, 88, 91, 93, 94], "cleanlearn": [2, 3, 8, 21, 26, 31, 45, 49, 61, 62, 63, 72, 73, 90, 92, 93], "wrap": [2, 31, 35, 49, 59, 62, 72, 75, 76, 78, 79, 83, 90, 92, 93], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49, 58, 59, 62, 67, 74, 75, 76, 78, 79, 82, 83, 87, 92, 93], "sklearn": [2, 3, 4, 6, 8, 16, 27, 30, 35, 41, 45, 49, 59, 62, 63, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93], "classifi": [2, 3, 35, 41, 45, 50, 53, 59, 60, 72, 73, 74, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 94], "adher": [2, 35, 62], "estim": [2, 3, 4, 7, 11, 20, 30, 34, 35, 36, 39, 45, 50, 51, 52, 57, 59, 62, 64, 66, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 94], "api": [2, 3, 12, 49, 55, 58, 59, 62, 73, 81, 90], "defin": [2, 3, 4, 5, 8, 12, 20, 30, 31, 32, 34, 35, 36, 60, 62, 64, 74, 75, 76, 78, 81, 85, 88, 94], "four": [2, 8, 80, 83, 94], "clf": [2, 3, 4, 41, 62, 72, 78, 81, 83, 86, 92], "fit": [2, 3, 4, 6, 8, 16, 33, 35, 48, 49, 59, 61, 62, 72, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94], "sample_weight": [2, 35, 62, 83], "predict_proba": [2, 4, 30, 33, 35, 41, 48, 49, 74, 75, 76, 78, 79, 81, 83, 85, 86, 88, 92], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 30, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 88, 90, 91, 93, 94], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 36, 38, 41, 43, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 88, 90, 92, 93], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 41, 42, 45, 48, 49, 50, 51, 52, 53, 57, 59, 60, 61, 62, 67, 68, 69, 70, 71, 73, 77, 82, 84, 89, 93], "e": [2, 3, 4, 8, 10, 20, 30, 31, 34, 35, 36, 39, 41, 42, 45, 46, 50, 51, 52, 53, 55, 58, 59, 60, 62, 64, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 41, 45, 59, 62, 72, 75, 76, 78, 79, 81, 83, 85, 86, 90, 92], "element": [2, 3, 4, 30, 36, 38, 45, 50, 52, 60, 67, 68, 70, 74, 79, 81, 93, 94], "first": [2, 4, 8, 15, 22, 23, 30, 34, 41, 45, 50, 51, 55, 58, 60, 62, 74, 75, 78, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "index": [2, 8, 22, 30, 36, 44, 45, 46, 51, 60, 62, 67, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 30, 31, 34, 35, 36, 38, 39, 41, 43, 44, 45, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 30, 31, 33, 34, 35, 36, 37, 41, 45, 46, 48, 50, 55, 57, 59, 62, 74, 75, 76, 78, 79, 82, 83, 85, 86, 88, 89, 92], "sampl": [2, 3, 4, 6, 8, 14, 18, 36, 38, 41, 52, 55, 58, 60, 62, 63, 72, 73, 80, 81, 83, 84, 86, 87, 90, 91, 93, 94], "size": [2, 8, 27, 31, 34, 35, 36, 41, 52, 57, 58, 62, 64, 66, 78, 81, 82, 83, 85, 86, 87, 89, 91, 93], "here": [2, 4, 5, 8, 12, 34, 36, 39, 49, 50, 51, 52, 54, 55, 58, 59, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "re": [2, 4, 31, 35, 44, 50, 62, 72, 74, 75, 78, 79, 81, 90, 91, 92, 93, 94], "weight": [2, 8, 31, 32, 35, 41, 50, 57, 60, 62, 74, 75, 76, 79, 93], "loss": [2, 32, 49, 60, 62, 82], "while": [2, 3, 8, 31, 34, 35, 40, 41, 45, 62, 72, 81, 82, 83, 85, 86, 90], "train": [2, 3, 4, 8, 14, 16, 31, 32, 33, 35, 41, 45, 49, 50, 55, 58, 59, 62, 63, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 94], "support": [2, 3, 4, 10, 34, 41, 45, 46, 59, 60, 70, 72, 73, 74, 75, 76, 81, 82], "your": [2, 3, 4, 7, 8, 14, 30, 31, 33, 34, 35, 36, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 66, 67, 73, 74, 78, 80, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "recommend": [2, 4, 8, 11, 14, 34, 36, 50, 75, 76, 81, 82, 89, 90], "furthermor": 2, "correctli": [2, 3, 8, 30, 31, 35, 36, 39, 46, 51, 52, 57, 58, 62, 64, 79, 81, 86, 87, 90, 91, 93], "clonabl": [2, 62], "via": [2, 4, 8, 11, 14, 16, 20, 30, 32, 34, 35, 41, 45, 50, 55, 58, 59, 60, 62, 63, 66, 70, 74, 75, 76, 78, 79, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 57, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 94], "clone": [2, 62, 86], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 54, 58, 62, 68, 73, 74, 75, 81, 83, 85, 86, 87, 88, 94], "multipl": [2, 3, 4, 10, 11, 30, 36, 44, 50, 51, 52, 54, 57, 58, 62, 72, 75, 76, 81, 82, 84, 86, 87, 90], "g": [2, 3, 4, 8, 10, 20, 30, 31, 35, 36, 42, 45, 52, 53, 55, 58, 59, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "manual": [2, 62, 74, 81, 88, 89, 90, 92, 93, 94], "pytorch": [2, 31, 32, 35, 62, 72, 74, 81, 84, 86, 91], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 45, 49, 59, 62, 74, 75, 76, 79, 81, 83, 86, 88, 89, 91, 93, 94], "__init__": [2, 32, 62, 82], "independ": [2, 3, 8, 51, 62, 79, 89, 94], "compat": [2, 31, 34, 35, 49, 62, 63, 66, 70, 72, 81, 89, 90, 92, 93], "neural": [2, 32, 49, 59, 62, 74, 81, 82, 86, 88], "network": [2, 31, 32, 35, 49, 59, 62, 74, 79, 81, 82, 86, 88, 93], "typic": [2, 31, 35, 59, 62, 74, 76, 78, 79, 82, 88, 89, 92, 93], "initi": [2, 3, 11, 16, 31, 35, 50, 62, 79, 81, 92], "insid": [2, 35, 62, 81, 83], "There": [2, 3, 72, 83, 85], "two": [2, 3, 8, 16, 22, 30, 31, 34, 35, 42, 45, 55, 57, 58, 73, 75, 76, 78, 79, 81, 82, 83, 86, 90, 91, 93, 94], "new": [2, 5, 12, 20, 31, 34, 35, 40, 44, 45, 50, 62, 74, 75, 79, 80, 81, 88, 89, 93, 94], "notion": 2, "confid": [2, 3, 8, 20, 30, 34, 36, 39, 41, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 66, 70, 72, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 94], "packag": [2, 4, 5, 7, 8, 9, 13, 29, 33, 36, 37, 45, 48, 55, 58, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "prune": [2, 3, 36, 52, 62, 73, 87], "everyth": [2, 58, 83], "els": [2, 58, 75, 80, 81, 82, 85, 86, 87], "mathemat": [2, 3, 8, 39], "keep": [2, 11, 12, 45, 72, 75, 80, 81, 91], "belong": [2, 3, 8, 30, 36, 38, 39, 51, 52, 53, 54, 59, 60, 64, 68, 70, 71, 76, 82, 83, 86, 88, 91, 94], "2": [2, 3, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 63, 67, 68, 70, 71, 80, 81, 89], "error": [2, 3, 4, 8, 31, 35, 36, 38, 39, 45, 51, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 70, 73, 74, 75, 76, 78, 79, 80, 84, 92], "erron": [2, 3, 30, 36, 39, 45, 51, 52, 60, 62, 63, 64, 88, 90], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 34, 41, 43, 44, 50, 54, 57, 62, 63, 68, 70, 71, 72, 78, 79, 81, 86, 87, 88, 90, 91, 92, 93, 94], "linear_model": [2, 4, 30, 45, 62, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logisticregress": [2, 3, 4, 30, 45, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logreg": 2, "cl": [2, 12, 26, 62, 72, 81, 83, 90, 92, 93], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 31, 34, 35, 36, 40, 41, 45, 49, 50, 52, 59, 60, 62, 68, 72, 74, 75, 76, 79, 80, 81, 83, 85, 87, 88, 90, 93], "x_train": [2, 75, 76, 83, 85, 86, 90, 92], "labels_maybe_with_error": 2, "had": [2, 3, 62, 87], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 33, 34, 35, 36, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 84, 85, 89, 90, 93], "pred": [2, 36, 45, 89, 90, 92, 93], "x_test": [2, 75, 76, 83, 86, 90, 92], "might": [2, 50, 62, 67, 75, 76, 81, 82, 87, 92, 93], "case": [2, 3, 11, 30, 41, 50, 62, 74, 75, 76, 78, 80, 81, 82, 83, 88, 90, 92, 93, 94], "standard": [2, 3, 4, 26, 30, 36, 49, 51, 52, 54, 60, 62, 72, 75, 76, 78, 80, 83, 87, 92], "adapt": [2, 31, 33, 45, 48, 62, 88], "skorch": [2, 62, 72, 81], "kera": [2, 48, 55, 58, 62, 72, 81, 87], "scikera": [2, 49, 62, 81], "open": [2, 34, 80, 87, 94], "doesn": [2, 62, 72], "t": [2, 3, 8, 15, 23, 31, 32, 34, 35, 36, 41, 43, 44, 54, 59, 60, 62, 68, 70, 71, 72, 75, 76, 78, 79, 80, 82, 83, 86, 87, 94], "alreadi": [2, 4, 8, 14, 31, 34, 35, 39, 49, 50, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 92, 93], "exist": [2, 4, 8, 10, 16, 31, 34, 35, 44, 49, 55, 57, 59, 62, 72, 73, 75, 76, 79, 85, 93, 94], "made": [2, 4, 14, 31, 35, 62, 79, 81, 82, 85, 87, 89, 90, 92, 93], "easi": [2, 39, 62, 75, 76, 80, 81, 83, 86], "inherit": [2, 5, 32, 62], "baseestim": [2, 35, 62], "yourmodel": [2, 62], "def": [2, 5, 12, 31, 35, 49, 62, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 31, 32, 34, 35, 36, 41, 59, 60, 62, 75, 79, 80, 82, 86, 91, 92, 93, 94], "refer": [2, 8, 14, 31, 35, 51, 52, 54, 55, 57, 58, 62, 66, 67, 75, 76, 78, 79, 81, 82, 83, 86, 89, 90], "origin": [2, 4, 8, 35, 36, 44, 45, 49, 51, 52, 55, 58, 59, 62, 63, 66, 68, 70, 75, 78, 79, 81, 82, 83, 87, 88, 90, 92, 93, 94], "total": [2, 3, 30, 34, 45, 51, 71, 81, 82, 91], "state": [2, 3, 4, 31, 32, 35, 40, 62, 83, 86, 87, 94], "art": [2, 32, 83, 86], "northcutt": [2, 3, 30, 59, 60], "et": [2, 3, 30, 32, 59, 60], "al": [2, 3, 30, 32, 59, 60], "2021": [2, 3, 30, 59, 60], "weak": [2, 58], "supervis": [2, 8, 75, 76, 81, 85], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 33, 34, 35, 36, 40, 44, 45, 48, 55, 58, 59, 60, 62, 64, 68, 70, 73, 75, 84, 89], "uncertainti": [2, 8, 38, 59, 62, 81, 88, 90], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 31, 35, 36, 39, 41, 50, 57, 58, 62, 72, 75, 76, 79, 81, 82, 83, 86, 89, 93], "work": [2, 3, 4, 5, 8, 10, 26, 30, 31, 34, 35, 36, 39, 44, 45, 46, 49, 50, 60, 62, 72, 73, 75, 76, 80, 88, 90, 93], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 35, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 94], "deep": [2, 33, 35, 48, 49, 62, 79], "see": [2, 3, 4, 11, 30, 31, 34, 35, 36, 41, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "subfield": 2, "theori": [2, 83], "machin": [2, 4, 12, 14, 28, 33, 48, 62, 75, 76, 80, 85], "across": [2, 3, 4, 5, 8, 11, 20, 30, 34, 41, 51, 58, 59, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 89], "varieti": [2, 81, 92, 93], "like": [2, 3, 4, 5, 8, 12, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 51, 54, 55, 57, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "pu": [2, 45], "input": [2, 3, 4, 8, 14, 22, 30, 31, 34, 35, 39, 41, 44, 45, 46, 49, 58, 62, 72, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "discret": [2, 36, 39, 45, 59, 60, 64, 66, 67], "vector": [2, 3, 4, 8, 14, 36, 39, 41, 42, 45, 59, 60, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 93, 94], "would": [2, 3, 4, 31, 34, 35, 36, 45, 52, 62, 72, 75, 81, 82, 83, 88, 90, 93, 94], "obtain": [2, 4, 6, 8, 14, 36, 50, 52, 55, 58, 60, 63, 74, 76, 79, 81, 85, 87, 89, 91, 94], "been": [2, 30, 36, 39, 44, 45, 50, 51, 55, 57, 59, 60, 62, 74, 75, 78, 81, 83, 85, 86, 87, 88, 91, 94], "dure": [2, 8, 14, 59, 62, 74, 78, 79, 81, 83, 86, 89, 90, 92, 93, 94], "denot": [2, 3, 39, 41, 45, 52, 59, 60, 70], "tild": 2, "paper": [2, 8, 50, 59, 68, 70, 80, 83, 85, 88, 90, 94], "cv_n_fold": [2, 3, 62, 93], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 35, 36, 38, 40, 41, 45, 50, 51, 54, 55, 58, 62, 63, 70, 75, 79, 80, 81, 86, 87, 88, 89, 91, 93, 94], "converge_latent_estim": [2, 3], "pulearn": [2, 45], "find_label_issues_kwarg": [2, 8, 62, 73, 81, 83], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 52, 68, 81], "clean": [2, 57, 60, 62, 63, 72, 75, 76, 80, 90, 92, 93], "even": [2, 3, 30, 34, 38, 39, 45, 62, 74, 81, 83, 85, 86, 87], "messi": [2, 62, 83], "ridden": [2, 62], "autom": [2, 62, 72, 76, 80, 81], "robust": [2, 39, 62, 76, 81], "prone": [2, 62], "out": [2, 3, 4, 8, 14, 24, 31, 35, 36, 41, 49, 52, 53, 55, 58, 59, 60, 62, 63, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94], "current": [2, 3, 5, 8, 11, 12, 20, 31, 35, 36, 41, 50, 57, 62, 75, 76, 81, 85, 87], "intend": [2, 11, 12, 13, 14, 28, 37, 50, 66, 70, 74, 75, 76, 79, 83], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 54, 57, 58, 59, 60, 62, 64, 66, 67, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 87, 89, 92, 93, 94], "follow": [2, 3, 8, 12, 26, 30, 31, 34, 35, 41, 43, 50, 51, 55, 57, 58, 59, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "experiment": [2, 31, 32, 34, 35, 52, 73, 81], "wrapper": [2, 4, 49, 74, 90, 92, 93], "around": [2, 4, 57, 75, 76, 87, 88, 94], "fasttext": [2, 48], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 59, 62, 78, 79, 80, 81, 91, 92, 93, 94], "along": [2, 41, 52, 70, 75, 76, 81, 82, 88], "dimens": [2, 45, 64, 67, 81, 82, 88, 91], "select": [2, 7, 8, 22, 50, 60, 81, 82, 85, 88], "split": [2, 3, 4, 8, 10, 34, 41, 44, 45, 62, 74, 75, 76, 78, 79, 80, 82, 83, 86, 89, 92, 94], "cross": [2, 3, 8, 30, 36, 39, 40, 41, 52, 55, 58, 60, 62, 63, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "fold": [2, 3, 30, 36, 39, 62, 74, 78, 80, 81, 87, 91, 92], "By": [2, 4, 30, 51, 52, 62, 75, 81, 91], "need": [2, 3, 8, 30, 31, 34, 35, 36, 51, 52, 54, 59, 62, 72, 74, 75, 76, 79, 81, 83, 85, 86, 87, 91, 93], "holdout": [2, 3, 62], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 45, 50, 51, 52, 54, 57, 58, 59, 60, 62, 63, 64, 66, 72, 73, 75, 76, 80, 83, 84, 87, 88, 90, 91, 93], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 29, 31, 33, 34, 35, 36, 48, 50, 59, 62, 73, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 91, 92, 93, 94], "numer": [2, 3, 4, 8, 11, 20, 26, 41, 57, 59, 62, 67, 72, 73, 74, 75, 76, 77, 79, 82, 83, 85, 86, 88, 90, 92, 93], "consist": [2, 3, 31, 35, 45, 50, 91, 94], "latent": [2, 3, 39], "thei": [2, 3, 4, 13, 19, 22, 25, 31, 32, 33, 35, 36, 37, 43, 45, 49, 52, 57, 60, 62, 63, 66, 70, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93, 94], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 39, 45, 51, 62, 76, 79], "close": [2, 3, 8, 34, 39, 59, 74, 75, 76, 78, 79, 81, 82, 83, 87], "form": [2, 3, 8, 31, 32, 35, 39, 44, 45, 60, 62, 81], "equival": [2, 3, 31, 35, 39, 59, 88], "iter": [2, 3, 30, 31, 35, 36, 45, 51, 52, 62, 81, 85, 91], "enforc": [2, 31, 35, 45], "perfectli": [2, 30, 51, 83], "certain": [2, 3, 4, 31, 35, 49, 58, 62, 75, 76, 80, 87, 88], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 40, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 70, 75, 76, 81, 82, 94], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 31, 34, 35, 36, 38, 41, 44, 49, 50, 52, 59, 60, 62, 68, 70, 75], "filter": [2, 3, 8, 34, 44, 51, 53, 54, 56, 58, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81, 82, 87, 90, 91, 92, 93, 94], "find_label_issu": [2, 3, 8, 26, 34, 36, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 81, 87, 90, 91, 92, 93, 94], "particularli": [2, 72, 85, 88], "filter_bi": [2, 3, 34, 36, 52, 73, 81], "frac_nois": [2, 36, 52, 68, 81], "min_examples_per_class": [2, 36, 52, 76, 81, 83], "impact": [2, 8, 75, 76, 82], "ml": [2, 4, 8, 13, 62, 72, 75, 76, 78, 79, 82, 85, 86, 92, 93], "accuraci": [2, 32, 60, 74, 81, 82, 83, 85, 88, 90, 91, 92, 93], "n_job": [2, 34, 36, 52, 64, 66, 68, 81, 88, 91], "disabl": [2, 31, 35, 36, 88], "process": [2, 3, 5, 11, 14, 31, 34, 35, 36, 44, 50, 52, 58, 64, 66, 68, 74, 75, 81, 85, 89, 93], "caus": [2, 36, 41, 75, 76, 81], "rank": [2, 3, 8, 30, 34, 36, 41, 51, 52, 53, 55, 56, 58, 59, 61, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 87, 88, 90, 91, 92, 93, 94], "get_label_quality_scor": [2, 34, 36, 37, 41, 50, 52, 53, 54, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 70, 73, 83, 87, 90, 91, 94], "adjust_pred_prob": [2, 8, 54, 59, 60, 83], "control": [2, 4, 7, 8, 14, 34, 36, 50, 58, 59, 62, 68, 70, 75, 76, 80, 81], "how": [2, 3, 4, 8, 11, 12, 14, 20, 30, 31, 32, 34, 35, 39, 45, 50, 51, 54, 55, 57, 59, 60, 62, 66, 70, 72, 75, 76, 78, 79, 80, 82, 87, 88, 89, 90, 91, 92, 93], "much": [2, 8, 30, 34, 36, 62, 81, 83, 85, 88], "output": [2, 3, 4, 8, 14, 31, 32, 35, 39, 45, 49, 50, 51, 55, 57, 58, 59, 62, 66, 67, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 87, 88, 89, 90, 93], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 45, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "suppress": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67, 91, 94], "statement": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67], "big": [2, 34, 52, 58, 62, 83], "limit": [2, 4, 14, 34, 52, 87, 91, 94], "memori": [2, 31, 34, 35, 52, 58, 64, 66, 75, 91], "label_issues_batch": [2, 33, 52, 81], "find_label_issues_batch": [2, 33, 34, 52, 81], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 45, 46, 50, 51, 52, 54, 55, 58, 59, 60, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 92, 93], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 34, 57, 58, 59, 60, 66, 70, 75, 87, 88, 91, 94], "inverse_noise_matrix": [2, 3, 8, 39, 45, 73, 83], "label_issu": [2, 34, 36, 52, 55, 62, 64, 73, 74, 79, 81, 82, 83, 86, 90, 92, 93], "clf_kwarg": [2, 3, 8, 62], "clf_final_kwarg": [2, 62], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 30, 34, 36, 38, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 66, 70, 72, 74, 78, 79, 82, 83, 85, 87, 89, 90], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 34, 35, 36, 38, 43, 45, 52, 54, 55, 58, 60, 62, 63, 64, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 90, 91, 92, 93, 94], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 30, 34, 36, 52, 55, 58, 60, 62, 63, 64, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 90, 91, 92, 93, 94], "final": [2, 8, 62, 78, 87, 89, 90, 92], "remain": [2, 62, 73, 82, 86, 90, 92, 93, 94], "datasetlik": [2, 45, 62], "beyond": [2, 4, 5, 7, 9, 29, 72, 91], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 40, 49, 50, 51, 62, 70, 74, 75, 76, 78, 79, 81, 83, 85, 90, 92, 93, 94], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 40, 45, 46, 49, 50, 51, 62, 67, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 93, 94], "scipi": [2, 4, 11, 45], "spars": [2, 4, 8, 11, 14, 16, 27, 45, 46, 78], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 31, 32, 35, 74, 79, 80, 82, 88, 93], "util": [2, 4, 8, 14, 28, 31, 32, 35, 37, 50, 55, 58, 62, 72, 73, 74, 75, 76, 81, 82, 83, 88], "tensorflow": [2, 45, 49, 72, 74, 81], "object": [2, 4, 8, 10, 11, 14, 28, 31, 32, 34, 35, 41, 45, 46, 49, 52, 55, 56, 57, 58, 59, 62, 70, 72, 74, 76, 78, 82, 83, 84, 86, 90, 93], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 66, 67, 68, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 86, 87, 90, 93, 94], "index_list": 2, "subset": [2, 3, 4, 14, 30, 34, 36, 45, 60, 67, 71, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 92, 93, 94], "wa": [2, 3, 10, 12, 34, 45, 50, 51, 57, 59, 71, 74, 75, 76, 78, 79, 81, 83, 86, 87, 89, 91, 92, 93, 94], "abl": [2, 3, 8, 62, 74, 81, 83, 85, 86], "format": [2, 3, 4, 8, 10, 31, 34, 35, 36, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 70, 71, 74, 75, 76, 78, 80, 82, 85, 90, 91, 92, 94], "make": [2, 3, 16, 31, 34, 35, 41, 49, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "sure": [2, 34, 36, 41, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 92, 93], "shuffl": [2, 8, 45, 74, 79, 82, 86, 88], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 35, 39, 41, 44, 45, 50, 55, 57, 62, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "batch": [2, 34, 45, 49, 50, 64, 66, 81, 82, 88], "order": [2, 4, 8, 30, 31, 35, 36, 39, 40, 41, 45, 50, 51, 52, 55, 58, 59, 60, 64, 67, 68, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 87, 90, 91, 93, 94], "destroi": [2, 45], "oper": [2, 31, 34, 35, 45, 49, 60, 72, 79, 81, 88, 92, 93], "eg": [2, 8, 45, 55, 58, 75, 76, 81], "repeat": [2, 45, 50, 85, 88], "appli": [2, 31, 33, 35, 36, 41, 42, 44, 45, 54, 59, 68, 74, 75, 76, 78, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93], "array_lik": [2, 3, 30, 36, 45, 52, 59, 63], "some": [2, 3, 4, 8, 12, 20, 30, 31, 33, 35, 36, 39, 44, 45, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "seri": [2, 3, 34, 45, 46, 62, 70, 81], "row": [2, 3, 4, 8, 11, 23, 30, 34, 36, 38, 39, 45, 50, 51, 52, 54, 59, 60, 62, 67, 68, 70, 71, 74, 75, 78, 79, 80, 81, 82, 85, 86, 88, 92, 94], "rather": [2, 3, 22, 30, 45, 49, 50, 57, 66, 70, 85, 89, 91, 93, 94], "leav": [2, 36], "per": [2, 3, 11, 30, 34, 36, 41, 44, 50, 51, 52, 54, 57, 58, 60, 63, 64, 66, 70, 76, 81, 87, 94], "determin": [2, 3, 8, 14, 20, 22, 26, 30, 34, 36, 41, 45, 50, 52, 55, 57, 60, 66, 70, 75, 81, 85, 87, 88, 90], "cutoff": [2, 3, 88], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 30, 31, 35, 36, 45, 50, 57, 59, 60, 63, 66, 70, 74, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93], "section": [2, 3, 5, 8, 73, 78, 82, 87], "3": [2, 3, 4, 5, 8, 30, 31, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 52, 59, 60, 62, 63, 68, 70, 80, 81, 89], "equat": [2, 3, 39], "advanc": [2, 3, 4, 7, 8, 14, 57, 59, 70, 73, 76, 77, 83], "user": [2, 3, 4, 8, 12, 14, 23, 28, 31, 35, 36, 57, 59, 60, 62, 66, 70, 83], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 31, 34, 35, 36, 41, 44, 50, 51, 52, 55, 57, 59, 60, 62, 63, 71, 73, 74, 76, 79, 82, 85, 87, 90, 93], "automat": [2, 3, 4, 22, 30, 72, 78, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "greater": [2, 3, 4, 7, 8, 24, 34, 45, 57, 76, 80, 81, 94], "count": [2, 20, 22, 30, 34, 36, 39, 45, 51, 52, 58, 73, 81, 82, 87], "observ": [2, 3, 39, 74, 75, 76, 85, 88, 90], "mislabel": [2, 8, 30, 34, 36, 39, 50, 51, 52, 55, 57, 60, 66, 68, 70, 72, 74, 78, 79, 81, 82, 83, 86, 87, 90, 92, 93], "one": [2, 3, 4, 8, 22, 30, 31, 34, 35, 36, 41, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 82, 85, 88, 89, 90, 92, 93, 94], "get_label_issu": [2, 33, 34, 61, 62, 83, 90, 92, 93], "either": [2, 3, 5, 8, 31, 34, 35, 36, 50, 52, 57, 59, 60, 64, 66, 76, 81, 86, 87], "boolean": [2, 5, 8, 20, 34, 36, 44, 50, 52, 55, 60, 62, 64, 66, 67, 72, 74, 76, 79, 81, 82, 87, 90, 91, 93], "label_issues_mask": [2, 36, 60, 62, 73], "indic": [2, 3, 4, 5, 8, 11, 20, 30, 34, 35, 36, 38, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "its": [2, 4, 7, 8, 14, 31, 34, 35, 36, 43, 44, 52, 55, 58, 59, 60, 62, 64, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94], "return_indices_ranked_bi": [2, 34, 36, 52, 68, 73, 81, 83, 92, 93], "significantli": [2, 82, 83, 85, 89], "reduc": [2, 34, 36, 45, 74, 81], "time": [2, 8, 31, 34, 35, 45, 50, 73, 75, 80, 81, 82, 83, 87, 88, 90, 91, 92, 93, 94], "take": [2, 4, 8, 30, 31, 35, 40, 41, 45, 49, 60, 78, 82, 85, 86, 87, 92, 94], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 29, 31, 34, 35, 62, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "skip": [2, 8, 31, 35, 62, 74, 81, 86, 94], "slow": [2, 3], "step": [2, 5, 22, 41, 58, 81, 82, 83, 85, 89], "caution": [2, 4, 81], "previous": [2, 4, 11, 45, 59, 62, 73, 74, 75, 78, 79, 85, 89, 92], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 40, 41, 45, 62, 75, 78, 81, 82, 90, 91, 92, 94], "individu": [2, 8, 11, 22, 31, 35, 50, 54, 57, 60, 62, 68, 70, 73, 76, 78, 81, 85, 86, 87, 92, 94], "still": [2, 34, 35, 45, 59, 74, 81, 82, 88, 92], "extra": [2, 31, 35, 45, 49, 50, 51, 62, 79, 81, 82, 85, 88], "receiv": [2, 8, 31, 35, 51, 54, 55, 62, 64, 68, 76, 87], "overwritten": [2, 62], "callabl": [2, 3, 31, 35, 41, 44, 49, 54, 81], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 34, 35, 37, 40, 44, 45, 58, 60, 62, 67, 74, 75, 76, 81, 82, 83, 86, 94], "appropri": [2, 8, 14, 52, 60, 75, 78, 86, 87], "earli": [2, 82], "stop": [2, 82], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 30, 45, 59, 75, 78, 82, 86, 90, 92, 94], "f": [2, 5, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "ignor": [2, 31, 35, 44, 49, 62, 67, 71, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "allow": [2, 30, 31, 34, 35, 38, 45, 50, 58, 59, 62, 64, 66, 74, 81, 82, 89, 91, 93], "access": [2, 8, 11, 31, 35, 62, 76, 79, 82, 86, 93], "hyperparamet": [2, 54, 59, 82], "purpos": [2, 75, 76, 81, 86, 90], "want": [2, 4, 8, 30, 34, 46, 50, 52, 62, 75, 79, 80, 82, 85, 87, 88, 89, 91, 93, 94], "explicitli": [2, 6, 8, 35, 62, 81], "yourself": [2, 4, 34, 76], "altern": [2, 5, 8, 41, 45, 49, 50, 60, 73, 74, 78, 79, 81, 82, 83, 85, 86, 88, 90, 93], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 31, 34, 35, 36, 45, 49, 50, 52, 59, 60, 62, 66, 67, 70, 71, 72, 75, 76, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93], "effect": [2, 8, 23, 31, 35, 50, 59, 62, 78, 79, 81, 82, 88], "offer": [2, 4, 74, 75, 76, 79, 81, 83, 86, 93], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 50, 62, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 59, 62, 75, 92], "label_issues_df": [2, 62, 82], "similar": [2, 8, 30, 31, 35, 45, 50, 54, 55, 57, 59, 62, 66, 70, 75, 76, 78, 79, 81, 82, 83, 87, 88, 91], "document": [2, 3, 4, 8, 12, 14, 30, 31, 34, 35, 36, 41, 44, 49, 51, 52, 54, 57, 58, 59, 62, 66, 67, 68, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 45, 55, 62, 75, 76], "were": [2, 3, 4, 30, 35, 51, 57, 70, 74, 78, 81, 83, 85, 87, 89, 91, 92], "present": [2, 3, 4, 8, 10, 11, 18, 30, 45, 59, 67, 72, 78, 81, 82, 88], "actual": [2, 3, 4, 30, 50, 51, 60, 76, 81, 83, 94], "num_class": [2, 30, 34, 45, 49, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 92, 93], "uniqu": [2, 27, 45, 67, 75, 81, 86, 88], "given_label": [2, 4, 26, 30, 39, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93, 94], "normal": [2, 3, 16, 22, 27, 36, 38, 41, 43, 44, 45, 60, 81, 83, 88], "trick": [2, 81], "distribut": [2, 3, 4, 8, 22, 24, 30, 35, 36, 40, 43, 50, 58, 59, 60, 72, 75, 76, 78, 79, 82, 87, 88], "account": [2, 30, 50, 54, 59, 60, 79, 81, 83, 85, 86, 88, 90, 93], "word": [2, 3, 44, 70, 71, 81], "remov": [2, 8, 27, 30, 31, 35, 36, 62, 72, 79, 80, 81, 82, 86, 88, 90, 92, 93], "so": [2, 3, 4, 5, 8, 12, 22, 30, 31, 34, 35, 36, 45, 50, 51, 57, 60, 62, 66, 70, 74, 75, 76, 79, 82, 83, 88, 91], "proportion": [2, 8, 36], "just": [2, 3, 4, 8, 11, 30, 32, 34, 45, 49, 60, 62, 64, 72, 73, 74, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 31, 32, 35, 36, 41, 44, 45, 50, 52, 54, 59, 60, 62, 63, 64, 72, 74, 79, 80, 81, 82, 83, 88, 89, 90, 92, 93], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 43, 53, 55, 56, 57, 58, 59, 60, 61, 62, 65, 69, 72, 75, 77, 82, 84, 86, 90, 91, 92, 93, 94], "arg": [2, 10, 20, 23, 27, 31, 32, 35, 41, 45, 60, 62], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 49, 62, 64, 66, 68, 81], "test": [2, 8, 22, 35, 41, 49, 62, 72, 75, 76, 78, 79, 82, 89, 90, 92, 93, 94], "expect": [2, 3, 31, 35, 36, 41, 50, 59, 60, 62, 81, 83, 85, 86, 87, 90, 92, 93, 94], "class_predict": 2, "evalu": [2, 8, 31, 32, 33, 34, 35, 58, 62, 74, 75, 76, 81, 82, 83, 85, 89, 90, 91, 92, 93], "simpli": [2, 30, 60, 75, 76, 78, 79, 81, 83, 86, 90, 91, 93, 94], "quantifi": [2, 4, 5, 8, 11, 36, 54, 59, 62, 72, 76, 78, 79, 82, 83, 87], "save_spac": [2, 8, 61, 62], "potenti": [2, 8, 30, 36, 44, 52, 55, 58, 60, 62, 64, 66, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "cach": [2, 79, 93], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 45, 46, 49, 50, 51, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 90, 91, 92, 93], "unlik": [2, 8, 36, 38, 41, 49, 51, 52, 54, 70, 75, 85, 86, 88, 90], "both": [2, 4, 8, 14, 22, 30, 31, 35, 36, 45, 50, 52, 60, 64, 66, 71, 72, 75, 81, 82, 83, 85, 94], "mask": [2, 34, 36, 44, 45, 52, 55, 60, 62, 64, 66, 67, 72, 80, 81, 85, 87, 91, 94], "prefer": [2, 60, 68], "plan": 2, "subsequ": [2, 3, 31, 35, 79, 81, 83, 87, 93], "invok": [2, 31, 35, 83, 89], "scratch": [2, 62], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 29, 31, 34, 35, 36, 49, 50, 52, 54, 58, 59, 60, 62, 63, 64, 66, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "share": [2, 60, 62], "mostli": [2, 45, 57, 62, 86], "longer": [2, 40, 41, 44, 62, 73, 79, 81, 87, 93], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 62, 70, 75, 76, 80, 81, 94], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 38, 50, 51, 54, 58, 62, 67, 70, 74, 75, 78, 79, 80, 81, 82, 83, 85, 88], "docstr": [2, 30, 31, 35, 45, 62, 80, 83], "unless": [2, 31, 35, 62, 81], "our": [2, 3, 8, 49, 50, 60, 62, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "is_label_issu": [2, 26, 62, 74, 75, 76, 78, 79, 82, 83, 86, 90, 93], "entir": [2, 8, 22, 34, 36, 39, 51, 52, 57, 60, 62, 64, 66, 67, 72, 75, 76, 81, 87, 88, 89, 91, 94], "accur": [2, 3, 4, 8, 14, 30, 34, 36, 50, 51, 52, 55, 58, 60, 62, 63, 64, 66, 67, 73, 76, 78, 79, 81, 82, 85, 90], "label_qu": [2, 50, 62, 83, 85, 90, 93], "measur": [2, 30, 50, 51, 62, 72, 80, 81, 83, 85, 86, 91, 92, 94], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 30, 34, 36, 38, 41, 50, 51, 52, 54, 55, 57, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 90, 92, 93], "lower": [2, 4, 5, 8, 11, 24, 34, 41, 43, 50, 51, 54, 57, 58, 60, 62, 63, 66, 70, 74, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 93, 94], "eas": 2, "comparison": [2, 31, 35, 58, 83, 85, 87, 90], "against": [2, 31, 35, 75, 78, 81, 85, 86], "predicted_label": [2, 4, 26, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93], "ad": [2, 31, 35, 76, 85, 90], "precis": [2, 52, 55, 58, 81, 83, 91, 94], "definit": [2, 5, 41, 62, 78, 92], "accessor": [2, 62], "describ": [2, 8, 16, 50, 59, 60, 62, 68, 70, 83, 85, 86, 87, 89, 94], "precomput": [2, 4, 39, 62, 80], "clear": [2, 31, 35, 62, 79, 90, 93], "save": [2, 4, 14, 31, 34, 35, 58, 62, 81, 87, 91, 94], "space": [2, 8, 59, 62, 78, 80, 82], "place": [2, 31, 35, 45, 62, 85, 92], "larg": [2, 34, 62, 78, 79, 81, 82, 87, 88, 91, 94], "deploi": [2, 62, 78, 79, 81, 82], "care": [2, 8, 31, 35, 62, 79, 81, 83], "avail": [2, 4, 5, 10, 12, 28, 35, 62, 81, 83, 85, 87, 90], "cannot": [2, 4, 10, 12, 45, 89, 94], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 41, 62], "__init_subclass__": [2, 33, 35, 61, 62], "set_": [2, 35, 62], "_request": [2, 35, 62], "pep": [2, 35, 62], "487": [2, 35, 62], "look": [2, 4, 5, 14, 31, 35, 45, 62, 67, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 91, 92, 94], "inform": [2, 4, 5, 8, 11, 14, 28, 31, 35, 45, 50, 51, 55, 58, 62, 67, 70, 71, 72, 74, 75, 78, 79, 83, 85, 88, 91, 94], "__metadata_request__": [2, 35, 62], "infer": [2, 35, 45, 62, 67, 71, 82, 85, 86, 90, 92, 93], "signatur": [2, 31, 35, 62], "accept": [2, 31, 35, 60, 62, 75, 76], "metadata": [2, 35, 62, 78, 79, 82, 94], "through": [2, 4, 5, 35, 62, 74, 76, 79, 80, 81, 85, 87, 88, 90, 93], "develop": [2, 7, 35, 62, 81, 83, 94], "request": [2, 35, 62, 76, 79, 80, 86, 92, 93, 94], "those": [2, 3, 8, 34, 35, 36, 49, 50, 52, 58, 62, 66, 70, 71, 72, 74, 81, 82, 87, 91], "http": [2, 4, 5, 7, 8, 9, 16, 29, 31, 32, 34, 35, 38, 45, 55, 58, 59, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "www": [2, 35, 62, 88], "org": [2, 16, 31, 32, 35, 45, 59, 62, 81, 83, 94], "dev": [2, 35, 62], "0487": [2, 35, 62], "get_metadata_rout": [2, 33, 35, 61, 62], "rout": [2, 35, 62], "pleas": [2, 31, 35, 49, 62, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "guid": [2, 5, 35, 62, 73, 82], "mechan": [2, 31, 35, 62], "metadatarequest": [2, 35, 62], "encapsul": [2, 14, 35, 57, 62], "get_param": [2, 33, 35, 48, 49, 61, 62], "subobject": [2, 35, 62], "param": [2, 8, 31, 35, 49, 59, 62, 81], "name": [2, 4, 5, 8, 10, 11, 30, 31, 35, 40, 41, 45, 49, 50, 51, 58, 62, 67, 71, 74, 76, 79, 80, 81, 82, 83, 86, 91, 93, 94], "set_fit_request": [2, 33, 35, 61, 62], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 39, 41, 44, 45, 49, 50, 51, 55, 57, 58, 60, 62, 67, 71, 74, 75, 81, 85, 86, 87, 94], "unchang": [2, 31, 35, 62, 94], "relev": [2, 14, 22, 35, 62, 82], "enable_metadata_rout": [2, 35, 62], "set_config": [2, 35, 62], "meta": [2, 35, 62], "rais": [2, 4, 10, 11, 31, 35, 38, 41, 62, 74, 81], "alia": [2, 31, 35, 62], "metadata_rout": [2, 35, 62], "retain": [2, 35, 45, 62], "chang": [2, 31, 34, 35, 38, 62, 70, 74, 75, 79, 81, 87, 88, 93, 94], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 29, 31, 33, 35, 37, 38, 45, 48, 49, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "sub": [2, 35, 57, 62], "pipelin": [2, 35, 62], "otherwis": [2, 8, 30, 31, 34, 35, 36, 42, 44, 45, 52, 59, 62, 64, 66, 67, 71, 79, 81, 93], "updat": [2, 11, 31, 34, 35, 62, 73, 75, 82], "set_param": [2, 33, 35, 48, 49, 61, 62], "simpl": [2, 31, 35, 36, 50, 60, 62, 75, 76, 78, 79, 82, 85, 88, 90, 92, 93], "well": [2, 3, 8, 31, 35, 38, 39, 50, 52, 58, 60, 62, 67, 70, 71, 73, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88], "nest": [2, 31, 35, 46, 62, 68, 70, 71, 94], "latter": [2, 31, 35, 62, 88], "compon": [2, 35, 62], "__": [2, 35, 62], "set_score_request": [2, 61, 62], "structur": [3, 59, 78, 92], "unobserv": 3, "less": [3, 4, 8, 27, 34, 41, 50, 59, 60, 64, 66, 70, 76, 78, 80, 81, 82, 83, 87, 94], "channel": [3, 74, 83], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 30, 39, 45, 51, 76, 80, 93], "inv": 3, "confident_joint": [3, 20, 30, 36, 45, 51, 52, 73, 81, 83], "un": 3, "under": [3, 8, 31, 35, 51, 58, 59, 76, 88], "joint": [3, 30, 36, 39, 45, 51, 52, 80], "num_label_issu": [3, 34, 36, 52, 67, 71, 73], "estimation_method": [3, 34], "off_diagon": 3, "multi_label": [3, 30, 36, 45, 46, 52, 86], "don": [3, 72, 76, 78, 79, 82, 83, 87], "statis": 3, "compute_confident_joint": [3, 30, 36, 45, 52, 83], "off": [3, 36, 45, 57, 82, 83, 87, 88], "j": [3, 4, 30, 31, 35, 36, 52, 55, 58, 59, 68, 70, 71, 75, 76, 83, 91, 94], "confident_learn": [3, 36, 52, 83], "off_diagonal_calibr": 3, "calibr": [3, 36, 45, 50, 85], "cj": [3, 39, 45], "axi": [3, 27, 39, 41, 43, 64, 67, 74, 75, 76, 81, 82, 83, 85, 86, 88, 90, 91], "bincount": [3, 75, 76, 83, 85, 86], "alwai": [3, 8, 31, 35, 45, 74, 83, 90, 92, 93], "estimate_issu": 3, "over": [3, 8, 31, 34, 35, 57, 58, 64, 66, 76, 78, 80, 81, 82, 83, 88, 90, 92], "As": [3, 5, 72, 75, 76, 79, 83, 90, 94], "add": [3, 4, 5, 10, 11, 31, 35, 49, 58, 74, 75, 76, 79, 81, 82, 83, 86, 93], "approach": [3, 30, 34, 36, 78, 83, 86, 88, 90, 92], "custom": [3, 5, 8, 9, 26, 31, 34, 35, 41, 44, 60, 76, 79, 83, 93], "know": [3, 75, 76, 78, 79, 81, 82, 83, 85], "cut": [3, 57, 72, 83], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 88, 94], "underestim": 3, "few": [3, 58, 72, 76, 81, 85, 86, 87, 88, 94], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 40, 41, 44, 54, 55, 57, 58, 60, 63, 70, 80, 81, 86, 91, 94], "detail": [3, 4, 8, 12, 14, 30, 31, 35, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 66, 67, 68, 72, 73, 74, 86, 88, 94], "num_issu": [3, 5, 34, 74, 75, 76, 78, 79, 82, 83], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 36, 41, 50, 80, 81, 87, 90, 93, 94], "p_": [3, 30, 36], "pair": [3, 4, 8, 30, 36, 83], "v": [3, 8, 34, 51, 52, 54, 60, 75, 76, 86, 87, 88, 89], "rest": [3, 4, 5, 7, 8, 9, 29, 51, 52, 54, 62, 75, 76, 78, 79, 81, 82, 83, 85, 90, 92, 93], "fashion": [3, 4, 64, 92], "2x2": 3, "incorrectli": [3, 30, 51, 52, 55, 78, 94], "calibrated_cj": 3, "c": [3, 8, 44, 52, 60, 72, 74, 75, 76, 78, 79, 81, 83, 86, 87, 88, 89, 90, 92], "whose": [3, 4, 8, 24, 31, 35, 39, 44, 50, 54, 57, 63, 66, 70, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 91, 94], "truli": [3, 88, 91], "estimate_joint": [3, 30, 83], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 52, 58, 83, 87, 89, 91, 94], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 50, 51, 58, 67, 87, 88], "done": [3, 8, 62, 75, 81, 83, 86, 88, 89], "overfit": [3, 8, 55, 58, 74, 75, 76, 78, 79, 82, 89, 92], "classifict": 3, "singl": [3, 4, 22, 30, 31, 35, 41, 42, 45, 50, 51, 57, 58, 59, 60, 70, 74, 75, 81, 83, 86, 87, 92], "baselin": [3, 31, 36, 88, 90, 93], "proxi": 3, "union": [3, 4, 10, 41, 45, 46, 52, 58, 62, 66, 70, 81], "tupl": [3, 27, 31, 35, 39, 40, 42, 44, 45, 50, 52, 58, 66, 68, 70, 71, 74, 94], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 34, 39, 50, 64, 66, 72, 81, 82, 91, 93], "practic": [3, 76, 82, 83, 88, 90, 92, 93], "complet": [3, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "gist": 3, "cj_ish": 3, "guess": [3, 39, 83, 85], "8": [3, 4, 5, 6, 40, 41, 42, 44, 54, 68, 70, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "parallel": [3, 36, 58, 68, 80], "again": [3, 49, 81, 88, 92], "simplifi": [3, 12], "understand": [3, 7, 30, 51, 58, 76, 83, 90, 91, 94], "100": [3, 31, 35, 60, 75, 76, 78, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94], "optim": [3, 31, 32, 35, 49, 82, 85], "speed": [3, 36, 80, 81, 90, 93], "dtype": [3, 21, 22, 27, 31, 35, 44, 45, 54, 70, 74, 87], "enumer": [3, 31, 35, 74, 75, 76, 82, 94], "s_label": 3, "confident_bin": 3, "6": [3, 4, 35, 41, 45, 70, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "num_confident_bin": 3, "argmax": [3, 36, 60, 64, 67, 74, 81, 83, 87, 88, 91], "elif": 3, "estimate_lat": 3, "py_method": [3, 39], "cnt": [3, 39], "1d": [3, 4, 14, 34, 36, 41, 42, 45, 46, 54, 63, 74, 92], "eqn": [3, 39], "margin": [3, 36, 39, 41, 60], "marginal_p": [3, 39], "shorthand": [3, 11], "proport": [3, 8, 30, 51, 83, 89], "poorli": [3, 39, 92], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 83], "variabl": [3, 5, 12, 23, 45, 62, 63, 74, 75, 78, 83, 86, 90], "exact": [3, 39, 75, 76, 78, 82, 92], "within": [3, 4, 8, 13, 31, 32, 35, 37, 52, 57, 66, 68, 70, 75, 76, 81, 82, 87, 91], "percent": 3, "often": [3, 30, 39, 51, 81, 83, 89, 91], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 45, 46, 58, 74, 75, 78, 79, 81, 82, 86, 87, 88, 93], "wai": [3, 4, 49, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 89, 92, 93], "pro": 3, "con": 3, "pred_proba": [3, 89], "combin": [3, 30, 75, 80, 81, 82, 83, 89, 90], "becaus": [3, 39, 45, 57, 79, 81, 83, 85, 87], "littl": [3, 34, 80, 87, 94], "uniform": [3, 60, 80, 81, 83], "20": [3, 5, 71, 74, 79, 80, 81, 82, 83, 87, 88, 91, 94], "Such": [3, 82, 88], "bound": [3, 21, 31, 35, 44, 54, 55, 57, 58, 87], "reason": [3, 20, 31, 35], "comment": [3, 44, 94], "end": [3, 4, 31, 35, 58, 82, 88, 91, 94], "file": [3, 4, 10, 33, 34, 48, 58, 74, 75, 78, 79, 80, 81, 87, 88, 91, 92, 94], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 83], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 73, 75, 76, 78, 79, 82, 83, 91, 92, 94], "five": [3, 55, 58, 83, 87], "estimate_cv_predicted_prob": [3, 83], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33, 34], "amongst": [3, 8, 87], "confident_threshold": [3, 8, 20, 34, 59], "unifi": 4, "audit": [4, 7, 10, 11, 14, 74, 77, 78, 79, 81, 82, 83, 86, 87], "kind": [4, 5, 74, 75, 78, 79, 80, 82, 83], "addit": [4, 5, 7, 8, 9, 11, 28, 29, 31, 35, 41, 46, 50, 58, 68, 74, 75, 78, 79, 83, 85, 88, 89, 92, 93], "depend": [4, 5, 7, 8, 9, 10, 11, 29, 33, 36, 38, 45, 48, 52, 59, 62, 63, 72], "instal": [4, 5, 7, 8, 9, 29, 31, 33, 34, 35, 36, 48, 49, 64, 66], "pip": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "development": [4, 5, 7, 9, 29], "git": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "github": [4, 5, 7, 9, 29, 31, 32, 45, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "com": [4, 5, 7, 9, 29, 31, 32, 34, 38, 45, 59, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "egg": [4, 5, 7, 9, 29, 72, 80], "label_nam": [4, 5, 6, 8, 10, 16, 27, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "image_kei": [4, 82], "interfac": [4, 72, 81, 83], "librari": [4, 8, 35, 55, 58, 59, 72, 75, 79, 80, 81, 93], "goal": 4, "track": [4, 11, 12, 72, 75, 80, 81, 83], "intermedi": [4, 7, 76], "statist": [4, 8, 11, 20, 22, 30, 50, 51, 58, 76, 78, 79, 83], "convert": [4, 10, 31, 35, 42, 43, 46, 50, 57, 66, 70, 73, 74, 79, 80, 81, 82, 85, 86, 87, 93], "hug": [4, 10, 82], "face": [4, 10, 14, 80, 82, 86], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 41, 50, 51, 57, 59, 75, 76, 79, 81, 82, 83, 85, 87], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 35, 45, 50, 51, 63, 67, 70, 71, 78, 79, 81, 85, 86, 93, 94], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 40, 45, 50, 51, 54, 55, 57, 58, 75, 76, 78, 79, 83, 85, 86, 87], "path": [4, 10, 31, 34, 35, 58, 74, 75, 81, 87], "local": [4, 10, 31, 32, 35, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 41, 59, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 84, 85, 88], "txt": [4, 10, 94], "csv": [4, 10, 78, 79, 90, 92, 93], "json": [4, 10], "hub": [4, 10], "regress": [4, 5, 10, 12, 14, 19, 26, 28, 75, 76, 79, 84, 85, 88, 93], "imag": [4, 7, 30, 35, 55, 57, 58, 59, 64, 66, 67, 72, 75, 76, 80, 81, 84, 85, 86, 87, 89, 91], "point": [4, 5, 8, 16, 22, 31, 35, 75, 76, 78, 79, 81, 82, 83, 85], "field": [4, 8, 31, 35], "themselv": [4, 90, 92, 93], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 44, 68, 70, 76, 82, 84, 91], "load_dataset": [4, 10, 82], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 31, 35], "has_label": [4, 10], "class_nam": [4, 10, 18, 30, 51, 58, 67, 71, 72, 80, 83, 87, 91, 94], "empti": [4, 10, 39, 50, 76, 81, 86], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 78], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 74, 75, 76, 78, 79, 81, 82, 83, 86], "sort": [4, 14, 34, 36, 41, 50, 52, 55, 57, 58, 60, 66, 68, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "common": [4, 11, 14, 76, 77, 80, 81, 83, 86, 87, 91], "real": [4, 14, 72, 75, 76, 81, 83, 85, 86, 90, 91], "world": [4, 14, 72, 75, 76, 81, 83, 85, 90, 91], "interact": [4, 14, 79, 81], "embed": [4, 8, 14, 59, 72, 74, 75, 76, 78, 79, 83, 86, 93], "thereof": [4, 14], "insight": [4, 14, 58, 85], "act": [4, 8, 57, 75], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 34, 36, 64, 66], "best": [4, 14, 40, 50, 60, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 92, 93, 94], "2d": [4, 14, 34, 41, 42, 44, 45, 50, 74, 86, 92], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 51, 74, 75, 76, 78, 79, 82, 83], "represent": [4, 8, 14, 31, 35, 42, 52, 72, 74, 75, 76, 79, 81, 82, 83, 88, 93], "num_featur": [4, 14, 31, 35, 49], "distanc": [4, 8, 14, 16, 22, 24, 27, 43, 57, 59, 78, 88], "nearest": [4, 8, 14, 21, 22, 24, 43, 59, 76, 79, 88], "neighbor": [4, 8, 14, 16, 21, 22, 24, 43, 59, 75, 76, 78, 79, 81, 82, 88], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 45, 62, 80, 90], "csr": 4, "evenli": 4, "omit": [4, 57, 58, 82, 87], "itself": [4, 31, 35, 87], "three": [4, 8, 30, 50, 51, 62, 67, 74, 75, 76, 78, 80, 83, 85, 89, 90, 91, 92, 94], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 32, 35, 41, 72, 78, 86, 94], "th": [4, 40, 44, 45, 50, 52, 55, 57, 58, 59, 68, 70, 71, 79, 86, 87, 94], "ascend": [4, 30, 51, 82, 83], "segment": [4, 64, 66, 67, 84], "reflect": [4, 78, 79, 85, 87, 88, 90, 92, 93], "maintain": 4, "posit": [4, 31, 35, 43, 45, 58, 80, 88], "nearestneighbor": [4, 8, 16, 59, 78, 88], "kneighbors_graph": [4, 16, 78], "illustr": 4, "todens": 4, "second": [4, 41, 45, 58, 60, 75, 81, 83, 94], "duplic": [4, 7, 19, 20, 31, 35, 72, 75, 83, 86], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49], "neither": [4, 8, 12, 87], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 50, 81, 85, 94], "unspecifi": [4, 14, 36, 52], "interest": [4, 14, 20, 67, 71, 79, 83, 91, 92, 93, 94], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 62, 63, 80, 90, 94], "random_st": [4, 74, 75, 76, 82, 83, 86, 88, 92], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 34, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86], "comprehens": [4, 72, 82, 86], "nbr": 4, "n_neighbor": [4, 8, 16, 59], "metric": [4, 8, 17, 22, 27, 45, 49, 58, 59, 74, 78, 79, 82, 83, 90, 92, 93], "euclidean": [4, 8, 57, 59, 78], "mode": [4, 16, 31, 34, 35, 88], "4x4": 4, "float64": [4, 22, 31, 35, 70], "compress": [4, 8, 45, 64, 66], "toarrai": 4, "NOT": [4, 34, 79], "23606798": 4, "41421356": 4, "configur": [4, 14, 41, 76], "suppos": [4, 8, 55, 88, 90, 92, 93], "who": [4, 57, 78, 83, 92, 94], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "clean_learning_kwarg": [4, 8, 21, 26], "labelissuemanag": [4, 8, 19, 21], "prune_method": [4, 73], "prune_by_noise_r": [4, 36, 52, 83], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 71, 72, 74, 75, 76, 78, 79, 83, 86, 94], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 48, 49, 51, 56, 65, 66, 68, 69, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 87, 91, 94], "show": [4, 22, 31, 35, 40, 45, 58, 67, 71, 76, 78, 79, 80, 81, 82, 83, 85, 88, 90, 91, 92, 94], "top": [4, 8, 30, 34, 36, 45, 52, 55, 58, 60, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 90, 93, 94], "suffer": [4, 8, 11, 20, 52, 60, 71, 94], "onc": [4, 20, 30, 31, 35, 75, 81, 83, 86, 87, 92], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 41, 50, 51, 54, 57, 58, 62, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87, 94], "sever": [4, 5, 8, 10, 11, 20, 31, 34, 35, 36, 54, 57, 59, 60, 66, 70, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 92, 93, 94], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 72, 74, 75, 76, 78, 79, 81, 82, 86, 88, 90, 92, 93, 94], "With": [4, 34, 79, 83, 85, 90, 91, 93, 94], "usag": [4, 34, 49], "issue_summari": [4, 8, 11, 75], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 37, 60, 72, 75, 76, 83, 84, 86], "someth": [4, 5, 31, 35, 60, 87], "123": [4, 75, 76], "456": [4, 74, 92, 93], "nearest_neighbor": 4, "7": [4, 41, 42, 49, 68, 70, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93, 94], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 54, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "distance_to_nearest_neighbor": [4, 75, 76, 78, 79, 82, 83], "789": 4, "get_issu": [4, 8, 11, 74, 76, 78, 79, 81, 82, 86], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75, 76], "focu": [4, 11, 79, 91, 94], "full": [4, 8, 11, 34, 58, 82, 94], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 67, 71, 72, 91], "valueerror": [4, 10, 11, 38, 41, 81], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 67, 76, 78, 79, 82, 83, 87], "lie": [4, 8, 59, 60, 74, 75, 76, 78, 79, 82, 83, 93], "directli": [4, 12, 14, 28, 34, 49, 50, 76, 79, 87, 90, 93], "compar": [4, 50, 59, 70, 75, 76, 78, 83, 87], "get_issue_summari": [4, 11, 76], "get_info": [4, 11, 76, 79], "yet": [4, 15, 19, 23, 80, 85], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 31, 35, 75], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 74, 75, 82], "load": [4, 10, 34, 58, 80, 81, 82, 83, 87, 88, 91, 94], "futur": [4, 8, 20, 31, 35, 50, 72, 74, 75, 79, 81, 93], "overwrit": [4, 75], "separ": [4, 30, 41, 54, 75, 76, 81, 82, 87, 89], "static": 4, "rememb": [4, 79, 81, 83], "part": [4, 8, 31, 35, 36, 55, 57, 58, 74, 75, 80, 91, 94], "ident": [4, 8, 20, 45, 79], "walk": 5, "alongsid": [5, 31, 35, 75, 81], "pre": [5, 6, 8, 31, 35, 75, 76, 82, 91, 94], "runtim": [5, 31, 34, 35, 62, 64, 66, 74, 81, 82], "issue_manager_factori": [5, 12, 75], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "thing": [5, 35, 83, 90, 93], "next": [5, 50, 72, 74, 78, 79, 81, 85, 87, 90, 92, 93, 94], "dummi": 5, "randint": [5, 27, 41, 75, 76, 81], "mark": [5, 8, 73, 87, 88, 90], "regard": [5, 76, 83], "rand": [5, 41, 75, 76], "is_": [5, 8, 75], "_issu": [5, 8, 75], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "whole": [5, 22, 31, 35, 76], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "popul": [5, 76, 79], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": [5, 87], "raw_scor": 5, "bit": 5, "involv": [5, 34, 67, 71, 81, 86], "intermediate_arg": 5, "min": [5, 41, 57, 70, 75, 81, 88], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 75], "instanti": [5, 14, 34, 49, 59, 74, 76, 78, 93], "477762": 5, "286455": 5, "term": [5, 8, 39, 45, 58, 74, 75, 76, 78, 79, 82, 83], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "003042": 5, "058117": 5, "11": [5, 49, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "121908": 5, "15": [5, 43, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "169312": 5, "17": [5, 74, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 75, 76, 80, 83], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 80, 87, 94], "dbscan": [6, 8, 27, 81], "hdbscan": [6, 81], "etc": [6, 8, 20, 31, 35, 39, 49, 50, 68, 72, 75, 76, 78, 79, 81, 83, 86], "sensit": [6, 8, 43], "ep": [6, 27, 58], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 72, 74, 81, 82, 85, 86, 92, 93], "kmean": [6, 81], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 81], "cluster_id": [6, 8, 27, 81], "labels_": 6, "underperforming_group": [6, 8, 19, 81], "search": [7, 8, 18, 22, 23, 44, 62, 81, 89], "nondefault": 7, "Near": [7, 81], "iid": [7, 22, 78, 83], "imbal": [7, 19, 54, 59, 60, 76], "null": [7, 19, 76, 79, 82, 83], "valuat": [7, 16], "togeth": [7, 8, 39, 75, 76, 78, 79, 82, 83, 90, 93, 94], "built": [7, 41], "own": [7, 31, 33, 35, 48, 54, 55, 58, 64, 68, 74, 76, 78, 79, 81, 82, 85, 86, 90, 91, 92, 93, 94], "prerequisit": 7, "basic": [7, 35, 49, 78, 79, 88], "page": [8, 76, 81, 83], "variou": [8, 11, 26, 33, 46, 48, 72, 75, 76, 78, 79, 80, 83, 85, 87, 92], "sai": [8, 31, 35, 86, 91], "why": [8, 79], "matter": [8, 30, 51, 79, 93], "_score": 8, "flag": [8, 20, 22, 36, 41, 51, 52, 55, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 90, 91, 93], "badli": [8, 57, 94], "code": [8, 31, 35, 39, 45, 49, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "issue_scor": 8, "outlier_scor": [8, 24, 75, 76, 78, 79, 82, 83, 88], "atyp": [8, 59, 75, 76, 78, 79, 82, 83, 88], "datapoint": [8, 27, 36, 41, 45, 60, 63, 72, 74, 75, 76, 78, 79, 81, 89, 90, 92, 93], "is_issu": [8, 20], "is_outlier_issu": [8, 75, 76, 78, 79, 82, 83], "annot": [8, 30, 40, 50, 51, 52, 54, 55, 57, 58, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91], "transform": [8, 41, 43, 45, 59, 60, 76, 79, 82, 88, 92, 93, 94], "dissimilar": [8, 78, 79], "preced": 8, "cosin": [8, 59, 88], "incorrect": [8, 57, 60, 63, 74, 75, 76, 78, 79, 82, 83, 87, 90, 92], "due": [8, 34, 36, 60, 64, 66, 74, 75, 76, 78, 79, 82, 83], "appear": [8, 30, 40, 51, 52, 55, 63, 76, 78, 79, 82, 90, 91], "likelihood": [8, 34, 36, 52, 57, 59, 60, 64, 68], "now": [8, 34, 73, 74, 76, 85, 87, 88, 90, 92, 93, 94], "u": [8, 74, 75, 78, 81, 82, 83, 85, 86, 89, 90, 91, 92, 93, 94], "token": [8, 44, 66, 67, 68, 69, 70, 71, 81, 83, 84], "calcul": [8, 16, 22, 34, 41, 50, 54, 55, 57, 58, 59, 62, 66, 80, 82], "hamper": [8, 80, 82], "analyt": [8, 72, 81, 85], "lead": [8, 57, 60, 82, 87], "draw": [8, 75, 76], "conclus": [8, 79], "try": [8, 34, 36, 49, 50, 64, 66, 72, 76, 78, 79, 81, 82, 83, 91], "veri": [8, 30, 51, 55, 57, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93], "rare": [8, 36, 58, 75, 76, 78, 79, 81, 82, 83], "anomal": [8, 60, 75, 76, 78, 79, 82, 83], "articl": [8, 34, 81], "ai": [8, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94], "blog": 8, "unexpect": [8, 31, 35, 79], "consequ": 8, "inspect": [8, 74, 76, 82, 83, 87, 90, 93], "neg": [8, 57, 58, 75, 76, 80], "affect": [8, 31, 35, 64, 70, 79, 81], "extrem": [8, 75, 76, 78, 79, 81, 82, 83], "rel": [8, 30, 50, 51, 59, 75, 76, 78, 79, 82, 83, 88], "record": [8, 31, 35, 74, 78, 90], "abbrevi": 8, "misspel": 8, "typo": [8, 71], "resolut": 8, "video": [8, 80], "audio": [8, 75, 76, 81, 84], "minor": [8, 44], "variat": 8, "translat": 8, "d": [8, 43, 78, 79, 83, 86, 92, 94], "constant": [8, 27, 62], "median": [8, 26, 43], "question": [8, 20, 72, 83], "nearli": [8, 20, 76, 78, 79, 82], "awar": [8, 73, 83], "presenc": [8, 83], "signific": [8, 78, 79, 83], "violat": [8, 78, 79, 83], "assumpt": [8, 78, 79, 83], "changepoint": [8, 78, 79, 83], "shift": [8, 78, 79, 83], "drift": [8, 76, 78, 83], "autocorrel": [8, 78, 79, 83], "almost": [8, 78, 79, 83], "adjac": [8, 78, 79, 83], "tend": [8, 30, 39, 78, 79, 83, 91, 94], "sequenti": [8, 31, 35, 49, 82], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 44, 45, 70, 78, 79, 80, 83, 89, 92, 94], "x1": [8, 55, 58, 87], "x2": [8, 55, 58, 87], "10th": 8, "100th": 8, "90": [8, 70, 78, 82, 83, 88, 89, 90, 91, 92], "similarli": [8, 31, 35, 75, 78, 81, 82, 87], "math": [8, 82], "behind": [8, 59, 83], "fundament": 8, "proper": [8, 45, 50, 55, 58, 79, 82, 85, 87, 92], "closer": [8, 57, 87], "scenario": [8, 60, 75, 76], "underli": [8, 59, 68, 70, 94], "stem": [8, 59, 88], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 86, 88], "partit": [8, 89], "ahead": 8, "good": [8, 31, 35, 43, 49, 51, 57, 60, 64, 66, 67, 72, 78, 79, 82], "fix": [8, 50, 79, 83, 90, 93], "problem": [8, 34, 41, 67, 72, 75, 76, 79, 81, 82], "deploy": [8, 83, 90, 92, 93], "overlook": [8, 57, 87], "fact": 8, "thu": [8, 30, 35, 51, 74, 78, 79, 83, 89, 92, 94], "diagnos": [8, 76, 81], "rarest": [8, 76], "q": [8, 87], "fall": [8, 57, 66, 70, 83, 87, 88], "subpar": 8, "special": [8, 44], "techniqu": [8, 87], "smote": 8, "asymmetr": [8, 30], "properli": [8, 34, 40, 45, 46, 64, 81, 86, 88, 90, 91], "too": [8, 36, 41, 59, 76, 81, 82, 87], "dark": [8, 91], "bright": [8, 94], "blurri": [8, 82], "abnorm": [8, 58, 82, 87], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 50, 58, 76, 81, 82, 85, 86, 87, 91], "get_self_confidence_for_each_label": [8, 41, 60], "power": [8, 78, 79, 80, 82, 83, 94], "r": [8, 34, 62, 75, 76, 90, 91], "tabular": [8, 72, 75, 76, 77, 81, 84, 85], "categor": [8, 59, 75, 76, 77, 81, 90, 92], "encod": [8, 42, 58, 64, 67, 78, 79, 81, 90, 91, 92, 93], "miss": [8, 23, 31, 35, 45, 55, 57, 78, 81, 87, 90], "pattern": 8, "contribut": [8, 16, 87], "isn": [8, 15, 23], "approxim": [8, 16, 34, 59, 85], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 59, 78, 88], "scalabl": 8, "sacrific": 8, "One": [8, 45, 59, 81], "quantif": 8, "exert": [8, 76], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 75, 76, 78, 79, 81, 82, 83], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 76, 78, 79, 82, 83], "non_iid_kwarg": 8, "class_imbal": [8, 18, 76, 78, 79, 82, 83], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 30, 72, 80], "health_summary_kwarg": 8, "tandem": [8, 80], "view": [8, 31, 35, 36, 66, 68, 70, 72, 74, 75, 76, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "ood_kwarg": 8, "outofdistribut": [8, 24, 59, 88], "outsid": 8, "outlierissuemanag": [8, 12, 19, 24, 75], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 18, 19], "underperforminggroupissuemanag": [8, 19, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 72, 76, 78, 79, 82, 84], "nullissuemanag": [8, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 19], "datavaluationissuemanag": [8, 16, 19], "codeblock": 8, "demonstr": [8, 34, 75, 76, 79, 81, 82, 83, 85, 86, 87, 90, 91], "howev": [8, 31, 35, 45, 74, 78, 79, 82, 85, 89, 91, 92, 93], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 75, 80, 82, 85, 87, 91], "fewer": [8, 36, 45, 87], "vice": [8, 51], "versa": [8, 51], "light": [8, 80, 82, 87, 91], "29": [8, 80, 82, 85, 86, 87, 91, 94], "low_inform": [8, 82], "odd_aspect_ratio": [8, 82], "35": [8, 75, 80, 82, 85, 86, 87, 91], "odd_siz": [8, 82], "10": [8, 16, 17, 21, 22, 27, 31, 32, 58, 59, 60, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "doc": [8, 31, 35, 72, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "data_issu": [9, 13, 14, 28, 75], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 31, 35, 49, 60, 75, 76, 82, 85], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 82, 85, 90], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "map_to_int": 10, "is_multilabel": 10, "hold": 10, "abc": [10, 20], "is_avail": [10, 82], "multilabel": [10, 13, 42, 86], "multiclass": [10, 13, 41, 45, 50, 86], "serv": [11, 14, 85], "central": [11, 94], "repositori": 11, "strategi": [11, 41, 81], "being": [11, 30, 31, 35, 36, 41, 44, 45, 60, 78, 81, 83, 90, 91, 92], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 31, 34, 35, 36, 45, 52, 55, 58, 62, 64, 66, 75, 76, 81], "recomput": [11, 93], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 30, 51, 72], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 31, 35, 59, 75], "my_issu": 12, "stabl": [13, 19, 25, 33, 37, 45, 48, 59, 73], "unregist": 13, "instati": 14, "public": [14, 83, 87, 91, 94], "creation": [14, 35], "execut": [14, 31, 35, 75, 81, 87], "coordin": [14, 55, 57, 58, 87, 94], "behavior": [14, 30, 31, 35, 58, 81], "At": [14, 58, 81], "associ": [14, 31, 35, 58, 85], "get_available_issue_typ": 14, "direct": [15, 23, 31, 35], "valuabl": 16, "vstack": [16, 45, 80, 81, 82, 83, 85, 86], "25": [16, 22, 31, 41, 43, 76, 80, 82, 83, 85, 86, 87, 91, 94], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 44, 45], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 75, 76, 81, 82, 83, 85, 86], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 83], "ab": [16, 83, 87], "1911": 16, "07128": 16, "larger": [16, 62, 64, 66, 79, 80, 81, 82], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 35, 79, 88, 93], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 41, 44, 45, 74, 75, 80, 82, 83, 86, 92], "near_duplicate_set": [17, 19, 75, 76, 78, 79, 81, 82, 83], "occurr": [17, 18, 20, 22, 23, 24, 27, 44], "median_nn_dist": 17, "near_duplicate_scor": [17, 75, 76, 78, 79, 81, 82, 83], "class_imbalance_scor": [18, 76], "bleed": [19, 25, 33], "edg": [19, 25, 33, 57, 72, 83, 94], "sharp": [19, 25, 33], "get_health_summari": [19, 21], "ood": [19, 24, 59, 60, 75, 76, 79, 82, 83, 88], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "regressionlabelissuemanag": [19, 25, 26], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 91], "priori": [20, 83], "global": [20, 31, 35], "anoth": [20, 30, 34, 44, 57, 60, 78, 79, 81, 83, 85, 88, 93], "abstract": 20, "applic": [21, 50, 81, 83, 85, 86, 94], "typevar": [21, 31, 35, 44, 54, 57, 58], "scalartyp": 21, "covari": [21, 62, 90], "summary_dict": 21, "label_scor": [21, 26, 74, 75, 76, 78, 79, 82, 83, 86], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 34, 41, 60, 64, 66, 87, 91], "empir": [22, 40, 50], "cumul": 22, "ecdf": 22, "histogram": [22, 78, 90], "absolut": [22, 26], "dimension": [22, 45, 74, 83, 88], "trial": 22, "non_iid_scor": [22, 76, 78, 79, 83], "null_track": 23, "extend": [23, 42, 82, 87, 88, 94], "superclass": 23, "arbitrari": [23, 30, 66, 70, 75, 88, 90], "prompt": 23, "address": [23, 75, 76, 79, 81, 93], "enabl": [23, 35], "null_scor": [23, 76], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 30, 31, 35, 36, 45, 58, 93, 94], "50": [27, 35, 81, 82, 83, 85, 87, 88, 91, 94], "keepdim": [27, 81], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 74, 85], "npt": 27, "int_": 27, "id": [27, 50, 75, 81, 82, 85], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": 27, "exclud": [28, 67, 71, 75, 81, 94], "get_report": 28, "overview": [30, 74, 76, 78, 79, 82, 85, 87, 88, 90, 92, 93, 94], "modifi": [30, 31, 34, 35, 45, 81, 83], "help": [30, 31, 35, 58, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "rank_classes_by_label_qu": [30, 76], "merg": [30, 44, 72, 80, 81, 94], "find_overlapping_class": [30, 81, 83], "problemat": [30, 51, 67, 71, 74, 87, 94], "unnorm": [30, 51, 83], "abov": [30, 31, 34, 35, 45, 50, 57, 58, 60, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "model_select": [30, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 90, 92, 93], "cross_val_predict": [30, 35, 74, 75, 76, 78, 79, 81, 83, 85, 89, 90, 92, 93], "get_data_labels_from_dataset": 30, "yourfavoritemodel": [30, 83], "cv": [30, 41, 74, 75, 76, 78, 83, 85, 92], "df": [30, 45, 71, 74, 81], "overall_label_qu": [30, 51], "col": 30, "prob": [30, 44, 83, 89], "divid": [30, 51, 60], "label_nois": [30, 51], "human": [30, 80, 91, 94], "clearli": [30, 60, 82, 87, 91], "num": [30, 51, 80, 83], "overlap": [30, 72, 80, 81, 83], "ontolog": 30, "publish": [30, 94], "therefor": [30, 60], "vehicl": [30, 80], "truck": [30, 80, 88, 91], "intuit": [30, 51], "car": [30, 80, 87, 91], "frequent": [30, 50, 78, 81, 90], "characterist": 30, "l": [30, 31, 35, 55, 57, 58], "class1": 30, "class2": 30, "relationship": 30, "match": [30, 31, 35, 36, 41, 50, 51, 60, 75, 76, 80, 82, 87, 89, 91], "dog": [30, 45, 51, 53, 67, 80, 81, 88, 89, 94], "cat": [30, 45, 51, 53, 80, 81, 88, 89], "captur": [30, 74, 87, 88, 91], "co": [30, 31, 32], "noisy_label": [30, 75, 76, 86], "overlapping_class": 30, "descend": [30, 31, 35, 41, 51, 58], "overall_label_health_scor": [30, 51, 83], "suggest": [30, 50, 51, 57, 79, 81, 82, 90, 93], "half": [30, 31, 33, 35, 51, 80, 94], "health_scor": [30, 51], "classes_by_label_qu": [30, 76], "cnn": [31, 33, 35, 82], "cifar": [31, 32, 80, 88], "teach": [31, 32], "bhanml": 31, "blob": 31, "master": [31, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "call_bn": [31, 33], "bn": 31, "input_channel": 31, "n_output": 31, "dropout_r": 31, "top_bn": 31, "architectur": [31, 35], "shown": [31, 58, 75, 81, 85, 88, 89, 91, 94], "forward": [31, 32, 33, 35, 82, 85], "overridden": [31, 35], "although": [31, 35, 59, 78, 92], "recip": [31, 35], "afterward": [31, 35], "sinc": [31, 35, 38, 46, 51, 58, 66, 70, 81, 85, 86, 87, 89, 94], "former": [31, 35], "hook": [31, 35, 80], "silent": [31, 34, 35], "t_destin": [31, 33, 35], "__call__": [31, 33, 35, 37, 41], "add_modul": [31, 33, 35], "child": [31, 35], "fn": [31, 35, 58], "recurs": [31, 35, 41], "submodul": [31, 35], "children": [31, 33, 35, 94], "nn": [31, 32, 35, 82], "init": [31, 35, 83], "no_grad": [31, 35, 82, 88], "init_weight": [31, 35], "linear": [31, 35, 79, 82, 93], "fill_": [31, 35], "net": [31, 35, 74, 80, 82], "in_featur": [31, 35], "out_featur": [31, 35], "bia": [31, 35, 82], "tensor": [31, 32, 35, 74, 79, 82, 88, 93], "requires_grad": [31, 35], "bfloat16": [31, 33, 35], "cast": [31, 35, 74], "buffer": [31, 33, 35], "datatyp": [31, 35], "member": [31, 35, 41, 75, 76], "xdoctest": [31, 35], "undefin": [31, 35], "var": [31, 35], "buf": [31, 35], "20l": [31, 35], "1l": [31, 35], "5l": [31, 35], "call_super_init": [31, 33, 35], "immedi": [31, 35, 88], "compil": [31, 33, 35, 49], "cpu": [31, 33, 35, 36, 74, 82], "move": [31, 35, 41, 73, 80], "cuda": [31, 33, 35, 74, 82], "devic": [31, 35, 74, 82], "gpu": [31, 35, 74, 79, 93], "live": [31, 35], "copi": [31, 35, 62, 74, 75, 76, 78, 81, 86, 89, 90, 92], "doubl": [31, 33, 35], "dump_patch": [31, 33, 35], "eval": [31, 33, 35, 82, 86, 88], "dropout": [31, 35], "batchnorm": [31, 35], "grad": [31, 35], "extra_repr": [31, 33, 35], "line": [31, 35, 72, 75, 80, 85, 88, 94], "get_buff": [31, 33, 35], "target": [31, 32, 35, 62, 63, 88, 90], "throw": [31, 35], "get_submodul": [31, 33, 35], "explan": [31, 35], "fulli": [31, 35, 49, 81], "qualifi": [31, 35], "referenc": [31, 35], "attributeerror": [31, 35], "invalid": [31, 35, 79], "resolv": [31, 35, 94], "get_extra_st": [31, 33, 35], "state_dict": [31, 33, 35], "set_extra_st": [31, 33, 35], "build": [31, 35, 82, 91], "picklabl": [31, 35], "serial": [31, 35], "backward": [31, 35, 82], "break": [31, 35, 82, 87], "pickl": [31, 35, 87], "get_paramet": [31, 33, 35], "let": [31, 35, 59, 60, 74, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "net_b": [31, 35], "net_c": [31, 35], "conv": [31, 35], "conv2d": [31, 35, 82], "16": [31, 35, 41, 66, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "33": [31, 35, 80, 87, 91], "kernel_s": [31, 35], "stride": [31, 35], "200": [31, 35, 60, 80, 87, 94], "diagram": [31, 35, 89], "degre": [31, 35, 90], "queri": [31, 35, 76, 81, 82, 86], "named_modul": [31, 33, 35], "o": [31, 35, 43, 44, 74, 75, 76, 80, 81, 83, 86, 87, 94], "transit": [31, 35], "ipu": [31, 33, 35], "load_state_dict": [31, 33, 35], "strict": [31, 35, 41], "persist": [31, 35], "strictli": [31, 35], "inplac": [31, 35, 85], "preserv": [31, 35, 45], "namedtupl": [31, 35], "missing_kei": [31, 35], "unexpected_kei": [31, 35], "runtimeerror": [31, 35], "idx": [31, 35, 45, 46, 58, 75, 81, 82, 83, 85, 87, 88], "named_buff": [31, 33, 35], "prefix": [31, 35, 74, 94], "remove_dupl": [31, 35], "prepend": [31, 35], "running_var": [31, 35], "named_children": [31, 33, 35], "conv4": [31, 35], "conv5": [31, 35], "memo": [31, 35], "named_paramet": [31, 33, 35], "register_backward_hook": [31, 33, 35], "deprec": [31, 35, 38, 74, 79, 81, 93], "favor": [31, 35], "register_full_backward_hook": [31, 33, 35], "removablehandl": [31, 35], "register_buff": [31, 33, 35], "running_mean": [31, 35], "register_forward_hook": [31, 33, 35], "with_kwarg": [31, 35], "always_cal": [31, 35], "won": [31, 35, 75, 76, 81, 86], "possibli": [31, 35, 78, 92], "fire": [31, 35, 80], "register_module_forward_hook": [31, 35], "regardless": [31, 35, 75, 76], "register_forward_pre_hook": [31, 33, 35], "And": [31, 35], "forward_pr": [31, 35], "register_module_forward_pre_hook": [31, 35], "gradient": [31, 35, 78, 82, 90], "respect": [31, 35, 55, 58, 83, 87], "grad_input": [31, 35], "grad_output": [31, 35], "technic": [31, 35], "caller": [31, 35], "register_module_full_backward_hook": [31, 35], "register_full_backward_pre_hook": [31, 33, 35], "backward_pr": [31, 35], "register_module_full_backward_pre_hook": [31, 35], "register_load_state_dict_post_hook": [31, 33, 35], "post": [31, 35], "incompatible_kei": [31, 35], "modif": [31, 35], "thrown": [31, 35], "register_modul": [31, 33, 35], "register_paramet": [31, 33, 35], "register_state_dict_pre_hook": [31, 33, 35], "keep_var": [31, 35], "requires_grad_": [31, 33, 35], "autograd": [31, 35], "freez": [31, 35, 74, 79, 93], "finetun": [31, 35], "gan": [31, 35], "share_memori": [31, 33, 35], "share_memory_": [31, 35], "destin": [31, 35], "shallow": [31, 35], "releas": [31, 35, 73, 74, 81], "design": [31, 35], "ordereddict": [31, 35], "detach": [31, 35, 82], "non_block": [31, 35], "memory_format": [31, 35], "channels_last": [31, 35], "Its": [31, 35, 41, 51, 57], "complex": [31, 35, 74], "integr": [31, 35, 72], "asynchron": [31, 35], "host": [31, 35], "pin": [31, 35, 79, 80, 93], "desir": [31, 35, 44, 58], "4d": [31, 35], "ignore_w": [31, 35], "determinist": [31, 35, 74], "1913": [31, 35], "3420": [31, 35], "5113": [31, 35], "2325": [31, 35], "env": [31, 35], "torch_doctest_cuda1": [31, 35], "gpu1": [31, 35], "1914": [31, 35], "5112": [31, 35], "2324": [31, 35], "float16": [31, 35], "cdoubl": [31, 35], "3741": [31, 35], "2382": [31, 35], "5593": [31, 35], "4443": [31, 35], "complex128": [31, 35], "6122": [31, 35], "1150": [31, 35], "to_empti": [31, 33, 35], "storag": [31, 35, 79, 93], "dst_type": [31, 35], "xpu": [31, 33, 35], "zero_grad": [31, 33, 35, 82], "set_to_non": [31, 35], "reset": [31, 35], "context": [31, 35, 87], "noisili": [32, 83], "han": 32, "2018": 32, "cifar_cnn": [32, 33], "loss_coteach": [32, 33], "y_1": 32, "y_2": 32, "forget_r": 32, "class_weight": 32, "logit": [32, 49, 82], "decim": [32, 45], "quickli": [32, 74, 78, 79, 81, 82, 86, 88, 91, 92, 94], "forget": [32, 41, 94], "rate_schedul": 32, "epoch": [32, 33, 35, 81, 82], "initialize_lr_schedul": [32, 33], "lr": [32, 33, 35], "001": [32, 60, 81], "250": [32, 75, 76, 83, 87], "epoch_decay_start": 32, "80": [32, 78, 86, 90, 91, 92], "schedul": 32, "adjust": [32, 36, 54, 59, 60, 72, 83], "beta": 32, "adam": 32, "adjust_learning_r": [32, 33], "alpha_plan": 32, "beta1_plan": 32, "forget_rate_schedul": [32, 33], "num_gradu": 32, "expon": 32, "tell": [32, 79, 82, 83, 93], "train_load": [32, 35], "model1": [32, 83], "optimizer1": 32, "model2": [32, 83], "optimizer2": 32, "dataload": [32, 82, 88], "parser": 32, "parse_arg": 32, "num_iter_per_epoch": 32, "print_freq": 32, "topk": 32, "top1": 32, "top5": 32, "test_load": 32, "offici": [33, 48, 94], "wish": [33, 48, 88, 91, 94], "adj_confident_thresholds_shar": [33, 34], "labels_shar": [33, 34], "pred_probs_shar": [33, 34], "labelinspector": [33, 34, 81], "get_num_issu": [33, 34], "get_quality_scor": [33, 34], "update_confident_threshold": [33, 34], "score_label_qu": [33, 34], "split_arr": [33, 34], "mnist_pytorch": 33, "get_mnist_dataset": [33, 35], "get_sklearn_digits_dataset": [33, 35], "simplenet": [33, 35], "batch_siz": [33, 34, 35, 64, 66, 81, 82, 88, 91], "log_interv": [33, 35], "momentum": [33, 35], "no_cuda": [33, 35], "test_batch_s": [33, 35, 82], "loader": [33, 35, 82], "set_predict_proba_request": [33, 35], "set_predict_request": [33, 35], "coteach": [33, 73], "mini": [34, 64, 66, 81], "low_self_confid": [34, 36, 52], "self_confid": [34, 36, 37, 41, 52, 54, 60, 68, 70, 81, 83, 92, 93], "conveni": [34, 74, 79, 93], "script": 34, "labels_fil": [34, 81], "pred_probs_fil": [34, 81], "quality_score_kwarg": 34, "num_issue_kwarg": 34, "return_mask": 34, "variant": [34, 50, 91], "read": [34, 38, 76, 81, 83, 88, 94], "zarr": [34, 81], "memmap": [34, 91], "pythonspe": 34, "mmap": [34, 81], "hdf5": 34, "further": [34, 51, 52, 54, 57, 58, 66, 67, 74, 81], "yourfil": 34, "npy": [34, 80, 81, 91], "mmap_mod": [34, 91], "tip": [34, 36, 49, 81], "save_arrai": 34, "your_arrai": 34, "disk": [34, 80, 81], "npz": [34, 94], "maxim": [34, 50, 64, 66, 91], "multiprocess": [34, 36, 52, 64, 66, 81, 82], "linux": [34, 64, 66], "physic": [34, 36, 64, 66, 87], "psutil": [34, 36, 64, 66], "labels_arrai": [34, 46], "predprob": 34, "pred_probs_arrai": 34, "back": [34, 58, 75, 81, 87, 88], "store_result": 34, "becom": [34, 88], "verifi": [34, 81, 85, 88], "long": [34, 50, 59, 85], "enough": [34, 45, 81], "chunk": [34, 89], "ram": [34, 80], "faster": [34, 59, 62, 64, 66, 81, 83], "end_index": 34, "labels_batch": 34, "pred_probs_batch": 34, "batch_result": 34, "indices_of_examples_with_issu": [34, 81], "shortcut": 34, "encount": [34, 36, 64], "1000": [34, 74, 79, 81, 88], "aggreg": [34, 37, 41, 50, 54, 57, 60, 70, 81, 83, 85], "fetch": [34, 74, 76], "seen": [34, 81, 88, 94], "far": [34, 50], "label_quality_scor": [34, 54, 57, 60, 63, 83, 87, 90], "method1": 34, "method2": 34, "normalized_margin": [34, 36, 37, 41, 52, 54, 60, 68, 70], "low_normalized_margin": [34, 36, 52], "issue_indic": [34, 57, 82], "update_num_issu": 34, "arr": [34, 81], "chunksiz": 34, "convnet": 35, "bespok": [35, 49], "download": [35, 74, 81, 88], "mnist": [35, 72, 74, 80], "handwritten": 35, "digit": [35, 74, 80], "last": [35, 41, 55, 58, 75, 76, 81, 85, 87, 94], "sklearn_digits_test_s": 35, "hard": [35, 80, 88], "64": [35, 78, 82, 83, 87, 91, 92], "01": [35, 60, 62, 74, 83, 86, 87, 88, 91], "templat": 35, "flexibli": 35, "among": [35, 50, 83], "test_set": 35, "Be": 35, "overrid": 35, "train_idx": [35, 45, 88], "train_label": [35, 88, 93], "scikit": [35, 45, 59, 72, 74, 75, 76, 78, 79, 81, 84, 90, 93], "encourag": [36, 52, 60, 63], "multilabel_classif": [36, 51, 52, 54, 60, 81], "pred_probs_by_class": 36, "prune_count_matrix_col": 36, "rank_by_kwarg": [36, 52, 60, 83], "num_to_remove_per_class": [36, 52], "bad": [36, 52, 57, 60, 79, 81, 93], "seem": [36, 83, 86], "aren": 36, "confidence_weighted_entropi": [36, 37, 41, 52, 54, 60, 68, 70], "label_issues_idx": [36, 60], "entropi": [36, 38, 40, 41, 59, 60], "prune_by_class": [36, 52, 83], "predicted_neq_given": [36, 52, 83], "prune_counts_matrix": 36, "smallest": [36, 60], "unus": 36, "number_of_mislabeled_examples_in_class_k": 36, "delet": [36, 72, 81, 93], "thread": [36, 52], "window": [36, 74, 80], "shorter": [36, 55], "find_predicted_neq_given": 36, "find_label_issues_using_argmax_confusion_matrix": 36, "remove_noise_from_class": [37, 45], "clip_noise_r": [37, 45], "clip_valu": [37, 45], "value_count": [37, 45, 81], "value_counts_fill_missing_class": [37, 45], "get_missing_class": [37, 45], "round_preserving_sum": [37, 45], "round_preserving_row_tot": [37, 45], "estimate_pu_f1": [37, 45], "confusion_matrix": [37, 45], "print_square_matrix": [37, 45], "print_noise_matrix": [37, 45, 83], "print_inverse_noise_matrix": [37, 45], "print_joint_matrix": [37, 45, 83], "compress_int_arrai": [37, 45], "train_val_split": [37, 45], "subset_x_i": [37, 45], "subset_label": [37, 45], "subset_data": [37, 45], "extract_indices_tf": [37, 45], "unshuffle_tensorflow_dataset": [37, 45], "is_torch_dataset": [37, 45], "is_tensorflow_dataset": [37, 45], "csr_vstack": [37, 45], "append_extra_datapoint": [37, 45], "get_num_class": [37, 45], "num_unique_class": [37, 45], "get_unique_class": [37, 45], "format_label": [37, 45], "smart_display_datafram": [37, 45], "force_two_dimens": [37, 45], "latent_algebra": [37, 73], "compute_ps_py_inv_noise_matrix": [37, 39], "compute_py_inv_noise_matrix": [37, 39], "compute_inv_noise_matrix": [37, 39], "compute_noise_matrix_from_invers": [37, 39], "compute_pi": [37, 39], "compute_pyx": [37, 39], "label_quality_util": 37, "get_normalized_entropi": [37, 38], "multilabel_util": [37, 86], "stack_compl": [37, 42], "get_onehot_num_class": [37, 42], "int2onehot": [37, 42, 86], "onehot2int": [37, 42, 86], "multilabel_scor": [37, 54], "classlabelscor": [37, 41], "from_str": [37, 41], "__contains__": [37, 41], "__getitem__": [37, 41], "__iter__": [37, 41], "__len__": [37, 41], "exponential_moving_averag": [37, 41, 54], "softmin": [37, 41, 54, 57, 66, 70], "possible_method": [37, 41], "multilabelscor": [37, 41], "get_class_label_quality_scor": [37, 41], "multilabel_pi": [37, 41], "get_cross_validated_multilabel_pred_prob": [37, 41], "transform_distances_to_scor": [37, 43], "token_classification_util": [37, 94], "get_sent": [37, 44, 94], "filter_sent": [37, 44, 94], "process_token": [37, 44], "merge_prob": [37, 44], "color_sent": [37, 44], "assert_valid_input": [37, 46], "assert_valid_class_label": [37, 46], "assert_nonempty_input": [37, 46], "assert_indexing_work": [37, 46], "labels_to_arrai": [37, 46], "labels_to_list_multilabel": [37, 46], "min_allowed_prob": 38, "wikipedia": 38, "activ": [38, 40, 50, 72, 85], "towardsdatasci": 38, "cheatsheet": 38, "ec57bc067c0b": 38, "clip": [38, 45, 74], "behav": 38, "unnecessari": [38, 81], "slightli": [38, 92, 93], "interv": [38, 41, 88], "herein": 39, "inexact": 39, "cours": 39, "propag": 39, "throughout": [39, 45, 62, 74, 85, 91, 94], "easili": [39, 73, 74, 76, 78, 79, 83, 85, 86, 88, 89, 90, 91, 92, 93], "increas": [39, 57, 59, 60, 74, 75, 81, 85, 86, 94], "dot": [39, 70, 81], "true_labels_class_count": 39, "pyx": 39, "multiannot": 40, "assert_valid_inputs_multiannot": 40, "labels_multiannot": [40, 50], "ensembl": [40, 41, 50, 60, 78, 81, 86, 88, 90, 92], "allow_single_label": 40, "annotator_id": 40, "assert_valid_pred_prob": 40, "pred_probs_unlabel": [40, 50], "format_multiannotator_label": [40, 50, 85], "lexicograph": [40, 45], "formatted_label": [40, 45], "old": [40, 45, 73, 74, 80], "check_consensus_label_class": 40, "consensus_label": [40, 50, 85], "consensus_method": [40, 50], "consensu": [40, 50, 72, 84, 94], "establish": [40, 90, 93], "compute_soft_cross_entropi": 40, "soft": [40, 80], "find_best_temp_scal": 40, "coarse_search_rang": [40, 62, 81], "fine_search_s": [40, 62, 81], "temperatur": [40, 41, 57, 66, 70], "scale": [40, 43, 80, 81, 88, 91, 92], "factor": [40, 41, 43, 64, 66], "minim": [40, 57, 88], "temp_scale_pred_prob": 40, "temp": 40, "sharpen": [40, 80], "smoothen": 40, "qualnam": 41, "boundari": [41, 75, 76], "enum": 41, "get_normalized_margin_for_each_label": [41, 60], "get_confidence_weighted_entropy_for_each_label": [41, 60], "75": [41, 75, 76, 80, 85, 86, 87, 90, 91, 94], "scorer": 41, "typeerror": 41, "12": [41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "alias": 41, "alpha": [41, 54, 57, 75, 76, 83, 86, 90], "exponenti": 41, "ema": 41, "s_1": 41, "s_k": 41, "ema_k": 41, "accord": [41, 52, 78, 79, 83, 94], "formula": [41, 43], "_t": 41, "cdot": 41, "s_t": 41, "qquad": 41, "leq": 41, "_1": 41, "give": [41, 60, 83, 85, 91], "recent": [41, 94], "success": 41, "previou": [41, 81, 82, 87], "discount": 41, "s_ema": 41, "175": [41, 82, 83, 87], "underflow": 41, "nan": [41, 50, 78, 85, 90, 92], "aggregated_scor": 41, "base_scor": 41, "base_scorer_kwarg": 41, "aggregator_kwarg": [41, 54], "n_sampl": 41, "n_label": 41, "binari": [41, 45, 52, 54, 83, 94], "worst": [41, 85], "class_label_quality_scor": 41, "42": [41, 79, 80, 87, 88, 91, 94], "452": 41, "new_scor": 41, "575": 41, "get_label_quality_scores_per_class": [41, 53, 54], "ml_scorer": 41, "binar": [41, 42], "reformat": [41, 74], "wider": 41, "splitter": 41, "kfold": [41, 82], "onevsrestclassifi": [41, 86], "randomforestclassifi": [41, 83, 86], "n_split": [41, 76, 82, 86], "pred_prob_slic": 42, "onehot": 42, "hot": [42, 52, 58, 64, 67, 78, 80, 81, 90, 91, 92], "onehot_matrix": 42, "avg_dist": 43, "scaling_factor": 43, "exp": [43, 59, 60, 75], "dt": 43, "right": [43, 55, 58, 79, 86, 87, 88, 93], "strength": [43, 58], "pronounc": 43, "differenti": 43, "ly": 43, "rule": [43, 44, 80], "thumb": 43, "ood_features_scor": [43, 59, 88], "88988177": 43, "80519832": 43, "token_classif": [44, 68, 70, 71, 81], "sentenc": [44, 68, 70, 71, 79, 93], "readabl": 44, "lambda": [44, 74, 75, 81, 85], "long_sent": 44, "headlin": 44, "charact": [44, 45], "s1": 44, "s2": 44, "processed_token": 44, "alecnlcb": 44, "entiti": [44, 72, 81, 94], "mapped_ent": 44, "unique_ident": 44, "loc": [44, 75, 76, 82, 94], "nbitbas": [44, 54], "probs_merg": 44, "55": [44, 80, 82, 87, 91], "0125": [44, 70], "0375": 44, "075": 44, "025": 44, "color": [44, 67, 75, 76, 78, 83, 86, 88, 90, 91], "red": [44, 58, 75, 76, 80, 83, 86, 87, 88, 91], "colored_sent": 44, "termcolor": 44, "31msentenc": 44, "0m": 44, "ancillari": 45, "class_without_nois": 45, "any_other_class": 45, "choos": [45, 60, 78, 81, 83, 90, 92], "tradition": 45, "new_sum": 45, "fill": 45, "wherea": [45, 52, 89], "come": [45, 75, 76, 81, 82, 88, 91], "major": [45, 50, 73, 82, 88], "versu": [45, 83], "obviou": 45, "cgdeboer": 45, "iteround": 45, "reach": 45, "prob_s_eq_1": 45, "claesen": 45, "f1": [45, 58, 79, 83], "BE": 45, "left_nam": 45, "top_nam": 45, "titl": [45, 75, 76, 83, 86, 88], "short_titl": 45, "round_plac": 45, "pretti": [45, 83], "joint_matrix": 45, "num_possible_valu": 45, "holdout_idx": 45, "extract": [45, 59, 74, 79, 85, 88, 91, 93], "allow_shuffl": 45, "turn": [45, 72, 87], "shuffledataset": 45, "histori": 45, "pre_x": 45, "buffer_s": 45, "csr_matric": 45, "append": [45, 74, 80, 81, 82, 83, 85, 86, 87, 88, 94], "bottom": [45, 55, 58, 87], "to_data": 45, "from_data": 45, "taken": 45, "label_matrix": 45, "canon": 45, "displai": [45, 58, 67, 71, 74, 79, 83, 93, 94], "jupyt": [45, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "notebook": [45, 50, 74, 76, 80, 81, 83, 85, 86, 87, 91, 94], "consol": 45, "html": [45, 55, 58, 59, 78, 81, 83], "allow_missing_class": 46, "allow_one_class": 46, "length_x": 46, "labellik": 46, "labels_list": [46, 52], "keraswrappermodel": [48, 49, 72], "keraswrappersequenti": [48, 49], "tf": [49, 74], "legaci": 49, "lack": 49, "keraswrapp": 49, "huggingface_keras_imdb": 49, "unit": [49, 94], "model_kwarg": [49, 62], "compile_kwarg": 49, "sparsecategoricalcrossentropi": 49, "layer": [49, 74, 79, 88, 93], "dens": 49, "my_keras_model": 49, "from_logit": 49, "declar": 49, "apply_softmax": 49, "analysi": 50, "analyz": [50, 72, 83, 85, 86], "get_label_quality_multiannot": [50, 85], "vote": 50, "crowdsourc": [50, 72, 85], "dawid": [50, 85], "skene": [50, 85], "analog": [50, 80, 85], "chosen": [50, 60, 81, 85], "crowdlab": [50, 85], "unlabel": [50, 78, 79, 82, 85, 88, 91], "decid": [50, 79, 80, 85, 90, 93, 94], "get_active_learning_scor": [50, 85], "activelab": [50, 85], "priorit": [50, 57, 87, 91, 94], "showcas": 50, "main": 50, "best_qual": 50, "quality_method": 50, "calibrate_prob": 50, "return_detailed_qu": 50, "return_annotator_stat": 50, "return_weight": 50, "label_quality_score_kwarg": 50, "necessarili": [50, 58, 79, 83], "did": [50, 51, 74, 78, 83, 85, 90, 92, 93], "majority_vot": 50, "ti": 50, "broken": [50, 58, 80], "highest": [50, 58, 75, 82, 89], "0th": 50, "consensus_quality_scor": [50, 85], "annotator_agr": [50, 85], "reman": 50, "1st": 50, "2nd": [50, 64], "3rd": 50, "consensus_label_suffix": 50, "consensus_quality_score_suffix": 50, "suffix": 50, "emsembl": 50, "weigh": [50, 80], "agreement": [50, 85], "agre": 50, "prevent": [50, 81], "overconfid": [50, 89], "wrong": [50, 55, 57, 73, 75, 76, 79, 81, 83, 87, 93], "detailed_label_qu": [50, 85], "annotator_stat": [50, 85], "model_weight": 50, "annotator_weight": 50, "warn": [50, 75, 76, 81], "labels_info": 50, "num_annot": [50, 85], "deriv": [50, 85], "quality_annotator_1": 50, "quality_annotator_2": 50, "quality_annotator_m": 50, "annotator_qu": [50, 85], "num_examples_label": [50, 85], "agreement_with_consensu": [50, 85], "worst_class": [50, 85], "trustworthi": [50, 85, 90], "get_label_quality_multiannotator_ensembl": 50, "weigtht": 50, "budget": 50, "retrain": [50, 90, 93], "active_learning_scor": 50, "improv": [50, 76, 80, 81, 82, 83, 90, 91, 92, 93], "active_learning_scores_unlabel": 50, "get_active_learning_scores_ensembl": 50, "henc": [50, 74, 75, 85], "get_majority_vote_label": [50, 85], "event": 50, "lastli": [50, 78], "convert_long_to_wide_dataset": 50, "labels_multiannotator_long": 50, "wide": [50, 74, 92, 93], "suitabl": [50, 78, 92], "labels_multiannotator_wid": 50, "common_multilabel_issu": [51, 53], "mutual": [51, 86], "exclus": [51, 86], "rank_classes_by_multilabel_qu": [51, 53], "overall_multilabel_health_scor": [51, 53], "multilabel_health_summari": [51, 53], "classes_by_multilabel_qu": 51, "inner": [52, 66], "find_multilabel_issues_per_class": [52, 53], "per_class_label_issu": 52, "label_issues_list": 52, "pred_probs_list": [52, 60, 82, 83], "anim": [53, 88], "rat": 53, "predat": 53, "pet": 53, "reptil": 53, "manner": [54, 85, 90, 92, 93], "box": [55, 57, 58, 80, 87], "object_detect": [55, 57, 58, 87], "return_indices_ranked_by_scor": [55, 87], "overlapping_label_check": [55, 57], "suboptim": [55, 57], "locat": [55, 57, 87, 91, 94], "bbox": [55, 58, 87], "image_nam": [55, 58], "y1": [55, 58, 87], "y2": [55, 58, 87], "later": [55, 58, 59, 93, 94], "corner": [55, 58, 87], "xyxi": [55, 58, 87], "io": [55, 58, 74, 80], "keras_cv": [55, 58], "bounding_box": [55, 58, 87], "detectron": [55, 58, 87], "detectron2": [55, 58, 87], "readthedoc": [55, 58], "en": [55, 58], "latest": [55, 58], "visual": [55, 56, 58, 75, 76, 82, 90, 92, 94], "draw_box": [55, 58], "mmdetect": [55, 58, 87], "swap": [55, 57, 67, 71], "penal": [55, 57], "concern": [55, 57, 72, 76], "issues_from_scor": [56, 57, 65, 66, 67, 69, 70, 71, 87, 91, 94], "compute_overlooked_box_scor": [56, 57], "compute_badloc_box_scor": [56, 57], "compute_swap_box_scor": [56, 57], "pool_box_scores_per_imag": [56, 57], "object_counts_per_imag": [56, 58, 87], "bounding_box_size_distribut": [56, 58, 87], "class_label_distribut": [56, 58, 87], "get_sorted_bbox_count_idx": [56, 58], "plot_class_size_distribut": [56, 58], "plot_class_distribut": [56, 58], "get_average_per_class_confusion_matrix": [56, 58], "calculate_per_class_metr": [56, 58], "aggregation_weight": 57, "imperfect": [57, 81], "chose": [57, 85, 87], "imperfectli": [57, 87], "dirti": [57, 60, 63, 90], "subtyp": 57, "badloc": 57, "nonneg": 57, "high_probability_threshold": 57, "auxiliary_input": [57, 58], "vari": [57, 76], "iou": [57, 58], "heavili": 57, "auxiliarytypesdict": 57, "pred_label": [57, 93], "pred_label_prob": 57, "pred_bbox": 57, "lab_label": 57, "lab_bbox": 57, "similarity_matrix": 57, "min_possible_similar": 57, "scores_overlook": 57, "low_probability_threshold": 57, "scores_badloc": 57, "accident": [57, 78, 79, 81, 93], "scores_swap": 57, "box_scor": 57, "image_scor": [57, 66, 91], "discov": [58, 76, 94], "auxiliari": [58, 88, 91], "_get_valid_inputs_for_compute_scor": 58, "object_count": 58, "down": 58, "bbox_siz": 58, "class_distribut": 58, "plot": [58, 75, 76, 83, 86, 88, 90, 91], "sorted_idx": [58, 88], "class_to_show": 58, "hidden": [58, 88], "max_class_to_show": 58, "prediction_threshold": 58, "overlai": [58, 87], "figsiz": [58, 75, 76, 82, 83, 86, 88], "save_path": [58, 87], "blue": [58, 80, 83, 87], "overlaid": 58, "side": [58, 80, 87], "figur": [58, 83, 86, 88, 90], "extens": [58, 83, 85], "png": [58, 87], "pdf": [58, 59], "svg": 58, "matplotlib": [58, 75, 76, 82, 83, 86, 87, 88, 90], "num_proc": [58, 82], "intersect": [58, 81], "tp": 58, "fp": 58, "ground": [58, 80, 83, 85, 90], "truth": [58, 83, 85, 90], "bias": 58, "avg_metr": 58, "distionari": 58, "95": [58, 68, 70, 78, 80, 83, 88, 90, 91], "per_class_metr": 58, "Of": 59, "li": 59, "smaller": [59, 86, 87], "find_top_issu": [59, 60, 88], "reli": [59, 74, 75, 76, 79, 87, 88, 93], "dist_metr": 59, "dim": [59, 82, 91], "subtract": [59, 60], "renorm": [59, 60, 81], "least_confid": 59, "sum_": 59, "log": [59, 60, 73], "softmax": [59, 66, 70, 82], "literatur": 59, "gen": 59, "liu": 59, "lochman": 59, "zach": 59, "openaccess": 59, "thecvf": 59, "content": [59, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "cvpr2023": 59, "liu_gen_pushing_the_limits_of_softmax": 59, "based_out": 59, "distribution_detection_cvpr_2023_pap": 59, "fit_scor": [59, 88], "ood_predictions_scor": 59, "pretrain": [59, 74, 79, 88, 93], "adjust_confident_threshold": 59, "probabilist": [59, 74, 75, 76, 78, 79, 88, 89, 92], "order_label_issu": [60, 73], "whichev": [60, 89], "argsort": [60, 79, 82, 83, 87, 88, 90, 93], "max_": 60, "get_label_quality_ensemble_scor": [60, 81, 83], "weight_ensemble_members_bi": 60, "custom_weight": 60, "log_loss_search_t_valu": 60, "0001": [60, 80], "scheme": 60, "log_loss_search": 60, "log_loss": [60, 79], "1e0": 60, "1e1": 60, "1e2": 60, "2e2": 60, "quality_scor": [60, 88], "forth": 60, "top_issue_indic": 60, "rank_bi": [60, 73], "weird": [60, 71], "minu": 60, "prob_label": 60, "max_prob_not_label": 60, "idea": [60, 87], "AND": [60, 79], "get_epistemic_uncertainti": [61, 62], "get_aleatoric_uncertainti": [61, 62], "corrupt": [62, 90], "linearregress": [62, 81, 90], "y_with_nois": 62, "n_boot": [62, 81], "include_aleatoric_uncertainti": [62, 81], "sole": [62, 75, 85, 88, 92], "bootstrap": [62, 81, 90], "resampl": [62, 74, 81], "epistem": [62, 81, 88, 90], "aleator": [62, 81, 90], "model_final_kwarg": 62, "coars": 62, "thorough": [62, 81], "fine": [62, 74, 79, 88, 93], "grain": 62, "grid": 62, "varianc": [62, 83], "epistemic_uncertainti": 62, "residu": [62, 63, 81], "deviat": [62, 87, 90], "ie": 62, "aleatoric_uncertainti": 62, "outr": 63, "contin": 63, "raw": [63, 72, 73, 76, 80, 82, 85, 87, 88], "aka": [63, 74, 83, 87, 94], "00323821": 63, "33692597": 63, "00191686": 63, "semant": [64, 66, 67, 84], "pixel": [64, 66, 67, 88, 91], "h": [64, 66, 67, 91], "height": [64, 66, 67, 91], "w": [64, 66, 67, 91], "width": [64, 66, 67, 91], "labels_one_hot": [64, 67, 91], "stream": [64, 88, 94], "downsampl": [64, 66, 91], "shrink": [64, 66], "divis": [64, 66, 75], "display_issu": [65, 66, 67, 68, 69, 70, 71, 91, 94], "common_label_issu": [65, 67, 69, 71, 91, 94], "filter_by_class": [65, 67, 91], "segmant": [66, 67], "num_pixel_issu": [66, 91], "product": [66, 81, 82], "pixel_scor": [66, 91], "highlight": [67, 71, 75, 76, 78, 87, 91], "enter": 67, "legend": [67, 75, 76, 86, 87, 90, 91], "colormap": 67, "background": 67, "person": [67, 81, 87, 91, 94], "ambigu": [67, 71, 74, 79, 80, 83, 93, 94], "systemat": [67, 71, 85], "misunderstood": [67, 71], "issues_df": [67, 82], "class_index": 67, "issues_subset": [67, 71], "filter_by_token": [69, 71, 94], "token_score_method": 70, "sentence_score_method": 70, "sentence_score_kwarg": 70, "compris": [70, 71], "token_scor": [70, 94], "converg": 70, "toward": 70, "_softmin_sentence_scor": 70, "sentence_scor": [70, 94], "token_info": 70, "70": [70, 78, 82, 88, 91], "02": [70, 75, 76, 82, 83, 87, 88, 91, 94], "03": [70, 78, 80, 83, 87, 88, 91, 94], "04": [70, 78, 82, 87, 88, 91], "08": [70, 83, 87, 91, 94], "commonli": [71, 73, 75, 76, 86, 94], "But": [71, 79, 83, 94], "restrict": [71, 81], "reliabl": [72, 74, 81, 85, 91, 92], "thousand": 72, "imagenet": [72, 80], "popular": [72, 85, 87], "centric": [72, 78, 79, 82, 84], "capabl": 72, "minut": [72, 74, 78, 79, 80, 85, 86, 87, 90, 91, 92, 93, 94], "conda": 72, "feature_embed": [72, 88], "Then": [72, 81, 82, 90, 92, 93], "your_dataset": [72, 74, 75, 76, 78, 79, 81, 82], "column_name_of_label": [72, 74, 75, 76, 78, 79, 82], "plagu": [72, 76], "untrain": 72, "\u30c4": 72, "label_issues_info": [72, 76], "sklearn_compatible_model": 72, "framework": [72, 86, 87], "complianc": 72, "tag": [72, 86, 94], "sequenc": 72, "recognit": [72, 74, 81, 94], "train_data": [72, 88, 90, 92, 93], "gotten": 72, "test_data": [72, 83, 86, 88, 90, 92, 93], "deal": [72, 76], "tutori": [72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "feel": [72, 74, 76, 81], "free": [72, 74, 76, 78, 79, 81, 82, 83], "ask": [72, 81], "slack": [72, 81], "project": [72, 90], "welcom": 72, "commun": [72, 81], "guidelin": [72, 87], "piec": 72, "studio": [72, 76, 78, 79, 81, 82], "platform": [72, 78, 79, 81, 82], "automl": [72, 81], "foundat": 72, "smart": [72, 78, 79, 81, 82], "edit": [72, 81], "easier": [72, 83], "unreli": [72, 74, 78, 79, 92], "link": [72, 74, 80, 87], "older": 73, "outlin": 73, "substitut": 73, "v2": [73, 78, 92], "get_noise_indic": 73, "psx": 73, "sorted_index_method": 73, "order_label_error": 73, "label_errors_bool": 73, "latent_estim": 73, "num_label_error": 73, "learningwithnoisylabel": 73, "neatli": 73, "organ": [73, 78, 80, 92, 94], "reorgan": 73, "baseline_method": 73, "incorpor": [73, 83], "research": [73, 83], "polyplex": 73, "terminologi": 73, "label_error": 73, "quickstart": [74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "spoken": 74, "500": [74, 88, 94], "english": [74, 80], "pronunci": 74, "wav": 74, "huggingfac": [74, 75, 76, 82], "voxceleb": 74, "speech": [74, 94], "your_pred_prob": [74, 75, 76, 78, 79], "tensorflow_io": 74, "huggingface_hub": 74, "branch": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "reproduc": [74, 78, 83, 85], "command": 74, "wget": [74, 87, 91, 94], "navig": 74, "browser": 74, "jakobovski": 74, "archiv": [74, 94], "v1": 74, "tar": [74, 88], "gz": [74, 88], "mkdir": [74, 94], "spoken_digit": 74, "xf": 74, "6_nicolas_32": 74, "data_path": 74, "listdir": 74, "nondeterminist": 74, "file_nam": 74, "endswith": 74, "file_path": 74, "join": [74, 81, 82], "39": [74, 75, 79, 80, 81, 82, 87, 88, 90, 91, 93, 94], "7_george_26": 74, "0_nicolas_24": 74, "0_nicolas_6": 74, "listen": 74, "display_exampl": 74, "click": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "expand": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "pulldown": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "colab": [74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "tfio": 74, "pathlib": 74, "ipython": 74, "load_wav_16k_mono": 74, "filenam": 74, "khz": 74, "file_cont": 74, "read_fil": 74, "sample_r": 74, "decode_wav": 74, "desired_channel": 74, "squeez": 74, "rate_in": 74, "rate_out": 74, "16000": 74, "wav_file_nam": 74, "audio_r": 74, "wav_file_exampl": 74, "plai": [74, 80, 81], "button": 74, "wav_file_name_exampl": 74, "7_jackson_43": 74, "hear": 74, "extractor": 74, "encoderclassifi": 74, "spkrec": 74, "xvect": 74, "feature_extractor": 74, "from_hparam": 74, "run_opt": 74, "uncom": 74, "ffmpeg": 74, "system": [74, 78, 79, 82, 91], "backend": 74, "wav_audio_file_path": 74, "head": [74, 76, 78, 79, 80, 82, 83, 85, 90, 92, 93], "torchaudio": 74, "extract_audio_embed": 74, "emb": [74, 82], "signal": 74, "encode_batch": 74, "embeddings_list": [74, 82], "embeddings_arrai": 74, "opt": [74, 76, 79, 93], "hostedtoolcach": [74, 76, 79, 93], "x64": [74, 76, 79, 93], "lib": [74, 76, 79, 93], "python3": [74, 76, 79, 93], "site": [74, 76, 79, 93], "650": 74, "userwarn": [74, 75, 76, 79, 93], "stft": 74, "return_complex": 74, "view_as_r": 74, "recov": 74, "trigger": 74, "aten": 74, "src": 74, "nativ": 74, "spectralop": 74, "cpp": 74, "863": [74, 93], "_vf": 74, "n_fft": 74, "hop_length": 74, "win_length": 74, "attr": 74, "512": [74, 82], "14": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "196311": 74, "319459": 74, "478975": 74, "2890875": 74, "8170238": 74, "89265": 74, "24": [74, 80, 83, 85, 87, 91], "898056": 74, "256195": 74, "559641": 74, "559721": 74, "62067": 74, "285245": 74, "21": [74, 75, 80, 81, 82, 83, 87, 91, 94], "709627": 74, "5033693": 74, "913803": 74, "819831": 74, "1831515": 74, "208763": 74, "084257": 74, "3210397": 74, "005453": 74, "216152": 74, "478235": 74, "6821785": 74, "053807": 74, "242471": 74, "091424": 74, "78334856": 74, "03954": 74, "23": [74, 80, 82, 83, 87, 88, 91, 94], "569176": 74, "19": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93], "761097": 74, "1258295": 74, "753237": 74, "3508866": 74, "598274": 74, "23712": 74, "2500": 74, "leverag": [74, 79, 81, 83, 85, 93], "tune": [74, 79, 80, 88, 93], "computation": [74, 79, 93], "intens": [74, 79, 93], "held": [74, 78, 79, 80, 87, 88, 89, 92], "straightforward": [74, 78, 92], "benefit": [74, 89, 91, 92], "tol": 74, "num_crossval_fold": [74, 78, 85, 92], "decreas": [74, 81], "never": [74, 83, 86, 88, 89], "accuracy_scor": [74, 79, 83, 92, 93], "cv_accuraci": 74, "9708": 74, "probabilit": [74, 93], "9976": 74, "986": 74, "002161": 74, "176": [74, 80, 83, 86], "002483": 74, "2318": 74, "004411": 74, "1005": 74, "004857": 74, "1871": 74, "007494": 74, "investig": 74, "040587": 74, "999207": 74, "999377": 74, "975220": 74, "999367": 74, "18": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93], "identified_label_issu": [74, 79], "lowest_quality_label": [74, 79, 83, 90, 93], "sort_valu": [74, 76, 78, 79, 81, 82, 83, 85, 86], "516": 74, "1946": 74, "469": 74, "2132": 74, "worth": [74, 83], "iloc": [74, 78, 79, 90, 92, 93], "6_yweweler_25": 74, "7_nicolas_43": 74, "6_theo_27": 74, "6_yweweler_36": 74, "6_yweweler_14": 74, "6_yweweler_35": 74, "6_nicolas_8": 74, "sound": 74, "quit": [74, 88], "22": [74, 75, 80, 82, 83, 86, 87, 91, 94], "blindli": [74, 81, 90, 92, 93], "trust": [74, 81, 83, 85, 89, 90, 92, 93], "underneath": 75, "hood": 75, "alert": 75, "introduct": 75, "mayb": [75, 76, 79], "examin": [75, 76, 78, 87, 92], "your_feature_matrix": [75, 76], "toi": [75, 76, 80, 82, 83, 85], "train_test_split": [75, 76, 88, 92, 93], "inf": [75, 76], "mid": [75, 76], "bins_map": [75, 76], "create_data": [75, 76], "y_bin": [75, 76], "y_i": [75, 76], "y_bin_idx": [75, 76], "y_train": [75, 76, 83, 90], "y_test": [75, 76, 83, 90], "y_train_idx": [75, 76], "y_test_idx": [75, 76], "test_siz": [75, 76, 92, 93], "slide": [75, 76, 80], "decis": [75, 76, 92], "frame": [75, 76], "x_out": [75, 76], "tini": [75, 76], "concaten": [75, 76, 81, 89], "y_out": [75, 76], "y_out_bin": [75, 76], "y_out_bin_idx": [75, 76], "exact_duplicate_idx": [75, 76], "x_duplic": [75, 76], "y_duplic": [75, 76], "y_duplicate_idx": [75, 76], "noisy_labels_idx": [75, 76, 86], "scatter": [75, 76, 83, 86, 90], "black": [75, 76, 80, 90], "cyan": [75, 76], "pyplot": [75, 76, 82, 83, 86, 88, 90], "plt": [75, 76, 82, 83, 86, 88, 90], "plot_data": [75, 76, 83, 86, 90], "fig": [75, 76, 80, 82, 88, 90], "ax": [75, 76, 82, 88, 90], "subplot": [75, 76, 82, 88], "set_titl": [75, 76, 82, 88], "set_xlabel": [75, 76], "x_1": [75, 76], "fontsiz": [75, 76, 82, 83, 86], "set_ylabel": [75, 76], "x_2": [75, 76], "set_xlim": [75, 76], "set_ylim": [75, 76], "linestyl": [75, 76], "circl": [75, 76, 83, 86], "misclassifi": [75, 76], "zip": [75, 76, 82, 87, 94], "label_err": [75, 76], "180": [75, 76, 87], "marker": [75, 76], "facecolor": [75, 76], "edgecolor": [75, 76], "linewidth": [75, 76, 88], "dup": [75, 76], "first_legend": [75, 76], "align": [75, 76], "title_fontproperti": [75, 76], "semibold": [75, 76], "second_legend": [75, 76], "45": [75, 76, 80, 82, 83, 87, 88, 91], "gca": [75, 76], "add_artist": [75, 76], "tight_layout": [75, 76], "ideal": [75, 76], "logist": [75, 76, 79, 85, 88, 93], "remaind": 75, "modal": [75, 76, 81, 85], "132": [75, 76, 83, 87], "9318": 75, "77": [75, 76, 78, 87, 91, 92], "006940": 75, "007830": 75, "40": [75, 76, 79, 80, 82, 91], "014828": 75, "107": [75, 76, 83, 86], "021241": 75, "120": [75, 76, 92], "026407": 75, "notic": [75, 83, 85, 87], "3558": [75, 76], "126": [75, 76, 83, 87], "006636": [75, 76], "130": [75, 76], "012571": [75, 76], "129": [75, 76], "127": [75, 76], "014909": [75, 76], "128": [75, 76, 82], "017443": [75, 76], "6160": [75, 76], "is_near_duplicate_issu": [75, 76, 78, 79, 81, 82, 83], "131": [75, 76, 91], "000000e": [75, 76], "00": [75, 76, 78, 80, 82, 88, 91, 92], "000002": [75, 76], "463180e": [75, 76], "07": [75, 76, 78, 82, 83, 87, 88, 91], "51": [75, 76, 78, 80, 82, 83, 87, 88, 91, 94], "161148": [75, 76], "859087e": [75, 76], "30": [75, 76, 80, 81, 82, 86, 91, 94], "3453": 75, "029542": 75, "031182": 75, "057961": 75, "058244": 75, "home": [75, 76, 79, 80, 93], "runner": [75, 76, 79, 93], "329": [75, 82, 87], "359": 75, "338": 75, "34": [75, 80, 82, 83, 85, 87, 88, 91, 94], "54": [75, 80, 82, 83, 87, 88, 91], "039122": 75, "53": [75, 76, 78, 80, 82, 86, 87, 91, 92], "044598": 75, "105": [75, 87], "105196": 75, "133654": 75, "43": [75, 80, 83, 87, 91], "168033": 75, "125": 75, "101107": 75, "37": [75, 80, 82, 88, 91], "183382": 75, "109": [75, 80, 87, 94], "209259": 75, "211042": 75, "221316": 75, "average_ood_scor": 75, "34530442089193386": 75, "52": [75, 80, 82, 87, 91, 94], "169820": 75, "087324e": 75, "89": [75, 78, 87, 90, 91, 93, 94], "92": [75, 83, 87, 88, 91, 92, 94], "259024": 75, "583757e": 75, "91": [75, 87, 91, 94], "346458": 75, "341292e": 75, "specfi": 75, "new_lab": 75, "scoring_funct": 75, "div": 75, "rem": 75, "inv_scal": 75, "49": [75, 80, 83, 87, 91], "superstitionissuemanag": 75, "unlucki": 75, "superstit": 75, "to_seri": 75, "issues_mask": 75, "summary_scor": 75, "9242": 75, "is_superstition_issu": 75, "superstition_scor": 75, "26": [75, 80, 82, 83, 85, 87, 88, 91], "047581": 75, "090635": 75, "129591": 75, "65": [75, 87, 88, 91, 92], "164840": 75, "demo": [76, 78, 86, 92], "lurk": [76, 82, 83], "_split": 76, "737": 76, "thoroughli": 76, "preprocess": [76, 78, 88, 90, 92, 93], "904": 76, "review": [76, 78, 79, 80, 81, 83, 87, 90, 91, 92, 93, 94], "8561": 76, "001908": 76, "58": [76, 78, 80, 82, 83, 87, 91, 92], "003564": 76, "007331": 76, "008963": 76, "009664": 76, "0227": 76, "is_class_imbalance_issu": 76, "022727": 76, "86": [76, 78, 82, 83, 87, 90, 91, 92], "87": [76, 82, 87, 88, 90, 91, 93], "auto": [76, 80, 81, 90, 92, 93], "conceptu": 76, "856061": 76, "355772": 76, "616034": 76, "821750": 76, "betweeen": 76, "is_null_issu": 76, "is_non_iid_issu": [76, 78, 79, 83], "859131": 76, "417707": 76, "664083": 76, "970324": 76, "816953": 76, "375317": 76, "641516": 76, "890575": 76, "531021": 76, "460593": 76, "601188": 76, "826147": 76, "752808": 76, "321635": 76, "562539": 76, "948362": 76, "090243": 76, "472909": 76, "746763": 76, "878267": 76, "examples_w_issu": [76, 81], "013445": 76, "025184": 76, "026376": 76, "inde": [76, 79], "miscellan": [76, 94], "428571": 76, "111111": 76, "571429": 76, "407407": 76, "592593": 76, "337838": 76, "092593": 76, "662162": 76, "333333": [76, 80], "952381": 76, "666667": 76, "portion": 76, "huge": [76, 83], "worri": [76, 79], "critic": 76, "highli": [76, 82], "sql": [78, 92], "databas": [78, 92], "excel": [78, 92], "parquet": [78, 92], "student": [78, 90, 92, 94], "grade": [78, 90, 92], "900": [78, 90, 92], "exam": [78, 90, 92], "letter": [78, 92, 94], "hundr": [78, 92], "histgradientboostingclassifi": 78, "standardscal": [78, 88, 92], "grades_data": [78, 92], "read_csv": [78, 79, 90, 92, 93], "stud_id": [78, 92], "exam_1": [78, 90, 92], "exam_2": [78, 90, 92], "exam_3": [78, 90, 92], "letter_grad": [78, 92], "f48f73": [78, 92], "0bd4e7": [78, 92], "81": [78, 79, 87, 88, 90, 91, 92, 94], "great": [78, 80, 92], "particip": [78, 92], "cb9d7a": [78, 92], "61": [78, 83, 87, 90, 91, 92], "94": [78, 80, 83, 87, 90, 91, 92], "78": [78, 80, 83, 87, 90, 91, 92], "9acca4": [78, 92], "48": [78, 80, 83, 87, 88, 91, 92], "x_raw": [78, 92], "cat_featur": 78, "x_encod": [78, 92], "get_dummi": [78, 90, 92], "drop_first": [78, 92], "numeric_featur": [78, 92], "scaler": [78, 88, 92], "x_process": [78, 92], "fit_transform": [78, 92], "bring": [78, 79, 82, 85, 90, 92, 93], "byod": [78, 79, 82, 85, 90, 92, 93], "boost": [78, 81, 85, 90], "xgboost": [78, 81, 90], "think": [78, 79, 81, 86, 91, 94], "carefulli": [78, 79, 82, 92], "nonzero": 78, "suspici": [78, 92], "tabl": [78, 80, 85, 92], "358": 78, "294": [78, 87], "46": [78, 80, 82, 83, 87, 91], "941": 78, "7109": 78, "000005": [78, 79], "886": 78, "000059": 78, "709": 78, "000104": 78, "723": 78, "000169": 78, "689": 78, "000181": 78, "3590": 78, "051882e": 78, "683133e": 78, "536582e": 78, "406589e": 78, "324246e": 78, "6165": 78, "582": 78, "185": [78, 80, 87], "187": [78, 80], "27": [78, 80, 82, 83, 87, 91, 94], "898": 78, "637": [78, 92], "0014": [78, 80], "595": 78, "702427": 78, "147": [78, 83, 87], "711186": 78, "157": [78, 83], "721394": 78, "771": 78, "731979": 78, "740335": 78, "0014153602099278074": 78, "issue_result": 78, "000842": 78, "555944": 78, "004374": 78, "sorted_issu": 78, "73": [78, 80, 86, 87, 88, 90, 91], "deserv": 78, "outlier_result": 78, "sorted_outli": 78, "56": [78, 80, 82, 88, 90, 91], "96": [78, 80, 83, 86, 87, 90, 91], "lt": [78, 79, 80, 82, 85, 88, 91], "style": [78, 91], "font": 78, "18px": 78, "ff00ff": 78, "bac": 78, "unintend": [78, 79], "mistak": [78, 79, 82, 92, 93], "duplicate_result": 78, "690": 78, "246": [78, 87], "perhap": [78, 83, 85], "twice": 78, "67": [78, 80, 87, 88, 90, 91], "wari": [78, 79, 81], "super": [78, 79, 82], "intent": [79, 93], "servic": [79, 81, 93], "onlin": [79, 93], "bank": [79, 80, 93], "banking77": [79, 93], "oo": [79, 93], "000": [79, 80, 82, 93, 94], "categori": [79, 82, 93], "scope": [79, 93], "dive": 79, "your_featur": 79, "sentence_transform": [79, 93], "sentencetransform": [79, 93], "payment": [79, 93], "cancel_transf": [79, 93], "transfer": [79, 93], "fund": [79, 93], "cancel": [79, 93], "transact": [79, 93], "my": [79, 93], "revert": [79, 93], "morn": [79, 93], "realis": [79, 93], "yesterdai": [79, 93], "rent": [79, 93], "realli": [79, 85, 91, 93], "tomorrow": [79, 93], "raw_text": [79, 93], "apple_pay_or_google_pai": [79, 93], "change_pin": [79, 93], "beneficiary_not_allow": [79, 93], "supported_cards_and_curr": [79, 93], "card_payment_fee_charg": [79, 93], "lost_or_stolen_phon": [79, 93], "visa_or_mastercard": [79, 93], "getting_spare_card": [79, 93], "card_about_to_expir": [79, 93], "utter": [79, 93], "continu": [79, 81, 82, 85, 87, 90, 92, 93, 94], "suit": [79, 80, 81, 93], "electra": [79, 93], "discrimin": [79, 93], "googl": [79, 93], "text_embed": 79, "No": [79, 81, 93], "google_electra": [79, 93], "pool": [79, 81, 88, 93], "_util": [79, 93], "831": [79, 93], "typedstorag": [79, 93], "untypedstorag": [79, 93], "untyped_storag": [79, 93], "fget": [79, 93], "__get__": [79, 93], "owner": [79, 93], "400": [79, 93], "data_dict": [79, 83, 85], "85": [79, 82, 87, 91], "38": [79, 80, 82, 87, 91], "9710": 79, "981": 79, "974": 79, "000146": 79, "982": [79, 80], "000224": 79, "971": 79, "000507": 79, "980": [79, 80], "000960": 79, "3584": 79, "994": 79, "009642": 79, "999": 79, "013067": 79, "013841": 79, "433": 79, "014722": 79, "989": 79, "018224": 79, "6070": 79, "160": [79, 90], "095724": 79, "148": 79, "006237": 79, "546": 79, "099341": 79, "514": 79, "006485": 79, "481": 79, "123418": 79, "008165": 79, "0000": [79, 80, 83], "313": [79, 87], "564102": 79, "572258": 79, "28": [79, 80, 82, 83, 85, 88, 91, 94], "574915": 79, "31": [79, 80, 83, 85, 87, 88, 91], "575507": 79, "575874": 79, "792090": 79, "257611": 79, "698710": 79, "182121": 79, "771619": 79, "to_numpi": [79, 81, 90, 93], "data_with_suggested_label": 79, "suggested_label": 79, "charg": [79, 93], "cash": [79, 93], "holidai": [79, 93], "sent": [79, 93, 94], "card": [79, 80, 93], "mine": [79, 93], "expir": [79, 93], "me": [79, 93], "withdraw": 79, "monei": 79, "whoever": [79, 93], "outlier_issu": [79, 82], "lowest_quality_outli": 79, "OR": 79, "636c65616e6c616220697320617765736f6d6521": 79, "phone": [79, 80], "gone": 79, "gt": [79, 85, 94], "samp": 79, "br": 79, "press": [79, 94], "nonsens": 79, "sens": 79, "detriment": 79, "duplicate_issu": 79, "fee": 79, "pai": 79, "go": [79, 80, 83], "strongli": 79, "p_valu": 79, "benign": 79, "shortlist": [79, 90, 93], "curat": [79, 84], "mnist_test_set": 80, "imagenet_val_set": 80, "tench": 80, "goldfish": 80, "white": [80, 94], "shark": 80, "tiger": 80, "hammerhead": 80, "electr": 80, "rai": 80, "stingrai": 80, "cock": 80, "hen": 80, "ostrich": 80, "brambl": 80, "goldfinch": 80, "hous": 80, "finch": 80, "junco": 80, "indigo": 80, "bunt": 80, "american": [80, 94], "robin": 80, "bulbul": 80, "jai": 80, "magpi": 80, "chickade": 80, "dipper": 80, "kite": 80, "bald": 80, "eagl": 80, "vultur": 80, "grei": 80, "owl": 80, "salamand": 80, "smooth": 80, "newt": 80, "spot": [80, 87], "axolotl": 80, "bullfrog": 80, "tree": 80, "frog": [80, 88], "tail": 80, "loggerhead": 80, "sea": 80, "turtl": 80, "leatherback": 80, "mud": 80, "terrapin": 80, "band": 80, "gecko": 80, "green": [80, 94], "iguana": 80, "carolina": 80, "anol": 80, "desert": 80, "grassland": 80, "whiptail": 80, "lizard": 80, "agama": 80, "frill": 80, "neck": 80, "allig": 80, "gila": 80, "monster": 80, "european": 80, "chameleon": 80, "komodo": 80, "dragon": 80, "nile": 80, "crocodil": 80, "triceratop": 80, "worm": 80, "snake": 80, "ring": 80, "eastern": 80, "hog": 80, "nose": 80, "kingsnak": 80, "garter": 80, "water": 80, "vine": 80, "night": 80, "boa": 80, "constrictor": 80, "african": 80, "rock": 80, "indian": 80, "cobra": 80, "mamba": 80, "saharan": 80, "horn": 80, "viper": 80, "diamondback": 80, "rattlesnak": 80, "sidewind": 80, "trilobit": 80, "harvestman": 80, "scorpion": 80, "yellow": 80, "garden": 80, "spider": 80, "barn": 80, "southern": 80, "widow": 80, "tarantula": 80, "wolf": 80, "tick": 80, "centiped": 80, "grous": 80, "ptarmigan": 80, "ruf": 80, "prairi": 80, "peacock": 80, "quail": 80, "partridg": 80, "parrot": 80, "macaw": 80, "sulphur": 80, "crest": 80, "cockatoo": 80, "lorikeet": 80, "coucal": 80, "bee": 80, "eater": 80, "hornbil": 80, "hummingbird": 80, "jacamar": 80, "toucan": 80, "duck": [80, 93], "breast": 80, "mergans": 80, "goos": 80, "swan": 80, "tusker": 80, "echidna": 80, "platypu": 80, "wallabi": 80, "koala": 80, "wombat": 80, "jellyfish": 80, "anemon": 80, "brain": 80, "coral": 80, "flatworm": 80, "nematod": 80, "conch": 80, "snail": 80, "slug": 80, "chiton": 80, "chamber": 80, "nautilu": 80, "dung": 80, "crab": 80, "fiddler": 80, "king": 80, "lobster": 80, "spini": 80, "crayfish": 80, "hermit": 80, "isopod": 80, "stork": 80, "spoonbil": 80, "flamingo": 80, "heron": 80, "egret": 80, "bittern": 80, "crane": 80, "bird": [80, 88], "limpkin": 80, "gallinul": 80, "coot": 80, "bustard": 80, "ruddi": 80, "turnston": 80, "dunlin": 80, "redshank": 80, "dowitch": 80, "oystercatch": 80, "pelican": 80, "penguin": 80, "albatross": 80, "whale": 80, "killer": 80, "dugong": 80, "lion": 80, "chihuahua": 80, "japanes": 80, "chin": 80, "maltes": 80, "pekinges": 80, "shih": 80, "tzu": 80, "charl": 80, "spaniel": 80, "papillon": 80, "terrier": 80, "rhodesian": 80, "ridgeback": 80, "afghan": [80, 94], "hound": 80, "basset": 80, "beagl": 80, "bloodhound": 80, "bluetick": 80, "coonhound": 80, "tan": 80, "walker": 80, "foxhound": 80, "redbon": 80, "borzoi": 80, "irish": 80, "wolfhound": 80, "italian": 80, "greyhound": 80, "whippet": 80, "ibizan": 80, "norwegian": 80, "elkhound": 80, "otterhound": 80, "saluki": 80, "scottish": 80, "deerhound": 80, "weimaran": 80, "staffordshir": 80, "bull": 80, "bedlington": 80, "border": 80, "kerri": 80, "norfolk": 80, "norwich": 80, "yorkshir": 80, "wire": 80, "fox": 80, "lakeland": 80, "sealyham": 80, "airedal": 80, "cairn": 80, "australian": 80, "dandi": 80, "dinmont": 80, "boston": 80, "miniatur": 80, "schnauzer": 80, "giant": 80, "tibetan": 80, "silki": 80, "coat": [80, 82], "wheaten": 80, "west": 80, "highland": 80, "lhasa": 80, "apso": 80, "flat": 80, "retriev": 80, "curli": 80, "golden": 80, "labrador": 80, "chesapeak": 80, "bai": 80, "german": [80, 94], "shorthair": 80, "pointer": 80, "vizsla": 80, "setter": 80, "gordon": 80, "brittani": 80, "clumber": 80, "springer": 80, "welsh": 80, "cocker": 80, "sussex": 80, "kuvasz": 80, "schipperk": 80, "groenendael": 80, "malinoi": 80, "briard": 80, "kelpi": 80, "komondor": 80, "sheepdog": 80, "shetland": 80, "colli": 80, "bouvier": 80, "de": 80, "flandr": 80, "rottweil": 80, "shepherd": 80, "dobermann": 80, "pinscher": 80, "swiss": [80, 94], "mountain": 80, "bernes": 80, "appenzel": 80, "sennenhund": 80, "entlebuch": 80, "boxer": 80, "bullmastiff": 80, "mastiff": 80, "french": 80, "bulldog": 80, "dane": 80, "st": 80, "bernard": 80, "huski": 80, "alaskan": 80, "malamut": 80, "siberian": 80, "dalmatian": 80, "affenpinsch": 80, "basenji": 80, "pug": 80, "leonberg": 80, "newfoundland": 80, "pyrenean": 80, "samoi": 80, "pomeranian": 80, "chow": 80, "keeshond": 80, "griffon": 80, "bruxelloi": 80, "pembrok": 80, "corgi": 80, "cardigan": 80, "poodl": 80, "mexican": 80, "hairless": 80, "tundra": 80, "coyot": 80, "dingo": 80, "dhole": 80, "wild": 80, "hyena": 80, "kit": 80, "arctic": 80, "tabbi": 80, "persian": 80, "siames": 80, "egyptian": 80, "mau": 80, "cougar": 80, "lynx": 80, "leopard": 80, "snow": 80, "jaguar": 80, "cheetah": 80, "brown": [80, 91], "bear": 80, "polar": 80, "sloth": 80, "mongoos": 80, "meerkat": 80, "beetl": 80, "ladybug": 80, "longhorn": 80, "leaf": 80, "rhinocero": 80, "weevil": 80, "fly": 80, "ant": 80, "grasshopp": 80, "cricket": 80, "stick": 80, "insect": 80, "cockroach": 80, "manti": 80, "cicada": 80, "leafhopp": 80, "lacew": 80, "dragonfli": 80, "damselfli": 80, "admir": 80, "ringlet": 80, "monarch": 80, "butterfli": 80, "gossam": 80, "wing": 80, "starfish": 80, "urchin": 80, "cucumb": 80, "cottontail": 80, "rabbit": 80, "hare": 80, "angora": 80, "hamster": 80, "porcupin": 80, "squirrel": 80, "marmot": 80, "beaver": 80, "guinea": 80, "pig": 80, "sorrel": 80, "zebra": 80, "boar": 80, "warthog": 80, "hippopotamu": 80, "ox": 80, "buffalo": 80, "bison": 80, "bighorn": 80, "sheep": 80, "alpin": 80, "ibex": 80, "hartebeest": 80, "impala": 80, "gazel": 80, "dromedari": 80, "llama": 80, "weasel": 80, "mink": 80, "polecat": 80, "foot": 80, "ferret": 80, "otter": 80, "skunk": 80, "badger": 80, "armadillo": 80, "toed": 80, "orangutan": 80, "gorilla": 80, "chimpanze": 80, "gibbon": 80, "siamang": 80, "guenon": 80, "pata": 80, "monkei": 80, "baboon": 80, "macaqu": 80, "langur": 80, "colobu": 80, "probosci": 80, "marmoset": 80, "capuchin": 80, "howler": 80, "titi": 80, "geoffroi": 80, "lemur": 80, "indri": 80, "asian": 80, "eleph": 80, "bush": 80, "snoek": 80, "eel": 80, "coho": 80, "salmon": 80, "beauti": 80, "clownfish": 80, "sturgeon": 80, "garfish": 80, "lionfish": 80, "pufferfish": 80, "abacu": 80, "abaya": 80, "academ": 80, "gown": 80, "accordion": 80, "acoust": 80, "guitar": 80, "aircraft": 80, "carrier": 80, "airlin": 80, "airship": 80, "altar": 80, "ambul": 80, "amphibi": 80, "clock": [80, 94], "apiari": 80, "apron": 80, "wast": 80, "assault": 80, "rifl": 80, "backpack": 80, "bakeri": 80, "balanc": 80, "beam": 80, "balloon": 80, "ballpoint": 80, "pen": 80, "aid": 80, "banjo": 80, "balust": 80, "barbel": 80, "barber": 80, "chair": [80, 87], "barbershop": 80, "baromet": 80, "barrel": 80, "wheelbarrow": 80, "basebal": 80, "basketbal": 80, "bassinet": 80, "bassoon": 80, "swim": 80, "cap": 80, "bath": 80, "towel": 80, "bathtub": 80, "station": 80, "wagon": 80, "lighthous": 80, "beaker": 80, "militari": 80, "beer": 80, "bottl": 80, "glass": 80, "bell": 80, "cot": 80, "bib": 80, "bicycl": [80, 91], "bikini": 80, "binder": 80, "binocular": 80, "birdhous": 80, "boathous": 80, "bobsleigh": 80, "bolo": 80, "tie": 80, "poke": 80, "bonnet": 80, "bookcas": 80, "bookstor": 80, "bow": 80, "brass": 80, "bra": 80, "breakwat": 80, "breastplat": 80, "broom": 80, "bucket": 80, "buckl": 80, "bulletproof": 80, "vest": 80, "butcher": 80, "shop": 80, "taxicab": 80, "cauldron": 80, "candl": 80, "cannon": 80, "cano": 80, "mirror": [80, 87], "carousel": 80, "tool": [80, 83, 85], "carton": 80, "wheel": 80, "teller": 80, "cassett": 80, "player": 80, "castl": 80, "catamaran": 80, "cd": 80, "cello": 80, "mobil": [80, 94], "chain": 80, "fenc": [80, 91], "mail": 80, "chainsaw": 80, "chest": 80, "chiffoni": 80, "chime": 80, "china": 80, "cabinet": 80, "christma": 80, "stock": 80, "church": 80, "movi": 80, "theater": 80, "cleaver": 80, "cliff": 80, "dwell": 80, "cloak": 80, "clog": 80, "cocktail": 80, "shaker": 80, "coffe": 80, "mug": 80, "coffeemak": 80, "coil": 80, "lock": 80, "keyboard": 80, "confectioneri": 80, "ship": [80, 88], "corkscrew": 80, "cornet": 80, "cowboi": 80, "boot": 80, "hat": 80, "cradl": 80, "crash": 80, "helmet": 80, "crate": 80, "infant": 80, "bed": 80, "crock": 80, "pot": 80, "croquet": 80, "crutch": 80, "cuirass": 80, "dam": 80, "desk": 80, "desktop": 80, "rotari": 80, "dial": 80, "telephon": 80, "diaper": 80, "watch": 80, "dine": 80, "dishcloth": 80, "dishwash": 80, "disc": 80, "brake": 80, "dock": 80, "sled": 80, "dome": 80, "doormat": 80, "drill": 80, "rig": 80, "drum": 80, "drumstick": 80, "dumbbel": 80, "dutch": 80, "oven": 80, "fan": 80, "locomot": 80, "entertain": 80, "center": 80, "envelop": 80, "espresso": 80, "powder": 80, "feather": 80, "fireboat": 80, "engin": [80, 91], "screen": 80, "sheet": 80, "flagpol": 80, "flute": 80, "footbal": 80, "forklift": 80, "fountain": 80, "poster": 80, "freight": 80, "fry": 80, "pan": 80, "fur": 80, "garbag": 80, "ga": 80, "pump": 80, "goblet": 80, "kart": 80, "golf": 80, "cart": 80, "gondola": 80, "gong": 80, "grand": 80, "piano": 80, "greenhous": 80, "grill": 80, "groceri": 80, "guillotin": 80, "barrett": 80, "hair": 80, "sprai": 80, "hammer": 80, "dryer": 80, "hand": [80, 83], "handkerchief": 80, "drive": 80, "harmonica": 80, "harp": 80, "harvest": 80, "hatchet": 80, "holster": 80, "honeycomb": 80, "hoop": 80, "skirt": 80, "horizont": 80, "bar": 80, "hors": [80, 88, 93], "drawn": 80, "hourglass": 80, "ipod": 80, "cloth": 80, "iron": 80, "jack": 80, "lantern": 80, "jean": 80, "jeep": 80, "shirt": [80, 82], "jigsaw": 80, "puzzl": 80, "pull": 80, "rickshaw": 80, "joystick": 80, "kimono": 80, "knee": 80, "pad": 80, "knot": 80, "ladl": 80, "lampshad": 80, "laptop": 80, "lawn": 80, "mower": 80, "knife": 80, "lifeboat": 80, "lighter": 80, "limousin": 80, "ocean": 80, "liner": 80, "lipstick": 80, "slip": 80, "shoe": 80, "lotion": 80, "speaker": 80, "loup": 80, "sawmil": 80, "magnet": 80, "compass": 80, "bag": [80, 82, 88, 89], "mailbox": 80, "tight": 80, "tank": 80, "manhol": 80, "maraca": 80, "marimba": 80, "maypol": 80, "maze": 80, "cup": [80, 87], "medicin": 80, "megalith": 80, "microphon": 80, "microwav": 80, "milk": 80, "minibu": 80, "miniskirt": 80, "minivan": 80, "missil": 80, "mitten": 80, "mix": 80, "bowl": 80, "modem": 80, "monasteri": 80, "monitor": 80, "mope": 80, "mortar": 80, "mosqu": 80, "mosquito": 80, "scooter": 80, "bike": 80, "tent": 80, "mous": [80, 81], "mousetrap": 80, "van": 80, "muzzl": 80, "nail": 80, "brace": 80, "necklac": 80, "nippl": 80, "obelisk": 80, "obo": 80, "ocarina": 80, "odomet": 80, "oil": 80, "oscilloscop": 80, "overskirt": 80, "bullock": 80, "oxygen": 80, "packet": 80, "paddl": 80, "padlock": 80, "paintbrush": 80, "pajama": 80, "palac": [80, 94], "parachut": 80, "park": 80, "bench": 80, "meter": 80, "passeng": 80, "patio": 80, "payphon": 80, "pedest": 80, "pencil": 80, "perfum": 80, "petri": 80, "dish": 80, "photocopi": 80, "plectrum": 80, "pickelhaub": 80, "picket": 80, "pickup": 80, "pier": 80, "piggi": 80, "pill": 80, "pillow": 80, "ping": 80, "pong": 80, "pinwheel": 80, "pirat": 80, "pitcher": 80, "plane": 80, "planetarium": 80, "plastic": 80, "plate": 80, "rack": 80, "plow": 80, "plunger": 80, "polaroid": 80, "camera": 80, "pole": [80, 91], "polic": 80, "poncho": 80, "billiard": 80, "soda": 80, "potter": 80, "prayer": 80, "rug": 80, "printer": 80, "prison": 80, "projectil": 80, "projector": 80, "hockei": 80, "puck": 80, "punch": 80, "purs": 80, "quill": 80, "quilt": 80, "race": 80, "racket": 80, "radiat": 80, "radio": 80, "telescop": 80, "rain": 80, "recreat": 80, "reel": 80, "reflex": 80, "refriger": 80, "remot": 80, "restaur": 80, "revolv": 80, "rotisseri": 80, "eras": 80, "rugbi": 80, "ruler": 80, "safe": 80, "safeti": 80, "salt": 80, "sandal": [80, 82], "sarong": 80, "saxophon": 80, "scabbard": 80, "school": 80, "bu": [80, 91], "schooner": 80, "scoreboard": 80, "crt": 80, "screw": 80, "screwdriv": 80, "seat": 80, "belt": 80, "sew": 80, "shield": 80, "shoji": 80, "basket": 80, "shovel": 80, "shower": 80, "curtain": 80, "ski": 80, "sleep": 80, "door": 80, "slot": 80, "snorkel": 80, "snowmobil": 80, "snowplow": 80, "soap": 80, "dispens": 80, "soccer": [80, 94], "sock": 80, "solar": 80, "thermal": 80, "collector": 80, "sombrero": 80, "soup": 80, "heater": 80, "shuttl": 80, "spatula": 80, "motorboat": 80, "web": 80, "spindl": 80, "sport": [80, 94], "spotlight": 80, "stage": 80, "steam": 80, "arch": 80, "bridg": 80, "steel": 80, "stethoscop": 80, "scarf": 80, "stone": 80, "wall": [80, 91], "stopwatch": 80, "stove": 80, "strainer": 80, "tram": 80, "stretcher": 80, "couch": 80, "stupa": 80, "submarin": 80, "sundial": 80, "sunglass": 80, "sunscreen": 80, "suspens": 80, "mop": 80, "sweatshirt": 80, "swimsuit": 80, "swing": 80, "switch": 80, "syring": 80, "lamp": 80, "tape": 80, "teapot": 80, "teddi": 80, "televis": [80, 94], "tenni": 80, "thatch": 80, "roof": 80, "front": 80, "thimbl": 80, "thresh": 80, "throne": 80, "tile": 80, "toaster": 80, "tobacco": 80, "toilet": 80, "totem": 80, "tow": 80, "tractor": 80, "semi": 80, "trailer": 80, "trai": 80, "trench": 80, "tricycl": 80, "trimaran": 80, "tripod": 80, "triumphal": 80, "trolleybu": 80, "trombon": 80, "tub": 80, "turnstil": 80, "typewrit": 80, "umbrella": 80, "unicycl": 80, "upright": 80, "vacuum": 80, "cleaner": 80, "vase": 80, "vault": 80, "velvet": 80, "vend": 80, "vestment": 80, "viaduct": 80, "violin": 80, "volleybal": 80, "waffl": 80, "wallet": 80, "wardrob": 80, "sink": 80, "wash": 80, "jug": 80, "tower": 80, "whiskei": 80, "whistl": 80, "wig": 80, "shade": [80, 91], "windsor": 80, "wine": 80, "wok": 80, "wooden": 80, "spoon": 80, "wool": 80, "rail": 80, "shipwreck": 80, "yawl": 80, "yurt": 80, "websit": 80, "comic": 80, "book": 80, "crossword": 80, "traffic": [80, 87, 91], "sign": [80, 91, 94], "dust": 80, "jacket": [80, 87], "menu": 80, "guacamol": 80, "consomm": 80, "trifl": 80, "ic": 80, "cream": 80, "pop": 80, "baguett": 80, "bagel": 80, "pretzel": 80, "cheeseburg": 80, "mash": 80, "potato": 80, "cabbag": 80, "broccoli": 80, "cauliflow": 80, "zucchini": 80, "spaghetti": 80, "squash": 80, "acorn": 80, "butternut": 80, "artichok": 80, "pepper": 80, "cardoon": 80, "mushroom": 80, "granni": 80, "smith": 80, "strawberri": 80, "orang": 80, "lemon": 80, "pineappl": 80, "banana": 80, "jackfruit": 80, "custard": 80, "appl": 80, "pomegran": 80, "hai": 80, "carbonara": 80, "chocol": 80, "syrup": 80, "dough": 80, "meatloaf": 80, "pizza": 80, "pie": 80, "burrito": 80, "eggnog": 80, "alp": 80, "bubbl": 80, "reef": 80, "geyser": 80, "lakeshor": 80, "promontori": 80, "shoal": 80, "seashor": 80, "vallei": 80, "volcano": 80, "bridegroom": 80, "scuba": 80, "diver": 80, "rapese": 80, "daisi": 80, "ladi": 80, "slipper": 80, "corn": 80, "rose": 80, "hip": 80, "chestnut": 80, "fungu": 80, "agar": 80, "gyromitra": 80, "stinkhorn": 80, "earth": 80, "star": 80, "wood": 80, "bolet": 80, "ear": 80, "cifar10_test_set": 80, "airplan": [80, 88], "automobil": [80, 88], "deer": [80, 88], "cifar100_test_set": 80, "aquarium_fish": 80, "babi": 80, "boi": 80, "camel": 80, "caterpillar": 80, "cattl": [80, 94], "cloud": 80, "dinosaur": 80, "dolphin": 80, "flatfish": 80, "forest": 80, "girl": 80, "kangaroo": 80, "lawn_mow": 80, "man": 80, "maple_tre": 80, "motorcycl": [80, 91], "oak_tre": 80, "orchid": 80, "palm_tre": 80, "pear": 80, "pickup_truck": 80, "pine_tre": 80, "plain": 80, "poppi": 80, "possum": 80, "raccoon": 80, "road": [80, 91], "rocket": 80, "seal": 80, "shrew": 80, "skyscrap": 80, "streetcar": 80, "sunflow": 80, "sweet_pepp": 80, "trout": 80, "tulip": 80, "willow_tre": 80, "woman": [80, 87], "caltech256": 80, "ak47": 80, "bat": 80, "glove": 80, "birdbath": 80, "blimp": 80, "bonsai": 80, "boom": 80, "breadmak": 80, "buddha": 80, "bulldoz": 80, "cactu": 80, "cake": 80, "tire": 80, "cartman": 80, "cereal": 80, "chandeli": 80, "chess": 80, "board": 80, "chimp": 80, "chopstick": 80, "coffin": 80, "coin": 80, "comet": 80, "cormor": 80, "globe": 80, "diamond": 80, "dice": 80, "doorknob": 80, "drink": 80, "straw": 80, "dumb": 80, "eiffel": 80, "elk": 80, "ewer": 80, "eyeglass": 80, "fern": 80, "fighter": 80, "jet": [80, 90], "extinguish": 80, "hydrant": 80, "firework": 80, "flashlight": 80, "floppi": 80, "fri": 80, "frisbe": 80, "galaxi": 80, "giraff": 80, "goat": 80, "gate": 80, "grape": 80, "pick": [80, 81], "hamburg": 80, "hammock": 80, "harpsichord": 80, "hawksbil": 80, "helicopt": 80, "hibiscu": 80, "homer": 80, "simpson": 80, "horsesho": 80, "air": 80, "skeleton": 80, "ibi": 80, "cone": 80, "iri": 80, "jesu": 80, "christ": 80, "joi": 80, "kayak": 80, "ketch": 80, "ladder": 80, "lath": 80, "licens": 80, "lightbulb": 80, "lightn": 80, "mandolin": 80, "mar": 80, "mattress": 80, "megaphon": 80, "menorah": 80, "microscop": 80, "minaret": 80, "minotaur": 80, "motorbik": 80, "mussel": 80, "neckti": 80, "octopu": 80, "palm": 80, "pilot": 80, "paperclip": 80, "shredder": 80, "pci": 80, "peopl": [80, 87], "pez": 80, "picnic": 80, "pram": 80, "prai": 80, "pyramid": 80, "rainbow": 80, "roulett": 80, "saddl": 80, "saturn": 80, "segwai": 80, "propel": 80, "sextant": 80, "music": 80, "skateboard": 80, "smokestack": 80, "sneaker": 80, "boat": 80, "stain": 80, "steer": 80, "stirrup": 80, "superman": 80, "sushi": 80, "armi": [80, 94], "sword": 80, "tambourin": 80, "teepe": 80, "court": 80, "theodolit": 80, "tomato": 80, "tombston": 80, "tour": 80, "pisa": 80, "treadmil": 80, "fork": 80, "tweezer": 80, "unicorn": 80, "vcr": 80, "waterfal": 80, "watermelon": 80, "weld": 80, "windmil": 80, "xylophon": 80, "yarmulk": 80, "yo": 80, "toad": 80, "twenty_news_test_set": 80, "alt": 80, "atheism": 80, "comp": 80, "graphic": [80, 91], "misc": [80, 94], "sy": 80, "ibm": 80, "pc": 80, "hardwar": 80, "mac": 80, "forsal": 80, "rec": 80, "sci": 80, "crypt": 80, "electron": 80, "med": 80, "soc": 80, "religion": 80, "christian": [80, 94], "talk": [80, 94], "polit": 80, "gun": 80, "mideast": 80, "amazon": 80, "neutral": 80, "imdb_test_set": 80, "all_class": 80, "20news_test_set": 80, "_load_classes_predprobs_label": 80, "dataset_nam": 80, "labelerror": 80, "url_bas": 80, "5392f6c71473055060be3044becdde1cbc18284d": 80, "url_label": 80, "original_test_label": 80, "_original_label": 80, "url_prob": 80, "cross_validated_predicted_prob": 80, "_pyx": 80, "num_part": 80, "datatset": 80, "bytesio": 80, "allow_pickl": 80, "pred_probs_part": 80, "url": 80, "_of_": 80, "nload": 80, "imdb": 80, "ve": [80, 81, 83, 85, 87], "interpret": [80, 81, 83, 86], "capit": 80, "29780": 80, "256": [80, 81, 87], "780": 80, "medic": [80, 94], "doctor": 80, "254": [80, 87], "359223": 80, "640777": 80, "184": [80, 83], "258427": 80, "341176": 80, "263158": 80, "658824": 80, "337349": 80, "246575": 80, "662651": 80, "248": 80, "330000": 80, "355769": 80, "670000": 80, "251": [80, 87], "167": [80, 83, 87], "252": 80, "112": 80, "253": [80, 87], "022989": 80, "255": [80, 82], "049505": 80, "190": [80, 83, 87], "66": [80, 91], "002216": 80, "000974": 80, "59": [80, 82, 87, 88, 91], "88": [80, 81, 82, 83, 86, 87, 90, 91], "000873": 80, "000739": 80, "79": [80, 87, 88, 91, 92], "32635": 80, "32636": 80, "47": [80, 82, 87, 91], "32637": 80, "32638": 80, "32639": 80, "32640": 80, "051": 80, "93": [80, 87, 90, 91, 92], "002242": 80, "997758": 80, "002088": 80, "001045": 80, "997912": 80, "002053": 80, "997947": 80, "001980": 80, "000991": 80, "998020": 80, "001946": 80, "002915": 80, "998054": 80, "001938": 80, "002904": 80, "998062": 80, "001020": 80, "998980": 80, "001018": 80, "002035": 80, "998982": 80, "999009": 80, "0003": 80, "0002": 80, "36": [80, 82, 91, 94], "41": [80, 82, 87, 90, 91], "44": [80, 86, 87, 91, 93], "71": [80, 83, 87, 90, 91], "071": 80, "067269": 80, "929": 80, "046": 80, "058243": 80, "954": [80, 94], "035": [80, 82], "032096": 80, "965": 80, "031": 80, "012232": 80, "969": 80, "022": 80, "025896": 80, "978": 80, "020": [80, 83], "013092": 80, "018": 80, "013065": 80, "016": 80, "030542": 80, "984": 80, "013": 80, "020833": 80, "987": 80, "012": 80, "010020": 80, "988": 80, "0073": 80, "0020": 80, "0016": 80, "0015": 80, "0013": 80, "0012": 80, "0010": 80, "0008": 80, "0007": 80, "0006": 80, "0005": 80, "0004": 80, "244": [80, 87, 94], "98": [80, 81, 88, 90, 91], "452381": 80, "459770": 80, "72": [80, 82, 83, 86, 90, 91], "523364": 80, "460784": 80, "446602": 80, "57": [80, 82, 83, 91], "68": [80, 82, 83, 87, 91, 92], "103774": 80, "030612": 80, "97": [80, 81, 83, 87, 90, 91, 92, 94], "110092": 80, "049020": 80, "99": [80, 83, 91, 92], "0034": 80, "0032": 80, "0026": 80, "0025": 80, "4945": 80, "4946": 80, "4947": 80, "4948": 80, "4949": 80, "4950": 80, "846": 80, "82": [80, 83, 87, 90, 91], "7532": 80, "532": 80, "034483": 80, "009646": 80, "965517": 80, "030457": 80, "020513": 80, "969543": 80, "028061": 80, "035443": 80, "971939": 80, "025316": 80, "005168": 80, "974684": 80, "049751": 80, "979487": 80, "019920": 80, "042802": 80, "980080": 80, "017677": 80, "005115": 80, "982323": 80, "012987": 80, "005236": 80, "987013": 80, "012723": 80, "025126": 80, "987277": 80, "010989": 80, "008264": 80, "989011": 80, "010283": 80, "027778": 80, "989717": 80, "009677": 80, "990323": 80, "007614": 80, "010127": 80, "992386": 80, "005051": 80, "994949": 80, "005025": 80, "994975": 80, "005013": 80, "994987": 80, "001859": 80, "001328": 80, "000929": 80, "000664": 80, "186": [80, 83], "188": [80, 83, 86], "189": [80, 83], "snippet": 81, "nlp": [81, 94], "mind": [81, 83], "number_of_class": 81, "total_number_of_data_point": 81, "drop": [81, 85, 90, 93], "feed": 81, "alphabet": 81, "labels_proper_format": 81, "your_classifi": 81, "issues_datafram": 81, "class_predicted_for_flagged_exampl": 81, "class_predicted_for_all_exampl": 81, "grant": 81, "datataset": 81, "fair": [81, 83], "game": 81, "speedup": [81, 88], "flexibl": 81, "tempfil": 81, "mkdtemp": 81, "sped": 81, "anywai": 81, "pred_probs_merg": 81, "merge_rare_class": 81, "count_threshold": 81, "class_mapping_orig2new": 81, "heath_summari": 81, "num_examples_per_class": 81, "rare_class": 81, "num_classes_merg": 81, "other_class": 81, "labels_merg": 81, "new_c": 81, "merged_prob": 81, "hstack": [81, 82, 83, 85], "new_class": 81, "original_class": 81, "num_check": 81, "ones_array_ref": 81, "isclos": 81, "though": [81, 83, 94], "successfulli": 81, "meaning": [81, 88], "virtuou": [81, 85], "cycl": [81, 85], "jointli": 81, "junk": 81, "clutter": 81, "unknown": 81, "caltech": 81, "combined_boolean_mask": 81, "mask1": 81, "mask2": 81, "gradientboostingclassifi": [81, 83], "true_error": [81, 83, 86], "101": [81, 87], "102": [81, 86, 87], "104": [81, 83, 87], "model_to_find_error": 81, "model_to_return": 81, "cl0": 81, "randomizedsearchcv": 81, "expens": 81, "param_distribut": 81, "learning_r": [81, 83], "max_depth": [81, 83], "magnitud": 81, "coeffici": [81, 90], "optin": 81, "environ": [81, 83], "rerun": [81, 83], "cell": [81, 83], "On": [81, 83, 87], "unabl": [81, 83], "render": [81, 83], "nbviewer": [81, 83], "nbsp": [81, 83], "cleanlearninginot": [81, 83], "fittedcleanlearn": [81, 83], "linearregressionlinearregress": 81, "n_init": 81, "fit_predict": 81, "continuous_column": 81, "categorical_column": 81, "data_df": 81, "feature_a": 81, "feature_b": 81, "unexpectedli": 81, "emphas": 81, "especi": [81, 82, 90, 92, 93], "crucial": 81, "merge_duplicate_set": 81, "merge_kei": 81, "construct_group_kei": 81, "merged_set": 81, "consolidate_set": 81, "tolist": [81, 86], "issubset": 81, "frozenset": 81, "sets_list": 81, "mutabl": 81, "new_set": 81, "current_set": 81, "intersecting_set": 81, "lowest_score_strategi": 81, "sub_df": 81, "idxmin": 81, "filter_near_dupl": 81, "strategy_fn": 81, "strategy_kwarg": 81, "duplicate_row": 81, "group_kei": 81, "to_keep_indic": 81, "groupbi": 81, "explod": 81, "to_remov": 81, "isin": [81, 88], "kept": 81, "near_duplicate_issu": [81, 82], "ids_to_remove_seri": 81, "tmp": 81, "ipykernel_6088": 81, "1995098996": 81, "deprecationwarn": 81, "dataframegroupbi": 81, "include_group": 81, "silenc": 81, "assist": 81, "streamlin": 81, "ux": 81, "agpl": 81, "compani": 81, "commerci": 81, "alter": 81, "email": 81, "discuss": 81, "anywher": 81, "profession": 81, "expert": 81, "60": [82, 83, 91], "excess": 82, "torchvis": [82, 88], "tensordataset": 82, "stratifiedkfold": [82, 86], "tqdm": 82, "fashion_mnist": 82, "num_row": 82, "60000": 82, "pil": 82, "transformed_dataset": 82, "with_format": 82, "unsqueez": 82, "cpu_count": 82, "torch_dataset": 82, "quick": [82, 86], "relu": 82, "batchnorm2d": 82, "maxpool2d": 82, "lazylinear": 82, "flatten": 82, "get_test_accuraci": 82, "testload": [82, 88], "energi": 82, "trainload": [82, 88], "n_epoch": 82, "patienc": 82, "criterion": 82, "crossentropyloss": 82, "adamw": 82, "best_test_accuraci": 82, "start_epoch": 82, "running_loss": 82, "best_epoch": 82, "end_epoch": 82, "3f": [82, 90], "acc": [82, 83], "time_taken": 82, "compute_embed": 82, "compute_pred_prob": 82, "train_batch_s": 82, "num_work": 82, "worker": [82, 94], "train_id_list": 82, "test_id_list": 82, "train_id": 82, "test_id": 82, "embeddings_model": 82, "ntrain": 82, "trainset": 82, "testset": 82, "pin_memori": 82, "fold_embed": 82, "fold_pred_prob": 82, "finish": 82, "482": 82, "720": 82, "393": 82, "195": 82, "stderr": [82, 88, 91], "sphinxverbatim": [82, 88, 91, 94], "39it": [82, 91], "50it": [82, 88, 91], "73it": [82, 91], "72it": [82, 88, 91], "38it": 82, "69it": [82, 88, 91], "11it": [82, 91], "60it": [82, 91], "19it": [82, 91], "79it": [82, 91], "06it": [82, 88, 91], "66it": [82, 88, 91], "55it": [82, 91], "493": 82, "060": 82, "153": [82, 87], "330": [82, 87], "505": 82, "956": 82, "09it": [82, 88, 91], "71it": [82, 91], "00it": [82, 88, 91], "81it": [82, 88, 91], "74it": [82, 88, 91], "08it": [82, 91], "35it": [82, 91], "07it": [82, 91], "05it": [82, 88], "32it": [82, 91], "52it": [82, 91], "476": 82, "340": 82, "328": [82, 87], "310": 82, "675": 82, "42it": [82, 91], "21it": [82, 91], "70it": [82, 88, 91], "57it": [82, 91], "62": [82, 83, 87, 88, 90, 91], "30it": [82, 91], "64it": [82, 88, 91], "86it": [82, 91], "53it": [82, 91], "27it": [82, 88, 91], "88it": [82, 91], "33it": [82, 91], "15it": [82, 91], "reorder": 82, "vision": 82, "grayscal": 82, "exce": 82, "max_preval": 82, "7714": 82, "3772": 82, "3585": 82, "166": 82, "3651": 82, "27080": 82, "873833e": 82, "40378": 82, "915575e": 82, "25316": 82, "390277e": 82, "06": [82, 83, 87, 91, 94], "2090": 82, "751164e": 82, "14999": 82, "881301e": 82, "9569": 82, "11262": 82, "000003": 82, "19228": 82, "000010": 82, "dress": 82, "32657": 82, "000013": 82, "21282": 82, "000016": 82, "53564": 82, "000018": 82, "pullov": 82, "6321": 82, "30968": 82, "001267": 82, "30659": 82, "000022": [82, 94], "47824": 82, "001454": 82, "3370": 82, "000026": 82, "54565": 82, "001854": 82, "9762": 82, "258": 82, "47139": 82, "000033": 82, "166980": 82, "986195": 82, "997205": 82, "948781": 82, "999358": 82, "54078": 82, "17371": 82, "000025": 82, "plot_label_issue_exampl": 82, "ncol": [82, 88], "nrow": [82, 88], "ceil": 82, "axes_list": 82, "label_issue_indic": 82, "gl": 82, "sl": 82, "fontdict": 82, "imshow": [82, 88], "cmap": [82, 90], "grai": 82, "subplots_adjust": 82, "hspace": 82, "outsiz": 82, "outlier_issues_df": 82, "depict": [82, 86, 87, 88, 89, 91], "plot_outlier_issues_exampl": 82, "n_comparison_imag": 82, "sample_from_class": 82, "number_of_sampl": 82, "non_outlier_indic": 82, "isnul": 82, "non_outlier_indices_excluding_curr": 82, "sampled_indic": 82, "label_scores_of_sampl": 82, "top_score_indic": 82, "top_label_indic": 82, "sampled_imag": 82, "get_image_given_label_and_sampl": 82, "image_from_dataset": 82, "corresponding_label": 82, "comparison_imag": 82, "images_to_plot": 82, "idlist": 82, "iterrow": 82, "closest": 82, "counterpart": 82, "near_duplicate_issues_df": 82, "plot_near_duplicate_issue_exampl": 82, "seen_id_pair": 82, "get_image_and_given_label_and_predicted_label": 82, "duplicate_imag": 82, "nd_set": 82, "challeng": 82, "dark_issu": 82, "reveal": [82, 87, 91], "dark_scor": 82, "dark_issues_df": 82, "is_dark_issu": 82, "34848": 82, "203922": 82, "50270": 82, "204588": 82, "3936": 82, "213098": 82, "733": 82, "217686": 82, "8094": 82, "230118": 82, "plot_image_issue_exampl": 82, "difficult": 82, "disproportion": 82, "lowinfo_issu": 82, "low_information_scor": 82, "lowinfo_issues_df": 82, "is_low_information_issu": 82, "53050": 82, "067975": 82, "40875": 82, "089929": 82, "9594": 82, "092601": 82, "34825": 82, "107744": 82, "37530": 82, "108516": 82, "lot": 82, "depth": 83, "survei": [83, 94], "focus": [83, 85, 86, 87], "scienc": 83, "multivariate_norm": [83, 85, 86], "make_data": [83, 85], "cov": [83, 85, 86], "avg_trac": [83, 86], "test_label": [83, 86, 88, 93], "py_tru": 83, "noise_matrix_tru": 83, "noise_marix": 83, "s_test": 83, "noisy_test_label": 83, "purpl": 83, "val": 83, "namespac": 83, "exec": 83, "markerfacecolor": [83, 86], "markeredgecolor": [83, 86, 90], "markers": [83, 86, 90], "markeredgewidth": [83, 86, 90], "realist": 83, "7560": 83, "637318e": 83, "896262e": 83, "548391e": 83, "923417e": 83, "375075e": 83, "3454": 83, "014051": 83, "020451": 83, "249": [83, 87], "042594": 83, "043859": 83, "045954": 83, "6120": 83, "023714": 83, "007136": 83, "119": [83, 87], "107266": 83, "103": [83, 87], "033738": 83, "238": [83, 87], "119505": 83, "236": [83, 87], "037843": 83, "222": 83, "614915": 83, "122": [83, 87], "624422": 83, "625965": 83, "626079": 83, "118": 83, "627675": 83, "695223": 83, "323529": 83, "523015": 83, "013720": 83, "675727": 83, "646521": 83, "anyth": 83, "enhanc": [83, 85, 87], "magic": 83, "83": [83, 87, 90, 91, 92, 94], "liter": 83, "identif": 83, "x27": 83, "logisticregressionlogisticregress": 83, "ever": 83, "092": 83, "040": 83, "024": 83, "004": 83, "surpris": 83, "1705": 83, "01936": 83, "ton": 83, "yourfavoritemodel1": 83, "merged_label": 83, "merged_test_label": 83, "newli": [83, 85], "yourfavoritemodel2": 83, "yourfavoritemodel3": 83, "cl3": 83, "takeawai": 83, "That": [83, 86], "randomli": 83, "my_test_pred_prob": 83, "my_test_pr": 83, "issues_test": 83, "corrected_test_label": 83, "pretend": 83, "cl_test_pr": 83, "69": [83, 90, 91], "fairli": 83, "label_acc": 83, "percentag": 83, "offset": 83, "nquestion": 83, "overestim": 83, "answer": 83, "experienc": 83, "76": [83, 86, 87, 88, 90, 91, 92], "knowledg": 83, "quantiti": [83, 90], "prioiri": 83, "known": 83, "versatil": 83, "label_issues_indic": 83, "213": [83, 87], "212": [83, 92], "218": [83, 87], "152": 83, "197": [83, 87], "196": [83, 87], "170": 83, "214": 83, "164": [83, 86], "198": [83, 87], "191": [83, 87], "63": [83, 87, 90, 91], "121": [83, 93], "117": [83, 90], "206": [83, 87], "115": [83, 87], "193": [83, 94], "194": 83, "201": [83, 87], "174": 83, "163": 83, "150": [83, 85, 87], "169": 83, "151": [83, 87], "168": 83, "precision_scor": 83, "recall_scor": 83, "f1_score": 83, "true_label_issu": 83, "filter_by_list": 83, "718750": [83, 85], "807018": 83, "912": 83, "733333": 83, "800000": 83, "721311": 83, "792793": 83, "908": 83, "676923": 83, "765217": 83, "892": 83, "567901": 83, "702290": 83, "844": 83, "gaug": 83, "label_issues_count": 83, "155": [83, 87], "156": 83, "172": [83, 86], "easiest": 83, "modular": 83, "penalti": 83, "l2": 83, "model3": 83, "n_estim": 83, "cv_pred_probs_1": 83, "cv_pred_probs_2": 83, "cv_pred_probs_3": 83, "label_quality_scores_best": 83, "cv_pred_probs_ensembl": 83, "label_quality_scores_bett": 83, "superior": [83, 89], "workflow": [84, 90], "speechbrain": 84, "timm": 84, "glad": 85, "multiannotator_label": 85, "300": [85, 94], "noisier": 85, "111": [85, 90], "local_data": [85, 86], "true_labels_train": [85, 86], "noise_matrix_bett": 85, "noise_matrix_wors": 85, "transpos": [85, 88], "dropna": 85, "zfill": 85, "row_na_check": 85, "notna": 85, "reset_index": 85, "a0001": 85, "a0002": 85, "a0003": 85, "a0004": 85, "a0005": 85, "a0006": 85, "a0007": 85, "a0008": 85, "a0009": 85, "a0010": 85, "a0041": 85, "a0042": 85, "a0043": 85, "a0044": 85, "a0045": 85, "a0046": 85, "a0047": 85, "a0048": 85, "a0049": 85, "a0050": 85, "na": 85, "60856743": 85, "41693214": 85, "40908785": 85, "87147629": 85, "64941785": 85, "10774851": 85, "0524466": 85, "71853246": 85, "37169848": 85, "66031048": 85, "multiannotator_util": 85, "crude": 85, "straight": 85, "majority_vote_label": 85, "736118": 85, "757751": 85, "782232": 85, "715565": 85, "824256": 85, "quality_annotator_a0001": 85, "quality_annotator_a0002": 85, "quality_annotator_a0003": 85, "quality_annotator_a0004": 85, "quality_annotator_a0005": 85, "quality_annotator_a0006": 85, "quality_annotator_a0007": 85, "quality_annotator_a0008": 85, "quality_annotator_a0009": 85, "quality_annotator_a0010": 85, "quality_annotator_a0041": 85, "quality_annotator_a0042": 85, "quality_annotator_a0043": 85, "quality_annotator_a0044": 85, "quality_annotator_a0045": 85, "quality_annotator_a0046": 85, "quality_annotator_a0047": 85, "quality_annotator_a0048": 85, "quality_annotator_a0049": 85, "quality_annotator_a0050": 85, "070564": 85, "216078": 85, "119188": 85, "alongisd": 85, "244981": 85, "208333": 85, "295979": 85, "294118": 85, "324197": 85, "310345": 85, "355316": 85, "346154": 85, "439732": 85, "480000": 85, "a0031": 85, "523205": 85, "580645": 85, "a0034": 85, "535313": 85, "607143": 85, "a0021": 85, "606999": 85, "a0015": 85, "609526": 85, "678571": 85, "a0011": 85, "621103": 85, "692308": 85, "wors": 85, "improved_consensus_label": 85, "majority_vote_accuraci": 85, "cleanlab_label_accuraci": 85, "8581081081081081": 85, "9797297297297297": 85, "besid": 85, "sorted_consensus_quality_scor": 85, "worst_qual": 85, "better_qu": 85, "worst_quality_accuraci": 85, "better_quality_accuraci": 85, "9893238434163701": 85, "improved_pred_prob": 85, "treat": [85, 86, 90, 94], "analzi": 85, "copyright": 86, "advertis": 86, "violenc": 86, "nsfw": 86, "suppli": [86, 87], "celeba": 86, "make_multilabel_data": 86, "boxes_coordin": 86, "box_multilabel": 86, "make_multi": 86, "bx1": 86, "by1": 86, "bx2": 86, "by2": 86, "label_list": 86, "ur": 86, "upper": 86, "inidx": 86, "logical_and": 86, "inv_d": 86, "labels_idx": 86, "true_labels_test": 86, "dict_unique_label": 86, "get_color_arrai": 86, "dcolor": 86, "aa4400": 86, "55227f": 86, "55a100": 86, "00ff00": 86, "007f7f": 86, "386b55": 86, "0000ff": 86, "simplic": 86, "advis": 86, "y_onehot": 86, "single_class_label": 86, "stratifi": [86, 89], "kf": 86, "train_index": 86, "test_index": 86, "clf_cv": 86, "x_train_cv": 86, "x_test_cv": 86, "y_train_cv": 86, "y_test_cv": 86, "y_pred_cv": 86, "saw": 86, "num_to_displai": 86, "09": [86, 87, 91], "275": 86, "267": 86, "225": 86, "171": 86, "234": 86, "165": [86, 94], "227": [86, 87], "262": [86, 87], "263": [86, 87], "266": [86, 87], "139": 86, "143": [86, 87, 94], "216": [86, 87, 94], "265": 86, "159": [86, 87], "despit": [86, 94], "suspect": 86, "888": 86, "8224": 86, "9632": 86, "968": 86, "6512": 86, "0444": 86, "774": 86, "labels_binary_format": 86, "labels_list_format": 86, "surround": 87, "scene": 87, "coco": 87, "everydai": 87, "has_label_issu": 87, "insal": 87, "nc": [87, 91, 94], "s3": [87, 91, 94], "amazonaw": [87, 91, 94], "objectdetectionbenchmark": 87, "tutorial_obj": 87, "pkl": 87, "example_imag": 87, "unzip": [87, 94], "_separate_label": 87, "_separate_predict": 87, "begin": 87, "image_path": 87, "rb": 87, "image_to_visu": 87, "seg_map": 87, "334": 87, "float32": 87, "bboxes_ignor": 87, "290": 87, "286": 87, "285": 87, "224": 87, "231": 87, "293": 87, "235": 87, "289": 87, "282": 87, "74": [87, 90, 91, 92], "281": 87, "271": 87, "280": 87, "277": 87, "279": 87, "287": 87, "299": 87, "276": 87, "307": 87, "321": 87, "326": 87, "333": 87, "261": 87, "319": 87, "257": 87, "295": 87, "283": 87, "243": [87, 94], "303": 87, "316": 87, "247": 87, "323": 87, "327": 87, "226": 87, "228": 87, "232": 87, "219": 87, "239": 87, "240": 87, "209": 87, "242": 87, "202": 87, "230": 87, "215": 87, "220": 87, "229": 87, "217": 87, "237": 87, "207": 87, "204": 87, "84": [87, 88, 90, 91], "205": 87, "223": 87, "149": 87, "140": 87, "124": 87, "268": 87, "273": 87, "108": 87, "284": 87, "110": 87, "136": 87, "145": [87, 94], "173": 87, "297": 87, "317": 87, "192": 87, "332": 87, "324": 87, "203": 87, "320": 87, "314": 87, "199": 87, "291": 87, "000000481413": 87, "jpg": 87, "42398": 87, "44503": 87, "337": [87, 93], "29968": 87, "336": 87, "21005": 87, "9978472": 87, "forgot": 87, "drew": 87, "label_issue_idx": 87, "num_examples_to_show": 87, "138": 87, "candid": 87, "97489622": 87, "70610878": 87, "98764951": 87, "88899237": 87, "99085805": 87, "issue_idx": 87, "95569726e": 87, "03354841e": 87, "57510169e": 87, "58447666e": 87, "39755858e": 87, "issue_to_visu": 87, "000000009483": 87, "95569726168054e": 87, "addition": [87, 91], "visibl": 87, "missmatch": 87, "likelei": 87, "agnost": 87, "vaidat": 87, "inconsist": 87, "000000395701": 87, "033548411774308e": 87, "armchair": 87, "tv": 87, "000000154004": 87, "38300759625496356": 87, "foreground": 87, "000000448410": 87, "0008575101690203273": 87, "crowd": 87, "alon": 87, "explor": [87, 88], "resembl": [87, 88], "000000499768": 87, "9748962231208227": 87, "000000521141": 87, "8889923658893665": 87, "000000143931": 87, "9876495074395956": 87, "uncov": 87, "irregular": 87, "aim": [87, 91, 94], "anomali": 87, "unusu": [87, 88], "object_detection_util": 87, "calculate_bounding_box_area": 87, "num_imgs_to_show": 87, "lab_object_count": 87, "pred_object_count": 87, "000000430073": 87, "000000183709": 87, "000000189475": 87, "studi": 87, "label_norm": 87, "pred_norm": 87, "area": [87, 91], "lab_area": 87, "pred_area": 87, "lab_area_mean": 87, "lab_area_std": 87, "max_deviation_valu": 87, "max_deviation_class": 87, "deviation_valu": 87, "deviation_class": 87, "mean_area": 87, "std_area": 87, "class_area": 87, "deviations_awai": 87, "max_deviation_index": 87, "num_imgs_to_show_per_class": 87, "class_num": 87, "sorted_indic": 87, "000000422886": 87, "000000341828": 87, "000000461009": 87, "train_feature_embed": 88, "ood_train_feature_scor": 88, "test_feature_embed": 88, "ood_test_feature_scor": 88, "ood_train_predictions_scor": 88, "train_pred_prob": 88, "ood_test_predictions_scor": 88, "test_pred_prob": 88, "pylab": 88, "rcparam": 88, "baggingclassifi": 88, "therebi": 88, "rescal": 88, "transform_norm": 88, "totensor": 88, "root": 88, "animal_class": 88, "non_animal_class": 88, "animal_idx": 88, "test_idx": 88, "toronto": 88, "edu": 88, "kriz": 88, "170498071": 88, "32768": 88, "253804": 88, "229376": 88, "993776": 88, "884736": 88, "2843619": 88, "98it": [88, 91], "3604480": 88, "9937863": 88, "9568256": 88, "22733434": 88, "15532032": 88, "33124010": 88, "85it": [88, 91], "19070976": 88, "33331594": 88, "97it": [88, 91], "25001984": 88, "38542476": 88, "29491200": 88, "40313666": 88, "10it": [88, 91], "34439168": 88, "42784554": 88, "31it": [88, 91], "38797312": 88, "42575855": 88, "01it": [88, 91], "43909120": 88, "44133340": 88, "46it": [88, 91], "48365568": 88, "44213290": 88, "62it": [88, 91], "53280768": 88, "45603815": 88, "57868288": 88, "44811305": 88, "61it": [88, 91], "62685184": 88, "45437448": 88, "67272704": 88, "45126177": 88, "72122368": 88, "46040805": 88, "76742656": 88, "45311156": 88, "87it": [88, 91], "81854464": 88, "46283694": 88, "59it": [88, 91], "86507520": 88, "45720127": 88, "96it": [88, 91], "91455488": 88, "46807783": 88, "76it": [88, 91], "96174080": 88, "45884858": 88, "100892672": 88, "45622214": 88, "20it": [88, 91], "105480192": 88, "45635391": 88, "110297088": 88, "45956041": 88, "49it": [88, 91], "114917376": 88, "45582206": 88, "119799808": 88, "46514478": 88, "124485632": 88, "45639548": 88, "48it": [88, 91], "129335296": 88, "46446998": 88, "37it": [88, 91], "133988352": 88, "45593760": 88, "138739712": 88, "46153655": 88, "26it": [88, 91], "143392768": 88, "45504976": 88, "148209664": 88, "46079464": 88, "34it": [88, 91], "152829952": 88, "45516536": 88, "157646848": 88, "46018066": 88, "162267136": 88, "45503104": 88, "22it": 88, "167280640": 88, "46441485": 88, "40it": [88, 91], "41107986": 88, "54it": [88, 91], "5000": 88, "plot_imag": 88, "visualize_outli": 88, "txt_class": 88, "img": [88, 90], "npimg": 88, "show_label": 88, "data_subset": 88, "resnet50": 88, "corpu": 88, "2048": 88, "embed_imag": 88, "create_model": 88, "strang": 88, "odd": 88, "train_ood_features_scor": 88, "top_train_ood_features_idx": 88, "fun": 88, "negat": 88, "homogen": 88, "bottom_train_ood_features_idx": 88, "test_ood_features_scor": 88, "top_ood_features_idx": 88, "inevit": 88, "trade": 88, "5th": 88, "percentil": 88, "fifth_percentil": 88, "plt_rang": 88, "hist": 88, "train_outlier_scor": 88, "ylabel": 88, "axvlin": 88, "test_outlier_scor": 88, "ood_features_indic": 88, "revisit": 88, "return_invers": 88, "train_feature_embeddings_sc": 88, "test_feature_embeddings_sc": 88, "train_pred_label": 88, "9702": 88, "train_ood_predictions_scor": 88, "test_ood_predictions_scor": 88, "mainli": [88, 94], "lost": 88, "unsuit": 89, "ok": [89, 94], "convention": 89, "aforement": 89, "hypothet": 89, "contrast": 89, "tradit": 89, "disjoint": 89, "out_of_sample_pred_probs_for_a": 89, "out_of_sample_pred_probs_for_b": 89, "out_of_sample_pred_probs_for_c": 89, "out_of_sample_pred_prob": 89, "price": 90, "incom": 90, "ag": 90, "histgradientboostingregressor": 90, "r2_score": 90, "student_grades_r": 90, "final_scor": 90, "true_final_scor": 90, "homework": 90, "3d": 90, "hue": 90, "mpl_toolkit": 90, "mplot3d": 90, "axes3d": 90, "errors_idx": 90, "add_subplot": 90, "z": 90, "colorbar": 90, "errors_mask": 90, "feature_column": 90, "predicted_column": 90, "x_train_raw": 90, "x_test_raw": 90, "categorical_featur": [90, 92], "randomforestregressor": 90, "636197": 90, "499503": 90, "843478": 90, "776647": 90, "350358": 90, "170547": 90, "706969": 90, "984759": 90, "812515": 90, "795928": 90, "identified_issu": [90, 93], "141": 90, "659": 90, "367": 90, "318": 90, "305": 90, "560": 90, "657": 90, "688": 90, "view_datapoint": 90, "concat": 90, "consum": [90, 93], "baseline_model": [90, 93], "preds_og": 90, "r2_og": 90, "838": 90, "robustli": [90, 92, 93], "acceler": [90, 93], "found_label_issu": 90, "preds_cl": 90, "r2_cl": 90, "926": 90, "effort": [90, 92, 93], "favorit": 90, "13091885": 90, "48412548": 90, "00695165": 90, "44421119": 90, "43029854": 90, "synthia": 91, "imagesegment": 91, "given_mask": 91, "predicted_mask": 91, "set_printopt": [91, 94], "sky": 91, "sidewalk": 91, "veget": 91, "terrain": 91, "rider": 91, "pred_probs_filepath": 91, "1088": 91, "1920": 91, "label_filepath": 91, "synthia_class": 91, "maunal": 91, "100000": 91, "244800": 91, "leftmost": 91, "middl": [91, 94], "infact": 91, "rightmost": 91, "discrep": 91, "4997817": 91, "15219": 91, "152175": 91, "63it": 91, "30515": 91, "152628": 91, "45778": 91, "152070": 91, "29it": 91, "60986": 91, "151671": 91, "76154": 91, "151334": 91, "04it": 91, "91408": 91, "151739": 91, "106583": 91, "151262": 91, "121799": 91, "151497": 91, "136950": 91, "151116": 91, "12it": 91, "152062": 91, "150719": 91, "47it": 91, "167152": 91, "150772": 91, "182311": 91, "151017": 91, "94it": 91, "197414": 91, "149004": 91, "91it": 91, "212321": 91, "148494": 91, "227688": 91, "150033": 91, "242927": 91, "150733": 91, "258207": 91, "151349": 91, "273519": 91, "151877": 91, "288818": 91, "152206": 91, "304086": 91, "152346": 91, "319322": 91, "152226": 91, "334625": 91, "152465": 91, "349873": 91, "152288": 91, "365103": 91, "149042": 91, "380408": 91, "150221": 91, "43it": 91, "395607": 91, "150742": 91, "410867": 91, "151292": 91, "426153": 91, "151755": 91, "441466": 91, "152163": 91, "456687": 91, "152154": 91, "472009": 91, "152471": 91, "487319": 91, "152657": 91, "18it": 91, "502587": 91, "152587": 91, "517878": 91, "152680": 91, "533228": 91, "152922": 91, "25it": 91, "548521": 91, "152579": 91, "563780": 91, "152366": 91, "579068": 91, "152516": 91, "68it": 91, "594320": 91, "152104": 91, "13it": 91, "609531": 91, "152101": 91, "624752": 91, "152131": 91, "639966": 91, "151079": 91, "655076": 91, "151049": 91, "89it": 91, "670183": 91, "143565": 91, "685377": 91, "145979": 91, "700538": 91, "147618": 91, "75it": 91, "715680": 91, "148734": 91, "730868": 91, "149661": 91, "746099": 91, "150444": 91, "761372": 91, "151122": 91, "776857": 91, "152232": 91, "792347": 91, "153026": 91, "807768": 91, "153377": 91, "03it": 91, "823303": 91, "153966": 91, "838868": 91, "154469": 91, "02it": 91, "854393": 91, "154699": 91, "869879": 91, "154744": 91, "14it": 91, "885355": 91, "154662": 91, "900823": 91, "154618": 91, "28it": 91, "916286": 91, "154561": 91, "931866": 91, "154930": 91, "84it": 91, "947360": 91, "154896": 91, "962850": 91, "154866": 91, "978337": 91, "154782": 91, "993816": 91, "154378": 91, "1009295": 91, "154498": 91, "77it": 91, "1024770": 91, "154570": 91, "1040292": 91, "154762": 91, "1055833": 91, "154953": 91, "1071368": 91, "155068": 91, "1086875": 91, "154910": 91, "1102367": 91, "154771": 91, "95it": 91, "1117845": 91, "154473": 91, "1133293": 91, "153830": 91, "1148677": 91, "152795": 91, "1164033": 91, "153020": 91, "1179445": 91, "153346": 91, "1194827": 91, "153485": 91, "1210177": 91, "153406": 91, "1225519": 91, "153329": 91, "1240853": 91, "152990": 91, "1256153": 91, "152916": 91, "1271445": 91, "152236": 91, "93it": 91, "1286713": 91, "152365": 91, "67it": 91, "1302067": 91, "152714": 91, "1317531": 91, "153287": 91, "1332993": 91, "153682": 91, "36it": 91, "1348485": 91, "154049": 91, "1363898": 91, "154071": 91, "65it": 91, "1379399": 91, "154351": 91, "1394835": 91, "154191": 91, "1410321": 91, "154389": 91, "90it": 91, "1425761": 91, "154373": 91, "1441199": 91, "154033": 91, "1456681": 91, "154241": 91, "1472106": 91, "149708": 91, "1487442": 91, "150778": 91, "1502934": 91, "151998": 91, "1518481": 91, "1533971": 91, "153580": 91, "1549477": 91, "154018": 91, "1564939": 91, "154195": 91, "1580364": 91, "153889": 91, "1595792": 91, "154004": 91, "1611227": 91, "154106": 91, "1626640": 91, "153914": 91, "83it": 91, "1642067": 91, "154017": 91, "1657470": 91, "153883": 91, "1672885": 91, "153960": 91, "1688410": 91, "154345": 91, "1703989": 91, "154777": 91, "1719468": 91, "154729": 91, "80it": 91, "1734942": 91, "154566": 91, "1750507": 91, "154890": 91, "1766005": 91, "154914": 91, "1781497": 91, "147546": 91, "1796958": 91, "149591": 91, "1812454": 91, "151160": 91, "1827877": 91, "152061": 91, "1843464": 91, "153189": 91, "44it": 91, "1858984": 91, "153786": 91, "1874464": 91, "154084": 91, "92it": 91, "1889886": 91, "154001": 91, "1905352": 91, "154197": 91, "1920784": 91, "154230": 91, "24it": 91, "1936212": 91, "148546": 91, "1951414": 91, "149557": 91, "1966912": 91, "151149": 91, "78it": 91, "1982262": 91, "151843": 91, "1997680": 91, "152533": 91, "2012949": 91, "152506": 91, "2028211": 91, "152396": 91, "45it": 91, "2043459": 91, "152411": 91, "2058765": 91, "152604": 91, "2074030": 91, "152499": 91, "2089285": 91, "152513": 91, "2104539": 91, "151666": 91, "2119708": 91, "151082": 91, "2134819": 91, "150954": 91, "2149966": 91, "151105": 91, "2165078": 91, "150864": 91, "2180212": 91, "151004": 91, "51it": 91, "2195377": 91, "151195": 91, "99it": 91, "2210676": 91, "151731": 91, "2225850": 91, "151531": 91, "2241004": 91, "151333": 91, "2256138": 91, "150729": 91, "2271212": 91, "150197": 91, "2286233": 91, "150187": 91, "2301330": 91, "150418": 91, "2316399": 91, "150498": 91, "2331548": 91, "150793": 91, "2346781": 91, "151253": 91, "2362004": 91, "151542": 91, "2377162": 91, "151551": 91, "2392436": 91, "151906": 91, "2407643": 91, "151953": 91, "2423011": 91, "152469": 91, "2438258": 91, "152457": 91, "2453589": 91, "152711": 91, "2468861": 91, "152406": 91, "2484102": 91, "152383": 91, "2499341": 91, "152361": 91, "2514736": 91, "152835": 91, "2530062": 91, "152961": 91, "2545402": 91, "153090": 91, "2560712": 91, "152472": 91, "2576006": 91, "152608": 91, "2591361": 91, "152887": 91, "2606651": 91, "152751": 91, "2621927": 91, "152635": 91, "2637191": 91, "152547": 91, "2652472": 91, "152623": 91, "2667735": 91, "152574": 91, "2682993": 91, "152551": 91, "2698249": 91, "152430": 91, "2713493": 91, "152302": 91, "2728724": 91, "151063": 91, "2743939": 91, "151383": 91, "2759158": 91, "151621": 91, "2774348": 91, "151702": 91, "2789597": 91, "151936": 91, "2804823": 91, "152032": 91, "2820027": 91, "152028": 91, "2835231": 91, "151863": 91, "2850481": 91, "152051": 91, "2865687": 91, "152021": 91, "2880890": 91, "151948": 91, "23it": 91, "2896119": 91, "152047": 91, "2911324": 91, "151894": 91, "2926514": 91, "151707": 91, "2941685": 91, "151331": 91, "2956862": 91, "151461": 91, "2972034": 91, "151534": 91, "2987200": 91, "151569": 91, "3002482": 91, "151940": 91, "3017677": 91, "151819": 91, "3032885": 91, "3048113": 91, "152008": 91, "3063393": 91, "152242": 91, "3078624": 91, "152259": 91, "82it": 91, "3093999": 91, "152703": 91, "3109270": 91, "152597": 91, "3124545": 91, "152640": 91, "3139820": 91, "152672": 91, "3155088": 91, "152185": 91, "3170307": 91, "152112": 91, "3185530": 91, "152144": 91, "3200769": 91, "152215": 91, "3215991": 91, "3231212": 91, "152132": 91, "3246456": 91, "152222": 91, "3261753": 91, "152443": 91, "3277013": 91, "152488": 91, "3292262": 91, "152111": 91, "3307474": 91, "151890": 91, "3322664": 91, "151792": 91, "3338019": 91, "152314": 91, "3353323": 91, "152529": 91, "3368577": 91, "152460": 91, "16it": 91, "3383824": 91, "152309": 91, "3399056": 91, "151943": 91, "3414251": 91, "151765": 91, "3429493": 91, "151958": 91, "3444690": 91, "151836": 91, "3459874": 91, "151774": 91, "3475111": 91, "151949": 91, "3490307": 91, "151945": 91, "3505502": 91, "149425": 91, "3520675": 91, "150104": 91, "3536035": 91, "151141": 91, "3551305": 91, "151603": 91, "3566631": 91, "152096": 91, "3582057": 91, "152739": 91, "3597451": 91, "153097": 91, "3612812": 91, "153248": 91, "3628145": 91, "153269": 91, "3643473": 91, "153075": 91, "3658782": 91, "152987": 91, "3674219": 91, "153400": 91, "3689609": 91, "153548": 91, "3704965": 91, "153215": 91, "3720330": 91, "153308": 91, "3735745": 91, "153557": 91, "3751101": 91, "153486": 91, "3766504": 91, "153647": 91, "3781869": 91, "153439": 91, "3797284": 91, "153648": 91, "41it": 91, "3812649": 91, "153206": 91, "3828069": 91, "153502": 91, "3843420": 91, "153333": 91, "3858826": 91, "153549": 91, "3874182": 91, "153524": 91, "3889575": 91, "153644": 91, "3904940": 91, "153484": 91, "3920289": 91, "153285": 91, "3935618": 91, "153225": 91, "3951084": 91, "153653": 91, "3966477": 91, "153733": 91, "3981879": 91, "153815": 91, "3997261": 91, "153450": 91, "4012607": 91, "153340": 91, "4027942": 91, "153204": 91, "17it": 91, "4043263": 91, "153101": 91, "4058574": 91, "152649": 91, "4073840": 91, "152492": 91, "4089090": 91, "152227": 91, "4104313": 91, "150900": 91, "4119406": 91, "150874": 91, "4134496": 91, "150440": 91, "4149652": 91, "4164918": 91, "4180089": 91, "151445": 91, "4195260": 91, "151520": 91, "4210505": 91, "151795": 91, "4225702": 91, "151845": 91, "4240887": 91, "151794": 91, "4256251": 91, "152343": 91, "4271644": 91, "152816": 91, "4286926": 91, "151759": 91, "4302104": 91, "151725": 91, "4317364": 91, "151983": 91, "4332692": 91, "152369": 91, "4347991": 91, "152552": 91, "4363327": 91, "152790": 91, "4378607": 91, "148458": 91, "4393480": 91, "142262": 91, "4408792": 91, "145373": 91, "58it": 91, "4424149": 91, "147753": 91, "4439438": 91, "149259": 91, "4454678": 91, "150183": 91, "4469725": 91, "143754": 91, "4484985": 91, "146305": 91, "4500321": 91, "148363": 91, "4515705": 91, "149972": 91, "4530858": 91, "150429": 91, "4546128": 91, "151102": 91, "4561495": 91, "151865": 91, "4576696": 91, "151896": 91, "4591896": 91, "151748": 91, "4607105": 91, "151849": 91, "4622426": 91, "152253": 91, "4637655": 91, "4652942": 91, "152435": 91, "4668228": 91, "152559": 91, "4683506": 91, "152624": 91, "4698770": 91, "152408": 91, "4714012": 91, "4729244": 91, "4744470": 91, "148906": 91, "4759678": 91, "149840": 91, "4774923": 91, "150611": 91, "4790208": 91, "151275": 91, "4805406": 91, "151482": 91, "4820694": 91, "4836084": 91, "4851423": 91, "152757": 91, "4866834": 91, "153161": 91, "56it": 91, "4882152": 91, "153112": 91, "4897502": 91, "153224": 91, "4912826": 91, "151174": 91, "4928122": 91, "151703": 91, "4943431": 91, "152115": 91, "4958721": 91, "152348": 91, "4973960": 91, "152357": 91, "4989221": 91, "152431": 91, "152152": 91, "3263230": 91, "783379": 91, "275110": 91, "255792": 91, "78225": 91, "55990": 91, "54427": 91, "33591": 91, "24645": 91, "21308": 91, "15045": 91, "14171": 91, "13832": 91, "13498": 91, "11490": 91, "9164": 91, "8769": 91, "6999": 91, "6031": 91, "5011": 91, "mistakenli": 91, "class_issu": 91, "domin": 91, "extratreesclassifi": 92, "extratre": 92, "ranked_label_issu": [92, 93], "labelencod": [92, 93], "labels_raw": 92, "interg": [92, 93], "tress": 92, "827": 92, "cheat": 92, "0pt": 92, "233": 92, "labels_train": 92, "labels_test": 92, "acc_og": [92, 93], "783068783068783": 92, "acc_cl": [92, 93], "8095238095238095": 92, "earlier": [93, 94], "raw_label": 93, "raw_train_text": 93, "raw_test_text": 93, "raw_train_label": 93, "raw_test_label": 93, "encond": 93, "train_text": 93, "test_text": 93, "858371": 93, "547274": 93, "826228": 93, "966008": 93, "792449": 93, "646": 93, "390": 93, "628": 93, "702": 93, "135": 93, "735": 93, "print_as_df": 93, "inverse_transform": 93, "fight": 93, "bunch": 94, "conll": 94, "2003": 94, "love": 94, "n_i": 94, "optional_list_of_ordered_class_nam": 94, "deepai": 94, "conll2003": 94, "rm": 94, "tokenclassif": 94, "2024": 94, "2400": 94, "52e0": 94, "1a01": 94, "connect": 94, "443": 94, "await": 94, "982975": 94, "960k": 94, "kb": 94, "959": 94, "94k": 94, "92mb": 94, "mb": 94, "directori": 94, "inflat": 94, "17045998": 94, "16m": 94, "octet": 94, "53k": 94, "925kb": 94, "38m": 94, "07mb": 94, "89m": 94, "7mb": 94, "26m": 94, "5mb": 94, "bert": 94, "read_npz": 94, "filepath": 94, "corrsespond": 94, "iob2": 94, "given_ent": 94, "entity_map": 94, "readfil": 94, "sep": 94, "startswith": 94, "docstart": 94, "isalpha": 94, "isupp": 94, "indices_to_preview": 94, "nsentenc": 94, "eu": 94, "reject": 94, "boycott": 94, "british": 94, "lamb": 94, "00030412": 94, "00023826": 94, "99936208": 94, "00007009": 94, "00002545": 94, "99998795": 94, "00000401": 94, "00000218": 94, "00000455": 94, "00000131": 94, "00000749": 94, "99996115": 94, "00001371": 94, "0000087": 94, "00000895": 94, "99998936": 94, "00000382": 94, "00000178": 94, "00000366": 94, "00000137": 94, "99999101": 94, "00000266": 94, "00000174": 94, "0000035": 94, "00000109": 94, "99998768": 94, "00000482": 94, "00000202": 94, "00000438": 94, "0000011": 94, "00000465": 94, "99996392": 94, "00001105": 94, "0000116": 94, "00000878": 94, "99998671": 94, "00000364": 94, "00000213": 94, "00000472": 94, "00000281": 94, "99999073": 94, "00000211": 94, "00000159": 94, "00000442": 94, "00000115": 94, "peter": 94, "blackburn": 94, "00000358": 94, "00000529": 94, "99995623": 94, "0000129": 94, "0000024": 94, "00001812": 94, "99994141": 94, "00001645": 94, "00002162": 94, "brussel": 94, "1996": 94, "00001172": 94, "00000821": 94, "00004661": 94, "0000618": 94, "99987167": 94, "99999061": 94, "00000201": 94, "00000195": 94, "00000408": 94, "00000135": 94, "2254": 94, "2907": 94, "19392": 94, "9962": 94, "8904": 94, "19303": 94, "12918": 94, "9256": 94, "11855": 94, "18392": 94, "20426": 94, "19402": 94, "14744": 94, "19371": 94, "4645": 94, "10331": 94, "9430": 94, "6143": 94, "18367": 94, "12914": 94, "todai": 94, "weather": 94, "march": 94, "scalfaro": 94, "northern": 94, "himself": 94, "said": 94, "germani": 94, "nastja": 94, "rysich": 94, "north": 94, "spla": 94, "fought": 94, "khartoum": 94, "govern": 94, "south": 94, "1983": 94, "autonomi": 94, "animist": 94, "region": 94, "moslem": 94, "arabis": 94, "mayor": 94, "antonio": 94, "gonzalez": 94, "garcia": 94, "revolutionari": 94, "parti": 94, "wednesdai": 94, "troop": 94, "raid": 94, "farm": 94, "stole": 94, "rape": 94, "women": 94, "spring": 94, "chg": 94, "hrw": 94, "12pct": 94, "princ": 94, "photo": 94, "moment": 94, "spokeswoman": 94, "rainier": 94, "told": 94, "reuter": 94, "danila": 94, "carib": 94, "w224": 94, "equip": 94, "radiomet": 94, "earn": 94, "19996": 94, "london": 94, "denom": 94, "sale": 94, "uk": 94, "jp": 94, "fr": 94, "maccabi": 94, "hapoel": 94, "haifa": 94, "tel": 94, "aviv": 94, "hospit": 94, "rever": 94, "roman": 94, "cathol": 94, "nun": 94, "admit": 94, "calcutta": 94, "week": 94, "ago": 94, "fever": 94, "vomit": 94, "allianc": 94, "embattl": 94, "kabul": 94, "salang": 94, "highwai": 94, "mondai": 94, "tuesdai": 94, "suprem": 94, "council": 94, "led": 94, "jumbish": 94, "milli": 94, "movement": 94, "warlord": 94, "abdul": 94, "rashid": 94, "dostum": 94, "dollar": 94, "exchang": 94, "3570": 94, "12049": 94, "born": 94, "1937": 94, "provinc": 94, "anhui": 94, "dai": 94, "came": 94, "shanghai": 94, "citi": 94, "prolif": 94, "author": 94, "teacher": 94, "chines": 94, "16764": 94, "1990": 94, "historian": 94, "alan": 94, "john": 94, "percival": 94, "taylor": 94, "di": 94, "20446": 94, "pace": 94, "bowler": 94, "ian": 94, "harvei": 94, "claim": 94, "victoria": 94, "15514": 94, "cotti": 94, "osc": 94, "foreign": 94, "minist": 94, "7525": 94, "sultan": 94, "specter": 94, "met": 94, "crown": 94, "abdullah": 94, "defenc": 94, "aviat": 94, "jeddah": 94, "saudi": 94, "agenc": 94, "2288": 94, "hi": 94, "customari": 94, "outfit": 94, "champion": 94, "damp": 94, "scalp": 94, "canada": 94, "reign": 94, "olymp": 94, "donovan": 94, "bailei": 94, "1992": 94, "linford": 94, "christi": 94, "britain": 94, "1984": 94, "1988": 94, "carl": 94, "lewi": 94, "ambigi": 94, "punctuat": 94, "chicago": 94, "digest": 94, "philadelphia": 94, "usda": 94, "york": 94, "token_issu": 94, "471": 94, "kean": 94, "year": 94, "contract": 94, "manchest": 94, "19072": 94, "societi": 94, "million": 94, "bite": 94, "deliv": 94, "19910": 94, "father": 94, "clarenc": 94, "woolmer": 94, "renam": 94, "uttar": 94, "pradesh": 94, "india": 94, "ranji": 94, "trophi": 94, "nation": 94, "championship": 94, "captain": 94, "1949": 94, "15658": 94, "19879": 94, "iii": 94, "brian": 94, "shimer": 94, "randi": 94, "jone": 94, "19104": 94}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [30, 0, 0, "-", "dataset"], [33, 0, 0, "-", "experimental"], [36, 0, 0, "-", "filter"], [37, 0, 0, "-", "internal"], [48, 0, 0, "-", "models"], [50, 0, 0, "-", "multiannotator"], [53, 0, 0, "-", "multilabel_classification"], [56, 0, 0, "-", "object_detection"], [59, 0, 0, "-", "outlier"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "regression"], [65, 0, 0, "-", "segmentation"], [69, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.dataset": [[30, 1, 1, "", "find_overlapping_classes"], [30, 1, 1, "", "health_summary"], [30, 1, 1, "", "overall_label_health_score"], [30, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[31, 0, 0, "-", "cifar_cnn"], [32, 0, 0, "-", "coteaching"], [34, 0, 0, "-", "label_issues_batched"], [35, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[31, 2, 1, "", "CNN"], [31, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[31, 6, 1, "", "T_destination"], [31, 3, 1, "", "__call__"], [31, 3, 1, "", "add_module"], [31, 3, 1, "", "apply"], [31, 3, 1, "", "bfloat16"], [31, 3, 1, "", "buffers"], [31, 6, 1, "", "call_super_init"], [31, 3, 1, "", "children"], [31, 3, 1, "", "compile"], [31, 3, 1, "", "cpu"], [31, 3, 1, "", "cuda"], [31, 3, 1, "", "double"], [31, 6, 1, "", "dump_patches"], [31, 3, 1, "", "eval"], [31, 3, 1, "", "extra_repr"], [31, 3, 1, "", "float"], [31, 3, 1, "id0", "forward"], [31, 3, 1, "", "get_buffer"], [31, 3, 1, "", "get_extra_state"], [31, 3, 1, "", "get_parameter"], [31, 3, 1, "", "get_submodule"], [31, 3, 1, "", "half"], [31, 3, 1, "", "ipu"], [31, 3, 1, "", "load_state_dict"], [31, 3, 1, "", "modules"], [31, 3, 1, "", "named_buffers"], [31, 3, 1, "", "named_children"], [31, 3, 1, "", "named_modules"], [31, 3, 1, "", "named_parameters"], [31, 3, 1, "", "parameters"], [31, 3, 1, "", "register_backward_hook"], [31, 3, 1, "", "register_buffer"], [31, 3, 1, "", "register_forward_hook"], [31, 3, 1, "", "register_forward_pre_hook"], [31, 3, 1, "", "register_full_backward_hook"], [31, 3, 1, "", "register_full_backward_pre_hook"], [31, 3, 1, "", "register_load_state_dict_post_hook"], [31, 3, 1, "", "register_module"], [31, 3, 1, "", "register_parameter"], [31, 3, 1, "", "register_state_dict_pre_hook"], [31, 3, 1, "", "requires_grad_"], [31, 3, 1, "", "set_extra_state"], [31, 3, 1, "", "share_memory"], [31, 3, 1, "", "state_dict"], [31, 3, 1, "", "to"], [31, 3, 1, "", "to_empty"], [31, 3, 1, "", "train"], [31, 6, 1, "", "training"], [31, 3, 1, "", "type"], [31, 3, 1, "", "xpu"], [31, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[32, 1, 1, "", "adjust_learning_rate"], [32, 1, 1, "", "evaluate"], [32, 1, 1, "", "forget_rate_scheduler"], [32, 1, 1, "", "initialize_lr_scheduler"], [32, 1, 1, "", "loss_coteaching"], [32, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[34, 2, 1, "", "LabelInspector"], [34, 7, 1, "", "adj_confident_thresholds_shared"], [34, 1, 1, "", "find_label_issues_batched"], [34, 7, 1, "", "labels_shared"], [34, 7, 1, "", "pred_probs_shared"], [34, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[34, 3, 1, "", "get_confident_thresholds"], [34, 3, 1, "", "get_label_issues"], [34, 3, 1, "", "get_num_issues"], [34, 3, 1, "", "get_quality_scores"], [34, 3, 1, "", "score_label_quality"], [34, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[35, 2, 1, "", "CNN"], [35, 2, 1, "", "SimpleNet"], [35, 1, 1, "", "get_mnist_dataset"], [35, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[35, 3, 1, "", "__init_subclass__"], [35, 6, 1, "", "batch_size"], [35, 6, 1, "", "dataset"], [35, 6, 1, "", "epochs"], [35, 3, 1, "id0", "fit"], [35, 3, 1, "", "get_metadata_routing"], [35, 3, 1, "", "get_params"], [35, 6, 1, "", "loader"], [35, 6, 1, "", "log_interval"], [35, 6, 1, "", "lr"], [35, 6, 1, "", "momentum"], [35, 6, 1, "", "no_cuda"], [35, 3, 1, "id1", "predict"], [35, 3, 1, "id4", "predict_proba"], [35, 6, 1, "", "seed"], [35, 3, 1, "", "set_fit_request"], [35, 3, 1, "", "set_params"], [35, 3, 1, "", "set_predict_proba_request"], [35, 3, 1, "", "set_predict_request"], [35, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[35, 6, 1, "", "T_destination"], [35, 3, 1, "", "__call__"], [35, 3, 1, "", "add_module"], [35, 3, 1, "", "apply"], [35, 3, 1, "", "bfloat16"], [35, 3, 1, "", "buffers"], [35, 6, 1, "", "call_super_init"], [35, 3, 1, "", "children"], [35, 3, 1, "", "compile"], [35, 3, 1, "", "cpu"], [35, 3, 1, "", "cuda"], [35, 3, 1, "", "double"], [35, 6, 1, "", "dump_patches"], [35, 3, 1, "", "eval"], [35, 3, 1, "", "extra_repr"], [35, 3, 1, "", "float"], [35, 3, 1, "", "forward"], [35, 3, 1, "", "get_buffer"], [35, 3, 1, "", "get_extra_state"], [35, 3, 1, "", "get_parameter"], [35, 3, 1, "", "get_submodule"], [35, 3, 1, "", "half"], [35, 3, 1, "", "ipu"], [35, 3, 1, "", "load_state_dict"], [35, 3, 1, "", "modules"], [35, 3, 1, "", "named_buffers"], [35, 3, 1, "", "named_children"], [35, 3, 1, "", "named_modules"], [35, 3, 1, "", "named_parameters"], [35, 3, 1, "", "parameters"], [35, 3, 1, "", "register_backward_hook"], [35, 3, 1, "", "register_buffer"], [35, 3, 1, "", "register_forward_hook"], [35, 3, 1, "", "register_forward_pre_hook"], [35, 3, 1, "", "register_full_backward_hook"], [35, 3, 1, "", "register_full_backward_pre_hook"], [35, 3, 1, "", "register_load_state_dict_post_hook"], [35, 3, 1, "", "register_module"], [35, 3, 1, "", "register_parameter"], [35, 3, 1, "", "register_state_dict_pre_hook"], [35, 3, 1, "", "requires_grad_"], [35, 3, 1, "", "set_extra_state"], [35, 3, 1, "", "share_memory"], [35, 3, 1, "", "state_dict"], [35, 3, 1, "", "to"], [35, 3, 1, "", "to_empty"], [35, 3, 1, "", "train"], [35, 6, 1, "", "training"], [35, 3, 1, "", "type"], [35, 3, 1, "", "xpu"], [35, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[36, 1, 1, "", "find_label_issues"], [36, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [36, 1, 1, "", "find_predicted_neq_given"], [36, 7, 1, "", "pred_probs_by_class"], [36, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[38, 0, 0, "-", "label_quality_utils"], [39, 0, 0, "-", "latent_algebra"], [40, 0, 0, "-", "multiannotator_utils"], [41, 0, 0, "-", "multilabel_scorer"], [42, 0, 0, "-", "multilabel_utils"], [43, 0, 0, "-", "outlier"], [44, 0, 0, "-", "token_classification_utils"], [45, 0, 0, "-", "util"], [46, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[38, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, 1, 1, "", "compute_inv_noise_matrix"], [39, 1, 1, "", "compute_noise_matrix_from_inverse"], [39, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [39, 1, 1, "", "compute_py"], [39, 1, 1, "", "compute_py_inv_noise_matrix"], [39, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[40, 1, 1, "", "assert_valid_inputs_multiannotator"], [40, 1, 1, "", "assert_valid_pred_probs"], [40, 1, 1, "", "check_consensus_label_classes"], [40, 1, 1, "", "compute_soft_cross_entropy"], [40, 1, 1, "", "find_best_temp_scaler"], [40, 1, 1, "", "format_multiannotator_labels"], [40, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[41, 2, 1, "", "Aggregator"], [41, 2, 1, "", "ClassLabelScorer"], [41, 2, 1, "", "MultilabelScorer"], [41, 1, 1, "", "exponential_moving_average"], [41, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [41, 1, 1, "", "get_label_quality_scores"], [41, 1, 1, "", "multilabel_py"], [41, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[41, 3, 1, "", "__call__"], [41, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[41, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [41, 6, 1, "", "NORMALIZED_MARGIN"], [41, 6, 1, "", "SELF_CONFIDENCE"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "__contains__"], [41, 3, 1, "", "__getitem__"], [41, 3, 1, "", "__iter__"], [41, 3, 1, "", "__len__"], [41, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[41, 3, 1, "", "__call__"], [41, 3, 1, "", "aggregate"], [41, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[42, 1, 1, "", "get_onehot_num_classes"], [42, 1, 1, "", "int2onehot"], [42, 1, 1, "", "onehot2int"], [42, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[43, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, 1, 1, "", "color_sentence"], [44, 1, 1, "", "filter_sentence"], [44, 1, 1, "", "get_sentence"], [44, 1, 1, "", "mapping"], [44, 1, 1, "", "merge_probs"], [44, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[45, 1, 1, "", "append_extra_datapoint"], [45, 1, 1, "", "clip_noise_rates"], [45, 1, 1, "", "clip_values"], [45, 1, 1, "", "compress_int_array"], [45, 1, 1, "", "confusion_matrix"], [45, 1, 1, "", "csr_vstack"], [45, 1, 1, "", "estimate_pu_f1"], [45, 1, 1, "", "extract_indices_tf"], [45, 1, 1, "", "force_two_dimensions"], [45, 1, 1, "", "format_labels"], [45, 1, 1, "", "get_missing_classes"], [45, 1, 1, "", "get_num_classes"], [45, 1, 1, "", "get_unique_classes"], [45, 1, 1, "", "is_tensorflow_dataset"], [45, 1, 1, "", "is_torch_dataset"], [45, 1, 1, "", "num_unique_classes"], [45, 1, 1, "", "print_inverse_noise_matrix"], [45, 1, 1, "", "print_joint_matrix"], [45, 1, 1, "", "print_noise_matrix"], [45, 1, 1, "", "print_square_matrix"], [45, 1, 1, "", "remove_noise_from_class"], [45, 1, 1, "", "round_preserving_row_totals"], [45, 1, 1, "", "round_preserving_sum"], [45, 1, 1, "", "smart_display_dataframe"], [45, 1, 1, "", "subset_X_y"], [45, 1, 1, "", "subset_data"], [45, 1, 1, "", "subset_labels"], [45, 1, 1, "", "train_val_split"], [45, 1, 1, "", "unshuffle_tensorflow_dataset"], [45, 1, 1, "", "value_counts"], [45, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[46, 1, 1, "", "assert_indexing_works"], [46, 1, 1, "", "assert_nonempty_input"], [46, 1, 1, "", "assert_valid_class_labels"], [46, 1, 1, "", "assert_valid_inputs"], [46, 1, 1, "", "labels_to_array"], [46, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[49, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[49, 2, 1, "", "KerasWrapperModel"], [49, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[50, 1, 1, "", "convert_long_to_wide_dataset"], [50, 1, 1, "", "get_active_learning_scores"], [50, 1, 1, "", "get_active_learning_scores_ensemble"], [50, 1, 1, "", "get_label_quality_multiannotator"], [50, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [50, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[51, 0, 0, "-", "dataset"], [52, 0, 0, "-", "filter"], [54, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[51, 1, 1, "", "common_multilabel_issues"], [51, 1, 1, "", "multilabel_health_summary"], [51, 1, 1, "", "overall_multilabel_health_score"], [51, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, 1, 1, "", "find_label_issues"], [52, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[54, 1, 1, "", "get_label_quality_scores"], [54, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"], [58, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[55, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[57, 1, 1, "", "compute_badloc_box_scores"], [57, 1, 1, "", "compute_overlooked_box_scores"], [57, 1, 1, "", "compute_swap_box_scores"], [57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "issues_from_scores"], [57, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[58, 1, 1, "", "bounding_box_size_distribution"], [58, 1, 1, "", "calculate_per_class_metrics"], [58, 1, 1, "", "class_label_distribution"], [58, 1, 1, "", "get_average_per_class_confusion_matrix"], [58, 1, 1, "", "get_sorted_bbox_count_idxs"], [58, 1, 1, "", "object_counts_per_image"], [58, 1, 1, "", "plot_class_distribution"], [58, 1, 1, "", "plot_class_size_distributions"], [58, 1, 1, "", "visualize"]], "cleanlab.outlier": [[59, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[59, 3, 1, "", "fit"], [59, 3, 1, "", "fit_score"], [59, 3, 1, "", "score"]], "cleanlab.rank": [[60, 1, 1, "", "find_top_issues"], [60, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [60, 1, 1, "", "get_label_quality_ensemble_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "get_normalized_margin_for_each_label"], [60, 1, 1, "", "get_self_confidence_for_each_label"], [60, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[62, 0, 0, "-", "learn"], [63, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[62, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[62, 3, 1, "", "__init_subclass__"], [62, 3, 1, "", "find_label_issues"], [62, 3, 1, "", "fit"], [62, 3, 1, "", "get_aleatoric_uncertainty"], [62, 3, 1, "", "get_epistemic_uncertainty"], [62, 3, 1, "", "get_label_issues"], [62, 3, 1, "", "get_metadata_routing"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "save_space"], [62, 3, 1, "", "score"], [62, 3, 1, "", "set_fit_request"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[63, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"], [67, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[64, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[67, 1, 1, "", "common_label_issues"], [67, 1, 1, "", "display_issues"], [67, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[71, 1, 1, "", "common_label_issues"], [71, 1, 1, "", "display_issues"], [71, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 74, 78, 79, 81, 82, 83, 86, 92, 93, 94], "count": [3, 83], "datalab": [4, 5, 7, 8, 9, 75, 76, 77, 78, 79, 83], "creat": [5, 75, 76, 83, 85], "your": [5, 72, 75, 76, 79, 81, 83], "own": 5, "issu": [5, 7, 8, 19, 26, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 75], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 75], "us": [5, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "gener": 6, "cluster": [6, 81], "id": 6, "guid": [7, 9], "type": [7, 8, 83], "custom": [7, 75], "can": [8, 76, 80, 81, 83, 85], "detect": [8, 76, 78, 79, 81, 83, 87, 88], "estim": [8, 83, 85], "each": 8, "label": [8, 21, 26, 72, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "outlier": [8, 24, 43, 59, 78, 79, 82, 88], "Near": [8, 76, 78, 79, 82], "duplic": [8, 17, 76, 78, 79, 81, 82], "non": [8, 79], "iid": [8, 79], "class": [8, 73, 83, 91], "imbal": [8, 18], "imag": [8, 82, 88], "specif": [8, 19, 91], "underperform": [8, 81], "group": [8, 81], "null": [8, 23], "data": [8, 10, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87, 88, 90, 91, 92, 94], "valuat": 8, "option": 8, "paramet": [8, 83], "get": [9, 75, 76, 85, 86, 87, 91, 94], "start": [9, 80], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 37], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 81, 83], "task": 19, "noniid": 22, "regress": [25, 61, 62, 63, 81, 90], "prioriti": 26, "order": 26, "find": [26, 72, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "underperforming_group": 27, "report": [28, 82], "dataset": [30, 51, 72, 76, 79, 80, 81, 82, 83, 86, 87, 88, 90, 91, 93, 94], "cifar_cnn": 31, "coteach": 32, "experiment": 33, "label_issues_batch": 34, "mnist_pytorch": 35, "filter": [36, 52, 55, 64, 68, 83], "label_quality_util": 38, "latent_algebra": 39, "multiannotator_util": 40, "multilabel_scor": 41, "multilabel_util": 42, "token_classification_util": 44, "util": 45, "valid": [46, 82, 89], "fasttext": 47, "model": [48, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "kera": 49, "multiannot": [50, 85], "multilabel_classif": 53, "rank": [54, 57, 60, 63, 66, 70, 83], "object_detect": 56, "summari": [58, 67, 71], "learn": [62, 76, 81, 83, 92], "segment": [65, 91], "token_classif": [69, 94], "cleanlab": [72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "open": [72, 81], "sourc": [72, 81], "document": 72, "quickstart": 72, "1": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "instal": [72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "2": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "common": [72, 73, 94], "3": [72, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "handl": [72, 81], "error": [72, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "train": [72, 74, 81, 88, 90, 92, 93], "robust": [72, 83, 90, 92, 93], "noisi": [72, 83, 90, 92, 93], "4": [72, 74, 75, 76, 78, 79, 82, 83, 85, 87, 88, 90, 92, 93], "curat": [72, 80], "fix": [72, 81], "level": [72, 80, 83, 94], "5": [72, 74, 76, 78, 82, 83, 85, 90, 92], "improv": [72, 85], "via": [72, 83, 85], "mani": [72, 83], "other": [72, 85, 87, 90], "techniqu": 72, "contribut": 72, "easi": [72, 78, 79, 82], "mode": [72, 78, 79, 82], "how": [73, 81, 83, 85, 86, 94], "migrat": 73, "version": 73, "0": 73, "from": [73, 75, 76, 83, 90, 92, 93], "pre": [73, 74, 81, 88], "function": [73, 75], "name": 73, "chang": 73, "modul": [73, 83], "new": 73, "remov": 73, "argument": [73, 75], "variabl": 73, "audio": 74, "speechbrain": 74, "depend": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "import": [74, 75, 76, 80, 82, 83, 85], "them": [74, 80, 83], "load": [74, 75, 76, 78, 79, 90, 92, 93], "featur": [74, 82, 88], "fit": 74, "linear": 74, "comput": [74, 78, 79, 81, 82, 85, 89, 92], "out": [74, 75, 76, 78, 79, 82, 85, 89, 92], "sampl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "predict": [74, 75, 76, 78, 79, 82, 85, 86, 87, 89, 92], "probabl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "workflow": [75, 83], "audit": [75, 76], "requir": [75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "classifi": [75, 76], "instanti": 75, "object": [75, 87], "increment": 75, "search": 75, "specifi": [75, 81], "nondefault": 75, "save": 75, "ad": 75, "A": 76, "unifi": 76, "all": [76, 83], "kind": [76, 87], "skip": [76, 80, 83, 85], "detail": [76, 80, 83, 85], "more": [76, 83, 90, 92, 93], "about": 76, "addit": 76, "inform": [76, 82], "tutori": [77, 80, 84], "tabular": [78, 92], "numer": 78, "categor": 78, "column": 78, "process": [78, 88, 90, 92], "select": [78, 92], "construct": 78, "k": [78, 82, 89], "nearest": 78, "neighbour": 78, "graph": 78, "text": [79, 93, 94], "format": [79, 81, 86, 87, 93], "defin": [79, 82, 90, 93], "drift": 79, "fetch": [80, 82], "evalu": 80, "health": [80, 83], "8": [80, 83], "popular": 80, "faq": 81, "what": [81, 83, 89], "do": [81, 83], "i": [81, 83, 89], "infer": 81, "correct": 81, "exampl": [81, 82, 83, 88], "ha": 81, "flag": 81, "should": 81, "v": 81, "test": [81, 83, 88], "big": 81, "limit": 81, "memori": 81, "why": 81, "isn": 81, "t": 81, "cleanlearn": [81, 83], "work": [81, 83, 85, 94], "me": 81, "differ": [81, 87], "clean": [81, 83], "final": 81, "hyperparamet": 81, "tune": 81, "onli": 81, "one": [81, 83, 86, 91], "doe": [81, 85, 94], "take": 81, "so": 81, "long": 81, "slice": 81, "when": [81, 83], "identifi": [81, 87], "run": 81, "licens": 81, "under": 81, "an": 81, "answer": 81, "question": 81, "pytorch": [82, 88], "normal": 82, "fashion": 82, "mnist": 82, "prepar": 82, "fold": [82, 89], "cross": [82, 89], "embed": [82, 88], "7": [82, 83], "view": 82, "most": [82, 94], "like": 82, "sever": 82, "set": [82, 83], "dark": 82, "top": [82, 91], "low": 82, "The": 83, "centric": 83, "ai": 83, "machin": 83, "find_label_issu": 83, "line": 83, "code": 83, "visual": [83, 87, 88, 91], "twenti": 83, "lowest": 83, "qualiti": [83, 85, 86, 87, 91, 94], "see": 83, "now": 83, "let": 83, "": 83, "happen": 83, "we": 83, "merg": 83, "seafoam": 83, "green": 83, "yellow": 83, "too": 83, "you": 83, "re": 83, "6": 83, "One": 83, "score": [83, 85, 86, 87, 91, 94], "rule": 83, "overal": [83, 91], "accur": 83, "thi": 83, "directli": 83, "fulli": 83, "character": 83, "nois": 83, "matrix": [83, 86], "joint": 83, "prior": 83, "true": 83, "distribut": 83, "flip": 83, "rate": 83, "ani": 83, "again": 83, "support": 83, "lot": 83, "method": 83, "filter_bi": 83, "automat": 83, "everi": 83, "uniqu": 83, "num_label_issu": 83, "threshold": 83, "found": 83, "Not": 83, "sure": 83, "ensembl": 83, "multipl": [83, 85], "predictor": 83, "consensu": 85, "annot": 85, "initi": 85, "major": 85, "vote": 85, "better": 85, "statist": 85, "compar": 85, "inspect": 85, "potenti": [85, 90, 93], "retrain": 85, "further": 85, "multi": 86, "given": 86, "hot": 86, "binari": 86, "download": [87, 91, 94], "objectlab": 87, "exploratori": 87, "analysi": 87, "timm": 88, "cifar10": 88, "some": 88, "pred_prob": [88, 91, 94], "wai": 90, "semant": 91, "which": 91, "ar": 91, "commonli": 91, "mislabel": [91, 94], "focus": 91, "scikit": 92, "token": 94, "word": 94, "sentenc": 94, "contain": 94, "particular": 94}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [37, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [43, "module-cleanlab.internal.outlier"], [59, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [61, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "dataset": [[30, "module-cleanlab.dataset"], [51, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "experimental": [[33, "experimental"]], "label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[36, "module-cleanlab.filter"], [52, "module-cleanlab.multilabel_classification.filter"], [55, "filter"], [64, "filter"], [68, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "util": [[45, "module-cleanlab.internal.util"]], "validation": [[46, "module-cleanlab.internal.validation"]], "fasttext": [[47, "fasttext"]], "models": [[48, "models"]], "keras": [[49, "module-cleanlab.models.keras"]], "multiannotator": [[50, "module-cleanlab.multiannotator"]], "multilabel_classification": [[53, "multilabel-classification"]], "rank": [[54, "module-cleanlab.multilabel_classification.rank"], [57, "module-cleanlab.object_detection.rank"], [60, "module-cleanlab.rank"], [66, "module-cleanlab.segmentation.rank"], [70, "module-cleanlab.token_classification.rank"]], "object_detection": [[56, "object-detection"]], "summary": [[58, "summary"], [67, "module-cleanlab.segmentation.summary"], [71, "module-cleanlab.token_classification.summary"]], "regression.learn": [[62, "module-cleanlab.regression.learn"]], "regression.rank": [[63, "module-cleanlab.regression.rank"]], "segmentation": [[65, "segmentation"]], "token_classification": [[69, "token-classification"]], "cleanlab open-source documentation": [[72, "cleanlab-open-source-documentation"]], "Quickstart": [[72, "quickstart"]], "1. Install cleanlab": [[72, "install-cleanlab"]], "2. Find common issues in your data": [[72, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[72, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[72, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[72, "improve-your-data-via-many-other-techniques"]], "Contributing": [[72, "contributing"]], "Easy Mode": [[72, "easy-mode"], [78, "Easy-Mode"], [79, "Easy-Mode"], [82, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[73, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[73, "function-and-class-name-changes"]], "Module name changes": [[73, "module-name-changes"]], "New modules": [[73, "new-modules"]], "Removed modules": [[73, "removed-modules"]], "Common argument and variable name changes": [[73, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[74, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[74, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[74, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[74, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[74, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[74, "5.-Use-cleanlab-to-find-label-issues"], [78, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[75, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[75, "Install-and-import-required-dependencies"]], "Create and load the data": [[75, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[75, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[75, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[75, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[75, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[75, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[75, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[76, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[76, "1.-Install-and-import-required-dependencies"], [82, "1.-Install-and-import-required-dependencies"], [85, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[76, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[76, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[76, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[76, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[76, "Get-additional-information"]], "Near duplicate issues": [[76, "Near-duplicate-issues"], [82, "Near-duplicate-issues"]], "Datalab Tutorials": [[77, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[78, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[78, "1.-Install-required-dependencies"], [79, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [92, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"]], "2. Load and process the data": [[78, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [92, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[78, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [92, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[78, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[78, "Label-issues"], [79, "Label-issues"], [82, "Label-issues"]], "Outlier issues": [[78, "Outlier-issues"], [79, "Outlier-issues"], [82, "Outlier-issues"]], "Near-duplicate issues": [[78, "Near-duplicate-issues"], [79, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[79, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[79, "2.-Load-and-format-the-text-dataset"], [93, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[79, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[79, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[80, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[80, "Install-dependencies-and-import-them"], [83, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[80, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[80, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[81, "FAQ"]], "What data can cleanlab detect issues in?": [[81, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[81, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[81, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[81, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[81, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[81, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[81, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[81, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[81, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[81, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[81, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[81, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[81, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[81, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[82, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[82, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[82, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[82, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[82, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[82, "7.-Use-cleanlab-to-find-issues"]], "View report": [[82, "View-report"]], "View most likely examples with label errors": [[82, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[82, "View-most-severe-outliers"]], "View sets of near duplicate images": [[82, "View-sets-of-near-duplicate-images"]], "Dark images": [[82, "Dark-images"]], "View top examples of dark images": [[82, "View-top-examples-of-dark-images"]], "Low information images": [[82, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[83, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[83, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[83, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[83, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[83, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[83, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[83, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[83, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[83, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[83, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[83, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[83, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[83, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[83, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[83, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[83, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[83, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[83, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[83, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[84, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[85, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[85, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[85, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[85, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[85, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[85, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[85, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[85, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[85, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[86, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[86, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[86, "2.-Format-data,-labels,-and-model-predictions"], [87, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[86, "3.-Use-cleanlab-to-find-label-issues"], [87, "3.-Use-cleanlab-to-find-label-issues"], [91, "3.-Use-cleanlab-to-find-label-issues"], [94, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[86, "Label-quality-scores"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[86, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Finding Label Errors in Object Detection Datasets": [[87, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[87, "1.-Install-required-dependencies-and-download-data"], [91, "1.-Install-required-dependencies-and-download-data"], [94, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[87, "Get-label-quality-scores"], [91, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[87, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[87, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[87, "Other-uses-of-visualize"]], "Exploratory data analysys": [[87, "Exploratory-data-analysys"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[88, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[88, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[88, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[88, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[88, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[88, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[89, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[89, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[89, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[90, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[90, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[90, "4.-Train-a-more-robust-model-from-noisy-labels"], [93, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[90, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[91, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[91, "2.-Get-data,-labels,-and-pred_probs"], [94, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[91, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[91, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[91, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[92, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[92, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[92, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[93, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[93, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[94, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[94, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[94, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[94, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[94, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [30, "module-cleanlab.dataset"], [31, "module-cleanlab.experimental.cifar_cnn"], [32, "module-cleanlab.experimental.coteaching"], [33, "module-cleanlab.experimental"], [34, "module-cleanlab.experimental.label_issues_batched"], [35, "module-cleanlab.experimental.mnist_pytorch"], [36, "module-cleanlab.filter"], [37, "module-cleanlab.internal"], [38, "module-cleanlab.internal.label_quality_utils"], [39, "module-cleanlab.internal.latent_algebra"], [40, "module-cleanlab.internal.multiannotator_utils"], [41, "module-cleanlab.internal.multilabel_scorer"], [42, "module-cleanlab.internal.multilabel_utils"], [43, "module-cleanlab.internal.outlier"], [44, "module-cleanlab.internal.token_classification_utils"], [45, "module-cleanlab.internal.util"], [46, "module-cleanlab.internal.validation"], [48, "module-cleanlab.models"], [49, "module-cleanlab.models.keras"], [50, "module-cleanlab.multiannotator"], [51, "module-cleanlab.multilabel_classification.dataset"], [52, "module-cleanlab.multilabel_classification.filter"], [53, "module-cleanlab.multilabel_classification"], [54, "module-cleanlab.multilabel_classification.rank"], [55, "module-cleanlab.object_detection.filter"], [56, "module-cleanlab.object_detection"], [57, "module-cleanlab.object_detection.rank"], [58, "module-cleanlab.object_detection.summary"], [59, "module-cleanlab.outlier"], [60, "module-cleanlab.rank"], [61, "module-cleanlab.regression"], [62, "module-cleanlab.regression.learn"], [63, "module-cleanlab.regression.rank"], [64, "module-cleanlab.segmentation.filter"], [65, "module-cleanlab.segmentation"], [66, "module-cleanlab.segmentation.rank"], [67, "module-cleanlab.segmentation.summary"], [68, "module-cleanlab.token_classification.filter"], [69, "module-cleanlab.token_classification"], [70, "module-cleanlab.token_classification.rank"], [71, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "cleanlab.dataset": [[30, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.forward"], [31, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[33, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [35, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [35, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [35, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[36, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[36, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[36, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[37, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[38, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[43, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[43, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[45, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[46, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[48, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[49, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[50, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[51, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[53, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[54, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[55, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[55, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[56, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[57, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[58, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[59, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[59, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[60, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[61, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[62, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[62, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[62, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[63, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[63, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[64, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[64, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[65, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[66, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[67, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[68, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[68, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[69, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[70, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[71, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index 1d70ca23e..be4f89e6a 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1274,7 +1274,7 @@

5. Use cleanlab to find label issues -{"state": {"0be9a5582bed44899891990cf3b7e6ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4cb8607f3082430cb1873a8893f0bfbb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1110dbf49ecd4529bda8ae5a8f1dd895": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0be9a5582bed44899891990cf3b7e6ca", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4cb8607f3082430cb1873a8893f0bfbb", "tabbable": null, "tooltip": null, "value": 2041.0}}, "1e00641d45664cf3bcf25bfd9ded9aae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09e345de2ab44e64aa9dda42f354fc5e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f90e0c618515482bb424955efd1b841c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1e00641d45664cf3bcf25bfd9ded9aae", "placeholder": "\u200b", "style": "IPY_MODEL_09e345de2ab44e64aa9dda42f354fc5e", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%"}}, "5caf5e5f16c249e691706889447f5f3c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73cc609051ff4efd9ad519ad7af38b33": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c5d242464a974d22a0e52330a3d839ba": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5caf5e5f16c249e691706889447f5f3c", "placeholder": "\u200b", "style": "IPY_MODEL_73cc609051ff4efd9ad519ad7af38b33", "tabbable": null, "tooltip": null, "value": " 2.04k/2.04k [00:00<00:00, 511kB/s]"}}, "401ef1f8383c4157b95e9dbec0a569d9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12e8df3144be4da9a72db0291005881b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f90e0c618515482bb424955efd1b841c", "IPY_MODEL_1110dbf49ecd4529bda8ae5a8f1dd895", "IPY_MODEL_c5d242464a974d22a0e52330a3d839ba"], "layout": "IPY_MODEL_401ef1f8383c4157b95e9dbec0a569d9", "tabbable": null, "tooltip": null}}, "8f947cac1dfb4430998c372771ae7550": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "922b4f4a09394610b8567cb628b3761d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "25967dd471d241868b18aacfad2f80ad": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f947cac1dfb4430998c372771ae7550", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_922b4f4a09394610b8567cb628b3761d", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "6055405df1504056b09b8a4f02683e06": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c1ac0d0617f94eb1a3de23bded46234e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bd8756a5451d4230a2e3c764128f0e61": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6055405df1504056b09b8a4f02683e06", "placeholder": "\u200b", "style": "IPY_MODEL_c1ac0d0617f94eb1a3de23bded46234e", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt: 100%"}}, "9c694de214f04369bdf84ea2a4a53820": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d909c5854a6419d8bf46d1b34d4bfc1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "00caf2fa7ce94a1ca1af3fc608cdd874": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9c694de214f04369bdf84ea2a4a53820", "placeholder": "\u200b", "style": "IPY_MODEL_0d909c5854a6419d8bf46d1b34d4bfc1", "tabbable": null, "tooltip": null, "value": " 16.9M/16.9M [00:00<00:00, 140MB/s]"}}, "de8656deecc2472a95cfa864289cf715": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1387ef86e738414faeab3ad3904caf0b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bd8756a5451d4230a2e3c764128f0e61", "IPY_MODEL_25967dd471d241868b18aacfad2f80ad", "IPY_MODEL_00caf2fa7ce94a1ca1af3fc608cdd874"], "layout": "IPY_MODEL_de8656deecc2472a95cfa864289cf715", "tabbable": null, "tooltip": null}}, "919fe5295cc140a0beeb66a390a5cd37": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d76f3855ae764e8c8b350d2f8f3fe336": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f72c8b8bccda4a1ea70840ece3838d42": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_919fe5295cc140a0beeb66a390a5cd37", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d76f3855ae764e8c8b350d2f8f3fe336", "tabbable": null, "tooltip": null, "value": 3201.0}}, "1dae0c9337fd4ae691ff8244f130ae56": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26df8d002b6e4defaa70711eea5f0fd4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f514a3b00a1b490b87e1057c9111a96f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1dae0c9337fd4ae691ff8244f130ae56", "placeholder": "\u200b", "style": "IPY_MODEL_26df8d002b6e4defaa70711eea5f0fd4", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt: 100%"}}, "3e8471b7623e49e9ba8a7f609b92d206": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "88a22d3905da41bd811a099ebd0345f2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dabd132f187041fca1e66330d4fee9b3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3e8471b7623e49e9ba8a7f609b92d206", "placeholder": "\u200b", "style": "IPY_MODEL_88a22d3905da41bd811a099ebd0345f2", "tabbable": null, "tooltip": null, "value": " 3.20k/3.20k [00:00<00:00, 821kB/s]"}}, "367b28a197ef4109b62bef2f8702343f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7dc19e1157c147fa87d344fd7e0eabf6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f514a3b00a1b490b87e1057c9111a96f", "IPY_MODEL_f72c8b8bccda4a1ea70840ece3838d42", "IPY_MODEL_dabd132f187041fca1e66330d4fee9b3"], "layout": "IPY_MODEL_367b28a197ef4109b62bef2f8702343f", "tabbable": null, "tooltip": null}}, "1797bdb86d8e4d4082f9e097a4986ecf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79dabf647200462baaf9667d1281752a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "782dc84a5c5f4cef9c80909afe6e60d4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1797bdb86d8e4d4082f9e097a4986ecf", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_79dabf647200462baaf9667d1281752a", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "c5b79d34ba494a079c8e8003c353bd42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a72ed5077eff484fb5f20f78db412029": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "df6d32468abb43dead6ed88e8e3cd4dd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c5b79d34ba494a079c8e8003c353bd42", "placeholder": "\u200b", "style": "IPY_MODEL_a72ed5077eff484fb5f20f78db412029", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%"}}, "8d514a589a884efaac95c4764d625669": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58ce53aea9f5489d8d630f058e577b43": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e21a8880e0be40d59186e562f368c4ab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d514a589a884efaac95c4764d625669", "placeholder": "\u200b", "style": "IPY_MODEL_58ce53aea9f5489d8d630f058e577b43", "tabbable": null, "tooltip": null, "value": " 15.9M/15.9M [00:00<00:00, 223MB/s]"}}, "6bab66ef9ab2415aa6ab316dc2c12977": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99ad1c23d83a4fdda42df4558f2b566e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_df6d32468abb43dead6ed88e8e3cd4dd", "IPY_MODEL_782dc84a5c5f4cef9c80909afe6e60d4", "IPY_MODEL_e21a8880e0be40d59186e562f368c4ab"], "layout": "IPY_MODEL_6bab66ef9ab2415aa6ab316dc2c12977", "tabbable": null, "tooltip": null}}, "cf8efc4c9cb84399a37464a1e187f6eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8bf3fcd1affe4651b2701906f33f4629": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "50b3b8ea8e764cdbb9e5d6f2db55f8f2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf8efc4c9cb84399a37464a1e187f6eb", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8bf3fcd1affe4651b2701906f33f4629", "tabbable": null, "tooltip": null, "value": 128619.0}}, "7ddf581b1db042f8bf8b87912a9d17b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa1bb1fa7d6d4fb5ba176d8faeeeba30": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a38d3e354f2448dca3a03b59c80e419d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ddf581b1db042f8bf8b87912a9d17b7", "placeholder": "\u200b", "style": "IPY_MODEL_fa1bb1fa7d6d4fb5ba176d8faeeeba30", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%"}}, "27adc94a126e42eca62c7fbb62d37a05": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72d82241972f41698dafa969085decb4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "541613fe9afc46ebb8739e58d48f3708": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_27adc94a126e42eca62c7fbb62d37a05", "placeholder": "\u200b", "style": "IPY_MODEL_72d82241972f41698dafa969085decb4", "tabbable": null, "tooltip": null, "value": " 129k/129k [00:00<00:00, 16.9MB/s]"}}, "2fe86a5a6d75463ba4a135d1958734d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b1479cd4d034d77b4fb136713b4747b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a38d3e354f2448dca3a03b59c80e419d", "IPY_MODEL_50b3b8ea8e764cdbb9e5d6f2db55f8f2", "IPY_MODEL_541613fe9afc46ebb8739e58d48f3708"], "layout": "IPY_MODEL_2fe86a5a6d75463ba4a135d1958734d3", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"cf0f6cfeecb944bbbf95b51dab7ffe38": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79aa5a4217f24706a0c8acdccb83bc89": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7c86a16b43104acd82b6c23963847f61": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf0f6cfeecb944bbbf95b51dab7ffe38", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_79aa5a4217f24706a0c8acdccb83bc89", "tabbable": null, "tooltip": null, "value": 2041.0}}, "9c110ecb4a3142bd8978bd7c56eeac1c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9a3626c114b4cc3a8e6528b82f7edc2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5c914c53cb5e4cdeb6d61f06b845f822": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9c110ecb4a3142bd8978bd7c56eeac1c", "placeholder": "\u200b", "style": "IPY_MODEL_f9a3626c114b4cc3a8e6528b82f7edc2", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%"}}, "9640155152bb442393cce4d5448854aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e47ddeb6ba8434bacbf51fc5e3ebc23": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d6b0edcd2bb8437a89117c17518bed85": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9640155152bb442393cce4d5448854aa", "placeholder": "\u200b", "style": "IPY_MODEL_9e47ddeb6ba8434bacbf51fc5e3ebc23", "tabbable": null, "tooltip": null, "value": " 2.04k/2.04k [00:00<00:00, 473kB/s]"}}, "44f0a77ddead4cd08e63f03a0b101c14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "19c14e16922c46539429b0f3c76cc36d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5c914c53cb5e4cdeb6d61f06b845f822", "IPY_MODEL_7c86a16b43104acd82b6c23963847f61", "IPY_MODEL_d6b0edcd2bb8437a89117c17518bed85"], "layout": "IPY_MODEL_44f0a77ddead4cd08e63f03a0b101c14", "tabbable": null, "tooltip": null}}, "6b7457ca391342d69cbcfbb176ed3816": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c331c9cb15e400daf71dc964257ce69": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "be64c269bd864fd49e046244b585ce34": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6b7457ca391342d69cbcfbb176ed3816", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6c331c9cb15e400daf71dc964257ce69", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "09d99afba1d74d0a910126e1b1c28c9d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b784011f16db4888b20527c0b09c7995": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "00322415c3084906aed3bfc0fc4137e3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_09d99afba1d74d0a910126e1b1c28c9d", "placeholder": "\u200b", "style": "IPY_MODEL_b784011f16db4888b20527c0b09c7995", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt: 100%"}}, "02cba719e59748a9a093722bb87ad7bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ddd689d4714483c82a417f4068e0d50": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9341551bd3c14f019a521b285c7176d3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_02cba719e59748a9a093722bb87ad7bc", "placeholder": "\u200b", "style": "IPY_MODEL_7ddd689d4714483c82a417f4068e0d50", "tabbable": null, "tooltip": null, "value": " 16.9M/16.9M [00:00<00:00, 143MB/s]"}}, "a655f7d4b9274d3281e939b9574224e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "535dd9db9e9f4ca3b4e7ad45fce08903": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_00322415c3084906aed3bfc0fc4137e3", "IPY_MODEL_be64c269bd864fd49e046244b585ce34", "IPY_MODEL_9341551bd3c14f019a521b285c7176d3"], "layout": "IPY_MODEL_a655f7d4b9274d3281e939b9574224e3", "tabbable": null, "tooltip": null}}, "6366025152fb4914943ecbce38e36e06": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc74ddb244b84b949aced140694f4ce9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bdbb6dec26e24b4798b6f5d0034262d3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6366025152fb4914943ecbce38e36e06", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fc74ddb244b84b949aced140694f4ce9", "tabbable": null, "tooltip": null, "value": 3201.0}}, "5bb47e01ccd4433e9fb490ca2d72e174": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "16faa3717ace402099c0af876b0ea972": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9845814b2c264618ad67b3fec548ab50": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5bb47e01ccd4433e9fb490ca2d72e174", "placeholder": "\u200b", "style": "IPY_MODEL_16faa3717ace402099c0af876b0ea972", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt: 100%"}}, "7f90fa8070f24b898cb5d2e09fde3135": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25545b6369f7469b8496bbc09b87b003": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "44cbf671229d421a9d727694cb483666": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7f90fa8070f24b898cb5d2e09fde3135", "placeholder": "\u200b", "style": "IPY_MODEL_25545b6369f7469b8496bbc09b87b003", "tabbable": null, "tooltip": null, "value": " 3.20k/3.20k [00:00<00:00, 777kB/s]"}}, "fcef3c54ae3a4557aa447cc447b97160": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e1de5a271a36422ba42b39bbb19705be": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9845814b2c264618ad67b3fec548ab50", "IPY_MODEL_bdbb6dec26e24b4798b6f5d0034262d3", "IPY_MODEL_44cbf671229d421a9d727694cb483666"], "layout": "IPY_MODEL_fcef3c54ae3a4557aa447cc447b97160", "tabbable": null, "tooltip": null}}, "58a6d115314141608cead05e9bc4b0fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d8cede267b5b4bf2ae4853e192b8dcf0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "af3da7864071482eb20d1495b6d5e485": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58a6d115314141608cead05e9bc4b0fc", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d8cede267b5b4bf2ae4853e192b8dcf0", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "96370a4da75f4d0cacf1c8ce1744a33a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f2159690386f475092a493a5820f3be5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8e6b9c284e804d2eb99f19f579ad1b9e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_96370a4da75f4d0cacf1c8ce1744a33a", "placeholder": "\u200b", "style": "IPY_MODEL_f2159690386f475092a493a5820f3be5", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%"}}, "8eacd088a4794ed59341ed053be2eca2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc6713ec7b094832b9d6d7bc983795fd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aa1c73555d2745d78847a90e52a17ef8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8eacd088a4794ed59341ed053be2eca2", "placeholder": "\u200b", "style": "IPY_MODEL_bc6713ec7b094832b9d6d7bc983795fd", "tabbable": null, "tooltip": null, "value": " 15.9M/15.9M [00:00<00:00, 43.6MB/s]"}}, "3153aabcab854857ad16e19942f577de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35c3def975d846cb8e9657d130bb2053": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8e6b9c284e804d2eb99f19f579ad1b9e", "IPY_MODEL_af3da7864071482eb20d1495b6d5e485", "IPY_MODEL_aa1c73555d2745d78847a90e52a17ef8"], "layout": "IPY_MODEL_3153aabcab854857ad16e19942f577de", "tabbable": null, "tooltip": null}}, "28bfb0ec8bbf4ed9ad9e36c10a711209": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "67d8683d19954d26967f3928959517c7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d9e6ae1680db4f439f491945b731959c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_28bfb0ec8bbf4ed9ad9e36c10a711209", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_67d8683d19954d26967f3928959517c7", "tabbable": null, "tooltip": null, "value": 128619.0}}, "52b60c8257c44b00bff406d89f218b97": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d296361623744768ba3fb4c5a26a3376": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f105df57e4d44ad0b56e4c0d23447c9c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_52b60c8257c44b00bff406d89f218b97", "placeholder": "\u200b", "style": "IPY_MODEL_d296361623744768ba3fb4c5a26a3376", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%"}}, "fb90d513176f4f53baa7d68bd99c706d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a986303e55648439d134870cc6dc1f0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "05133e7fc5b549e896b19ea17c0a9470": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fb90d513176f4f53baa7d68bd99c706d", "placeholder": "\u200b", "style": "IPY_MODEL_6a986303e55648439d134870cc6dc1f0", "tabbable": null, "tooltip": null, "value": " 129k/129k [00:00<00:00, 2.12MB/s]"}}, "2d6e768687dc4dc28928ce8924d56bcd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "17e351c1dd3a43838b0c813f1d1792ea": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f105df57e4d44ad0b56e4c0d23447c9c", "IPY_MODEL_d9e6ae1680db4f439f491945b731959c", "IPY_MODEL_05133e7fc5b549e896b19ea17c0a9470"], "layout": "IPY_MODEL_2d6e768687dc4dc28928ce8924d56bcd", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index ce2daded3..690988462 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:37.437869Z", - "iopub.status.busy": "2024-02-08T04:23:37.437704Z", - "iopub.status.idle": "2024-02-08T04:23:42.061386Z", - "shell.execute_reply": "2024-02-08T04:23:42.060834Z" + "iopub.execute_input": "2024-02-08T05:10:02.917002Z", + "iopub.status.busy": "2024-02-08T05:10:02.916527Z", + "iopub.status.idle": "2024-02-08T05:10:07.657923Z", + "shell.execute_reply": "2024-02-08T05:10:07.657382Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:42.064278Z", - "iopub.status.busy": "2024-02-08T04:23:42.063634Z", - "iopub.status.idle": "2024-02-08T04:23:42.067011Z", - "shell.execute_reply": "2024-02-08T04:23:42.066572Z" + "iopub.execute_input": "2024-02-08T05:10:07.660471Z", + "iopub.status.busy": "2024-02-08T05:10:07.660125Z", + "iopub.status.idle": "2024-02-08T05:10:07.663317Z", + "shell.execute_reply": "2024-02-08T05:10:07.662893Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:42.069097Z", - "iopub.status.busy": "2024-02-08T04:23:42.068667Z", - "iopub.status.idle": "2024-02-08T04:23:42.072984Z", - "shell.execute_reply": "2024-02-08T04:23:42.072571Z" + "iopub.execute_input": "2024-02-08T05:10:07.665330Z", + "iopub.status.busy": "2024-02-08T05:10:07.665027Z", + "iopub.status.idle": "2024-02-08T05:10:07.669776Z", + "shell.execute_reply": "2024-02-08T05:10:07.669251Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:42.075051Z", - "iopub.status.busy": "2024-02-08T04:23:42.074736Z", - "iopub.status.idle": "2024-02-08T04:23:43.724199Z", - "shell.execute_reply": "2024-02-08T04:23:43.723557Z" + "iopub.execute_input": "2024-02-08T05:10:07.672050Z", + "iopub.status.busy": "2024-02-08T05:10:07.671631Z", + "iopub.status.idle": "2024-02-08T05:10:09.750342Z", + "shell.execute_reply": "2024-02-08T05:10:09.749629Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:43.726855Z", - "iopub.status.busy": "2024-02-08T04:23:43.726493Z", - "iopub.status.idle": "2024-02-08T04:23:43.737147Z", - "shell.execute_reply": "2024-02-08T04:23:43.736620Z" + "iopub.execute_input": "2024-02-08T05:10:09.753182Z", + "iopub.status.busy": "2024-02-08T05:10:09.752972Z", + "iopub.status.idle": "2024-02-08T05:10:09.763807Z", + "shell.execute_reply": "2024-02-08T05:10:09.763255Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:43.767830Z", - "iopub.status.busy": "2024-02-08T04:23:43.767487Z", - "iopub.status.idle": "2024-02-08T04:23:43.772841Z", - "shell.execute_reply": "2024-02-08T04:23:43.772416Z" + "iopub.execute_input": "2024-02-08T05:10:09.795006Z", + "iopub.status.busy": "2024-02-08T05:10:09.794780Z", + "iopub.status.idle": "2024-02-08T05:10:09.800317Z", + "shell.execute_reply": "2024-02-08T05:10:09.799889Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:43.774741Z", - "iopub.status.busy": "2024-02-08T04:23:43.774438Z", - "iopub.status.idle": "2024-02-08T04:23:44.224278Z", - "shell.execute_reply": "2024-02-08T04:23:44.223692Z" + "iopub.execute_input": "2024-02-08T05:10:09.802245Z", + "iopub.status.busy": "2024-02-08T05:10:09.801984Z", + "iopub.status.idle": "2024-02-08T05:10:10.244422Z", + "shell.execute_reply": "2024-02-08T05:10:10.243946Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:44.226457Z", - "iopub.status.busy": "2024-02-08T04:23:44.226155Z", - "iopub.status.idle": "2024-02-08T04:23:45.088191Z", - "shell.execute_reply": "2024-02-08T04:23:45.087551Z" + "iopub.execute_input": "2024-02-08T05:10:10.246554Z", + "iopub.status.busy": "2024-02-08T05:10:10.246209Z", + "iopub.status.idle": "2024-02-08T05:10:12.264120Z", + "shell.execute_reply": "2024-02-08T05:10:12.263508Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:45.090803Z", - "iopub.status.busy": "2024-02-08T04:23:45.090460Z", - "iopub.status.idle": "2024-02-08T04:23:45.111414Z", - "shell.execute_reply": "2024-02-08T04:23:45.110956Z" + "iopub.execute_input": "2024-02-08T05:10:12.266388Z", + "iopub.status.busy": "2024-02-08T05:10:12.266181Z", + "iopub.status.idle": "2024-02-08T05:10:12.286448Z", + "shell.execute_reply": "2024-02-08T05:10:12.285925Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:45.113435Z", - "iopub.status.busy": "2024-02-08T04:23:45.113098Z", - "iopub.status.idle": "2024-02-08T04:23:45.116173Z", - "shell.execute_reply": "2024-02-08T04:23:45.115668Z" + "iopub.execute_input": "2024-02-08T05:10:12.288404Z", + "iopub.status.busy": "2024-02-08T05:10:12.288148Z", + "iopub.status.idle": "2024-02-08T05:10:12.291115Z", + "shell.execute_reply": "2024-02-08T05:10:12.290695Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:45.118149Z", - "iopub.status.busy": "2024-02-08T04:23:45.117812Z", - "iopub.status.idle": "2024-02-08T04:23:59.306627Z", - "shell.execute_reply": "2024-02-08T04:23:59.306019Z" + "iopub.execute_input": "2024-02-08T05:10:12.293161Z", + "iopub.status.busy": "2024-02-08T05:10:12.292750Z", + "iopub.status.idle": "2024-02-08T05:10:27.611719Z", + "shell.execute_reply": "2024-02-08T05:10:27.611101Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:23:59.309354Z", - "iopub.status.busy": "2024-02-08T04:23:59.309011Z", - "iopub.status.idle": "2024-02-08T04:23:59.312813Z", - "shell.execute_reply": "2024-02-08T04:23:59.312348Z" + "iopub.execute_input": "2024-02-08T05:10:27.614471Z", + "iopub.status.busy": "2024-02-08T05:10:27.614135Z", + "iopub.status.idle": "2024-02-08T05:10:27.617829Z", + "shell.execute_reply": "2024-02-08T05:10:27.617331Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -689,10 +689,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:23:59.314928Z", - "iopub.status.busy": "2024-02-08T04:23:59.314501Z", - "iopub.status.idle": "2024-02-08T04:24:00.032474Z", - "shell.execute_reply": "2024-02-08T04:24:00.031862Z" + "iopub.execute_input": "2024-02-08T05:10:27.619869Z", + "iopub.status.busy": "2024-02-08T05:10:27.619513Z", + "iopub.status.idle": "2024-02-08T05:10:28.356958Z", + "shell.execute_reply": "2024-02-08T05:10:28.356238Z" }, "id": "i_drkY9YOcw4" }, @@ -726,10 +726,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.035309Z", - "iopub.status.busy": "2024-02-08T04:24:00.034952Z", - "iopub.status.idle": "2024-02-08T04:24:00.039558Z", - "shell.execute_reply": "2024-02-08T04:24:00.039087Z" + "iopub.execute_input": "2024-02-08T05:10:28.360007Z", + "iopub.status.busy": "2024-02-08T05:10:28.359524Z", + "iopub.status.idle": "2024-02-08T05:10:28.364554Z", + "shell.execute_reply": "2024-02-08T05:10:28.363944Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -776,10 +776,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.041924Z", - "iopub.status.busy": "2024-02-08T04:24:00.041579Z", - "iopub.status.idle": "2024-02-08T04:24:00.155311Z", - "shell.execute_reply": "2024-02-08T04:24:00.154672Z" + "iopub.execute_input": "2024-02-08T05:10:28.367123Z", + "iopub.status.busy": "2024-02-08T05:10:28.366593Z", + "iopub.status.idle": "2024-02-08T05:10:28.490652Z", + "shell.execute_reply": "2024-02-08T05:10:28.489988Z" } }, "outputs": [ @@ -816,10 +816,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.157926Z", - "iopub.status.busy": "2024-02-08T04:24:00.157470Z", - "iopub.status.idle": "2024-02-08T04:24:00.167299Z", - "shell.execute_reply": "2024-02-08T04:24:00.166840Z" + "iopub.execute_input": "2024-02-08T05:10:28.492892Z", + "iopub.status.busy": "2024-02-08T05:10:28.492640Z", + "iopub.status.idle": "2024-02-08T05:10:28.502745Z", + "shell.execute_reply": "2024-02-08T05:10:28.502187Z" }, "scrolled": true }, @@ -874,10 +874,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.169331Z", - "iopub.status.busy": "2024-02-08T04:24:00.168954Z", - "iopub.status.idle": "2024-02-08T04:24:00.176582Z", - "shell.execute_reply": "2024-02-08T04:24:00.176051Z" + "iopub.execute_input": "2024-02-08T05:10:28.504792Z", + "iopub.status.busy": "2024-02-08T05:10:28.504574Z", + "iopub.status.idle": "2024-02-08T05:10:28.512631Z", + "shell.execute_reply": "2024-02-08T05:10:28.512066Z" } }, "outputs": [ @@ -981,10 +981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.178497Z", - "iopub.status.busy": "2024-02-08T04:24:00.178235Z", - "iopub.status.idle": "2024-02-08T04:24:00.182121Z", - "shell.execute_reply": "2024-02-08T04:24:00.181573Z" + "iopub.execute_input": "2024-02-08T05:10:28.514750Z", + "iopub.status.busy": "2024-02-08T05:10:28.514376Z", + "iopub.status.idle": "2024-02-08T05:10:28.518724Z", + "shell.execute_reply": "2024-02-08T05:10:28.518182Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.184174Z", - "iopub.status.busy": "2024-02-08T04:24:00.183860Z", - "iopub.status.idle": "2024-02-08T04:24:00.189292Z", - "shell.execute_reply": "2024-02-08T04:24:00.188819Z" + "iopub.execute_input": "2024-02-08T05:10:28.520704Z", + "iopub.status.busy": "2024-02-08T05:10:28.520404Z", + "iopub.status.idle": "2024-02-08T05:10:28.525844Z", + "shell.execute_reply": "2024-02-08T05:10:28.525387Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1152,10 +1152,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.191324Z", - "iopub.status.busy": "2024-02-08T04:24:00.191003Z", - "iopub.status.idle": "2024-02-08T04:24:00.300680Z", - "shell.execute_reply": "2024-02-08T04:24:00.300220Z" + "iopub.execute_input": "2024-02-08T05:10:28.527919Z", + "iopub.status.busy": "2024-02-08T05:10:28.527730Z", + "iopub.status.idle": "2024-02-08T05:10:28.640795Z", + "shell.execute_reply": "2024-02-08T05:10:28.640230Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1209,10 +1209,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.302682Z", - "iopub.status.busy": "2024-02-08T04:24:00.302364Z", - "iopub.status.idle": "2024-02-08T04:24:00.405268Z", - "shell.execute_reply": "2024-02-08T04:24:00.404783Z" + "iopub.execute_input": "2024-02-08T05:10:28.643025Z", + "iopub.status.busy": "2024-02-08T05:10:28.642640Z", + "iopub.status.idle": "2024-02-08T05:10:28.750031Z", + "shell.execute_reply": "2024-02-08T05:10:28.749452Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1257,10 +1257,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.407387Z", - "iopub.status.busy": "2024-02-08T04:24:00.407045Z", - "iopub.status.idle": "2024-02-08T04:24:00.507174Z", - "shell.execute_reply": "2024-02-08T04:24:00.506629Z" + "iopub.execute_input": "2024-02-08T05:10:28.752108Z", + "iopub.status.busy": "2024-02-08T05:10:28.751895Z", + "iopub.status.idle": "2024-02-08T05:10:28.855700Z", + "shell.execute_reply": "2024-02-08T05:10:28.855171Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1301,10 +1301,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.509161Z", - "iopub.status.busy": "2024-02-08T04:24:00.508897Z", - "iopub.status.idle": "2024-02-08T04:24:00.609804Z", - "shell.execute_reply": "2024-02-08T04:24:00.609296Z" + "iopub.execute_input": "2024-02-08T05:10:28.857703Z", + "iopub.status.busy": "2024-02-08T05:10:28.857485Z", + "iopub.status.idle": "2024-02-08T05:10:28.964065Z", + "shell.execute_reply": "2024-02-08T05:10:28.963467Z" } }, "outputs": [ @@ -1352,10 +1352,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:00.611925Z", - "iopub.status.busy": "2024-02-08T04:24:00.611606Z", - "iopub.status.idle": "2024-02-08T04:24:00.615028Z", - "shell.execute_reply": "2024-02-08T04:24:00.614593Z" + "iopub.execute_input": "2024-02-08T05:10:28.966380Z", + "iopub.status.busy": "2024-02-08T05:10:28.966029Z", + "iopub.status.idle": "2024-02-08T05:10:28.969976Z", + "shell.execute_reply": "2024-02-08T05:10:28.969420Z" }, "nbsphinx": "hidden" }, @@ -1396,7 +1396,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00caf2fa7ce94a1ca1af3fc608cdd874": { + "00322415c3084906aed3bfc0fc4137e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1411,33 +1411,91 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9c694de214f04369bdf84ea2a4a53820", + "layout": "IPY_MODEL_09d99afba1d74d0a910126e1b1c28c9d", "placeholder": "​", - "style": "IPY_MODEL_0d909c5854a6419d8bf46d1b34d4bfc1", + "style": "IPY_MODEL_b784011f16db4888b20527c0b09c7995", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 140MB/s]" + "value": "embedding_model.ckpt: 100%" + } + }, + "02cba719e59748a9a093722bb87ad7bc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "09e345de2ab44e64aa9dda42f354fc5e": { + "05133e7fc5b549e896b19ea17c0a9470": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb90d513176f4f53baa7d68bd99c706d", + "placeholder": "​", + "style": "IPY_MODEL_6a986303e55648439d134870cc6dc1f0", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 2.12MB/s]" } }, - "0be9a5582bed44899891990cf3b7e6ca": { + "09d99afba1d74d0a910126e1b1c28c9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1490,7 +1548,7 @@ "width": null } }, - "0d909c5854a6419d8bf46d1b34d4bfc1": { + "16faa3717ace402099c0af876b0ea972": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1508,33 +1566,31 @@ "text_color": null } }, - "1110dbf49ecd4529bda8ae5a8f1dd895": { + "17e351c1dd3a43838b0c813f1d1792ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0be9a5582bed44899891990cf3b7e6ca", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4cb8607f3082430cb1873a8893f0bfbb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f105df57e4d44ad0b56e4c0d23447c9c", + "IPY_MODEL_d9e6ae1680db4f439f491945b731959c", + "IPY_MODEL_05133e7fc5b549e896b19ea17c0a9470" + ], + "layout": "IPY_MODEL_2d6e768687dc4dc28928ce8924d56bcd", "tabbable": null, - "tooltip": null, - "value": 2041.0 + "tooltip": null } }, - "12e8df3144be4da9a72db0291005881b": { + "19c14e16922c46539429b0f3c76cc36d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1549,40 +1605,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f90e0c618515482bb424955efd1b841c", - "IPY_MODEL_1110dbf49ecd4529bda8ae5a8f1dd895", - "IPY_MODEL_c5d242464a974d22a0e52330a3d839ba" + "IPY_MODEL_5c914c53cb5e4cdeb6d61f06b845f822", + "IPY_MODEL_7c86a16b43104acd82b6c23963847f61", + "IPY_MODEL_d6b0edcd2bb8437a89117c17518bed85" ], - "layout": "IPY_MODEL_401ef1f8383c4157b95e9dbec0a569d9", + "layout": "IPY_MODEL_44f0a77ddead4cd08e63f03a0b101c14", "tabbable": null, "tooltip": null } }, - "1387ef86e738414faeab3ad3904caf0b": { + "25545b6369f7469b8496bbc09b87b003": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bd8756a5451d4230a2e3c764128f0e61", - "IPY_MODEL_25967dd471d241868b18aacfad2f80ad", - "IPY_MODEL_00caf2fa7ce94a1ca1af3fc608cdd874" - ], - "layout": "IPY_MODEL_de8656deecc2472a95cfa864289cf715", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1797bdb86d8e4d4082f9e097a4986ecf": { + "28bfb0ec8bbf4ed9ad9e36c10a711209": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1635,7 +1685,7 @@ "width": null } }, - "1dae0c9337fd4ae691ff8244f130ae56": { + "2d6e768687dc4dc28928ce8924d56bcd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1688,7 +1738,7 @@ "width": null } }, - "1e00641d45664cf3bcf25bfd9ded9aae": { + "3153aabcab854857ad16e19942f577de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1741,51 +1791,54 @@ "width": null } }, - "25967dd471d241868b18aacfad2f80ad": { + "35c3def975d846cb8e9657d130bb2053": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8f947cac1dfb4430998c372771ae7550", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_922b4f4a09394610b8567cb628b3761d", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e6b9c284e804d2eb99f19f579ad1b9e", + "IPY_MODEL_af3da7864071482eb20d1495b6d5e485", + "IPY_MODEL_aa1c73555d2745d78847a90e52a17ef8" + ], + "layout": "IPY_MODEL_3153aabcab854857ad16e19942f577de", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "26df8d002b6e4defaa70711eea5f0fd4": { + "44cbf671229d421a9d727694cb483666": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f90fa8070f24b898cb5d2e09fde3135", + "placeholder": "​", + "style": "IPY_MODEL_25545b6369f7469b8496bbc09b87b003", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 777kB/s]" } }, - "27adc94a126e42eca62c7fbb62d37a05": { + "44f0a77ddead4cd08e63f03a0b101c14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1838,7 +1891,7 @@ "width": null } }, - "2fe86a5a6d75463ba4a135d1958734d3": { + "52b60c8257c44b00bff406d89f218b97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1891,7 +1944,31 @@ "width": null } }, - "367b28a197ef4109b62bef2f8702343f": { + "535dd9db9e9f4ca3b4e7ad45fce08903": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_00322415c3084906aed3bfc0fc4137e3", + "IPY_MODEL_be64c269bd864fd49e046244b585ce34", + "IPY_MODEL_9341551bd3c14f019a521b285c7176d3" + ], + "layout": "IPY_MODEL_a655f7d4b9274d3281e939b9574224e3", + "tabbable": null, + "tooltip": null + } + }, + "58a6d115314141608cead05e9bc4b0fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1944,7 +2021,7 @@ "width": null } }, - "3e8471b7623e49e9ba8a7f609b92d206": { + "5bb47e01ccd4433e9fb490ca2d72e174": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1997,7 +2074,30 @@ "width": null } }, - "401ef1f8383c4157b95e9dbec0a569d9": { + "5c914c53cb5e4cdeb6d61f06b845f822": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9c110ecb4a3142bd8978bd7c56eeac1c", + "placeholder": "​", + "style": "IPY_MODEL_f9a3626c114b4cc3a8e6528b82f7edc2", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "6366025152fb4914943ecbce38e36e06": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2050,7 +2150,7 @@ "width": null } }, - "4cb8607f3082430cb1873a8893f0bfbb": { + "67d8683d19954d26967f3928959517c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2066,56 +2166,7 @@ "description_width": "" } }, - "50b3b8ea8e764cdbb9e5d6f2db55f8f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cf8efc4c9cb84399a37464a1e187f6eb", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8bf3fcd1affe4651b2701906f33f4629", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "541613fe9afc46ebb8739e58d48f3708": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_27adc94a126e42eca62c7fbb62d37a05", - "placeholder": "​", - "style": "IPY_MODEL_72d82241972f41698dafa969085decb4", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 16.9MB/s]" - } - }, - "58ce53aea9f5489d8d630f058e577b43": { + "6a986303e55648439d134870cc6dc1f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2133,7 +2184,7 @@ "text_color": null } }, - "5caf5e5f16c249e691706889447f5f3c": { + "6b7457ca391342d69cbcfbb176ed3816": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,60 +2237,83 @@ "width": null } }, - "6055405df1504056b09b8a4f02683e06": { - "model_module": "@jupyter-widgets/base", + "6c331c9cb15e400daf71dc964257ce69": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "79aa5a4217f24706a0c8acdccb83bc89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7c86a16b43104acd82b6c23963847f61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cf0f6cfeecb944bbbf95b51dab7ffe38", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_79aa5a4217f24706a0c8acdccb83bc89", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "7ddd689d4714483c82a417f4068e0d50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6bab66ef9ab2415aa6ab316dc2c12977": { + "7f90fa8070f24b898cb5d2e09fde3135": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2292,133 +2366,30 @@ "width": null } }, - "72d82241972f41698dafa969085decb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "73cc609051ff4efd9ad519ad7af38b33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "782dc84a5c5f4cef9c80909afe6e60d4": { + "8e6b9c284e804d2eb99f19f579ad1b9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1797bdb86d8e4d4082f9e097a4986ecf", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_79dabf647200462baaf9667d1281752a", + "layout": "IPY_MODEL_96370a4da75f4d0cacf1c8ce1744a33a", + "placeholder": "​", + "style": "IPY_MODEL_f2159690386f475092a493a5820f3be5", "tabbable": null, "tooltip": null, - "value": 15856877.0 - } - }, - "79dabf647200462baaf9667d1281752a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7b1479cd4d034d77b4fb136713b4747b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a38d3e354f2448dca3a03b59c80e419d", - "IPY_MODEL_50b3b8ea8e764cdbb9e5d6f2db55f8f2", - "IPY_MODEL_541613fe9afc46ebb8739e58d48f3708" - ], - "layout": "IPY_MODEL_2fe86a5a6d75463ba4a135d1958734d3", - "tabbable": null, - "tooltip": null - } - }, - "7dc19e1157c147fa87d344fd7e0eabf6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f514a3b00a1b490b87e1057c9111a96f", - "IPY_MODEL_f72c8b8bccda4a1ea70840ece3838d42", - "IPY_MODEL_dabd132f187041fca1e66330d4fee9b3" - ], - "layout": "IPY_MODEL_367b28a197ef4109b62bef2f8702343f", - "tabbable": null, - "tooltip": null + "value": "classifier.ckpt: 100%" } }, - "7ddf581b1db042f8bf8b87912a9d17b7": { + "8eacd088a4794ed59341ed053be2eca2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2471,41 +2442,30 @@ "width": null } }, - "88a22d3905da41bd811a099ebd0345f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8bf3fcd1affe4651b2701906f33f4629": { + "9341551bd3c14f019a521b285c7176d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_02cba719e59748a9a093722bb87ad7bc", + "placeholder": "​", + "style": "IPY_MODEL_7ddd689d4714483c82a417f4068e0d50", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 143MB/s]" } }, - "8d514a589a884efaac95c4764d625669": { + "96370a4da75f4d0cacf1c8ce1744a33a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2558,7 +2518,7 @@ "width": null } }, - "8f947cac1dfb4430998c372771ae7550": { + "9640155152bb442393cce4d5448854aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2611,7 +2571,30 @@ "width": null } }, - "919fe5295cc140a0beeb66a390a5cd37": { + "9845814b2c264618ad67b3fec548ab50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5bb47e01ccd4433e9fb490ca2d72e174", + "placeholder": "​", + "style": "IPY_MODEL_16faa3717ace402099c0af876b0ea972", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "9c110ecb4a3142bd8978bd7c56eeac1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2664,47 +2647,25 @@ "width": null } }, - "922b4f4a09394610b8567cb628b3761d": { + "9e47ddeb6ba8434bacbf51fc5e3ebc23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "99ad1c23d83a4fdda42df4558f2b566e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_df6d32468abb43dead6ed88e8e3cd4dd", - "IPY_MODEL_782dc84a5c5f4cef9c80909afe6e60d4", - "IPY_MODEL_e21a8880e0be40d59186e562f368c4ab" - ], - "layout": "IPY_MODEL_6bab66ef9ab2415aa6ab316dc2c12977", - "tabbable": null, - "tooltip": null + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9c694de214f04369bdf84ea2a4a53820": { + "a655f7d4b9274d3281e939b9574224e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2757,7 +2718,7 @@ "width": null } }, - "a38d3e354f2448dca3a03b59c80e419d": { + "aa1c73555d2745d78847a90e52a17ef8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2772,15 +2733,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ddf581b1db042f8bf8b87912a9d17b7", + "layout": "IPY_MODEL_8eacd088a4794ed59341ed053be2eca2", "placeholder": "​", - "style": "IPY_MODEL_fa1bb1fa7d6d4fb5ba176d8faeeeba30", + "style": "IPY_MODEL_bc6713ec7b094832b9d6d7bc983795fd", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": " 15.9M/15.9M [00:00<00:00, 43.6MB/s]" } }, - "a72ed5077eff484fb5f20f78db412029": { + "af3da7864071482eb20d1495b6d5e485": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_58a6d115314141608cead05e9bc4b0fc", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d8cede267b5b4bf2ae4853e192b8dcf0", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "b784011f16db4888b20527c0b09c7995": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2798,48 +2785,77 @@ "text_color": null } }, - "bd8756a5451d4230a2e3c764128f0e61": { + "bc6713ec7b094832b9d6d7bc983795fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bdbb6dec26e24b4798b6f5d0034262d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6055405df1504056b09b8a4f02683e06", - "placeholder": "​", - "style": "IPY_MODEL_c1ac0d0617f94eb1a3de23bded46234e", + "layout": "IPY_MODEL_6366025152fb4914943ecbce38e36e06", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc74ddb244b84b949aced140694f4ce9", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": 3201.0 } }, - "c1ac0d0617f94eb1a3de23bded46234e": { + "be64c269bd864fd49e046244b585ce34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6b7457ca391342d69cbcfbb176ed3816", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6c331c9cb15e400daf71dc964257ce69", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 } }, - "c5b79d34ba494a079c8e8003c353bd42": { + "cf0f6cfeecb944bbbf95b51dab7ffe38": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2892,7 +2908,25 @@ "width": null } }, - "c5d242464a974d22a0e52330a3d839ba": { + "d296361623744768ba3fb4c5a26a3376": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d6b0edcd2bb8437a89117c17518bed85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2907,15 +2941,140 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5caf5e5f16c249e691706889447f5f3c", + "layout": "IPY_MODEL_9640155152bb442393cce4d5448854aa", "placeholder": "​", - "style": "IPY_MODEL_73cc609051ff4efd9ad519ad7af38b33", + "style": "IPY_MODEL_9e47ddeb6ba8434bacbf51fc5e3ebc23", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 511kB/s]" + "value": " 2.04k/2.04k [00:00<00:00, 473kB/s]" + } + }, + "d8cede267b5b4bf2ae4853e192b8dcf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d9e6ae1680db4f439f491945b731959c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_28bfb0ec8bbf4ed9ad9e36c10a711209", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67d8683d19954d26967f3928959517c7", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "e1de5a271a36422ba42b39bbb19705be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9845814b2c264618ad67b3fec548ab50", + "IPY_MODEL_bdbb6dec26e24b4798b6f5d0034262d3", + "IPY_MODEL_44cbf671229d421a9d727694cb483666" + ], + "layout": "IPY_MODEL_fcef3c54ae3a4557aa447cc447b97160", + "tabbable": null, + "tooltip": null + } + }, + "f105df57e4d44ad0b56e4c0d23447c9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52b60c8257c44b00bff406d89f218b97", + "placeholder": "​", + "style": "IPY_MODEL_d296361623744768ba3fb4c5a26a3376", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "f2159690386f475092a493a5820f3be5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cf8efc4c9cb84399a37464a1e187f6eb": { + "f9a3626c114b4cc3a8e6528b82f7edc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fb90d513176f4f53baa7d68bd99c706d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2968,7 +3127,7 @@ "width": null } }, - "d76f3855ae764e8c8b350d2f8f3fe336": { + "fc74ddb244b84b949aced140694f4ce9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2984,30 +3143,7 @@ "description_width": "" } }, - "dabd132f187041fca1e66330d4fee9b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3e8471b7623e49e9ba8a7f609b92d206", - "placeholder": "​", - "style": "IPY_MODEL_88a22d3905da41bd811a099ebd0345f2", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 821kB/s]" - } - }, - "de8656deecc2472a95cfa864289cf715": { + "fcef3c54ae3a4557aa447cc447b97160": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3059,142 +3195,6 @@ "visibility": null, "width": null } - }, - "df6d32468abb43dead6ed88e8e3cd4dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c5b79d34ba494a079c8e8003c353bd42", - "placeholder": "​", - "style": "IPY_MODEL_a72ed5077eff484fb5f20f78db412029", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "e21a8880e0be40d59186e562f368c4ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8d514a589a884efaac95c4764d625669", - "placeholder": "​", - "style": "IPY_MODEL_58ce53aea9f5489d8d630f058e577b43", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 223MB/s]" - } - }, - "f514a3b00a1b490b87e1057c9111a96f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1dae0c9337fd4ae691ff8244f130ae56", - "placeholder": "​", - "style": "IPY_MODEL_26df8d002b6e4defaa70711eea5f0fd4", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "f72c8b8bccda4a1ea70840ece3838d42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_919fe5295cc140a0beeb66a390a5cd37", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d76f3855ae764e8c8b350d2f8f3fe336", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "f90e0c618515482bb424955efd1b841c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1e00641d45664cf3bcf25bfd9ded9aae", - "placeholder": "​", - "style": "IPY_MODEL_09e345de2ab44e64aa9dda42f354fc5e", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "fa1bb1fa7d6d4fb5ba176d8faeeeba30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 11f86f2cd..ed634ab46 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1076,7 +1076,7 @@

Functionality 2: Specifying nondefault arguments
-
+

@@ -1472,7 +1472,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"290ef15ee3164f8bb629fc5c1469d79f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd9e34d2f6ae481eae9840f795c74766": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cba59804ba2948f097754d198de05ce6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_290ef15ee3164f8bb629fc5c1469d79f", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fd9e34d2f6ae481eae9840f795c74766", "tabbable": null, "tooltip": null, "value": 132.0}}, "9885a0d19caf4000841fe5d767b5faa6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "969462de888a4b3a9d8b18e1c4e88a9d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "08306504fafe48699a259796de09b33d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9885a0d19caf4000841fe5d767b5faa6", "placeholder": "\u200b", "style": "IPY_MODEL_969462de888a4b3a9d8b18e1c4e88a9d", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%"}}, "9f85b76337c34b79b5e6d1475d27f33f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3e6e876426fb437a83b89f3a9035d7b3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "66179e16e7cd44fda0c21fa2d600d51a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9f85b76337c34b79b5e6d1475d27f33f", "placeholder": "\u200b", "style": "IPY_MODEL_3e6e876426fb437a83b89f3a9035d7b3", "tabbable": null, "tooltip": null, "value": " 132/132 [00:00<00:00, 10263.01 examples/s]"}}, "9da003a7f5744b429af2bcf754a04312": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc5fad859ca84d33abae2fa882ff86d0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_08306504fafe48699a259796de09b33d", "IPY_MODEL_cba59804ba2948f097754d198de05ce6", "IPY_MODEL_66179e16e7cd44fda0c21fa2d600d51a"], "layout": "IPY_MODEL_9da003a7f5744b429af2bcf754a04312", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"7463d397fb66435b862c806752e8051f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dae2a3d3d8874a4ba9d1fa896add7e1c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "65ee8fb444c142abba93197926106271": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7463d397fb66435b862c806752e8051f", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dae2a3d3d8874a4ba9d1fa896add7e1c", "tabbable": null, "tooltip": null, "value": 132.0}}, "a2fc17fdc07f4cacbcd755f78b60a122": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5da09ac927b24c5ab3967a0c0d76acc7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9d1db50e4ed44d1191b342f425d4094f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a2fc17fdc07f4cacbcd755f78b60a122", "placeholder": "\u200b", "style": "IPY_MODEL_5da09ac927b24c5ab3967a0c0d76acc7", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%"}}, "76182b4915a146ceabb58afb55f55c48": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f4c70def822414b8adb927ca8035b20": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a248232e641849d5a815a4608c081bb3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_76182b4915a146ceabb58afb55f55c48", "placeholder": "\u200b", "style": "IPY_MODEL_3f4c70def822414b8adb927ca8035b20", "tabbable": null, "tooltip": null, "value": " 132/132 [00:00<00:00, 10475.25 examples/s]"}}, "5820d61831c54177ac9cbf05159b6638": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "856677d31c574d31b5d2d75aa30a01f8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9d1db50e4ed44d1191b342f425d4094f", "IPY_MODEL_65ee8fb444c142abba93197926106271", "IPY_MODEL_a248232e641849d5a815a4608c081bb3"], "layout": "IPY_MODEL_5820d61831c54177ac9cbf05159b6638", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 5b5b6c3f5..fc6778fa9 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:03.904942Z", - "iopub.status.busy": "2024-02-08T04:24:03.904776Z", - "iopub.status.idle": "2024-02-08T04:24:04.993867Z", - "shell.execute_reply": "2024-02-08T04:24:04.993384Z" + "iopub.execute_input": "2024-02-08T05:10:32.271252Z", + "iopub.status.busy": "2024-02-08T05:10:32.270834Z", + "iopub.status.idle": "2024-02-08T05:10:33.407899Z", + "shell.execute_reply": "2024-02-08T05:10:33.407308Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:04.996272Z", - "iopub.status.busy": "2024-02-08T04:24:04.996028Z", - "iopub.status.idle": "2024-02-08T04:24:04.999384Z", - "shell.execute_reply": "2024-02-08T04:24:04.998983Z" + "iopub.execute_input": "2024-02-08T05:10:33.410461Z", + "iopub.status.busy": "2024-02-08T05:10:33.410017Z", + "iopub.status.idle": "2024-02-08T05:10:33.413059Z", + "shell.execute_reply": "2024-02-08T05:10:33.412623Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.001458Z", - "iopub.status.busy": "2024-02-08T04:24:05.001094Z", - "iopub.status.idle": "2024-02-08T04:24:05.010073Z", - "shell.execute_reply": "2024-02-08T04:24:05.009530Z" + "iopub.execute_input": "2024-02-08T05:10:33.415134Z", + "iopub.status.busy": "2024-02-08T05:10:33.414806Z", + "iopub.status.idle": "2024-02-08T05:10:33.423477Z", + "shell.execute_reply": "2024-02-08T05:10:33.422903Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.012117Z", - "iopub.status.busy": "2024-02-08T04:24:05.011944Z", - "iopub.status.idle": "2024-02-08T04:24:05.016583Z", - "shell.execute_reply": "2024-02-08T04:24:05.016032Z" + "iopub.execute_input": "2024-02-08T05:10:33.425487Z", + "iopub.status.busy": "2024-02-08T05:10:33.425188Z", + "iopub.status.idle": "2024-02-08T05:10:33.430413Z", + "shell.execute_reply": "2024-02-08T05:10:33.429836Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.018843Z", - "iopub.status.busy": "2024-02-08T04:24:05.018524Z", - "iopub.status.idle": "2024-02-08T04:24:05.198798Z", - "shell.execute_reply": "2024-02-08T04:24:05.198324Z" + "iopub.execute_input": "2024-02-08T05:10:33.432570Z", + "iopub.status.busy": "2024-02-08T05:10:33.432244Z", + "iopub.status.idle": "2024-02-08T05:10:33.622201Z", + "shell.execute_reply": "2024-02-08T05:10:33.621689Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.201211Z", - "iopub.status.busy": "2024-02-08T04:24:05.200875Z", - "iopub.status.idle": "2024-02-08T04:24:05.514597Z", - "shell.execute_reply": "2024-02-08T04:24:05.514050Z" + "iopub.execute_input": "2024-02-08T05:10:33.624564Z", + "iopub.status.busy": "2024-02-08T05:10:33.624249Z", + "iopub.status.idle": "2024-02-08T05:10:34.001363Z", + "shell.execute_reply": "2024-02-08T05:10:34.000781Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.516964Z", - "iopub.status.busy": "2024-02-08T04:24:05.516580Z", - "iopub.status.idle": "2024-02-08T04:24:05.539784Z", - "shell.execute_reply": "2024-02-08T04:24:05.539227Z" + "iopub.execute_input": "2024-02-08T05:10:34.003609Z", + "iopub.status.busy": "2024-02-08T05:10:34.003270Z", + "iopub.status.idle": "2024-02-08T05:10:34.027061Z", + "shell.execute_reply": "2024-02-08T05:10:34.026619Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.541965Z", - "iopub.status.busy": "2024-02-08T04:24:05.541548Z", - "iopub.status.idle": "2024-02-08T04:24:05.555212Z", - "shell.execute_reply": "2024-02-08T04:24:05.554675Z" + "iopub.execute_input": "2024-02-08T05:10:34.029263Z", + "iopub.status.busy": "2024-02-08T05:10:34.028920Z", + "iopub.status.idle": "2024-02-08T05:10:34.043155Z", + "shell.execute_reply": "2024-02-08T05:10:34.042687Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:05.557355Z", - "iopub.status.busy": "2024-02-08T04:24:05.557068Z", - "iopub.status.idle": "2024-02-08T04:24:07.165049Z", - "shell.execute_reply": "2024-02-08T04:24:07.164421Z" + "iopub.execute_input": "2024-02-08T05:10:34.045627Z", + "iopub.status.busy": "2024-02-08T05:10:34.045279Z", + "iopub.status.idle": "2024-02-08T05:10:35.722412Z", + "shell.execute_reply": "2024-02-08T05:10:35.721793Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.167703Z", - "iopub.status.busy": "2024-02-08T04:24:07.167183Z", - "iopub.status.idle": "2024-02-08T04:24:07.189438Z", - "shell.execute_reply": "2024-02-08T04:24:07.188870Z" + "iopub.execute_input": "2024-02-08T05:10:35.725162Z", + "iopub.status.busy": "2024-02-08T05:10:35.724516Z", + "iopub.status.idle": "2024-02-08T05:10:35.746556Z", + "shell.execute_reply": "2024-02-08T05:10:35.746094Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.191375Z", - "iopub.status.busy": "2024-02-08T04:24:07.191196Z", - "iopub.status.idle": "2024-02-08T04:24:07.209755Z", - "shell.execute_reply": "2024-02-08T04:24:07.209149Z" + "iopub.execute_input": "2024-02-08T05:10:35.748643Z", + "iopub.status.busy": "2024-02-08T05:10:35.748321Z", + "iopub.status.idle": "2024-02-08T05:10:35.766887Z", + "shell.execute_reply": "2024-02-08T05:10:35.766296Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:359: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.211886Z", - "iopub.status.busy": "2024-02-08T04:24:07.211462Z", - "iopub.status.idle": "2024-02-08T04:24:07.224227Z", - "shell.execute_reply": "2024-02-08T04:24:07.223745Z" + "iopub.execute_input": "2024-02-08T05:10:35.769395Z", + "iopub.status.busy": "2024-02-08T05:10:35.769056Z", + "iopub.status.idle": "2024-02-08T05:10:35.781775Z", + "shell.execute_reply": "2024-02-08T05:10:35.781323Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.226230Z", - "iopub.status.busy": "2024-02-08T04:24:07.226057Z", - "iopub.status.idle": "2024-02-08T04:24:07.249153Z", - "shell.execute_reply": "2024-02-08T04:24:07.248627Z" + "iopub.execute_input": "2024-02-08T05:10:35.783779Z", + "iopub.status.busy": "2024-02-08T05:10:35.783449Z", + "iopub.status.idle": "2024-02-08T05:10:35.806063Z", + "shell.execute_reply": "2024-02-08T05:10:35.805517Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fc5fad859ca84d33abae2fa882ff86d0", + "model_id": "856677d31c574d31b5d2d75aa30a01f8", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.251221Z", - "iopub.status.busy": "2024-02-08T04:24:07.250904Z", - "iopub.status.idle": "2024-02-08T04:24:07.264933Z", - "shell.execute_reply": "2024-02-08T04:24:07.264401Z" + "iopub.execute_input": "2024-02-08T05:10:35.808253Z", + "iopub.status.busy": "2024-02-08T05:10:35.807946Z", + "iopub.status.idle": "2024-02-08T05:10:35.821040Z", + "shell.execute_reply": "2024-02-08T05:10:35.820504Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.266890Z", - "iopub.status.busy": "2024-02-08T04:24:07.266714Z", - "iopub.status.idle": "2024-02-08T04:24:07.272307Z", - "shell.execute_reply": "2024-02-08T04:24:07.271878Z" + "iopub.execute_input": "2024-02-08T05:10:35.823282Z", + "iopub.status.busy": "2024-02-08T05:10:35.822896Z", + "iopub.status.idle": "2024-02-08T05:10:35.828664Z", + "shell.execute_reply": "2024-02-08T05:10:35.828126Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:07.274386Z", - "iopub.status.busy": "2024-02-08T04:24:07.274018Z", - "iopub.status.idle": "2024-02-08T04:24:07.290456Z", - "shell.execute_reply": "2024-02-08T04:24:07.289903Z" + "iopub.execute_input": "2024-02-08T05:10:35.830614Z", + "iopub.status.busy": "2024-02-08T05:10:35.830437Z", + "iopub.status.idle": "2024-02-08T05:10:35.847232Z", + "shell.execute_reply": "2024-02-08T05:10:35.846723Z" } }, "outputs": [ @@ -1430,30 +1430,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08306504fafe48699a259796de09b33d": { + "3f4c70def822414b8adb927ca8035b20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9885a0d19caf4000841fe5d767b5faa6", - "placeholder": "​", - "style": "IPY_MODEL_969462de888a4b3a9d8b18e1c4e88a9d", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "290ef15ee3164f8bb629fc5c1469d79f": { + "5820d61831c54177ac9cbf05159b6638": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1506,7 +1501,7 @@ "width": null } }, - "3e6e876426fb437a83b89f3a9035d7b3": { + "5da09ac927b24c5ab3967a0c0d76acc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1524,48 +1519,33 @@ "text_color": null } }, - "66179e16e7cd44fda0c21fa2d600d51a": { + "65ee8fb444c142abba93197926106271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9f85b76337c34b79b5e6d1475d27f33f", - "placeholder": "​", - "style": "IPY_MODEL_3e6e876426fb437a83b89f3a9035d7b3", + "layout": "IPY_MODEL_7463d397fb66435b862c806752e8051f", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dae2a3d3d8874a4ba9d1fa896add7e1c", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 10263.01 examples/s]" - } - }, - "969462de888a4b3a9d8b18e1c4e88a9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 132.0 } }, - "9885a0d19caf4000841fe5d767b5faa6": { + "7463d397fb66435b862c806752e8051f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1618,7 +1598,7 @@ "width": null } }, - "9da003a7f5744b429af2bcf754a04312": { + "76182b4915a146ceabb58afb55f55c48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1671,7 +1651,77 @@ "width": null } }, - "9f85b76337c34b79b5e6d1475d27f33f": { + "856677d31c574d31b5d2d75aa30a01f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9d1db50e4ed44d1191b342f425d4094f", + "IPY_MODEL_65ee8fb444c142abba93197926106271", + "IPY_MODEL_a248232e641849d5a815a4608c081bb3" + ], + "layout": "IPY_MODEL_5820d61831c54177ac9cbf05159b6638", + "tabbable": null, + "tooltip": null + } + }, + "9d1db50e4ed44d1191b342f425d4094f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a2fc17fdc07f4cacbcd755f78b60a122", + "placeholder": "​", + "style": "IPY_MODEL_5da09ac927b24c5ab3967a0c0d76acc7", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "a248232e641849d5a815a4608c081bb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76182b4915a146ceabb58afb55f55c48", + "placeholder": "​", + "style": "IPY_MODEL_3f4c70def822414b8adb927ca8035b20", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 10475.25 examples/s]" + } + }, + "a2fc17fdc07f4cacbcd755f78b60a122": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1724,57 +1774,7 @@ "width": null } }, - "cba59804ba2948f097754d198de05ce6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_290ef15ee3164f8bb629fc5c1469d79f", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd9e34d2f6ae481eae9840f795c74766", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "fc5fad859ca84d33abae2fa882ff86d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_08306504fafe48699a259796de09b33d", - "IPY_MODEL_cba59804ba2948f097754d198de05ce6", - "IPY_MODEL_66179e16e7cd44fda0c21fa2d600d51a" - ], - "layout": "IPY_MODEL_9da003a7f5744b429af2bcf754a04312", - "tabbable": null, - "tooltip": null - } - }, - "fd9e34d2f6ae481eae9840f795c74766": { + "dae2a3d3d8874a4ba9d1fa896add7e1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index ddd9a0288..25e9067f2 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:10.077451Z", - "iopub.status.busy": "2024-02-08T04:24:10.077285Z", - "iopub.status.idle": "2024-02-08T04:24:11.155222Z", - "shell.execute_reply": "2024-02-08T04:24:11.154747Z" + "iopub.execute_input": "2024-02-08T05:10:38.472695Z", + "iopub.status.busy": "2024-02-08T05:10:38.472201Z", + "iopub.status.idle": "2024-02-08T05:10:39.611994Z", + "shell.execute_reply": "2024-02-08T05:10:39.611431Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.157851Z", - "iopub.status.busy": "2024-02-08T04:24:11.157344Z", - "iopub.status.idle": "2024-02-08T04:24:11.160350Z", - "shell.execute_reply": "2024-02-08T04:24:11.159894Z" + "iopub.execute_input": "2024-02-08T05:10:39.614554Z", + "iopub.status.busy": "2024-02-08T05:10:39.614141Z", + "iopub.status.idle": "2024-02-08T05:10:39.617072Z", + "shell.execute_reply": "2024-02-08T05:10:39.616573Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.162368Z", - "iopub.status.busy": "2024-02-08T04:24:11.162049Z", - "iopub.status.idle": "2024-02-08T04:24:11.171024Z", - "shell.execute_reply": "2024-02-08T04:24:11.170577Z" + "iopub.execute_input": "2024-02-08T05:10:39.619338Z", + "iopub.status.busy": "2024-02-08T05:10:39.618908Z", + "iopub.status.idle": "2024-02-08T05:10:39.627921Z", + "shell.execute_reply": "2024-02-08T05:10:39.627474Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.172948Z", - "iopub.status.busy": "2024-02-08T04:24:11.172636Z", - "iopub.status.idle": "2024-02-08T04:24:11.177558Z", - "shell.execute_reply": "2024-02-08T04:24:11.177025Z" + "iopub.execute_input": "2024-02-08T05:10:39.629787Z", + "iopub.status.busy": "2024-02-08T05:10:39.629608Z", + "iopub.status.idle": "2024-02-08T05:10:39.634350Z", + "shell.execute_reply": "2024-02-08T05:10:39.633956Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.179804Z", - "iopub.status.busy": "2024-02-08T04:24:11.179485Z", - "iopub.status.idle": "2024-02-08T04:24:11.359601Z", - "shell.execute_reply": "2024-02-08T04:24:11.359130Z" + "iopub.execute_input": "2024-02-08T05:10:39.636490Z", + "iopub.status.busy": "2024-02-08T05:10:39.636186Z", + "iopub.status.idle": "2024-02-08T05:10:39.818117Z", + "shell.execute_reply": "2024-02-08T05:10:39.817616Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.361673Z", - "iopub.status.busy": "2024-02-08T04:24:11.361342Z", - "iopub.status.idle": "2024-02-08T04:24:11.674092Z", - "shell.execute_reply": "2024-02-08T04:24:11.673528Z" + "iopub.execute_input": "2024-02-08T05:10:39.820529Z", + "iopub.status.busy": "2024-02-08T05:10:39.820250Z", + "iopub.status.idle": "2024-02-08T05:10:40.140880Z", + "shell.execute_reply": "2024-02-08T05:10:40.140326Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.676225Z", - "iopub.status.busy": "2024-02-08T04:24:11.675875Z", - "iopub.status.idle": "2024-02-08T04:24:11.678464Z", - "shell.execute_reply": "2024-02-08T04:24:11.678032Z" + "iopub.execute_input": "2024-02-08T05:10:40.142919Z", + "iopub.status.busy": "2024-02-08T05:10:40.142708Z", + "iopub.status.idle": "2024-02-08T05:10:40.145476Z", + "shell.execute_reply": "2024-02-08T05:10:40.144960Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.680597Z", - "iopub.status.busy": "2024-02-08T04:24:11.680276Z", - "iopub.status.idle": "2024-02-08T04:24:11.714901Z", - "shell.execute_reply": "2024-02-08T04:24:11.714446Z" + "iopub.execute_input": "2024-02-08T05:10:40.147667Z", + "iopub.status.busy": "2024-02-08T05:10:40.147230Z", + "iopub.status.idle": "2024-02-08T05:10:40.182705Z", + "shell.execute_reply": "2024-02-08T05:10:40.182059Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:11.716854Z", - "iopub.status.busy": "2024-02-08T04:24:11.716532Z", - "iopub.status.idle": "2024-02-08T04:24:13.336051Z", - "shell.execute_reply": "2024-02-08T04:24:13.335483Z" + "iopub.execute_input": "2024-02-08T05:10:40.184847Z", + "iopub.status.busy": "2024-02-08T05:10:40.184645Z", + "iopub.status.idle": "2024-02-08T05:10:41.854206Z", + "shell.execute_reply": "2024-02-08T05:10:41.853603Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.338787Z", - "iopub.status.busy": "2024-02-08T04:24:13.338148Z", - "iopub.status.idle": "2024-02-08T04:24:13.354146Z", - "shell.execute_reply": "2024-02-08T04:24:13.353618Z" + "iopub.execute_input": "2024-02-08T05:10:41.856606Z", + "iopub.status.busy": "2024-02-08T05:10:41.856141Z", + "iopub.status.idle": "2024-02-08T05:10:41.872507Z", + "shell.execute_reply": "2024-02-08T05:10:41.872075Z" } }, "outputs": [ @@ -834,10 +834,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.356249Z", - "iopub.status.busy": "2024-02-08T04:24:13.355807Z", - "iopub.status.idle": "2024-02-08T04:24:13.361997Z", - "shell.execute_reply": "2024-02-08T04:24:13.361579Z" + "iopub.execute_input": "2024-02-08T05:10:41.874528Z", + "iopub.status.busy": "2024-02-08T05:10:41.874207Z", + "iopub.status.idle": "2024-02-08T05:10:41.880746Z", + "shell.execute_reply": "2024-02-08T05:10:41.880305Z" } }, "outputs": [ @@ -941,10 +941,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.363802Z", - "iopub.status.busy": "2024-02-08T04:24:13.363629Z", - "iopub.status.idle": "2024-02-08T04:24:13.369247Z", - "shell.execute_reply": "2024-02-08T04:24:13.368746Z" + "iopub.execute_input": "2024-02-08T05:10:41.882767Z", + "iopub.status.busy": "2024-02-08T05:10:41.882376Z", + "iopub.status.idle": "2024-02-08T05:10:41.888174Z", + "shell.execute_reply": "2024-02-08T05:10:41.887623Z" } }, "outputs": [ @@ -1011,10 +1011,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.371215Z", - "iopub.status.busy": "2024-02-08T04:24:13.370889Z", - "iopub.status.idle": "2024-02-08T04:24:13.380285Z", - "shell.execute_reply": "2024-02-08T04:24:13.379818Z" + "iopub.execute_input": "2024-02-08T05:10:41.890106Z", + "iopub.status.busy": "2024-02-08T05:10:41.889803Z", + "iopub.status.idle": "2024-02-08T05:10:41.899337Z", + "shell.execute_reply": "2024-02-08T05:10:41.898883Z" } }, "outputs": [ @@ -1187,10 +1187,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.382328Z", - "iopub.status.busy": "2024-02-08T04:24:13.382008Z", - "iopub.status.idle": "2024-02-08T04:24:13.390350Z", - "shell.execute_reply": "2024-02-08T04:24:13.389806Z" + "iopub.execute_input": "2024-02-08T05:10:41.901301Z", + "iopub.status.busy": "2024-02-08T05:10:41.901001Z", + "iopub.status.idle": "2024-02-08T05:10:41.910010Z", + "shell.execute_reply": "2024-02-08T05:10:41.909474Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.392298Z", - "iopub.status.busy": "2024-02-08T04:24:13.392122Z", - "iopub.status.idle": "2024-02-08T04:24:13.398813Z", - "shell.execute_reply": "2024-02-08T04:24:13.398333Z" + "iopub.execute_input": "2024-02-08T05:10:41.912045Z", + "iopub.status.busy": "2024-02-08T05:10:41.911721Z", + "iopub.status.idle": "2024-02-08T05:10:41.918528Z", + "shell.execute_reply": "2024-02-08T05:10:41.917933Z" }, "scrolled": true }, @@ -1434,10 +1434,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:13.400635Z", - "iopub.status.busy": "2024-02-08T04:24:13.400463Z", - "iopub.status.idle": "2024-02-08T04:24:13.409484Z", - "shell.execute_reply": "2024-02-08T04:24:13.409030Z" + "iopub.execute_input": "2024-02-08T05:10:41.920453Z", + "iopub.status.busy": "2024-02-08T05:10:41.920278Z", + "iopub.status.idle": "2024-02-08T05:10:41.929219Z", + "shell.execute_reply": "2024-02-08T05:10:41.928680Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index c71974eb9..6558306c0 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:15.765748Z", - "iopub.status.busy": "2024-02-08T04:24:15.765574Z", - "iopub.status.idle": "2024-02-08T04:24:16.795070Z", - "shell.execute_reply": "2024-02-08T04:24:16.794525Z" + "iopub.execute_input": "2024-02-08T05:10:44.644313Z", + "iopub.status.busy": "2024-02-08T05:10:44.643965Z", + "iopub.status.idle": "2024-02-08T05:10:45.688616Z", + "shell.execute_reply": "2024-02-08T05:10:45.688118Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:16.797646Z", - "iopub.status.busy": "2024-02-08T04:24:16.797376Z", - "iopub.status.idle": "2024-02-08T04:24:16.830922Z", - "shell.execute_reply": "2024-02-08T04:24:16.830494Z" + "iopub.execute_input": "2024-02-08T05:10:45.691313Z", + "iopub.status.busy": "2024-02-08T05:10:45.690729Z", + "iopub.status.idle": "2024-02-08T05:10:45.724820Z", + "shell.execute_reply": "2024-02-08T05:10:45.724373Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:16.833228Z", - "iopub.status.busy": "2024-02-08T04:24:16.832829Z", - "iopub.status.idle": "2024-02-08T04:24:17.007557Z", - "shell.execute_reply": "2024-02-08T04:24:17.007108Z" + "iopub.execute_input": "2024-02-08T05:10:45.727160Z", + "iopub.status.busy": "2024-02-08T05:10:45.726886Z", + "iopub.status.idle": "2024-02-08T05:10:46.053280Z", + "shell.execute_reply": "2024-02-08T05:10:46.052685Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.009572Z", - "iopub.status.busy": "2024-02-08T04:24:17.009249Z", - "iopub.status.idle": "2024-02-08T04:24:17.013364Z", - "shell.execute_reply": "2024-02-08T04:24:17.012916Z" + "iopub.execute_input": "2024-02-08T05:10:46.055274Z", + "iopub.status.busy": "2024-02-08T05:10:46.055096Z", + "iopub.status.idle": "2024-02-08T05:10:46.059483Z", + "shell.execute_reply": "2024-02-08T05:10:46.059061Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.015436Z", - "iopub.status.busy": "2024-02-08T04:24:17.015052Z", - "iopub.status.idle": "2024-02-08T04:24:17.022947Z", - "shell.execute_reply": "2024-02-08T04:24:17.022532Z" + "iopub.execute_input": "2024-02-08T05:10:46.061356Z", + "iopub.status.busy": "2024-02-08T05:10:46.061180Z", + "iopub.status.idle": "2024-02-08T05:10:46.068998Z", + "shell.execute_reply": "2024-02-08T05:10:46.068462Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.025093Z", - "iopub.status.busy": "2024-02-08T04:24:17.024762Z", - "iopub.status.idle": "2024-02-08T04:24:17.027322Z", - "shell.execute_reply": "2024-02-08T04:24:17.026869Z" + "iopub.execute_input": "2024-02-08T05:10:46.071329Z", + "iopub.status.busy": "2024-02-08T05:10:46.070934Z", + "iopub.status.idle": "2024-02-08T05:10:46.073569Z", + "shell.execute_reply": "2024-02-08T05:10:46.073034Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:17.029290Z", - "iopub.status.busy": "2024-02-08T04:24:17.028919Z", - "iopub.status.idle": "2024-02-08T04:24:19.950389Z", - "shell.execute_reply": "2024-02-08T04:24:19.949778Z" + "iopub.execute_input": "2024-02-08T05:10:46.075693Z", + "iopub.status.busy": "2024-02-08T05:10:46.075311Z", + "iopub.status.idle": "2024-02-08T05:10:49.069168Z", + "shell.execute_reply": "2024-02-08T05:10:49.068529Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:19.952956Z", - "iopub.status.busy": "2024-02-08T04:24:19.952760Z", - "iopub.status.idle": "2024-02-08T04:24:19.961906Z", - "shell.execute_reply": "2024-02-08T04:24:19.961482Z" + "iopub.execute_input": "2024-02-08T05:10:49.072035Z", + "iopub.status.busy": "2024-02-08T05:10:49.071566Z", + "iopub.status.idle": "2024-02-08T05:10:49.081166Z", + "shell.execute_reply": "2024-02-08T05:10:49.080626Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:19.963757Z", - "iopub.status.busy": "2024-02-08T04:24:19.963583Z", - "iopub.status.idle": "2024-02-08T04:24:21.654271Z", - "shell.execute_reply": "2024-02-08T04:24:21.653591Z" + "iopub.execute_input": "2024-02-08T05:10:49.083306Z", + "iopub.status.busy": "2024-02-08T05:10:49.082938Z", + "iopub.status.idle": "2024-02-08T05:10:50.854706Z", + "shell.execute_reply": "2024-02-08T05:10:50.854101Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.658232Z", - "iopub.status.busy": "2024-02-08T04:24:21.656789Z", - "iopub.status.idle": "2024-02-08T04:24:21.678656Z", - "shell.execute_reply": "2024-02-08T04:24:21.678162Z" + "iopub.execute_input": "2024-02-08T05:10:50.858580Z", + "iopub.status.busy": "2024-02-08T05:10:50.857300Z", + "iopub.status.idle": "2024-02-08T05:10:50.879437Z", + "shell.execute_reply": "2024-02-08T05:10:50.878954Z" }, "scrolled": true }, @@ -604,10 +604,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.682071Z", - "iopub.status.busy": "2024-02-08T04:24:21.681164Z", - "iopub.status.idle": "2024-02-08T04:24:21.692054Z", - "shell.execute_reply": "2024-02-08T04:24:21.691557Z" + "iopub.execute_input": "2024-02-08T05:10:50.882938Z", + "iopub.status.busy": "2024-02-08T05:10:50.882032Z", + "iopub.status.idle": "2024-02-08T05:10:50.893041Z", + "shell.execute_reply": "2024-02-08T05:10:50.892562Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.695395Z", - "iopub.status.busy": "2024-02-08T04:24:21.694500Z", - "iopub.status.idle": "2024-02-08T04:24:21.706939Z", - "shell.execute_reply": "2024-02-08T04:24:21.706457Z" + "iopub.execute_input": "2024-02-08T05:10:50.896506Z", + "iopub.status.busy": "2024-02-08T05:10:50.895585Z", + "iopub.status.idle": "2024-02-08T05:10:50.908611Z", + "shell.execute_reply": "2024-02-08T05:10:50.908107Z" } }, "outputs": [ @@ -843,10 +843,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.710338Z", - "iopub.status.busy": "2024-02-08T04:24:21.709437Z", - "iopub.status.idle": "2024-02-08T04:24:21.720293Z", - "shell.execute_reply": "2024-02-08T04:24:21.719792Z" + "iopub.execute_input": "2024-02-08T05:10:50.912109Z", + "iopub.status.busy": "2024-02-08T05:10:50.911187Z", + "iopub.status.idle": "2024-02-08T05:10:50.922679Z", + "shell.execute_reply": "2024-02-08T05:10:50.922154Z" } }, "outputs": [ @@ -960,10 +960,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.723706Z", - "iopub.status.busy": "2024-02-08T04:24:21.722805Z", - "iopub.status.idle": "2024-02-08T04:24:21.735120Z", - "shell.execute_reply": "2024-02-08T04:24:21.734643Z" + "iopub.execute_input": "2024-02-08T05:10:50.926355Z", + "iopub.status.busy": "2024-02-08T05:10:50.925435Z", + "iopub.status.idle": "2024-02-08T05:10:50.938703Z", + "shell.execute_reply": "2024-02-08T05:10:50.938205Z" } }, "outputs": [ @@ -1074,10 +1074,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.738473Z", - "iopub.status.busy": "2024-02-08T04:24:21.737583Z", - "iopub.status.idle": "2024-02-08T04:24:21.746396Z", - "shell.execute_reply": "2024-02-08T04:24:21.745995Z" + "iopub.execute_input": "2024-02-08T05:10:50.942221Z", + "iopub.status.busy": "2024-02-08T05:10:50.941325Z", + "iopub.status.idle": "2024-02-08T05:10:50.949786Z", + "shell.execute_reply": "2024-02-08T05:10:50.949253Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.748522Z", - "iopub.status.busy": "2024-02-08T04:24:21.748205Z", - "iopub.status.idle": "2024-02-08T04:24:21.754462Z", - "shell.execute_reply": "2024-02-08T04:24:21.753990Z" + "iopub.execute_input": "2024-02-08T05:10:50.952037Z", + "iopub.status.busy": "2024-02-08T05:10:50.951863Z", + "iopub.status.idle": "2024-02-08T05:10:50.959214Z", + "shell.execute_reply": "2024-02-08T05:10:50.958580Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:21.756270Z", - "iopub.status.busy": "2024-02-08T04:24:21.756105Z", - "iopub.status.idle": "2024-02-08T04:24:21.762342Z", - "shell.execute_reply": "2024-02-08T04:24:21.761938Z" + "iopub.execute_input": "2024-02-08T05:10:50.961632Z", + "iopub.status.busy": "2024-02-08T05:10:50.961204Z", + "iopub.status.idle": "2024-02-08T05:10:50.967968Z", + "shell.execute_reply": "2024-02-08T05:10:50.967526Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 3c0a98ad6..c52d49783 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -706,7 +706,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'lost_or_stolen_phone', 'cancel_transfer', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_about_to_expire', 'change_pin', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies'}
+Classes: {'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire'}
 

Let’s view the i-th example in the dataset:

@@ -753,43 +753,43 @@

2. Load and format the text dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1523,7 +1523,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index a343bc01a..cde728b85 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:24.152987Z", - "iopub.status.busy": "2024-02-08T04:24:24.152814Z", - "iopub.status.idle": "2024-02-08T04:24:26.979321Z", - "shell.execute_reply": "2024-02-08T04:24:26.978774Z" + "iopub.execute_input": "2024-02-08T05:10:53.675209Z", + "iopub.status.busy": "2024-02-08T05:10:53.675032Z", + "iopub.status.idle": "2024-02-08T05:10:56.695488Z", + "shell.execute_reply": "2024-02-08T05:10:56.694928Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:26.981942Z", - "iopub.status.busy": "2024-02-08T04:24:26.981501Z", - "iopub.status.idle": "2024-02-08T04:24:26.984680Z", - "shell.execute_reply": "2024-02-08T04:24:26.984235Z" + "iopub.execute_input": "2024-02-08T05:10:56.698110Z", + "iopub.status.busy": "2024-02-08T05:10:56.697686Z", + "iopub.status.idle": "2024-02-08T05:10:56.700966Z", + "shell.execute_reply": "2024-02-08T05:10:56.700494Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:26.986618Z", - "iopub.status.busy": "2024-02-08T04:24:26.986247Z", - "iopub.status.idle": "2024-02-08T04:24:26.989286Z", - "shell.execute_reply": "2024-02-08T04:24:26.988817Z" + "iopub.execute_input": "2024-02-08T05:10:56.702836Z", + "iopub.status.busy": "2024-02-08T05:10:56.702650Z", + "iopub.status.idle": "2024-02-08T05:10:56.705591Z", + "shell.execute_reply": "2024-02-08T05:10:56.705163Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:26.991314Z", - "iopub.status.busy": "2024-02-08T04:24:26.990931Z", - "iopub.status.idle": "2024-02-08T04:24:27.051017Z", - "shell.execute_reply": "2024-02-08T04:24:27.050487Z" + "iopub.execute_input": "2024-02-08T05:10:56.707443Z", + "iopub.status.busy": "2024-02-08T05:10:56.707266Z", + "iopub.status.idle": "2024-02-08T05:10:56.857130Z", + "shell.execute_reply": "2024-02-08T05:10:56.856557Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:27.053038Z", - "iopub.status.busy": "2024-02-08T04:24:27.052859Z", - "iopub.status.idle": "2024-02-08T04:24:27.056268Z", - "shell.execute_reply": "2024-02-08T04:24:27.055786Z" + "iopub.execute_input": "2024-02-08T05:10:56.859322Z", + "iopub.status.busy": "2024-02-08T05:10:56.858985Z", + "iopub.status.idle": "2024-02-08T05:10:56.862842Z", + "shell.execute_reply": "2024-02-08T05:10:56.862386Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'cancel_transfer', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_about_to_expire', 'change_pin', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies'}\n" + "Classes: {'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:27.058211Z", - "iopub.status.busy": "2024-02-08T04:24:27.057883Z", - "iopub.status.idle": "2024-02-08T04:24:27.060749Z", - "shell.execute_reply": "2024-02-08T04:24:27.060214Z" + "iopub.execute_input": "2024-02-08T05:10:56.864824Z", + "iopub.status.busy": "2024-02-08T05:10:56.864458Z", + "iopub.status.idle": "2024-02-08T05:10:56.867610Z", + "shell.execute_reply": "2024-02-08T05:10:56.867073Z" } }, "outputs": [ @@ -365,17 +365,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:27.062782Z", - "iopub.status.busy": "2024-02-08T04:24:27.062466Z", - "iopub.status.idle": "2024-02-08T04:24:31.950077Z", - "shell.execute_reply": "2024-02-08T04:24:31.949442Z" + "iopub.execute_input": "2024-02-08T05:10:56.869601Z", + "iopub.status.busy": "2024-02-08T05:10:56.869297Z", + "iopub.status.idle": "2024-02-08T05:11:02.417087Z", + "shell.execute_reply": "2024-02-08T05:11:02.416542Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ba2de796b6ed4818b29822ffacaae295", + "model_id": "1561e5b2c3da47e99d3e688471792ec4", "version_major": 2, "version_minor": 0 }, @@ -389,7 +389,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4574bf2f2f8949f3b77cc1ab937f6920", + "model_id": "a4eb983299e24e20b98bcf4edf3d6aaf", "version_major": 2, "version_minor": 0 }, @@ -403,7 +403,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "10b5d7ddf6054afe956c23786e03c318", + "model_id": "c9439b97c3f0411e89621bacc52530c7", "version_major": 2, "version_minor": 0 }, @@ -417,7 +417,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f9c8133b87d44842b1e686734c9decb9", + "model_id": "c97f0e01e42646d9806c02b4b3648039", "version_major": 2, "version_minor": 0 }, @@ -431,7 +431,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b0b654a2f5d4df683b8c7db2f3f5510", + "model_id": "68e65ef8220340c6ba1e341cc09d6c20", "version_major": 2, "version_minor": 0 }, @@ -445,7 +445,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7019ca693bd54e7ab35a34a117d0820f", + "model_id": "52d773e347a940bc9a6cb1f89db261e4", "version_major": 2, "version_minor": 0 }, @@ -459,7 +459,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e56eab34ca074b7fbf5139bd0c1f2101", + "model_id": "3da1dc1bde4241479e3e0b4387114890", "version_major": 2, "version_minor": 0 }, @@ -521,10 +521,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:31.952979Z", - "iopub.status.busy": "2024-02-08T04:24:31.952531Z", - "iopub.status.idle": "2024-02-08T04:24:32.835570Z", - "shell.execute_reply": "2024-02-08T04:24:32.835003Z" + "iopub.execute_input": "2024-02-08T05:11:02.419508Z", + "iopub.status.busy": "2024-02-08T05:11:02.419310Z", + "iopub.status.idle": "2024-02-08T05:11:03.316290Z", + "shell.execute_reply": "2024-02-08T05:11:03.315674Z" }, "scrolled": true }, @@ -556,10 +556,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:32.838391Z", - "iopub.status.busy": "2024-02-08T04:24:32.838002Z", - "iopub.status.idle": "2024-02-08T04:24:32.840844Z", - "shell.execute_reply": "2024-02-08T04:24:32.840362Z" + "iopub.execute_input": "2024-02-08T05:11:03.319079Z", + "iopub.status.busy": "2024-02-08T05:11:03.318700Z", + "iopub.status.idle": "2024-02-08T05:11:03.321774Z", + "shell.execute_reply": "2024-02-08T05:11:03.321271Z" } }, "outputs": [], @@ -579,10 +579,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:32.843133Z", - "iopub.status.busy": "2024-02-08T04:24:32.842775Z", - "iopub.status.idle": "2024-02-08T04:24:34.335068Z", - "shell.execute_reply": "2024-02-08T04:24:34.334411Z" + "iopub.execute_input": "2024-02-08T05:11:03.324095Z", + "iopub.status.busy": "2024-02-08T05:11:03.323754Z", + "iopub.status.idle": "2024-02-08T05:11:04.915071Z", + "shell.execute_reply": "2024-02-08T05:11:04.914354Z" }, "scrolled": true }, @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.338885Z", - "iopub.status.busy": "2024-02-08T04:24:34.337574Z", - "iopub.status.idle": "2024-02-08T04:24:34.360089Z", - "shell.execute_reply": "2024-02-08T04:24:34.359580Z" + "iopub.execute_input": "2024-02-08T05:11:04.919293Z", + "iopub.status.busy": "2024-02-08T05:11:04.917907Z", + "iopub.status.idle": "2024-02-08T05:11:04.942137Z", + "shell.execute_reply": "2024-02-08T05:11:04.941575Z" }, "scrolled": true }, @@ -756,10 +756,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.363544Z", - "iopub.status.busy": "2024-02-08T04:24:34.362642Z", - "iopub.status.idle": "2024-02-08T04:24:34.373982Z", - "shell.execute_reply": "2024-02-08T04:24:34.373506Z" + "iopub.execute_input": "2024-02-08T05:11:04.946098Z", + "iopub.status.busy": "2024-02-08T05:11:04.945114Z", + "iopub.status.idle": "2024-02-08T05:11:04.957782Z", + "shell.execute_reply": "2024-02-08T05:11:04.957252Z" }, "scrolled": true }, @@ -869,10 +869,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.377441Z", - "iopub.status.busy": "2024-02-08T04:24:34.376515Z", - "iopub.status.idle": "2024-02-08T04:24:34.382932Z", - "shell.execute_reply": "2024-02-08T04:24:34.382450Z" + "iopub.execute_input": "2024-02-08T05:11:04.961569Z", + "iopub.status.busy": "2024-02-08T05:11:04.960621Z", + "iopub.status.idle": "2024-02-08T05:11:04.967520Z", + "shell.execute_reply": "2024-02-08T05:11:04.967014Z" } }, "outputs": [ @@ -910,10 +910,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.386293Z", - "iopub.status.busy": "2024-02-08T04:24:34.385389Z", - "iopub.status.idle": "2024-02-08T04:24:34.394603Z", - "shell.execute_reply": "2024-02-08T04:24:34.394127Z" + "iopub.execute_input": "2024-02-08T05:11:04.971133Z", + "iopub.status.busy": "2024-02-08T05:11:04.970211Z", + "iopub.status.idle": "2024-02-08T05:11:04.978788Z", + "shell.execute_reply": "2024-02-08T05:11:04.978188Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.396961Z", - "iopub.status.busy": "2024-02-08T04:24:34.396785Z", - "iopub.status.idle": "2024-02-08T04:24:34.403612Z", - "shell.execute_reply": "2024-02-08T04:24:34.403006Z" + "iopub.execute_input": "2024-02-08T05:11:04.982203Z", + "iopub.status.busy": "2024-02-08T05:11:04.981338Z", + "iopub.status.idle": "2024-02-08T05:11:04.990596Z", + "shell.execute_reply": "2024-02-08T05:11:04.990084Z" } }, "outputs": [ @@ -1116,10 +1116,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.405547Z", - "iopub.status.busy": "2024-02-08T04:24:34.405371Z", - "iopub.status.idle": "2024-02-08T04:24:34.411086Z", - "shell.execute_reply": "2024-02-08T04:24:34.410666Z" + "iopub.execute_input": "2024-02-08T05:11:04.993201Z", + "iopub.status.busy": "2024-02-08T05:11:04.993026Z", + "iopub.status.idle": "2024-02-08T05:11:05.000226Z", + "shell.execute_reply": "2024-02-08T05:11:04.999728Z" } }, "outputs": [ @@ -1227,10 +1227,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.413062Z", - "iopub.status.busy": "2024-02-08T04:24:34.412900Z", - "iopub.status.idle": "2024-02-08T04:24:34.420696Z", - "shell.execute_reply": "2024-02-08T04:24:34.420267Z" + "iopub.execute_input": "2024-02-08T05:11:05.002754Z", + "iopub.status.busy": "2024-02-08T05:11:05.002368Z", + "iopub.status.idle": "2024-02-08T05:11:05.011438Z", + "shell.execute_reply": "2024-02-08T05:11:05.010975Z" } }, "outputs": [ @@ -1341,10 +1341,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.422520Z", - "iopub.status.busy": "2024-02-08T04:24:34.422362Z", - "iopub.status.idle": "2024-02-08T04:24:34.427469Z", - "shell.execute_reply": "2024-02-08T04:24:34.427041Z" + "iopub.execute_input": "2024-02-08T05:11:05.013621Z", + "iopub.status.busy": "2024-02-08T05:11:05.013249Z", + "iopub.status.idle": "2024-02-08T05:11:05.018790Z", + "shell.execute_reply": "2024-02-08T05:11:05.018344Z" } }, "outputs": [ @@ -1412,10 +1412,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.429343Z", - "iopub.status.busy": "2024-02-08T04:24:34.429011Z", - "iopub.status.idle": "2024-02-08T04:24:34.434283Z", - "shell.execute_reply": "2024-02-08T04:24:34.433845Z" + "iopub.execute_input": "2024-02-08T05:11:05.020936Z", + "iopub.status.busy": "2024-02-08T05:11:05.020551Z", + "iopub.status.idle": "2024-02-08T05:11:05.025962Z", + "shell.execute_reply": "2024-02-08T05:11:05.025517Z" } }, "outputs": [ @@ -1494,10 +1494,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.436413Z", - "iopub.status.busy": "2024-02-08T04:24:34.435990Z", - "iopub.status.idle": "2024-02-08T04:24:34.439751Z", - "shell.execute_reply": "2024-02-08T04:24:34.439222Z" + "iopub.execute_input": "2024-02-08T05:11:05.027877Z", + "iopub.status.busy": "2024-02-08T05:11:05.027706Z", + "iopub.status.idle": "2024-02-08T05:11:05.031250Z", + "shell.execute_reply": "2024-02-08T05:11:05.030709Z" } }, "outputs": [ @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:34.441782Z", - "iopub.status.busy": "2024-02-08T04:24:34.441474Z", - "iopub.status.idle": "2024-02-08T04:24:34.446432Z", - "shell.execute_reply": "2024-02-08T04:24:34.445983Z" + "iopub.execute_input": "2024-02-08T05:11:05.033433Z", + "iopub.status.busy": "2024-02-08T05:11:05.033066Z", + "iopub.status.idle": "2024-02-08T05:11:05.038420Z", + "shell.execute_reply": "2024-02-08T05:11:05.037871Z" }, "nbsphinx": "hidden" }, @@ -1598,7 +1598,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05c4c20c0f414059b04fba7c3e39c36a": { + "021198b4e2184745ad8e9d340795e5f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "034f8b8fe0644b18ac5cbfb4d3584f61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1613,15 +1631,205 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_65571ac378ca4e29b1c5fe7afe007ea7", + "layout": "IPY_MODEL_8df0484cfa9b424ab22b8a1849e82c2a", "placeholder": "​", - "style": "IPY_MODEL_a3708e09caf14f2d8d4e2a5dfa2171f1", + "style": "IPY_MODEL_20efd0ad14644e4cb0dce36ce1985cb2", "tabbable": null, "tooltip": null, - "value": " 29.0/29.0 [00:00<00:00, 5.25kB/s]" + "value": "README.md: 100%" + } + }, + "0a678dbddd0844d29b4063456c21ae5e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0bf57d0b8f494dc984ab26b4aec70f1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "150be0f12ac94160b1b133e904ecb773": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1561e5b2c3da47e99d3e688471792ec4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e8c173fbbec04416b425b2af5acba601", + "IPY_MODEL_4cb3e235fac24f308be3f8c0c953be68", + "IPY_MODEL_ed24934c745b4d7a8ee40e838fca4dc7" + ], + "layout": "IPY_MODEL_df7c804ca61045d6b8e804dc0c5237ef", + "tabbable": null, + "tooltip": null + } + }, + "15bdf18d041041fab23473fab02e001b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "179d5095bde749efa193ed2f47c8ec70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e67841585e944b4abee51a14c3f4974b", + "placeholder": "​", + "style": "IPY_MODEL_0bf57d0b8f494dc984ab26b4aec70f1b", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "20efd0ad14644e4cb0dce36ce1985cb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "061f9097694c43129b356c9dda2f5f71": { + "2b7da3f795724596a39004d4ad4e0875": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "32ec2141a8d34ff39c02c5c6dc5d8784": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1674,25 +1882,192 @@ "width": null } }, - "075b4af9c1314f79ae437f8439d5f210": { + "339dbdd8b9c14a5bae2e59d4b15170dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "33ff472c944a4e3fa09cbf5dff937efd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d4c7898a9054d71a0621a2241bf701e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3d74814d8dd046219675c5755734d26c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3da1dc1bde4241479e3e0b4387114890": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3383123e17340c2ae53e922a8e3b50a", + "IPY_MODEL_8e74cf17d07e42bd84667d021af6d281", + "IPY_MODEL_f55ce828192342cfa65c32e045d9377c" + ], + "layout": "IPY_MODEL_8ccf73de3ba640f4a80ddb7927580eee", + "tabbable": null, + "tooltip": null + } + }, + "3dd154ef46e44fad8478b9f32ddcb835": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "473968c7b6654e23a573dd157d6f1f94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b91bb0fea9e04d84980466addd8c63d7", + "placeholder": "​", + "style": "IPY_MODEL_339dbdd8b9c14a5bae2e59d4b15170dc", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "4cb3e235fac24f308be3f8c0c953be68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a678dbddd0844d29b4063456c21ae5e", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f332c40a8cc84586aad25981b95f6ba3", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "4fa6b9dd27e541b896fc7a803227f368": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52c1fdcd87c74502b3bd12991ce27b5f", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c87beb0959be477b8c92c1b99b66a07c", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 } }, - "0b08a7a68f914ed387d4aaa62ab2abd8": { + "52c1fdcd87c74502b3bd12991ce27b5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1745,7 +2120,7 @@ "width": null } }, - "10b5d7ddf6054afe956c23786e03c318": { + "52d773e347a940bc9a6cb1f89db261e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1760,16 +2135,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_79138260b27342f195f8b54c96dd483c", - "IPY_MODEL_cd554dcc01314a668bf9d656cce5bd93", - "IPY_MODEL_5c6eb32d6a1a4e98ae8e19843d60b9f7" + "IPY_MODEL_8923087f37a9438fade14e61742eedcb", + "IPY_MODEL_8d85a7f40fd44e318667c323829a686b", + "IPY_MODEL_d6021b0797cf47c48c12d441689b6ece" ], - "layout": "IPY_MODEL_dde8fea970f144168dd91614ad770704", + "layout": "IPY_MODEL_c7ac1f873cad47bb99c943d296a08dc1", "tabbable": null, "tooltip": null } }, - "12278ade8d774dda8b83ef62c46e7bf0": { + "53977efabf0e4fd1ac2cfbd8b9299909": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1822,25 +2197,30 @@ "width": null } }, - "16db3ef2563c428db07cc995720fd60b": { + "5421452619ca43e0ab75f9312bb9a823": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d6d6705b9b5043ab90499b9b2a133895", + "placeholder": "​", + "style": "IPY_MODEL_3d4c7898a9054d71a0621a2241bf701e", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 381kB/s]" } }, - "195f817102d9402794bf9079cb339a90": { + "57d8181ffdd349059b0f4e0d54bc0cb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1893,59 +2273,33 @@ "width": null } }, - "19cb55bf36d049979bad585cd893d6f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1bf632e19e5a41d9b6c1dbf693c60025": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "22882672743e4499852bcd1cfd04cb6b": { + "60595731b6234aa1b1eb99a96951403c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d2020abfbe0d42568b67dd48deaf5771", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_33ff472c944a4e3fa09cbf5dff937efd", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "25b6f96ef73046acb382e06eed95a9b0": { + "630fb1d285cc43858751a7ed03e13e05": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1998,49 +2352,31 @@ "width": null } }, - "28dc38fb62db403e916cf1901e0eac60": { + "68e65ef8220340c6ba1e341cc09d6c20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b43cc3cd831e41d5bd0e2b797f183eb9", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2940ba312bed4cf1aff01307ea6657aa", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7a308c84baf247668683c8cebafe5c45", + "IPY_MODEL_60595731b6234aa1b1eb99a96951403c", + "IPY_MODEL_7f8db454447c49a99d58e18d9e2dc015" + ], + "layout": "IPY_MODEL_8af64d45919a45faa0a9ae0ba2113bfd", "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "2940ba312bed4cf1aff01307ea6657aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "2a8e628f50e848f09a59bc9583fccd69": { + "72af7d9b06864cebac6ae80818fd6e87": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2093,7 +2429,7 @@ "width": null } }, - "33fb171f948b4fbebe522e82a8f635d1": { + "75d2d192ce0a455390c4c1bf23fd90da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2108,65 +2444,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5415141935c44abc987ba27b640a2433", + "layout": "IPY_MODEL_b5fd00bb16154423b6b98a26d77c3bfd", "placeholder": "​", - "style": "IPY_MODEL_80342bdf063c4c4fb28c363f53c55644", + "style": "IPY_MODEL_9ac05e21bf774897a30f0e7c05b5f113", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": " 665/665 [00:00<00:00, 118kB/s]" } }, - "3573ea7c7abb4e7486cbbf4c00dbb4db": { + "7a308c84baf247668683c8cebafe5c45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_99ff95ff62df4df5a3136dbd6ff0ae78", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cf499178cb734c8e8c234b0739f04a66", + "layout": "IPY_MODEL_87fd54e4e0464a2f821e735ff0611334", + "placeholder": "​", + "style": "IPY_MODEL_ef96e30fab324207af7282262beb8867", "tabbable": null, "tooltip": null, - "value": 29.0 - } - }, - "3b0b654a2f5d4df683b8c7db2f3f5510": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fdc9e70ed67143f387275b16b30cbda3", - "IPY_MODEL_6fe5933973794b19a7f9a80e2130021a", - "IPY_MODEL_4125b59d7dc448f1853daa7aa3d93360" - ], - "layout": "IPY_MODEL_aa3f806e308e4ce2989b693846b4b968", - "tabbable": null, - "tooltip": null + "value": "tokenizer.json: 100%" } }, - "4125b59d7dc448f1853daa7aa3d93360": { + "7f8db454447c49a99d58e18d9e2dc015": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2181,110 +2490,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a309f785c95443bba289aa8e622ca78e", + "layout": "IPY_MODEL_dd56037ea9b6486b9a8462712c62c9be", "placeholder": "​", - "style": "IPY_MODEL_ef691929a94f415c97369477aab5cd71", + "style": "IPY_MODEL_896ee48a8fd545a095b7fce02f5bfc9e", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 30.5MB/s]" + "value": " 466k/466k [00:00<00:00, 3.48MB/s]" } }, - "4574bf2f2f8949f3b77cc1ab937f6920": { + "855f54aac4c04821a51e3f5456d1068a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eafeb34886b74034a6acf024f5bc7361", - "IPY_MODEL_eafee4a7753b4b9698f2cc1a46fb2fe4", - "IPY_MODEL_fad1a62376234d9b8983f0689863a88c" - ], - "layout": "IPY_MODEL_77c63cc5f6434b90ad2d4f8c110acc68", - "tabbable": null, - "tooltip": null - } - }, - "51a821a454224f29b345ad1b44db7f93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "52fe4fe74b7f49a8b033e42c924759dc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72af7d9b06864cebac6ae80818fd6e87", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_eca03b5e8a384f24a8997238a61a9bde", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "5415141935c44abc987ba27b640a2433": { + "87fd54e4e0464a2f821e735ff0611334": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2337,7 +2577,30 @@ "width": null } }, - "548b8c27626b464d80039345e2d114cc": { + "8923087f37a9438fade14e61742eedcb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32ec2141a8d34ff39c02c5c6dc5d8784", + "placeholder": "​", + "style": "IPY_MODEL_2b7da3f795724596a39004d4ad4e0875", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "896ee48a8fd545a095b7fce02f5bfc9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2355,7 +2618,7 @@ "text_color": null } }, - "59845ff1092b4af19dcd613cab1e8a6d": { + "8af64d45919a45faa0a9ae0ba2113bfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2408,25 +2671,7 @@ "width": null } }, - "5b3f834098234540932bbc4f5a823968": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5c6eb32d6a1a4e98ae8e19843d60b9f7": { + "8bb5868373be4fb09ccacc52f8bb437b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2441,68 +2686,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c06dccdf657d431b821c7e05c56556d9", + "layout": "IPY_MODEL_c8e970c8f3b940708a6fd1296bb49f78", "placeholder": "​", - "style": "IPY_MODEL_1bf632e19e5a41d9b6c1dbf693c60025", + "style": "IPY_MODEL_a7fd97981111428eba3d4c09a94bfe9c", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 126kB/s]" - } - }, - "65571ac378ca4e29b1c5fe7afe007ea7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 54.2M/54.2M [00:00<00:00, 234MB/s]" } }, - "66c0667e63fe4f78b640204ef49db3f9": { + "8ccf73de3ba640f4a80ddb7927580eee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2555,30 +2747,7 @@ "width": null } }, - "6f991a9a36cb43d1a3a7d481a665d9b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b93f2d32038140118f50fe537e638b84", - "placeholder": "​", - "style": "IPY_MODEL_19cb55bf36d049979bad585cd893d6f1", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "6fe5933973794b19a7f9a80e2130021a": { + "8d85a7f40fd44e318667c323829a686b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2594,41 +2763,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_195f817102d9402794bf9079cb339a90", - "max": 466062.0, + "layout": "IPY_MODEL_9f573602185c474bb663c3946b8371c6", + "max": 29.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_22882672743e4499852bcd1cfd04cb6b", + "style": "IPY_MODEL_bd6009a6310e4144a110d0abce2d516c", "tabbable": null, "tooltip": null, - "value": 466062.0 - } - }, - "7019ca693bd54e7ab35a34a117d0820f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_33fb171f948b4fbebe522e82a8f635d1", - "IPY_MODEL_3573ea7c7abb4e7486cbbf4c00dbb4db", - "IPY_MODEL_05c4c20c0f414059b04fba7c3e39c36a" - ], - "layout": "IPY_MODEL_d4820887fab34d7aa5d017749535ca5a", - "tabbable": null, - "tooltip": null + "value": 29.0 } }, - "719a237222b54690a4fad2258458f5db": { + "8df0484cfa9b424ab22b8a1849e82c2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2681,7 +2826,7 @@ "width": null } }, - "727618f51486484ebf25abd7667d8585": { + "8e1ef3a403fd4439a965bdd4efc0b9bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2734,46 +2879,95 @@ "width": null } }, - "769ad2786fb94b64abd47d55a0185f89": { + "8e74cf17d07e42bd84667d021af6d281": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_66c0667e63fe4f78b640204ef49db3f9", - "placeholder": "​", - "style": "IPY_MODEL_548b8c27626b464d80039345e2d114cc", + "layout": "IPY_MODEL_57d8181ffdd349059b0f4e0d54bc0cb7", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c1e1f685331544929569f892e7b9ee1d", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 5.04MB/s]" + "value": 231508.0 } }, - "771a8766cdab4ad785bacfcb6678049a": { + "8f43c16335c540ab8f7a93bf771a579f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "993cbca4f53645b19626bd22f35ba7d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e4c71d2ff5d64eb6aa0d4662a386acc2", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3d74814d8dd046219675c5755734d26c", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "9ac05e21bf774897a30f0e7c05b5f113": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "77c63cc5f6434b90ad2d4f8c110acc68": { + "9f573602185c474bb663c3946b8371c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2807,67 +3001,26 @@ "grid_template_columns": null, "grid_template_rows": null, "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "79138260b27342f195f8b54c96dd483c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_84fcb9185cb24c2bb35cb63fc206306f", - "placeholder": "​", - "style": "IPY_MODEL_da0ad73cb5a4461da814a4966c49288b", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "80342bdf063c4c4fb28c363f53c55644": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "84fcb9185cb24c2bb35cb63fc206306f": { + "a1c6430a55e1404989798a6f9cab57f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2920,98 +3073,49 @@ "width": null } }, - "89e08a358e5343158f311de97e64e86f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_25b6f96ef73046acb382e06eed95a9b0", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c819332ea2af45bcb94184dff29e3992", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "8e235eab3f1a41e381934d3c0c4cc909": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_12278ade8d774dda8b83ef62c46e7bf0", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_980b57a51bd64aafb7274bbeef5aedbc", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "92d14363392d4016962ea3304006e83f": { + "a4eb983299e24e20b98bcf4edf3d6aaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_719a237222b54690a4fad2258458f5db", - "placeholder": "​", - "style": "IPY_MODEL_16db3ef2563c428db07cc995720fd60b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_034f8b8fe0644b18ac5cbfb4d3584f61", + "IPY_MODEL_993cbca4f53645b19626bd22f35ba7d2", + "IPY_MODEL_5421452619ca43e0ab75f9312bb9a823" + ], + "layout": "IPY_MODEL_fd746e8d6f214fb2851b8faf8ac27e12", "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" + "tooltip": null } }, - "980b57a51bd64aafb7274bbeef5aedbc": { + "a7fd97981111428eba3d4c09a94bfe9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "99ff95ff62df4df5a3136dbd6ff0ae78": { + "b5fd00bb16154423b6b98a26d77c3bfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3064,48 +3168,7 @@ "width": null } }, - "a03fce32c8334b4ca502e2c910e68cf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be8d6b4483874cfca87f9dd0bfd046b1", - "placeholder": "​", - "style": "IPY_MODEL_5b3f834098234540932bbc4f5a823968", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 73.2kB/s]" - } - }, - "a21d119ca8df41a58bf2b442dca19ee6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a309f785c95443bba289aa8e622ca78e": { + "b91bb0fea9e04d84980466addd8c63d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3158,48 +3221,39 @@ "width": null } }, - "a3708e09caf14f2d8d4e2a5dfa2171f1": { + "bd6009a6310e4144a110d0abce2d516c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "a4c82a9180ad4f978090dc6cfb8cfe36": { + "c1e1f685331544929569f892e7b9ee1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52fe4fe74b7f49a8b033e42c924759dc", - "placeholder": "​", - "style": "IPY_MODEL_075b4af9c1314f79ae437f8439d5f210", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "aa3f806e308e4ce2989b693846b4b968": { + "c7ac1f873cad47bb99c943d296a08dc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3252,7 +3306,23 @@ "width": null } }, - "ace1f49277f24628abeed56230d88df8": { + "c87beb0959be477b8c92c1b99b66a07c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c8e970c8f3b940708a6fd1296bb49f78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3305,7 +3375,55 @@ "width": null } }, - "b43cc3cd831e41d5bd0e2b797f183eb9": { + "c9439b97c3f0411e89621bacc52530c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_179d5095bde749efa193ed2f47c8ec70", + "IPY_MODEL_855f54aac4c04821a51e3f5456d1068a", + "IPY_MODEL_75d2d192ce0a455390c4c1bf23fd90da" + ], + "layout": "IPY_MODEL_dc599dc9e3a54add9467d2528fcf1736", + "tabbable": null, + "tooltip": null + } + }, + "c97f0e01e42646d9806c02b4b3648039": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_473968c7b6654e23a573dd157d6f1f94", + "IPY_MODEL_4fa6b9dd27e541b896fc7a803227f368", + "IPY_MODEL_8bb5868373be4fb09ccacc52f8bb437b" + ], + "layout": "IPY_MODEL_53977efabf0e4fd1ac2cfbd8b9299909", + "tabbable": null, + "tooltip": null + } + }, + "d2020abfbe0d42568b67dd48deaf5771": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3358,25 +3476,30 @@ "width": null } }, - "b7ecb1841b4049b6aa53b2a8d8f91012": { + "d6021b0797cf47c48c12d441689b6ece": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd50bba22beb482f9db42122f6ec0eb2", + "placeholder": "​", + "style": "IPY_MODEL_150be0f12ac94160b1b133e904ecb773", + "tabbable": null, + "tooltip": null, + "value": " 29.0/29.0 [00:00<00:00, 4.81kB/s]" } }, - "b93f2d32038140118f50fe537e638b84": { + "d6d6705b9b5043ab90499b9b2a133895": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3412,48 +3535,24 @@ "height": null, "justify_content": null, "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ba2de796b6ed4818b29822ffacaae295": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4c82a9180ad4f978090dc6cfb8cfe36", - "IPY_MODEL_89e08a358e5343158f311de97e64e86f", - "IPY_MODEL_a03fce32c8334b4ca502e2c910e68cf3" - ], - "layout": "IPY_MODEL_2a8e628f50e848f09a59bc9583fccd69", - "tabbable": null, - "tooltip": null + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "be8d6b4483874cfca87f9dd0bfd046b1": { + "d980c616b197411cb879c2eee14074f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3506,7 +3605,7 @@ "width": null } }, - "c06dccdf657d431b821c7e05c56556d9": { + "dc599dc9e3a54add9467d2528fcf1736": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3559,46 +3658,7 @@ "width": null } }, - "c819332ea2af45bcb94184dff29e3992": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cab475cc4878469a98fdbf2864a75825": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ccbee6a50109411d81c8cc8c15d7f4d4", - "placeholder": "​", - "style": "IPY_MODEL_b7ecb1841b4049b6aa53b2a8d8f91012", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 147MB/s]" - } - }, - "ccbee6a50109411d81c8cc8c15d7f4d4": { + "dd50bba22beb482f9db42122f6ec0eb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3651,33 +3711,7 @@ "width": null } }, - "cd554dcc01314a668bf9d656cce5bd93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_061f9097694c43129b356c9dda2f5f71", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_771a8766cdab4ad785bacfcb6678049a", - "tabbable": null, - "tooltip": null, - "value": 665.0 - } - }, - "cdcef8838f9847b8a6f388324f600c8b": { + "dd56037ea9b6486b9a8462712c62c9be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3730,23 +3764,7 @@ "width": null } }, - "cf499178cb734c8e8c234b0739f04a66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d4820887fab34d7aa5d017749535ca5a": { + "df7c804ca61045d6b8e804dc0c5237ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3799,59 +3817,30 @@ "width": null } }, - "d615c327f820490389d3a444df8d68f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d6bdbcbc558849e985053035358a37f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "da0ad73cb5a4461da814a4966c49288b": { + "e3383123e17340c2ae53e922a8e3b50a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e1ef3a403fd4439a965bdd4efc0b9bd", + "placeholder": "​", + "style": "IPY_MODEL_8f43c16335c540ab8f7a93bf771a579f", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "dde8fea970f144168dd91614ad770704": { + "e4c71d2ff5d64eb6aa0d4662a386acc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3904,7 +3893,7 @@ "width": null } }, - "e46151afb1e7450c8e8984491a7da0a1": { + "e67841585e944b4abee51a14c3f4974b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3957,80 +3946,69 @@ "width": null } }, - "e56eab34ca074b7fbf5139bd0c1f2101": { + "e8c173fbbec04416b425b2af5acba601": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_92d14363392d4016962ea3304006e83f", - "IPY_MODEL_28dc38fb62db403e916cf1901e0eac60", - "IPY_MODEL_769ad2786fb94b64abd47d55a0185f89" - ], - "layout": "IPY_MODEL_cdcef8838f9847b8a6f388324f600c8b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d980c616b197411cb879c2eee14074f0", + "placeholder": "​", + "style": "IPY_MODEL_3dd154ef46e44fad8478b9f32ddcb835", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "eafeb34886b74034a6acf024f5bc7361": { + "eca03b5e8a384f24a8997238a61a9bde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_727618f51486484ebf25abd7667d8585", - "placeholder": "​", - "style": "IPY_MODEL_d615c327f820490389d3a444df8d68f7", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eafee4a7753b4b9698f2cc1a46fb2fe4": { + "ed24934c745b4d7a8ee40e838fca4dc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_59845ff1092b4af19dcd613cab1e8a6d", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d6bdbcbc558849e985053035358a37f6", + "layout": "IPY_MODEL_630fb1d285cc43858751a7ed03e13e05", + "placeholder": "​", + "style": "IPY_MODEL_15bdf18d041041fab23473fab02e001b", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 391/391 [00:00<00:00, 66.1kB/s]" } }, - "ef691929a94f415c97369477aab5cd71": { + "ef96e30fab324207af7282262beb8867": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4048,31 +4026,23 @@ "text_color": null } }, - "f9c8133b87d44842b1e686734c9decb9": { + "f332c40a8cc84586aad25981b95f6ba3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6f991a9a36cb43d1a3a7d481a665d9b6", - "IPY_MODEL_8e235eab3f1a41e381934d3c0c4cc909", - "IPY_MODEL_cab475cc4878469a98fdbf2864a75825" - ], - "layout": "IPY_MODEL_ace1f49277f24628abeed56230d88df8", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fad1a62376234d9b8983f0689863a88c": { + "f55ce828192342cfa65c32e045d9377c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4087,35 +4057,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0b08a7a68f914ed387d4aaa62ab2abd8", + "layout": "IPY_MODEL_a1c6430a55e1404989798a6f9cab57f6", "placeholder": "​", - "style": "IPY_MODEL_a21d119ca8df41a58bf2b442dca19ee6", + "style": "IPY_MODEL_021198b4e2184745ad8e9d340795e5f3", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 405kB/s]" + "value": " 232k/232k [00:00<00:00, 1.94MB/s]" } }, - "fdc9e70ed67143f387275b16b30cbda3": { - "model_module": "@jupyter-widgets/controls", + "fd746e8d6f214fb2851b8faf8ac27e12": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e46151afb1e7450c8e8984491a7da0a1", - "placeholder": "​", - "style": "IPY_MODEL_51a821a454224f29b345ad1b44db7f93", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index cb94579f3..a78d1816e 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:37.613708Z", - "iopub.status.busy": "2024-02-08T04:24:37.613541Z", - "iopub.status.idle": "2024-02-08T04:24:38.638099Z", - "shell.execute_reply": "2024-02-08T04:24:38.637502Z" + "iopub.execute_input": "2024-02-08T05:11:08.323441Z", + "iopub.status.busy": "2024-02-08T05:11:08.323025Z", + "iopub.status.idle": "2024-02-08T05:11:09.474749Z", + "shell.execute_reply": "2024-02-08T05:11:09.474158Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:38.641015Z", - "iopub.status.busy": "2024-02-08T04:24:38.640442Z", - "iopub.status.idle": "2024-02-08T04:24:38.643303Z", - "shell.execute_reply": "2024-02-08T04:24:38.642787Z" + "iopub.execute_input": "2024-02-08T05:11:09.477547Z", + "iopub.status.busy": "2024-02-08T05:11:09.477141Z", + "iopub.status.idle": "2024-02-08T05:11:09.480630Z", + "shell.execute_reply": "2024-02-08T05:11:09.480196Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:38.645740Z", - "iopub.status.busy": "2024-02-08T04:24:38.645351Z", - "iopub.status.idle": "2024-02-08T04:24:38.657042Z", - "shell.execute_reply": "2024-02-08T04:24:38.656531Z" + "iopub.execute_input": "2024-02-08T05:11:09.482890Z", + "iopub.status.busy": "2024-02-08T05:11:09.482565Z", + "iopub.status.idle": "2024-02-08T05:11:09.494523Z", + "shell.execute_reply": "2024-02-08T05:11:09.494015Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:38.659120Z", - "iopub.status.busy": "2024-02-08T04:24:38.658837Z", - "iopub.status.idle": "2024-02-08T04:24:43.591617Z", - "shell.execute_reply": "2024-02-08T04:24:43.591122Z" + "iopub.execute_input": "2024-02-08T05:11:09.496748Z", + "iopub.status.busy": "2024-02-08T05:11:09.496386Z", + "iopub.status.idle": "2024-02-08T05:11:20.267416Z", + "shell.execute_reply": "2024-02-08T05:11:20.266899Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index b3ac26455..c0b62cf2b 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -700,13 +700,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1578,7 +1578,7 @@

How to handle near-duplicate data identified by cleanlab?
-/tmp/ipykernel_5856/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.
+/tmp/ipykernel_6088/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.
   to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values
 

@@ -1620,7 +1620,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 01d99ce84..3305d8771 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:45.573789Z", - "iopub.status.busy": "2024-02-08T04:24:45.573620Z", - "iopub.status.idle": "2024-02-08T04:24:46.583993Z", - "shell.execute_reply": "2024-02-08T04:24:46.583448Z" + "iopub.execute_input": "2024-02-08T05:11:22.606201Z", + "iopub.status.busy": "2024-02-08T05:11:22.606025Z", + "iopub.status.idle": "2024-02-08T05:11:23.697394Z", + "shell.execute_reply": "2024-02-08T05:11:23.696773Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:46.586600Z", - "iopub.status.busy": "2024-02-08T04:24:46.586248Z", - "iopub.status.idle": "2024-02-08T04:24:46.590035Z", - "shell.execute_reply": "2024-02-08T04:24:46.589617Z" + "iopub.execute_input": "2024-02-08T05:11:23.700223Z", + "iopub.status.busy": "2024-02-08T05:11:23.699876Z", + "iopub.status.idle": "2024-02-08T05:11:23.703292Z", + "shell.execute_reply": "2024-02-08T05:11:23.702852Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:46.591939Z", - "iopub.status.busy": "2024-02-08T04:24:46.591737Z", - "iopub.status.idle": "2024-02-08T04:24:49.474373Z", - "shell.execute_reply": "2024-02-08T04:24:49.473737Z" + "iopub.execute_input": "2024-02-08T05:11:23.705486Z", + "iopub.status.busy": "2024-02-08T05:11:23.705156Z", + "iopub.status.idle": "2024-02-08T05:11:26.757434Z", + "shell.execute_reply": "2024-02-08T05:11:26.756799Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.477377Z", - "iopub.status.busy": "2024-02-08T04:24:49.476660Z", - "iopub.status.idle": "2024-02-08T04:24:49.508409Z", - "shell.execute_reply": "2024-02-08T04:24:49.507803Z" + "iopub.execute_input": "2024-02-08T05:11:26.760963Z", + "iopub.status.busy": "2024-02-08T05:11:26.759887Z", + "iopub.status.idle": "2024-02-08T05:11:26.801164Z", + "shell.execute_reply": "2024-02-08T05:11:26.800422Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.510776Z", - "iopub.status.busy": "2024-02-08T04:24:49.510550Z", - "iopub.status.idle": "2024-02-08T04:24:49.538544Z", - "shell.execute_reply": "2024-02-08T04:24:49.537958Z" + "iopub.execute_input": "2024-02-08T05:11:26.804151Z", + "iopub.status.busy": "2024-02-08T05:11:26.803670Z", + "iopub.status.idle": "2024-02-08T05:11:26.842192Z", + "shell.execute_reply": "2024-02-08T05:11:26.841538Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.541085Z", - "iopub.status.busy": "2024-02-08T04:24:49.540717Z", - "iopub.status.idle": "2024-02-08T04:24:49.543776Z", - "shell.execute_reply": "2024-02-08T04:24:49.543329Z" + "iopub.execute_input": "2024-02-08T05:11:26.845114Z", + "iopub.status.busy": "2024-02-08T05:11:26.844658Z", + "iopub.status.idle": "2024-02-08T05:11:26.847678Z", + "shell.execute_reply": "2024-02-08T05:11:26.847218Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.545731Z", - "iopub.status.busy": "2024-02-08T04:24:49.545364Z", - "iopub.status.idle": "2024-02-08T04:24:49.547897Z", - "shell.execute_reply": "2024-02-08T04:24:49.547441Z" + "iopub.execute_input": "2024-02-08T05:11:26.849841Z", + "iopub.status.busy": "2024-02-08T05:11:26.849441Z", + "iopub.status.idle": "2024-02-08T05:11:26.852121Z", + "shell.execute_reply": "2024-02-08T05:11:26.851641Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.549990Z", - "iopub.status.busy": "2024-02-08T04:24:49.549665Z", - "iopub.status.idle": "2024-02-08T04:24:49.572583Z", - "shell.execute_reply": "2024-02-08T04:24:49.572032Z" + "iopub.execute_input": "2024-02-08T05:11:26.854267Z", + "iopub.status.busy": "2024-02-08T05:11:26.853995Z", + "iopub.status.idle": "2024-02-08T05:11:26.880472Z", + "shell.execute_reply": "2024-02-08T05:11:26.879888Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5c0191b13eea419db01e0f9eecfae1ec", + "model_id": "78cba4b8da0f44b8997e2424fe19dbff", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "87fe2e877c264789adf23c7eddcce500", + "model_id": "be08b0354eb04e518b8a75f62d0d766e", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.579504Z", - "iopub.status.busy": "2024-02-08T04:24:49.579329Z", - "iopub.status.idle": "2024-02-08T04:24:49.585894Z", - "shell.execute_reply": "2024-02-08T04:24:49.585346Z" + "iopub.execute_input": "2024-02-08T05:11:26.886237Z", + "iopub.status.busy": "2024-02-08T05:11:26.885937Z", + "iopub.status.idle": "2024-02-08T05:11:26.892921Z", + "shell.execute_reply": "2024-02-08T05:11:26.892500Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.588062Z", - "iopub.status.busy": "2024-02-08T04:24:49.587674Z", - "iopub.status.idle": "2024-02-08T04:24:49.591088Z", - "shell.execute_reply": "2024-02-08T04:24:49.590626Z" + "iopub.execute_input": "2024-02-08T05:11:26.895076Z", + "iopub.status.busy": "2024-02-08T05:11:26.894752Z", + "iopub.status.idle": "2024-02-08T05:11:26.898037Z", + "shell.execute_reply": "2024-02-08T05:11:26.897543Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.593026Z", - "iopub.status.busy": "2024-02-08T04:24:49.592853Z", - "iopub.status.idle": "2024-02-08T04:24:49.599027Z", - "shell.execute_reply": "2024-02-08T04:24:49.598603Z" + "iopub.execute_input": "2024-02-08T05:11:26.900206Z", + "iopub.status.busy": "2024-02-08T05:11:26.899872Z", + "iopub.status.idle": "2024-02-08T05:11:26.906102Z", + "shell.execute_reply": "2024-02-08T05:11:26.905634Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.600879Z", - "iopub.status.busy": "2024-02-08T04:24:49.600710Z", - "iopub.status.idle": "2024-02-08T04:24:49.633862Z", - "shell.execute_reply": "2024-02-08T04:24:49.633169Z" + "iopub.execute_input": "2024-02-08T05:11:26.908120Z", + "iopub.status.busy": "2024-02-08T05:11:26.907792Z", + "iopub.status.idle": "2024-02-08T05:11:26.946506Z", + "shell.execute_reply": "2024-02-08T05:11:26.945866Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.636532Z", - "iopub.status.busy": "2024-02-08T04:24:49.636294Z", - "iopub.status.idle": "2024-02-08T04:24:49.666209Z", - "shell.execute_reply": "2024-02-08T04:24:49.665641Z" + "iopub.execute_input": "2024-02-08T05:11:26.949053Z", + "iopub.status.busy": "2024-02-08T05:11:26.948806Z", + "iopub.status.idle": "2024-02-08T05:11:26.989522Z", + "shell.execute_reply": "2024-02-08T05:11:26.988814Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.668847Z", - "iopub.status.busy": "2024-02-08T04:24:49.668487Z", - "iopub.status.idle": "2024-02-08T04:24:49.787733Z", - "shell.execute_reply": "2024-02-08T04:24:49.787119Z" + "iopub.execute_input": "2024-02-08T05:11:26.992540Z", + "iopub.status.busy": "2024-02-08T05:11:26.992114Z", + "iopub.status.idle": "2024-02-08T05:11:27.125524Z", + "shell.execute_reply": "2024-02-08T05:11:27.124909Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:49.790465Z", - "iopub.status.busy": "2024-02-08T04:24:49.789790Z", - "iopub.status.idle": "2024-02-08T04:24:52.854678Z", - "shell.execute_reply": "2024-02-08T04:24:52.853979Z" + "iopub.execute_input": "2024-02-08T05:11:27.128401Z", + "iopub.status.busy": "2024-02-08T05:11:27.127620Z", + "iopub.status.idle": "2024-02-08T05:11:30.193800Z", + "shell.execute_reply": "2024-02-08T05:11:30.193249Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:52.857015Z", - "iopub.status.busy": "2024-02-08T04:24:52.856827Z", - "iopub.status.idle": "2024-02-08T04:24:52.917026Z", - "shell.execute_reply": "2024-02-08T04:24:52.916549Z" + "iopub.execute_input": "2024-02-08T05:11:30.196165Z", + "iopub.status.busy": "2024-02-08T05:11:30.195794Z", + "iopub.status.idle": "2024-02-08T05:11:30.252447Z", + "shell.execute_reply": "2024-02-08T05:11:30.251888Z" } }, "outputs": [ @@ -1206,7 +1206,7 @@ }, { "cell_type": "markdown", - "id": "187c759b", + "id": "bfe43cbe", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "b9f3b94f", + "id": "20f126b1", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1227,13 +1227,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "a1c4f448", + "id": "16761bb6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:52.919102Z", - "iopub.status.busy": "2024-02-08T04:24:52.918777Z", - "iopub.status.idle": "2024-02-08T04:24:53.015984Z", - "shell.execute_reply": "2024-02-08T04:24:53.015447Z" + "iopub.execute_input": "2024-02-08T05:11:30.254698Z", + "iopub.status.busy": "2024-02-08T05:11:30.254370Z", + "iopub.status.idle": "2024-02-08T05:11:30.372246Z", + "shell.execute_reply": "2024-02-08T05:11:30.371679Z" } }, "outputs": [ @@ -1274,7 +1274,7 @@ }, { "cell_type": "markdown", - "id": "ca16f7a6", + "id": "856b641a", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1283,13 +1283,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "b7531f4e", + "id": "2aa056d4", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.018620Z", - "iopub.status.busy": "2024-02-08T04:24:53.018003Z", - "iopub.status.idle": "2024-02-08T04:24:53.093962Z", - "shell.execute_reply": "2024-02-08T04:24:53.093545Z" + "iopub.execute_input": "2024-02-08T05:11:30.375175Z", + "iopub.status.busy": "2024-02-08T05:11:30.374638Z", + "iopub.status.idle": "2024-02-08T05:11:30.437160Z", + "shell.execute_reply": "2024-02-08T05:11:30.436653Z" } }, "outputs": [ @@ -1325,7 +1325,7 @@ }, { "cell_type": "markdown", - "id": "73c03ed6", + "id": "ac654ffb", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1336,13 +1336,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "5dee6e03", + "id": "6706b5f4", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.096140Z", - "iopub.status.busy": "2024-02-08T04:24:53.095803Z", - "iopub.status.idle": "2024-02-08T04:24:53.103009Z", - "shell.execute_reply": "2024-02-08T04:24:53.102627Z" + "iopub.execute_input": "2024-02-08T05:11:30.439809Z", + "iopub.status.busy": "2024-02-08T05:11:30.439229Z", + "iopub.status.idle": "2024-02-08T05:11:30.447037Z", + "shell.execute_reply": "2024-02-08T05:11:30.446585Z" } }, "outputs": [], @@ -1444,7 +1444,7 @@ }, { "cell_type": "markdown", - "id": "b90c0ece", + "id": "5c1d612b", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1459,13 +1459,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "358dc020", + "id": "c1a1d9c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.105084Z", - "iopub.status.busy": "2024-02-08T04:24:53.104708Z", - "iopub.status.idle": "2024-02-08T04:24:53.124038Z", - "shell.execute_reply": "2024-02-08T04:24:53.123459Z" + "iopub.execute_input": "2024-02-08T05:11:30.449262Z", + "iopub.status.busy": "2024-02-08T05:11:30.448886Z", + "iopub.status.idle": "2024-02-08T05:11:30.470160Z", + "shell.execute_reply": "2024-02-08T05:11:30.469602Z" } }, "outputs": [ @@ -1482,7 +1482,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_5856/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_6088/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1516,13 +1516,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "00e7c49a", + "id": "9fb5b9a7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:53.125974Z", - "iopub.status.busy": "2024-02-08T04:24:53.125662Z", - "iopub.status.idle": "2024-02-08T04:24:53.128656Z", - "shell.execute_reply": "2024-02-08T04:24:53.128129Z" + "iopub.execute_input": "2024-02-08T05:11:30.472247Z", + "iopub.status.busy": "2024-02-08T05:11:30.471936Z", + "iopub.status.idle": "2024-02-08T05:11:30.475237Z", + "shell.execute_reply": "2024-02-08T05:11:30.474711Z" } }, "outputs": [ @@ -1617,60 +1617,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "015ef5b9c4e7426e8c19853cef8ae11f": { - "model_module": "@jupyter-widgets/base", + "05de50edb7344de49fc9a7e46146a0dc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1af8c90e7f0c44aea5a4c387ab84a8d8", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_77ad757771b14da99ddebe6c289b3a55", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "07139d1836db4802bef3d7af8515240e": { + "0a436d59bb2a44da9b77996fbb4f1350": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1688,7 +1661,7 @@ "text_color": null } }, - "0820f47cfe0b4a7980f5b74a53fbf2ce": { + "1af8c90e7f0c44aea5a4c387ab84a8d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1741,7 +1714,7 @@ "width": null } }, - "18531640627745059d5f010bdb7bd15d": { + "24876a59455840efb5334507693b3279": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1794,7 +1767,7 @@ "width": null } }, - "1947ea925a434cc286f1c01e91d3d6ce": { + "33e46e8ba5ca460a91916503bd38bfca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1847,7 +1820,7 @@ "width": null } }, - "1b89893bdf0b4718a7dbee8b73490988": { + "4b7e4a218ceb4e0199c05e6baf9563db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1865,7 +1838,7 @@ "text_color": null } }, - "2192c281f612451392e831350d44f234": { + "64188fff7d3b4928803ffdc0d6604409": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1881,141 +1854,74 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0820f47cfe0b4a7980f5b74a53fbf2ce", + "layout": "IPY_MODEL_33e46e8ba5ca460a91916503bd38bfca", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_cd4a1881ee4d4941911d65274d6cbec0", + "style": "IPY_MODEL_f5b660268d8b4fa98dc35fef101083e6", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "2db320790a99420bafd99e85985baec1": { + "6a7fd2b75cbb47cd9959697f813a7e15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24876a59455840efb5334507693b3279", + "placeholder": "​", + "style": "IPY_MODEL_4b7e4a218ceb4e0199c05e6baf9563db", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "2e68e04f2248495aa67f9947209a5a39": { - "model_module": "@jupyter-widgets/base", + "6f707802c6d94a6ebffdd90508ff706b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "445757af76f242048bbb86f1838b61a8": { - "model_module": "@jupyter-widgets/base", + "77ad757771b14da99ddebe6c289b3a55": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5c0191b13eea419db01e0f9eecfae1ec": { + "78cba4b8da0f44b8997e2424fe19dbff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2030,16 +1936,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9d4ac9b4b2794cc5b03c3f973ef0b271", - "IPY_MODEL_944841c00b3d4eb2b5bd71d1b09650b8", - "IPY_MODEL_ab568724990c41f38cb76413e1055586" + "IPY_MODEL_a6d12fb3e1e04e9181c76c877258b50b", + "IPY_MODEL_64188fff7d3b4928803ffdc0d6604409", + "IPY_MODEL_a280677f5a5746e5bd972a898597af15" ], - "layout": "IPY_MODEL_445757af76f242048bbb86f1838b61a8", + "layout": "IPY_MODEL_cfceb62eb6814512b4fcf377b41576c3", "tabbable": null, "tooltip": null } }, - "5cf06b9d4db141cbb8d2ec151a7a2fc3": { + "9113f59e9f8d4e9aa367f233fcdd78d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9ee53d1442404edfb08485845f6aedd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2092,57 +2016,30 @@ "width": null } }, - "87fe2e877c264789adf23c7eddcce500": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b990e7cad1234c46bbf220fbf0706a14", - "IPY_MODEL_2192c281f612451392e831350d44f234", - "IPY_MODEL_ac7c12a86b9445f49fb80f6d0e1b08e8" - ], - "layout": "IPY_MODEL_18531640627745059d5f010bdb7bd15d", - "tabbable": null, - "tooltip": null - } - }, - "944841c00b3d4eb2b5bd71d1b09650b8": { + "a280677f5a5746e5bd972a898597af15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1947ea925a434cc286f1c01e91d3d6ce", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cfee63cfdd5c4ce393aac7cb9a1c613f", + "layout": "IPY_MODEL_9ee53d1442404edfb08485845f6aedd1", + "placeholder": "​", + "style": "IPY_MODEL_6f707802c6d94a6ebffdd90508ff706b", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1037218.46it/s]" } }, - "9d4ac9b4b2794cc5b03c3f973ef0b271": { + "a6d12fb3e1e04e9181c76c877258b50b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2157,15 +2054,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e68e04f2248495aa67f9947209a5a39", + "layout": "IPY_MODEL_d3dda2aaa46a4d269cfd84ed685064f5", "placeholder": "​", - "style": "IPY_MODEL_1b89893bdf0b4718a7dbee8b73490988", + "style": "IPY_MODEL_9113f59e9f8d4e9aa367f233fcdd78d0", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "ab568724990c41f38cb76413e1055586": { + "b2680aa9e75c468cbb4efeebe945eea7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2180,95 +2077,198 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_015ef5b9c4e7426e8c19853cef8ae11f", + "layout": "IPY_MODEL_cfa42c442e2d40b5853652d9d73d091c", "placeholder": "​", - "style": "IPY_MODEL_c671d824811040228d0b53429fdbf8d7", + "style": "IPY_MODEL_0a436d59bb2a44da9b77996fbb4f1350", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1099597.32it/s]" + "value": " 10000/? [00:00<00:00, 1205398.32it/s]" } }, - "ac7c12a86b9445f49fb80f6d0e1b08e8": { + "be08b0354eb04e518b8a75f62d0d766e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5cf06b9d4db141cbb8d2ec151a7a2fc3", - "placeholder": "​", - "style": "IPY_MODEL_2db320790a99420bafd99e85985baec1", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6a7fd2b75cbb47cd9959697f813a7e15", + "IPY_MODEL_05de50edb7344de49fc9a7e46146a0dc", + "IPY_MODEL_b2680aa9e75c468cbb4efeebe945eea7" + ], + "layout": "IPY_MODEL_d8a8c3363a024dbdb7424268a378949d", "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1690910.70it/s]" + "tooltip": null } }, - "b990e7cad1234c46bbf220fbf0706a14": { - "model_module": "@jupyter-widgets/controls", + "cfa42c442e2d40b5853652d9d73d091c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cfb9b1763ab94885a6f99d429428964b", - "placeholder": "​", - "style": "IPY_MODEL_07139d1836db4802bef3d7af8515240e", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c671d824811040228d0b53429fdbf8d7": { - "model_module": "@jupyter-widgets/controls", + "cfceb62eb6814512b4fcf377b41576c3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cd4a1881ee4d4941911d65274d6cbec0": { - "model_module": "@jupyter-widgets/controls", + "d3dda2aaa46a4d269cfd84ed685064f5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cfb9b1763ab94885a6f99d429428964b": { + "d8a8c3363a024dbdb7424268a378949d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2321,7 +2321,7 @@ "width": null } }, - "cfee63cfdd5c4ce393aac7cb9a1c613f": { + "f5b660268d8b4fa98dc35fef101083e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", diff --git a/master/tutorials/image.html b/master/tutorials/image.html index 819732497..a717d5ddc 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -642,25 +642,25 @@

2. Fetch and normalize the Fashion-MNIST dataset
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -971,7 +971,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.545
+epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.393
 

@@ -979,7 +979,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.360
+epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 5.035
 Computing feature embeddings ...
 

@@ -1023,16 +1023,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
8%|▊ | 3/40 [00:00&lt;00:01, 27.78it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 18.39it/s]

</pre>

-
8%|▊ | 3/40 [00:00<00:01, 27.78it/s]
+
5%|▌ | 2/40 [00:00<00:02, 18.39it/s]

end{sphinxVerbatim}

-

8%|▊ | 3/40 [00:00<00:01, 27.78it/s]

+

5%|▌ | 2/40 [00:00<00:02, 18.39it/s]

-
25%|██▌ | 10/40 [00:00&lt;00:00, 51.02it/s]
+
20%|██ | 8/40 [00:00&lt;00:00, 39.50it/s]

</pre>

-
25%|██▌ | 10/40 [00:00<00:00, 51.02it/s]
+
20%|██ | 8/40 [00:00<00:00, 39.50it/s]

end{sphinxVerbatim}

-

25%|██▌ | 10/40 [00:00<00:00, 51.02it/s]

+

20%|██ | 8/40 [00:00<00:00, 39.50it/s]

-
42%|████▎ | 17/40 [00:00&lt;00:00, 58.17it/s]
+
35%|███▌ | 14/40 [00:00&lt;00:00, 46.73it/s]

</pre>

-
42%|████▎ | 17/40 [00:00<00:00, 58.17it/s]
+
35%|███▌ | 14/40 [00:00<00:00, 46.73it/s]

end{sphinxVerbatim}

-

42%|████▎ | 17/40 [00:00<00:00, 58.17it/s]

+

35%|███▌ | 14/40 [00:00<00:00, 46.73it/s]

-
62%|██████▎ | 25/40 [00:00&lt;00:00, 63.86it/s]
+
52%|█████▎ | 21/40 [00:00&lt;00:00, 53.72it/s]

</pre>

-
62%|██████▎ | 25/40 [00:00<00:00, 63.86it/s]
+
52%|█████▎ | 21/40 [00:00<00:00, 53.72it/s]

end{sphinxVerbatim}

-

62%|██████▎ | 25/40 [00:00<00:00, 63.86it/s]

+

52%|█████▎ | 21/40 [00:00<00:00, 53.72it/s]

-
80%|████████ | 32/40 [00:00&lt;00:00, 62.77it/s]
+
70%|███████ | 28/40 [00:00&lt;00:00, 57.38it/s]

</pre>

-
80%|████████ | 32/40 [00:00<00:00, 62.77it/s]
+
70%|███████ | 28/40 [00:00<00:00, 57.38it/s]

end{sphinxVerbatim}

-

80%|████████ | 32/40 [00:00<00:00, 62.77it/s]

+

70%|███████ | 28/40 [00:00<00:00, 57.38it/s]

+ + +
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
85%|████████▌ | 34/40 [00:00&lt;00:00, 57.39it/s]
+

</pre>

+
+
+
85%|████████▌ | 34/40 [00:00<00:00, 57.39it/s]
+

end{sphinxVerbatim}

+
+
+
+

85%|████████▌ | 34/40 [00:00<00:00, 57.39it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 60.88it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 53.69it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 60.88it/s]
+
100%|██████████| 40/40 [00:00<00:00, 53.69it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 60.88it/s]

+

100%|██████████| 40/40 [00:00<00:00, 53.69it/s]

-
5%|▌ | 2/40 [00:00&lt;00:01, 19.05it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 9.11it/s]
+

</pre>

+
+
+
2%|▎ | 1/40 [00:00<00:04, 9.11it/s]
+

end{sphinxVerbatim}

+
+
+
+

2%|▎ | 1/40 [00:00<00:04, 9.11it/s]

+ + +
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
18%|█▊ | 7/40 [00:00&lt;00:00, 37.60it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:01, 19.05it/s]
+
18%|█▊ | 7/40 [00:00<00:00, 37.60it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:01, 19.05it/s]

+

18%|█▊ | 7/40 [00:00<00:00, 37.60it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 48.24it/s]
+
32%|███▎ | 13/40 [00:00&lt;00:00, 45.19it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 48.24it/s]
+
32%|███▎ | 13/40 [00:00<00:00, 45.19it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 48.24it/s]

+

32%|███▎ | 13/40 [00:00<00:00, 45.19it/s]

-
40%|████ | 16/40 [00:00&lt;00:00, 56.60it/s]
+
50%|█████ | 20/40 [00:00&lt;00:00, 51.79it/s]

</pre>

-
40%|████ | 16/40 [00:00<00:00, 56.60it/s]
+
50%|█████ | 20/40 [00:00<00:00, 51.79it/s]

end{sphinxVerbatim}

-

40%|████ | 16/40 [00:00<00:00, 56.60it/s]

+

50%|█████ | 20/40 [00:00<00:00, 51.79it/s]

-
60%|██████ | 24/40 [00:00&lt;00:00, 62.68it/s]
+
68%|██████▊ | 27/40 [00:00&lt;00:00, 56.06it/s]

</pre>

-
60%|██████ | 24/40 [00:00<00:00, 62.68it/s]
+
68%|██████▊ | 27/40 [00:00<00:00, 56.06it/s]

end{sphinxVerbatim}

-

60%|██████ | 24/40 [00:00<00:00, 62.68it/s]

+

68%|██████▊ | 27/40 [00:00<00:00, 56.06it/s]

-
80%|████████ | 32/40 [00:00&lt;00:00, 66.11it/s]
+
85%|████████▌ | 34/40 [00:00&lt;00:00, 59.66it/s]

</pre>

-
80%|████████ | 32/40 [00:00<00:00, 66.11it/s]
+
85%|████████▌ | 34/40 [00:00<00:00, 59.66it/s]

end{sphinxVerbatim}

-

80%|████████ | 32/40 [00:00<00:00, 66.11it/s]

+

85%|████████▌ | 34/40 [00:00<00:00, 59.66it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 62.45it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 53.55it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 62.45it/s]
+
100%|██████████| 40/40 [00:00<00:00, 53.55it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 62.45it/s]

+

100%|██████████| 40/40 [00:00<00:00, 53.55it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 48.56it/s]
+
20%|██ | 8/40 [00:00&lt;00:00, 40.71it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 48.56it/s]
+
20%|██ | 8/40 [00:00<00:00, 40.71it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 48.56it/s]

+

20%|██ | 8/40 [00:00<00:00, 40.71it/s]

-
40%|████ | 16/40 [00:00&lt;00:00, 57.12it/s]
+
38%|███▊ | 15/40 [00:00&lt;00:00, 51.00it/s]

</pre>

-
40%|████ | 16/40 [00:00<00:00, 57.12it/s]
+
38%|███▊ | 15/40 [00:00<00:00, 51.00it/s]

end{sphinxVerbatim}

-

40%|████ | 16/40 [00:00<00:00, 57.12it/s]

+

38%|███▊ | 15/40 [00:00<00:00, 51.00it/s]

-
60%|██████ | 24/40 [00:00&lt;00:00, 63.37it/s]
+
52%|█████▎ | 21/40 [00:00&lt;00:00, 53.38it/s]

</pre>

-
60%|██████ | 24/40 [00:00<00:00, 63.37it/s]
+
52%|█████▎ | 21/40 [00:00<00:00, 53.38it/s]

end{sphinxVerbatim}

-

60%|██████ | 24/40 [00:00<00:00, 63.37it/s]

+

52%|█████▎ | 21/40 [00:00<00:00, 53.38it/s]

-
78%|███████▊ | 31/40 [00:00&lt;00:00, 64.97it/s]
+
68%|██████▊ | 27/40 [00:00&lt;00:00, 54.81it/s]

</pre>

-
78%|███████▊ | 31/40 [00:00<00:00, 64.97it/s]
+
68%|██████▊ | 27/40 [00:00<00:00, 54.81it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 31/40 [00:00<00:00, 64.97it/s]

+

68%|██████▊ | 27/40 [00:00<00:00, 54.81it/s]

-
98%|█████████▊| 39/40 [00:00&lt;00:00, 68.47it/s]
+
85%|████████▌ | 34/40 [00:00&lt;00:00, 58.74it/s]

</pre>

-
98%|█████████▊| 39/40 [00:00<00:00, 68.47it/s]
+
85%|████████▌ | 34/40 [00:00<00:00, 58.74it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 39/40 [00:00<00:00, 68.47it/s]

+

85%|████████▌ | 34/40 [00:00<00:00, 58.74it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 61.34it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 52.08it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 61.34it/s]
+
100%|██████████| 40/40 [00:00<00:00, 52.08it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 61.34it/s]

+

100%|██████████| 40/40 [00:00<00:00, 52.08it/s]

-
5%|▌ | 2/40 [00:00&lt;00:01, 19.37it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 9.35it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:01, 19.37it/s]
+
2%|▎ | 1/40 [00:00<00:04, 9.35it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:01, 19.37it/s]

+

2%|▎ | 1/40 [00:00<00:04, 9.35it/s]

-
25%|██▌ | 10/40 [00:00&lt;00:00, 50.99it/s]
+
20%|██ | 8/40 [00:00&lt;00:00, 41.07it/s]

</pre>

-
25%|██▌ | 10/40 [00:00<00:00, 50.99it/s]
+
20%|██ | 8/40 [00:00<00:00, 41.07it/s]

end{sphinxVerbatim}

-

25%|██▌ | 10/40 [00:00<00:00, 50.99it/s]

+

20%|██ | 8/40 [00:00<00:00, 41.07it/s]

-
42%|████▎ | 17/40 [00:00&lt;00:00, 58.63it/s]
+
38%|███▊ | 15/40 [00:00&lt;00:00, 53.07it/s]

</pre>

-
42%|████▎ | 17/40 [00:00<00:00, 58.63it/s]
+
38%|███▊ | 15/40 [00:00<00:00, 53.07it/s]

end{sphinxVerbatim}

-

42%|████▎ | 17/40 [00:00<00:00, 58.63it/s]

+

38%|███▊ | 15/40 [00:00<00:00, 53.07it/s]

-
60%|██████ | 24/40 [00:00&lt;00:00, 62.58it/s]
+
55%|█████▌ | 22/40 [00:00&lt;00:00, 57.05it/s]

</pre>

-
60%|██████ | 24/40 [00:00<00:00, 62.58it/s]
+
55%|█████▌ | 22/40 [00:00<00:00, 57.05it/s]

end{sphinxVerbatim}

-

60%|██████ | 24/40 [00:00<00:00, 62.58it/s]

+

55%|█████▌ | 22/40 [00:00<00:00, 57.05it/s]

-
78%|███████▊ | 31/40 [00:00&lt;00:00, 65.07it/s]
+
72%|███████▎ | 29/40 [00:00&lt;00:00, 60.72it/s]

</pre>

-
78%|███████▊ | 31/40 [00:00<00:00, 65.07it/s]
+
72%|███████▎ | 29/40 [00:00<00:00, 60.72it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 31/40 [00:00<00:00, 65.07it/s]

+

72%|███████▎ | 29/40 [00:00<00:00, 60.72it/s]

-
+
-
-
-
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
-
100%|██████████| 40/40 [00:00&lt;00:00, 73.11it/s]
+
90%|█████████ | 36/40 [00:00&lt;00:00, 60.32it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 73.11it/s]
+
90%|█████████ | 36/40 [00:00<00:00, 60.32it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 73.11it/s]

+

90%|█████████ | 36/40 [00:00<00:00, 60.32it/s]

+
+
-
100%|██████████| 40/40 [00:00&lt;00:00, 62.41it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 55.52it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 62.41it/s]
+
100%|██████████| 40/40 [00:00<00:00, 55.52it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 62.41it/s]

+

100%|██████████| 40/40 [00:00<00:00, 55.52it/s]

@@ -1858,16 +1919,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:04, 9.70it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 8.42it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 9.70it/s]
+
2%|▎ | 1/40 [00:00<00:04, 8.42it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 9.70it/s]

+

2%|▎ | 1/40 [00:00<00:04, 8.42it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 44.22it/s]
+
18%|█▊ | 7/40 [00:00&lt;00:00, 34.21it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 44.22it/s]
+
18%|█▊ | 7/40 [00:00<00:00, 34.21it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 44.22it/s]

+

18%|█▊ | 7/40 [00:00<00:00, 34.21it/s]

-
38%|███▊ | 15/40 [00:00&lt;00:00, 55.41it/s]
+
35%|███▌ | 14/40 [00:00&lt;00:00, 47.70it/s]

</pre>

-
38%|███▊ | 15/40 [00:00<00:00, 55.41it/s]
+
35%|███▌ | 14/40 [00:00<00:00, 47.70it/s]

end{sphinxVerbatim}

-

38%|███▊ | 15/40 [00:00<00:00, 55.41it/s]

+

35%|███▌ | 14/40 [00:00<00:00, 47.70it/s]

-
55%|█████▌ | 22/40 [00:00&lt;00:00, 60.21it/s]
+
52%|█████▎ | 21/40 [00:00&lt;00:00, 55.32it/s]

</pre>

-
55%|█████▌ | 22/40 [00:00<00:00, 60.21it/s]
+
52%|█████▎ | 21/40 [00:00<00:00, 55.32it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 22/40 [00:00<00:00, 60.21it/s]

+

52%|█████▎ | 21/40 [00:00<00:00, 55.32it/s]

-
72%|███████▎ | 29/40 [00:00&lt;00:00, 63.53it/s]
+
68%|██████▊ | 27/40 [00:00&lt;00:00, 56.57it/s]

</pre>

-
72%|███████▎ | 29/40 [00:00<00:00, 63.53it/s]
+
68%|██████▊ | 27/40 [00:00<00:00, 56.57it/s]

end{sphinxVerbatim}

-

72%|███████▎ | 29/40 [00:00<00:00, 63.53it/s]

+

68%|██████▊ | 27/40 [00:00<00:00, 56.57it/s]

-
90%|█████████ | 36/40 [00:00&lt;00:00, 64.28it/s]
+
88%|████████▊ | 35/40 [00:00&lt;00:00, 62.30it/s]

</pre>

-
90%|█████████ | 36/40 [00:00<00:00, 64.28it/s]
+
88%|████████▊ | 35/40 [00:00<00:00, 62.30it/s]

end{sphinxVerbatim}

-

90%|█████████ | 36/40 [00:00<00:00, 64.28it/s]

+

88%|████████▊ | 35/40 [00:00<00:00, 62.30it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 59.03it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 54.64it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 59.03it/s]
+
100%|██████████| 40/40 [00:00<00:00, 54.64it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 59.03it/s]

+

100%|██████████| 40/40 [00:00<00:00, 54.64it/s]

-
5%|▌ | 2/40 [00:00&lt;00:02, 17.91it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 7.86it/s]
+

</pre>

+
+
+
2%|▎ | 1/40 [00:00<00:04, 7.86it/s]
+

end{sphinxVerbatim}

+
+
+
+

2%|▎ | 1/40 [00:00<00:04, 7.86it/s]

+ + +
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
20%|██ | 8/40 [00:00&lt;00:00, 38.53it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:02, 17.91it/s]
+
20%|██ | 8/40 [00:00<00:00, 38.53it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:02, 17.91it/s]

+

20%|██ | 8/40 [00:00<00:00, 38.53it/s]

-
25%|██▌ | 10/40 [00:00&lt;00:00, 48.77it/s]
+
35%|███▌ | 14/40 [00:00&lt;00:00, 46.74it/s]

</pre>

-
25%|██▌ | 10/40 [00:00<00:00, 48.77it/s]
+
35%|███▌ | 14/40 [00:00<00:00, 46.74it/s]

end{sphinxVerbatim}

-

25%|██▌ | 10/40 [00:00<00:00, 48.77it/s]

+

35%|███▌ | 14/40 [00:00<00:00, 46.74it/s]

-
45%|████▌ | 18/40 [00:00&lt;00:00, 58.27it/s]
+
52%|█████▎ | 21/40 [00:00&lt;00:00, 52.27it/s]

</pre>

-
45%|████▌ | 18/40 [00:00<00:00, 58.27it/s]
+
52%|█████▎ | 21/40 [00:00<00:00, 52.27it/s]

end{sphinxVerbatim}

-

45%|████▌ | 18/40 [00:00<00:00, 58.27it/s]

+

52%|█████▎ | 21/40 [00:00<00:00, 52.27it/s]

-
62%|██████▎ | 25/40 [00:00&lt;00:00, 62.12it/s]
+
70%|███████ | 28/40 [00:00&lt;00:00, 57.88it/s]

</pre>

-
62%|██████▎ | 25/40 [00:00<00:00, 62.12it/s]
+
70%|███████ | 28/40 [00:00<00:00, 57.88it/s]

end{sphinxVerbatim}

-

62%|██████▎ | 25/40 [00:00<00:00, 62.12it/s]

+

70%|███████ | 28/40 [00:00<00:00, 57.88it/s]

-
80%|████████ | 32/40 [00:00&lt;00:00, 64.03it/s]
+
90%|█████████ | 36/40 [00:00&lt;00:00, 64.33it/s]

</pre>

-
80%|████████ | 32/40 [00:00<00:00, 64.03it/s]
+
90%|█████████ | 36/40 [00:00<00:00, 64.33it/s]

end{sphinxVerbatim}

-

80%|████████ | 32/40 [00:00<00:00, 64.03it/s]

+

90%|█████████ | 36/40 [00:00<00:00, 64.33it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 61.44it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 55.15it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 61.44it/s]
+
100%|██████████| 40/40 [00:00<00:00, 55.15it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 61.44it/s]

+

100%|██████████| 40/40 [00:00<00:00, 55.15it/s]

-
+
@@ -3012,35 +3099,35 @@

Dark images - is_dark_issue dark_score + is_dark_issue 34848 - True 0.203922 + True 50270 - True 0.204588 + True 3936 - True 0.213098 + True 733 - True 0.217686 + True 8094 - True 0.230118 + True @@ -3134,35 +3221,35 @@

Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -3190,7 +3277,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index ca3884e75..6cc35451a 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:56.232543Z", - "iopub.status.busy": "2024-02-08T04:24:56.232378Z", - "iopub.status.idle": "2024-02-08T04:24:58.931394Z", - "shell.execute_reply": "2024-02-08T04:24:58.930789Z" + "iopub.execute_input": "2024-02-08T05:11:33.855472Z", + "iopub.status.busy": "2024-02-08T05:11:33.855301Z", + "iopub.status.idle": "2024-02-08T05:11:36.680229Z", + "shell.execute_reply": "2024-02-08T05:11:36.679587Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:58.934174Z", - "iopub.status.busy": "2024-02-08T04:24:58.933710Z", - "iopub.status.idle": "2024-02-08T04:24:58.937329Z", - "shell.execute_reply": "2024-02-08T04:24:58.936873Z" + "iopub.execute_input": "2024-02-08T05:11:36.682789Z", + "iopub.status.busy": "2024-02-08T05:11:36.682504Z", + "iopub.status.idle": "2024-02-08T05:11:36.686100Z", + "shell.execute_reply": "2024-02-08T05:11:36.685571Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:24:58.939174Z", - "iopub.status.busy": "2024-02-08T04:24:58.938911Z", - "iopub.status.idle": "2024-02-08T04:25:01.280745Z", - "shell.execute_reply": "2024-02-08T04:25:01.280238Z" + "iopub.execute_input": "2024-02-08T05:11:36.688210Z", + "iopub.status.busy": "2024-02-08T05:11:36.687886Z", + "iopub.status.idle": "2024-02-08T05:11:42.408324Z", + "shell.execute_reply": "2024-02-08T05:11:42.407756Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1eec2d01466b406faa6fd5ecda631e5d", + "model_id": "5c4b4cfac6fb41f2bb0be9cbeb8c1702", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e589d0c9f4074d929f567d526d1382cd", + "model_id": "e5ff19704e974b418104ac00b0017738", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ea33752ef0e44cc7a07b481740f0d64f", + "model_id": "bbfffb031cc24eb4ae644fb9173c9de0", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "105f329ad92c48cf972b910d94794f45", + "model_id": "e7800f2f49ce4746b2842751e0616d59", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:01.283006Z", - "iopub.status.busy": "2024-02-08T04:25:01.282600Z", - "iopub.status.idle": "2024-02-08T04:25:01.286183Z", - "shell.execute_reply": "2024-02-08T04:25:01.285712Z" + "iopub.execute_input": "2024-02-08T05:11:42.410325Z", + "iopub.status.busy": "2024-02-08T05:11:42.410111Z", + "iopub.status.idle": "2024-02-08T05:11:42.413871Z", + "shell.execute_reply": "2024-02-08T05:11:42.413354Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:01.288113Z", - "iopub.status.busy": "2024-02-08T04:25:01.287932Z", - "iopub.status.idle": "2024-02-08T04:25:12.545629Z", - "shell.execute_reply": "2024-02-08T04:25:12.545098Z" + "iopub.execute_input": "2024-02-08T05:11:42.415858Z", + "iopub.status.busy": "2024-02-08T05:11:42.415525Z", + "iopub.status.idle": "2024-02-08T05:11:53.750074Z", + "shell.execute_reply": "2024-02-08T05:11:53.749507Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ce69eb6fd8f34a5bad0f15df3a6b52b0", + "model_id": "e05b0e6e74fa464d816d0358a6dc76b4", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:12.548131Z", - "iopub.status.busy": "2024-02-08T04:25:12.547897Z", - "iopub.status.idle": "2024-02-08T04:25:30.917414Z", - "shell.execute_reply": "2024-02-08T04:25:30.916876Z" + "iopub.execute_input": "2024-02-08T05:11:53.752787Z", + "iopub.status.busy": "2024-02-08T05:11:53.752415Z", + "iopub.status.idle": "2024-02-08T05:12:12.431429Z", + "shell.execute_reply": "2024-02-08T05:12:12.430850Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.920125Z", - "iopub.status.busy": "2024-02-08T04:25:30.919726Z", - "iopub.status.idle": "2024-02-08T04:25:30.925627Z", - "shell.execute_reply": "2024-02-08T04:25:30.925174Z" + "iopub.execute_input": "2024-02-08T05:12:12.434281Z", + "iopub.status.busy": "2024-02-08T05:12:12.433867Z", + "iopub.status.idle": "2024-02-08T05:12:12.440057Z", + "shell.execute_reply": "2024-02-08T05:12:12.439494Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.927527Z", - "iopub.status.busy": "2024-02-08T04:25:30.927201Z", - "iopub.status.idle": "2024-02-08T04:25:30.930903Z", - "shell.execute_reply": "2024-02-08T04:25:30.930494Z" + "iopub.execute_input": "2024-02-08T05:12:12.442385Z", + "iopub.status.busy": "2024-02-08T05:12:12.441854Z", + "iopub.status.idle": "2024-02-08T05:12:12.446407Z", + "shell.execute_reply": "2024-02-08T05:12:12.445964Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.932869Z", - "iopub.status.busy": "2024-02-08T04:25:30.932550Z", - "iopub.status.idle": "2024-02-08T04:25:30.941233Z", - "shell.execute_reply": "2024-02-08T04:25:30.940796Z" + "iopub.execute_input": "2024-02-08T05:12:12.448647Z", + "iopub.status.busy": "2024-02-08T05:12:12.448313Z", + "iopub.status.idle": "2024-02-08T05:12:12.457542Z", + "shell.execute_reply": "2024-02-08T05:12:12.456967Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.943198Z", - "iopub.status.busy": "2024-02-08T04:25:30.942898Z", - "iopub.status.idle": "2024-02-08T04:25:30.970984Z", - "shell.execute_reply": "2024-02-08T04:25:30.970570Z" + "iopub.execute_input": "2024-02-08T05:12:12.459748Z", + "iopub.status.busy": "2024-02-08T05:12:12.459381Z", + "iopub.status.idle": "2024-02-08T05:12:12.486639Z", + "shell.execute_reply": "2024-02-08T05:12:12.486117Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:25:30.973114Z", - "iopub.status.busy": "2024-02-08T04:25:30.972691Z", - "iopub.status.idle": "2024-02-08T04:26:01.791285Z", - "shell.execute_reply": "2024-02-08T04:26:01.790653Z" + "iopub.execute_input": "2024-02-08T05:12:12.489022Z", + "iopub.status.busy": "2024-02-08T05:12:12.488682Z", + "iopub.status.idle": "2024-02-08T05:12:47.304575Z", + "shell.execute_reply": "2024-02-08T05:12:47.303948Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.545\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.393\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.360\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 5.035\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 3/40 [00:00<00:01, 27.78it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.39it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 51.02it/s]" + " 20%|██ | 8/40 [00:00<00:00, 39.50it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.17it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 46.73it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.86it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 53.72it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 62.77it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 57.38it/s]" ] }, { @@ -790,7 +790,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.88it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 57.39it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 40/40 [00:00<00:00, 53.69it/s]" ] }, { @@ -820,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.05it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.11it/s]" ] }, { @@ -828,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 48.24it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 37.60it/s]" ] }, { @@ -836,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 56.60it/s]" + " 32%|███▎ | 13/40 [00:00<00:00, 45.19it/s]" ] }, { @@ -844,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 62.68it/s]" + " 50%|█████ | 20/40 [00:00<00:00, 51.79it/s]" ] }, { @@ -852,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 66.11it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 56.06it/s]" ] }, { @@ -860,15 +868,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.45it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 59.66it/s]" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\n", - "Training on fold: 2 ...\n" + "\r", + "100%|██████████| 40/40 [00:00<00:00, 53.55it/s]" ] }, { @@ -882,14 +890,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.565\n" + "\n", + "Training on fold: 2 ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.153\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.325\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.956\n", "Computing feature embeddings ...\n" ] }, @@ -906,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.22it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.09it/s]" ] }, { @@ -914,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 48.56it/s]" + " 20%|██ | 8/40 [00:00<00:00, 40.71it/s]" ] }, { @@ -922,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 57.12it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 51.00it/s]" ] }, { @@ -930,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 63.37it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 53.38it/s]" ] }, { @@ -938,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 64.97it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 54.81it/s]" ] }, { @@ -946,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 39/40 [00:00<00:00, 68.47it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 58.74it/s]" ] }, { @@ -954,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.34it/s]" + "100%|██████████| 40/40 [00:00<00:00, 52.08it/s]" ] }, { @@ -984,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.37it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.35it/s]" ] }, { @@ -992,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 50.99it/s]" + " 20%|██ | 8/40 [00:00<00:00, 41.07it/s]" ] }, { @@ -1000,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.63it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 53.07it/s]" ] }, { @@ -1008,7 +1024,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 62.58it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 57.05it/s]" ] }, { @@ -1016,7 +1032,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 65.07it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 60.72it/s]" ] }, { @@ -1024,7 +1040,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 73.11it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 60.32it/s]" ] }, { @@ -1032,7 +1048,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.41it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.52it/s]" ] }, { @@ -1054,14 +1070,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.716\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.128\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.350\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.675\n", "Computing feature embeddings ...\n" ] }, @@ -1078,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.70it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.42it/s]" ] }, { @@ -1086,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 44.22it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 34.21it/s]" ] }, { @@ -1094,7 +1110,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 55.41it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 47.70it/s]" ] }, { @@ -1102,7 +1118,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 60.21it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 55.32it/s]" ] }, { @@ -1110,7 +1126,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 63.53it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 56.57it/s]" ] }, { @@ -1118,7 +1134,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 64.28it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 62.30it/s]" ] }, { @@ -1126,7 +1142,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 59.03it/s]" + "100%|██████████| 40/40 [00:00<00:00, 54.64it/s]" ] }, { @@ -1156,7 +1172,15 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.91it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 7.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 20%|██ | 8/40 [00:00<00:00, 38.53it/s]" ] }, { @@ -1164,7 +1188,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 48.77it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 46.74it/s]" ] }, { @@ -1172,7 +1196,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 58.27it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 52.27it/s]" ] }, { @@ -1180,7 +1204,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 62.12it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 57.88it/s]" ] }, { @@ -1188,7 +1212,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 64.03it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 64.33it/s]" ] }, { @@ -1196,7 +1220,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.44it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.15it/s]" ] }, { @@ -1273,10 +1297,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:26:01.793942Z", - "iopub.status.busy": "2024-02-08T04:26:01.793708Z", - "iopub.status.idle": "2024-02-08T04:26:01.808555Z", - "shell.execute_reply": "2024-02-08T04:26:01.808026Z" + "iopub.execute_input": "2024-02-08T05:12:47.307122Z", + "iopub.status.busy": "2024-02-08T05:12:47.306721Z", + "iopub.status.idle": "2024-02-08T05:12:47.321685Z", + "shell.execute_reply": "2024-02-08T05:12:47.321241Z" } }, "outputs": [], @@ -1301,10 +1325,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:26:01.810654Z", - "iopub.status.busy": "2024-02-08T04:26:01.810270Z", - "iopub.status.idle": "2024-02-08T04:26:02.254184Z", - "shell.execute_reply": "2024-02-08T04:26:02.253640Z" + "iopub.execute_input": "2024-02-08T05:12:47.324152Z", + "iopub.status.busy": "2024-02-08T05:12:47.323716Z", + "iopub.status.idle": "2024-02-08T05:12:47.795908Z", + "shell.execute_reply": "2024-02-08T05:12:47.795244Z" } }, "outputs": [], @@ -1324,10 +1348,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:26:02.256439Z", - "iopub.status.busy": "2024-02-08T04:26:02.256259Z", - "iopub.status.idle": "2024-02-08T04:29:26.370970Z", - "shell.execute_reply": "2024-02-08T04:29:26.370342Z" + "iopub.execute_input": "2024-02-08T05:12:47.798403Z", + "iopub.status.busy": "2024-02-08T05:12:47.798206Z", + "iopub.status.idle": "2024-02-08T05:16:16.134576Z", + "shell.execute_reply": "2024-02-08T05:16:16.133948Z" } }, "outputs": [ @@ -1366,7 +1390,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6e7d1c0d21c4730876e3dc529f3db41", + "model_id": "c7e1f8c4d56340c8bb108cd4fe09524c", "version_major": 2, "version_minor": 0 }, @@ -1405,10 +1429,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.373314Z", - "iopub.status.busy": "2024-02-08T04:29:26.372922Z", - "iopub.status.idle": "2024-02-08T04:29:26.818658Z", - "shell.execute_reply": "2024-02-08T04:29:26.818134Z" + "iopub.execute_input": "2024-02-08T05:16:16.137196Z", + "iopub.status.busy": "2024-02-08T05:16:16.136611Z", + "iopub.status.idle": "2024-02-08T05:16:16.606508Z", + "shell.execute_reply": "2024-02-08T05:16:16.605923Z" } }, "outputs": [ @@ -1556,10 +1580,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.821205Z", - "iopub.status.busy": "2024-02-08T04:29:26.820713Z", - "iopub.status.idle": "2024-02-08T04:29:26.881196Z", - "shell.execute_reply": "2024-02-08T04:29:26.880709Z" + "iopub.execute_input": "2024-02-08T05:16:16.609511Z", + "iopub.status.busy": "2024-02-08T05:16:16.609031Z", + "iopub.status.idle": "2024-02-08T05:16:16.672077Z", + "shell.execute_reply": "2024-02-08T05:16:16.671511Z" } }, "outputs": [ @@ -1663,10 +1687,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.883670Z", - "iopub.status.busy": "2024-02-08T04:29:26.883206Z", - "iopub.status.idle": "2024-02-08T04:29:26.891318Z", - "shell.execute_reply": "2024-02-08T04:29:26.890887Z" + "iopub.execute_input": "2024-02-08T05:16:16.674286Z", + "iopub.status.busy": "2024-02-08T05:16:16.673952Z", + "iopub.status.idle": "2024-02-08T05:16:16.682904Z", + "shell.execute_reply": "2024-02-08T05:16:16.682454Z" } }, "outputs": [ @@ -1796,10 +1820,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.893282Z", - "iopub.status.busy": "2024-02-08T04:29:26.892958Z", - "iopub.status.idle": "2024-02-08T04:29:26.897622Z", - "shell.execute_reply": "2024-02-08T04:29:26.897061Z" + "iopub.execute_input": "2024-02-08T05:16:16.685126Z", + "iopub.status.busy": "2024-02-08T05:16:16.684796Z", + "iopub.status.idle": "2024-02-08T05:16:16.689639Z", + "shell.execute_reply": "2024-02-08T05:16:16.689163Z" }, "nbsphinx": "hidden" }, @@ -1845,10 +1869,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:26.899634Z", - "iopub.status.busy": "2024-02-08T04:29:26.899324Z", - "iopub.status.idle": "2024-02-08T04:29:27.376843Z", - "shell.execute_reply": "2024-02-08T04:29:27.376264Z" + "iopub.execute_input": "2024-02-08T05:16:16.691789Z", + "iopub.status.busy": "2024-02-08T05:16:16.691422Z", + "iopub.status.idle": "2024-02-08T05:16:17.213029Z", + "shell.execute_reply": "2024-02-08T05:16:17.212410Z" } }, "outputs": [ @@ -1883,10 +1907,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.379088Z", - "iopub.status.busy": "2024-02-08T04:29:27.378755Z", - "iopub.status.idle": "2024-02-08T04:29:27.386489Z", - "shell.execute_reply": "2024-02-08T04:29:27.386057Z" + "iopub.execute_input": "2024-02-08T05:16:17.215467Z", + "iopub.status.busy": "2024-02-08T05:16:17.214996Z", + "iopub.status.idle": "2024-02-08T05:16:17.224959Z", + "shell.execute_reply": "2024-02-08T05:16:17.224479Z" } }, "outputs": [ @@ -2053,10 +2077,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.388581Z", - "iopub.status.busy": "2024-02-08T04:29:27.388218Z", - "iopub.status.idle": "2024-02-08T04:29:27.395182Z", - "shell.execute_reply": "2024-02-08T04:29:27.394738Z" + "iopub.execute_input": "2024-02-08T05:16:17.227422Z", + "iopub.status.busy": "2024-02-08T05:16:17.226963Z", + "iopub.status.idle": "2024-02-08T05:16:17.235643Z", + "shell.execute_reply": "2024-02-08T05:16:17.235180Z" }, "nbsphinx": "hidden" }, @@ -2132,10 +2156,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.397024Z", - "iopub.status.busy": "2024-02-08T04:29:27.396850Z", - "iopub.status.idle": "2024-02-08T04:29:27.833200Z", - "shell.execute_reply": "2024-02-08T04:29:27.832645Z" + "iopub.execute_input": "2024-02-08T05:16:17.237953Z", + "iopub.status.busy": "2024-02-08T05:16:17.237551Z", + "iopub.status.idle": "2024-02-08T05:16:17.722322Z", + "shell.execute_reply": "2024-02-08T05:16:17.721746Z" } }, "outputs": [ @@ -2172,10 +2196,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.835376Z", - "iopub.status.busy": "2024-02-08T04:29:27.834999Z", - "iopub.status.idle": "2024-02-08T04:29:27.850165Z", - "shell.execute_reply": "2024-02-08T04:29:27.849608Z" + "iopub.execute_input": "2024-02-08T05:16:17.724592Z", + "iopub.status.busy": "2024-02-08T05:16:17.724194Z", + "iopub.status.idle": "2024-02-08T05:16:17.740235Z", + "shell.execute_reply": "2024-02-08T05:16:17.739614Z" } }, "outputs": [ @@ -2332,10 +2356,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.852521Z", - "iopub.status.busy": "2024-02-08T04:29:27.852115Z", - "iopub.status.idle": "2024-02-08T04:29:27.857586Z", - "shell.execute_reply": "2024-02-08T04:29:27.857046Z" + "iopub.execute_input": "2024-02-08T05:16:17.742697Z", + "iopub.status.busy": "2024-02-08T05:16:17.742264Z", + "iopub.status.idle": "2024-02-08T05:16:17.749660Z", + "shell.execute_reply": "2024-02-08T05:16:17.749131Z" }, "nbsphinx": "hidden" }, @@ -2380,10 +2404,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:27.859645Z", - "iopub.status.busy": "2024-02-08T04:29:27.859344Z", - "iopub.status.idle": "2024-02-08T04:29:28.254342Z", - "shell.execute_reply": "2024-02-08T04:29:28.253785Z" + "iopub.execute_input": "2024-02-08T05:16:17.752010Z", + "iopub.status.busy": "2024-02-08T05:16:17.751625Z", + "iopub.status.idle": "2024-02-08T05:16:18.239460Z", + "shell.execute_reply": "2024-02-08T05:16:18.238912Z" } }, "outputs": [ @@ -2465,10 +2489,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.256536Z", - "iopub.status.busy": "2024-02-08T04:29:28.256361Z", - "iopub.status.idle": "2024-02-08T04:29:28.264799Z", - "shell.execute_reply": "2024-02-08T04:29:28.264244Z" + "iopub.execute_input": "2024-02-08T05:16:18.242461Z", + "iopub.status.busy": "2024-02-08T05:16:18.241984Z", + "iopub.status.idle": "2024-02-08T05:16:18.251716Z", + "shell.execute_reply": "2024-02-08T05:16:18.251180Z" } }, "outputs": [ @@ -2493,47 +2517,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2596,10 +2620,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.266967Z", - "iopub.status.busy": "2024-02-08T04:29:28.266794Z", - "iopub.status.idle": "2024-02-08T04:29:28.272101Z", - "shell.execute_reply": "2024-02-08T04:29:28.271528Z" + "iopub.execute_input": "2024-02-08T05:16:18.254337Z", + "iopub.status.busy": "2024-02-08T05:16:18.254007Z", + "iopub.status.idle": "2024-02-08T05:16:18.259914Z", + "shell.execute_reply": "2024-02-08T05:16:18.259362Z" }, "nbsphinx": "hidden" }, @@ -2636,10 +2660,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.274106Z", - "iopub.status.busy": "2024-02-08T04:29:28.273933Z", - "iopub.status.idle": "2024-02-08T04:29:28.448369Z", - "shell.execute_reply": "2024-02-08T04:29:28.447945Z" + "iopub.execute_input": "2024-02-08T05:16:18.262797Z", + "iopub.status.busy": "2024-02-08T05:16:18.261859Z", + "iopub.status.idle": "2024-02-08T05:16:18.467078Z", + "shell.execute_reply": "2024-02-08T05:16:18.466624Z" } }, "outputs": [ @@ -2681,10 +2705,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.450416Z", - "iopub.status.busy": "2024-02-08T04:29:28.450253Z", - "iopub.status.idle": "2024-02-08T04:29:28.457374Z", - "shell.execute_reply": "2024-02-08T04:29:28.456949Z" + "iopub.execute_input": "2024-02-08T05:16:18.469453Z", + "iopub.status.busy": "2024-02-08T05:16:18.469266Z", + "iopub.status.idle": "2024-02-08T05:16:18.477401Z", + "shell.execute_reply": "2024-02-08T05:16:18.476936Z" } }, "outputs": [ @@ -2709,47 +2733,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "
" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2770,10 +2794,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.459371Z", - "iopub.status.busy": "2024-02-08T04:29:28.459080Z", - "iopub.status.idle": "2024-02-08T04:29:28.664721Z", - "shell.execute_reply": "2024-02-08T04:29:28.664223Z" + "iopub.execute_input": "2024-02-08T05:16:18.479350Z", + "iopub.status.busy": "2024-02-08T05:16:18.479171Z", + "iopub.status.idle": "2024-02-08T05:16:18.652231Z", + "shell.execute_reply": "2024-02-08T05:16:18.651687Z" } }, "outputs": [ @@ -2813,10 +2837,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:28.666766Z", - "iopub.status.busy": "2024-02-08T04:29:28.666522Z", - "iopub.status.idle": "2024-02-08T04:29:28.670873Z", - "shell.execute_reply": "2024-02-08T04:29:28.670415Z" + "iopub.execute_input": "2024-02-08T05:16:18.654334Z", + "iopub.status.busy": "2024-02-08T05:16:18.654151Z", + "iopub.status.idle": "2024-02-08T05:16:18.658449Z", + "shell.execute_reply": "2024-02-08T05:16:18.658019Z" }, "nbsphinx": "hidden" }, @@ -2853,7 +2877,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "022361df31e04c07a94380f640f14be5": { + "1644edf88a214176b72d5e2999de8b8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1ec724c611f14ab38760c5b566b9582f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7a0422ab0104b88942f6e13074466fd", + "placeholder": "​", + "style": "IPY_MODEL_effe32e5f0a941f080bbc9527408df9b", + "tabbable": null, + "tooltip": null, + "value": " 10000/0 [00:00<00:00, 604906.98 examples/s]" + } + }, + "1f8b5c4b58024e64be421bef7eadc5d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2906,23 +2969,7 @@ "width": null } }, - "02a75c6b9edc4a8da0feb9bfb6765cbb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "030281198fd34a91972408f1da63fd2c": { + "285fd65ebfa84b7db898a122b01e9cf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2975,56 +3022,25 @@ "width": null } }, - "0b506b5e968a47e5bdac76006be1a8f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6777fbed25941949ac8a3d865aed819", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_db40575858474d3a843331bc41775ad3", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "0c77dd68f643447aa8f7a15a8f8d7c0d": { + "2aa613cbd16f441d9edaca57135cb071": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_62d335a76c35470a9d62b78583ff85f6", - "placeholder": "​", - "style": "IPY_MODEL_8944dd98d72349a5be7063852a21d1c5", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0dc71852ac254921bbed195ab4251c4f": { + "2b931418c3fd4234a23894c55017dfcf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3040,77 +3056,102 @@ "description_width": "" } }, - "105f329ad92c48cf972b910d94794f45": { - "model_module": "@jupyter-widgets/controls", + "2c0f9fff6e4c405fa1bfc4e835f67e87": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f905fd537338456d835ebeb8895ccb67", - "IPY_MODEL_6b4dbe42cec946a9860f4bf17694a897", - "IPY_MODEL_3c2c501bb364468ba6431695ddd1cb05" - ], - "layout": "IPY_MODEL_9cc620828b64434cb0d8bdaf6831e7ae", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "163f6d444ced4bd3a8aeef3fb3508584": { + "2cd5b2a3ff3c4ff2aed85ff949da477d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ec070a2ba34490b84dfd843b416f425", - "placeholder": "​", - "style": "IPY_MODEL_743d085136164ef5a0f8e5e72f4e15d8", + "layout": "IPY_MODEL_35a9338c6d8a4eaf862bc864ff5dd08b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e3ab4c006214c16ab971289caed8b54", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 2.0 } }, - "17b24e6d097243b8b8083d44d73119bc": { + "2e3ab4c006214c16ab971289caed8b54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb252788ddb9420a88bb9797d7813181", - "placeholder": "​", - "style": "IPY_MODEL_90005ad1662a4399b7be6a444a22baf4", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1a890e8102094b07bd098955bc285fc9": { + "35a9338c6d8a4eaf862bc864ff5dd08b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3163,7 +3204,25 @@ "width": null } }, - "1ec070a2ba34490b84dfd843b416f425": { + "363e5cd53b2a4843aff9e84163dbe4de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "36cdebc200c1419587f484aba7f952db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3216,116 +3275,16 @@ "width": null } }, - "1eec2d01466b406faa6fd5ecda631e5d": { + "37f8ad1027ad4b2182598247456a700e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_95e05aba0365417aab068330e8b9a12b", - "IPY_MODEL_0b506b5e968a47e5bdac76006be1a8f7", - "IPY_MODEL_23266deca5c24b548a53cd17dfc0c1ae" - ], - "layout": "IPY_MODEL_d4b0778e22ed4eadb1732422377e864c", - "tabbable": null, - "tooltip": null - } - }, - "200fde7945ec4df980b83907c2e129ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_022361df31e04c07a94380f640f14be5", - "placeholder": "​", - "style": "IPY_MODEL_c6726edea8694a65a03ad0e2fb31c97b", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: " - } - }, - "2191c71bc38844fda92806b5e0000cfa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "22793e0bfd4445869a5eb18544b4933c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, @@ -3334,46 +3293,7 @@ "text_color": null } }, - "23266deca5c24b548a53cd17dfc0c1ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b67fbc431ea48d79379601ba00ea8d4", - "placeholder": "​", - "style": "IPY_MODEL_af7256daba3e4d6fb5beb6e6efbedb1f", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 51.6MB/s]" - } - }, - "37fac0c2d47b4f4cbf18f1bb7348240e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3bbd7ddc822a40bb99e2eb7d57b32a62": { + "3de862f5c9be4a6dbdda8611c5e6dca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3426,7 +3346,7 @@ "width": null } }, - "3c2c501bb364468ba6431695ddd1cb05": { + "3f55ac718f964cec989f7482f3183b89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3441,15 +3361,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f0347dfa685c498e90e22335f0838175", + "layout": "IPY_MODEL_96e7054a006f4727bf45e5a42d11b2c2", "placeholder": "​", - "style": "IPY_MODEL_fa36e53aaef54fd689bfb9d08854a360", + "style": "IPY_MODEL_e0ebc204c13641a2b55191d60baf356f", "tabbable": null, "tooltip": null, - "value": " 10000/0 [00:00<00:00, 649162.53 examples/s]" + "value": "Map (num_proc=4): 100%" } }, - "48334b3517aa4ba7832a21e78f093fdd": { + "3fdf1f2465c1440b8c718c42a818ad75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3465,17 +3385,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9588000ebdf345bebf297a2c279caa6d", + "layout": "IPY_MODEL_e2c737cdcd6f4555b7e61b60589713ca", "max": 1.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0dc71852ac254921bbed195ab4251c4f", + "style": "IPY_MODEL_2b931418c3fd4234a23894c55017dfcf", "tabbable": null, "tooltip": null, "value": 1.0 } }, - "4b418860b14e47f58fd4b00a13032e44": { + "42a019e901584661bcd2c6b48c3bfd0d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4418d7b6a1184fb2a4103b6e70f569aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3528,7 +3466,7 @@ "width": null } }, - "4bba15efd9dc46a2a0ebd1291f8896dc": { + "471b6653307d4909b42ade69cf37da25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3581,7 +3519,65 @@ "width": null } }, - "53c815aed4304e5e9afdf1da25822e92": { + "493ed9042d5e4326adfc3d2585299355": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5174d8704fca4455bda38a72dfce3e9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5c4b4cfac6fb41f2bb0be9cbeb8c1702": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b07001a214c4c268b08c628a7ff9e8c", + "IPY_MODEL_c3de9a57ab064122bf5347d7f435c3e4", + "IPY_MODEL_677296d2bf664f35ad740d29f938fd5d" + ], + "layout": "IPY_MODEL_36cdebc200c1419587f484aba7f952db", + "tabbable": null, + "tooltip": null + } + }, + "5d70744021bd418c95053a103abb48af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3599,7 +3595,7 @@ "text_color": null } }, - "564801b11acd4cf59ad85465e6a2a44d": { + "6397b7759d21423b9c41a28075a672ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3652,7 +3648,30 @@ "width": null } }, - "60f912b3115d49cd827a4200e203f2c9": { + "677296d2bf664f35ad740d29f938fd5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e53626a1bc4048ddb632f06afadeb258", + "placeholder": "​", + "style": "IPY_MODEL_d6a1a3af52b34e20a14fd4ff35251275", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:01<00:00, 25.2MB/s]" + } + }, + "67d8a420ec26495abdcdb3b12e679851": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3668,60 +3687,65 @@ "description_width": "" } }, - "62d335a76c35470a9d62b78583ff85f6": { - "model_module": "@jupyter-widgets/base", + "68d54c5150274e5f8dcc0ad415e06a5a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6d967799b3234367929d5561fa93aa2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6698cd7395124e1a8376a76adf2c4453": { + "74d40d29ce84473bb02ef23b29a16b31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99867176270e42be92113eb850116874", + "IPY_MODEL_2cd5b2a3ff3c4ff2aed85ff949da477d", + "IPY_MODEL_9f33cb0947d349b78bad2c1cd8a403e5" + ], + "layout": "IPY_MODEL_b89c0aea8ebd4903ae202e5ffdb99c81", + "tabbable": null, + "tooltip": null + } + }, + "7562623f07f54b5cbff436c2d9c3b869": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3774,7 +3798,7 @@ "width": null } }, - "6a9836c5b18f438b8377e541518ee897": { + "77816eaf3dc34ead865eac35c87b2e04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3827,33 +3851,7 @@ "width": null } }, - "6b4dbe42cec946a9860f4bf17694a897": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f62babe0a6794ddfb0512fdd7ec0d2e6", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d16e6000e234533bcde9ed155252467", - "tabbable": null, - "tooltip": null, - "value": 1.0 - } - }, - "6b67fbc431ea48d79379601ba00ea8d4": { + "7930a46787484e95a506fe2ffde1ac01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3906,25 +3904,7 @@ "width": null } }, - "6caa5a8063894f4995c98e645d6ff9fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "743d085136164ef5a0f8e5e72f4e15d8": { + "79c541cc0f894a56a2797fbef2534db4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3942,73 +3922,7 @@ "text_color": null } }, - "76145457ff634734ab36f88825eb03f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "77468d8237894488926b994607e32290": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8be3516c6484667a59994d658e9fa5b", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60f912b3115d49cd827a4200e203f2c9", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "77d4a0e4587c4fd6954b30bf64d2759c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_17b24e6d097243b8b8083d44d73119bc", - "IPY_MODEL_bb5b1299d4bf4b4a8c5edb9c01e08f4a", - "IPY_MODEL_c63ff68274c34fac9f7ad054164174d4" - ], - "layout": "IPY_MODEL_edfeed6b7cf649fda36e013a4fdaa7ff", - "tabbable": null, - "tooltip": null - } - }, - "7f55f4f4deb242e49f6586cf22c09f47": { + "7a3e0d588f0248b28b5c9d27a4b7737c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4061,78 +3975,48 @@ "width": null } }, - "8039157c6cfa420f945b501e5a83bbe0": { + "7e37a4f7322147979cf7891faa98ee14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc77e2b0e4414a47ae304a5cf6344637", + "placeholder": "​", + "style": "IPY_MODEL_363e5cd53b2a4843aff9e84163dbe4de", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: " } }, - "8504f14162fd453a920ab503c6015fac": { - "model_module": "@jupyter-widgets/base", + "810dd6ae071b4bc39252b1d0c0529379": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "85da4e0901624e5d8bff898ceea6d901": { + "834eb2f7d0d74cb785e58552bdaab3c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4179,90 +4063,52 @@ "order": null, "overflow": null, "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "884ffee63a00480ea5edbb59b662c16f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a9836c5b18f438b8377e541518ee897", - "placeholder": "​", - "style": "IPY_MODEL_6caa5a8063894f4995c98e645d6ff9fe", - "tabbable": null, - "tooltip": null, - "value": " 60000/0 [00:00<00:00, 972945.69 examples/s]" - } - }, - "8944dd98d72349a5be7063852a21d1c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "90005ad1662a4399b7be6a444a22baf4": { + "8b07001a214c4c268b08c628a7ff9e8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_834eb2f7d0d74cb785e58552bdaab3c2", + "placeholder": "​", + "style": "IPY_MODEL_ae5b4be114cf49a3a236e2414ea9ec74", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "91107edd04e24ddfa18822baf8d28255": { + "8eac27d48e0d4eda8f3f1a29c903074b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "9588000ebdf345bebf297a2c279caa6d": { + "8f2272d60a3248e29fe79642f0ff3265": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4312,10 +4158,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "95e05aba0365417aab068330e8b9a12b": { + "903186124d324e7fb525fa3ff2403018": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4330,15 +4176,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4bba15efd9dc46a2a0ebd1291f8896dc", + "layout": "IPY_MODEL_285fd65ebfa84b7db898a122b01e9cf6", "placeholder": "​", - "style": "IPY_MODEL_d5749ba00c354619848ffd0fe274e6fd", + "style": "IPY_MODEL_5174d8704fca4455bda38a72dfce3e9e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 5.18M/5.18M [00:00<00:00, 15.5MB/s]" + } + }, + "923abd22bde14711966b7c5552bf4c5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6397b7759d21423b9c41a28075a672ed", + "placeholder": "​", + "style": "IPY_MODEL_79c541cc0f894a56a2797fbef2534db4", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: " } }, - "9cc620828b64434cb0d8bdaf6831e7ae": { + "96e7054a006f4727bf45e5a42d11b2c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4391,23 +4260,30 @@ "width": null } }, - "9d16e6000e234533bcde9ed155252467": { + "99867176270e42be92113eb850116874": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b207a5d2a3bf4b9285d84b1c2d7408c7", + "placeholder": "​", + "style": "IPY_MODEL_5d70744021bd418c95053a103abb48af", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "a2342367645f4628a390dd1f293fe17a": { + "9f33cb0947d349b78bad2c1cd8a403e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4422,57 +4298,94 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3bbd7ddc822a40bb99e2eb7d57b32a62", + "layout": "IPY_MODEL_7a3e0d588f0248b28b5c9d27a4b7737c", "placeholder": "​", - "style": "IPY_MODEL_f30bada11cdc4aa5a3be563b379969f3", + "style": "IPY_MODEL_e753e814b85c48f89b1839b325827653", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 62.3MB/s]" + "value": " 2/2 [00:00<00:00, 553.67it/s]" } }, - "a6e7d1c0d21c4730876e3dc529f3db41": { + "a5440438a96642aa822f3db19dd9d2b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_163f6d444ced4bd3a8aeef3fb3508584", - "IPY_MODEL_77468d8237894488926b994607e32290", - "IPY_MODEL_d63672f8f5a54edb893686a037241111" - ], - "layout": "IPY_MODEL_1a890e8102094b07bd098955bc285fc9", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee8b1d7e105c4d54aeff1bbda21c46cf", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67d8a420ec26495abdcdb3b12e679851", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "a76fc2e470334b3fbdbd3f0089500faa": { - "model_module": "@jupyter-widgets/controls", + "a8a5a7c2120f4f4e9594f6cc1ca2c60a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "af7256daba3e4d6fb5beb6e6efbedb1f": { + "ae5b4be114cf49a3a236e2414ea9ec74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4490,7 +4403,60 @@ "text_color": null } }, - "b3c252ad82284cfebb7d60516a02a5c8": { + "b207a5d2a3bf4b9285d84b1c2d7408c7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b3a233d32141401f8db7bc191a381641": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4505,15 +4471,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_030281198fd34a91972408f1da63fd2c", + "layout": "IPY_MODEL_fbc31c35b38e4af899f96c14b9989fb1", "placeholder": "​", - "style": "IPY_MODEL_8039157c6cfa420f945b501e5a83bbe0", + "style": "IPY_MODEL_37f8ad1027ad4b2182598247456a700e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 60000/0 [00:00<00:00, 909801.02 examples/s]" } }, - "bb252788ddb9420a88bb9797d7813181": { + "b89c0aea8ebd4903ae202e5ffdb99c81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4566,33 +4532,31 @@ "width": null } }, - "bb5b1299d4bf4b4a8c5edb9c01e08f4a": { + "bbfffb031cc24eb4ae644fb9173c9de0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6698cd7395124e1a8376a76adf2c4453", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_37fac0c2d47b4f4cbf18f1bb7348240e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_923abd22bde14711966b7c5552bf4c5e", + "IPY_MODEL_3fdf1f2465c1440b8c718c42a818ad75", + "IPY_MODEL_b3a233d32141401f8db7bc191a381641" + ], + "layout": "IPY_MODEL_ffd7dcc7b14a4ef798b2746aa3b3c7f0", "tabbable": null, - "tooltip": null, - "value": 2.0 + "tooltip": null } }, - "bf209122024e46c5ab88db5cb5138baf": { + "be05548dfdec494981be4be62e6a5d4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4607,15 +4571,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2191c71bc38844fda92806b5e0000cfa", + "layout": "IPY_MODEL_1f8b5c4b58024e64be421bef7eadc5d0", "placeholder": "​", - "style": "IPY_MODEL_a76fc2e470334b3fbdbd3f0089500faa", + "style": "IPY_MODEL_42a019e901584661bcd2c6b48c3bfd0d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7058.48 examples/s]" + "value": " 60000/60000 [00:38<00:00, 1621.13it/s]" } }, - "c0e317ca2efa410b9b4b1b686da287f3": { + "c1e31f34f2ff4836aeaad3e21d2121f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4631,40 +4595,90 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8504f14162fd453a920ab503c6015fac", + "layout": "IPY_MODEL_471b6653307d4909b42ade69cf37da25", "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_02a75c6b9edc4a8da0feb9bfb6765cbb", + "style": "IPY_MODEL_8eac27d48e0d4eda8f3f1a29c903074b", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "c3de9a57ab064122bf5347d7f435c3e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3de862f5c9be4a6dbdda8611c5e6dca5", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_493ed9042d5e4326adfc3d2585299355", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "c74f77bc004047b7b8662e029b1fcb07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7930a46787484e95a506fe2ffde1ac01", + "placeholder": "​", + "style": "IPY_MODEL_6d967799b3234367929d5561fa93aa2a", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "100%" } }, - "c63ff68274c34fac9f7ad054164174d4": { + "c7e1f8c4d56340c8bb108cd4fe09524c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85da4e0901624e5d8bff898ceea6d901", - "placeholder": "​", - "style": "IPY_MODEL_91107edd04e24ddfa18822baf8d28255", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c74f77bc004047b7b8662e029b1fcb07", + "IPY_MODEL_a5440438a96642aa822f3db19dd9d2b2", + "IPY_MODEL_be05548dfdec494981be4be62e6a5d4a" + ], + "layout": "IPY_MODEL_fddb77a232504422a0b397d40d2ebc1e", "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 521.03it/s]" + "tooltip": null } }, - "c6726edea8694a65a03ad0e2fb31c97b": { + "d6a1a3af52b34e20a14fd4ff35251275": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4682,7 +4696,7 @@ "text_color": null } }, - "c8be3516c6484667a59994d658e9fa5b": { + "d70aa7ea4b3b44ea9784c79850fb7af4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4732,10 +4746,62 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "dc7818977fcb49399992e292f7bab51d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a8a5a7c2120f4f4e9594f6cc1ca2c60a", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68d54c5150274e5f8dcc0ad415e06a5a", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "dfd15be73a8148cdb1ab8b91c3f276a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d70aa7ea4b3b44ea9784c79850fb7af4", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1644edf88a214176b72d5e2999de8b8e", + "tabbable": null, + "tooltip": null, + "value": 1.0 } }, - "ce69eb6fd8f34a5bad0f15df3a6b52b0": { + "e05b0e6e74fa464d816d0358a6dc76b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4750,16 +4816,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0c77dd68f643447aa8f7a15a8f8d7c0d", - "IPY_MODEL_e28a4e53150a428d98c3c546e1b45e03", - "IPY_MODEL_bf209122024e46c5ab88db5cb5138baf" + "IPY_MODEL_3f55ac718f964cec989f7482f3183b89", + "IPY_MODEL_dc7818977fcb49399992e292f7bab51d", + "IPY_MODEL_f98496a8928c4621ac3e712295d0f550" ], - "layout": "IPY_MODEL_7f55f4f4deb242e49f6586cf22c09f47", + "layout": "IPY_MODEL_8f2272d60a3248e29fe79642f0ff3265", "tabbable": null, "tooltip": null } }, - "cf33f9566dfc4d708dcbfd58fe688462": { + "e0ebc204c13641a2b55191d60baf356f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e2c737cdcd6f4555b7e61b60589713ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4809,10 +4893,10 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "d4b0778e22ed4eadb1732422377e864c": { + "e53626a1bc4048ddb632f06afadeb258": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4865,90 +4949,49 @@ "width": null } }, - "d5749ba00c354619848ffd0fe274e6fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d63672f8f5a54edb893686a037241111": { + "e5ff19704e974b418104ac00b0017738": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b418860b14e47f58fd4b00a13032e44", - "placeholder": "​", - "style": "IPY_MODEL_53c815aed4304e5e9afdf1da25822e92", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f69d38dc83a4401bb43f2a3672cfcb79", + "IPY_MODEL_c1e31f34f2ff4836aeaad3e21d2121f5", + "IPY_MODEL_903186124d324e7fb525fa3ff2403018" + ], + "layout": "IPY_MODEL_77816eaf3dc34ead865eac35c87b2e04", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1692.62it/s]" + "tooltip": null } }, - "db40575858474d3a843331bc41775ad3": { + "e753e814b85c48f89b1839b325827653": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e28a4e53150a428d98c3c546e1b45e03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ef735a55d4af44f0ae295a9724d55bf7", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_76145457ff634734ab36f88825eb03f4", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e589d0c9f4074d929f567d526d1382cd": { + "e7800f2f49ce4746b2842751e0616d59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4963,16 +5006,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b3c252ad82284cfebb7d60516a02a5c8", - "IPY_MODEL_c0e317ca2efa410b9b4b1b686da287f3", - "IPY_MODEL_a2342367645f4628a390dd1f293fe17a" + "IPY_MODEL_7e37a4f7322147979cf7891faa98ee14", + "IPY_MODEL_dfd15be73a8148cdb1ab8b91c3f276a7", + "IPY_MODEL_1ec724c611f14ab38760c5b566b9582f" ], - "layout": "IPY_MODEL_cf33f9566dfc4d708dcbfd58fe688462", + "layout": "IPY_MODEL_4418d7b6a1184fb2a4103b6e70f569aa", "tabbable": null, "tooltip": null } }, - "e6777fbed25941949ac8a3d865aed819": { + "ee8b1d7e105c4d54aeff1bbda21c46cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5025,31 +5068,48 @@ "width": null } }, - "ea33752ef0e44cc7a07b481740f0d64f": { + "effe32e5f0a941f080bbc9527408df9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f69d38dc83a4401bb43f2a3672cfcb79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_200fde7945ec4df980b83907c2e129ef", - "IPY_MODEL_48334b3517aa4ba7832a21e78f093fdd", - "IPY_MODEL_884ffee63a00480ea5edbb59b662c16f" - ], - "layout": "IPY_MODEL_ffae2d4faf394024b9fa81123e38597b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c0f9fff6e4c405fa1bfc4e835f67e87", + "placeholder": "​", + "style": "IPY_MODEL_2aa613cbd16f441d9edaca57135cb071", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "edfeed6b7cf649fda36e013a4fdaa7ff": { + "f7a0422ab0104b88942f6e13074466fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5102,7 +5162,30 @@ "width": null } }, - "ef735a55d4af44f0ae295a9724d55bf7": { + "f98496a8928c4621ac3e712295d0f550": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7562623f07f54b5cbff436c2d9c3b869", + "placeholder": "​", + "style": "IPY_MODEL_810dd6ae071b4bc39252b1d0c0529379", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6473.19 examples/s]" + } + }, + "fbc31c35b38e4af899f96c14b9989fb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5155,7 +5238,7 @@ "width": null } }, - "f0347dfa685c498e90e22335f0838175": { + "fc77e2b0e4414a47ae304a5cf6344637": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5208,25 +5291,7 @@ "width": null } }, - "f30bada11cdc4aa5a3be563b379969f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f62babe0a6794ddfb0512fdd7ec0d2e6": { + "fddb77a232504422a0b397d40d2ebc1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5276,51 +5341,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" - } - }, - "f905fd537338456d835ebeb8895ccb67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_564801b11acd4cf59ad85465e6a2a44d", - "placeholder": "​", - "style": "IPY_MODEL_22793e0bfd4445869a5eb18544b4933c", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: " - } - }, - "fa36e53aaef54fd689bfb9d08854a360": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "width": null } }, - "ffae2d4faf394024b9fa81123e38597b": { + "ffd7dcc7b14a4ef798b2746aa3b3c7f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 87da21dc3..0df9de925 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:32.645032Z", - "iopub.status.busy": "2024-02-08T04:29:32.644695Z", - "iopub.status.idle": "2024-02-08T04:29:33.720265Z", - "shell.execute_reply": "2024-02-08T04:29:33.719714Z" + "iopub.execute_input": "2024-02-08T05:16:23.904483Z", + "iopub.status.busy": "2024-02-08T05:16:23.904288Z", + "iopub.status.idle": "2024-02-08T05:16:25.064878Z", + "shell.execute_reply": "2024-02-08T05:16:25.064318Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.722754Z", - "iopub.status.busy": "2024-02-08T04:29:33.722495Z", - "iopub.status.idle": "2024-02-08T04:29:33.896878Z", - "shell.execute_reply": "2024-02-08T04:29:33.896375Z" + "iopub.execute_input": "2024-02-08T05:16:25.067486Z", + "iopub.status.busy": "2024-02-08T05:16:25.067046Z", + "iopub.status.idle": "2024-02-08T05:16:25.249068Z", + "shell.execute_reply": "2024-02-08T05:16:25.248446Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.899042Z", - "iopub.status.busy": "2024-02-08T04:29:33.898858Z", - "iopub.status.idle": "2024-02-08T04:29:33.910302Z", - "shell.execute_reply": "2024-02-08T04:29:33.909891Z" + "iopub.execute_input": "2024-02-08T05:16:25.251515Z", + "iopub.status.busy": "2024-02-08T05:16:25.251316Z", + "iopub.status.idle": "2024-02-08T05:16:25.263540Z", + "shell.execute_reply": "2024-02-08T05:16:25.263084Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:33.912102Z", - "iopub.status.busy": "2024-02-08T04:29:33.911929Z", - "iopub.status.idle": "2024-02-08T04:29:34.143692Z", - "shell.execute_reply": "2024-02-08T04:29:34.143115Z" + "iopub.execute_input": "2024-02-08T05:16:25.265557Z", + "iopub.status.busy": "2024-02-08T05:16:25.265345Z", + "iopub.status.idle": "2024-02-08T05:16:25.502662Z", + "shell.execute_reply": "2024-02-08T05:16:25.502081Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:34.146119Z", - "iopub.status.busy": "2024-02-08T04:29:34.145722Z", - "iopub.status.idle": "2024-02-08T04:29:34.171831Z", - "shell.execute_reply": "2024-02-08T04:29:34.171416Z" + "iopub.execute_input": "2024-02-08T05:16:25.504829Z", + "iopub.status.busy": "2024-02-08T05:16:25.504610Z", + "iopub.status.idle": "2024-02-08T05:16:25.531768Z", + "shell.execute_reply": "2024-02-08T05:16:25.531124Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:34.173843Z", - "iopub.status.busy": "2024-02-08T04:29:34.173536Z", - "iopub.status.idle": "2024-02-08T04:29:35.807810Z", - "shell.execute_reply": "2024-02-08T04:29:35.807175Z" + "iopub.execute_input": "2024-02-08T05:16:25.534300Z", + "iopub.status.busy": "2024-02-08T05:16:25.534072Z", + "iopub.status.idle": "2024-02-08T05:16:27.324472Z", + "shell.execute_reply": "2024-02-08T05:16:27.323774Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:35.810545Z", - "iopub.status.busy": "2024-02-08T04:29:35.809961Z", - "iopub.status.idle": "2024-02-08T04:29:35.825604Z", - "shell.execute_reply": "2024-02-08T04:29:35.825067Z" + "iopub.execute_input": "2024-02-08T05:16:27.327517Z", + "iopub.status.busy": "2024-02-08T05:16:27.326712Z", + "iopub.status.idle": "2024-02-08T05:16:27.344016Z", + "shell.execute_reply": "2024-02-08T05:16:27.343410Z" }, "scrolled": true }, @@ -603,10 +603,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:35.827648Z", - "iopub.status.busy": "2024-02-08T04:29:35.827315Z", - "iopub.status.idle": "2024-02-08T04:29:37.188484Z", - "shell.execute_reply": "2024-02-08T04:29:37.187888Z" + "iopub.execute_input": "2024-02-08T05:16:27.346267Z", + "iopub.status.busy": "2024-02-08T05:16:27.345912Z", + "iopub.status.idle": "2024-02-08T05:16:28.805475Z", + "shell.execute_reply": "2024-02-08T05:16:28.804859Z" }, "id": "AaHC5MRKjruT" }, @@ -725,10 +725,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.191219Z", - "iopub.status.busy": "2024-02-08T04:29:37.190509Z", - "iopub.status.idle": "2024-02-08T04:29:37.203596Z", - "shell.execute_reply": "2024-02-08T04:29:37.203132Z" + "iopub.execute_input": "2024-02-08T05:16:28.808277Z", + "iopub.status.busy": "2024-02-08T05:16:28.807550Z", + "iopub.status.idle": "2024-02-08T05:16:28.822035Z", + "shell.execute_reply": "2024-02-08T05:16:28.821504Z" }, "id": "Wy27rvyhjruU" }, @@ -777,10 +777,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.205575Z", - "iopub.status.busy": "2024-02-08T04:29:37.205257Z", - "iopub.status.idle": "2024-02-08T04:29:37.276055Z", - "shell.execute_reply": "2024-02-08T04:29:37.275466Z" + "iopub.execute_input": "2024-02-08T05:16:28.824303Z", + "iopub.status.busy": "2024-02-08T05:16:28.823967Z", + "iopub.status.idle": "2024-02-08T05:16:28.906213Z", + "shell.execute_reply": "2024-02-08T05:16:28.905616Z" }, "id": "Db8YHnyVjruU" }, @@ -887,10 +887,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.278425Z", - "iopub.status.busy": "2024-02-08T04:29:37.277958Z", - "iopub.status.idle": "2024-02-08T04:29:37.484301Z", - "shell.execute_reply": "2024-02-08T04:29:37.483767Z" + "iopub.execute_input": "2024-02-08T05:16:28.908687Z", + "iopub.status.busy": "2024-02-08T05:16:28.908315Z", + "iopub.status.idle": "2024-02-08T05:16:29.122035Z", + "shell.execute_reply": "2024-02-08T05:16:29.121452Z" }, "id": "iJqAHuS2jruV" }, @@ -927,10 +927,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.486294Z", - "iopub.status.busy": "2024-02-08T04:29:37.486111Z", - "iopub.status.idle": "2024-02-08T04:29:37.502750Z", - "shell.execute_reply": "2024-02-08T04:29:37.502299Z" + "iopub.execute_input": "2024-02-08T05:16:29.124454Z", + "iopub.status.busy": "2024-02-08T05:16:29.124090Z", + "iopub.status.idle": "2024-02-08T05:16:29.141232Z", + "shell.execute_reply": "2024-02-08T05:16:29.140709Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1396,10 +1396,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.504575Z", - "iopub.status.busy": "2024-02-08T04:29:37.504403Z", - "iopub.status.idle": "2024-02-08T04:29:37.514117Z", - "shell.execute_reply": "2024-02-08T04:29:37.513675Z" + "iopub.execute_input": "2024-02-08T05:16:29.143296Z", + "iopub.status.busy": "2024-02-08T05:16:29.143026Z", + "iopub.status.idle": "2024-02-08T05:16:29.153368Z", + "shell.execute_reply": "2024-02-08T05:16:29.152882Z" }, "id": "0lonvOYvjruV" }, @@ -1546,10 +1546,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.516079Z", - "iopub.status.busy": "2024-02-08T04:29:37.515743Z", - "iopub.status.idle": "2024-02-08T04:29:37.601813Z", - "shell.execute_reply": "2024-02-08T04:29:37.601272Z" + "iopub.execute_input": "2024-02-08T05:16:29.155357Z", + "iopub.status.busy": "2024-02-08T05:16:29.155177Z", + "iopub.status.idle": "2024-02-08T05:16:29.246946Z", + "shell.execute_reply": "2024-02-08T05:16:29.246397Z" }, "id": "MfqTCa3kjruV" }, @@ -1630,10 +1630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.604001Z", - "iopub.status.busy": "2024-02-08T04:29:37.603757Z", - "iopub.status.idle": "2024-02-08T04:29:37.719348Z", - "shell.execute_reply": "2024-02-08T04:29:37.718745Z" + "iopub.execute_input": "2024-02-08T05:16:29.249443Z", + "iopub.status.busy": "2024-02-08T05:16:29.249083Z", + "iopub.status.idle": "2024-02-08T05:16:29.393372Z", + "shell.execute_reply": "2024-02-08T05:16:29.392737Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1693,10 +1693,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.721930Z", - "iopub.status.busy": "2024-02-08T04:29:37.721478Z", - "iopub.status.idle": "2024-02-08T04:29:37.725255Z", - "shell.execute_reply": "2024-02-08T04:29:37.724725Z" + "iopub.execute_input": "2024-02-08T05:16:29.395694Z", + "iopub.status.busy": "2024-02-08T05:16:29.395428Z", + "iopub.status.idle": "2024-02-08T05:16:29.399352Z", + "shell.execute_reply": "2024-02-08T05:16:29.398811Z" }, "id": "0rXP3ZPWjruW" }, @@ -1734,10 +1734,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.727192Z", - "iopub.status.busy": "2024-02-08T04:29:37.726886Z", - "iopub.status.idle": "2024-02-08T04:29:37.730475Z", - "shell.execute_reply": "2024-02-08T04:29:37.729957Z" + "iopub.execute_input": "2024-02-08T05:16:29.401424Z", + "iopub.status.busy": "2024-02-08T05:16:29.401231Z", + "iopub.status.idle": "2024-02-08T05:16:29.404974Z", + "shell.execute_reply": "2024-02-08T05:16:29.404417Z" }, "id": "-iRPe8KXjruW" }, @@ -1792,10 +1792,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.732457Z", - "iopub.status.busy": "2024-02-08T04:29:37.732160Z", - "iopub.status.idle": "2024-02-08T04:29:37.769591Z", - "shell.execute_reply": "2024-02-08T04:29:37.769152Z" + "iopub.execute_input": "2024-02-08T05:16:29.406936Z", + "iopub.status.busy": "2024-02-08T05:16:29.406750Z", + "iopub.status.idle": "2024-02-08T05:16:29.445136Z", + "shell.execute_reply": "2024-02-08T05:16:29.444538Z" }, "id": "ZpipUliyjruW" }, @@ -1846,10 +1846,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.771657Z", - "iopub.status.busy": "2024-02-08T04:29:37.771341Z", - "iopub.status.idle": "2024-02-08T04:29:37.814037Z", - "shell.execute_reply": "2024-02-08T04:29:37.813596Z" + "iopub.execute_input": "2024-02-08T05:16:29.447272Z", + "iopub.status.busy": "2024-02-08T05:16:29.447037Z", + "iopub.status.idle": "2024-02-08T05:16:29.493067Z", + "shell.execute_reply": "2024-02-08T05:16:29.492437Z" }, "id": "SLq-3q4xjruX" }, @@ -1918,10 +1918,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.815990Z", - "iopub.status.busy": "2024-02-08T04:29:37.815690Z", - "iopub.status.idle": "2024-02-08T04:29:37.905459Z", - "shell.execute_reply": "2024-02-08T04:29:37.904784Z" + "iopub.execute_input": "2024-02-08T05:16:29.495258Z", + "iopub.status.busy": "2024-02-08T05:16:29.495057Z", + "iopub.status.idle": "2024-02-08T05:16:29.598321Z", + "shell.execute_reply": "2024-02-08T05:16:29.597712Z" }, "id": "g5LHhhuqFbXK" }, @@ -1953,10 +1953,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.907986Z", - "iopub.status.busy": "2024-02-08T04:29:37.907545Z", - "iopub.status.idle": "2024-02-08T04:29:37.987051Z", - "shell.execute_reply": "2024-02-08T04:29:37.986492Z" + "iopub.execute_input": "2024-02-08T05:16:29.601066Z", + "iopub.status.busy": "2024-02-08T05:16:29.600752Z", + "iopub.status.idle": "2024-02-08T05:16:29.709010Z", + "shell.execute_reply": "2024-02-08T05:16:29.708373Z" }, "id": "p7w8F8ezBcet" }, @@ -2013,10 +2013,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:37.989407Z", - "iopub.status.busy": "2024-02-08T04:29:37.989045Z", - "iopub.status.idle": "2024-02-08T04:29:38.193150Z", - "shell.execute_reply": "2024-02-08T04:29:38.192637Z" + "iopub.execute_input": "2024-02-08T05:16:29.711482Z", + "iopub.status.busy": "2024-02-08T05:16:29.711110Z", + "iopub.status.idle": "2024-02-08T05:16:29.921984Z", + "shell.execute_reply": "2024-02-08T05:16:29.921374Z" }, "id": "WETRL74tE_sU" }, @@ -2051,10 +2051,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.195237Z", - "iopub.status.busy": "2024-02-08T04:29:38.194911Z", - "iopub.status.idle": "2024-02-08T04:29:38.360571Z", - "shell.execute_reply": "2024-02-08T04:29:38.359936Z" + "iopub.execute_input": "2024-02-08T05:16:29.924291Z", + "iopub.status.busy": "2024-02-08T05:16:29.923945Z", + "iopub.status.idle": "2024-02-08T05:16:30.137676Z", + "shell.execute_reply": "2024-02-08T05:16:30.137058Z" }, "id": "kCfdx2gOLmXS" }, @@ -2216,10 +2216,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.363019Z", - "iopub.status.busy": "2024-02-08T04:29:38.362538Z", - "iopub.status.idle": "2024-02-08T04:29:38.368605Z", - "shell.execute_reply": "2024-02-08T04:29:38.368062Z" + "iopub.execute_input": "2024-02-08T05:16:30.140295Z", + "iopub.status.busy": "2024-02-08T05:16:30.139915Z", + "iopub.status.idle": "2024-02-08T05:16:30.146272Z", + "shell.execute_reply": "2024-02-08T05:16:30.145735Z" }, "id": "-uogYRWFYnuu" }, @@ -2273,10 +2273,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.370392Z", - "iopub.status.busy": "2024-02-08T04:29:38.370219Z", - "iopub.status.idle": "2024-02-08T04:29:38.582389Z", - "shell.execute_reply": "2024-02-08T04:29:38.581969Z" + "iopub.execute_input": "2024-02-08T05:16:30.148427Z", + "iopub.status.busy": "2024-02-08T05:16:30.148086Z", + "iopub.status.idle": "2024-02-08T05:16:30.366341Z", + "shell.execute_reply": "2024-02-08T05:16:30.365773Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2323,10 +2323,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:38.584400Z", - "iopub.status.busy": "2024-02-08T04:29:38.584220Z", - "iopub.status.idle": "2024-02-08T04:29:39.639347Z", - "shell.execute_reply": "2024-02-08T04:29:39.638773Z" + "iopub.execute_input": "2024-02-08T05:16:30.369080Z", + "iopub.status.busy": "2024-02-08T05:16:30.368616Z", + "iopub.status.idle": "2024-02-08T05:16:31.451674Z", + "shell.execute_reply": "2024-02-08T05:16:31.451027Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index dfa012bd1..3c2d16d5f 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:42.889519Z", - "iopub.status.busy": "2024-02-08T04:29:42.889351Z", - "iopub.status.idle": "2024-02-08T04:29:43.915960Z", - "shell.execute_reply": "2024-02-08T04:29:43.915405Z" + "iopub.execute_input": "2024-02-08T05:16:34.936998Z", + "iopub.status.busy": "2024-02-08T05:16:34.936817Z", + "iopub.status.idle": "2024-02-08T05:16:36.033944Z", + "shell.execute_reply": "2024-02-08T05:16:36.033316Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.918566Z", - "iopub.status.busy": "2024-02-08T04:29:43.918062Z", - "iopub.status.idle": "2024-02-08T04:29:43.921217Z", - "shell.execute_reply": "2024-02-08T04:29:43.920677Z" + "iopub.execute_input": "2024-02-08T05:16:36.036779Z", + "iopub.status.busy": "2024-02-08T05:16:36.036213Z", + "iopub.status.idle": "2024-02-08T05:16:36.039446Z", + "shell.execute_reply": "2024-02-08T05:16:36.038895Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.923276Z", - "iopub.status.busy": "2024-02-08T04:29:43.922951Z", - "iopub.status.idle": "2024-02-08T04:29:43.930415Z", - "shell.execute_reply": "2024-02-08T04:29:43.929991Z" + "iopub.execute_input": "2024-02-08T05:16:36.041728Z", + "iopub.status.busy": "2024-02-08T05:16:36.041326Z", + "iopub.status.idle": "2024-02-08T05:16:36.049301Z", + "shell.execute_reply": "2024-02-08T05:16:36.048798Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.932385Z", - "iopub.status.busy": "2024-02-08T04:29:43.932070Z", - "iopub.status.idle": "2024-02-08T04:29:43.978343Z", - "shell.execute_reply": "2024-02-08T04:29:43.977921Z" + "iopub.execute_input": "2024-02-08T05:16:36.051266Z", + "iopub.status.busy": "2024-02-08T05:16:36.051078Z", + "iopub.status.idle": "2024-02-08T05:16:36.098632Z", + "shell.execute_reply": "2024-02-08T05:16:36.098136Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.980378Z", - "iopub.status.busy": "2024-02-08T04:29:43.980064Z", - "iopub.status.idle": "2024-02-08T04:29:43.996196Z", - "shell.execute_reply": "2024-02-08T04:29:43.995736Z" + "iopub.execute_input": "2024-02-08T05:16:36.101112Z", + "iopub.status.busy": "2024-02-08T05:16:36.100774Z", + "iopub.status.idle": "2024-02-08T05:16:36.118463Z", + "shell.execute_reply": "2024-02-08T05:16:36.117914Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:43.998249Z", - "iopub.status.busy": "2024-02-08T04:29:43.997939Z", - "iopub.status.idle": "2024-02-08T04:29:44.001493Z", - "shell.execute_reply": "2024-02-08T04:29:44.001025Z" + "iopub.execute_input": "2024-02-08T05:16:36.120776Z", + "iopub.status.busy": "2024-02-08T05:16:36.120434Z", + "iopub.status.idle": "2024-02-08T05:16:36.124402Z", + "shell.execute_reply": "2024-02-08T05:16:36.123935Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.003462Z", - "iopub.status.busy": "2024-02-08T04:29:44.003206Z", - "iopub.status.idle": "2024-02-08T04:29:44.032086Z", - "shell.execute_reply": "2024-02-08T04:29:44.031667Z" + "iopub.execute_input": "2024-02-08T05:16:36.126729Z", + "iopub.status.busy": "2024-02-08T05:16:36.126390Z", + "iopub.status.idle": "2024-02-08T05:16:36.154633Z", + "shell.execute_reply": "2024-02-08T05:16:36.154141Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.033896Z", - "iopub.status.busy": "2024-02-08T04:29:44.033722Z", - "iopub.status.idle": "2024-02-08T04:29:44.059752Z", - "shell.execute_reply": "2024-02-08T04:29:44.059305Z" + "iopub.execute_input": "2024-02-08T05:16:36.157128Z", + "iopub.status.busy": "2024-02-08T05:16:36.156770Z", + "iopub.status.idle": "2024-02-08T05:16:36.183420Z", + "shell.execute_reply": "2024-02-08T05:16:36.182914Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:44.061575Z", - "iopub.status.busy": "2024-02-08T04:29:44.061407Z", - "iopub.status.idle": "2024-02-08T04:29:45.734046Z", - "shell.execute_reply": "2024-02-08T04:29:45.733523Z" + "iopub.execute_input": "2024-02-08T05:16:36.185904Z", + "iopub.status.busy": "2024-02-08T05:16:36.185669Z", + "iopub.status.idle": "2024-02-08T05:16:38.003463Z", + "shell.execute_reply": "2024-02-08T05:16:38.002793Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.736683Z", - "iopub.status.busy": "2024-02-08T04:29:45.736217Z", - "iopub.status.idle": "2024-02-08T04:29:45.742703Z", - "shell.execute_reply": "2024-02-08T04:29:45.742248Z" + "iopub.execute_input": "2024-02-08T05:16:38.006228Z", + "iopub.status.busy": "2024-02-08T05:16:38.005857Z", + "iopub.status.idle": "2024-02-08T05:16:38.012858Z", + "shell.execute_reply": "2024-02-08T05:16:38.012286Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.744717Z", - "iopub.status.busy": "2024-02-08T04:29:45.744395Z", - "iopub.status.idle": "2024-02-08T04:29:45.756449Z", - "shell.execute_reply": "2024-02-08T04:29:45.756029Z" + "iopub.execute_input": "2024-02-08T05:16:38.015175Z", + "iopub.status.busy": "2024-02-08T05:16:38.014963Z", + "iopub.status.idle": "2024-02-08T05:16:38.028000Z", + "shell.execute_reply": "2024-02-08T05:16:38.027502Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.758369Z", - "iopub.status.busy": "2024-02-08T04:29:45.757999Z", - "iopub.status.idle": "2024-02-08T04:29:45.764109Z", - "shell.execute_reply": "2024-02-08T04:29:45.763637Z" + "iopub.execute_input": "2024-02-08T05:16:38.030095Z", + "iopub.status.busy": "2024-02-08T05:16:38.029746Z", + "iopub.status.idle": "2024-02-08T05:16:38.036269Z", + "shell.execute_reply": "2024-02-08T05:16:38.035718Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.766108Z", - "iopub.status.busy": "2024-02-08T04:29:45.765938Z", - "iopub.status.idle": "2024-02-08T04:29:45.768411Z", - "shell.execute_reply": "2024-02-08T04:29:45.767997Z" + "iopub.execute_input": "2024-02-08T05:16:38.038467Z", + "iopub.status.busy": "2024-02-08T05:16:38.038157Z", + "iopub.status.idle": "2024-02-08T05:16:38.040886Z", + "shell.execute_reply": "2024-02-08T05:16:38.040428Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.770202Z", - "iopub.status.busy": "2024-02-08T04:29:45.770034Z", - "iopub.status.idle": "2024-02-08T04:29:45.773298Z", - "shell.execute_reply": "2024-02-08T04:29:45.772779Z" + "iopub.execute_input": "2024-02-08T05:16:38.042877Z", + "iopub.status.busy": "2024-02-08T05:16:38.042548Z", + "iopub.status.idle": "2024-02-08T05:16:38.046125Z", + "shell.execute_reply": "2024-02-08T05:16:38.045579Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.775318Z", - "iopub.status.busy": "2024-02-08T04:29:45.775018Z", - "iopub.status.idle": "2024-02-08T04:29:45.777581Z", - "shell.execute_reply": "2024-02-08T04:29:45.777139Z" + "iopub.execute_input": "2024-02-08T05:16:38.048464Z", + "iopub.status.busy": "2024-02-08T05:16:38.048004Z", + "iopub.status.idle": "2024-02-08T05:16:38.050984Z", + "shell.execute_reply": "2024-02-08T05:16:38.050453Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.779440Z", - "iopub.status.busy": "2024-02-08T04:29:45.779263Z", - "iopub.status.idle": "2024-02-08T04:29:45.783182Z", - "shell.execute_reply": "2024-02-08T04:29:45.782669Z" + "iopub.execute_input": "2024-02-08T05:16:38.052798Z", + "iopub.status.busy": "2024-02-08T05:16:38.052624Z", + "iopub.status.idle": "2024-02-08T05:16:38.056584Z", + "shell.execute_reply": "2024-02-08T05:16:38.056047Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.785161Z", - "iopub.status.busy": "2024-02-08T04:29:45.784866Z", - "iopub.status.idle": "2024-02-08T04:29:45.813727Z", - "shell.execute_reply": "2024-02-08T04:29:45.813180Z" + "iopub.execute_input": "2024-02-08T05:16:38.058708Z", + "iopub.status.busy": "2024-02-08T05:16:38.058392Z", + "iopub.status.idle": "2024-02-08T05:16:38.088017Z", + "shell.execute_reply": "2024-02-08T05:16:38.087505Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:45.816053Z", - "iopub.status.busy": "2024-02-08T04:29:45.815717Z", - "iopub.status.idle": "2024-02-08T04:29:45.820279Z", - "shell.execute_reply": "2024-02-08T04:29:45.819724Z" + "iopub.execute_input": "2024-02-08T05:16:38.090547Z", + "iopub.status.busy": "2024-02-08T05:16:38.090159Z", + "iopub.status.idle": "2024-02-08T05:16:38.095177Z", + "shell.execute_reply": "2024-02-08T05:16:38.094708Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index b4eaced1c..321e2cd0f 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:48.353289Z", - "iopub.status.busy": "2024-02-08T04:29:48.353111Z", - "iopub.status.idle": "2024-02-08T04:29:49.444617Z", - "shell.execute_reply": "2024-02-08T04:29:49.444025Z" + "iopub.execute_input": "2024-02-08T05:16:40.856017Z", + "iopub.status.busy": "2024-02-08T05:16:40.855833Z", + "iopub.status.idle": "2024-02-08T05:16:42.014133Z", + "shell.execute_reply": "2024-02-08T05:16:42.013543Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.447013Z", - "iopub.status.busy": "2024-02-08T04:29:49.446776Z", - "iopub.status.idle": "2024-02-08T04:29:49.635510Z", - "shell.execute_reply": "2024-02-08T04:29:49.635070Z" + "iopub.execute_input": "2024-02-08T05:16:42.016876Z", + "iopub.status.busy": "2024-02-08T05:16:42.016360Z", + "iopub.status.idle": "2024-02-08T05:16:42.218815Z", + "shell.execute_reply": "2024-02-08T05:16:42.218247Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.638063Z", - "iopub.status.busy": "2024-02-08T04:29:49.637575Z", - "iopub.status.idle": "2024-02-08T04:29:49.650235Z", - "shell.execute_reply": "2024-02-08T04:29:49.649787Z" + "iopub.execute_input": "2024-02-08T05:16:42.221496Z", + "iopub.status.busy": "2024-02-08T05:16:42.221090Z", + "iopub.status.idle": "2024-02-08T05:16:42.234145Z", + "shell.execute_reply": "2024-02-08T05:16:42.233583Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:49.652052Z", - "iopub.status.busy": "2024-02-08T04:29:49.651879Z", - "iopub.status.idle": "2024-02-08T04:29:52.291472Z", - "shell.execute_reply": "2024-02-08T04:29:52.290880Z" + "iopub.execute_input": "2024-02-08T05:16:42.236297Z", + "iopub.status.busy": "2024-02-08T05:16:42.235977Z", + "iopub.status.idle": "2024-02-08T05:16:44.901042Z", + "shell.execute_reply": "2024-02-08T05:16:44.900491Z" } }, "outputs": [ @@ -452,10 +452,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:52.293864Z", - "iopub.status.busy": "2024-02-08T04:29:52.293436Z", - "iopub.status.idle": "2024-02-08T04:29:53.631829Z", - "shell.execute_reply": "2024-02-08T04:29:53.631305Z" + "iopub.execute_input": "2024-02-08T05:16:44.903080Z", + "iopub.status.busy": "2024-02-08T05:16:44.902895Z", + "iopub.status.idle": "2024-02-08T05:16:46.267342Z", + "shell.execute_reply": "2024-02-08T05:16:46.266780Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:53.634214Z", - "iopub.status.busy": "2024-02-08T04:29:53.633866Z", - "iopub.status.idle": "2024-02-08T04:29:53.637796Z", - "shell.execute_reply": "2024-02-08T04:29:53.637329Z" + "iopub.execute_input": "2024-02-08T05:16:46.269717Z", + "iopub.status.busy": "2024-02-08T05:16:46.269521Z", + "iopub.status.idle": "2024-02-08T05:16:46.273330Z", + "shell.execute_reply": "2024-02-08T05:16:46.272768Z" } }, "outputs": [ @@ -542,10 +542,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:53.639682Z", - "iopub.status.busy": "2024-02-08T04:29:53.639363Z", - "iopub.status.idle": "2024-02-08T04:29:55.324199Z", - "shell.execute_reply": "2024-02-08T04:29:55.323510Z" + "iopub.execute_input": "2024-02-08T05:16:46.275279Z", + "iopub.status.busy": "2024-02-08T05:16:46.275095Z", + "iopub.status.idle": "2024-02-08T05:16:48.035444Z", + "shell.execute_reply": "2024-02-08T05:16:48.034751Z" } }, "outputs": [ @@ -592,10 +592,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:55.327072Z", - "iopub.status.busy": "2024-02-08T04:29:55.326288Z", - "iopub.status.idle": "2024-02-08T04:29:55.333737Z", - "shell.execute_reply": "2024-02-08T04:29:55.333247Z" + "iopub.execute_input": "2024-02-08T05:16:48.038270Z", + "iopub.status.busy": "2024-02-08T05:16:48.037668Z", + "iopub.status.idle": "2024-02-08T05:16:48.047299Z", + "shell.execute_reply": "2024-02-08T05:16:48.046721Z" } }, "outputs": [ @@ -631,10 +631,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:55.335798Z", - "iopub.status.busy": "2024-02-08T04:29:55.335474Z", - "iopub.status.idle": "2024-02-08T04:29:57.891579Z", - "shell.execute_reply": "2024-02-08T04:29:57.891036Z" + "iopub.execute_input": "2024-02-08T05:16:48.049551Z", + "iopub.status.busy": "2024-02-08T05:16:48.049235Z", + "iopub.status.idle": "2024-02-08T05:16:50.851686Z", + "shell.execute_reply": "2024-02-08T05:16:50.851097Z" } }, "outputs": [ @@ -669,10 +669,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.893710Z", - "iopub.status.busy": "2024-02-08T04:29:57.893400Z", - "iopub.status.idle": "2024-02-08T04:29:57.896999Z", - "shell.execute_reply": "2024-02-08T04:29:57.896544Z" + "iopub.execute_input": "2024-02-08T05:16:50.853883Z", + "iopub.status.busy": "2024-02-08T05:16:50.853693Z", + "iopub.status.idle": "2024-02-08T05:16:50.857552Z", + "shell.execute_reply": "2024-02-08T05:16:50.857089Z" } }, "outputs": [ @@ -717,10 +717,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.899030Z", - "iopub.status.busy": "2024-02-08T04:29:57.898717Z", - "iopub.status.idle": "2024-02-08T04:29:57.903151Z", - "shell.execute_reply": "2024-02-08T04:29:57.902749Z" + "iopub.execute_input": "2024-02-08T05:16:50.859787Z", + "iopub.status.busy": "2024-02-08T05:16:50.859387Z", + "iopub.status.idle": "2024-02-08T05:16:50.863737Z", + "shell.execute_reply": "2024-02-08T05:16:50.863177Z" } }, "outputs": [], @@ -743,10 +743,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:29:57.905054Z", - "iopub.status.busy": "2024-02-08T04:29:57.904735Z", - "iopub.status.idle": "2024-02-08T04:29:57.907794Z", - "shell.execute_reply": "2024-02-08T04:29:57.907351Z" + "iopub.execute_input": "2024-02-08T05:16:50.865877Z", + "iopub.status.busy": "2024-02-08T05:16:50.865570Z", + "iopub.status.idle": "2024-02-08T05:16:50.868733Z", + "shell.execute_reply": "2024-02-08T05:16:50.868285Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index a7d95ad7d..55126c31d 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:00.072576Z", - "iopub.status.busy": "2024-02-08T04:30:00.072400Z", - "iopub.status.idle": "2024-02-08T04:30:01.151131Z", - "shell.execute_reply": "2024-02-08T04:30:01.150594Z" + "iopub.execute_input": "2024-02-08T05:16:53.515571Z", + "iopub.status.busy": "2024-02-08T05:16:53.515376Z", + "iopub.status.idle": "2024-02-08T05:16:54.692984Z", + "shell.execute_reply": "2024-02-08T05:16:54.692402Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:01.153731Z", - "iopub.status.busy": "2024-02-08T04:30:01.153297Z", - "iopub.status.idle": "2024-02-08T04:30:02.565179Z", - "shell.execute_reply": "2024-02-08T04:30:02.564498Z" + "iopub.execute_input": "2024-02-08T05:16:54.695708Z", + "iopub.status.busy": "2024-02-08T05:16:54.695183Z", + "iopub.status.idle": "2024-02-08T05:16:56.971954Z", + "shell.execute_reply": "2024-02-08T05:16:56.971232Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.567869Z", - "iopub.status.busy": "2024-02-08T04:30:02.567469Z", - "iopub.status.idle": "2024-02-08T04:30:02.570763Z", - "shell.execute_reply": "2024-02-08T04:30:02.570298Z" + "iopub.execute_input": "2024-02-08T05:16:56.974618Z", + "iopub.status.busy": "2024-02-08T05:16:56.974215Z", + "iopub.status.idle": "2024-02-08T05:16:56.977451Z", + "shell.execute_reply": "2024-02-08T05:16:56.976971Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.572807Z", - "iopub.status.busy": "2024-02-08T04:30:02.572487Z", - "iopub.status.idle": "2024-02-08T04:30:02.578556Z", - "shell.execute_reply": "2024-02-08T04:30:02.578057Z" + "iopub.execute_input": "2024-02-08T05:16:56.979612Z", + "iopub.status.busy": "2024-02-08T05:16:56.979284Z", + "iopub.status.idle": "2024-02-08T05:16:56.985472Z", + "shell.execute_reply": "2024-02-08T05:16:56.984924Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:02.580776Z", - "iopub.status.busy": "2024-02-08T04:30:02.580450Z", - "iopub.status.idle": "2024-02-08T04:30:03.070565Z", - "shell.execute_reply": "2024-02-08T04:30:03.069979Z" + "iopub.execute_input": "2024-02-08T05:16:56.987779Z", + "iopub.status.busy": "2024-02-08T05:16:56.987416Z", + "iopub.status.idle": "2024-02-08T05:16:57.488799Z", + "shell.execute_reply": "2024-02-08T05:16:57.488201Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.073533Z", - "iopub.status.busy": "2024-02-08T04:30:03.073160Z", - "iopub.status.idle": "2024-02-08T04:30:03.078436Z", - "shell.execute_reply": "2024-02-08T04:30:03.077957Z" + "iopub.execute_input": "2024-02-08T05:16:57.491360Z", + "iopub.status.busy": "2024-02-08T05:16:57.491015Z", + "iopub.status.idle": "2024-02-08T05:16:57.496482Z", + "shell.execute_reply": "2024-02-08T05:16:57.495900Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.080496Z", - "iopub.status.busy": "2024-02-08T04:30:03.080241Z", - "iopub.status.idle": "2024-02-08T04:30:03.083913Z", - "shell.execute_reply": "2024-02-08T04:30:03.083409Z" + "iopub.execute_input": "2024-02-08T05:16:57.498525Z", + "iopub.status.busy": "2024-02-08T05:16:57.498273Z", + "iopub.status.idle": "2024-02-08T05:16:57.502766Z", + "shell.execute_reply": "2024-02-08T05:16:57.502239Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.085945Z", - "iopub.status.busy": "2024-02-08T04:30:03.085650Z", - "iopub.status.idle": "2024-02-08T04:30:03.803366Z", - "shell.execute_reply": "2024-02-08T04:30:03.802737Z" + "iopub.execute_input": "2024-02-08T05:16:57.505115Z", + "iopub.status.busy": "2024-02-08T05:16:57.504739Z", + "iopub.status.idle": "2024-02-08T05:16:58.169542Z", + "shell.execute_reply": "2024-02-08T05:16:58.168969Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:03.805530Z", - "iopub.status.busy": "2024-02-08T04:30:03.805328Z", - "iopub.status.idle": "2024-02-08T04:30:03.997894Z", - "shell.execute_reply": "2024-02-08T04:30:03.997434Z" + "iopub.execute_input": "2024-02-08T05:16:58.171773Z", + "iopub.status.busy": "2024-02-08T05:16:58.171556Z", + "iopub.status.idle": "2024-02-08T05:16:58.345846Z", + "shell.execute_reply": "2024-02-08T05:16:58.345282Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.000019Z", - "iopub.status.busy": "2024-02-08T04:30:03.999818Z", - "iopub.status.idle": "2024-02-08T04:30:04.004151Z", - "shell.execute_reply": "2024-02-08T04:30:04.003695Z" + "iopub.execute_input": "2024-02-08T05:16:58.348393Z", + "iopub.status.busy": "2024-02-08T05:16:58.347973Z", + "iopub.status.idle": "2024-02-08T05:16:58.352484Z", + "shell.execute_reply": "2024-02-08T05:16:58.351962Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.006153Z", - "iopub.status.busy": "2024-02-08T04:30:04.005847Z", - "iopub.status.idle": "2024-02-08T04:30:04.453260Z", - "shell.execute_reply": "2024-02-08T04:30:04.452625Z" + "iopub.execute_input": "2024-02-08T05:16:58.354696Z", + "iopub.status.busy": "2024-02-08T05:16:58.354301Z", + "iopub.status.idle": "2024-02-08T05:16:58.825617Z", + "shell.execute_reply": "2024-02-08T05:16:58.824990Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.455432Z", - "iopub.status.busy": "2024-02-08T04:30:04.455094Z", - "iopub.status.idle": "2024-02-08T04:30:04.785572Z", - "shell.execute_reply": "2024-02-08T04:30:04.785061Z" + "iopub.execute_input": "2024-02-08T05:16:58.828381Z", + "iopub.status.busy": "2024-02-08T05:16:58.828004Z", + "iopub.status.idle": "2024-02-08T05:16:59.167061Z", + "shell.execute_reply": "2024-02-08T05:16:59.166481Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:04.787885Z", - "iopub.status.busy": "2024-02-08T04:30:04.787540Z", - "iopub.status.idle": "2024-02-08T04:30:05.150648Z", - "shell.execute_reply": "2024-02-08T04:30:05.150060Z" + "iopub.execute_input": "2024-02-08T05:16:59.169884Z", + "iopub.status.busy": "2024-02-08T05:16:59.169506Z", + "iopub.status.idle": "2024-02-08T05:16:59.539761Z", + "shell.execute_reply": "2024-02-08T05:16:59.539127Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:05.153992Z", - "iopub.status.busy": "2024-02-08T04:30:05.153625Z", - "iopub.status.idle": "2024-02-08T04:30:05.568258Z", - "shell.execute_reply": "2024-02-08T04:30:05.567723Z" + "iopub.execute_input": "2024-02-08T05:16:59.542851Z", + "iopub.status.busy": "2024-02-08T05:16:59.542457Z", + "iopub.status.idle": "2024-02-08T05:16:59.990032Z", + "shell.execute_reply": "2024-02-08T05:16:59.989412Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:05.572539Z", - "iopub.status.busy": "2024-02-08T04:30:05.572099Z", - "iopub.status.idle": "2024-02-08T04:30:06.017524Z", - "shell.execute_reply": "2024-02-08T04:30:06.016975Z" + "iopub.execute_input": "2024-02-08T05:16:59.994566Z", + "iopub.status.busy": "2024-02-08T05:16:59.994002Z", + "iopub.status.idle": "2024-02-08T05:17:00.455591Z", + "shell.execute_reply": "2024-02-08T05:17:00.454958Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.020497Z", - "iopub.status.busy": "2024-02-08T04:30:06.020166Z", - "iopub.status.idle": "2024-02-08T04:30:06.234814Z", - "shell.execute_reply": "2024-02-08T04:30:06.234375Z" + "iopub.execute_input": "2024-02-08T05:17:00.458928Z", + "iopub.status.busy": "2024-02-08T05:17:00.458572Z", + "iopub.status.idle": "2024-02-08T05:17:00.677651Z", + "shell.execute_reply": "2024-02-08T05:17:00.677072Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.237004Z", - "iopub.status.busy": "2024-02-08T04:30:06.236672Z", - "iopub.status.idle": "2024-02-08T04:30:06.434144Z", - "shell.execute_reply": "2024-02-08T04:30:06.433613Z" + "iopub.execute_input": "2024-02-08T05:17:00.680076Z", + "iopub.status.busy": "2024-02-08T05:17:00.679705Z", + "iopub.status.idle": "2024-02-08T05:17:00.882051Z", + "shell.execute_reply": "2024-02-08T05:17:00.881407Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.436337Z", - "iopub.status.busy": "2024-02-08T04:30:06.436003Z", - "iopub.status.idle": "2024-02-08T04:30:06.438847Z", - "shell.execute_reply": "2024-02-08T04:30:06.438407Z" + "iopub.execute_input": "2024-02-08T05:17:00.885010Z", + "iopub.status.busy": "2024-02-08T05:17:00.884519Z", + "iopub.status.idle": "2024-02-08T05:17:00.887731Z", + "shell.execute_reply": "2024-02-08T05:17:00.887166Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:06.440735Z", - "iopub.status.busy": "2024-02-08T04:30:06.440417Z", - "iopub.status.idle": "2024-02-08T04:30:07.319773Z", - "shell.execute_reply": "2024-02-08T04:30:07.319187Z" + "iopub.execute_input": "2024-02-08T05:17:00.889952Z", + "iopub.status.busy": "2024-02-08T05:17:00.889687Z", + "iopub.status.idle": "2024-02-08T05:17:01.918413Z", + "shell.execute_reply": "2024-02-08T05:17:01.917826Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.322027Z", - "iopub.status.busy": "2024-02-08T04:30:07.321586Z", - "iopub.status.idle": "2024-02-08T04:30:07.426875Z", - "shell.execute_reply": "2024-02-08T04:30:07.426398Z" + "iopub.execute_input": "2024-02-08T05:17:01.921475Z", + "iopub.status.busy": "2024-02-08T05:17:01.921090Z", + "iopub.status.idle": "2024-02-08T05:17:02.038832Z", + "shell.execute_reply": "2024-02-08T05:17:02.038270Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.429007Z", - "iopub.status.busy": "2024-02-08T04:30:07.428667Z", - "iopub.status.idle": "2024-02-08T04:30:07.537965Z", - "shell.execute_reply": "2024-02-08T04:30:07.537475Z" + "iopub.execute_input": "2024-02-08T05:17:02.041133Z", + "iopub.status.busy": "2024-02-08T05:17:02.040771Z", + "iopub.status.idle": "2024-02-08T05:17:02.182078Z", + "shell.execute_reply": "2024-02-08T05:17:02.181503Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:07.540187Z", - "iopub.status.busy": "2024-02-08T04:30:07.539991Z", - "iopub.status.idle": "2024-02-08T04:30:08.230961Z", - "shell.execute_reply": "2024-02-08T04:30:08.230413Z" + "iopub.execute_input": "2024-02-08T05:17:02.184372Z", + "iopub.status.busy": "2024-02-08T05:17:02.184010Z", + "iopub.status.idle": "2024-02-08T05:17:02.969079Z", + "shell.execute_reply": "2024-02-08T05:17:02.968512Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:08.233141Z", - "iopub.status.busy": "2024-02-08T04:30:08.232960Z", - "iopub.status.idle": "2024-02-08T04:30:08.236653Z", - "shell.execute_reply": "2024-02-08T04:30:08.236116Z" + "iopub.execute_input": "2024-02-08T05:17:02.971374Z", + "iopub.status.busy": "2024-02-08T05:17:02.971169Z", + "iopub.status.idle": "2024-02-08T05:17:02.974933Z", + "shell.execute_reply": "2024-02-08T05:17:02.974480Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index d6fb56e2c..bf9764a42 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -730,16 +730,16 @@

2. Pre-process the Cifar10 dataset

 
-
1%| | 1966080/170498071 [00:00&lt;00:08, 19659740.68it/s]
+
0%| | 32768/170498071 [00:00&lt;11:11, 253804.05it/s]

</pre>

-
1%| | 1966080/170498071 [00:00<00:08, 19659740.68it/s]
+
0%| | 32768/170498071 [00:00<11:11, 253804.05it/s]

end{sphinxVerbatim}

-

1%| | 1966080/170498071 [00:00<00:08, 19659740.68it/s]

+

0%| | 32768/170498071 [00:00<11:11, 253804.05it/s]

-
8%|▊ | 13729792/170498071 [00:00&lt;00:02, 77179148.66it/s]
+
0%| | 229376/170498071 [00:00&lt;02:51, 993776.00it/s]

</pre>

-
8%|▊ | 13729792/170498071 [00:00<00:02, 77179148.66it/s]
+
0%| | 229376/170498071 [00:00<02:51, 993776.00it/s]

end{sphinxVerbatim}

-

8%|▊ | 13729792/170498071 [00:00<00:02, 77179148.66it/s]

+

0%| | 229376/170498071 [00:00<02:51, 993776.00it/s]

-
15%|█▍ | 25460736/170498071 [00:00&lt;00:01, 95453009.47it/s]
+
1%| | 884736/170498071 [00:00&lt;00:59, 2843619.98it/s]

</pre>

-
15%|█▍ | 25460736/170498071 [00:00<00:01, 95453009.47it/s]
+
1%| | 884736/170498071 [00:00<00:59, 2843619.98it/s]

end{sphinxVerbatim}

-

15%|█▍ | 25460736/170498071 [00:00<00:01, 95453009.47it/s]

+

1%| | 884736/170498071 [00:00<00:59, 2843619.98it/s]

-
22%|██▏ | 37191680/170498071 [00:00&lt;00:01, 104050694.82it/s]
+
2%|▏ | 3604480/170498071 [00:00&lt;00:16, 9937863.72it/s]

</pre>

-
22%|██▏ | 37191680/170498071 [00:00<00:01, 104050694.82it/s]
+
2%|▏ | 3604480/170498071 [00:00<00:16, 9937863.72it/s]

end{sphinxVerbatim}

-

22%|██▏ | 37191680/170498071 [00:00<00:01, 104050694.82it/s]

+

2%|▏ | 3604480/170498071 [00:00<00:16, 9937863.72it/s]

-
29%|██▊ | 48922624/170498071 [00:00&lt;00:01, 108754354.22it/s]
+
6%|▌ | 9568256/170498071 [00:00&lt;00:07, 22733434.66it/s]

</pre>

-
29%|██▊ | 48922624/170498071 [00:00<00:01, 108754354.22it/s]
+
6%|▌ | 9568256/170498071 [00:00<00:07, 22733434.66it/s]

end{sphinxVerbatim}

-

29%|██▊ | 48922624/170498071 [00:00<00:01, 108754354.22it/s]

+

6%|▌ | 9568256/170498071 [00:00<00:07, 22733434.66it/s]

-
36%|███▌ | 60653568/170498071 [00:00&lt;00:00, 111599175.08it/s]
+
9%|▉ | 15532032/170498071 [00:00&lt;00:04, 33124010.85it/s]

</pre>

-
36%|███▌ | 60653568/170498071 [00:00<00:00, 111599175.08it/s]
+
9%|▉ | 15532032/170498071 [00:00<00:04, 33124010.85it/s]

end{sphinxVerbatim}

-

36%|███▌ | 60653568/170498071 [00:00<00:00, 111599175.08it/s]

+

9%|▉ | 15532032/170498071 [00:00<00:04, 33124010.85it/s]

-
42%|████▏ | 72417280/170498071 [00:00&lt;00:00, 113485568.58it/s]
+
11%|█ | 19070976/170498071 [00:00&lt;00:04, 33331594.97it/s]

</pre>

-
42%|████▏ | 72417280/170498071 [00:00<00:00, 113485568.58it/s]
+
11%|█ | 19070976/170498071 [00:00<00:04, 33331594.97it/s]

end{sphinxVerbatim}

-

42%|████▏ | 72417280/170498071 [00:00<00:00, 113485568.58it/s]

+

11%|█ | 19070976/170498071 [00:00<00:04, 33331594.97it/s]

-
49%|████▉ | 84148224/170498071 [00:00&lt;00:00, 114683185.40it/s]
+
15%|█▍ | 25001984/170498071 [00:00&lt;00:03, 38542476.09it/s]

</pre>

-
49%|████▉ | 84148224/170498071 [00:00<00:00, 114683185.40it/s]
+
15%|█▍ | 25001984/170498071 [00:00<00:03, 38542476.09it/s]

end{sphinxVerbatim}

-

49%|████▉ | 84148224/170498071 [00:00<00:00, 114683185.40it/s]

+

15%|█▍ | 25001984/170498071 [00:00<00:03, 38542476.09it/s]

-
56%|█████▌ | 95879168/170498071 [00:00&lt;00:00, 115452930.26it/s]
+
17%|█▋ | 29491200/170498071 [00:01&lt;00:03, 40313666.10it/s]

</pre>

-
56%|█████▌ | 95879168/170498071 [00:00<00:00, 115452930.26it/s]
+
17%|█▋ | 29491200/170498071 [00:01<00:03, 40313666.10it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 95879168/170498071 [00:00<00:00, 115452930.26it/s]

+

17%|█▋ | 29491200/170498071 [00:01<00:03, 40313666.10it/s]

-
63%|██████▎ | 107610112/170498071 [00:01&lt;00:00, 116001177.88it/s]
+
20%|██ | 34439168/170498071 [00:01&lt;00:03, 42784554.31it/s]

</pre>

-
63%|██████▎ | 107610112/170498071 [00:01<00:00, 116001177.88it/s]
+
20%|██ | 34439168/170498071 [00:01<00:03, 42784554.31it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 107610112/170498071 [00:01<00:00, 116001177.88it/s]

+

20%|██ | 34439168/170498071 [00:01<00:03, 42784554.31it/s]

-
70%|██████▉ | 119341056/170498071 [00:01&lt;00:00, 116178766.29it/s]
+
23%|██▎ | 38797312/170498071 [00:01&lt;00:03, 42575855.01it/s]

</pre>

-
70%|██████▉ | 119341056/170498071 [00:01<00:00, 116178766.29it/s]
+
23%|██▎ | 38797312/170498071 [00:01<00:03, 42575855.01it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 119341056/170498071 [00:01<00:00, 116178766.29it/s]

+

23%|██▎ | 38797312/170498071 [00:01<00:03, 42575855.01it/s]

-
77%|███████▋ | 131137536/170498071 [00:01&lt;00:00, 116661736.90it/s]
+
26%|██▌ | 43909120/170498071 [00:01&lt;00:02, 44133340.46it/s]

</pre>

-
77%|███████▋ | 131137536/170498071 [00:01<00:00, 116661736.90it/s]
+
26%|██▌ | 43909120/170498071 [00:01<00:02, 44133340.46it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 131137536/170498071 [00:01<00:00, 116661736.90it/s]

+

26%|██▌ | 43909120/170498071 [00:01<00:02, 44133340.46it/s]

-
84%|████████▍ | 142868480/170498071 [00:01&lt;00:00, 116808215.89it/s]
+
28%|██▊ | 48365568/170498071 [00:01&lt;00:02, 44213290.62it/s]

</pre>

-
84%|████████▍ | 142868480/170498071 [00:01<00:00, 116808215.89it/s]
+
28%|██▊ | 48365568/170498071 [00:01<00:02, 44213290.62it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 142868480/170498071 [00:01<00:00, 116808215.89it/s]

+

28%|██▊ | 48365568/170498071 [00:01<00:02, 44213290.62it/s]

-
91%|█████████ | 154599424/170498071 [00:01&lt;00:00, 116920831.64it/s]
+
31%|███▏ | 53280768/170498071 [00:01&lt;00:02, 45603815.05it/s]

</pre>

-
91%|█████████ | 154599424/170498071 [00:01<00:00, 116920831.64it/s]
+
31%|███▏ | 53280768/170498071 [00:01<00:02, 45603815.05it/s]

end{sphinxVerbatim}

-

91%|█████████ | 154599424/170498071 [00:01<00:00, 116920831.64it/s]

+

31%|███▏ | 53280768/170498071 [00:01<00:02, 45603815.05it/s]

-
98%|█████████▊| 166330368/170498071 [00:01&lt;00:00, 116990077.48it/s]
+
34%|███▍ | 57868288/170498071 [00:01&lt;00:02, 44811305.61it/s]

</pre>

-
98%|█████████▊| 166330368/170498071 [00:01<00:00, 116990077.48it/s]
+
34%|███▍ | 57868288/170498071 [00:01<00:02, 44811305.61it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 166330368/170498071 [00:01<00:00, 116990077.48it/s]

+

34%|███▍ | 57868288/170498071 [00:01<00:02, 44811305.61it/s]

+ + +
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
37%|███▋ | 62685184/170498071 [00:01&lt;00:02, 45437448.27it/s]
+

</pre>

+
+
+
37%|███▋ | 62685184/170498071 [00:01<00:02, 45437448.27it/s]
+

end{sphinxVerbatim}

+
+
+
+

37%|███▋ | 62685184/170498071 [00:01<00:02, 45437448.27it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
39%|███▉ | 67272704/170498071 [00:01&lt;00:02, 45126177.69it/s]
+

</pre>

+
+
+
39%|███▉ | 67272704/170498071 [00:01<00:02, 45126177.69it/s]
+

end{sphinxVerbatim}

+
+
+
+

39%|███▉ | 67272704/170498071 [00:01<00:02, 45126177.69it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
42%|████▏ | 72122368/170498071 [00:02&lt;00:02, 46040805.06it/s]
+

</pre>

+
+
+
42%|████▏ | 72122368/170498071 [00:02<00:02, 46040805.06it/s]
+

end{sphinxVerbatim}

+
+
+
+

42%|████▏ | 72122368/170498071 [00:02<00:02, 46040805.06it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
45%|████▌ | 76742656/170498071 [00:02&lt;00:02, 45311156.87it/s]
+

</pre>

+
+
+
45%|████▌ | 76742656/170498071 [00:02<00:02, 45311156.87it/s]
+

end{sphinxVerbatim}

+
+
+
+

45%|████▌ | 76742656/170498071 [00:02<00:02, 45311156.87it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
48%|████▊ | 81854464/170498071 [00:02&lt;00:01, 46283694.59it/s]
+

</pre>

+
+
+
48%|████▊ | 81854464/170498071 [00:02<00:01, 46283694.59it/s]
+

end{sphinxVerbatim}

+
+
+
+

48%|████▊ | 81854464/170498071 [00:02<00:01, 46283694.59it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
51%|█████ | 86507520/170498071 [00:02&lt;00:01, 45720127.96it/s]
+

</pre>

+
+
+
51%|█████ | 86507520/170498071 [00:02<00:01, 45720127.96it/s]
+

end{sphinxVerbatim}

+
+
+
+

51%|█████ | 86507520/170498071 [00:02<00:01, 45720127.96it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
54%|█████▎ | 91455488/170498071 [00:02&lt;00:01, 46807783.76it/s]
+

</pre>

+
+
+
54%|█████▎ | 91455488/170498071 [00:02<00:01, 46807783.76it/s]
+

end{sphinxVerbatim}

+
+
+
+

54%|█████▎ | 91455488/170498071 [00:02<00:01, 46807783.76it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
56%|█████▋ | 96174080/170498071 [00:02&lt;00:01, 45884858.81it/s]
+

</pre>

+
+
+
56%|█████▋ | 96174080/170498071 [00:02<00:01, 45884858.81it/s]
+

end{sphinxVerbatim}

+
+
+
+

56%|█████▋ | 96174080/170498071 [00:02<00:01, 45884858.81it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
59%|█████▉ | 100892672/170498071 [00:02&lt;00:01, 45622214.20it/s]
+

</pre>

+
+
+
59%|█████▉ | 100892672/170498071 [00:02<00:01, 45622214.20it/s]
+

end{sphinxVerbatim}

+
+
+
+

59%|█████▉ | 100892672/170498071 [00:02<00:01, 45622214.20it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
62%|██████▏ | 105480192/170498071 [00:02&lt;00:01, 45635391.85it/s]
+

</pre>

+
+
+
62%|██████▏ | 105480192/170498071 [00:02<00:01, 45635391.85it/s]
+

end{sphinxVerbatim}

+
+
+
+

62%|██████▏ | 105480192/170498071 [00:02<00:01, 45635391.85it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
65%|██████▍ | 110297088/170498071 [00:02&lt;00:01, 45956041.49it/s]
+

</pre>

+
+
+
65%|██████▍ | 110297088/170498071 [00:02<00:01, 45956041.49it/s]
+

end{sphinxVerbatim}

+
+
+
+

65%|██████▍ | 110297088/170498071 [00:02<00:01, 45956041.49it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
67%|██████▋ | 114917376/170498071 [00:02&lt;00:01, 45582206.50it/s]
+

</pre>

+
+
+
67%|██████▋ | 114917376/170498071 [00:02<00:01, 45582206.50it/s]
+

end{sphinxVerbatim}

+
+
+
+

67%|██████▋ | 114917376/170498071 [00:02<00:01, 45582206.50it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
70%|███████ | 119799808/170498071 [00:03&lt;00:01, 46514478.20it/s]
+

</pre>

+
+
+
70%|███████ | 119799808/170498071 [00:03<00:01, 46514478.20it/s]
+

end{sphinxVerbatim}

+
+
+
+

70%|███████ | 119799808/170498071 [00:03<00:01, 46514478.20it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
73%|███████▎ | 124485632/170498071 [00:03&lt;00:01, 45639548.48it/s]
+

</pre>

+
+
+
73%|███████▎ | 124485632/170498071 [00:03<00:01, 45639548.48it/s]
+

end{sphinxVerbatim}

+
+
+
+

73%|███████▎ | 124485632/170498071 [00:03<00:01, 45639548.48it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
76%|███████▌ | 129335296/170498071 [00:03&lt;00:00, 46446998.37it/s]
+

</pre>

+
+
+
76%|███████▌ | 129335296/170498071 [00:03<00:00, 46446998.37it/s]
+

end{sphinxVerbatim}

+
+
+
+

76%|███████▌ | 129335296/170498071 [00:03<00:00, 46446998.37it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
79%|███████▊ | 133988352/170498071 [00:03&lt;00:00, 45593760.64it/s]
+

</pre>

+
+
+
79%|███████▊ | 133988352/170498071 [00:03<00:00, 45593760.64it/s]
+

end{sphinxVerbatim}

+
+
+
+

79%|███████▊ | 133988352/170498071 [00:03<00:00, 45593760.64it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
81%|████████▏ | 138739712/170498071 [00:03&lt;00:00, 46153655.26it/s]
+

</pre>

+
+
+
81%|████████▏ | 138739712/170498071 [00:03<00:00, 46153655.26it/s]
+

end{sphinxVerbatim}

+
+
+
+

81%|████████▏ | 138739712/170498071 [00:03<00:00, 46153655.26it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
84%|████████▍ | 143392768/170498071 [00:03&lt;00:00, 45504976.74it/s]
+

</pre>

+
+
+
84%|████████▍ | 143392768/170498071 [00:03<00:00, 45504976.74it/s]
+

end{sphinxVerbatim}

+
+
+
+

84%|████████▍ | 143392768/170498071 [00:03<00:00, 45504976.74it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
87%|████████▋ | 148209664/170498071 [00:03&lt;00:00, 46079464.34it/s]
+

</pre>

+
+
+
87%|████████▋ | 148209664/170498071 [00:03<00:00, 46079464.34it/s]
+

end{sphinxVerbatim}

+
+
+
+

87%|████████▋ | 148209664/170498071 [00:03<00:00, 46079464.34it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
90%|████████▉ | 152829952/170498071 [00:03&lt;00:00, 45516536.27it/s]
+

</pre>

+
+
+
90%|████████▉ | 152829952/170498071 [00:03<00:00, 45516536.27it/s]
+

end{sphinxVerbatim}

+
+
+
+

90%|████████▉ | 152829952/170498071 [00:03<00:00, 45516536.27it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
92%|█████████▏| 157646848/170498071 [00:03&lt;00:00, 46018066.70it/s]
+

</pre>

+
+
+
92%|█████████▏| 157646848/170498071 [00:03<00:00, 46018066.70it/s]
+

end{sphinxVerbatim}

+
+
+
+

92%|█████████▏| 157646848/170498071 [00:03<00:00, 46018066.70it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
95%|█████████▌| 162267136/170498071 [00:03&lt;00:00, 45503104.22it/s]
+

</pre>

+
+
+
95%|█████████▌| 162267136/170498071 [00:03<00:00, 45503104.22it/s]
+

end{sphinxVerbatim}

+
+
+
+

95%|█████████▌| 162267136/170498071 [00:03<00:00, 45503104.22it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
98%|█████████▊| 167280640/170498071 [00:04&lt;00:00, 46441485.40it/s]
+

</pre>

+
+
+
98%|█████████▊| 167280640/170498071 [00:04<00:00, 46441485.40it/s]
+

end{sphinxVerbatim}

+
+
+
+

98%|█████████▊| 167280640/170498071 [00:04<00:00, 46441485.40it/s]

-
100%|██████████| 170498071/170498071 [00:01&lt;00:00, 110845448.51it/s]
+
100%|██████████| 170498071/170498071 [00:04&lt;00:00, 41107986.54it/s]

</pre>

-
100%|██████████| 170498071/170498071 [00:01<00:00, 110845448.51it/s]
+
100%|██████████| 170498071/170498071 [00:04<00:00, 41107986.54it/s]

end{sphinxVerbatim}

-

100%|██████████| 170498071/170498071 [00:01<00:00, 110845448.51it/s]

+

100%|██████████| 170498071/170498071 [00:04<00:00, 41107986.54it/s]

-
+
@@ -1493,7 +2091,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 65c66de70..d3b8139b6 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:10.403237Z", - "iopub.status.busy": "2024-02-08T04:30:10.403065Z", - "iopub.status.idle": "2024-02-08T04:30:13.024182Z", - "shell.execute_reply": "2024-02-08T04:30:13.023553Z" + "iopub.execute_input": "2024-02-08T05:17:05.426264Z", + "iopub.status.busy": "2024-02-08T05:17:05.425848Z", + "iopub.status.idle": "2024-02-08T05:17:08.282874Z", + "shell.execute_reply": "2024-02-08T05:17:08.282291Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.026721Z", - "iopub.status.busy": "2024-02-08T04:30:13.026419Z", - "iopub.status.idle": "2024-02-08T04:30:13.342311Z", - "shell.execute_reply": "2024-02-08T04:30:13.341724Z" + "iopub.execute_input": "2024-02-08T05:17:08.285746Z", + "iopub.status.busy": "2024-02-08T05:17:08.285258Z", + "iopub.status.idle": "2024-02-08T05:17:08.637966Z", + "shell.execute_reply": "2024-02-08T05:17:08.637382Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.344795Z", - "iopub.status.busy": "2024-02-08T04:30:13.344495Z", - "iopub.status.idle": "2024-02-08T04:30:13.348857Z", - "shell.execute_reply": "2024-02-08T04:30:13.348325Z" + "iopub.execute_input": "2024-02-08T05:17:08.640554Z", + "iopub.status.busy": "2024-02-08T05:17:08.640185Z", + "iopub.status.idle": "2024-02-08T05:17:08.644567Z", + "shell.execute_reply": "2024-02-08T05:17:08.644001Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:13.351075Z", - "iopub.status.busy": "2024-02-08T04:30:13.350701Z", - "iopub.status.idle": "2024-02-08T04:30:17.722194Z", - "shell.execute_reply": "2024-02-08T04:30:17.721653Z" + "iopub.execute_input": "2024-02-08T05:17:08.646865Z", + "iopub.status.busy": "2024-02-08T05:17:08.646554Z", + "iopub.status.idle": "2024-02-08T05:17:15.879028Z", + "shell.execute_reply": "2024-02-08T05:17:15.878437Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1966080/170498071 [00:00<00:08, 19659740.68it/s]" + " 0%| | 32768/170498071 [00:00<11:11, 253804.05it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 13729792/170498071 [00:00<00:02, 77179148.66it/s]" + " 0%| | 229376/170498071 [00:00<02:51, 993776.00it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 25460736/170498071 [00:00<00:01, 95453009.47it/s]" + " 1%| | 884736/170498071 [00:00<00:59, 2843619.98it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37191680/170498071 [00:00<00:01, 104050694.82it/s]" + " 2%|▏ | 3604480/170498071 [00:00<00:16, 9937863.72it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 48922624/170498071 [00:00<00:01, 108754354.22it/s]" + " 6%|▌ | 9568256/170498071 [00:00<00:07, 22733434.66it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 60653568/170498071 [00:00<00:00, 111599175.08it/s]" + " 9%|▉ | 15532032/170498071 [00:00<00:04, 33124010.85it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 72417280/170498071 [00:00<00:00, 113485568.58it/s]" + " 11%|█ | 19070976/170498071 [00:00<00:04, 33331594.97it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 84148224/170498071 [00:00<00:00, 114683185.40it/s]" + " 15%|█▍ | 25001984/170498071 [00:00<00:03, 38542476.09it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 95879168/170498071 [00:00<00:00, 115452930.26it/s]" + " 17%|█▋ | 29491200/170498071 [00:01<00:03, 40313666.10it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 107610112/170498071 [00:01<00:00, 116001177.88it/s]" + " 20%|██ | 34439168/170498071 [00:01<00:03, 42784554.31it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 119341056/170498071 [00:01<00:00, 116178766.29it/s]" + " 23%|██▎ | 38797312/170498071 [00:01<00:03, 42575855.01it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 131137536/170498071 [00:01<00:00, 116661736.90it/s]" + " 26%|██▌ | 43909120/170498071 [00:01<00:02, 44133340.46it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 142868480/170498071 [00:01<00:00, 116808215.89it/s]" + " 28%|██▊ | 48365568/170498071 [00:01<00:02, 44213290.62it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 154599424/170498071 [00:01<00:00, 116920831.64it/s]" + " 31%|███▏ | 53280768/170498071 [00:01<00:02, 45603815.05it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 166330368/170498071 [00:01<00:00, 116990077.48it/s]" + " 34%|███▍ | 57868288/170498071 [00:01<00:02, 44811305.61it/s]" ] }, { @@ -372,7 +372,191 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 110845448.51it/s]" + " 37%|███▋ | 62685184/170498071 [00:01<00:02, 45437448.27it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 39%|███▉ | 67272704/170498071 [00:01<00:02, 45126177.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 42%|████▏ | 72122368/170498071 [00:02<00:02, 46040805.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 45%|████▌ | 76742656/170498071 [00:02<00:02, 45311156.87it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 48%|████▊ | 81854464/170498071 [00:02<00:01, 46283694.59it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 51%|█████ | 86507520/170498071 [00:02<00:01, 45720127.96it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 54%|█████▎ | 91455488/170498071 [00:02<00:01, 46807783.76it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▋ | 96174080/170498071 [00:02<00:01, 45884858.81it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▉ | 100892672/170498071 [00:02<00:01, 45622214.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 105480192/170498071 [00:02<00:01, 45635391.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▍ | 110297088/170498071 [00:02<00:01, 45956041.49it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 67%|██████▋ | 114917376/170498071 [00:02<00:01, 45582206.50it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 70%|███████ | 119799808/170498071 [00:03<00:01, 46514478.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 73%|███████▎ | 124485632/170498071 [00:03<00:01, 45639548.48it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 76%|███████▌ | 129335296/170498071 [00:03<00:00, 46446998.37it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▊ | 133988352/170498071 [00:03<00:00, 45593760.64it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████▏ | 138739712/170498071 [00:03<00:00, 46153655.26it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 143392768/170498071 [00:03<00:00, 45504976.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148209664/170498071 [00:03<00:00, 46079464.34it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|████████▉ | 152829952/170498071 [00:03<00:00, 45516536.27it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 157646848/170498071 [00:03<00:00, 46018066.70it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162267136/170498071 [00:03<00:00, 45503104.22it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 167280640/170498071 [00:04<00:00, 46441485.40it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:04<00:00, 41107986.54it/s]" ] }, { @@ -490,10 +674,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:17.724373Z", - "iopub.status.busy": "2024-02-08T04:30:17.724096Z", - "iopub.status.idle": "2024-02-08T04:30:17.728698Z", - "shell.execute_reply": "2024-02-08T04:30:17.728278Z" + "iopub.execute_input": "2024-02-08T05:17:15.881245Z", + "iopub.status.busy": "2024-02-08T05:17:15.881053Z", + "iopub.status.idle": "2024-02-08T05:17:15.886298Z", + "shell.execute_reply": "2024-02-08T05:17:15.885876Z" }, "nbsphinx": "hidden" }, @@ -544,10 +728,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:17.730711Z", - "iopub.status.busy": "2024-02-08T04:30:17.730452Z", - "iopub.status.idle": "2024-02-08T04:30:18.284987Z", - "shell.execute_reply": "2024-02-08T04:30:18.284485Z" + "iopub.execute_input": "2024-02-08T05:17:15.888349Z", + "iopub.status.busy": "2024-02-08T05:17:15.888018Z", + "iopub.status.idle": "2024-02-08T05:17:16.439381Z", + "shell.execute_reply": "2024-02-08T05:17:16.438746Z" } }, "outputs": [ @@ -580,10 +764,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.287052Z", - "iopub.status.busy": "2024-02-08T04:30:18.286769Z", - "iopub.status.idle": "2024-02-08T04:30:18.804685Z", - "shell.execute_reply": "2024-02-08T04:30:18.804072Z" + "iopub.execute_input": "2024-02-08T05:17:16.441539Z", + "iopub.status.busy": "2024-02-08T05:17:16.441332Z", + "iopub.status.idle": "2024-02-08T05:17:16.983160Z", + "shell.execute_reply": "2024-02-08T05:17:16.982529Z" } }, "outputs": [ @@ -621,10 +805,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.806777Z", - "iopub.status.busy": "2024-02-08T04:30:18.806483Z", - "iopub.status.idle": "2024-02-08T04:30:18.809916Z", - "shell.execute_reply": "2024-02-08T04:30:18.809486Z" + "iopub.execute_input": "2024-02-08T05:17:16.985466Z", + "iopub.status.busy": "2024-02-08T05:17:16.985047Z", + "iopub.status.idle": "2024-02-08T05:17:16.988712Z", + "shell.execute_reply": "2024-02-08T05:17:16.988153Z" } }, "outputs": [], @@ -647,17 +831,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:18.811865Z", - "iopub.status.busy": "2024-02-08T04:30:18.811527Z", - "iopub.status.idle": "2024-02-08T04:30:31.364282Z", - "shell.execute_reply": "2024-02-08T04:30:31.363667Z" + "iopub.execute_input": "2024-02-08T05:17:16.990864Z", + "iopub.status.busy": "2024-02-08T05:17:16.990531Z", + "iopub.status.idle": "2024-02-08T05:17:30.384574Z", + "shell.execute_reply": "2024-02-08T05:17:30.383954Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8ec90718ebe14457846ef833a3f69479", + "model_id": "825668b38db748b986e9bda15e51e13b", "version_major": 2, "version_minor": 0 }, @@ -716,10 +900,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:31.366608Z", - "iopub.status.busy": "2024-02-08T04:30:31.366233Z", - "iopub.status.idle": "2024-02-08T04:30:32.923298Z", - "shell.execute_reply": "2024-02-08T04:30:32.922745Z" + "iopub.execute_input": "2024-02-08T05:17:30.387065Z", + "iopub.status.busy": "2024-02-08T05:17:30.386677Z", + "iopub.status.idle": "2024-02-08T05:17:31.989176Z", + "shell.execute_reply": "2024-02-08T05:17:31.988590Z" } }, "outputs": [ @@ -763,10 +947,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:32.926239Z", - "iopub.status.busy": "2024-02-08T04:30:32.925792Z", - "iopub.status.idle": "2024-02-08T04:30:33.332069Z", - "shell.execute_reply": "2024-02-08T04:30:33.331464Z" + "iopub.execute_input": "2024-02-08T05:17:31.991570Z", + "iopub.status.busy": "2024-02-08T05:17:31.991111Z", + "iopub.status.idle": "2024-02-08T05:17:32.449002Z", + "shell.execute_reply": "2024-02-08T05:17:32.448403Z" } }, "outputs": [ @@ -802,10 +986,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:33.334561Z", - "iopub.status.busy": "2024-02-08T04:30:33.334085Z", - "iopub.status.idle": "2024-02-08T04:30:33.961207Z", - "shell.execute_reply": "2024-02-08T04:30:33.960621Z" + "iopub.execute_input": "2024-02-08T05:17:32.451718Z", + "iopub.status.busy": "2024-02-08T05:17:32.451216Z", + "iopub.status.idle": "2024-02-08T05:17:33.151860Z", + "shell.execute_reply": "2024-02-08T05:17:33.151313Z" } }, "outputs": [ @@ -855,10 +1039,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:33.963531Z", - "iopub.status.busy": "2024-02-08T04:30:33.963345Z", - "iopub.status.idle": "2024-02-08T04:30:34.255761Z", - "shell.execute_reply": "2024-02-08T04:30:34.255221Z" + "iopub.execute_input": "2024-02-08T05:17:33.154439Z", + "iopub.status.busy": "2024-02-08T05:17:33.154055Z", + "iopub.status.idle": "2024-02-08T05:17:33.500788Z", + "shell.execute_reply": "2024-02-08T05:17:33.500203Z" } }, "outputs": [ @@ -906,10 +1090,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.257730Z", - "iopub.status.busy": "2024-02-08T04:30:34.257550Z", - "iopub.status.idle": "2024-02-08T04:30:34.485252Z", - "shell.execute_reply": "2024-02-08T04:30:34.484849Z" + "iopub.execute_input": "2024-02-08T05:17:33.503176Z", + "iopub.status.busy": "2024-02-08T05:17:33.502822Z", + "iopub.status.idle": "2024-02-08T05:17:33.757736Z", + "shell.execute_reply": "2024-02-08T05:17:33.757170Z" } }, "outputs": [ @@ -965,10 +1149,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.487726Z", - "iopub.status.busy": "2024-02-08T04:30:34.487222Z", - "iopub.status.idle": "2024-02-08T04:30:34.562718Z", - "shell.execute_reply": "2024-02-08T04:30:34.562255Z" + "iopub.execute_input": "2024-02-08T05:17:33.763168Z", + "iopub.status.busy": "2024-02-08T05:17:33.762933Z", + "iopub.status.idle": "2024-02-08T05:17:33.854185Z", + "shell.execute_reply": "2024-02-08T05:17:33.853691Z" } }, "outputs": [], @@ -989,10 +1173,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:34.565151Z", - "iopub.status.busy": "2024-02-08T04:30:34.564820Z", - "iopub.status.idle": "2024-02-08T04:30:44.672053Z", - "shell.execute_reply": "2024-02-08T04:30:44.671463Z" + "iopub.execute_input": "2024-02-08T05:17:33.856930Z", + "iopub.status.busy": "2024-02-08T05:17:33.856640Z", + "iopub.status.idle": "2024-02-08T05:17:44.539894Z", + "shell.execute_reply": "2024-02-08T05:17:44.539169Z" } }, "outputs": [ @@ -1029,10 +1213,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:44.674407Z", - "iopub.status.busy": "2024-02-08T04:30:44.674085Z", - "iopub.status.idle": "2024-02-08T04:30:46.341098Z", - "shell.execute_reply": "2024-02-08T04:30:46.340559Z" + "iopub.execute_input": "2024-02-08T05:17:44.542602Z", + "iopub.status.busy": "2024-02-08T05:17:44.542199Z", + "iopub.status.idle": "2024-02-08T05:17:46.479367Z", + "shell.execute_reply": "2024-02-08T05:17:46.478694Z" } }, "outputs": [ @@ -1063,10 +1247,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.343980Z", - "iopub.status.busy": "2024-02-08T04:30:46.343183Z", - "iopub.status.idle": "2024-02-08T04:30:46.549529Z", - "shell.execute_reply": "2024-02-08T04:30:46.549050Z" + "iopub.execute_input": "2024-02-08T05:17:46.482458Z", + "iopub.status.busy": "2024-02-08T05:17:46.481971Z", + "iopub.status.idle": "2024-02-08T05:17:46.688532Z", + "shell.execute_reply": "2024-02-08T05:17:46.687903Z" } }, "outputs": [], @@ -1080,10 +1264,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.551949Z", - "iopub.status.busy": "2024-02-08T04:30:46.551608Z", - "iopub.status.idle": "2024-02-08T04:30:46.554597Z", - "shell.execute_reply": "2024-02-08T04:30:46.554192Z" + "iopub.execute_input": "2024-02-08T05:17:46.691136Z", + "iopub.status.busy": "2024-02-08T05:17:46.690740Z", + "iopub.status.idle": "2024-02-08T05:17:46.694886Z", + "shell.execute_reply": "2024-02-08T05:17:46.694321Z" } }, "outputs": [], @@ -1105,10 +1289,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:46.556571Z", - "iopub.status.busy": "2024-02-08T04:30:46.556256Z", - "iopub.status.idle": "2024-02-08T04:30:46.564143Z", - "shell.execute_reply": "2024-02-08T04:30:46.563713Z" + "iopub.execute_input": "2024-02-08T05:17:46.697187Z", + "iopub.status.busy": "2024-02-08T05:17:46.696860Z", + "iopub.status.idle": "2024-02-08T05:17:46.705406Z", + "shell.execute_reply": "2024-02-08T05:17:46.704905Z" }, "nbsphinx": "hidden" }, @@ -1153,30 +1337,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "55278c78cbd94215b2c837195ceeb854": { + "038ec4553cd7485f8bc6b775cc1ac431": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8291224fafb44311a21cd1a944c03a26", - "placeholder": "​", - "style": "IPY_MODEL_7c0f27427fd7458e803f7842e3c2b7b0", + "layout": "IPY_MODEL_c1c41233fe614d279ca59c66cbba997a", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_143179c01bf94cc88f3717bb18023e8a", "tabbable": null, "tooltip": null, - "value": "model.safetensors: 100%" + "value": 102469840.0 } }, - "7c0f27427fd7458e803f7842e3c2b7b0": { + "03d4c196de6b49fabaae303aaa5e1201": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1194,7 +1381,23 @@ "text_color": null } }, - "8291224fafb44311a21cd1a944c03a26": { + "143179c01bf94cc88f3717bb18023e8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5a00804c5fce4ec18bb7db14fd32b417": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1247,54 +1450,7 @@ "width": null } }, - "8a2fc69f5c3f4e30bde00e979493715a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a1d3abd8ccac4d8ca172e65b1644272f", - "placeholder": "​", - "style": "IPY_MODEL_e94269c930c348fc97e754247d9595ed", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 220MB/s]" - } - }, - "8ec90718ebe14457846ef833a3f69479": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_55278c78cbd94215b2c837195ceeb854", - "IPY_MODEL_e8cf996d0fe94c3cb5e2785fee2bf584", - "IPY_MODEL_8a2fc69f5c3f4e30bde00e979493715a" - ], - "layout": "IPY_MODEL_a02d42e775b44528a4ec1f675c156ebe", - "tabbable": null, - "tooltip": null - } - }, - "a02d42e775b44528a4ec1f675c156ebe": { + "70630cd3b71546b196c328130764cfd7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1347,7 +1503,54 @@ "width": null } }, - "a1d3abd8ccac4d8ca172e65b1644272f": { + "7638661cf1ea4bdf9057cf8fb2ed8155": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5a00804c5fce4ec18bb7db14fd32b417", + "placeholder": "​", + "style": "IPY_MODEL_03d4c196de6b49fabaae303aaa5e1201", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 126MB/s]" + } + }, + "825668b38db748b986e9bda15e51e13b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c60e04d7447e4f17a454ef9c1b22babd", + "IPY_MODEL_038ec4553cd7485f8bc6b775cc1ac431", + "IPY_MODEL_7638661cf1ea4bdf9057cf8fb2ed8155" + ], + "layout": "IPY_MODEL_70630cd3b71546b196c328130764cfd7", + "tabbable": null, + "tooltip": null + } + }, + "845005c35b004bdb8957033ab5ca8657": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1400,49 +1603,7 @@ "width": null } }, - "b4faa0e3178b4731a79084ed65896fc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e8cf996d0fe94c3cb5e2785fee2bf584": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ee3ee555896b49de84d08c251eed995d", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b4faa0e3178b4731a79084ed65896fc6", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "e94269c930c348fc97e754247d9595ed": { + "95c4ac1a954348fa9148c8ee12f7fb4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1460,7 +1621,7 @@ "text_color": null } }, - "ee3ee555896b49de84d08c251eed995d": { + "c1c41233fe614d279ca59c66cbba997a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1512,6 +1673,29 @@ "visibility": null, "width": null } + }, + "c60e04d7447e4f17a454ef9c1b22babd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_845005c35b004bdb8957033ab5ca8657", + "placeholder": "​", + "style": "IPY_MODEL_95c4ac1a954348fa9148c8ee12f7fb4e", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index ff8035f20..c13537792 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:50.751304Z", - "iopub.status.busy": "2024-02-08T04:30:50.751133Z", - "iopub.status.idle": "2024-02-08T04:30:51.823240Z", - "shell.execute_reply": "2024-02-08T04:30:51.822703Z" + "iopub.execute_input": "2024-02-08T05:17:51.413127Z", + "iopub.status.busy": "2024-02-08T05:17:51.412706Z", + "iopub.status.idle": "2024-02-08T05:17:52.611238Z", + "shell.execute_reply": "2024-02-08T05:17:52.610680Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.825744Z", - "iopub.status.busy": "2024-02-08T04:30:51.825364Z", - "iopub.status.idle": "2024-02-08T04:30:51.842820Z", - "shell.execute_reply": "2024-02-08T04:30:51.842387Z" + "iopub.execute_input": "2024-02-08T05:17:52.614217Z", + "iopub.status.busy": "2024-02-08T05:17:52.613717Z", + "iopub.status.idle": "2024-02-08T05:17:52.633243Z", + "shell.execute_reply": "2024-02-08T05:17:52.632743Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.844983Z", - "iopub.status.busy": "2024-02-08T04:30:51.844515Z", - "iopub.status.idle": "2024-02-08T04:30:51.847432Z", - "shell.execute_reply": "2024-02-08T04:30:51.846998Z" + "iopub.execute_input": "2024-02-08T05:17:52.635825Z", + "iopub.status.busy": "2024-02-08T05:17:52.635484Z", + "iopub.status.idle": "2024-02-08T05:17:52.638626Z", + "shell.execute_reply": "2024-02-08T05:17:52.638180Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:51.849404Z", - "iopub.status.busy": "2024-02-08T04:30:51.849113Z", - "iopub.status.idle": "2024-02-08T04:30:52.062082Z", - "shell.execute_reply": "2024-02-08T04:30:52.061561Z" + "iopub.execute_input": "2024-02-08T05:17:52.640735Z", + "iopub.status.busy": "2024-02-08T05:17:52.640434Z", + "iopub.status.idle": "2024-02-08T05:17:52.920965Z", + "shell.execute_reply": "2024-02-08T05:17:52.920349Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.064034Z", - "iopub.status.busy": "2024-02-08T04:30:52.063840Z", - "iopub.status.idle": "2024-02-08T04:30:52.239826Z", - "shell.execute_reply": "2024-02-08T04:30:52.239268Z" + "iopub.execute_input": "2024-02-08T05:17:52.923467Z", + "iopub.status.busy": "2024-02-08T05:17:52.923019Z", + "iopub.status.idle": "2024-02-08T05:17:53.115689Z", + "shell.execute_reply": "2024-02-08T05:17:53.115011Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.242089Z", - "iopub.status.busy": "2024-02-08T04:30:52.241901Z", - "iopub.status.idle": "2024-02-08T04:30:52.445021Z", - "shell.execute_reply": "2024-02-08T04:30:52.444475Z" + "iopub.execute_input": "2024-02-08T05:17:53.118435Z", + "iopub.status.busy": "2024-02-08T05:17:53.118062Z", + "iopub.status.idle": "2024-02-08T05:17:53.371491Z", + "shell.execute_reply": "2024-02-08T05:17:53.370876Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.446996Z", - "iopub.status.busy": "2024-02-08T04:30:52.446821Z", - "iopub.status.idle": "2024-02-08T04:30:52.450930Z", - "shell.execute_reply": "2024-02-08T04:30:52.450482Z" + "iopub.execute_input": "2024-02-08T05:17:53.373865Z", + "iopub.status.busy": "2024-02-08T05:17:53.373626Z", + "iopub.status.idle": "2024-02-08T05:17:53.378358Z", + "shell.execute_reply": "2024-02-08T05:17:53.377808Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.452716Z", - "iopub.status.busy": "2024-02-08T04:30:52.452542Z", - "iopub.status.idle": "2024-02-08T04:30:52.458401Z", - "shell.execute_reply": "2024-02-08T04:30:52.457979Z" + "iopub.execute_input": "2024-02-08T05:17:53.380695Z", + "iopub.status.busy": "2024-02-08T05:17:53.380265Z", + "iopub.status.idle": "2024-02-08T05:17:53.387022Z", + "shell.execute_reply": "2024-02-08T05:17:53.386397Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.460493Z", - "iopub.status.busy": "2024-02-08T04:30:52.460074Z", - "iopub.status.idle": "2024-02-08T04:30:52.462570Z", - "shell.execute_reply": "2024-02-08T04:30:52.462147Z" + "iopub.execute_input": "2024-02-08T05:17:53.389333Z", + "iopub.status.busy": "2024-02-08T05:17:53.389109Z", + "iopub.status.idle": "2024-02-08T05:17:53.392037Z", + "shell.execute_reply": "2024-02-08T05:17:53.391331Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:30:52.464422Z", - "iopub.status.busy": "2024-02-08T04:30:52.464251Z", - "iopub.status.idle": "2024-02-08T04:31:00.593329Z", - "shell.execute_reply": "2024-02-08T04:31:00.592695Z" + "iopub.execute_input": "2024-02-08T05:17:53.394330Z", + "iopub.status.busy": "2024-02-08T05:17:53.394004Z", + "iopub.status.idle": "2024-02-08T05:18:01.926806Z", + "shell.execute_reply": "2024-02-08T05:18:01.926205Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.596169Z", - "iopub.status.busy": "2024-02-08T04:31:00.595573Z", - "iopub.status.idle": "2024-02-08T04:31:00.602431Z", - "shell.execute_reply": "2024-02-08T04:31:00.601900Z" + "iopub.execute_input": "2024-02-08T05:18:01.930017Z", + "iopub.status.busy": "2024-02-08T05:18:01.929420Z", + "iopub.status.idle": "2024-02-08T05:18:01.937267Z", + "shell.execute_reply": "2024-02-08T05:18:01.936715Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.604583Z", - "iopub.status.busy": "2024-02-08T04:31:00.604256Z", - "iopub.status.idle": "2024-02-08T04:31:00.607660Z", - "shell.execute_reply": "2024-02-08T04:31:00.607238Z" + "iopub.execute_input": "2024-02-08T05:18:01.939696Z", + "iopub.status.busy": "2024-02-08T05:18:01.939307Z", + "iopub.status.idle": "2024-02-08T05:18:01.943488Z", + "shell.execute_reply": "2024-02-08T05:18:01.942900Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.609663Z", - "iopub.status.busy": "2024-02-08T04:31:00.609347Z", - "iopub.status.idle": "2024-02-08T04:31:00.612323Z", - "shell.execute_reply": "2024-02-08T04:31:00.611787Z" + "iopub.execute_input": "2024-02-08T05:18:01.945734Z", + "iopub.status.busy": "2024-02-08T05:18:01.945405Z", + "iopub.status.idle": "2024-02-08T05:18:01.948895Z", + "shell.execute_reply": "2024-02-08T05:18:01.948338Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.614282Z", - "iopub.status.busy": "2024-02-08T04:31:00.613967Z", - "iopub.status.idle": "2024-02-08T04:31:00.616872Z", - "shell.execute_reply": "2024-02-08T04:31:00.616427Z" + "iopub.execute_input": "2024-02-08T05:18:01.951160Z", + "iopub.status.busy": "2024-02-08T05:18:01.950717Z", + "iopub.status.idle": "2024-02-08T05:18:01.953844Z", + "shell.execute_reply": "2024-02-08T05:18:01.953404Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.618846Z", - "iopub.status.busy": "2024-02-08T04:31:00.618530Z", - "iopub.status.idle": "2024-02-08T04:31:00.626345Z", - "shell.execute_reply": "2024-02-08T04:31:00.625821Z" + "iopub.execute_input": "2024-02-08T05:18:01.956220Z", + "iopub.status.busy": "2024-02-08T05:18:01.955844Z", + "iopub.status.idle": "2024-02-08T05:18:01.964834Z", + "shell.execute_reply": "2024-02-08T05:18:01.964236Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.628449Z", - "iopub.status.busy": "2024-02-08T04:31:00.628141Z", - "iopub.status.idle": "2024-02-08T04:31:00.747556Z", - "shell.execute_reply": "2024-02-08T04:31:00.747054Z" + "iopub.execute_input": "2024-02-08T05:18:01.967310Z", + "iopub.status.busy": "2024-02-08T05:18:01.966842Z", + "iopub.status.idle": "2024-02-08T05:18:02.090316Z", + "shell.execute_reply": "2024-02-08T05:18:02.089645Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.749632Z", - "iopub.status.busy": "2024-02-08T04:31:00.749285Z", - "iopub.status.idle": "2024-02-08T04:31:00.867709Z", - "shell.execute_reply": "2024-02-08T04:31:00.867227Z" + "iopub.execute_input": "2024-02-08T05:18:02.092988Z", + "iopub.status.busy": "2024-02-08T05:18:02.092569Z", + "iopub.status.idle": "2024-02-08T05:18:02.204658Z", + "shell.execute_reply": "2024-02-08T05:18:02.203939Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:00.869752Z", - "iopub.status.busy": "2024-02-08T04:31:00.869575Z", - "iopub.status.idle": "2024-02-08T04:31:01.355217Z", - "shell.execute_reply": "2024-02-08T04:31:01.354754Z" + "iopub.execute_input": "2024-02-08T05:18:02.207487Z", + "iopub.status.busy": "2024-02-08T05:18:02.207236Z", + "iopub.status.idle": "2024-02-08T05:18:02.771856Z", + "shell.execute_reply": "2024-02-08T05:18:02.771183Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:01.357253Z", - "iopub.status.busy": "2024-02-08T04:31:01.357080Z", - "iopub.status.idle": "2024-02-08T04:31:01.434382Z", - "shell.execute_reply": "2024-02-08T04:31:01.433913Z" + "iopub.execute_input": "2024-02-08T05:18:02.774657Z", + "iopub.status.busy": "2024-02-08T05:18:02.774189Z", + "iopub.status.idle": "2024-02-08T05:18:02.854230Z", + "shell.execute_reply": "2024-02-08T05:18:02.853626Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:01.436548Z", - "iopub.status.busy": "2024-02-08T04:31:01.436195Z", - "iopub.status.idle": "2024-02-08T04:31:01.445937Z", - "shell.execute_reply": "2024-02-08T04:31:01.445389Z" + "iopub.execute_input": "2024-02-08T05:18:02.856474Z", + "iopub.status.busy": "2024-02-08T05:18:02.856273Z", + "iopub.status.idle": "2024-02-08T05:18:02.866501Z", + "shell.execute_reply": "2024-02-08T05:18:02.865955Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index e83c7be4a..def320d86 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -715,13 +715,13 @@

3. Use cleanlab to find label issues

-
+
-
+
-
0%| | 15263/4997817 [00:00&lt;00:32, 152620.32it/s]
+
0%| | 15219/4997817 [00:00&lt;00:32, 152175.63it/s]

</pre>

-
0%| | 15263/4997817 [00:00<00:32, 152620.32it/s]
+
0%| | 15219/4997817 [00:00<00:32, 152175.63it/s]

end{sphinxVerbatim}

-

0%| | 15263/4997817 [00:00<00:32, 152620.32it/s]

+

0%| | 15219/4997817 [00:00<00:32, 152175.63it/s]

-
1%| | 30666/4997817 [00:00&lt;00:32, 153444.23it/s]
+
1%| | 30515/4997817 [00:00&lt;00:32, 152628.96it/s]

</pre>

-
1%| | 30666/4997817 [00:00<00:32, 153444.23it/s]
+
1%| | 30515/4997817 [00:00<00:32, 152628.96it/s]

end{sphinxVerbatim}

-

1%| | 30666/4997817 [00:00<00:32, 153444.23it/s]

+

1%| | 30515/4997817 [00:00<00:32, 152628.96it/s]

-
1%| | 46403/4997817 [00:00&lt;00:31, 155233.62it/s]
+
1%| | 45778/4997817 [00:00&lt;00:32, 152070.29it/s]

</pre>

-
1%| | 46403/4997817 [00:00<00:31, 155233.62it/s]
+
1%| | 45778/4997817 [00:00<00:32, 152070.29it/s]

end{sphinxVerbatim}

-

1%| | 46403/4997817 [00:00<00:31, 155233.62it/s]

+

1%| | 45778/4997817 [00:00<00:32, 152070.29it/s]

-
1%| | 62088/4997817 [00:00&lt;00:31, 155869.58it/s]
+
1%| | 60986/4997817 [00:00&lt;00:32, 151671.35it/s]

</pre>

-
1%| | 62088/4997817 [00:00<00:31, 155869.58it/s]
+
1%| | 60986/4997817 [00:00<00:32, 151671.35it/s]

end{sphinxVerbatim}

-

1%| | 62088/4997817 [00:00<00:31, 155869.58it/s]

+

1%| | 60986/4997817 [00:00<00:32, 151671.35it/s]

-
2%|▏ | 77755/4997817 [00:00&lt;00:31, 156156.65it/s]
+
2%|▏ | 76154/4997817 [00:00&lt;00:32, 151334.04it/s]

</pre>

-
2%|▏ | 77755/4997817 [00:00<00:31, 156156.65it/s]
+
2%|▏ | 76154/4997817 [00:00<00:32, 151334.04it/s]

end{sphinxVerbatim}

-

2%|▏ | 77755/4997817 [00:00<00:31, 156156.65it/s]

+

2%|▏ | 76154/4997817 [00:00<00:32, 151334.04it/s]

-
2%|▏ | 93461/4997817 [00:00&lt;00:31, 156459.90it/s]
+
2%|▏ | 91408/4997817 [00:00&lt;00:32, 151739.35it/s]

</pre>

-
2%|▏ | 93461/4997817 [00:00<00:31, 156459.90it/s]
+
2%|▏ | 91408/4997817 [00:00<00:32, 151739.35it/s]

end{sphinxVerbatim}

-

2%|▏ | 93461/4997817 [00:00<00:31, 156459.90it/s]

+

2%|▏ | 91408/4997817 [00:00<00:32, 151739.35it/s]

-
2%|▏ | 109145/4997817 [00:00&lt;00:31, 156582.99it/s]
+
2%|▏ | 106583/4997817 [00:00&lt;00:32, 151262.88it/s]

</pre>

-
2%|▏ | 109145/4997817 [00:00<00:31, 156582.99it/s]
+
2%|▏ | 106583/4997817 [00:00<00:32, 151262.88it/s]

end{sphinxVerbatim}

-

2%|▏ | 109145/4997817 [00:00<00:31, 156582.99it/s]

+

2%|▏ | 106583/4997817 [00:00<00:32, 151262.88it/s]

-
2%|▏ | 124865/4997817 [00:00&lt;00:31, 156775.77it/s]
+
2%|▏ | 121799/4997817 [00:00&lt;00:32, 151497.04it/s]

</pre>

-
2%|▏ | 124865/4997817 [00:00<00:31, 156775.77it/s]
+
2%|▏ | 121799/4997817 [00:00<00:32, 151497.04it/s]

end{sphinxVerbatim}

-

2%|▏ | 124865/4997817 [00:00<00:31, 156775.77it/s]

+

2%|▏ | 121799/4997817 [00:00<00:32, 151497.04it/s]

-
3%|▎ | 140561/4997817 [00:00&lt;00:30, 156832.47it/s]
+
3%|▎ | 136950/4997817 [00:00&lt;00:32, 151116.12it/s]

</pre>

-
3%|▎ | 140561/4997817 [00:00<00:30, 156832.47it/s]
+
3%|▎ | 136950/4997817 [00:00<00:32, 151116.12it/s]

end{sphinxVerbatim}

-

3%|▎ | 140561/4997817 [00:00<00:30, 156832.47it/s]

+

3%|▎ | 136950/4997817 [00:00<00:32, 151116.12it/s]

-
3%|▎ | 156296/4997817 [00:01&lt;00:30, 156990.78it/s]
+
3%|▎ | 152062/4997817 [00:01&lt;00:32, 150719.47it/s]

</pre>

-
3%|▎ | 156296/4997817 [00:01<00:30, 156990.78it/s]
+
3%|▎ | 152062/4997817 [00:01<00:32, 150719.47it/s]

end{sphinxVerbatim}

-

3%|▎ | 156296/4997817 [00:01<00:30, 156990.78it/s]

+

3%|▎ | 152062/4997817 [00:01<00:32, 150719.47it/s]

-
3%|▎ | 171996/4997817 [00:01&lt;00:30, 156816.52it/s]
+
3%|▎ | 167152/4997817 [00:01&lt;00:32, 150772.00it/s]

</pre>

-
3%|▎ | 171996/4997817 [00:01<00:30, 156816.52it/s]
+
3%|▎ | 167152/4997817 [00:01<00:32, 150772.00it/s]

end{sphinxVerbatim}

-

3%|▎ | 171996/4997817 [00:01<00:30, 156816.52it/s]

+

3%|▎ | 167152/4997817 [00:01<00:32, 150772.00it/s]

-
4%|▍ | 187678/4997817 [00:01&lt;00:30, 156789.10it/s]
+
4%|▎ | 182311/4997817 [00:01&lt;00:31, 151017.94it/s]

</pre>

-
4%|▍ | 187678/4997817 [00:01<00:30, 156789.10it/s]
+
4%|▎ | 182311/4997817 [00:01<00:31, 151017.94it/s]

end{sphinxVerbatim}

-

4%|▍ | 187678/4997817 [00:01<00:30, 156789.10it/s]

+

4%|▎ | 182311/4997817 [00:01<00:31, 151017.94it/s]

-
4%|▍ | 203449/4997817 [00:01&lt;00:30, 157064.19it/s]
+
4%|▍ | 197414/4997817 [00:01&lt;00:32, 149004.91it/s]

</pre>

-
4%|▍ | 203449/4997817 [00:01<00:30, 157064.19it/s]
+
4%|▍ | 197414/4997817 [00:01<00:32, 149004.91it/s]

end{sphinxVerbatim}

-

4%|▍ | 203449/4997817 [00:01<00:30, 157064.19it/s]

+

4%|▍ | 197414/4997817 [00:01<00:32, 149004.91it/s]

-
4%|▍ | 219271/4997817 [00:01&lt;00:30, 157411.47it/s]
+
4%|▍ | 212321/4997817 [00:01&lt;00:32, 148494.46it/s]

</pre>

-
4%|▍ | 219271/4997817 [00:01<00:30, 157411.47it/s]
+
4%|▍ | 212321/4997817 [00:01<00:32, 148494.46it/s]

end{sphinxVerbatim}

-

4%|▍ | 219271/4997817 [00:01<00:30, 157411.47it/s]

+

4%|▍ | 212321/4997817 [00:01<00:32, 148494.46it/s]

-
5%|▍ | 235039/4997817 [00:01&lt;00:30, 157491.41it/s]
+
5%|▍ | 227688/4997817 [00:01&lt;00:31, 150033.39it/s]

</pre>

-
5%|▍ | 235039/4997817 [00:01<00:30, 157491.41it/s]
+
5%|▍ | 227688/4997817 [00:01<00:31, 150033.39it/s]

end{sphinxVerbatim}

-

5%|▍ | 235039/4997817 [00:01<00:30, 157491.41it/s]

+

5%|▍ | 227688/4997817 [00:01<00:31, 150033.39it/s]

-
5%|▌ | 250894/4997817 [00:01&lt;00:30, 157807.98it/s]
+
5%|▍ | 242927/4997817 [00:01&lt;00:31, 150733.98it/s]

</pre>

-
5%|▌ | 250894/4997817 [00:01<00:30, 157807.98it/s]
+
5%|▍ | 242927/4997817 [00:01<00:31, 150733.98it/s]

end{sphinxVerbatim}

-

5%|▌ | 250894/4997817 [00:01<00:30, 157807.98it/s]

+

5%|▍ | 242927/4997817 [00:01<00:31, 150733.98it/s]

-
5%|▌ | 266675/4997817 [00:01&lt;00:29, 157776.96it/s]
+
5%|▌ | 258207/4997817 [00:01&lt;00:31, 151349.15it/s]

</pre>

-
5%|▌ | 266675/4997817 [00:01<00:29, 157776.96it/s]
+
5%|▌ | 258207/4997817 [00:01<00:31, 151349.15it/s]

end{sphinxVerbatim}

-

5%|▌ | 266675/4997817 [00:01<00:29, 157776.96it/s]

+

5%|▌ | 258207/4997817 [00:01<00:31, 151349.15it/s]

-
6%|▌ | 282453/4997817 [00:01&lt;00:29, 157761.99it/s]
+
5%|▌ | 273519/4997817 [00:01&lt;00:31, 151877.06it/s]

</pre>

-
6%|▌ | 282453/4997817 [00:01<00:29, 157761.99it/s]
+
5%|▌ | 273519/4997817 [00:01<00:31, 151877.06it/s]

end{sphinxVerbatim}

-

6%|▌ | 282453/4997817 [00:01<00:29, 157761.99it/s]

+

5%|▌ | 273519/4997817 [00:01<00:31, 151877.06it/s]

-
6%|▌ | 298230/4997817 [00:01&lt;00:29, 157339.46it/s]
+
6%|▌ | 288818/4997817 [00:01&lt;00:30, 152206.19it/s]

</pre>

-
6%|▌ | 298230/4997817 [00:01<00:29, 157339.46it/s]
+
6%|▌ | 288818/4997817 [00:01<00:30, 152206.19it/s]

end{sphinxVerbatim}

-

6%|▌ | 298230/4997817 [00:01<00:29, 157339.46it/s]

+

6%|▌ | 288818/4997817 [00:01<00:30, 152206.19it/s]

-
6%|▋ | 313965/4997817 [00:02&lt;00:29, 157107.54it/s]
+
6%|▌ | 304086/4997817 [00:02&lt;00:30, 152346.07it/s]

</pre>

-
6%|▋ | 313965/4997817 [00:02<00:29, 157107.54it/s]
+
6%|▌ | 304086/4997817 [00:02<00:30, 152346.07it/s]

end{sphinxVerbatim}

-

6%|▋ | 313965/4997817 [00:02<00:29, 157107.54it/s]

+

6%|▌ | 304086/4997817 [00:02<00:30, 152346.07it/s]

-
7%|▋ | 329811/4997817 [00:02&lt;00:29, 157509.28it/s]
+
6%|▋ | 319322/4997817 [00:02&lt;00:30, 152226.57it/s]

</pre>

-
7%|▋ | 329811/4997817 [00:02<00:29, 157509.28it/s]
+
6%|▋ | 319322/4997817 [00:02<00:30, 152226.57it/s]

end{sphinxVerbatim}

-

7%|▋ | 329811/4997817 [00:02<00:29, 157509.28it/s]

+

6%|▋ | 319322/4997817 [00:02<00:30, 152226.57it/s]

-
7%|▋ | 345563/4997817 [00:02&lt;00:30, 153954.15it/s]
+
7%|▋ | 334625/4997817 [00:02&lt;00:30, 152465.32it/s]

</pre>

-
7%|▋ | 345563/4997817 [00:02<00:30, 153954.15it/s]
+
7%|▋ | 334625/4997817 [00:02<00:30, 152465.32it/s]

end{sphinxVerbatim}

-

7%|▋ | 345563/4997817 [00:02<00:30, 153954.15it/s]

+

7%|▋ | 334625/4997817 [00:02<00:30, 152465.32it/s]

-
7%|▋ | 361251/4997817 [00:02&lt;00:29, 154814.53it/s]
+
7%|▋ | 349873/4997817 [00:02&lt;00:30, 152288.21it/s]

</pre>

-
7%|▋ | 361251/4997817 [00:02<00:29, 154814.53it/s]
+
7%|▋ | 349873/4997817 [00:02<00:30, 152288.21it/s]

end{sphinxVerbatim}

-

7%|▋ | 361251/4997817 [00:02<00:29, 154814.53it/s]

+

7%|▋ | 349873/4997817 [00:02<00:30, 152288.21it/s]

-
8%|▊ | 376940/4997817 [00:02&lt;00:29, 155427.51it/s]
+
7%|▋ | 365103/4997817 [00:02&lt;00:31, 149042.74it/s]

</pre>

-
8%|▊ | 376940/4997817 [00:02<00:29, 155427.51it/s]
+
7%|▋ | 365103/4997817 [00:02<00:31, 149042.74it/s]

end{sphinxVerbatim}

-

8%|▊ | 376940/4997817 [00:02<00:29, 155427.51it/s]

+

7%|▋ | 365103/4997817 [00:02<00:31, 149042.74it/s]

-
8%|▊ | 392762/4997817 [00:02&lt;00:29, 156257.19it/s]
+
8%|▊ | 380408/4997817 [00:02&lt;00:30, 150221.43it/s]

</pre>

-
8%|▊ | 392762/4997817 [00:02<00:29, 156257.19it/s]
+
8%|▊ | 380408/4997817 [00:02<00:30, 150221.43it/s]

end{sphinxVerbatim}

-

8%|▊ | 392762/4997817 [00:02<00:29, 156257.19it/s]

+

8%|▊ | 380408/4997817 [00:02<00:30, 150221.43it/s]

-
8%|▊ | 408619/4997817 [00:02&lt;00:29, 156944.77it/s]
+
8%|▊ | 395607/4997817 [00:02&lt;00:30, 150742.66it/s]

</pre>

-
8%|▊ | 408619/4997817 [00:02<00:29, 156944.77it/s]
+
8%|▊ | 395607/4997817 [00:02<00:30, 150742.66it/s]

end{sphinxVerbatim}

-

8%|▊ | 408619/4997817 [00:02<00:29, 156944.77it/s]

+

8%|▊ | 395607/4997817 [00:02<00:30, 150742.66it/s]

-
8%|▊ | 424451/4997817 [00:02&lt;00:29, 157351.99it/s]
+
8%|▊ | 410867/4997817 [00:02&lt;00:30, 151292.06it/s]

</pre>

-
8%|▊ | 424451/4997817 [00:02<00:29, 157351.99it/s]
+
8%|▊ | 410867/4997817 [00:02<00:30, 151292.06it/s]

end{sphinxVerbatim}

-

8%|▊ | 424451/4997817 [00:02<00:29, 157351.99it/s]

+

8%|▊ | 410867/4997817 [00:02<00:30, 151292.06it/s]

-
9%|▉ | 440219/4997817 [00:02&lt;00:28, 157448.13it/s]
+
9%|▊ | 426153/4997817 [00:02&lt;00:30, 151755.55it/s]

</pre>

-
9%|▉ | 440219/4997817 [00:02<00:28, 157448.13it/s]
+
9%|▊ | 426153/4997817 [00:02<00:30, 151755.55it/s]

end{sphinxVerbatim}

-

9%|▉ | 440219/4997817 [00:02<00:28, 157448.13it/s]

+

9%|▊ | 426153/4997817 [00:02<00:30, 151755.55it/s]

-
9%|▉ | 456014/4997817 [00:02&lt;00:28, 157594.94it/s]
+
9%|▉ | 441466/4997817 [00:02&lt;00:29, 152163.81it/s]

</pre>

-
9%|▉ | 456014/4997817 [00:02<00:28, 157594.94it/s]
+
9%|▉ | 441466/4997817 [00:02<00:29, 152163.81it/s]

end{sphinxVerbatim}

-

9%|▉ | 456014/4997817 [00:02<00:28, 157594.94it/s]

+

9%|▉ | 441466/4997817 [00:02<00:29, 152163.81it/s]

-
9%|▉ | 471810/4997817 [00:03&lt;00:28, 157702.43it/s]
+
9%|▉ | 456687/4997817 [00:03&lt;00:29, 152154.88it/s]

</pre>

-
9%|▉ | 471810/4997817 [00:03<00:28, 157702.43it/s]
+
9%|▉ | 456687/4997817 [00:03<00:29, 152154.88it/s]

end{sphinxVerbatim}

-

9%|▉ | 471810/4997817 [00:03<00:28, 157702.43it/s]

+

9%|▉ | 456687/4997817 [00:03<00:29, 152154.88it/s]

-
10%|▉ | 487647/4997817 [00:03&lt;00:28, 157900.06it/s]
+
9%|▉ | 472009/4997817 [00:03&lt;00:29, 152471.31it/s]

</pre>

-
10%|▉ | 487647/4997817 [00:03<00:28, 157900.06it/s]
+
9%|▉ | 472009/4997817 [00:03<00:29, 152471.31it/s]

end{sphinxVerbatim}

-

10%|▉ | 487647/4997817 [00:03<00:28, 157900.06it/s]

+

9%|▉ | 472009/4997817 [00:03<00:29, 152471.31it/s]

-
10%|█ | 503447/4997817 [00:03&lt;00:28, 157926.90it/s]
+
10%|▉ | 487319/4997817 [00:03&lt;00:29, 152657.18it/s]

</pre>

-
10%|█ | 503447/4997817 [00:03<00:28, 157926.90it/s]
+
10%|▉ | 487319/4997817 [00:03<00:29, 152657.18it/s]

end{sphinxVerbatim}

-

10%|█ | 503447/4997817 [00:03<00:28, 157926.90it/s]

+

10%|▉ | 487319/4997817 [00:03<00:29, 152657.18it/s]

-
10%|█ | 519243/4997817 [00:03&lt;00:28, 157933.03it/s]
+
10%|█ | 502587/4997817 [00:03&lt;00:29, 152587.42it/s]

</pre>

-
10%|█ | 519243/4997817 [00:03<00:28, 157933.03it/s]
+
10%|█ | 502587/4997817 [00:03<00:29, 152587.42it/s]

end{sphinxVerbatim}

-

10%|█ | 519243/4997817 [00:03<00:28, 157933.03it/s]

+

10%|█ | 502587/4997817 [00:03<00:29, 152587.42it/s]

-
11%|█ | 535046/4997817 [00:03&lt;00:28, 157960.35it/s]
+
10%|█ | 517878/4997817 [00:03&lt;00:29, 152680.31it/s]

</pre>

-
11%|█ | 535046/4997817 [00:03<00:28, 157960.35it/s]
+
10%|█ | 517878/4997817 [00:03<00:29, 152680.31it/s]

end{sphinxVerbatim}

-

11%|█ | 535046/4997817 [00:03<00:28, 157960.35it/s]

+

10%|█ | 517878/4997817 [00:03<00:29, 152680.31it/s]

-
11%|█ | 550843/4997817 [00:03&lt;00:28, 157126.81it/s]
+
11%|█ | 533228/4997817 [00:03&lt;00:29, 152922.25it/s]

</pre>

-
11%|█ | 550843/4997817 [00:03<00:28, 157126.81it/s]
+
11%|█ | 533228/4997817 [00:03<00:29, 152922.25it/s]

end{sphinxVerbatim}

-

11%|█ | 550843/4997817 [00:03<00:28, 157126.81it/s]

+

11%|█ | 533228/4997817 [00:03<00:29, 152922.25it/s]

-
11%|█▏ | 566561/4997817 [00:03&lt;00:28, 157141.74it/s]
+
11%|█ | 548521/4997817 [00:03&lt;00:29, 152579.62it/s]

</pre>

-
11%|█▏ | 566561/4997817 [00:03<00:28, 157141.74it/s]
+
11%|█ | 548521/4997817 [00:03<00:29, 152579.62it/s]

end{sphinxVerbatim}

-

11%|█▏ | 566561/4997817 [00:03<00:28, 157141.74it/s]

+

11%|█ | 548521/4997817 [00:03<00:29, 152579.62it/s]

-
12%|█▏ | 582279/4997817 [00:03&lt;00:28, 157149.98it/s]
+
11%|█▏ | 563780/4997817 [00:03&lt;00:29, 152366.87it/s]

</pre>

-
12%|█▏ | 582279/4997817 [00:03<00:28, 157149.98it/s]
+
11%|█▏ | 563780/4997817 [00:03<00:29, 152366.87it/s]

end{sphinxVerbatim}

-

12%|█▏ | 582279/4997817 [00:03<00:28, 157149.98it/s]

+

11%|█▏ | 563780/4997817 [00:03<00:29, 152366.87it/s]

-
12%|█▏ | 597995/4997817 [00:03&lt;00:28, 157124.65it/s]
+
12%|█▏ | 579068/4997817 [00:03&lt;00:28, 152516.68it/s]

</pre>

-
12%|█▏ | 597995/4997817 [00:03<00:28, 157124.65it/s]
+
12%|█▏ | 579068/4997817 [00:03<00:28, 152516.68it/s]

end{sphinxVerbatim}

-

12%|█▏ | 597995/4997817 [00:03<00:28, 157124.65it/s]

+

12%|█▏ | 579068/4997817 [00:03<00:28, 152516.68it/s]

-
12%|█▏ | 613708/4997817 [00:03&lt;00:27, 156897.25it/s]
+
12%|█▏ | 594320/4997817 [00:03&lt;00:28, 152104.13it/s]

</pre>

-
12%|█▏ | 613708/4997817 [00:03<00:27, 156897.25it/s]
+
12%|█▏ | 594320/4997817 [00:03<00:28, 152104.13it/s]

end{sphinxVerbatim}

-

12%|█▏ | 613708/4997817 [00:03<00:27, 156897.25it/s]

+

12%|█▏ | 594320/4997817 [00:03<00:28, 152104.13it/s]

-
13%|█▎ | 629508/4997817 [00:04&lt;00:27, 157224.86it/s]
+
12%|█▏ | 609531/4997817 [00:04&lt;00:28, 152101.48it/s]

</pre>

-
13%|█▎ | 629508/4997817 [00:04<00:27, 157224.86it/s]
+
12%|█▏ | 609531/4997817 [00:04<00:28, 152101.48it/s]

end{sphinxVerbatim}

-

13%|█▎ | 629508/4997817 [00:04<00:27, 157224.86it/s]

+

12%|█▏ | 609531/4997817 [00:04<00:28, 152101.48it/s]

-
13%|█▎ | 645231/4997817 [00:04&lt;00:27, 157177.39it/s]
+
13%|█▎ | 624752/4997817 [00:04&lt;00:28, 152131.73it/s]

</pre>

-
13%|█▎ | 645231/4997817 [00:04<00:27, 157177.39it/s]
+
13%|█▎ | 624752/4997817 [00:04<00:28, 152131.73it/s]

end{sphinxVerbatim}

-

13%|█▎ | 645231/4997817 [00:04<00:27, 157177.39it/s]

+

13%|█▎ | 624752/4997817 [00:04<00:28, 152131.73it/s]

-
13%|█▎ | 660949/4997817 [00:04&lt;00:27, 156978.60it/s]
+
13%|█▎ | 639966/4997817 [00:04&lt;00:28, 151079.04it/s]

</pre>

-
13%|█▎ | 660949/4997817 [00:04<00:27, 156978.60it/s]
+
13%|█▎ | 639966/4997817 [00:04<00:28, 151079.04it/s]

end{sphinxVerbatim}

-

13%|█▎ | 660949/4997817 [00:04<00:27, 156978.60it/s]

+

13%|█▎ | 639966/4997817 [00:04<00:28, 151079.04it/s]

-
14%|█▎ | 676648/4997817 [00:04&lt;00:27, 156760.78it/s]
+
13%|█▎ | 655076/4997817 [00:04&lt;00:28, 151049.89it/s]

</pre>

-
14%|█▎ | 676648/4997817 [00:04<00:27, 156760.78it/s]
+
13%|█▎ | 655076/4997817 [00:04<00:28, 151049.89it/s]

end{sphinxVerbatim}

-

14%|█▎ | 676648/4997817 [00:04<00:27, 156760.78it/s]

+

13%|█▎ | 655076/4997817 [00:04<00:28, 151049.89it/s]

-
14%|█▍ | 692325/4997817 [00:04&lt;00:27, 156208.63it/s]
+
13%|█▎ | 670183/4997817 [00:04&lt;00:30, 143565.20it/s]

</pre>

-
14%|█▍ | 692325/4997817 [00:04<00:27, 156208.63it/s]
+
13%|█▎ | 670183/4997817 [00:04<00:30, 143565.20it/s]

end{sphinxVerbatim}

-

14%|█▍ | 692325/4997817 [00:04<00:27, 156208.63it/s]

+

13%|█▎ | 670183/4997817 [00:04<00:30, 143565.20it/s]

-
14%|█▍ | 707947/4997817 [00:04&lt;00:27, 156090.54it/s]
+
14%|█▎ | 685377/4997817 [00:04&lt;00:29, 145979.48it/s]

</pre>

-
14%|█▍ | 707947/4997817 [00:04<00:27, 156090.54it/s]
+
14%|█▎ | 685377/4997817 [00:04<00:29, 145979.48it/s]

end{sphinxVerbatim}

-

14%|█▍ | 707947/4997817 [00:04<00:27, 156090.54it/s]

+

14%|█▎ | 685377/4997817 [00:04<00:29, 145979.48it/s]

-
14%|█▍ | 723563/4997817 [00:04&lt;00:27, 156108.57it/s]
+
14%|█▍ | 700538/4997817 [00:04&lt;00:29, 147618.75it/s]

</pre>

-
14%|█▍ | 723563/4997817 [00:04<00:27, 156108.57it/s]
+
14%|█▍ | 700538/4997817 [00:04<00:29, 147618.75it/s]

end{sphinxVerbatim}

-

14%|█▍ | 723563/4997817 [00:04<00:27, 156108.57it/s]

+

14%|█▍ | 700538/4997817 [00:04<00:29, 147618.75it/s]

-
15%|█▍ | 739191/4997817 [00:04&lt;00:27, 156158.25it/s]
+
14%|█▍ | 715680/4997817 [00:04&lt;00:28, 148734.34it/s]

</pre>

-
15%|█▍ | 739191/4997817 [00:04<00:27, 156158.25it/s]
+
14%|█▍ | 715680/4997817 [00:04<00:28, 148734.34it/s]

end{sphinxVerbatim}

-

15%|█▍ | 739191/4997817 [00:04<00:27, 156158.25it/s]

+

14%|█▍ | 715680/4997817 [00:04<00:28, 148734.34it/s]

-
15%|█▌ | 754807/4997817 [00:04&lt;00:27, 156048.28it/s]
+
15%|█▍ | 730868/4997817 [00:04&lt;00:28, 149661.46it/s]

</pre>

-
15%|█▌ | 754807/4997817 [00:04<00:27, 156048.28it/s]
+
15%|█▍ | 730868/4997817 [00:04<00:28, 149661.46it/s]

end{sphinxVerbatim}

-

15%|█▌ | 754807/4997817 [00:04<00:27, 156048.28it/s]

+

15%|█▍ | 730868/4997817 [00:04<00:28, 149661.46it/s]

-
15%|█▌ | 770497/4997817 [00:04&lt;00:27, 156302.41it/s]
+
15%|█▍ | 746099/4997817 [00:04&lt;00:28, 150444.15it/s]

</pre>

-
15%|█▌ | 770497/4997817 [00:04<00:27, 156302.41it/s]
+
15%|█▍ | 746099/4997817 [00:04<00:28, 150444.15it/s]

end{sphinxVerbatim}

-

15%|█▌ | 770497/4997817 [00:04<00:27, 156302.41it/s]

+

15%|█▍ | 746099/4997817 [00:04<00:28, 150444.15it/s]

-
16%|█▌ | 786317/4997817 [00:05&lt;00:26, 156868.27it/s]
+
15%|█▌ | 761372/4997817 [00:05&lt;00:28, 151122.68it/s]

</pre>

-
16%|█▌ | 786317/4997817 [00:05<00:26, 156868.27it/s]
+
15%|█▌ | 761372/4997817 [00:05<00:28, 151122.68it/s]

end{sphinxVerbatim}

-

16%|█▌ | 786317/4997817 [00:05<00:26, 156868.27it/s]

+

15%|█▌ | 761372/4997817 [00:05<00:28, 151122.68it/s]

-
16%|█▌ | 802017/4997817 [00:05&lt;00:26, 156904.88it/s]
+
16%|█▌ | 776857/4997817 [00:05&lt;00:27, 152232.63it/s]

</pre>

-
16%|█▌ | 802017/4997817 [00:05<00:26, 156904.88it/s]
+
16%|█▌ | 776857/4997817 [00:05<00:27, 152232.63it/s]

end{sphinxVerbatim}

-

16%|█▌ | 802017/4997817 [00:05<00:26, 156904.88it/s]

+

16%|█▌ | 776857/4997817 [00:05<00:27, 152232.63it/s]

-
16%|█▋ | 817708/4997817 [00:05&lt;00:27, 153225.26it/s]
+
16%|█▌ | 792347/4997817 [00:05&lt;00:27, 153026.64it/s]

</pre>

-
16%|█▋ | 817708/4997817 [00:05<00:27, 153225.26it/s]
+
16%|█▌ | 792347/4997817 [00:05<00:27, 153026.64it/s]

end{sphinxVerbatim}

-

16%|█▋ | 817708/4997817 [00:05<00:27, 153225.26it/s]

+

16%|█▌ | 792347/4997817 [00:05<00:27, 153026.64it/s]

-
17%|█▋ | 833392/4997817 [00:05&lt;00:26, 154288.53it/s]
+
16%|█▌ | 807768/4997817 [00:05&lt;00:27, 153377.03it/s]

</pre>

-
17%|█▋ | 833392/4997817 [00:05<00:26, 154288.53it/s]
+
16%|█▌ | 807768/4997817 [00:05<00:27, 153377.03it/s]

end{sphinxVerbatim}

-

17%|█▋ | 833392/4997817 [00:05<00:26, 154288.53it/s]

+

16%|█▌ | 807768/4997817 [00:05<00:27, 153377.03it/s]

-
17%|█▋ | 849328/4997817 [00:05&lt;00:26, 155788.65it/s]
+
16%|█▋ | 823303/4997817 [00:05&lt;00:27, 153966.34it/s]

</pre>

-
17%|█▋ | 849328/4997817 [00:05<00:26, 155788.65it/s]
+
16%|█▋ | 823303/4997817 [00:05<00:27, 153966.34it/s]

end{sphinxVerbatim}

-

17%|█▋ | 849328/4997817 [00:05<00:26, 155788.65it/s]

+

16%|█▋ | 823303/4997817 [00:05<00:27, 153966.34it/s]

-
17%|█▋ | 865122/4997817 [00:05&lt;00:26, 156427.57it/s]
+
17%|█▋ | 838868/4997817 [00:05&lt;00:26, 154469.02it/s]

</pre>

-
17%|█▋ | 865122/4997817 [00:05<00:26, 156427.57it/s]
+
17%|█▋ | 838868/4997817 [00:05<00:26, 154469.02it/s]

end{sphinxVerbatim}

-

17%|█▋ | 865122/4997817 [00:05<00:26, 156427.57it/s]

+

17%|█▋ | 838868/4997817 [00:05<00:26, 154469.02it/s]

-
18%|█▊ | 880887/4997817 [00:05&lt;00:26, 156788.95it/s]
+
17%|█▋ | 854393/4997817 [00:05&lt;00:26, 154699.52it/s]

</pre>

-
18%|█▊ | 880887/4997817 [00:05<00:26, 156788.95it/s]
+
17%|█▋ | 854393/4997817 [00:05<00:26, 154699.52it/s]

end{sphinxVerbatim}

-

18%|█▊ | 880887/4997817 [00:05<00:26, 156788.95it/s]

+

17%|█▋ | 854393/4997817 [00:05<00:26, 154699.52it/s]

-
18%|█▊ | 896614/4997817 [00:05&lt;00:26, 156931.70it/s]
+
17%|█▋ | 869879/4997817 [00:05&lt;00:26, 154744.14it/s]

</pre>

-
18%|█▊ | 896614/4997817 [00:05<00:26, 156931.70it/s]
+
17%|█▋ | 869879/4997817 [00:05<00:26, 154744.14it/s]

end{sphinxVerbatim}

-

18%|█▊ | 896614/4997817 [00:05<00:26, 156931.70it/s]

+

17%|█▋ | 869879/4997817 [00:05<00:26, 154744.14it/s]

-
18%|█▊ | 912312/4997817 [00:05&lt;00:26, 156914.97it/s]
+
18%|█▊ | 885355/4997817 [00:05&lt;00:26, 154662.03it/s]

</pre>

-
18%|█▊ | 912312/4997817 [00:05<00:26, 156914.97it/s]
+
18%|█▊ | 885355/4997817 [00:05<00:26, 154662.03it/s]

end{sphinxVerbatim}

-

18%|█▊ | 912312/4997817 [00:05<00:26, 156914.97it/s]

+

18%|█▊ | 885355/4997817 [00:05<00:26, 154662.03it/s]

-
19%|█▊ | 928025/4997817 [00:05&lt;00:25, 156976.92it/s]
+
18%|█▊ | 900823/4997817 [00:05&lt;00:26, 154618.28it/s]

</pre>

-
19%|█▊ | 928025/4997817 [00:05<00:25, 156976.92it/s]
+
18%|█▊ | 900823/4997817 [00:05<00:26, 154618.28it/s]

end{sphinxVerbatim}

-

19%|█▊ | 928025/4997817 [00:05<00:25, 156976.92it/s]

+

18%|█▊ | 900823/4997817 [00:05<00:26, 154618.28it/s]

-
19%|█▉ | 943726/4997817 [00:06&lt;00:25, 156932.85it/s]
+
18%|█▊ | 916286/4997817 [00:06&lt;00:26, 154561.85it/s]

</pre>

-
19%|█▉ | 943726/4997817 [00:06<00:25, 156932.85it/s]
+
18%|█▊ | 916286/4997817 [00:06<00:26, 154561.85it/s]

end{sphinxVerbatim}

-

19%|█▉ | 943726/4997817 [00:06<00:25, 156932.85it/s]

+

18%|█▊ | 916286/4997817 [00:06<00:26, 154561.85it/s]

-
19%|█▉ | 959463/4997817 [00:06&lt;00:25, 157062.64it/s]
+
19%|█▊ | 931866/4997817 [00:06&lt;00:26, 154930.84it/s]

</pre>

-
19%|█▉ | 959463/4997817 [00:06<00:25, 157062.64it/s]
+
19%|█▊ | 931866/4997817 [00:06<00:26, 154930.84it/s]

end{sphinxVerbatim}

-

19%|█▉ | 959463/4997817 [00:06<00:25, 157062.64it/s]

+

19%|█▊ | 931866/4997817 [00:06<00:26, 154930.84it/s]

-
20%|█▉ | 975171/4997817 [00:06&lt;00:25, 156949.11it/s]
+
19%|█▉ | 947360/4997817 [00:06&lt;00:26, 154896.54it/s]

</pre>

-
20%|█▉ | 975171/4997817 [00:06<00:25, 156949.11it/s]
+
19%|█▉ | 947360/4997817 [00:06<00:26, 154896.54it/s]

end{sphinxVerbatim}

-

20%|█▉ | 975171/4997817 [00:06<00:25, 156949.11it/s]

+

19%|█▉ | 947360/4997817 [00:06<00:26, 154896.54it/s]

-
20%|█▉ | 990867/4997817 [00:06&lt;00:25, 156556.37it/s]
+
19%|█▉ | 962850/4997817 [00:06&lt;00:26, 154866.84it/s]

</pre>

-
20%|█▉ | 990867/4997817 [00:06<00:25, 156556.37it/s]
+
19%|█▉ | 962850/4997817 [00:06<00:26, 154866.84it/s]

end{sphinxVerbatim}

-

20%|█▉ | 990867/4997817 [00:06<00:25, 156556.37it/s]

+

19%|█▉ | 962850/4997817 [00:06<00:26, 154866.84it/s]

-
20%|██ | 1006550/4997817 [00:06&lt;00:25, 156635.05it/s]
+
20%|█▉ | 978337/4997817 [00:06&lt;00:25, 154782.30it/s]

</pre>

-
20%|██ | 1006550/4997817 [00:06<00:25, 156635.05it/s]
+
20%|█▉ | 978337/4997817 [00:06<00:25, 154782.30it/s]

end{sphinxVerbatim}

-

20%|██ | 1006550/4997817 [00:06<00:25, 156635.05it/s]

+

20%|█▉ | 978337/4997817 [00:06<00:25, 154782.30it/s]

-
20%|██ | 1022215/4997817 [00:06&lt;00:25, 156528.27it/s]
+
20%|█▉ | 993816/4997817 [00:06&lt;00:25, 154378.72it/s]

</pre>

-
20%|██ | 1022215/4997817 [00:06<00:25, 156528.27it/s]
+
20%|█▉ | 993816/4997817 [00:06<00:25, 154378.72it/s]

end{sphinxVerbatim}

-

20%|██ | 1022215/4997817 [00:06<00:25, 156528.27it/s]

+

20%|█▉ | 993816/4997817 [00:06<00:25, 154378.72it/s]

-
21%|██ | 1037881/4997817 [00:06&lt;00:25, 156565.86it/s]
+
20%|██ | 1009295/4997817 [00:06&lt;00:25, 154498.77it/s]

</pre>

-
21%|██ | 1037881/4997817 [00:06<00:25, 156565.86it/s]
+
20%|██ | 1009295/4997817 [00:06<00:25, 154498.77it/s]

end{sphinxVerbatim}

-

21%|██ | 1037881/4997817 [00:06<00:25, 156565.86it/s]

+

20%|██ | 1009295/4997817 [00:06<00:25, 154498.77it/s]

-
21%|██ | 1053699/4997817 [00:06&lt;00:25, 157047.75it/s]
+
21%|██ | 1024770/4997817 [00:06&lt;00:25, 154570.08it/s]

</pre>

-
21%|██ | 1053699/4997817 [00:06<00:25, 157047.75it/s]
+
21%|██ | 1024770/4997817 [00:06<00:25, 154570.08it/s]

end{sphinxVerbatim}

-

21%|██ | 1053699/4997817 [00:06<00:25, 157047.75it/s]

+

21%|██ | 1024770/4997817 [00:06<00:25, 154570.08it/s]

-
21%|██▏ | 1069405/4997817 [00:06&lt;00:25, 157030.48it/s]
+
21%|██ | 1040292/4997817 [00:06&lt;00:25, 154762.00it/s]

</pre>

-
21%|██▏ | 1069405/4997817 [00:06<00:25, 157030.48it/s]
+
21%|██ | 1040292/4997817 [00:06<00:25, 154762.00it/s]

end{sphinxVerbatim}

-

21%|██▏ | 1069405/4997817 [00:06<00:25, 157030.48it/s]

+

21%|██ | 1040292/4997817 [00:06<00:25, 154762.00it/s]

-
22%|██▏ | 1085109/4997817 [00:06&lt;00:24, 157023.73it/s]
+
21%|██ | 1055833/4997817 [00:06&lt;00:25, 154953.40it/s]

</pre>

-
22%|██▏ | 1085109/4997817 [00:06<00:24, 157023.73it/s]
+
21%|██ | 1055833/4997817 [00:06<00:25, 154953.40it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1085109/4997817 [00:06<00:24, 157023.73it/s]

+

21%|██ | 1055833/4997817 [00:06<00:25, 154953.40it/s]

-
22%|██▏ | 1100812/4997817 [00:07&lt;00:24, 157017.91it/s]
+
21%|██▏ | 1071368/4997817 [00:07&lt;00:25, 155068.69it/s]

</pre>

-
22%|██▏ | 1100812/4997817 [00:07<00:24, 157017.91it/s]
+
21%|██▏ | 1071368/4997817 [00:07<00:25, 155068.69it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1100812/4997817 [00:07<00:24, 157017.91it/s]

+

21%|██▏ | 1071368/4997817 [00:07<00:25, 155068.69it/s]

-
22%|██▏ | 1116514/4997817 [00:07&lt;00:24, 156868.74it/s]
+
22%|██▏ | 1086875/4997817 [00:07&lt;00:25, 154910.98it/s]

</pre>

-
22%|██▏ | 1116514/4997817 [00:07<00:24, 156868.74it/s]
+
22%|██▏ | 1086875/4997817 [00:07<00:25, 154910.98it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1116514/4997817 [00:07<00:24, 156868.74it/s]

+

22%|██▏ | 1086875/4997817 [00:07<00:25, 154910.98it/s]

-
23%|██▎ | 1132201/4997817 [00:07&lt;00:24, 156856.61it/s]
+
22%|██▏ | 1102367/4997817 [00:07&lt;00:25, 154771.95it/s]

</pre>

-
23%|██▎ | 1132201/4997817 [00:07<00:24, 156856.61it/s]
+
22%|██▏ | 1102367/4997817 [00:07<00:25, 154771.95it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1132201/4997817 [00:07<00:24, 156856.61it/s]

+

22%|██▏ | 1102367/4997817 [00:07<00:25, 154771.95it/s]

-
23%|██▎ | 1147887/4997817 [00:07&lt;00:24, 156805.11it/s]
+
22%|██▏ | 1117845/4997817 [00:07&lt;00:25, 154473.84it/s]

</pre>

-
23%|██▎ | 1147887/4997817 [00:07<00:24, 156805.11it/s]
+
22%|██▏ | 1117845/4997817 [00:07<00:25, 154473.84it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1147887/4997817 [00:07<00:24, 156805.11it/s]

+

22%|██▏ | 1117845/4997817 [00:07<00:25, 154473.84it/s]

-
23%|██▎ | 1163580/4997817 [00:07&lt;00:24, 156840.13it/s]
+
23%|██▎ | 1133293/4997817 [00:07&lt;00:25, 153830.15it/s]

</pre>

-
23%|██▎ | 1163580/4997817 [00:07<00:24, 156840.13it/s]
+
23%|██▎ | 1133293/4997817 [00:07<00:25, 153830.15it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1163580/4997817 [00:07<00:24, 156840.13it/s]

+

23%|██▎ | 1133293/4997817 [00:07<00:25, 153830.15it/s]

-
24%|██▎ | 1179265/4997817 [00:07&lt;00:24, 156735.23it/s]
+
23%|██▎ | 1148677/4997817 [00:07&lt;00:25, 152795.48it/s]

</pre>

-
24%|██▎ | 1179265/4997817 [00:07<00:24, 156735.23it/s]
+
23%|██▎ | 1148677/4997817 [00:07<00:25, 152795.48it/s]

end{sphinxVerbatim}

-

24%|██▎ | 1179265/4997817 [00:07<00:24, 156735.23it/s]

+

23%|██▎ | 1148677/4997817 [00:07<00:25, 152795.48it/s]

-
24%|██▍ | 1194966/4997817 [00:07&lt;00:24, 156815.51it/s]
+
23%|██▎ | 1164033/4997817 [00:07&lt;00:25, 153020.57it/s]

</pre>

-
24%|██▍ | 1194966/4997817 [00:07<00:24, 156815.51it/s]
+
23%|██▎ | 1164033/4997817 [00:07<00:25, 153020.57it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1194966/4997817 [00:07<00:24, 156815.51it/s]

+

23%|██▎ | 1164033/4997817 [00:07<00:25, 153020.57it/s]

-
24%|██▍ | 1210648/4997817 [00:07&lt;00:24, 156722.01it/s]
+
24%|██▎ | 1179445/4997817 [00:07&lt;00:24, 153346.10it/s]

</pre>

-
24%|██▍ | 1210648/4997817 [00:07<00:24, 156722.01it/s]
+
24%|██▎ | 1179445/4997817 [00:07<00:24, 153346.10it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1210648/4997817 [00:07<00:24, 156722.01it/s]

+

24%|██▎ | 1179445/4997817 [00:07<00:24, 153346.10it/s]

-
25%|██▍ | 1226321/4997817 [00:07&lt;00:24, 156153.98it/s]
+
24%|██▍ | 1194827/4997817 [00:07&lt;00:24, 153485.79it/s]

</pre>

-
25%|██▍ | 1226321/4997817 [00:07<00:24, 156153.98it/s]
+
24%|██▍ | 1194827/4997817 [00:07<00:24, 153485.79it/s]

end{sphinxVerbatim}

-

25%|██▍ | 1226321/4997817 [00:07<00:24, 156153.98it/s]

+

24%|██▍ | 1194827/4997817 [00:07<00:24, 153485.79it/s]

-
25%|██▍ | 1241937/4997817 [00:07&lt;00:24, 156124.87it/s]
+
24%|██▍ | 1210177/4997817 [00:07&lt;00:24, 153406.60it/s]

</pre>

-
25%|██▍ | 1241937/4997817 [00:07<00:24, 156124.87it/s]
+
24%|██▍ | 1210177/4997817 [00:07<00:24, 153406.60it/s]

end{sphinxVerbatim}

-

25%|██▍ | 1241937/4997817 [00:07<00:24, 156124.87it/s]

+

24%|██▍ | 1210177/4997817 [00:07<00:24, 153406.60it/s]

-
25%|██▌ | 1257558/4997817 [00:08&lt;00:23, 156148.50it/s]
+
25%|██▍ | 1225519/4997817 [00:08&lt;00:24, 153329.14it/s]

</pre>

-
25%|██▌ | 1257558/4997817 [00:08<00:23, 156148.50it/s]
+
25%|██▍ | 1225519/4997817 [00:08<00:24, 153329.14it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1257558/4997817 [00:08<00:23, 156148.50it/s]

+

25%|██▍ | 1225519/4997817 [00:08<00:24, 153329.14it/s]

-
25%|██▌ | 1273179/4997817 [00:08&lt;00:23, 156164.18it/s]
+
25%|██▍ | 1240853/4997817 [00:08&lt;00:24, 152990.60it/s]

</pre>

-
25%|██▌ | 1273179/4997817 [00:08<00:23, 156164.18it/s]
+
25%|██▍ | 1240853/4997817 [00:08<00:24, 152990.60it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1273179/4997817 [00:08<00:23, 156164.18it/s]

+

25%|██▍ | 1240853/4997817 [00:08<00:24, 152990.60it/s]

-
26%|██▌ | 1288823/4997817 [00:08&lt;00:23, 156245.31it/s]
+
25%|██▌ | 1256153/4997817 [00:08&lt;00:24, 152916.47it/s]

</pre>

-
26%|██▌ | 1288823/4997817 [00:08<00:23, 156245.31it/s]
+
25%|██▌ | 1256153/4997817 [00:08<00:24, 152916.47it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1288823/4997817 [00:08<00:23, 156245.31it/s]

+

25%|██▌ | 1256153/4997817 [00:08<00:24, 152916.47it/s]

-
26%|██▌ | 1304448/4997817 [00:08&lt;00:24, 149122.57it/s]
+
25%|██▌ | 1271445/4997817 [00:08&lt;00:24, 152236.93it/s]

</pre>

-
26%|██▌ | 1304448/4997817 [00:08<00:24, 149122.57it/s]
+
25%|██▌ | 1271445/4997817 [00:08<00:24, 152236.93it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1304448/4997817 [00:08<00:24, 149122.57it/s]

+

25%|██▌ | 1271445/4997817 [00:08<00:24, 152236.93it/s]

-
26%|██▋ | 1320201/4997817 [00:08&lt;00:24, 151560.64it/s]
+
26%|██▌ | 1286713/4997817 [00:08&lt;00:24, 152365.67it/s]

</pre>

-
26%|██▋ | 1320201/4997817 [00:08<00:24, 151560.64it/s]
+
26%|██▌ | 1286713/4997817 [00:08<00:24, 152365.67it/s]

end{sphinxVerbatim}

-

26%|██▋ | 1320201/4997817 [00:08<00:24, 151560.64it/s]

+

26%|██▌ | 1286713/4997817 [00:08<00:24, 152365.67it/s]

-
27%|██▋ | 1335784/4997817 [00:08&lt;00:23, 152810.29it/s]
+
26%|██▌ | 1302067/4997817 [00:08&lt;00:24, 152714.43it/s]

</pre>

-
27%|██▋ | 1335784/4997817 [00:08<00:23, 152810.29it/s]
+
26%|██▌ | 1302067/4997817 [00:08<00:24, 152714.43it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1335784/4997817 [00:08<00:23, 152810.29it/s]

+

26%|██▌ | 1302067/4997817 [00:08<00:24, 152714.43it/s]

-
27%|██▋ | 1351437/4997817 [00:08&lt;00:23, 153905.86it/s]
+
26%|██▋ | 1317531/4997817 [00:08&lt;00:24, 153287.37it/s]

</pre>

-
27%|██▋ | 1351437/4997817 [00:08<00:23, 153905.86it/s]
+
26%|██▋ | 1317531/4997817 [00:08<00:24, 153287.37it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1351437/4997817 [00:08<00:23, 153905.86it/s]

+

26%|██▋ | 1317531/4997817 [00:08<00:24, 153287.37it/s]

-
27%|██▋ | 1367067/4997817 [00:08&lt;00:23, 154615.30it/s]
+
27%|██▋ | 1332993/4997817 [00:08&lt;00:23, 153682.36it/s]

</pre>

-
27%|██▋ | 1367067/4997817 [00:08<00:23, 154615.30it/s]
+
27%|██▋ | 1332993/4997817 [00:08<00:23, 153682.36it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1367067/4997817 [00:08<00:23, 154615.30it/s]

+

27%|██▋ | 1332993/4997817 [00:08<00:23, 153682.36it/s]

-
28%|██▊ | 1382626/4997817 [00:08&lt;00:23, 154902.96it/s]
+
27%|██▋ | 1348485/4997817 [00:08&lt;00:23, 154049.29it/s]

</pre>

-
28%|██▊ | 1382626/4997817 [00:08<00:23, 154902.96it/s]
+
27%|██▋ | 1348485/4997817 [00:08<00:23, 154049.29it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1382626/4997817 [00:08<00:23, 154902.96it/s]

+

27%|██▋ | 1348485/4997817 [00:08<00:23, 154049.29it/s]

-
28%|██▊ | 1398347/4997817 [00:08&lt;00:23, 155589.95it/s]
+
27%|██▋ | 1363898/4997817 [00:08&lt;00:23, 154071.65it/s]

</pre>

-
28%|██▊ | 1398347/4997817 [00:08<00:23, 155589.95it/s]
+
27%|██▋ | 1363898/4997817 [00:08<00:23, 154071.65it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1398347/4997817 [00:08<00:23, 155589.95it/s]

+

27%|██▋ | 1363898/4997817 [00:08<00:23, 154071.65it/s]

-
28%|██▊ | 1414047/4997817 [00:09&lt;00:22, 156009.20it/s]
+
28%|██▊ | 1379399/4997817 [00:09&lt;00:23, 154351.60it/s]

</pre>

-
28%|██▊ | 1414047/4997817 [00:09<00:22, 156009.20it/s]
+
28%|██▊ | 1379399/4997817 [00:09<00:23, 154351.60it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1414047/4997817 [00:09<00:22, 156009.20it/s]

+

28%|██▊ | 1379399/4997817 [00:09<00:23, 154351.60it/s]

-
29%|██▊ | 1429657/4997817 [00:09&lt;00:22, 155598.60it/s]
+
28%|██▊ | 1394835/4997817 [00:09&lt;00:23, 154191.34it/s]

</pre>

-
29%|██▊ | 1429657/4997817 [00:09<00:22, 155598.60it/s]
+
28%|██▊ | 1394835/4997817 [00:09<00:23, 154191.34it/s]

end{sphinxVerbatim}

-

29%|██▊ | 1429657/4997817 [00:09<00:22, 155598.60it/s]

+

28%|██▊ | 1394835/4997817 [00:09<00:23, 154191.34it/s]

-
29%|██▉ | 1445223/4997817 [00:09&lt;00:22, 155576.53it/s]
+
28%|██▊ | 1410321/4997817 [00:09&lt;00:23, 154389.90it/s]

</pre>

-
29%|██▉ | 1445223/4997817 [00:09<00:22, 155576.53it/s]
+
28%|██▊ | 1410321/4997817 [00:09<00:23, 154389.90it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1445223/4997817 [00:09<00:22, 155576.53it/s]

+

28%|██▊ | 1410321/4997817 [00:09<00:23, 154389.90it/s]

-
29%|██▉ | 1460785/4997817 [00:09&lt;00:23, 151230.69it/s]
+
29%|██▊ | 1425761/4997817 [00:09&lt;00:23, 154373.66it/s]

</pre>

-
29%|██▉ | 1460785/4997817 [00:09<00:23, 151230.69it/s]
+
29%|██▊ | 1425761/4997817 [00:09<00:23, 154373.66it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1460785/4997817 [00:09<00:23, 151230.69it/s]

+

29%|██▊ | 1425761/4997817 [00:09<00:23, 154373.66it/s]

-
30%|██▉ | 1476499/4997817 [00:09&lt;00:23, 152962.50it/s]
+
29%|██▉ | 1441199/4997817 [00:09&lt;00:23, 154033.50it/s]

</pre>

-
30%|██▉ | 1476499/4997817 [00:09<00:23, 152962.50it/s]
+
29%|██▉ | 1441199/4997817 [00:09<00:23, 154033.50it/s]

end{sphinxVerbatim}

-

30%|██▉ | 1476499/4997817 [00:09<00:23, 152962.50it/s]

+

29%|██▉ | 1441199/4997817 [00:09<00:23, 154033.50it/s]

-
30%|██▉ | 1492193/4997817 [00:09&lt;00:22, 154135.92it/s]
+
29%|██▉ | 1456681/4997817 [00:09&lt;00:22, 154241.61it/s]

</pre>

-
30%|██▉ | 1492193/4997817 [00:09<00:22, 154135.92it/s]
+
29%|██▉ | 1456681/4997817 [00:09<00:22, 154241.61it/s]

end{sphinxVerbatim}

-

30%|██▉ | 1492193/4997817 [00:09<00:22, 154135.92it/s]

+

29%|██▉ | 1456681/4997817 [00:09<00:22, 154241.61it/s]

-
30%|███ | 1507910/4997817 [00:09&lt;00:22, 155034.80it/s]
+
29%|██▉ | 1472106/4997817 [00:09&lt;00:23, 149708.68it/s]

</pre>

-
30%|███ | 1507910/4997817 [00:09<00:22, 155034.80it/s]
+
29%|██▉ | 1472106/4997817 [00:09<00:23, 149708.68it/s]

end{sphinxVerbatim}

-

30%|███ | 1507910/4997817 [00:09<00:22, 155034.80it/s]

+

29%|██▉ | 1472106/4997817 [00:09<00:23, 149708.68it/s]

-
30%|███ | 1523500/4997817 [00:09&lt;00:22, 155291.00it/s]
+
30%|██▉ | 1487442/4997817 [00:09&lt;00:23, 150778.12it/s]

</pre>

-
30%|███ | 1523500/4997817 [00:09<00:22, 155291.00it/s]
+
30%|██▉ | 1487442/4997817 [00:09<00:23, 150778.12it/s]

end{sphinxVerbatim}

-

30%|███ | 1523500/4997817 [00:09<00:22, 155291.00it/s]

+

30%|██▉ | 1487442/4997817 [00:09<00:23, 150778.12it/s]

-
31%|███ | 1539068/4997817 [00:09&lt;00:22, 155405.46it/s]
+
30%|███ | 1502934/4997817 [00:09&lt;00:22, 151998.09it/s]

</pre>

-
31%|███ | 1539068/4997817 [00:09<00:22, 155405.46it/s]
+
30%|███ | 1502934/4997817 [00:09<00:22, 151998.09it/s]

end{sphinxVerbatim}

-

31%|███ | 1539068/4997817 [00:09<00:22, 155405.46it/s]

+

30%|███ | 1502934/4997817 [00:09<00:22, 151998.09it/s]

-
31%|███ | 1554740/4997817 [00:09&lt;00:22, 155797.39it/s]
+
30%|███ | 1518481/4997817 [00:09&lt;00:22, 153026.59it/s]

</pre>

-
31%|███ | 1554740/4997817 [00:09<00:22, 155797.39it/s]
+
30%|███ | 1518481/4997817 [00:09<00:22, 153026.59it/s]

end{sphinxVerbatim}

-

31%|███ | 1554740/4997817 [00:09<00:22, 155797.39it/s]

+

30%|███ | 1518481/4997817 [00:09<00:22, 153026.59it/s]

-
31%|███▏ | 1570325/4997817 [00:10&lt;00:22, 155632.09it/s]
+
31%|███ | 1533971/4997817 [00:10&lt;00:22, 153580.89it/s]

</pre>

-
31%|███▏ | 1570325/4997817 [00:10<00:22, 155632.09it/s]
+
31%|███ | 1533971/4997817 [00:10<00:22, 153580.89it/s]

end{sphinxVerbatim}

-

31%|███▏ | 1570325/4997817 [00:10<00:22, 155632.09it/s]

+

31%|███ | 1533971/4997817 [00:10<00:22, 153580.89it/s]

-
32%|███▏ | 1585935/4997817 [00:10&lt;00:21, 155771.47it/s]
+
31%|███ | 1549477/4997817 [00:10&lt;00:22, 154018.67it/s]

</pre>

-
32%|███▏ | 1585935/4997817 [00:10<00:21, 155771.47it/s]
+
31%|███ | 1549477/4997817 [00:10<00:22, 154018.67it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1585935/4997817 [00:10<00:21, 155771.47it/s]

+

31%|███ | 1549477/4997817 [00:10<00:22, 154018.67it/s]

-
32%|███▏ | 1601515/4997817 [00:10&lt;00:21, 155577.69it/s]
+
31%|███▏ | 1564939/4997817 [00:10&lt;00:22, 154195.91it/s]

</pre>

-
32%|███▏ | 1601515/4997817 [00:10<00:21, 155577.69it/s]
+
31%|███▏ | 1564939/4997817 [00:10<00:22, 154195.91it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1601515/4997817 [00:10<00:21, 155577.69it/s]

+

31%|███▏ | 1564939/4997817 [00:10<00:22, 154195.91it/s]

-
32%|███▏ | 1617101/4997817 [00:10&lt;00:21, 155645.58it/s]
+
32%|███▏ | 1580364/4997817 [00:10&lt;00:22, 153889.50it/s]

</pre>

-
32%|███▏ | 1617101/4997817 [00:10<00:21, 155645.58it/s]
+
32%|███▏ | 1580364/4997817 [00:10<00:22, 153889.50it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1617101/4997817 [00:10<00:21, 155645.58it/s]

+

32%|███▏ | 1580364/4997817 [00:10<00:22, 153889.50it/s]

-
33%|███▎ | 1632667/4997817 [00:10&lt;00:22, 148235.31it/s]
+
32%|███▏ | 1595792/4997817 [00:10&lt;00:22, 154004.33it/s]

</pre>

-
33%|███▎ | 1632667/4997817 [00:10<00:22, 148235.31it/s]
+
32%|███▏ | 1595792/4997817 [00:10<00:22, 154004.33it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1632667/4997817 [00:10<00:22, 148235.31it/s]

+

32%|███▏ | 1595792/4997817 [00:10<00:22, 154004.33it/s]

-
33%|███▎ | 1648018/4997817 [00:10&lt;00:22, 149759.46it/s]
+
32%|███▏ | 1611227/4997817 [00:10&lt;00:21, 154106.29it/s]

</pre>

-
33%|███▎ | 1648018/4997817 [00:10<00:22, 149759.46it/s]
+
32%|███▏ | 1611227/4997817 [00:10<00:21, 154106.29it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1648018/4997817 [00:10<00:22, 149759.46it/s]

+

32%|███▏ | 1611227/4997817 [00:10<00:21, 154106.29it/s]

-
33%|███▎ | 1663496/4997817 [00:10&lt;00:22, 151227.25it/s]
+
33%|███▎ | 1626640/4997817 [00:10&lt;00:21, 153914.83it/s]

</pre>

-
33%|███▎ | 1663496/4997817 [00:10<00:22, 151227.25it/s]
+
33%|███▎ | 1626640/4997817 [00:10<00:21, 153914.83it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1663496/4997817 [00:10<00:22, 151227.25it/s]

+

33%|███▎ | 1626640/4997817 [00:10<00:21, 153914.83it/s]

-
34%|███▎ | 1679092/4997817 [00:10&lt;00:21, 152620.63it/s]
+
33%|███▎ | 1642067/4997817 [00:10&lt;00:21, 154017.91it/s]

</pre>

-
34%|███▎ | 1679092/4997817 [00:10<00:21, 152620.63it/s]
+
33%|███▎ | 1642067/4997817 [00:10<00:21, 154017.91it/s]

end{sphinxVerbatim}

-

34%|███▎ | 1679092/4997817 [00:10<00:21, 152620.63it/s]

+

33%|███▎ | 1642067/4997817 [00:10<00:21, 154017.91it/s]

-
34%|███▍ | 1694624/4997817 [00:10&lt;00:21, 153418.04it/s]
+
33%|███▎ | 1657470/4997817 [00:10&lt;00:21, 153883.75it/s]

</pre>

-
34%|███▍ | 1694624/4997817 [00:10<00:21, 153418.04it/s]
+
33%|███▎ | 1657470/4997817 [00:10<00:21, 153883.75it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1694624/4997817 [00:10<00:21, 153418.04it/s]

+

33%|███▎ | 1657470/4997817 [00:10<00:21, 153883.75it/s]

-
34%|███▍ | 1710114/4997817 [00:10&lt;00:21, 153856.65it/s]
+
33%|███▎ | 1672885/4997817 [00:10&lt;00:21, 153960.13it/s]

</pre>

-
34%|███▍ | 1710114/4997817 [00:10<00:21, 153856.65it/s]
+
33%|███▎ | 1672885/4997817 [00:10<00:21, 153960.13it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1710114/4997817 [00:10<00:21, 153856.65it/s]

+

33%|███▎ | 1672885/4997817 [00:10<00:21, 153960.13it/s]

-
35%|███▍ | 1725618/4997817 [00:11&lt;00:21, 154206.80it/s]
+
34%|███▍ | 1688410/4997817 [00:11&lt;00:21, 154345.25it/s]

</pre>

-
35%|███▍ | 1725618/4997817 [00:11<00:21, 154206.80it/s]
+
34%|███▍ | 1688410/4997817 [00:11<00:21, 154345.25it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1725618/4997817 [00:11<00:21, 154206.80it/s]

+

34%|███▍ | 1688410/4997817 [00:11<00:21, 154345.25it/s]

-
35%|███▍ | 1741184/4997817 [00:11&lt;00:21, 154637.42it/s]
+
34%|███▍ | 1703989/4997817 [00:11&lt;00:21, 154777.26it/s]

</pre>

-
35%|███▍ | 1741184/4997817 [00:11<00:21, 154637.42it/s]
+
34%|███▍ | 1703989/4997817 [00:11<00:21, 154777.26it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1741184/4997817 [00:11<00:21, 154637.42it/s]

+

34%|███▍ | 1703989/4997817 [00:11<00:21, 154777.26it/s]

-
35%|███▌ | 1756809/4997817 [00:11&lt;00:20, 155118.45it/s]
+
34%|███▍ | 1719468/4997817 [00:11&lt;00:21, 154729.80it/s]

</pre>

-
35%|███▌ | 1756809/4997817 [00:11<00:20, 155118.45it/s]
+
34%|███▍ | 1719468/4997817 [00:11<00:21, 154729.80it/s]

end{sphinxVerbatim}

-

35%|███▌ | 1756809/4997817 [00:11<00:20, 155118.45it/s]

+

34%|███▍ | 1719468/4997817 [00:11<00:21, 154729.80it/s]

-
35%|███▌ | 1772353/4997817 [00:11&lt;00:20, 155210.55it/s]
+
35%|███▍ | 1734942/4997817 [00:11&lt;00:21, 154566.62it/s]

</pre>

-
35%|███▌ | 1772353/4997817 [00:11<00:20, 155210.55it/s]
+
35%|███▍ | 1734942/4997817 [00:11<00:21, 154566.62it/s]

end{sphinxVerbatim}

-

35%|███▌ | 1772353/4997817 [00:11<00:20, 155210.55it/s]

+

35%|███▍ | 1734942/4997817 [00:11<00:21, 154566.62it/s]

-
36%|███▌ | 1787879/4997817 [00:11&lt;00:20, 155071.46it/s]
+
35%|███▌ | 1750507/4997817 [00:11&lt;00:20, 154890.07it/s]

</pre>

-
36%|███▌ | 1787879/4997817 [00:11<00:20, 155071.46it/s]
+
35%|███▌ | 1750507/4997817 [00:11<00:20, 154890.07it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1787879/4997817 [00:11<00:20, 155071.46it/s]

+

35%|███▌ | 1750507/4997817 [00:11<00:20, 154890.07it/s]

-
36%|███▌ | 1803441/4997817 [00:11&lt;00:20, 155232.57it/s]
+
35%|███▌ | 1766005/4997817 [00:11&lt;00:20, 154914.31it/s]

</pre>

-
36%|███▌ | 1803441/4997817 [00:11<00:20, 155232.57it/s]
+
35%|███▌ | 1766005/4997817 [00:11<00:20, 154914.31it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1803441/4997817 [00:11<00:20, 155232.57it/s]

+

35%|███▌ | 1766005/4997817 [00:11<00:20, 154914.31it/s]

-
36%|███▋ | 1818967/4997817 [00:11&lt;00:20, 155131.89it/s]
+
36%|███▌ | 1781497/4997817 [00:11&lt;00:21, 147546.06it/s]

</pre>

-
36%|███▋ | 1818967/4997817 [00:11<00:20, 155131.89it/s]
+
36%|███▌ | 1781497/4997817 [00:11<00:21, 147546.06it/s]

end{sphinxVerbatim}

-

36%|███▋ | 1818967/4997817 [00:11<00:20, 155131.89it/s]

+

36%|███▌ | 1781497/4997817 [00:11<00:21, 147546.06it/s]

-
37%|███▋ | 1834552/4997817 [00:11&lt;00:20, 155345.75it/s]
+
36%|███▌ | 1796958/4997817 [00:11&lt;00:21, 149591.06it/s]

</pre>

-
37%|███▋ | 1834552/4997817 [00:11<00:20, 155345.75it/s]
+
36%|███▌ | 1796958/4997817 [00:11<00:21, 149591.06it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1834552/4997817 [00:11<00:20, 155345.75it/s]

+

36%|███▌ | 1796958/4997817 [00:11<00:21, 149591.06it/s]

-
37%|███▋ | 1850088/4997817 [00:11&lt;00:20, 155196.47it/s]
+
36%|███▋ | 1812454/4997817 [00:11&lt;00:21, 151160.60it/s]

</pre>

-
37%|███▋ | 1850088/4997817 [00:11<00:20, 155196.47it/s]
+
36%|███▋ | 1812454/4997817 [00:11<00:21, 151160.60it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1850088/4997817 [00:11<00:20, 155196.47it/s]

+

36%|███▋ | 1812454/4997817 [00:11<00:21, 151160.60it/s]

-
37%|███▋ | 1865620/4997817 [00:11&lt;00:20, 155230.31it/s]
+
37%|███▋ | 1827877/4997817 [00:11&lt;00:20, 152061.89it/s]

</pre>

-
37%|███▋ | 1865620/4997817 [00:11<00:20, 155230.31it/s]
+
37%|███▋ | 1827877/4997817 [00:11<00:20, 152061.89it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1865620/4997817 [00:11<00:20, 155230.31it/s]

+

37%|███▋ | 1827877/4997817 [00:11<00:20, 152061.89it/s]

-
38%|███▊ | 1881152/4997817 [00:12&lt;00:20, 155254.90it/s]
+
37%|███▋ | 1843464/4997817 [00:12&lt;00:20, 153189.44it/s]

</pre>

-
38%|███▊ | 1881152/4997817 [00:12<00:20, 155254.90it/s]
+
37%|███▋ | 1843464/4997817 [00:12<00:20, 153189.44it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1881152/4997817 [00:12<00:20, 155254.90it/s]

+

37%|███▋ | 1843464/4997817 [00:12<00:20, 153189.44it/s]

-
38%|███▊ | 1896678/4997817 [00:12&lt;00:19, 155248.93it/s]
+
37%|███▋ | 1858984/4997817 [00:12&lt;00:20, 153786.46it/s]

</pre>

-
38%|███▊ | 1896678/4997817 [00:12<00:19, 155248.93it/s]
+
37%|███▋ | 1858984/4997817 [00:12<00:20, 153786.46it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1896678/4997817 [00:12<00:19, 155248.93it/s]

+

37%|███▋ | 1858984/4997817 [00:12<00:20, 153786.46it/s]

-
38%|███▊ | 1912204/4997817 [00:12&lt;00:19, 155052.44it/s]
+
38%|███▊ | 1874464/4997817 [00:12&lt;00:20, 154084.92it/s]

</pre>

-
38%|███▊ | 1912204/4997817 [00:12<00:19, 155052.44it/s]
+
38%|███▊ | 1874464/4997817 [00:12<00:20, 154084.92it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1912204/4997817 [00:12<00:19, 155052.44it/s]

+

38%|███▊ | 1874464/4997817 [00:12<00:20, 154084.92it/s]

-
39%|███▊ | 1927782/4997817 [00:12&lt;00:19, 155267.04it/s]
+
38%|███▊ | 1889886/4997817 [00:12&lt;00:20, 154001.26it/s]

</pre>

-
39%|███▊ | 1927782/4997817 [00:12<00:19, 155267.04it/s]
+
38%|███▊ | 1889886/4997817 [00:12<00:20, 154001.26it/s]

end{sphinxVerbatim}

-

39%|███▊ | 1927782/4997817 [00:12<00:19, 155267.04it/s]

+

38%|███▊ | 1889886/4997817 [00:12<00:20, 154001.26it/s]

-
39%|███▉ | 1943309/4997817 [00:12&lt;00:20, 147382.65it/s]
+
38%|███▊ | 1905352/4997817 [00:12&lt;00:20, 154197.03it/s]

</pre>

-
39%|███▉ | 1943309/4997817 [00:12<00:20, 147382.65it/s]
+
38%|███▊ | 1905352/4997817 [00:12<00:20, 154197.03it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1943309/4997817 [00:12<00:20, 147382.65it/s]

+

38%|███▊ | 1905352/4997817 [00:12<00:20, 154197.03it/s]

-
39%|███▉ | 1958900/4997817 [00:12&lt;00:20, 149845.53it/s]
+
38%|███▊ | 1920784/4997817 [00:12&lt;00:19, 154230.24it/s]

</pre>

-
39%|███▉ | 1958900/4997817 [00:12<00:20, 149845.53it/s]
+
38%|███▊ | 1920784/4997817 [00:12<00:19, 154230.24it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1958900/4997817 [00:12<00:20, 149845.53it/s]

+

38%|███▊ | 1920784/4997817 [00:12<00:19, 154230.24it/s]

-
40%|███▉ | 1974144/4997817 [00:12&lt;00:20, 150601.16it/s]
+
39%|███▊ | 1936212/4997817 [00:12&lt;00:20, 148546.66it/s]

</pre>

-
40%|███▉ | 1974144/4997817 [00:12<00:20, 150601.16it/s]
+
39%|███▊ | 1936212/4997817 [00:12<00:20, 148546.66it/s]

end{sphinxVerbatim}

-

40%|███▉ | 1974144/4997817 [00:12<00:20, 150601.16it/s]

+

39%|███▊ | 1936212/4997817 [00:12<00:20, 148546.66it/s]

-
40%|███▉ | 1989777/4997817 [00:12&lt;00:19, 152285.11it/s]
+
39%|███▉ | 1951414/4997817 [00:12&lt;00:20, 149557.92it/s]

</pre>

-
40%|███▉ | 1989777/4997817 [00:12<00:19, 152285.11it/s]
+
39%|███▉ | 1951414/4997817 [00:12<00:20, 149557.92it/s]

end{sphinxVerbatim}

-

40%|███▉ | 1989777/4997817 [00:12<00:19, 152285.11it/s]

+

39%|███▉ | 1951414/4997817 [00:12<00:20, 149557.92it/s]

-
40%|████ | 2005339/4997817 [00:12&lt;00:19, 153271.17it/s]
+
39%|███▉ | 1966912/4997817 [00:12&lt;00:20, 151149.78it/s]

</pre>

-
40%|████ | 2005339/4997817 [00:12<00:19, 153271.17it/s]
+
39%|███▉ | 1966912/4997817 [00:12<00:20, 151149.78it/s]

end{sphinxVerbatim}

-

40%|████ | 2005339/4997817 [00:12<00:19, 153271.17it/s]

+

39%|███▉ | 1966912/4997817 [00:12<00:20, 151149.78it/s]

-
40%|████ | 2020923/4997817 [00:12&lt;00:19, 154032.12it/s]
+
40%|███▉ | 1982262/4997817 [00:12&lt;00:19, 151843.47it/s]

</pre>

-
40%|████ | 2020923/4997817 [00:12<00:19, 154032.12it/s]
+
40%|███▉ | 1982262/4997817 [00:12<00:19, 151843.47it/s]

end{sphinxVerbatim}

-

40%|████ | 2020923/4997817 [00:12<00:19, 154032.12it/s]

+

40%|███▉ | 1982262/4997817 [00:12<00:19, 151843.47it/s]

-
41%|████ | 2036556/4997817 [00:13&lt;00:19, 154716.13it/s]
+
40%|███▉ | 1997680/4997817 [00:13&lt;00:19, 152533.87it/s]

</pre>

-
41%|████ | 2036556/4997817 [00:13<00:19, 154716.13it/s]
+
40%|███▉ | 1997680/4997817 [00:13<00:19, 152533.87it/s]

end{sphinxVerbatim}

-

41%|████ | 2036556/4997817 [00:13<00:19, 154716.13it/s]

+

40%|███▉ | 1997680/4997817 [00:13<00:19, 152533.87it/s]

-
41%|████ | 2052197/4997817 [00:13&lt;00:18, 155218.30it/s]
+
40%|████ | 2012949/4997817 [00:13&lt;00:19, 152506.11it/s]

</pre>

-
41%|████ | 2052197/4997817 [00:13<00:18, 155218.30it/s]
+
40%|████ | 2012949/4997817 [00:13<00:19, 152506.11it/s]

end{sphinxVerbatim}

-

41%|████ | 2052197/4997817 [00:13<00:18, 155218.30it/s]

+

40%|████ | 2012949/4997817 [00:13<00:19, 152506.11it/s]

-
41%|████▏ | 2067791/4997817 [00:13&lt;00:18, 155431.62it/s]
+
41%|████ | 2028211/4997817 [00:13&lt;00:19, 152396.45it/s]

</pre>

-
41%|████▏ | 2067791/4997817 [00:13<00:18, 155431.62it/s]
+
41%|████ | 2028211/4997817 [00:13<00:19, 152396.45it/s]

end{sphinxVerbatim}

-

41%|████▏ | 2067791/4997817 [00:13<00:18, 155431.62it/s]

+

41%|████ | 2028211/4997817 [00:13<00:19, 152396.45it/s]

-
42%|████▏ | 2083480/4997817 [00:13&lt;00:18, 155866.53it/s]
+
41%|████ | 2043459/4997817 [00:13&lt;00:19, 152411.03it/s]

</pre>

-
42%|████▏ | 2083480/4997817 [00:13<00:18, 155866.53it/s]
+
41%|████ | 2043459/4997817 [00:13<00:19, 152411.03it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2083480/4997817 [00:13<00:18, 155866.53it/s]

+

41%|████ | 2043459/4997817 [00:13<00:19, 152411.03it/s]

-
42%|████▏ | 2099072/4997817 [00:13&lt;00:18, 153960.26it/s]
+
41%|████ | 2058765/4997817 [00:13&lt;00:19, 152604.20it/s]

</pre>

-
42%|████▏ | 2099072/4997817 [00:13<00:18, 153960.26it/s]
+
41%|████ | 2058765/4997817 [00:13<00:19, 152604.20it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2099072/4997817 [00:13<00:18, 153960.26it/s]

+

41%|████ | 2058765/4997817 [00:13<00:19, 152604.20it/s]

-
42%|████▏ | 2114477/4997817 [00:13&lt;00:19, 149462.47it/s]
+
41%|████▏ | 2074030/4997817 [00:13&lt;00:19, 152499.64it/s]

</pre>

-
42%|████▏ | 2114477/4997817 [00:13<00:19, 149462.47it/s]
+
41%|████▏ | 2074030/4997817 [00:13<00:19, 152499.64it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2114477/4997817 [00:13<00:19, 149462.47it/s]

+

41%|████▏ | 2074030/4997817 [00:13<00:19, 152499.64it/s]

-
43%|████▎ | 2129964/4997817 [00:13&lt;00:18, 151036.87it/s]
+
42%|████▏ | 2089285/4997817 [00:13&lt;00:19, 152513.02it/s]

</pre>

-
43%|████▎ | 2129964/4997817 [00:13<00:18, 151036.87it/s]
+
42%|████▏ | 2089285/4997817 [00:13<00:19, 152513.02it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2129964/4997817 [00:13<00:18, 151036.87it/s]

+

42%|████▏ | 2089285/4997817 [00:13<00:19, 152513.02it/s]

-
43%|████▎ | 2145511/4997817 [00:13&lt;00:18, 152339.93it/s]
+
42%|████▏ | 2104539/4997817 [00:13&lt;00:19, 151666.67it/s]

</pre>

-
43%|████▎ | 2145511/4997817 [00:13<00:18, 152339.93it/s]
+
42%|████▏ | 2104539/4997817 [00:13<00:19, 151666.67it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2145511/4997817 [00:13<00:18, 152339.93it/s]

+

42%|████▏ | 2104539/4997817 [00:13<00:19, 151666.67it/s]

-
43%|████▎ | 2161091/4997817 [00:13&lt;00:18, 153360.76it/s]
+
42%|████▏ | 2119708/4997817 [00:13&lt;00:19, 151082.79it/s]

</pre>

-
43%|████▎ | 2161091/4997817 [00:13<00:18, 153360.76it/s]
+
42%|████▏ | 2119708/4997817 [00:13<00:19, 151082.79it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2161091/4997817 [00:13<00:18, 153360.76it/s]

+

42%|████▏ | 2119708/4997817 [00:13<00:19, 151082.79it/s]

-
44%|████▎ | 2176618/4997817 [00:14&lt;00:18, 153926.20it/s]
+
43%|████▎ | 2134819/4997817 [00:13&lt;00:18, 150954.13it/s]

</pre>

-
44%|████▎ | 2176618/4997817 [00:14<00:18, 153926.20it/s]
+
43%|████▎ | 2134819/4997817 [00:13<00:18, 150954.13it/s]

end{sphinxVerbatim}

-

44%|████▎ | 2176618/4997817 [00:14<00:18, 153926.20it/s]

+

43%|████▎ | 2134819/4997817 [00:13<00:18, 150954.13it/s]

-
44%|████▍ | 2192023/4997817 [00:14&lt;00:18, 153927.27it/s]
+
43%|████▎ | 2149966/4997817 [00:14&lt;00:18, 151105.70it/s]

</pre>

-
44%|████▍ | 2192023/4997817 [00:14<00:18, 153927.27it/s]
+
43%|████▎ | 2149966/4997817 [00:14<00:18, 151105.70it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2192023/4997817 [00:14<00:18, 153927.27it/s]

+

43%|████▎ | 2149966/4997817 [00:14<00:18, 151105.70it/s]

-
44%|████▍ | 2207487/4997817 [00:14&lt;00:18, 154138.21it/s]
+
43%|████▎ | 2165078/4997817 [00:14&lt;00:18, 150864.63it/s]

</pre>

-
44%|████▍ | 2207487/4997817 [00:14<00:18, 154138.21it/s]
+
43%|████▎ | 2165078/4997817 [00:14<00:18, 150864.63it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2207487/4997817 [00:14<00:18, 154138.21it/s]

+

43%|████▎ | 2165078/4997817 [00:14<00:18, 150864.63it/s]

-
44%|████▍ | 2222907/4997817 [00:14&lt;00:18, 154133.22it/s]
+
44%|████▎ | 2180212/4997817 [00:14&lt;00:18, 151004.51it/s]

</pre>

-
44%|████▍ | 2222907/4997817 [00:14<00:18, 154133.22it/s]
+
44%|████▎ | 2180212/4997817 [00:14<00:18, 151004.51it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2222907/4997817 [00:14<00:18, 154133.22it/s]

+

44%|████▎ | 2180212/4997817 [00:14<00:18, 151004.51it/s]

-
45%|████▍ | 2238462/4997817 [00:14&lt;00:17, 154555.13it/s]
+
44%|████▍ | 2195377/4997817 [00:14&lt;00:18, 151195.99it/s]

</pre>

-
45%|████▍ | 2238462/4997817 [00:14<00:17, 154555.13it/s]
+
44%|████▍ | 2195377/4997817 [00:14<00:18, 151195.99it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2238462/4997817 [00:14<00:17, 154555.13it/s]

+

44%|████▍ | 2195377/4997817 [00:14<00:18, 151195.99it/s]

-
45%|████▌ | 2254046/4997817 [00:14&lt;00:17, 154936.96it/s]
+
44%|████▍ | 2210676/4997817 [00:14&lt;00:18, 151731.76it/s]

</pre>

-
45%|████▌ | 2254046/4997817 [00:14<00:17, 154936.96it/s]
+
44%|████▍ | 2210676/4997817 [00:14<00:18, 151731.76it/s]

end{sphinxVerbatim}

-

45%|████▌ | 2254046/4997817 [00:14<00:17, 154936.96it/s]

+

44%|████▍ | 2210676/4997817 [00:14<00:18, 151731.76it/s]

-
45%|████▌ | 2269542/4997817 [00:14&lt;00:17, 154628.66it/s]
+
45%|████▍ | 2225850/4997817 [00:14&lt;00:18, 151531.53it/s]

</pre>

-
45%|████▌ | 2269542/4997817 [00:14<00:17, 154628.66it/s]
+
45%|████▍ | 2225850/4997817 [00:14<00:18, 151531.53it/s]

end{sphinxVerbatim}

-

45%|████▌ | 2269542/4997817 [00:14<00:17, 154628.66it/s]

+

45%|████▍ | 2225850/4997817 [00:14<00:18, 151531.53it/s]

-
46%|████▌ | 2285034/4997817 [00:14&lt;00:17, 154712.81it/s]
+
45%|████▍ | 2241004/4997817 [00:14&lt;00:18, 151333.79it/s]

</pre>

-
46%|████▌ | 2285034/4997817 [00:14<00:17, 154712.81it/s]
+
45%|████▍ | 2241004/4997817 [00:14<00:18, 151333.79it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2285034/4997817 [00:14<00:17, 154712.81it/s]

+

45%|████▍ | 2241004/4997817 [00:14<00:18, 151333.79it/s]

-
46%|████▌ | 2300521/4997817 [00:14&lt;00:17, 154756.29it/s]
+
45%|████▌ | 2256138/4997817 [00:14&lt;00:18, 150729.51it/s]

</pre>

-
46%|████▌ | 2300521/4997817 [00:14<00:17, 154756.29it/s]
+
45%|████▌ | 2256138/4997817 [00:14<00:18, 150729.51it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2300521/4997817 [00:14<00:17, 154756.29it/s]

+

45%|████▌ | 2256138/4997817 [00:14<00:18, 150729.51it/s]

-
46%|████▋ | 2316076/4997817 [00:14&lt;00:17, 154990.85it/s]
+
45%|████▌ | 2271212/4997817 [00:14&lt;00:18, 150197.98it/s]

</pre>

-
46%|████▋ | 2316076/4997817 [00:14<00:17, 154990.85it/s]
+
45%|████▌ | 2271212/4997817 [00:14<00:18, 150197.98it/s]

end{sphinxVerbatim}

-

46%|████▋ | 2316076/4997817 [00:14<00:17, 154990.85it/s]

+

45%|████▌ | 2271212/4997817 [00:14<00:18, 150197.98it/s]

-
47%|████▋ | 2331731/4997817 [00:15&lt;00:17, 155457.59it/s]
+
46%|████▌ | 2286233/4997817 [00:15&lt;00:18, 150187.72it/s]

</pre>

-
47%|████▋ | 2331731/4997817 [00:15<00:17, 155457.59it/s]
+
46%|████▌ | 2286233/4997817 [00:15<00:18, 150187.72it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2331731/4997817 [00:15<00:17, 155457.59it/s]

+

46%|████▌ | 2286233/4997817 [00:15<00:18, 150187.72it/s]

-
47%|████▋ | 2347419/4997817 [00:15&lt;00:17, 155882.10it/s]
+
46%|████▌ | 2301330/4997817 [00:15&lt;00:17, 150418.31it/s]

</pre>

-
47%|████▋ | 2347419/4997817 [00:15<00:17, 155882.10it/s]
+
46%|████▌ | 2301330/4997817 [00:15<00:17, 150418.31it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2347419/4997817 [00:15<00:17, 155882.10it/s]

+

46%|████▌ | 2301330/4997817 [00:15<00:17, 150418.31it/s]

-
47%|████▋ | 2363116/4997817 [00:15&lt;00:16, 156205.14it/s]
+
46%|████▋ | 2316399/4997817 [00:15&lt;00:17, 150498.24it/s]

</pre>

-
47%|████▋ | 2363116/4997817 [00:15<00:16, 156205.14it/s]
+
46%|████▋ | 2316399/4997817 [00:15<00:17, 150498.24it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2363116/4997817 [00:15<00:16, 156205.14it/s]

+

46%|████▋ | 2316399/4997817 [00:15<00:17, 150498.24it/s]

-
48%|████▊ | 2378808/4997817 [00:15&lt;00:16, 156417.45it/s]
+
47%|████▋ | 2331548/4997817 [00:15&lt;00:17, 150793.94it/s]

</pre>

-
48%|████▊ | 2378808/4997817 [00:15<00:16, 156417.45it/s]
+
47%|████▋ | 2331548/4997817 [00:15<00:17, 150793.94it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2378808/4997817 [00:15<00:16, 156417.45it/s]

+

47%|████▋ | 2331548/4997817 [00:15<00:17, 150793.94it/s]

-
48%|████▊ | 2394450/4997817 [00:15&lt;00:16, 156396.45it/s]
+
47%|████▋ | 2346781/4997817 [00:15&lt;00:17, 151253.19it/s]

</pre>

-
48%|████▊ | 2394450/4997817 [00:15<00:16, 156396.45it/s]
+
47%|████▋ | 2346781/4997817 [00:15<00:17, 151253.19it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2394450/4997817 [00:15<00:16, 156396.45it/s]

+

47%|████▋ | 2346781/4997817 [00:15<00:17, 151253.19it/s]

-
48%|████▊ | 2410090/4997817 [00:15&lt;00:16, 156233.00it/s]
+
47%|████▋ | 2362004/4997817 [00:15&lt;00:17, 151542.75it/s]

</pre>

-
48%|████▊ | 2410090/4997817 [00:15<00:16, 156233.00it/s]
+
47%|████▋ | 2362004/4997817 [00:15<00:17, 151542.75it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2410090/4997817 [00:15<00:16, 156233.00it/s]

+

47%|████▋ | 2362004/4997817 [00:15<00:17, 151542.75it/s]

-
49%|████▊ | 2425714/4997817 [00:15&lt;00:16, 153347.97it/s]
+
48%|████▊ | 2377162/4997817 [00:15&lt;00:17, 151551.14it/s]

</pre>

-
49%|████▊ | 2425714/4997817 [00:15<00:16, 153347.97it/s]
+
48%|████▊ | 2377162/4997817 [00:15<00:17, 151551.14it/s]

end{sphinxVerbatim}

-

49%|████▊ | 2425714/4997817 [00:15<00:16, 153347.97it/s]

+

48%|████▊ | 2377162/4997817 [00:15<00:17, 151551.14it/s]

-
49%|████▉ | 2441355/4997817 [00:15&lt;00:16, 154251.91it/s]
+
48%|████▊ | 2392436/4997817 [00:15&lt;00:17, 151906.04it/s]

</pre>

-
49%|████▉ | 2441355/4997817 [00:15<00:16, 154251.91it/s]
+
48%|████▊ | 2392436/4997817 [00:15<00:17, 151906.04it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2441355/4997817 [00:15<00:16, 154251.91it/s]

+

48%|████▊ | 2392436/4997817 [00:15<00:17, 151906.04it/s]

-
49%|████▉ | 2456999/4997817 [00:15&lt;00:16, 154899.45it/s]
+
48%|████▊ | 2407643/4997817 [00:15&lt;00:17, 151953.19it/s]

</pre>

-
49%|████▉ | 2456999/4997817 [00:15<00:16, 154899.45it/s]
+
48%|████▊ | 2407643/4997817 [00:15<00:17, 151953.19it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2456999/4997817 [00:15<00:16, 154899.45it/s]

+

48%|████▊ | 2407643/4997817 [00:15<00:17, 151953.19it/s]

-
49%|████▉ | 2472573/4997817 [00:15&lt;00:16, 155147.20it/s]
+
48%|████▊ | 2423011/4997817 [00:15&lt;00:16, 152469.29it/s]

</pre>

-
49%|████▉ | 2472573/4997817 [00:15<00:16, 155147.20it/s]
+
48%|████▊ | 2423011/4997817 [00:15<00:16, 152469.29it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2472573/4997817 [00:15<00:16, 155147.20it/s]

+

48%|████▊ | 2423011/4997817 [00:15<00:16, 152469.29it/s]

-
50%|████▉ | 2488269/4997817 [00:16&lt;00:16, 155687.39it/s]
+
49%|████▉ | 2438258/4997817 [00:16&lt;00:16, 152457.99it/s]

</pre>

-
50%|████▉ | 2488269/4997817 [00:16<00:16, 155687.39it/s]
+
49%|████▉ | 2438258/4997817 [00:16<00:16, 152457.99it/s]

end{sphinxVerbatim}

-

50%|████▉ | 2488269/4997817 [00:16<00:16, 155687.39it/s]

+

49%|████▉ | 2438258/4997817 [00:16<00:16, 152457.99it/s]

-
50%|█████ | 2503888/4997817 [00:16&lt;00:16, 155834.72it/s]
+
49%|████▉ | 2453589/4997817 [00:16&lt;00:16, 152711.08it/s]

</pre>

-
50%|█████ | 2503888/4997817 [00:16<00:16, 155834.72it/s]
+
49%|████▉ | 2453589/4997817 [00:16<00:16, 152711.08it/s]

end{sphinxVerbatim}

-

50%|█████ | 2503888/4997817 [00:16<00:16, 155834.72it/s]

+

49%|████▉ | 2453589/4997817 [00:16<00:16, 152711.08it/s]

-
50%|█████ | 2519475/4997817 [00:16&lt;00:15, 155805.85it/s]
+
49%|████▉ | 2468861/4997817 [00:16&lt;00:16, 152406.11it/s]

</pre>

-
50%|█████ | 2519475/4997817 [00:16<00:15, 155805.85it/s]
+
49%|████▉ | 2468861/4997817 [00:16<00:16, 152406.11it/s]

end{sphinxVerbatim}

-

50%|█████ | 2519475/4997817 [00:16<00:15, 155805.85it/s]

+

49%|████▉ | 2468861/4997817 [00:16<00:16, 152406.11it/s]

-
51%|█████ | 2535058/4997817 [00:16&lt;00:15, 155369.20it/s]
+
50%|████▉ | 2484102/4997817 [00:16&lt;00:16, 152383.37it/s]

</pre>

-
51%|█████ | 2535058/4997817 [00:16<00:15, 155369.20it/s]
+
50%|████▉ | 2484102/4997817 [00:16<00:16, 152383.37it/s]

end{sphinxVerbatim}

-

51%|█████ | 2535058/4997817 [00:16<00:15, 155369.20it/s]

+

50%|████▉ | 2484102/4997817 [00:16<00:16, 152383.37it/s]

-
51%|█████ | 2550597/4997817 [00:16&lt;00:15, 155179.21it/s]
+
50%|█████ | 2499341/4997817 [00:16&lt;00:16, 152361.67it/s]

</pre>

-
51%|█████ | 2550597/4997817 [00:16<00:15, 155179.21it/s]
+
50%|█████ | 2499341/4997817 [00:16<00:16, 152361.67it/s]

end{sphinxVerbatim}

-

51%|█████ | 2550597/4997817 [00:16<00:15, 155179.21it/s]

+

50%|█████ | 2499341/4997817 [00:16<00:16, 152361.67it/s]

-
51%|█████▏ | 2566117/4997817 [00:16&lt;00:15, 155127.40it/s]
+
50%|█████ | 2514736/4997817 [00:16&lt;00:16, 152835.48it/s]

</pre>

-
51%|█████▏ | 2566117/4997817 [00:16<00:15, 155127.40it/s]
+
50%|█████ | 2514736/4997817 [00:16<00:16, 152835.48it/s]

end{sphinxVerbatim}

-

51%|█████▏ | 2566117/4997817 [00:16<00:15, 155127.40it/s]

+

50%|█████ | 2514736/4997817 [00:16<00:16, 152835.48it/s]

-
52%|█████▏ | 2581758/4997817 [00:16&lt;00:15, 155508.94it/s]
+
51%|█████ | 2530062/4997817 [00:16&lt;00:16, 152961.70it/s]

</pre>

-
52%|█████▏ | 2581758/4997817 [00:16<00:15, 155508.94it/s]
+
51%|█████ | 2530062/4997817 [00:16<00:16, 152961.70it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2581758/4997817 [00:16<00:15, 155508.94it/s]

+

51%|█████ | 2530062/4997817 [00:16<00:16, 152961.70it/s]

-
52%|█████▏ | 2597417/4997817 [00:16&lt;00:15, 155829.62it/s]
+
51%|█████ | 2545402/4997817 [00:16&lt;00:16, 153090.00it/s]

</pre>

-
52%|█████▏ | 2597417/4997817 [00:16<00:15, 155829.62it/s]
+
51%|█████ | 2545402/4997817 [00:16<00:16, 153090.00it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2597417/4997817 [00:16<00:15, 155829.62it/s]

+

51%|█████ | 2545402/4997817 [00:16<00:16, 153090.00it/s]

-
52%|█████▏ | 2613047/4997817 [00:16&lt;00:15, 155967.82it/s]
+
51%|█████ | 2560712/4997817 [00:16&lt;00:15, 152472.61it/s]

</pre>

-
52%|█████▏ | 2613047/4997817 [00:16<00:15, 155967.82it/s]
+
51%|█████ | 2560712/4997817 [00:16<00:15, 152472.61it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2613047/4997817 [00:16<00:15, 155967.82it/s]

+

51%|█████ | 2560712/4997817 [00:16<00:15, 152472.61it/s]

-
53%|█████▎ | 2628736/4997817 [00:16&lt;00:15, 156242.26it/s]
+
52%|█████▏ | 2576006/4997817 [00:16&lt;00:15, 152608.52it/s]

</pre>

-
53%|█████▎ | 2628736/4997817 [00:16<00:15, 156242.26it/s]
+
52%|█████▏ | 2576006/4997817 [00:16<00:15, 152608.52it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2628736/4997817 [00:16<00:15, 156242.26it/s]

+

52%|█████▏ | 2576006/4997817 [00:16<00:15, 152608.52it/s]

-
53%|█████▎ | 2644396/4997817 [00:17&lt;00:15, 156346.54it/s]
+
52%|█████▏ | 2591361/4997817 [00:17&lt;00:15, 152887.01it/s]

</pre>

-
53%|█████▎ | 2644396/4997817 [00:17<00:15, 156346.54it/s]
+
52%|█████▏ | 2591361/4997817 [00:17<00:15, 152887.01it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2644396/4997817 [00:17<00:15, 156346.54it/s]

+

52%|█████▏ | 2591361/4997817 [00:17<00:15, 152887.01it/s]

-
53%|█████▎ | 2660031/4997817 [00:17&lt;00:14, 156281.93it/s]
+
52%|█████▏ | 2606651/4997817 [00:17&lt;00:15, 152751.10it/s]

</pre>

-
53%|█████▎ | 2660031/4997817 [00:17<00:14, 156281.93it/s]
+
52%|█████▏ | 2606651/4997817 [00:17<00:15, 152751.10it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2660031/4997817 [00:17<00:14, 156281.93it/s]

+

52%|█████▏ | 2606651/4997817 [00:17<00:15, 152751.10it/s]

-
54%|█████▎ | 2675660/4997817 [00:17&lt;00:14, 156120.12it/s]
+
52%|█████▏ | 2621927/4997817 [00:17&lt;00:15, 152635.77it/s]

</pre>

-
54%|█████▎ | 2675660/4997817 [00:17<00:14, 156120.12it/s]
+
52%|█████▏ | 2621927/4997817 [00:17<00:15, 152635.77it/s]

end{sphinxVerbatim}

-

54%|█████▎ | 2675660/4997817 [00:17<00:14, 156120.12it/s]

+

52%|█████▏ | 2621927/4997817 [00:17<00:15, 152635.77it/s]

-
54%|█████▍ | 2691280/4997817 [00:17&lt;00:14, 156142.76it/s]
+
53%|█████▎ | 2637191/4997817 [00:17&lt;00:15, 152547.55it/s]

</pre>

-
54%|█████▍ | 2691280/4997817 [00:17<00:14, 156142.76it/s]
+
53%|█████▎ | 2637191/4997817 [00:17<00:15, 152547.55it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2691280/4997817 [00:17<00:14, 156142.76it/s]

+

53%|█████▎ | 2637191/4997817 [00:17<00:15, 152547.55it/s]

-
54%|█████▍ | 2706895/4997817 [00:17&lt;00:14, 155947.37it/s]
+
53%|█████▎ | 2652472/4997817 [00:17&lt;00:15, 152623.26it/s]

</pre>

-
54%|█████▍ | 2706895/4997817 [00:17<00:14, 155947.37it/s]
+
53%|█████▎ | 2652472/4997817 [00:17<00:15, 152623.26it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2706895/4997817 [00:17<00:14, 155947.37it/s]

+

53%|█████▎ | 2652472/4997817 [00:17<00:15, 152623.26it/s]

-
54%|█████▍ | 2722572/4997817 [00:17&lt;00:14, 156193.18it/s]
+
53%|█████▎ | 2667735/4997817 [00:17&lt;00:15, 152574.74it/s]

</pre>

-
54%|█████▍ | 2722572/4997817 [00:17<00:14, 156193.18it/s]
+
53%|█████▎ | 2667735/4997817 [00:17<00:15, 152574.74it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2722572/4997817 [00:17<00:14, 156193.18it/s]

+

53%|█████▎ | 2667735/4997817 [00:17<00:15, 152574.74it/s]

-
55%|█████▍ | 2738193/4997817 [00:17&lt;00:14, 156195.92it/s]
+
54%|█████▎ | 2682993/4997817 [00:17&lt;00:15, 152551.51it/s]

</pre>

-
55%|█████▍ | 2738193/4997817 [00:17<00:14, 156195.92it/s]
+
54%|█████▎ | 2682993/4997817 [00:17<00:15, 152551.51it/s]

end{sphinxVerbatim}

-

55%|█████▍ | 2738193/4997817 [00:17<00:14, 156195.92it/s]

+

54%|█████▎ | 2682993/4997817 [00:17<00:15, 152551.51it/s]

-
55%|█████▌ | 2753813/4997817 [00:17&lt;00:14, 150301.55it/s]
+
54%|█████▍ | 2698249/4997817 [00:17&lt;00:15, 152430.35it/s]

</pre>

-
55%|█████▌ | 2753813/4997817 [00:17<00:14, 150301.55it/s]
+
54%|█████▍ | 2698249/4997817 [00:17<00:15, 152430.35it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2753813/4997817 [00:17<00:14, 150301.55it/s]

+

54%|█████▍ | 2698249/4997817 [00:17<00:15, 152430.35it/s]

-
55%|█████▌ | 2769422/4997817 [00:17&lt;00:14, 151987.78it/s]
+
54%|█████▍ | 2713493/4997817 [00:17&lt;00:14, 152302.06it/s]

</pre>

-
55%|█████▌ | 2769422/4997817 [00:17<00:14, 151987.78it/s]
+
54%|█████▍ | 2713493/4997817 [00:17<00:14, 152302.06it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2769422/4997817 [00:17<00:14, 151987.78it/s]

+

54%|█████▍ | 2713493/4997817 [00:17<00:14, 152302.06it/s]

-
56%|█████▌ | 2785064/4997817 [00:17&lt;00:14, 153289.24it/s]
+
55%|█████▍ | 2728724/4997817 [00:17&lt;00:15, 151063.24it/s]

</pre>

-
56%|█████▌ | 2785064/4997817 [00:17<00:14, 153289.24it/s]
+
55%|█████▍ | 2728724/4997817 [00:17<00:15, 151063.24it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2785064/4997817 [00:17<00:14, 153289.24it/s]

+

55%|█████▍ | 2728724/4997817 [00:17<00:15, 151063.24it/s]

-
56%|█████▌ | 2800777/4997817 [00:18&lt;00:14, 154423.61it/s]
+
55%|█████▍ | 2743939/4997817 [00:18&lt;00:14, 151383.79it/s]

</pre>

-
56%|█████▌ | 2800777/4997817 [00:18<00:14, 154423.61it/s]
+
55%|█████▍ | 2743939/4997817 [00:18<00:14, 151383.79it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2800777/4997817 [00:18<00:14, 154423.61it/s]

+

55%|█████▍ | 2743939/4997817 [00:18<00:14, 151383.79it/s]

-
56%|█████▋ | 2816532/4997817 [00:18&lt;00:14, 155351.64it/s]
+
55%|█████▌ | 2759158/4997817 [00:18&lt;00:14, 151621.64it/s]

</pre>

-
56%|█████▋ | 2816532/4997817 [00:18<00:14, 155351.64it/s]
+
55%|█████▌ | 2759158/4997817 [00:18<00:14, 151621.64it/s]

end{sphinxVerbatim}

-

56%|█████▋ | 2816532/4997817 [00:18<00:14, 155351.64it/s]

+

55%|█████▌ | 2759158/4997817 [00:18<00:14, 151621.64it/s]

-
57%|█████▋ | 2832326/4997817 [00:18&lt;00:13, 156121.44it/s]
+
56%|█████▌ | 2774348/4997817 [00:18&lt;00:14, 151702.75it/s]

</pre>

-
57%|█████▋ | 2832326/4997817 [00:18<00:13, 156121.44it/s]
+
56%|█████▌ | 2774348/4997817 [00:18<00:14, 151702.75it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2832326/4997817 [00:18<00:13, 156121.44it/s]

+

56%|█████▌ | 2774348/4997817 [00:18<00:14, 151702.75it/s]

-
57%|█████▋ | 2848000/4997817 [00:18&lt;00:13, 156304.73it/s]
+
56%|█████▌ | 2789597/4997817 [00:18&lt;00:14, 151936.90it/s]

</pre>

-
57%|█████▋ | 2848000/4997817 [00:18<00:13, 156304.73it/s]
+
56%|█████▌ | 2789597/4997817 [00:18<00:14, 151936.90it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2848000/4997817 [00:18<00:13, 156304.73it/s]

+

56%|█████▌ | 2789597/4997817 [00:18<00:14, 151936.90it/s]

-
57%|█████▋ | 2863639/4997817 [00:18&lt;00:13, 156075.36it/s]
+
56%|█████▌ | 2804823/4997817 [00:18&lt;00:14, 152032.20it/s]

</pre>

-
57%|█████▋ | 2863639/4997817 [00:18<00:13, 156075.36it/s]
+
56%|█████▌ | 2804823/4997817 [00:18<00:14, 152032.20it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2863639/4997817 [00:18<00:13, 156075.36it/s]

+

56%|█████▌ | 2804823/4997817 [00:18<00:14, 152032.20it/s]

-
58%|█████▊ | 2879282/4997817 [00:18&lt;00:13, 156179.98it/s]
+
56%|█████▋ | 2820027/4997817 [00:18&lt;00:14, 152028.49it/s]

</pre>

-
58%|█████▊ | 2879282/4997817 [00:18<00:13, 156179.98it/s]
+
56%|█████▋ | 2820027/4997817 [00:18<00:14, 152028.49it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2879282/4997817 [00:18<00:13, 156179.98it/s]

+

56%|█████▋ | 2820027/4997817 [00:18<00:14, 152028.49it/s]

-
58%|█████▊ | 2894905/4997817 [00:18&lt;00:13, 156130.38it/s]
+
57%|█████▋ | 2835231/4997817 [00:18&lt;00:14, 151863.98it/s]

</pre>

-
58%|█████▊ | 2894905/4997817 [00:18<00:13, 156130.38it/s]
+
57%|█████▋ | 2835231/4997817 [00:18<00:14, 151863.98it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2894905/4997817 [00:18<00:13, 156130.38it/s]

+

57%|█████▋ | 2835231/4997817 [00:18<00:14, 151863.98it/s]

-
58%|█████▊ | 2910521/4997817 [00:18&lt;00:13, 155588.20it/s]
+
57%|█████▋ | 2850481/4997817 [00:18&lt;00:14, 152051.86it/s]

</pre>

-
58%|█████▊ | 2910521/4997817 [00:18<00:13, 155588.20it/s]
+
57%|█████▋ | 2850481/4997817 [00:18<00:14, 152051.86it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2910521/4997817 [00:18<00:13, 155588.20it/s]

+

57%|█████▋ | 2850481/4997817 [00:18<00:14, 152051.86it/s]

-
59%|█████▊ | 2926101/4997817 [00:18&lt;00:13, 155647.77it/s]
+
57%|█████▋ | 2865687/4997817 [00:18&lt;00:14, 152021.10it/s]

</pre>

-
59%|█████▊ | 2926101/4997817 [00:18<00:13, 155647.77it/s]
+
57%|█████▋ | 2865687/4997817 [00:18<00:14, 152021.10it/s]

end{sphinxVerbatim}

-

59%|█████▊ | 2926101/4997817 [00:18<00:13, 155647.77it/s]

+

57%|█████▋ | 2865687/4997817 [00:18<00:14, 152021.10it/s]

-
59%|█████▉ | 2941668/4997817 [00:18&lt;00:13, 155279.31it/s]
+
58%|█████▊ | 2880890/4997817 [00:18&lt;00:13, 151948.23it/s]

</pre>

-
59%|█████▉ | 2941668/4997817 [00:18<00:13, 155279.31it/s]
+
58%|█████▊ | 2880890/4997817 [00:18<00:13, 151948.23it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2941668/4997817 [00:18<00:13, 155279.31it/s]

+

58%|█████▊ | 2880890/4997817 [00:18<00:13, 151948.23it/s]

-
59%|█████▉ | 2957198/4997817 [00:19&lt;00:13, 155117.95it/s]
+
58%|█████▊ | 2896119/4997817 [00:19&lt;00:13, 152047.99it/s]

</pre>

-
59%|█████▉ | 2957198/4997817 [00:19<00:13, 155117.95it/s]
+
58%|█████▊ | 2896119/4997817 [00:19<00:13, 152047.99it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2957198/4997817 [00:19<00:13, 155117.95it/s]

+

58%|█████▊ | 2896119/4997817 [00:19<00:13, 152047.99it/s]

-
59%|█████▉ | 2972765/4997817 [00:19&lt;00:13, 155281.18it/s]
+
58%|█████▊ | 2911324/4997817 [00:19&lt;00:13, 151894.90it/s]

</pre>

-
59%|█████▉ | 2972765/4997817 [00:19<00:13, 155281.18it/s]
+
58%|█████▊ | 2911324/4997817 [00:19<00:13, 151894.90it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2972765/4997817 [00:19<00:13, 155281.18it/s]

+

58%|█████▊ | 2911324/4997817 [00:19<00:13, 151894.90it/s]

-
60%|█████▉ | 2988398/4997817 [00:19&lt;00:12, 155591.93it/s]
+
59%|█████▊ | 2926514/4997817 [00:19&lt;00:13, 151707.99it/s]

</pre>

-
60%|█████▉ | 2988398/4997817 [00:19<00:12, 155591.93it/s]
+
59%|█████▊ | 2926514/4997817 [00:19<00:13, 151707.99it/s]

end{sphinxVerbatim}

-

60%|█████▉ | 2988398/4997817 [00:19<00:12, 155591.93it/s]

+

59%|█████▊ | 2926514/4997817 [00:19<00:13, 151707.99it/s]

-
60%|██████ | 3003958/4997817 [00:19&lt;00:12, 155555.18it/s]
+
59%|█████▉ | 2941685/4997817 [00:19&lt;00:13, 151331.30it/s]

</pre>

-
60%|██████ | 3003958/4997817 [00:19<00:12, 155555.18it/s]
+
59%|█████▉ | 2941685/4997817 [00:19<00:13, 151331.30it/s]

end{sphinxVerbatim}

-

60%|██████ | 3003958/4997817 [00:19<00:12, 155555.18it/s]

+

59%|█████▉ | 2941685/4997817 [00:19<00:13, 151331.30it/s]

-
60%|██████ | 3019690/4997817 [00:19&lt;00:12, 156080.74it/s]
+
59%|█████▉ | 2956862/4997817 [00:19&lt;00:13, 151461.27it/s]

</pre>

-
60%|██████ | 3019690/4997817 [00:19<00:12, 156080.74it/s]
+
59%|█████▉ | 2956862/4997817 [00:19<00:13, 151461.27it/s]

end{sphinxVerbatim}

-

60%|██████ | 3019690/4997817 [00:19<00:12, 156080.74it/s]

+

59%|█████▉ | 2956862/4997817 [00:19<00:13, 151461.27it/s]

-
61%|██████ | 3035372/4997817 [00:19&lt;00:12, 156299.79it/s]
+
59%|█████▉ | 2972034/4997817 [00:19&lt;00:13, 151534.88it/s]

</pre>

-
61%|██████ | 3035372/4997817 [00:19<00:12, 156299.79it/s]
+
59%|█████▉ | 2972034/4997817 [00:19<00:13, 151534.88it/s]

end{sphinxVerbatim}

-

61%|██████ | 3035372/4997817 [00:19<00:12, 156299.79it/s]

+

59%|█████▉ | 2972034/4997817 [00:19<00:13, 151534.88it/s]

-
61%|██████ | 3051003/4997817 [00:19&lt;00:12, 154260.07it/s]
+
60%|█████▉ | 2987200/4997817 [00:19&lt;00:13, 151569.37it/s]

</pre>

-
61%|██████ | 3051003/4997817 [00:19<00:12, 154260.07it/s]
+
60%|█████▉ | 2987200/4997817 [00:19<00:13, 151569.37it/s]

end{sphinxVerbatim}

-

61%|██████ | 3051003/4997817 [00:19<00:12, 154260.07it/s]

+

60%|█████▉ | 2987200/4997817 [00:19<00:13, 151569.37it/s]

-
61%|██████▏ | 3066480/4997817 [00:19&lt;00:12, 154409.21it/s]
+
60%|██████ | 3002482/4997817 [00:19&lt;00:13, 151940.96it/s]

</pre>

-
61%|██████▏ | 3066480/4997817 [00:19<00:12, 154409.21it/s]
+
60%|██████ | 3002482/4997817 [00:19<00:13, 151940.96it/s]

end{sphinxVerbatim}

-

61%|██████▏ | 3066480/4997817 [00:19<00:12, 154409.21it/s]

+

60%|██████ | 3002482/4997817 [00:19<00:13, 151940.96it/s]

-
62%|██████▏ | 3082098/4997817 [00:19&lt;00:12, 154934.80it/s]
+
60%|██████ | 3017677/4997817 [00:19&lt;00:13, 151819.15it/s]

</pre>

-
62%|██████▏ | 3082098/4997817 [00:19<00:12, 154934.80it/s]
+
60%|██████ | 3017677/4997817 [00:19<00:13, 151819.15it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3082098/4997817 [00:19<00:12, 154934.80it/s]

+

60%|██████ | 3017677/4997817 [00:19<00:13, 151819.15it/s]

-
62%|██████▏ | 3097722/4997817 [00:19&lt;00:12, 155321.11it/s]
+
61%|██████ | 3032885/4997817 [00:19&lt;00:12, 151894.65it/s]

</pre>

-
62%|██████▏ | 3097722/4997817 [00:19<00:12, 155321.11it/s]
+
61%|██████ | 3032885/4997817 [00:19<00:12, 151894.65it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3097722/4997817 [00:19<00:12, 155321.11it/s]

+

61%|██████ | 3032885/4997817 [00:19<00:12, 151894.65it/s]

-
62%|██████▏ | 3113318/4997817 [00:20&lt;00:12, 155509.63it/s]
+
61%|██████ | 3048113/4997817 [00:20&lt;00:12, 152008.14it/s]

</pre>

-
62%|██████▏ | 3113318/4997817 [00:20<00:12, 155509.63it/s]
+
61%|██████ | 3048113/4997817 [00:20<00:12, 152008.14it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3113318/4997817 [00:20<00:12, 155509.63it/s]

+

61%|██████ | 3048113/4997817 [00:20<00:12, 152008.14it/s]

-
63%|██████▎ | 3128913/4997817 [00:20&lt;00:12, 155639.58it/s]
+
61%|██████▏ | 3063393/4997817 [00:20&lt;00:12, 152242.46it/s]

</pre>

-
63%|██████▎ | 3128913/4997817 [00:20<00:12, 155639.58it/s]
+
61%|██████▏ | 3063393/4997817 [00:20<00:12, 152242.46it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3128913/4997817 [00:20<00:12, 155639.58it/s]

+

61%|██████▏ | 3063393/4997817 [00:20<00:12, 152242.46it/s]

-
63%|██████▎ | 3144479/4997817 [00:20&lt;00:11, 155436.41it/s]
+
62%|██████▏ | 3078624/4997817 [00:20&lt;00:12, 152259.82it/s]

</pre>

-
63%|██████▎ | 3144479/4997817 [00:20<00:11, 155436.41it/s]
+
62%|██████▏ | 3078624/4997817 [00:20<00:12, 152259.82it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3144479/4997817 [00:20<00:11, 155436.41it/s]

+

62%|██████▏ | 3078624/4997817 [00:20<00:12, 152259.82it/s]

-
63%|██████▎ | 3160024/4997817 [00:20&lt;00:11, 155424.44it/s]
+
62%|██████▏ | 3093999/4997817 [00:20&lt;00:12, 152703.83it/s]

</pre>

-
63%|██████▎ | 3160024/4997817 [00:20<00:11, 155424.44it/s]
+
62%|██████▏ | 3093999/4997817 [00:20<00:12, 152703.83it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3160024/4997817 [00:20<00:11, 155424.44it/s]

+

62%|██████▏ | 3093999/4997817 [00:20<00:12, 152703.83it/s]

-
64%|██████▎ | 3175636/4997817 [00:20&lt;00:11, 155631.16it/s]
+
62%|██████▏ | 3109270/4997817 [00:20&lt;00:12, 152597.70it/s]

</pre>

-
64%|██████▎ | 3175636/4997817 [00:20<00:11, 155631.16it/s]
+
62%|██████▏ | 3109270/4997817 [00:20<00:12, 152597.70it/s]

end{sphinxVerbatim}

-

64%|██████▎ | 3175636/4997817 [00:20<00:11, 155631.16it/s]

+

62%|██████▏ | 3109270/4997817 [00:20<00:12, 152597.70it/s]

-
64%|██████▍ | 3191241/4997817 [00:20&lt;00:11, 155756.16it/s]
+
63%|██████▎ | 3124545/4997817 [00:20&lt;00:12, 152640.02it/s]

</pre>

-
64%|██████▍ | 3191241/4997817 [00:20<00:11, 155756.16it/s]
+
63%|██████▎ | 3124545/4997817 [00:20<00:12, 152640.02it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3191241/4997817 [00:20<00:11, 155756.16it/s]

+

63%|██████▎ | 3124545/4997817 [00:20<00:12, 152640.02it/s]

-
64%|██████▍ | 3206843/4997817 [00:20&lt;00:11, 155833.52it/s]
+
63%|██████▎ | 3139820/4997817 [00:20&lt;00:12, 152672.28it/s]

</pre>

-
64%|██████▍ | 3206843/4997817 [00:20<00:11, 155833.52it/s]
+
63%|██████▎ | 3139820/4997817 [00:20<00:12, 152672.28it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3206843/4997817 [00:20<00:11, 155833.52it/s]

+

63%|██████▎ | 3139820/4997817 [00:20<00:12, 152672.28it/s]

-
64%|██████▍ | 3222427/4997817 [00:20&lt;00:11, 155273.07it/s]
+
63%|██████▎ | 3155088/4997817 [00:20&lt;00:12, 152185.95it/s]

</pre>

-
64%|██████▍ | 3222427/4997817 [00:20<00:11, 155273.07it/s]
+
63%|██████▎ | 3155088/4997817 [00:20<00:12, 152185.95it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3222427/4997817 [00:20<00:11, 155273.07it/s]

+

63%|██████▎ | 3155088/4997817 [00:20<00:12, 152185.95it/s]

-
65%|██████▍ | 3237981/4997817 [00:20&lt;00:11, 155351.19it/s]
+
63%|██████▎ | 3170307/4997817 [00:20&lt;00:12, 152112.32it/s]

</pre>

-
65%|██████▍ | 3237981/4997817 [00:20<00:11, 155351.19it/s]
+
63%|██████▎ | 3170307/4997817 [00:20<00:12, 152112.32it/s]

end{sphinxVerbatim}

-

65%|██████▍ | 3237981/4997817 [00:20<00:11, 155351.19it/s]

+

63%|██████▎ | 3170307/4997817 [00:20<00:12, 152112.32it/s]

-
65%|██████▌ | 3253517/4997817 [00:20&lt;00:11, 154931.20it/s]
+
64%|██████▎ | 3185530/4997817 [00:20&lt;00:11, 152144.01it/s]

</pre>

-
65%|██████▌ | 3253517/4997817 [00:20<00:11, 154931.20it/s]
+
64%|██████▎ | 3185530/4997817 [00:20<00:11, 152144.01it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 3253517/4997817 [00:20<00:11, 154931.20it/s]

+

64%|██████▎ | 3185530/4997817 [00:20<00:11, 152144.01it/s]

-
65%|██████▌ | 3269081/4997817 [00:21&lt;00:11, 155140.63it/s]
+
64%|██████▍ | 3200769/4997817 [00:21&lt;00:11, 152215.78it/s]

</pre>

-
65%|██████▌ | 3269081/4997817 [00:21<00:11, 155140.63it/s]
+
64%|██████▍ | 3200769/4997817 [00:21<00:11, 152215.78it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 3269081/4997817 [00:21<00:11, 155140.63it/s]

+

64%|██████▍ | 3200769/4997817 [00:21<00:11, 152215.78it/s]

-
66%|██████▌ | 3284643/4997817 [00:21&lt;00:11, 155282.26it/s]
+
64%|██████▍ | 3215991/4997817 [00:21&lt;00:11, 152101.57it/s]

</pre>

-
66%|██████▌ | 3284643/4997817 [00:21<00:11, 155282.26it/s]
+
64%|██████▍ | 3215991/4997817 [00:21<00:11, 152101.57it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3284643/4997817 [00:21<00:11, 155282.26it/s]

+

64%|██████▍ | 3215991/4997817 [00:21<00:11, 152101.57it/s]

-
66%|██████▌ | 3300172/4997817 [00:21&lt;00:10, 154899.59it/s]
+
65%|██████▍ | 3231212/4997817 [00:21&lt;00:11, 152132.03it/s]

</pre>

-
66%|██████▌ | 3300172/4997817 [00:21<00:10, 154899.59it/s]
+
65%|██████▍ | 3231212/4997817 [00:21<00:11, 152132.03it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3300172/4997817 [00:21<00:10, 154899.59it/s]

+

65%|██████▍ | 3231212/4997817 [00:21<00:11, 152132.03it/s]

-
66%|██████▋ | 3315734/4997817 [00:21&lt;00:10, 155110.38it/s]
+
65%|██████▍ | 3246456/4997817 [00:21&lt;00:11, 152222.64it/s]

</pre>

-
66%|██████▋ | 3315734/4997817 [00:21<00:10, 155110.38it/s]
+
65%|██████▍ | 3246456/4997817 [00:21<00:11, 152222.64it/s]

end{sphinxVerbatim}

-

66%|██████▋ | 3315734/4997817 [00:21<00:10, 155110.38it/s]

+

65%|██████▍ | 3246456/4997817 [00:21<00:11, 152222.64it/s]

-
67%|██████▋ | 3331370/4997817 [00:21&lt;00:10, 155482.10it/s]
+
65%|██████▌ | 3261753/4997817 [00:21&lt;00:11, 152443.70it/s]

</pre>

-
67%|██████▋ | 3331370/4997817 [00:21<00:10, 155482.10it/s]
+
65%|██████▌ | 3261753/4997817 [00:21<00:11, 152443.70it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3331370/4997817 [00:21<00:10, 155482.10it/s]

+

65%|██████▌ | 3261753/4997817 [00:21<00:11, 152443.70it/s]

-
67%|██████▋ | 3346919/4997817 [00:21&lt;00:10, 155478.18it/s]
+
66%|██████▌ | 3277013/4997817 [00:21&lt;00:11, 152488.65it/s]

</pre>

-
67%|██████▋ | 3346919/4997817 [00:21<00:10, 155478.18it/s]
+
66%|██████▌ | 3277013/4997817 [00:21<00:11, 152488.65it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3346919/4997817 [00:21<00:10, 155478.18it/s]

+

66%|██████▌ | 3277013/4997817 [00:21<00:11, 152488.65it/s]

-
67%|██████▋ | 3362526/4997817 [00:21&lt;00:10, 155654.59it/s]
+
66%|██████▌ | 3292262/4997817 [00:21&lt;00:11, 152111.15it/s]

</pre>

-
67%|██████▋ | 3362526/4997817 [00:21<00:10, 155654.59it/s]
+
66%|██████▌ | 3292262/4997817 [00:21<00:11, 152111.15it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3362526/4997817 [00:21<00:10, 155654.59it/s]

+

66%|██████▌ | 3292262/4997817 [00:21<00:11, 152111.15it/s]

-
68%|██████▊ | 3378092/4997817 [00:21&lt;00:10, 155458.59it/s]
+
66%|██████▌ | 3307474/4997817 [00:21&lt;00:11, 151890.48it/s]

</pre>

-
68%|██████▊ | 3378092/4997817 [00:21<00:10, 155458.59it/s]
+
66%|██████▌ | 3307474/4997817 [00:21<00:11, 151890.48it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3378092/4997817 [00:21<00:10, 155458.59it/s]

+

66%|██████▌ | 3307474/4997817 [00:21<00:11, 151890.48it/s]

-
68%|██████▊ | 3393723/4997817 [00:21&lt;00:10, 155711.81it/s]
+
66%|██████▋ | 3322664/4997817 [00:21&lt;00:11, 151792.11it/s]

</pre>

-
68%|██████▊ | 3393723/4997817 [00:21<00:10, 155711.81it/s]
+
66%|██████▋ | 3322664/4997817 [00:21<00:11, 151792.11it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3393723/4997817 [00:21<00:10, 155711.81it/s]

+

66%|██████▋ | 3322664/4997817 [00:21<00:11, 151792.11it/s]

-
68%|██████▊ | 3409391/4997817 [00:21&lt;00:10, 155999.46it/s]
+
67%|██████▋ | 3338019/4997817 [00:21&lt;00:10, 152314.90it/s]

</pre>

-
68%|██████▊ | 3409391/4997817 [00:21<00:10, 155999.46it/s]
+
67%|██████▋ | 3338019/4997817 [00:21<00:10, 152314.90it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3409391/4997817 [00:21<00:10, 155999.46it/s]

+

67%|██████▋ | 3338019/4997817 [00:21<00:10, 152314.90it/s]

-
69%|██████▊ | 3425019/4997817 [00:22&lt;00:10, 156082.27it/s]
+
67%|██████▋ | 3353323/4997817 [00:22&lt;00:10, 152529.53it/s]

</pre>

-
69%|██████▊ | 3425019/4997817 [00:22<00:10, 156082.27it/s]
+
67%|██████▋ | 3353323/4997817 [00:22<00:10, 152529.53it/s]

end{sphinxVerbatim}

-

69%|██████▊ | 3425019/4997817 [00:22<00:10, 156082.27it/s]

+

67%|██████▋ | 3353323/4997817 [00:22<00:10, 152529.53it/s]

-
69%|██████▉ | 3440777/4997817 [00:22&lt;00:09, 156528.39it/s]
+
67%|██████▋ | 3368577/4997817 [00:22&lt;00:10, 152460.16it/s]

</pre>

-
69%|██████▉ | 3440777/4997817 [00:22<00:09, 156528.39it/s]
+
67%|██████▋ | 3368577/4997817 [00:22<00:10, 152460.16it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3440777/4997817 [00:22<00:09, 156528.39it/s]

+

67%|██████▋ | 3368577/4997817 [00:22<00:10, 152460.16it/s]

-
69%|██████▉ | 3456471/4997817 [00:22&lt;00:09, 156650.75it/s]
+
68%|██████▊ | 3383824/4997817 [00:22&lt;00:10, 152309.28it/s]

</pre>

-
69%|██████▉ | 3456471/4997817 [00:22<00:09, 156650.75it/s]
+
68%|██████▊ | 3383824/4997817 [00:22<00:10, 152309.28it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3456471/4997817 [00:22<00:09, 156650.75it/s]

+

68%|██████▊ | 3383824/4997817 [00:22<00:10, 152309.28it/s]

-
69%|██████▉ | 3472159/4997817 [00:22&lt;00:09, 156718.43it/s]
+
68%|██████▊ | 3399056/4997817 [00:22&lt;00:10, 151943.79it/s]

</pre>

-
69%|██████▉ | 3472159/4997817 [00:22<00:09, 156718.43it/s]
+
68%|██████▊ | 3399056/4997817 [00:22<00:10, 151943.79it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3472159/4997817 [00:22<00:09, 156718.43it/s]

+

68%|██████▊ | 3399056/4997817 [00:22<00:10, 151943.79it/s]

-
70%|██████▉ | 3487831/4997817 [00:22&lt;00:09, 156663.27it/s]
+
68%|██████▊ | 3414251/4997817 [00:22&lt;00:10, 151765.12it/s]

</pre>

-
70%|██████▉ | 3487831/4997817 [00:22<00:09, 156663.27it/s]
+
68%|██████▊ | 3414251/4997817 [00:22<00:10, 151765.12it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 3487831/4997817 [00:22<00:09, 156663.27it/s]

+

68%|██████▊ | 3414251/4997817 [00:22<00:10, 151765.12it/s]

-
70%|███████ | 3503498/4997817 [00:22&lt;00:09, 156604.19it/s]
+
69%|██████▊ | 3429493/4997817 [00:22&lt;00:10, 151958.92it/s]

</pre>

-
70%|███████ | 3503498/4997817 [00:22<00:09, 156604.19it/s]
+
69%|██████▊ | 3429493/4997817 [00:22<00:10, 151958.92it/s]

end{sphinxVerbatim}

-

70%|███████ | 3503498/4997817 [00:22<00:09, 156604.19it/s]

+

69%|██████▊ | 3429493/4997817 [00:22<00:10, 151958.92it/s]

-
70%|███████ | 3519159/4997817 [00:22&lt;00:09, 156242.75it/s]
+
69%|██████▉ | 3444690/4997817 [00:22&lt;00:10, 151836.87it/s]

</pre>

-
70%|███████ | 3519159/4997817 [00:22<00:09, 156242.75it/s]
+
69%|██████▉ | 3444690/4997817 [00:22<00:10, 151836.87it/s]

end{sphinxVerbatim}

-

70%|███████ | 3519159/4997817 [00:22<00:09, 156242.75it/s]

+

69%|██████▉ | 3444690/4997817 [00:22<00:10, 151836.87it/s]

-
71%|███████ | 3534858/4997817 [00:22&lt;00:09, 156463.62it/s]
+
69%|██████▉ | 3459874/4997817 [00:22&lt;00:10, 151774.03it/s]

</pre>

-
71%|███████ | 3534858/4997817 [00:22<00:09, 156463.62it/s]
+
69%|██████▉ | 3459874/4997817 [00:22<00:10, 151774.03it/s]

end{sphinxVerbatim}

-

71%|███████ | 3534858/4997817 [00:22<00:09, 156463.62it/s]

+

69%|██████▉ | 3459874/4997817 [00:22<00:10, 151774.03it/s]

-
71%|███████ | 3550505/4997817 [00:22&lt;00:09, 149036.13it/s]
+
70%|██████▉ | 3475111/4997817 [00:22&lt;00:10, 151949.21it/s]

</pre>

-
71%|███████ | 3550505/4997817 [00:22<00:09, 149036.13it/s]
+
70%|██████▉ | 3475111/4997817 [00:22<00:10, 151949.21it/s]

end{sphinxVerbatim}

-

71%|███████ | 3550505/4997817 [00:22<00:09, 149036.13it/s]

+

70%|██████▉ | 3475111/4997817 [00:22<00:10, 151949.21it/s]

-
71%|███████▏ | 3566172/4997817 [00:22&lt;00:09, 151244.49it/s]
+
70%|██████▉ | 3490307/4997817 [00:22&lt;00:09, 151945.21it/s]

</pre>

-
71%|███████▏ | 3566172/4997817 [00:22<00:09, 151244.49it/s]
+
70%|██████▉ | 3490307/4997817 [00:22<00:09, 151945.21it/s]

end{sphinxVerbatim}

-

71%|███████▏ | 3566172/4997817 [00:22<00:09, 151244.49it/s]

+

70%|██████▉ | 3490307/4997817 [00:22<00:09, 151945.21it/s]

-
72%|███████▏ | 3581958/4997817 [00:23&lt;00:09, 153178.22it/s]
+
70%|███████ | 3505502/4997817 [00:23&lt;00:09, 149425.36it/s]

</pre>

-
72%|███████▏ | 3581958/4997817 [00:23<00:09, 153178.22it/s]
+
70%|███████ | 3505502/4997817 [00:23<00:09, 149425.36it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3581958/4997817 [00:23<00:09, 153178.22it/s]

+

70%|███████ | 3505502/4997817 [00:23<00:09, 149425.36it/s]

-
72%|███████▏ | 3597789/4997817 [00:23&lt;00:09, 154690.37it/s]
+
70%|███████ | 3520675/4997817 [00:23&lt;00:09, 150104.81it/s]

</pre>

-
72%|███████▏ | 3597789/4997817 [00:23<00:09, 154690.37it/s]
+
70%|███████ | 3520675/4997817 [00:23<00:09, 150104.81it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3597789/4997817 [00:23<00:09, 154690.37it/s]

+

70%|███████ | 3520675/4997817 [00:23<00:09, 150104.81it/s]

-
72%|███████▏ | 3613468/4997817 [00:23&lt;00:08, 155310.76it/s]
+
71%|███████ | 3536035/4997817 [00:23&lt;00:09, 151141.36it/s]

</pre>

-
72%|███████▏ | 3613468/4997817 [00:23<00:08, 155310.76it/s]
+
71%|███████ | 3536035/4997817 [00:23<00:09, 151141.36it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3613468/4997817 [00:23<00:08, 155310.76it/s]

+

71%|███████ | 3536035/4997817 [00:23<00:09, 151141.36it/s]

-
73%|███████▎ | 3629200/4997817 [00:23&lt;00:08, 155906.08it/s]
+
71%|███████ | 3551305/4997817 [00:23&lt;00:09, 151603.89it/s]

</pre>

-
73%|███████▎ | 3629200/4997817 [00:23<00:08, 155906.08it/s]
+
71%|███████ | 3551305/4997817 [00:23<00:09, 151603.89it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3629200/4997817 [00:23<00:08, 155906.08it/s]

+

71%|███████ | 3551305/4997817 [00:23<00:09, 151603.89it/s]

-
73%|███████▎ | 3644976/4997817 [00:23&lt;00:08, 156457.28it/s]
+
71%|███████▏ | 3566631/4997817 [00:23&lt;00:09, 152096.15it/s]

</pre>

-
73%|███████▎ | 3644976/4997817 [00:23<00:08, 156457.28it/s]
+
71%|███████▏ | 3566631/4997817 [00:23<00:09, 152096.15it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3644976/4997817 [00:23<00:08, 156457.28it/s]

+

71%|███████▏ | 3566631/4997817 [00:23<00:09, 152096.15it/s]

-
73%|███████▎ | 3660681/4997817 [00:23&lt;00:08, 156631.04it/s]
+
72%|███████▏ | 3582057/4997817 [00:23&lt;00:09, 152739.92it/s]

</pre>

-
73%|███████▎ | 3660681/4997817 [00:23<00:08, 156631.04it/s]
+
72%|███████▏ | 3582057/4997817 [00:23<00:09, 152739.92it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3660681/4997817 [00:23<00:08, 156631.04it/s]

+

72%|███████▏ | 3582057/4997817 [00:23<00:09, 152739.92it/s]

-
74%|███████▎ | 3676412/4997817 [00:23&lt;00:08, 156830.70it/s]
+
72%|███████▏ | 3597451/4997817 [00:23&lt;00:09, 153097.47it/s]

</pre>

-
74%|███████▎ | 3676412/4997817 [00:23<00:08, 156830.70it/s]
+
72%|███████▏ | 3597451/4997817 [00:23<00:09, 153097.47it/s]

end{sphinxVerbatim}

-

74%|███████▎ | 3676412/4997817 [00:23<00:08, 156830.70it/s]

+

72%|███████▏ | 3597451/4997817 [00:23<00:09, 153097.47it/s]

-
74%|███████▍ | 3692102/4997817 [00:23&lt;00:08, 156763.32it/s]
+
72%|███████▏ | 3612812/4997817 [00:23&lt;00:09, 153248.53it/s]

</pre>

-
74%|███████▍ | 3692102/4997817 [00:23<00:08, 156763.32it/s]
+
72%|███████▏ | 3612812/4997817 [00:23<00:09, 153248.53it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3692102/4997817 [00:23<00:08, 156763.32it/s]

+

72%|███████▏ | 3612812/4997817 [00:23<00:09, 153248.53it/s]

-
74%|███████▍ | 3707783/4997817 [00:23&lt;00:08, 156228.59it/s]
+
73%|███████▎ | 3628145/4997817 [00:23&lt;00:08, 153269.81it/s]

</pre>

-
74%|███████▍ | 3707783/4997817 [00:23<00:08, 156228.59it/s]
+
73%|███████▎ | 3628145/4997817 [00:23<00:08, 153269.81it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3707783/4997817 [00:23<00:08, 156228.59it/s]

+

73%|███████▎ | 3628145/4997817 [00:23<00:08, 153269.81it/s]

-
75%|███████▍ | 3723410/4997817 [00:23&lt;00:08, 156001.90it/s]
+
73%|███████▎ | 3643473/4997817 [00:23&lt;00:08, 153075.54it/s]

</pre>

-
75%|███████▍ | 3723410/4997817 [00:23<00:08, 156001.90it/s]
+
73%|███████▎ | 3643473/4997817 [00:23<00:08, 153075.54it/s]

end{sphinxVerbatim}

-

75%|███████▍ | 3723410/4997817 [00:23<00:08, 156001.90it/s]

+

73%|███████▎ | 3643473/4997817 [00:23<00:08, 153075.54it/s]

-
75%|███████▍ | 3739013/4997817 [00:24&lt;00:08, 155896.92it/s]
+
73%|███████▎ | 3658782/4997817 [00:24&lt;00:08, 152987.26it/s]

</pre>

-
75%|███████▍ | 3739013/4997817 [00:24<00:08, 155896.92it/s]
+
73%|███████▎ | 3658782/4997817 [00:24<00:08, 152987.26it/s]

end{sphinxVerbatim}

-

75%|███████▍ | 3739013/4997817 [00:24<00:08, 155896.92it/s]

+

73%|███████▎ | 3658782/4997817 [00:24<00:08, 152987.26it/s]

-
75%|███████▌ | 3754680/4997817 [00:24&lt;00:07, 156126.72it/s]
+
74%|███████▎ | 3674219/4997817 [00:24&lt;00:08, 153400.11it/s]

</pre>

-
75%|███████▌ | 3754680/4997817 [00:24<00:07, 156126.72it/s]
+
74%|███████▎ | 3674219/4997817 [00:24<00:08, 153400.11it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3754680/4997817 [00:24<00:07, 156126.72it/s]

+

74%|███████▎ | 3674219/4997817 [00:24<00:08, 153400.11it/s]

-
75%|███████▌ | 3770294/4997817 [00:24&lt;00:07, 155956.77it/s]
+
74%|███████▍ | 3689609/4997817 [00:24&lt;00:08, 153548.76it/s]

</pre>

-
75%|███████▌ | 3770294/4997817 [00:24<00:07, 155956.77it/s]
+
74%|███████▍ | 3689609/4997817 [00:24<00:08, 153548.76it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3770294/4997817 [00:24<00:07, 155956.77it/s]

+

74%|███████▍ | 3689609/4997817 [00:24<00:08, 153548.76it/s]

-
76%|███████▌ | 3785910/4997817 [00:24&lt;00:07, 156016.86it/s]
+
74%|███████▍ | 3704965/4997817 [00:24&lt;00:08, 153215.87it/s]

</pre>

-
76%|███████▌ | 3785910/4997817 [00:24<00:07, 156016.86it/s]
+
74%|███████▍ | 3704965/4997817 [00:24<00:08, 153215.87it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3785910/4997817 [00:24<00:07, 156016.86it/s]

+

74%|███████▍ | 3704965/4997817 [00:24<00:08, 153215.87it/s]

-
76%|███████▌ | 3801513/4997817 [00:24&lt;00:07, 155964.71it/s]
+
74%|███████▍ | 3720330/4997817 [00:24&lt;00:08, 153308.02it/s]

</pre>

-
76%|███████▌ | 3801513/4997817 [00:24<00:07, 155964.71it/s]
+
74%|███████▍ | 3720330/4997817 [00:24<00:08, 153308.02it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3801513/4997817 [00:24<00:07, 155964.71it/s]

+

74%|███████▍ | 3720330/4997817 [00:24<00:08, 153308.02it/s]

-
76%|███████▋ | 3817120/4997817 [00:24&lt;00:07, 155992.84it/s]
+
75%|███████▍ | 3735745/4997817 [00:24&lt;00:08, 153557.19it/s]

</pre>

-
76%|███████▋ | 3817120/4997817 [00:24<00:07, 155992.84it/s]
+
75%|███████▍ | 3735745/4997817 [00:24<00:08, 153557.19it/s]

end{sphinxVerbatim}

-

76%|███████▋ | 3817120/4997817 [00:24<00:07, 155992.84it/s]

+

75%|███████▍ | 3735745/4997817 [00:24<00:08, 153557.19it/s]

-
77%|███████▋ | 3832720/4997817 [00:24&lt;00:07, 155983.55it/s]
+
75%|███████▌ | 3751101/4997817 [00:24&lt;00:08, 153486.47it/s]

</pre>

-
77%|███████▋ | 3832720/4997817 [00:24<00:07, 155983.55it/s]
+
75%|███████▌ | 3751101/4997817 [00:24<00:08, 153486.47it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3832720/4997817 [00:24<00:07, 155983.55it/s]

+

75%|███████▌ | 3751101/4997817 [00:24<00:08, 153486.47it/s]

-
77%|███████▋ | 3848345/4997817 [00:24&lt;00:07, 156059.90it/s]
+
75%|███████▌ | 3766504/4997817 [00:24&lt;00:08, 153647.63it/s]

</pre>

-
77%|███████▋ | 3848345/4997817 [00:24<00:07, 156059.90it/s]
+
75%|███████▌ | 3766504/4997817 [00:24<00:08, 153647.63it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3848345/4997817 [00:24<00:07, 156059.90it/s]

+

75%|███████▌ | 3766504/4997817 [00:24<00:08, 153647.63it/s]

-
77%|███████▋ | 3863952/4997817 [00:24&lt;00:07, 148367.40it/s]
+
76%|███████▌ | 3781869/4997817 [00:24&lt;00:07, 153439.48it/s]

</pre>

-
77%|███████▋ | 3863952/4997817 [00:24<00:07, 148367.40it/s]
+
76%|███████▌ | 3781869/4997817 [00:24<00:07, 153439.48it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3863952/4997817 [00:24<00:07, 148367.40it/s]

+

76%|███████▌ | 3781869/4997817 [00:24<00:07, 153439.48it/s]

-
78%|███████▊ | 3879632/4997817 [00:24&lt;00:07, 150805.37it/s]
+
76%|███████▌ | 3797284/4997817 [00:24&lt;00:07, 153648.41it/s]

</pre>

-
78%|███████▊ | 3879632/4997817 [00:24<00:07, 150805.37it/s]
+
76%|███████▌ | 3797284/4997817 [00:24<00:07, 153648.41it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3879632/4997817 [00:24<00:07, 150805.37it/s]

+

76%|███████▌ | 3797284/4997817 [00:24<00:07, 153648.41it/s]

-
78%|███████▊ | 3895335/4997817 [00:25&lt;00:07, 152623.35it/s]
+
76%|███████▋ | 3812649/4997817 [00:25&lt;00:07, 153206.91it/s]

</pre>

-
78%|███████▊ | 3895335/4997817 [00:25<00:07, 152623.35it/s]
+
76%|███████▋ | 3812649/4997817 [00:25<00:07, 153206.91it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3895335/4997817 [00:25<00:07, 152623.35it/s]

+

76%|███████▋ | 3812649/4997817 [00:25<00:07, 153206.91it/s]

-
78%|███████▊ | 3911069/4997817 [00:25&lt;00:07, 154010.55it/s]
+
77%|███████▋ | 3828069/4997817 [00:25&lt;00:07, 153502.20it/s]

</pre>

-
78%|███████▊ | 3911069/4997817 [00:25<00:07, 154010.55it/s]
+
77%|███████▋ | 3828069/4997817 [00:25<00:07, 153502.20it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3911069/4997817 [00:25<00:07, 154010.55it/s]

+

77%|███████▋ | 3828069/4997817 [00:25<00:07, 153502.20it/s]

-
79%|███████▊ | 3926784/4997817 [00:25&lt;00:06, 154938.94it/s]
+
77%|███████▋ | 3843420/4997817 [00:25&lt;00:07, 153333.71it/s]

</pre>

-
79%|███████▊ | 3926784/4997817 [00:25<00:06, 154938.94it/s]
+
77%|███████▋ | 3843420/4997817 [00:25<00:07, 153333.71it/s]

end{sphinxVerbatim}

-

79%|███████▊ | 3926784/4997817 [00:25<00:06, 154938.94it/s]

+

77%|███████▋ | 3843420/4997817 [00:25<00:07, 153333.71it/s]

-
79%|███████▉ | 3942544/4997817 [00:25&lt;00:06, 155727.99it/s]
+
77%|███████▋ | 3858826/4997817 [00:25&lt;00:07, 153549.42it/s]

</pre>

-
79%|███████▉ | 3942544/4997817 [00:25<00:06, 155727.99it/s]
+
77%|███████▋ | 3858826/4997817 [00:25<00:07, 153549.42it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3942544/4997817 [00:25<00:06, 155727.99it/s]

+

77%|███████▋ | 3858826/4997817 [00:25<00:07, 153549.42it/s]

-
79%|███████▉ | 3958159/4997817 [00:25&lt;00:06, 155850.31it/s]
+
78%|███████▊ | 3874182/4997817 [00:25&lt;00:07, 153524.89it/s]

</pre>

-
79%|███████▉ | 3958159/4997817 [00:25<00:06, 155850.31it/s]
+
78%|███████▊ | 3874182/4997817 [00:25<00:07, 153524.89it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3958159/4997817 [00:25<00:06, 155850.31it/s]

+

78%|███████▊ | 3874182/4997817 [00:25<00:07, 153524.89it/s]

-
80%|███████▉ | 3973923/4997817 [00:25&lt;00:06, 156382.04it/s]
+
78%|███████▊ | 3889575/4997817 [00:25&lt;00:07, 153644.24it/s]

</pre>

-
80%|███████▉ | 3973923/4997817 [00:25<00:06, 156382.04it/s]
+
78%|███████▊ | 3889575/4997817 [00:25<00:07, 153644.24it/s]

end{sphinxVerbatim}

-

80%|███████▉ | 3973923/4997817 [00:25<00:06, 156382.04it/s]

+

78%|███████▊ | 3889575/4997817 [00:25<00:07, 153644.24it/s]

-
80%|███████▉ | 3989706/4997817 [00:25&lt;00:06, 156813.02it/s]
+
78%|███████▊ | 3904940/4997817 [00:25&lt;00:07, 153484.99it/s]

</pre>

-
80%|███████▉ | 3989706/4997817 [00:25<00:06, 156813.02it/s]
+
78%|███████▊ | 3904940/4997817 [00:25<00:07, 153484.99it/s]

end{sphinxVerbatim}

-

80%|███████▉ | 3989706/4997817 [00:25<00:06, 156813.02it/s]

+

78%|███████▊ | 3904940/4997817 [00:25<00:07, 153484.99it/s]

-
80%|████████ | 4005509/4997817 [00:25&lt;00:06, 157173.90it/s]
+
78%|███████▊ | 3920289/4997817 [00:25&lt;00:07, 153285.72it/s]

</pre>

-
80%|████████ | 4005509/4997817 [00:25<00:06, 157173.90it/s]
+
78%|███████▊ | 3920289/4997817 [00:25<00:07, 153285.72it/s]

end{sphinxVerbatim}

-

80%|████████ | 4005509/4997817 [00:25<00:06, 157173.90it/s]

+

78%|███████▊ | 3920289/4997817 [00:25<00:07, 153285.72it/s]

-
80%|████████ | 4021268/4997817 [00:25&lt;00:06, 157297.01it/s]
+
79%|███████▊ | 3935618/4997817 [00:25&lt;00:06, 153225.79it/s]

</pre>

-
80%|████████ | 4021268/4997817 [00:25<00:06, 157297.01it/s]
+
79%|███████▊ | 3935618/4997817 [00:25<00:06, 153225.79it/s]

end{sphinxVerbatim}

-

80%|████████ | 4021268/4997817 [00:25<00:06, 157297.01it/s]

+

79%|███████▊ | 3935618/4997817 [00:25<00:06, 153225.79it/s]

-
81%|████████ | 4037002/4997817 [00:25&lt;00:06, 156864.65it/s]
+
79%|███████▉ | 3951084/4997817 [00:25&lt;00:06, 153653.44it/s]

</pre>

-
81%|████████ | 4037002/4997817 [00:25<00:06, 156864.65it/s]
+
79%|███████▉ | 3951084/4997817 [00:25<00:06, 153653.44it/s]

end{sphinxVerbatim}

-

81%|████████ | 4037002/4997817 [00:25<00:06, 156864.65it/s]

+

79%|███████▉ | 3951084/4997817 [00:25<00:06, 153653.44it/s]

-
81%|████████ | 4052692/4997817 [00:26&lt;00:06, 156360.66it/s]
+
79%|███████▉ | 3966477/4997817 [00:26&lt;00:06, 153733.07it/s]

</pre>

-
81%|████████ | 4052692/4997817 [00:26<00:06, 156360.66it/s]
+
79%|███████▉ | 3966477/4997817 [00:26<00:06, 153733.07it/s]

end{sphinxVerbatim}

-

81%|████████ | 4052692/4997817 [00:26<00:06, 156360.66it/s]

+

79%|███████▉ | 3966477/4997817 [00:26<00:06, 153733.07it/s]

-
81%|████████▏ | 4068403/4997817 [00:26&lt;00:05, 156583.00it/s]
+
80%|███████▉ | 3981879/4997817 [00:26&lt;00:06, 153815.61it/s]

</pre>

-
81%|████████▏ | 4068403/4997817 [00:26<00:05, 156583.00it/s]
+
80%|███████▉ | 3981879/4997817 [00:26<00:06, 153815.61it/s]

end{sphinxVerbatim}

-

81%|████████▏ | 4068403/4997817 [00:26<00:05, 156583.00it/s]

+

80%|███████▉ | 3981879/4997817 [00:26<00:06, 153815.61it/s]

-
82%|████████▏ | 4084170/4997817 [00:26&lt;00:05, 156906.95it/s]
+
80%|███████▉ | 3997261/4997817 [00:26&lt;00:06, 153450.15it/s]

</pre>

-
82%|████████▏ | 4084170/4997817 [00:26<00:05, 156906.95it/s]
+
80%|███████▉ | 3997261/4997817 [00:26<00:06, 153450.15it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4084170/4997817 [00:26<00:05, 156906.95it/s]

+

80%|███████▉ | 3997261/4997817 [00:26<00:06, 153450.15it/s]

-
82%|████████▏ | 4099862/4997817 [00:26&lt;00:05, 156560.68it/s]
+
80%|████████ | 4012607/4997817 [00:26&lt;00:06, 153340.19it/s]

</pre>

-
82%|████████▏ | 4099862/4997817 [00:26<00:05, 156560.68it/s]
+
80%|████████ | 4012607/4997817 [00:26<00:06, 153340.19it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4099862/4997817 [00:26<00:05, 156560.68it/s]

+

80%|████████ | 4012607/4997817 [00:26<00:06, 153340.19it/s]

-
82%|████████▏ | 4115633/4997817 [00:26&lt;00:05, 156901.80it/s]
+
81%|████████ | 4027942/4997817 [00:26&lt;00:06, 153204.17it/s]

</pre>

-
82%|████████▏ | 4115633/4997817 [00:26<00:05, 156901.80it/s]
+
81%|████████ | 4027942/4997817 [00:26<00:06, 153204.17it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4115633/4997817 [00:26<00:05, 156901.80it/s]

+

81%|████████ | 4027942/4997817 [00:26<00:06, 153204.17it/s]

-
83%|████████▎ | 4131413/4997817 [00:26&lt;00:05, 157169.61it/s]
+
81%|████████ | 4043263/4997817 [00:26&lt;00:06, 153101.59it/s]

</pre>

-
83%|████████▎ | 4131413/4997817 [00:26<00:05, 157169.61it/s]
+
81%|████████ | 4043263/4997817 [00:26<00:06, 153101.59it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4131413/4997817 [00:26<00:05, 157169.61it/s]

+

81%|████████ | 4043263/4997817 [00:26<00:06, 153101.59it/s]

-
83%|████████▎ | 4147174/4997817 [00:26&lt;00:05, 157300.90it/s]
+
81%|████████ | 4058574/4997817 [00:26&lt;00:06, 152649.60it/s]

</pre>

-
83%|████████▎ | 4147174/4997817 [00:26<00:05, 157300.90it/s]
+
81%|████████ | 4058574/4997817 [00:26<00:06, 152649.60it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4147174/4997817 [00:26<00:05, 157300.90it/s]

+

81%|████████ | 4058574/4997817 [00:26<00:06, 152649.60it/s]

-
83%|████████▎ | 4162905/4997817 [00:26&lt;00:05, 157101.40it/s]
+
82%|████████▏ | 4073840/4997817 [00:26&lt;00:06, 152492.42it/s]

</pre>

-
83%|████████▎ | 4162905/4997817 [00:26<00:05, 157101.40it/s]
+
82%|████████▏ | 4073840/4997817 [00:26<00:06, 152492.42it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4162905/4997817 [00:26<00:05, 157101.40it/s]

+

82%|████████▏ | 4073840/4997817 [00:26<00:06, 152492.42it/s]

-
84%|████████▎ | 4178673/4997817 [00:26&lt;00:05, 157271.82it/s]
+
82%|████████▏ | 4089090/4997817 [00:26&lt;00:05, 152227.07it/s]

</pre>

-
84%|████████▎ | 4178673/4997817 [00:26<00:05, 157271.82it/s]
+
82%|████████▏ | 4089090/4997817 [00:26<00:05, 152227.07it/s]

end{sphinxVerbatim}

-

84%|████████▎ | 4178673/4997817 [00:26<00:05, 157271.82it/s]

+

82%|████████▏ | 4089090/4997817 [00:26<00:05, 152227.07it/s]

-
84%|████████▍ | 4194401/4997817 [00:26&lt;00:05, 154293.22it/s]
+
82%|████████▏ | 4104313/4997817 [00:26&lt;00:05, 150900.00it/s]

</pre>

-
84%|████████▍ | 4194401/4997817 [00:26<00:05, 154293.22it/s]
+
82%|████████▏ | 4104313/4997817 [00:26<00:05, 150900.00it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4194401/4997817 [00:26<00:05, 154293.22it/s]

+

82%|████████▏ | 4104313/4997817 [00:26<00:05, 150900.00it/s]

-
84%|████████▍ | 4210003/4997817 [00:27&lt;00:05, 154802.00it/s]
+
82%|████████▏ | 4119406/4997817 [00:27&lt;00:05, 150874.09it/s]

</pre>

-
84%|████████▍ | 4210003/4997817 [00:27<00:05, 154802.00it/s]
+
82%|████████▏ | 4119406/4997817 [00:27<00:05, 150874.09it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4210003/4997817 [00:27<00:05, 154802.00it/s]

+

82%|████████▏ | 4119406/4997817 [00:27<00:05, 150874.09it/s]

-
85%|████████▍ | 4225675/4997817 [00:27&lt;00:04, 155369.63it/s]
+
83%|████████▎ | 4134496/4997817 [00:27&lt;00:05, 150440.82it/s]

</pre>

-
85%|████████▍ | 4225675/4997817 [00:27<00:04, 155369.63it/s]
+
83%|████████▎ | 4134496/4997817 [00:27<00:05, 150440.82it/s]

end{sphinxVerbatim}

-

85%|████████▍ | 4225675/4997817 [00:27<00:04, 155369.63it/s]

+

83%|████████▎ | 4134496/4997817 [00:27<00:05, 150440.82it/s]

-
85%|████████▍ | 4241497/4997817 [00:27&lt;00:04, 156216.58it/s]
+
83%|████████▎ | 4149652/4997817 [00:27&lt;00:05, 150772.45it/s]

</pre>

-
85%|████████▍ | 4241497/4997817 [00:27<00:04, 156216.58it/s]
+
83%|████████▎ | 4149652/4997817 [00:27<00:05, 150772.45it/s]

end{sphinxVerbatim}

-

85%|████████▍ | 4241497/4997817 [00:27<00:04, 156216.58it/s]

+

83%|████████▎ | 4149652/4997817 [00:27<00:05, 150772.45it/s]

-
85%|████████▌ | 4257316/4997817 [00:27&lt;00:04, 156802.39it/s]
+
83%|████████▎ | 4164918/4997817 [00:27&lt;00:05, 151334.08it/s]

</pre>

-
85%|████████▌ | 4257316/4997817 [00:27<00:04, 156802.39it/s]
+
83%|████████▎ | 4164918/4997817 [00:27<00:05, 151334.08it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 4257316/4997817 [00:27<00:04, 156802.39it/s]

+

83%|████████▎ | 4164918/4997817 [00:27<00:05, 151334.08it/s]

-
86%|████████▌ | 4273149/4997817 [00:27&lt;00:04, 157256.33it/s]
+
84%|████████▎ | 4180089/4997817 [00:27&lt;00:05, 151445.14it/s]

</pre>

-
86%|████████▌ | 4273149/4997817 [00:27<00:04, 157256.33it/s]
+
84%|████████▎ | 4180089/4997817 [00:27<00:05, 151445.14it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4273149/4997817 [00:27<00:04, 157256.33it/s]

+

84%|████████▎ | 4180089/4997817 [00:27<00:05, 151445.14it/s]

-
86%|████████▌ | 4288963/4997817 [00:27&lt;00:04, 157517.68it/s]
+
84%|████████▍ | 4195260/4997817 [00:27&lt;00:05, 151520.79it/s]

</pre>

-
86%|████████▌ | 4288963/4997817 [00:27<00:04, 157517.68it/s]
+
84%|████████▍ | 4195260/4997817 [00:27<00:05, 151520.79it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4288963/4997817 [00:27<00:04, 157517.68it/s]

+

84%|████████▍ | 4195260/4997817 [00:27<00:05, 151520.79it/s]

-
86%|████████▌ | 4304819/4997817 [00:27&lt;00:04, 157827.29it/s]
+
84%|████████▍ | 4210505/4997817 [00:27&lt;00:05, 151795.15it/s]

</pre>

-
86%|████████▌ | 4304819/4997817 [00:27<00:04, 157827.29it/s]
+
84%|████████▍ | 4210505/4997817 [00:27<00:05, 151795.15it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4304819/4997817 [00:27<00:04, 157827.29it/s]

+

84%|████████▍ | 4210505/4997817 [00:27<00:05, 151795.15it/s]

-
86%|████████▋ | 4320680/4997817 [00:27&lt;00:04, 158060.62it/s]
+
85%|████████▍ | 4225702/4997817 [00:27&lt;00:05, 151845.96it/s]

</pre>

-
86%|████████▋ | 4320680/4997817 [00:27<00:04, 158060.62it/s]
+
85%|████████▍ | 4225702/4997817 [00:27<00:05, 151845.96it/s]

end{sphinxVerbatim}

-

86%|████████▋ | 4320680/4997817 [00:27<00:04, 158060.62it/s]

+

85%|████████▍ | 4225702/4997817 [00:27<00:05, 151845.96it/s]

-
87%|████████▋ | 4336553/4997817 [00:27&lt;00:04, 158259.05it/s]
+
85%|████████▍ | 4240887/4997817 [00:27&lt;00:04, 151794.49it/s]

</pre>

-
87%|████████▋ | 4336553/4997817 [00:27<00:04, 158259.05it/s]
+
85%|████████▍ | 4240887/4997817 [00:27<00:04, 151794.49it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4336553/4997817 [00:27<00:04, 158259.05it/s]

+

85%|████████▍ | 4240887/4997817 [00:27<00:04, 151794.49it/s]

-
87%|████████▋ | 4352399/4997817 [00:27&lt;00:04, 158317.30it/s]
+
85%|████████▌ | 4256251/4997817 [00:27&lt;00:04, 152343.50it/s]

</pre>

-
87%|████████▋ | 4352399/4997817 [00:27<00:04, 158317.30it/s]
+
85%|████████▌ | 4256251/4997817 [00:27<00:04, 152343.50it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4352399/4997817 [00:27<00:04, 158317.30it/s]

+

85%|████████▌ | 4256251/4997817 [00:27<00:04, 152343.50it/s]

-
87%|████████▋ | 4368232/4997817 [00:28&lt;00:03, 157914.38it/s]
+
85%|████████▌ | 4271644/4997817 [00:28&lt;00:04, 152816.49it/s]

</pre>

-
87%|████████▋ | 4368232/4997817 [00:28<00:03, 157914.38it/s]
+
85%|████████▌ | 4271644/4997817 [00:28<00:04, 152816.49it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4368232/4997817 [00:28<00:03, 157914.38it/s]

+

85%|████████▌ | 4271644/4997817 [00:28<00:04, 152816.49it/s]

-
88%|████████▊ | 4384025/4997817 [00:28&lt;00:03, 157847.90it/s]
+
86%|████████▌ | 4286926/4997817 [00:28&lt;00:04, 151759.69it/s]

</pre>

-
88%|████████▊ | 4384025/4997817 [00:28<00:03, 157847.90it/s]
+
86%|████████▌ | 4286926/4997817 [00:28<00:04, 151759.69it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4384025/4997817 [00:28<00:03, 157847.90it/s]

+

86%|████████▌ | 4286926/4997817 [00:28<00:04, 151759.69it/s]

-
88%|████████▊ | 4399840/4997817 [00:28&lt;00:03, 157937.40it/s]
+
86%|████████▌ | 4302104/4997817 [00:28&lt;00:04, 151725.74it/s]

</pre>

-
88%|████████▊ | 4399840/4997817 [00:28<00:03, 157937.40it/s]
+
86%|████████▌ | 4302104/4997817 [00:28<00:04, 151725.74it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4399840/4997817 [00:28<00:03, 157937.40it/s]

+

86%|████████▌ | 4302104/4997817 [00:28<00:04, 151725.74it/s]

-
88%|████████▊ | 4415688/4997817 [00:28&lt;00:03, 158096.40it/s]
+
86%|████████▋ | 4317364/4997817 [00:28&lt;00:04, 151983.82it/s]

</pre>

-
88%|████████▊ | 4415688/4997817 [00:28<00:03, 158096.40it/s]
+
86%|████████▋ | 4317364/4997817 [00:28<00:04, 151983.82it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4415688/4997817 [00:28<00:03, 158096.40it/s]

+

86%|████████▋ | 4317364/4997817 [00:28<00:04, 151983.82it/s]

-
89%|████████▊ | 4431584/4997817 [00:28&lt;00:03, 158353.82it/s]
+
87%|████████▋ | 4332692/4997817 [00:28&lt;00:04, 152369.94it/s]

</pre>

-
89%|████████▊ | 4431584/4997817 [00:28<00:03, 158353.82it/s]
+
87%|████████▋ | 4332692/4997817 [00:28<00:04, 152369.94it/s]

end{sphinxVerbatim}

-

89%|████████▊ | 4431584/4997817 [00:28<00:03, 158353.82it/s]

+

87%|████████▋ | 4332692/4997817 [00:28<00:04, 152369.94it/s]

-
89%|████████▉ | 4447420/4997817 [00:28&lt;00:03, 158329.46it/s]
+
87%|████████▋ | 4347991/4997817 [00:28&lt;00:04, 152552.06it/s]

</pre>

-
89%|████████▉ | 4447420/4997817 [00:28<00:03, 158329.46it/s]
+
87%|████████▋ | 4347991/4997817 [00:28<00:04, 152552.06it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4447420/4997817 [00:28<00:03, 158329.46it/s]

+

87%|████████▋ | 4347991/4997817 [00:28<00:04, 152552.06it/s]

-
89%|████████▉ | 4463254/4997817 [00:28&lt;00:03, 158306.64it/s]
+
87%|████████▋ | 4363327/4997817 [00:28&lt;00:04, 152790.89it/s]

</pre>

-
89%|████████▉ | 4463254/4997817 [00:28<00:03, 158306.64it/s]
+
87%|████████▋ | 4363327/4997817 [00:28<00:04, 152790.89it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4463254/4997817 [00:28<00:03, 158306.64it/s]

+

87%|████████▋ | 4363327/4997817 [00:28<00:04, 152790.89it/s]

-
90%|████████▉ | 4479095/4997817 [00:28&lt;00:03, 158337.00it/s]
+
88%|████████▊ | 4378607/4997817 [00:28&lt;00:04, 148458.18it/s]

</pre>

-
90%|████████▉ | 4479095/4997817 [00:28<00:03, 158337.00it/s]
+
88%|████████▊ | 4378607/4997817 [00:28<00:04, 148458.18it/s]

end{sphinxVerbatim}

-

90%|████████▉ | 4479095/4997817 [00:28<00:03, 158337.00it/s]

+

88%|████████▊ | 4378607/4997817 [00:28<00:04, 148458.18it/s]

-
90%|████████▉ | 4494929/4997817 [00:28&lt;00:03, 158263.94it/s]
+
88%|████████▊ | 4393480/4997817 [00:28&lt;00:04, 142262.87it/s]

</pre>

-
90%|████████▉ | 4494929/4997817 [00:28<00:03, 158263.94it/s]
+
88%|████████▊ | 4393480/4997817 [00:28<00:04, 142262.87it/s]

end{sphinxVerbatim}

-

90%|████████▉ | 4494929/4997817 [00:28<00:03, 158263.94it/s]

+

88%|████████▊ | 4393480/4997817 [00:28<00:04, 142262.87it/s]

-
90%|█████████ | 4510756/4997817 [00:28&lt;00:03, 157835.36it/s]
+
88%|████████▊ | 4408792/4997817 [00:28&lt;00:04, 145373.58it/s]

</pre>

-
90%|█████████ | 4510756/4997817 [00:28<00:03, 157835.36it/s]
+
88%|████████▊ | 4408792/4997817 [00:28<00:04, 145373.58it/s]

end{sphinxVerbatim}

-

90%|█████████ | 4510756/4997817 [00:28<00:03, 157835.36it/s]

+

88%|████████▊ | 4408792/4997817 [00:28<00:04, 145373.58it/s]

-
91%|█████████ | 4526540/4997817 [00:29&lt;00:02, 157699.84it/s]
+
89%|████████▊ | 4424149/4997817 [00:29&lt;00:03, 147753.67it/s]

</pre>

-
91%|█████████ | 4526540/4997817 [00:29<00:02, 157699.84it/s]
+
89%|████████▊ | 4424149/4997817 [00:29<00:03, 147753.67it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4526540/4997817 [00:29<00:02, 157699.84it/s]

+

89%|████████▊ | 4424149/4997817 [00:29<00:03, 147753.67it/s]

-
91%|█████████ | 4542329/4997817 [00:29&lt;00:02, 157754.78it/s]
+
89%|████████▉ | 4439438/4997817 [00:29&lt;00:03, 149259.24it/s]

</pre>

-
91%|█████████ | 4542329/4997817 [00:29<00:02, 157754.78it/s]
+
89%|████████▉ | 4439438/4997817 [00:29<00:03, 149259.24it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4542329/4997817 [00:29<00:02, 157754.78it/s]

+

89%|████████▉ | 4439438/4997817 [00:29<00:03, 149259.24it/s]

-
91%|█████████ | 4558105/4997817 [00:29&lt;00:02, 157720.35it/s]
+
89%|████████▉ | 4454678/4997817 [00:29&lt;00:03, 150183.80it/s]

</pre>

-
91%|█████████ | 4558105/4997817 [00:29<00:02, 157720.35it/s]
+
89%|████████▉ | 4454678/4997817 [00:29<00:03, 150183.80it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4558105/4997817 [00:29<00:02, 157720.35it/s]

+

89%|████████▉ | 4454678/4997817 [00:29<00:03, 150183.80it/s]

-
92%|█████████▏| 4573998/4997817 [00:29&lt;00:02, 158079.44it/s]
+
89%|████████▉ | 4469725/4997817 [00:29&lt;00:03, 143754.53it/s]

</pre>

-
92%|█████████▏| 4573998/4997817 [00:29<00:02, 158079.44it/s]
+
89%|████████▉ | 4469725/4997817 [00:29<00:03, 143754.53it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4573998/4997817 [00:29<00:02, 158079.44it/s]

+

89%|████████▉ | 4469725/4997817 [00:29<00:03, 143754.53it/s]

-
92%|█████████▏| 4589845/4997817 [00:29&lt;00:02, 158195.87it/s]
+
90%|████████▉ | 4484985/4997817 [00:29&lt;00:03, 146305.35it/s]

</pre>

-
92%|█████████▏| 4589845/4997817 [00:29<00:02, 158195.87it/s]
+
90%|████████▉ | 4484985/4997817 [00:29<00:03, 146305.35it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4589845/4997817 [00:29<00:02, 158195.87it/s]

+

90%|████████▉ | 4484985/4997817 [00:29<00:03, 146305.35it/s]

-
92%|█████████▏| 4605665/4997817 [00:29&lt;00:02, 158104.94it/s]
+
90%|█████████ | 4500321/4997817 [00:29&lt;00:03, 148363.06it/s]

</pre>

-
92%|█████████▏| 4605665/4997817 [00:29<00:02, 158104.94it/s]
+
90%|█████████ | 4500321/4997817 [00:29<00:03, 148363.06it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4605665/4997817 [00:29<00:02, 158104.94it/s]

+

90%|█████████ | 4500321/4997817 [00:29<00:03, 148363.06it/s]

-
92%|█████████▏| 4621476/4997817 [00:29&lt;00:02, 157979.37it/s]
+
90%|█████████ | 4515705/4997817 [00:29&lt;00:03, 149972.16it/s]

</pre>

-
92%|█████████▏| 4621476/4997817 [00:29<00:02, 157979.37it/s]
+
90%|█████████ | 4515705/4997817 [00:29<00:03, 149972.16it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4621476/4997817 [00:29<00:02, 157979.37it/s]

+

90%|█████████ | 4515705/4997817 [00:29<00:03, 149972.16it/s]

-
93%|█████████▎| 4637312/4997817 [00:29&lt;00:02, 158092.68it/s]
+
91%|█████████ | 4530858/4997817 [00:29&lt;00:03, 150429.10it/s]

</pre>

-
93%|█████████▎| 4637312/4997817 [00:29<00:02, 158092.68it/s]
+
91%|█████████ | 4530858/4997817 [00:29<00:03, 150429.10it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4637312/4997817 [00:29<00:02, 158092.68it/s]

+

91%|█████████ | 4530858/4997817 [00:29<00:03, 150429.10it/s]

-
93%|█████████▎| 4653156/4997817 [00:29&lt;00:02, 158194.47it/s]
+
91%|█████████ | 4546128/4997817 [00:29&lt;00:02, 151102.00it/s]

</pre>

-
93%|█████████▎| 4653156/4997817 [00:29<00:02, 158194.47it/s]
+
91%|█████████ | 4546128/4997817 [00:29<00:02, 151102.00it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4653156/4997817 [00:29<00:02, 158194.47it/s]

+

91%|█████████ | 4546128/4997817 [00:29<00:02, 151102.00it/s]

-
93%|█████████▎| 4668976/4997817 [00:29&lt;00:02, 157925.00it/s]
+
91%|█████████▏| 4561495/4997817 [00:29&lt;00:02, 151865.67it/s]

</pre>

-
93%|█████████▎| 4668976/4997817 [00:29<00:02, 157925.00it/s]
+
91%|█████████▏| 4561495/4997817 [00:29<00:02, 151865.67it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4668976/4997817 [00:29<00:02, 157925.00it/s]

+

91%|█████████▏| 4561495/4997817 [00:29<00:02, 151865.67it/s]

-
94%|█████████▎| 4684769/4997817 [00:30&lt;00:01, 157455.42it/s]
+
92%|█████████▏| 4576696/4997817 [00:30&lt;00:02, 151896.16it/s]

</pre>

-
94%|█████████▎| 4684769/4997817 [00:30<00:01, 157455.42it/s]
+
92%|█████████▏| 4576696/4997817 [00:30<00:02, 151896.16it/s]

end{sphinxVerbatim}

-

94%|█████████▎| 4684769/4997817 [00:30<00:01, 157455.42it/s]

+

92%|█████████▏| 4576696/4997817 [00:30<00:02, 151896.16it/s]

-
94%|█████████▍| 4700543/4997817 [00:30&lt;00:01, 157536.86it/s]
+
92%|█████████▏| 4591896/4997817 [00:30&lt;00:02, 151748.87it/s]

</pre>

-
94%|█████████▍| 4700543/4997817 [00:30<00:01, 157536.86it/s]
+
92%|█████████▏| 4591896/4997817 [00:30<00:02, 151748.87it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4700543/4997817 [00:30<00:01, 157536.86it/s]

+

92%|█████████▏| 4591896/4997817 [00:30<00:02, 151748.87it/s]

-
94%|█████████▍| 4716321/4997817 [00:30&lt;00:01, 157608.67it/s]
+
92%|█████████▏| 4607105/4997817 [00:30&lt;00:02, 151849.63it/s]

</pre>

-
94%|█████████▍| 4716321/4997817 [00:30<00:01, 157608.67it/s]
+
92%|█████████▏| 4607105/4997817 [00:30<00:02, 151849.63it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4716321/4997817 [00:30<00:01, 157608.67it/s]

+

92%|█████████▏| 4607105/4997817 [00:30<00:02, 151849.63it/s]

-
95%|█████████▍| 4732087/4997817 [00:30&lt;00:01, 157621.05it/s]
+
92%|█████████▏| 4622426/4997817 [00:30&lt;00:02, 152253.40it/s]

</pre>

-
95%|█████████▍| 4732087/4997817 [00:30<00:01, 157621.05it/s]
+
92%|█████████▏| 4622426/4997817 [00:30<00:02, 152253.40it/s]

end{sphinxVerbatim}

-

95%|█████████▍| 4732087/4997817 [00:30<00:01, 157621.05it/s]

+

92%|█████████▏| 4622426/4997817 [00:30<00:02, 152253.40it/s]

-
95%|█████████▍| 4747850/4997817 [00:30&lt;00:01, 157549.04it/s]
+
93%|█████████▎| 4637655/4997817 [00:30&lt;00:02, 152253.97it/s]

</pre>

-
95%|█████████▍| 4747850/4997817 [00:30<00:01, 157549.04it/s]
+
93%|█████████▎| 4637655/4997817 [00:30<00:02, 152253.97it/s]

end{sphinxVerbatim}

-

95%|█████████▍| 4747850/4997817 [00:30<00:01, 157549.04it/s]

+

93%|█████████▎| 4637655/4997817 [00:30<00:02, 152253.97it/s]

-
95%|█████████▌| 4763606/4997817 [00:30&lt;00:01, 157330.93it/s]
+
93%|█████████▎| 4652942/4997817 [00:30&lt;00:02, 152435.88it/s]

</pre>

-
95%|█████████▌| 4763606/4997817 [00:30<00:01, 157330.93it/s]
+
93%|█████████▎| 4652942/4997817 [00:30<00:02, 152435.88it/s]

end{sphinxVerbatim}

-

95%|█████████▌| 4763606/4997817 [00:30<00:01, 157330.93it/s]

+

93%|█████████▎| 4652942/4997817 [00:30<00:02, 152435.88it/s]

-
96%|█████████▌| 4779340/4997817 [00:30&lt;00:01, 156851.46it/s]
+
93%|█████████▎| 4668228/4997817 [00:30&lt;00:02, 152559.13it/s]

</pre>

-
96%|█████████▌| 4779340/4997817 [00:30<00:01, 156851.46it/s]
+
93%|█████████▎| 4668228/4997817 [00:30<00:02, 152559.13it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4779340/4997817 [00:30<00:01, 156851.46it/s]

+

93%|█████████▎| 4668228/4997817 [00:30<00:02, 152559.13it/s]

-
96%|█████████▌| 4795062/4997817 [00:30&lt;00:01, 156958.89it/s]
+
94%|█████████▎| 4683506/4997817 [00:30&lt;00:02, 152624.09it/s]

</pre>

-
96%|█████████▌| 4795062/4997817 [00:30<00:01, 156958.89it/s]
+
94%|█████████▎| 4683506/4997817 [00:30<00:02, 152624.09it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4795062/4997817 [00:30<00:01, 156958.89it/s]

+

94%|█████████▎| 4683506/4997817 [00:30<00:02, 152624.09it/s]

-
96%|█████████▋| 4810759/4997817 [00:30&lt;00:01, 156924.75it/s]
+
94%|█████████▍| 4698770/4997817 [00:30&lt;00:01, 152408.14it/s]

</pre>

-
96%|█████████▋| 4810759/4997817 [00:30<00:01, 156924.75it/s]
+
94%|█████████▍| 4698770/4997817 [00:30<00:01, 152408.14it/s]

end{sphinxVerbatim}

-

96%|█████████▋| 4810759/4997817 [00:30<00:01, 156924.75it/s]

+

94%|█████████▍| 4698770/4997817 [00:30<00:01, 152408.14it/s]

-
97%|█████████▋| 4826479/4997817 [00:30&lt;00:01, 157004.31it/s]
+
94%|█████████▍| 4714012/4997817 [00:30&lt;00:01, 152314.36it/s]

</pre>

-
97%|█████████▋| 4826479/4997817 [00:30<00:01, 157004.31it/s]
+
94%|█████████▍| 4714012/4997817 [00:30<00:01, 152314.36it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4826479/4997817 [00:30<00:01, 157004.31it/s]

+

94%|█████████▍| 4714012/4997817 [00:30<00:01, 152314.36it/s]

-
97%|█████████▋| 4842180/4997817 [00:31&lt;00:01, 153018.17it/s]
+
95%|█████████▍| 4729244/4997817 [00:31&lt;00:01, 152253.45it/s]

</pre>

-
97%|█████████▋| 4842180/4997817 [00:31<00:01, 153018.17it/s]
+
95%|█████████▍| 4729244/4997817 [00:31<00:01, 152253.45it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4842180/4997817 [00:31<00:01, 153018.17it/s]

+

95%|█████████▍| 4729244/4997817 [00:31<00:01, 152253.45it/s]

-
97%|█████████▋| 4857754/4997817 [00:31&lt;00:00, 153817.46it/s]
+
95%|█████████▍| 4744470/4997817 [00:31&lt;00:01, 148906.69it/s]

</pre>

-
97%|█████████▋| 4857754/4997817 [00:31<00:00, 153817.46it/s]
+
95%|█████████▍| 4744470/4997817 [00:31<00:01, 148906.69it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4857754/4997817 [00:31<00:00, 153817.46it/s]

+

95%|█████████▍| 4744470/4997817 [00:31<00:01, 148906.69it/s]

-
98%|█████████▊| 4873365/4997817 [00:31&lt;00:00, 154494.84it/s]
+
95%|█████████▌| 4759678/4997817 [00:31&lt;00:01, 149840.73it/s]

</pre>

-
98%|█████████▊| 4873365/4997817 [00:31<00:00, 154494.84it/s]
+
95%|█████████▌| 4759678/4997817 [00:31<00:01, 149840.73it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4873365/4997817 [00:31<00:00, 154494.84it/s]

+

95%|█████████▌| 4759678/4997817 [00:31<00:01, 149840.73it/s]

-
98%|█████████▊| 4888941/4997817 [00:31&lt;00:00, 154867.71it/s]
+
96%|█████████▌| 4774923/4997817 [00:31&lt;00:01, 150611.02it/s]

</pre>

-
98%|█████████▊| 4888941/4997817 [00:31<00:00, 154867.71it/s]
+
96%|█████████▌| 4774923/4997817 [00:31<00:01, 150611.02it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4888941/4997817 [00:31<00:00, 154867.71it/s]

+

96%|█████████▌| 4774923/4997817 [00:31<00:01, 150611.02it/s]

-
98%|█████████▊| 4904521/4997817 [00:31&lt;00:00, 155143.07it/s]
+
96%|█████████▌| 4790208/4997817 [00:31&lt;00:01, 151275.27it/s]

</pre>

-
98%|█████████▊| 4904521/4997817 [00:31<00:00, 155143.07it/s]
+
96%|█████████▌| 4790208/4997817 [00:31<00:01, 151275.27it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4904521/4997817 [00:31<00:00, 155143.07it/s]

+

96%|█████████▌| 4790208/4997817 [00:31<00:01, 151275.27it/s]

-
98%|█████████▊| 4920058/4997817 [00:31&lt;00:00, 155210.22it/s]
+
96%|█████████▌| 4805406/4997817 [00:31&lt;00:01, 151482.40it/s]

</pre>

-
98%|█████████▊| 4920058/4997817 [00:31<00:00, 155210.22it/s]
+
96%|█████████▌| 4805406/4997817 [00:31<00:01, 151482.40it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4920058/4997817 [00:31<00:00, 155210.22it/s]

+

96%|█████████▌| 4805406/4997817 [00:31<00:01, 151482.40it/s]

-
99%|█████████▉| 4935639/4997817 [00:31&lt;00:00, 155386.51it/s]
+
96%|█████████▋| 4820694/4997817 [00:31&lt;00:01, 151896.91it/s]

</pre>

-
99%|█████████▉| 4935639/4997817 [00:31<00:00, 155386.51it/s]
+
96%|█████████▋| 4820694/4997817 [00:31<00:01, 151896.91it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4935639/4997817 [00:31<00:00, 155386.51it/s]

+

96%|█████████▋| 4820694/4997817 [00:31<00:01, 151896.91it/s]

-
99%|█████████▉| 4951237/4997817 [00:31&lt;00:00, 155562.98it/s]
+
97%|█████████▋| 4836084/4997817 [00:31&lt;00:01, 152492.81it/s]

</pre>

-
99%|█████████▉| 4951237/4997817 [00:31<00:00, 155562.98it/s]
+
97%|█████████▋| 4836084/4997817 [00:31<00:01, 152492.81it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4951237/4997817 [00:31<00:00, 155562.98it/s]

+

97%|█████████▋| 4836084/4997817 [00:31<00:01, 152492.81it/s]

-
99%|█████████▉| 4966796/4997817 [00:31&lt;00:00, 155195.74it/s]
+
97%|█████████▋| 4851423/4997817 [00:31&lt;00:00, 152757.88it/s]

</pre>

-
99%|█████████▉| 4966796/4997817 [00:31<00:00, 155195.74it/s]
+
97%|█████████▋| 4851423/4997817 [00:31<00:00, 152757.88it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4966796/4997817 [00:31<00:00, 155195.74it/s]

+

97%|█████████▋| 4851423/4997817 [00:31<00:00, 152757.88it/s]

+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
97%|█████████▋| 4866834/4997817 [00:31&lt;00:00, 153161.56it/s]
+

</pre>

+
+
+
97%|█████████▋| 4866834/4997817 [00:31<00:00, 153161.56it/s]
+

end{sphinxVerbatim}

+
+
+
+

97%|█████████▋| 4866834/4997817 [00:31<00:00, 153161.56it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
98%|█████████▊| 4882152/4997817 [00:32&lt;00:00, 153112.21it/s]
+

</pre>

+
+
+
98%|█████████▊| 4882152/4997817 [00:32<00:00, 153112.21it/s]
+

end{sphinxVerbatim}

+
+
+
+

98%|█████████▊| 4882152/4997817 [00:32<00:00, 153112.21it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
98%|█████████▊| 4897502/4997817 [00:32&lt;00:00, 153224.32it/s]
+

</pre>

+
+
+
98%|█████████▊| 4897502/4997817 [00:32<00:00, 153224.32it/s]
+

end{sphinxVerbatim}

+
+
+
+

98%|█████████▊| 4897502/4997817 [00:32<00:00, 153224.32it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
98%|█████████▊| 4912826/4997817 [00:32&lt;00:00, 151174.62it/s]
+

</pre>

+
+
+
98%|█████████▊| 4912826/4997817 [00:32<00:00, 151174.62it/s]
+

end{sphinxVerbatim}

+
+
+
+

98%|█████████▊| 4912826/4997817 [00:32<00:00, 151174.62it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
99%|█████████▊| 4928122/4997817 [00:32&lt;00:00, 151703.79it/s]
+

</pre>

+
+
+
99%|█████████▊| 4928122/4997817 [00:32<00:00, 151703.79it/s]
+

end{sphinxVerbatim}

+
+
+
+

99%|█████████▊| 4928122/4997817 [00:32<00:00, 151703.79it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
99%|█████████▉| 4943431/4997817 [00:32&lt;00:00, 152115.73it/s]
+

</pre>

+
+
+
99%|█████████▉| 4943431/4997817 [00:32<00:00, 152115.73it/s]
+

end{sphinxVerbatim}

+
+
+
+

99%|█████████▉| 4943431/4997817 [00:32<00:00, 152115.73it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
99%|█████████▉| 4958721/4997817 [00:32&lt;00:00, 152348.60it/s]
+

</pre>

+
+
+
99%|█████████▉| 4958721/4997817 [00:32<00:00, 152348.60it/s]
+

end{sphinxVerbatim}

+
+
+
+

99%|█████████▉| 4958721/4997817 [00:32<00:00, 152348.60it/s]

+
+
+
+
+
+
+
+
+
+
100%|█████████▉| 4973960/4997817 [00:32&lt;00:00, 152357.87it/s]
+

</pre>

+
+
+
100%|█████████▉| 4973960/4997817 [00:32<00:00, 152357.87it/s]
+

end{sphinxVerbatim}

+
+
+
+

100%|█████████▉| 4973960/4997817 [00:32<00:00, 152357.87it/s]

-
100%|█████████▉| 4982344/4997817 [00:32&lt;00:00, 155277.39it/s]
+
100%|█████████▉| 4989221/4997817 [00:32&lt;00:00, 152431.85it/s]

</pre>

-
100%|█████████▉| 4982344/4997817 [00:32<00:00, 155277.39it/s]
+
100%|█████████▉| 4989221/4997817 [00:32<00:00, 152431.85it/s]

end{sphinxVerbatim}

-

100%|█████████▉| 4982344/4997817 [00:32<00:00, 155277.39it/s]

+

100%|█████████▉| 4989221/4997817 [00:32<00:00, 152431.85it/s]

-
100%|██████████| 4997817/4997817 [00:32&lt;00:00, 155619.15it/s]
+
100%|██████████| 4997817/4997817 [00:32&lt;00:00, 152152.96it/s]

</pre>

-
100%|██████████| 4997817/4997817 [00:32<00:00, 155619.15it/s]
+
100%|██████████| 4997817/4997817 [00:32<00:00, 152152.96it/s]

end{sphinxVerbatim}

-

100%|██████████| 4997817/4997817 [00:32<00:00, 155619.15it/s]

+

100%|██████████| 4997817/4997817 [00:32<00:00, 152152.96it/s]

-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -9415,7 +9614,7 @@

Get label quality scores -{"state": {"21c9e447d7fc49baaa07a5dcce1a412b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "80f77a5f99b34520abdbf09b57cc9c05": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "58627b4f134842dca11108614dae515e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_21c9e447d7fc49baaa07a5dcce1a412b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_80f77a5f99b34520abdbf09b57cc9c05", "tabbable": null, "tooltip": null, "value": 30.0}}, "b02aada907ae490897286a7070c2059f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa70cd8ed63c447d882958ff5fbe6dd6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "db25e0c95dbd4fe58acc9c2e49009d2a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b02aada907ae490897286a7070c2059f", "placeholder": "\u200b", "style": "IPY_MODEL_aa70cd8ed63c447d882958ff5fbe6dd6", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%"}}, "31f64f3801d34603bcb678d8d88d83f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3029038eaec4733a5f0438439b843e5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4cf90d57769c4f3aae212728b54aba6a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31f64f3801d34603bcb678d8d88d83f6", "placeholder": "\u200b", "style": "IPY_MODEL_c3029038eaec4733a5f0438439b843e5", "tabbable": null, "tooltip": null, "value": " 30/30 [00:00<00:00, 437.20it/s]"}}, "924a2835da754654ae4815fa9f5ef2fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "633c79ed95ab41e0aabbd57dbd3ecb08": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_db25e0c95dbd4fe58acc9c2e49009d2a", "IPY_MODEL_58627b4f134842dca11108614dae515e", "IPY_MODEL_4cf90d57769c4f3aae212728b54aba6a"], "layout": "IPY_MODEL_924a2835da754654ae4815fa9f5ef2fb", "tabbable": null, "tooltip": null}}, "e24577d1ffb640629f4e974978dd12fe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d8067231e5354369991d63ab259e569b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4e185115a3fe481bb647f7f4518b4dfc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e24577d1ffb640629f4e974978dd12fe", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d8067231e5354369991d63ab259e569b", "tabbable": null, "tooltip": null, "value": 30.0}}, "f2dc1e15160a4a7da0af031122d9a662": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b1015e6ccde4c4299ac75c1f98dcb22": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "29cb9371753c4992adc2f03e9fded233": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f2dc1e15160a4a7da0af031122d9a662", "placeholder": "\u200b", "style": "IPY_MODEL_4b1015e6ccde4c4299ac75c1f98dcb22", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%"}}, "9244d510c1fe4a9f858e8d747a5fb295": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "66b9efd6c0844f4a916d16ba72b3d48e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "23e3234032514e6680b01e2f25da0326": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9244d510c1fe4a9f858e8d747a5fb295", "placeholder": "\u200b", "style": "IPY_MODEL_66b9efd6c0844f4a916d16ba72b3d48e", "tabbable": null, "tooltip": null, "value": " 30/30 [00:21<00:00, 1.39it/s]"}}, "30f03336498f4516a6d36df879f490a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7cc6878891b34dc6b9eee074c27b9942": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_29cb9371753c4992adc2f03e9fded233", "IPY_MODEL_4e185115a3fe481bb647f7f4518b4dfc", "IPY_MODEL_23e3234032514e6680b01e2f25da0326"], "layout": "IPY_MODEL_30f03336498f4516a6d36df879f490a1", "tabbable": null, "tooltip": null}}, "5003464293884ffa8065ab5b42f55410": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4017c8df71354bda92d5349ae9fef4f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "92739bcd527e4b43b2729ff01f60f8f6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5003464293884ffa8065ab5b42f55410", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4017c8df71354bda92d5349ae9fef4f0", "tabbable": null, "tooltip": null, "value": 30.0}}, "7dbf6f5ff049453eb1a13021b098acfa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b82d325bec94a47b9760cfd2a39a0df": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "77a6a651adfb453fa5d94c5e24358725": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7dbf6f5ff049453eb1a13021b098acfa", "placeholder": "\u200b", "style": "IPY_MODEL_1b82d325bec94a47b9760cfd2a39a0df", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%"}}, "fc49518bd58b48719e6296222d8ba180": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "716682390a83470282205d2427adfa3c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "54e4956dd0ef45b88635518452443a61": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fc49518bd58b48719e6296222d8ba180", "placeholder": "\u200b", "style": "IPY_MODEL_716682390a83470282205d2427adfa3c", "tabbable": null, "tooltip": null, "value": " 30/30 [00:01<00:00, 22.39it/s]"}}, "ad6f45a3725e4aafa3404454d480c462": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc2a058975cf4670b5ea53ada4efa60e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_77a6a651adfb453fa5d94c5e24358725", "IPY_MODEL_92739bcd527e4b43b2729ff01f60f8f6", "IPY_MODEL_54e4956dd0ef45b88635518452443a61"], "layout": "IPY_MODEL_ad6f45a3725e4aafa3404454d480c462", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"aa8d1da8c49c4d2a884a06dab1f31831": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "605b331b013a4216a3a1d69843abfb9d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2dada95fdc0c47b88fb6c50ae7618090": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aa8d1da8c49c4d2a884a06dab1f31831", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_605b331b013a4216a3a1d69843abfb9d", "tabbable": null, "tooltip": null, "value": 30.0}}, "b4cfe9721e084dcf8d5ed3d647c40487": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d01add5fe210416992ea136cad4f9a50": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "106210816124408ca0e833f78c8c2750": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b4cfe9721e084dcf8d5ed3d647c40487", "placeholder": "\u200b", "style": "IPY_MODEL_d01add5fe210416992ea136cad4f9a50", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%"}}, "132a2934c1e94813804517068cca530c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "515057138d954b6ebf522b421c89d5f2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ecfa15309b0748c9a716660fa9b963b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_132a2934c1e94813804517068cca530c", "placeholder": "\u200b", "style": "IPY_MODEL_515057138d954b6ebf522b421c89d5f2", "tabbable": null, "tooltip": null, "value": " 30/30 [00:00<00:00, 423.89it/s]"}}, "b476da5146714d8d93cca98c05787c7a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c8c2e28ad93b4bdd9fc175ec25c69050": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_106210816124408ca0e833f78c8c2750", "IPY_MODEL_2dada95fdc0c47b88fb6c50ae7618090", "IPY_MODEL_ecfa15309b0748c9a716660fa9b963b0"], "layout": "IPY_MODEL_b476da5146714d8d93cca98c05787c7a", "tabbable": null, "tooltip": null}}, "fde2f9b7dcca4cb7b2e34c2392682342": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "103b031096294a14966691d435d6a362": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a38d8339b17a4450931b440a9b5583fd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fde2f9b7dcca4cb7b2e34c2392682342", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_103b031096294a14966691d435d6a362", "tabbable": null, "tooltip": null, "value": 30.0}}, "6d2092724d374342be5b8f9b4a89b9d9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8b227e07b4534bf5bb14643f40e77d70": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f71171dbaac542ab888563268f45ef8c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6d2092724d374342be5b8f9b4a89b9d9", "placeholder": "\u200b", "style": "IPY_MODEL_8b227e07b4534bf5bb14643f40e77d70", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%"}}, "797d2e014b75484db3c4d231eb1ea0b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85a1f5bf0cac46fa928b2505eed353ee": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "53b94fb45c8f40ac801a8583ce8a7a73": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_797d2e014b75484db3c4d231eb1ea0b4", "placeholder": "\u200b", "style": "IPY_MODEL_85a1f5bf0cac46fa928b2505eed353ee", "tabbable": null, "tooltip": null, "value": " 30/30 [00:22<00:00, 1.36it/s]"}}, "f5093f8381674d4c92872ec4fd9fa6e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea58fb54e03a45d5b2072a4db0195034": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f71171dbaac542ab888563268f45ef8c", "IPY_MODEL_a38d8339b17a4450931b440a9b5583fd", "IPY_MODEL_53b94fb45c8f40ac801a8583ce8a7a73"], "layout": "IPY_MODEL_f5093f8381674d4c92872ec4fd9fa6e4", "tabbable": null, "tooltip": null}}, "38c1a2e3eb594faea8eb2159dc493400": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26bfc64f16c340dfb305f1ed58a36893": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "256b1a27f64b492eb415fe31f617f17e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_38c1a2e3eb594faea8eb2159dc493400", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_26bfc64f16c340dfb305f1ed58a36893", "tabbable": null, "tooltip": null, "value": 30.0}}, "a1e0af03c0aa4af59354b9330442282e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e5ddda315dd424898bc3e19b40c8911": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cfc0a965d67648e0a57cd05e92e22c4b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a1e0af03c0aa4af59354b9330442282e", "placeholder": "\u200b", "style": "IPY_MODEL_4e5ddda315dd424898bc3e19b40c8911", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%"}}, "0d25ab13f4d04ef39fede621e03c9b68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0df6444b371a41e586ef22dd0d96e299": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "326727f0539e449b89ff29010c44925d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0d25ab13f4d04ef39fede621e03c9b68", "placeholder": "\u200b", "style": "IPY_MODEL_0df6444b371a41e586ef22dd0d96e299", "tabbable": null, "tooltip": null, "value": " 30/30 [00:01<00:00, 22.03it/s]"}}, "1165496d989d4c618a382d0b049e90f3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30b77994083048219d1b9180228c2b4b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cfc0a965d67648e0a57cd05e92e22c4b", "IPY_MODEL_256b1a27f64b492eb415fe31f617f17e", "IPY_MODEL_326727f0539e449b89ff29010c44925d"], "layout": "IPY_MODEL_1165496d989d4c618a382d0b049e90f3", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 282a261ca..50fa2ea52 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:04.090778Z", - "iopub.status.busy": "2024-02-08T04:31:04.090311Z", - "iopub.status.idle": "2024-02-08T04:31:06.685136Z", - "shell.execute_reply": "2024-02-08T04:31:06.684460Z" + "iopub.execute_input": "2024-02-08T05:18:06.194836Z", + "iopub.status.busy": "2024-02-08T05:18:06.194464Z", + "iopub.status.idle": "2024-02-08T05:18:11.509123Z", + "shell.execute_reply": "2024-02-08T05:18:11.508442Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:31:06.687749Z", - "iopub.status.busy": "2024-02-08T04:31:06.687374Z", - "iopub.status.idle": "2024-02-08T04:32:33.192723Z", - "shell.execute_reply": "2024-02-08T04:32:33.192050Z" + "iopub.execute_input": "2024-02-08T05:18:11.511765Z", + "iopub.status.busy": "2024-02-08T05:18:11.511386Z", + "iopub.status.idle": "2024-02-08T05:19:01.334173Z", + "shell.execute_reply": "2024-02-08T05:19:01.333418Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:33.195218Z", - "iopub.status.busy": "2024-02-08T04:32:33.194983Z", - "iopub.status.idle": "2024-02-08T04:32:34.284442Z", - "shell.execute_reply": "2024-02-08T04:32:34.283882Z" + "iopub.execute_input": "2024-02-08T05:19:01.337024Z", + "iopub.status.busy": "2024-02-08T05:19:01.336645Z", + "iopub.status.idle": "2024-02-08T05:19:02.446829Z", + "shell.execute_reply": "2024-02-08T05:19:02.446265Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.287010Z", - "iopub.status.busy": "2024-02-08T04:32:34.286715Z", - "iopub.status.idle": "2024-02-08T04:32:34.289859Z", - "shell.execute_reply": "2024-02-08T04:32:34.289423Z" + "iopub.execute_input": "2024-02-08T05:19:02.449563Z", + "iopub.status.busy": "2024-02-08T05:19:02.449077Z", + "iopub.status.idle": "2024-02-08T05:19:02.452514Z", + "shell.execute_reply": "2024-02-08T05:19:02.451942Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.291762Z", - "iopub.status.busy": "2024-02-08T04:32:34.291582Z", - "iopub.status.idle": "2024-02-08T04:32:34.295486Z", - "shell.execute_reply": "2024-02-08T04:32:34.295037Z" + "iopub.execute_input": "2024-02-08T05:19:02.454973Z", + "iopub.status.busy": "2024-02-08T05:19:02.454564Z", + "iopub.status.idle": "2024-02-08T05:19:02.458751Z", + "shell.execute_reply": "2024-02-08T05:19:02.458289Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.297355Z", - "iopub.status.busy": "2024-02-08T04:32:34.297179Z", - "iopub.status.idle": "2024-02-08T04:32:34.300716Z", - "shell.execute_reply": "2024-02-08T04:32:34.300269Z" + "iopub.execute_input": "2024-02-08T05:19:02.461004Z", + "iopub.status.busy": "2024-02-08T05:19:02.460655Z", + "iopub.status.idle": "2024-02-08T05:19:02.464367Z", + "shell.execute_reply": "2024-02-08T05:19:02.463921Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.302700Z", - "iopub.status.busy": "2024-02-08T04:32:34.302414Z", - "iopub.status.idle": "2024-02-08T04:32:34.305247Z", - "shell.execute_reply": "2024-02-08T04:32:34.304818Z" + "iopub.execute_input": "2024-02-08T05:19:02.466454Z", + "iopub.status.busy": "2024-02-08T05:19:02.466133Z", + "iopub.status.idle": "2024-02-08T05:19:02.468853Z", + "shell.execute_reply": "2024-02-08T05:19:02.468435Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:32:34.307210Z", - "iopub.status.busy": "2024-02-08T04:32:34.306903Z", - "iopub.status.idle": "2024-02-08T04:33:50.468781Z", - "shell.execute_reply": "2024-02-08T04:33:50.468192Z" + "iopub.execute_input": "2024-02-08T05:19:02.470767Z", + "iopub.status.busy": "2024-02-08T05:19:02.470482Z", + "iopub.status.idle": "2024-02-08T05:20:19.455463Z", + "shell.execute_reply": "2024-02-08T05:20:19.454724Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "633c79ed95ab41e0aabbd57dbd3ecb08", + "model_id": "c8c2e28ad93b4bdd9fc175ec25c69050", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7cc6878891b34dc6b9eee074c27b9942", + "model_id": "ea58fb54e03a45d5b2072a4db0195034", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:50.471202Z", - "iopub.status.busy": "2024-02-08T04:33:50.471016Z", - "iopub.status.idle": "2024-02-08T04:33:51.129982Z", - "shell.execute_reply": "2024-02-08T04:33:51.129389Z" + "iopub.execute_input": "2024-02-08T05:20:19.458139Z", + "iopub.status.busy": "2024-02-08T05:20:19.457915Z", + "iopub.status.idle": "2024-02-08T05:20:20.138783Z", + "shell.execute_reply": "2024-02-08T05:20:20.138296Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:51.132369Z", - "iopub.status.busy": "2024-02-08T04:33:51.131864Z", - "iopub.status.idle": "2024-02-08T04:33:53.739824Z", - "shell.execute_reply": "2024-02-08T04:33:53.739233Z" + "iopub.execute_input": "2024-02-08T05:20:20.141021Z", + "iopub.status.busy": "2024-02-08T05:20:20.140710Z", + "iopub.status.idle": "2024-02-08T05:20:22.899351Z", + "shell.execute_reply": "2024-02-08T05:20:22.898717Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:33:53.741963Z", - "iopub.status.busy": "2024-02-08T04:33:53.741658Z", - "iopub.status.idle": "2024-02-08T04:34:26.078889Z", - "shell.execute_reply": "2024-02-08T04:34:26.078349Z" + "iopub.execute_input": "2024-02-08T05:20:22.901657Z", + "iopub.status.busy": "2024-02-08T05:20:22.901306Z", + "iopub.status.idle": "2024-02-08T05:20:55.974341Z", + "shell.execute_reply": "2024-02-08T05:20:55.973829Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15263/4997817 [00:00<00:32, 152620.32it/s]" + " 0%| | 15219/4997817 [00:00<00:32, 152175.63it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 30666/4997817 [00:00<00:32, 153444.23it/s]" + " 1%| | 30515/4997817 [00:00<00:32, 152628.96it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46403/4997817 [00:00<00:31, 155233.62it/s]" + " 1%| | 45778/4997817 [00:00<00:32, 152070.29it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 62088/4997817 [00:00<00:31, 155869.58it/s]" + " 1%| | 60986/4997817 [00:00<00:32, 151671.35it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 77755/4997817 [00:00<00:31, 156156.65it/s]" + " 2%|▏ | 76154/4997817 [00:00<00:32, 151334.04it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 93461/4997817 [00:00<00:31, 156459.90it/s]" + " 2%|▏ | 91408/4997817 [00:00<00:32, 151739.35it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 109145/4997817 [00:00<00:31, 156582.99it/s]" + " 2%|▏ | 106583/4997817 [00:00<00:32, 151262.88it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 124865/4997817 [00:00<00:31, 156775.77it/s]" + " 2%|▏ | 121799/4997817 [00:00<00:32, 151497.04it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 140561/4997817 [00:00<00:30, 156832.47it/s]" + " 3%|▎ | 136950/4997817 [00:00<00:32, 151116.12it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 156296/4997817 [00:01<00:30, 156990.78it/s]" + " 3%|▎ | 152062/4997817 [00:01<00:32, 150719.47it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 171996/4997817 [00:01<00:30, 156816.52it/s]" + " 3%|▎ | 167152/4997817 [00:01<00:32, 150772.00it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 187678/4997817 [00:01<00:30, 156789.10it/s]" + " 4%|▎ | 182311/4997817 [00:01<00:31, 151017.94it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 203449/4997817 [00:01<00:30, 157064.19it/s]" + " 4%|▍ | 197414/4997817 [00:01<00:32, 149004.91it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 219271/4997817 [00:01<00:30, 157411.47it/s]" + " 4%|▍ | 212321/4997817 [00:01<00:32, 148494.46it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 235039/4997817 [00:01<00:30, 157491.41it/s]" + " 5%|▍ | 227688/4997817 [00:01<00:31, 150033.39it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 250894/4997817 [00:01<00:30, 157807.98it/s]" + " 5%|▍ | 242927/4997817 [00:01<00:31, 150733.98it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 266675/4997817 [00:01<00:29, 157776.96it/s]" + " 5%|▌ | 258207/4997817 [00:01<00:31, 151349.15it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 282453/4997817 [00:01<00:29, 157761.99it/s]" + " 5%|▌ | 273519/4997817 [00:01<00:31, 151877.06it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 298230/4997817 [00:01<00:29, 157339.46it/s]" + " 6%|▌ | 288818/4997817 [00:01<00:30, 152206.19it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 313965/4997817 [00:02<00:29, 157107.54it/s]" + " 6%|▌ | 304086/4997817 [00:02<00:30, 152346.07it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 329811/4997817 [00:02<00:29, 157509.28it/s]" + " 6%|▋ | 319322/4997817 [00:02<00:30, 152226.57it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 345563/4997817 [00:02<00:30, 153954.15it/s]" + " 7%|▋ | 334625/4997817 [00:02<00:30, 152465.32it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 361251/4997817 [00:02<00:29, 154814.53it/s]" + " 7%|▋ | 349873/4997817 [00:02<00:30, 152288.21it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 376940/4997817 [00:02<00:29, 155427.51it/s]" + " 7%|▋ | 365103/4997817 [00:02<00:31, 149042.74it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 392762/4997817 [00:02<00:29, 156257.19it/s]" + " 8%|▊ | 380408/4997817 [00:02<00:30, 150221.43it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 408619/4997817 [00:02<00:29, 156944.77it/s]" + " 8%|▊ | 395607/4997817 [00:02<00:30, 150742.66it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 424451/4997817 [00:02<00:29, 157351.99it/s]" + " 8%|▊ | 410867/4997817 [00:02<00:30, 151292.06it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 440219/4997817 [00:02<00:28, 157448.13it/s]" + " 9%|▊ | 426153/4997817 [00:02<00:30, 151755.55it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 456014/4997817 [00:02<00:28, 157594.94it/s]" + " 9%|▉ | 441466/4997817 [00:02<00:29, 152163.81it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 471810/4997817 [00:03<00:28, 157702.43it/s]" + " 9%|▉ | 456687/4997817 [00:03<00:29, 152154.88it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 487647/4997817 [00:03<00:28, 157900.06it/s]" + " 9%|▉ | 472009/4997817 [00:03<00:29, 152471.31it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 503447/4997817 [00:03<00:28, 157926.90it/s]" + " 10%|▉ | 487319/4997817 [00:03<00:29, 152657.18it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 519243/4997817 [00:03<00:28, 157933.03it/s]" + " 10%|█ | 502587/4997817 [00:03<00:29, 152587.42it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 535046/4997817 [00:03<00:28, 157960.35it/s]" + " 10%|█ | 517878/4997817 [00:03<00:29, 152680.31it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 550843/4997817 [00:03<00:28, 157126.81it/s]" + " 11%|█ | 533228/4997817 [00:03<00:29, 152922.25it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 566561/4997817 [00:03<00:28, 157141.74it/s]" + " 11%|█ | 548521/4997817 [00:03<00:29, 152579.62it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 582279/4997817 [00:03<00:28, 157149.98it/s]" + " 11%|█▏ | 563780/4997817 [00:03<00:29, 152366.87it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 597995/4997817 [00:03<00:28, 157124.65it/s]" + " 12%|█▏ | 579068/4997817 [00:03<00:28, 152516.68it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 613708/4997817 [00:03<00:27, 156897.25it/s]" + " 12%|█▏ | 594320/4997817 [00:03<00:28, 152104.13it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 629508/4997817 [00:04<00:27, 157224.86it/s]" + " 12%|█▏ | 609531/4997817 [00:04<00:28, 152101.48it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 645231/4997817 [00:04<00:27, 157177.39it/s]" + " 13%|█▎ | 624752/4997817 [00:04<00:28, 152131.73it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 660949/4997817 [00:04<00:27, 156978.60it/s]" + " 13%|█▎ | 639966/4997817 [00:04<00:28, 151079.04it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 676648/4997817 [00:04<00:27, 156760.78it/s]" + " 13%|█▎ | 655076/4997817 [00:04<00:28, 151049.89it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 692325/4997817 [00:04<00:27, 156208.63it/s]" + " 13%|█▎ | 670183/4997817 [00:04<00:30, 143565.20it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 707947/4997817 [00:04<00:27, 156090.54it/s]" + " 14%|█▎ | 685377/4997817 [00:04<00:29, 145979.48it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 723563/4997817 [00:04<00:27, 156108.57it/s]" + " 14%|█▍ | 700538/4997817 [00:04<00:29, 147618.75it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739191/4997817 [00:04<00:27, 156158.25it/s]" + " 14%|█▍ | 715680/4997817 [00:04<00:28, 148734.34it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 754807/4997817 [00:04<00:27, 156048.28it/s]" + " 15%|█▍ | 730868/4997817 [00:04<00:28, 149661.46it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 770497/4997817 [00:04<00:27, 156302.41it/s]" + " 15%|█▍ | 746099/4997817 [00:04<00:28, 150444.15it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 786317/4997817 [00:05<00:26, 156868.27it/s]" + " 15%|█▌ | 761372/4997817 [00:05<00:28, 151122.68it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 802017/4997817 [00:05<00:26, 156904.88it/s]" + " 16%|█▌ | 776857/4997817 [00:05<00:27, 152232.63it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 817708/4997817 [00:05<00:27, 153225.26it/s]" + " 16%|█▌ | 792347/4997817 [00:05<00:27, 153026.64it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 833392/4997817 [00:05<00:26, 154288.53it/s]" + " 16%|█▌ | 807768/4997817 [00:05<00:27, 153377.03it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 849328/4997817 [00:05<00:26, 155788.65it/s]" + " 16%|█▋ | 823303/4997817 [00:05<00:27, 153966.34it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 865122/4997817 [00:05<00:26, 156427.57it/s]" + " 17%|█▋ | 838868/4997817 [00:05<00:26, 154469.02it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 880887/4997817 [00:05<00:26, 156788.95it/s]" + " 17%|█▋ | 854393/4997817 [00:05<00:26, 154699.52it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 896614/4997817 [00:05<00:26, 156931.70it/s]" + " 17%|█▋ | 869879/4997817 [00:05<00:26, 154744.14it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 912312/4997817 [00:05<00:26, 156914.97it/s]" + " 18%|█▊ | 885355/4997817 [00:05<00:26, 154662.03it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 928025/4997817 [00:05<00:25, 156976.92it/s]" + " 18%|█▊ | 900823/4997817 [00:05<00:26, 154618.28it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 943726/4997817 [00:06<00:25, 156932.85it/s]" + " 18%|█▊ | 916286/4997817 [00:06<00:26, 154561.85it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 959463/4997817 [00:06<00:25, 157062.64it/s]" + " 19%|█▊ | 931866/4997817 [00:06<00:26, 154930.84it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 975171/4997817 [00:06<00:25, 156949.11it/s]" + " 19%|█▉ | 947360/4997817 [00:06<00:26, 154896.54it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 990867/4997817 [00:06<00:25, 156556.37it/s]" + " 19%|█▉ | 962850/4997817 [00:06<00:26, 154866.84it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1006550/4997817 [00:06<00:25, 156635.05it/s]" + " 20%|█▉ | 978337/4997817 [00:06<00:25, 154782.30it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1022215/4997817 [00:06<00:25, 156528.27it/s]" + " 20%|█▉ | 993816/4997817 [00:06<00:25, 154378.72it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1037881/4997817 [00:06<00:25, 156565.86it/s]" + " 20%|██ | 1009295/4997817 [00:06<00:25, 154498.77it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1053699/4997817 [00:06<00:25, 157047.75it/s]" + " 21%|██ | 1024770/4997817 [00:06<00:25, 154570.08it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1069405/4997817 [00:06<00:25, 157030.48it/s]" + " 21%|██ | 1040292/4997817 [00:06<00:25, 154762.00it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1085109/4997817 [00:06<00:24, 157023.73it/s]" + " 21%|██ | 1055833/4997817 [00:06<00:25, 154953.40it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1100812/4997817 [00:07<00:24, 157017.91it/s]" + " 21%|██▏ | 1071368/4997817 [00:07<00:25, 155068.69it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1116514/4997817 [00:07<00:24, 156868.74it/s]" + " 22%|██▏ | 1086875/4997817 [00:07<00:25, 154910.98it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1132201/4997817 [00:07<00:24, 156856.61it/s]" + " 22%|██▏ | 1102367/4997817 [00:07<00:25, 154771.95it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1147887/4997817 [00:07<00:24, 156805.11it/s]" + " 22%|██▏ | 1117845/4997817 [00:07<00:25, 154473.84it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1163580/4997817 [00:07<00:24, 156840.13it/s]" + " 23%|██▎ | 1133293/4997817 [00:07<00:25, 153830.15it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1179265/4997817 [00:07<00:24, 156735.23it/s]" + " 23%|██▎ | 1148677/4997817 [00:07<00:25, 152795.48it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1194966/4997817 [00:07<00:24, 156815.51it/s]" + " 23%|██▎ | 1164033/4997817 [00:07<00:25, 153020.57it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1210648/4997817 [00:07<00:24, 156722.01it/s]" + " 24%|██▎ | 1179445/4997817 [00:07<00:24, 153346.10it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1226321/4997817 [00:07<00:24, 156153.98it/s]" + " 24%|██▍ | 1194827/4997817 [00:07<00:24, 153485.79it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1241937/4997817 [00:07<00:24, 156124.87it/s]" + " 24%|██▍ | 1210177/4997817 [00:07<00:24, 153406.60it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1257558/4997817 [00:08<00:23, 156148.50it/s]" + " 25%|██▍ | 1225519/4997817 [00:08<00:24, 153329.14it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1273179/4997817 [00:08<00:23, 156164.18it/s]" + " 25%|██▍ | 1240853/4997817 [00:08<00:24, 152990.60it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1288823/4997817 [00:08<00:23, 156245.31it/s]" + " 25%|██▌ | 1256153/4997817 [00:08<00:24, 152916.47it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1304448/4997817 [00:08<00:24, 149122.57it/s]" + " 25%|██▌ | 1271445/4997817 [00:08<00:24, 152236.93it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1320201/4997817 [00:08<00:24, 151560.64it/s]" + " 26%|██▌ | 1286713/4997817 [00:08<00:24, 152365.67it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1335784/4997817 [00:08<00:23, 152810.29it/s]" + " 26%|██▌ | 1302067/4997817 [00:08<00:24, 152714.43it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1351437/4997817 [00:08<00:23, 153905.86it/s]" + " 26%|██▋ | 1317531/4997817 [00:08<00:24, 153287.37it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1367067/4997817 [00:08<00:23, 154615.30it/s]" + " 27%|██▋ | 1332993/4997817 [00:08<00:23, 153682.36it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1382626/4997817 [00:08<00:23, 154902.96it/s]" + " 27%|██▋ | 1348485/4997817 [00:08<00:23, 154049.29it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1398347/4997817 [00:08<00:23, 155589.95it/s]" + " 27%|██▋ | 1363898/4997817 [00:08<00:23, 154071.65it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1414047/4997817 [00:09<00:22, 156009.20it/s]" + " 28%|██▊ | 1379399/4997817 [00:09<00:23, 154351.60it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1429657/4997817 [00:09<00:22, 155598.60it/s]" + " 28%|██▊ | 1394835/4997817 [00:09<00:23, 154191.34it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1445223/4997817 [00:09<00:22, 155576.53it/s]" + " 28%|██▊ | 1410321/4997817 [00:09<00:23, 154389.90it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1460785/4997817 [00:09<00:23, 151230.69it/s]" + " 29%|██▊ | 1425761/4997817 [00:09<00:23, 154373.66it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1476499/4997817 [00:09<00:23, 152962.50it/s]" + " 29%|██▉ | 1441199/4997817 [00:09<00:23, 154033.50it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1492193/4997817 [00:09<00:22, 154135.92it/s]" + " 29%|██▉ | 1456681/4997817 [00:09<00:22, 154241.61it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1507910/4997817 [00:09<00:22, 155034.80it/s]" + " 29%|██▉ | 1472106/4997817 [00:09<00:23, 149708.68it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1523500/4997817 [00:09<00:22, 155291.00it/s]" + " 30%|██▉ | 1487442/4997817 [00:09<00:23, 150778.12it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1539068/4997817 [00:09<00:22, 155405.46it/s]" + " 30%|███ | 1502934/4997817 [00:09<00:22, 151998.09it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1554740/4997817 [00:09<00:22, 155797.39it/s]" + " 30%|███ | 1518481/4997817 [00:09<00:22, 153026.59it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1570325/4997817 [00:10<00:22, 155632.09it/s]" + " 31%|███ | 1533971/4997817 [00:10<00:22, 153580.89it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1585935/4997817 [00:10<00:21, 155771.47it/s]" + " 31%|███ | 1549477/4997817 [00:10<00:22, 154018.67it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1601515/4997817 [00:10<00:21, 155577.69it/s]" + " 31%|███▏ | 1564939/4997817 [00:10<00:22, 154195.91it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1617101/4997817 [00:10<00:21, 155645.58it/s]" + " 32%|███▏ | 1580364/4997817 [00:10<00:22, 153889.50it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1632667/4997817 [00:10<00:22, 148235.31it/s]" + " 32%|███▏ | 1595792/4997817 [00:10<00:22, 154004.33it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1648018/4997817 [00:10<00:22, 149759.46it/s]" + " 32%|███▏ | 1611227/4997817 [00:10<00:21, 154106.29it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1663496/4997817 [00:10<00:22, 151227.25it/s]" + " 33%|███▎ | 1626640/4997817 [00:10<00:21, 153914.83it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1679092/4997817 [00:10<00:21, 152620.63it/s]" + " 33%|███▎ | 1642067/4997817 [00:10<00:21, 154017.91it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1694624/4997817 [00:10<00:21, 153418.04it/s]" + " 33%|███▎ | 1657470/4997817 [00:10<00:21, 153883.75it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1710114/4997817 [00:10<00:21, 153856.65it/s]" + " 33%|███▎ | 1672885/4997817 [00:10<00:21, 153960.13it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1725618/4997817 [00:11<00:21, 154206.80it/s]" + " 34%|███▍ | 1688410/4997817 [00:11<00:21, 154345.25it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1741184/4997817 [00:11<00:21, 154637.42it/s]" + " 34%|███▍ | 1703989/4997817 [00:11<00:21, 154777.26it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1756809/4997817 [00:11<00:20, 155118.45it/s]" + " 34%|███▍ | 1719468/4997817 [00:11<00:21, 154729.80it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1772353/4997817 [00:11<00:20, 155210.55it/s]" + " 35%|███▍ | 1734942/4997817 [00:11<00:21, 154566.62it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1787879/4997817 [00:11<00:20, 155071.46it/s]" + " 35%|███▌ | 1750507/4997817 [00:11<00:20, 154890.07it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1803441/4997817 [00:11<00:20, 155232.57it/s]" + " 35%|███▌ | 1766005/4997817 [00:11<00:20, 154914.31it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1818967/4997817 [00:11<00:20, 155131.89it/s]" + " 36%|███▌ | 1781497/4997817 [00:11<00:21, 147546.06it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1834552/4997817 [00:11<00:20, 155345.75it/s]" + " 36%|███▌ | 1796958/4997817 [00:11<00:21, 149591.06it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1850088/4997817 [00:11<00:20, 155196.47it/s]" + " 36%|███▋ | 1812454/4997817 [00:11<00:21, 151160.60it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1865620/4997817 [00:11<00:20, 155230.31it/s]" + " 37%|███▋ | 1827877/4997817 [00:11<00:20, 152061.89it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1881152/4997817 [00:12<00:20, 155254.90it/s]" + " 37%|███▋ | 1843464/4997817 [00:12<00:20, 153189.44it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1896678/4997817 [00:12<00:19, 155248.93it/s]" + " 37%|███▋ | 1858984/4997817 [00:12<00:20, 153786.46it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1912204/4997817 [00:12<00:19, 155052.44it/s]" + " 38%|███▊ | 1874464/4997817 [00:12<00:20, 154084.92it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1927782/4997817 [00:12<00:19, 155267.04it/s]" + " 38%|███▊ | 1889886/4997817 [00:12<00:20, 154001.26it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1943309/4997817 [00:12<00:20, 147382.65it/s]" + " 38%|███▊ | 1905352/4997817 [00:12<00:20, 154197.03it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1958900/4997817 [00:12<00:20, 149845.53it/s]" + " 38%|███▊ | 1920784/4997817 [00:12<00:19, 154230.24it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1974144/4997817 [00:12<00:20, 150601.16it/s]" + " 39%|███▊ | 1936212/4997817 [00:12<00:20, 148546.66it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1989777/4997817 [00:12<00:19, 152285.11it/s]" + " 39%|███▉ | 1951414/4997817 [00:12<00:20, 149557.92it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2005339/4997817 [00:12<00:19, 153271.17it/s]" + " 39%|███▉ | 1966912/4997817 [00:12<00:20, 151149.78it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2020923/4997817 [00:12<00:19, 154032.12it/s]" + " 40%|███▉ | 1982262/4997817 [00:12<00:19, 151843.47it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2036556/4997817 [00:13<00:19, 154716.13it/s]" + " 40%|███▉ | 1997680/4997817 [00:13<00:19, 152533.87it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2052197/4997817 [00:13<00:18, 155218.30it/s]" + " 40%|████ | 2012949/4997817 [00:13<00:19, 152506.11it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2067791/4997817 [00:13<00:18, 155431.62it/s]" + " 41%|████ | 2028211/4997817 [00:13<00:19, 152396.45it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2083480/4997817 [00:13<00:18, 155866.53it/s]" + " 41%|████ | 2043459/4997817 [00:13<00:19, 152411.03it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2099072/4997817 [00:13<00:18, 153960.26it/s]" + " 41%|████ | 2058765/4997817 [00:13<00:19, 152604.20it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2114477/4997817 [00:13<00:19, 149462.47it/s]" + " 41%|████▏ | 2074030/4997817 [00:13<00:19, 152499.64it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2129964/4997817 [00:13<00:18, 151036.87it/s]" + " 42%|████▏ | 2089285/4997817 [00:13<00:19, 152513.02it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2145511/4997817 [00:13<00:18, 152339.93it/s]" + " 42%|████▏ | 2104539/4997817 [00:13<00:19, 151666.67it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2161091/4997817 [00:13<00:18, 153360.76it/s]" + " 42%|████▏ | 2119708/4997817 [00:13<00:19, 151082.79it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2176618/4997817 [00:14<00:18, 153926.20it/s]" + " 43%|████▎ | 2134819/4997817 [00:13<00:18, 150954.13it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2192023/4997817 [00:14<00:18, 153927.27it/s]" + " 43%|████▎ | 2149966/4997817 [00:14<00:18, 151105.70it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2207487/4997817 [00:14<00:18, 154138.21it/s]" + " 43%|████▎ | 2165078/4997817 [00:14<00:18, 150864.63it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2222907/4997817 [00:14<00:18, 154133.22it/s]" + " 44%|████▎ | 2180212/4997817 [00:14<00:18, 151004.51it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2238462/4997817 [00:14<00:17, 154555.13it/s]" + " 44%|████▍ | 2195377/4997817 [00:14<00:18, 151195.99it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2254046/4997817 [00:14<00:17, 154936.96it/s]" + " 44%|████▍ | 2210676/4997817 [00:14<00:18, 151731.76it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2269542/4997817 [00:14<00:17, 154628.66it/s]" + " 45%|████▍ | 2225850/4997817 [00:14<00:18, 151531.53it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2285034/4997817 [00:14<00:17, 154712.81it/s]" + " 45%|████▍ | 2241004/4997817 [00:14<00:18, 151333.79it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2300521/4997817 [00:14<00:17, 154756.29it/s]" + " 45%|████▌ | 2256138/4997817 [00:14<00:18, 150729.51it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2316076/4997817 [00:14<00:17, 154990.85it/s]" + " 45%|████▌ | 2271212/4997817 [00:14<00:18, 150197.98it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2331731/4997817 [00:15<00:17, 155457.59it/s]" + " 46%|████▌ | 2286233/4997817 [00:15<00:18, 150187.72it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2347419/4997817 [00:15<00:17, 155882.10it/s]" + " 46%|████▌ | 2301330/4997817 [00:15<00:17, 150418.31it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2363116/4997817 [00:15<00:16, 156205.14it/s]" + " 46%|████▋ | 2316399/4997817 [00:15<00:17, 150498.24it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2378808/4997817 [00:15<00:16, 156417.45it/s]" + " 47%|████▋ | 2331548/4997817 [00:15<00:17, 150793.94it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2394450/4997817 [00:15<00:16, 156396.45it/s]" + " 47%|████▋ | 2346781/4997817 [00:15<00:17, 151253.19it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2410090/4997817 [00:15<00:16, 156233.00it/s]" + " 47%|████▋ | 2362004/4997817 [00:15<00:17, 151542.75it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2425714/4997817 [00:15<00:16, 153347.97it/s]" + " 48%|████▊ | 2377162/4997817 [00:15<00:17, 151551.14it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2441355/4997817 [00:15<00:16, 154251.91it/s]" + " 48%|████▊ | 2392436/4997817 [00:15<00:17, 151906.04it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2456999/4997817 [00:15<00:16, 154899.45it/s]" + " 48%|████▊ | 2407643/4997817 [00:15<00:17, 151953.19it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2472573/4997817 [00:15<00:16, 155147.20it/s]" + " 48%|████▊ | 2423011/4997817 [00:15<00:16, 152469.29it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488269/4997817 [00:16<00:16, 155687.39it/s]" + " 49%|████▉ | 2438258/4997817 [00:16<00:16, 152457.99it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2503888/4997817 [00:16<00:16, 155834.72it/s]" + " 49%|████▉ | 2453589/4997817 [00:16<00:16, 152711.08it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2519475/4997817 [00:16<00:15, 155805.85it/s]" + " 49%|████▉ | 2468861/4997817 [00:16<00:16, 152406.11it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2535058/4997817 [00:16<00:15, 155369.20it/s]" + " 50%|████▉ | 2484102/4997817 [00:16<00:16, 152383.37it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2550597/4997817 [00:16<00:15, 155179.21it/s]" + " 50%|█████ | 2499341/4997817 [00:16<00:16, 152361.67it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2566117/4997817 [00:16<00:15, 155127.40it/s]" + " 50%|█████ | 2514736/4997817 [00:16<00:16, 152835.48it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2581758/4997817 [00:16<00:15, 155508.94it/s]" + " 51%|█████ | 2530062/4997817 [00:16<00:16, 152961.70it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2597417/4997817 [00:16<00:15, 155829.62it/s]" + " 51%|█████ | 2545402/4997817 [00:16<00:16, 153090.00it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2613047/4997817 [00:16<00:15, 155967.82it/s]" + " 51%|█████ | 2560712/4997817 [00:16<00:15, 152472.61it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2628736/4997817 [00:16<00:15, 156242.26it/s]" + " 52%|█████▏ | 2576006/4997817 [00:16<00:15, 152608.52it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2644396/4997817 [00:17<00:15, 156346.54it/s]" + " 52%|█████▏ | 2591361/4997817 [00:17<00:15, 152887.01it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2660031/4997817 [00:17<00:14, 156281.93it/s]" + " 52%|█████▏ | 2606651/4997817 [00:17<00:15, 152751.10it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2675660/4997817 [00:17<00:14, 156120.12it/s]" + " 52%|█████▏ | 2621927/4997817 [00:17<00:15, 152635.77it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2691280/4997817 [00:17<00:14, 156142.76it/s]" + " 53%|█████▎ | 2637191/4997817 [00:17<00:15, 152547.55it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2706895/4997817 [00:17<00:14, 155947.37it/s]" + " 53%|█████▎ | 2652472/4997817 [00:17<00:15, 152623.26it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2722572/4997817 [00:17<00:14, 156193.18it/s]" + " 53%|█████▎ | 2667735/4997817 [00:17<00:15, 152574.74it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2738193/4997817 [00:17<00:14, 156195.92it/s]" + " 54%|█████▎ | 2682993/4997817 [00:17<00:15, 152551.51it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2753813/4997817 [00:17<00:14, 150301.55it/s]" + " 54%|█████▍ | 2698249/4997817 [00:17<00:15, 152430.35it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2769422/4997817 [00:17<00:14, 151987.78it/s]" + " 54%|█████▍ | 2713493/4997817 [00:17<00:14, 152302.06it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2785064/4997817 [00:17<00:14, 153289.24it/s]" + " 55%|█████▍ | 2728724/4997817 [00:17<00:15, 151063.24it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2800777/4997817 [00:18<00:14, 154423.61it/s]" + " 55%|█████▍ | 2743939/4997817 [00:18<00:14, 151383.79it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2816532/4997817 [00:18<00:14, 155351.64it/s]" + " 55%|█████▌ | 2759158/4997817 [00:18<00:14, 151621.64it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2832326/4997817 [00:18<00:13, 156121.44it/s]" + " 56%|█████▌ | 2774348/4997817 [00:18<00:14, 151702.75it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2848000/4997817 [00:18<00:13, 156304.73it/s]" + " 56%|█████▌ | 2789597/4997817 [00:18<00:14, 151936.90it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2863639/4997817 [00:18<00:13, 156075.36it/s]" + " 56%|█████▌ | 2804823/4997817 [00:18<00:14, 152032.20it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2879282/4997817 [00:18<00:13, 156179.98it/s]" + " 56%|█████▋ | 2820027/4997817 [00:18<00:14, 152028.49it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2894905/4997817 [00:18<00:13, 156130.38it/s]" + " 57%|█████▋ | 2835231/4997817 [00:18<00:14, 151863.98it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2910521/4997817 [00:18<00:13, 155588.20it/s]" + " 57%|█████▋ | 2850481/4997817 [00:18<00:14, 152051.86it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2926101/4997817 [00:18<00:13, 155647.77it/s]" + " 57%|█████▋ | 2865687/4997817 [00:18<00:14, 152021.10it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2941668/4997817 [00:18<00:13, 155279.31it/s]" + " 58%|█████▊ | 2880890/4997817 [00:18<00:13, 151948.23it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2957198/4997817 [00:19<00:13, 155117.95it/s]" + " 58%|█████▊ | 2896119/4997817 [00:19<00:13, 152047.99it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2972765/4997817 [00:19<00:13, 155281.18it/s]" + " 58%|█████▊ | 2911324/4997817 [00:19<00:13, 151894.90it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2988398/4997817 [00:19<00:12, 155591.93it/s]" + " 59%|█████▊ | 2926514/4997817 [00:19<00:13, 151707.99it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3003958/4997817 [00:19<00:12, 155555.18it/s]" + " 59%|█████▉ | 2941685/4997817 [00:19<00:13, 151331.30it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3019690/4997817 [00:19<00:12, 156080.74it/s]" + " 59%|█████▉ | 2956862/4997817 [00:19<00:13, 151461.27it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3035372/4997817 [00:19<00:12, 156299.79it/s]" + " 59%|█████▉ | 2972034/4997817 [00:19<00:13, 151534.88it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3051003/4997817 [00:19<00:12, 154260.07it/s]" + " 60%|█████▉ | 2987200/4997817 [00:19<00:13, 151569.37it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3066480/4997817 [00:19<00:12, 154409.21it/s]" + " 60%|██████ | 3002482/4997817 [00:19<00:13, 151940.96it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3082098/4997817 [00:19<00:12, 154934.80it/s]" + " 60%|██████ | 3017677/4997817 [00:19<00:13, 151819.15it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3097722/4997817 [00:19<00:12, 155321.11it/s]" + " 61%|██████ | 3032885/4997817 [00:19<00:12, 151894.65it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3113318/4997817 [00:20<00:12, 155509.63it/s]" + " 61%|██████ | 3048113/4997817 [00:20<00:12, 152008.14it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3128913/4997817 [00:20<00:12, 155639.58it/s]" + " 61%|██████▏ | 3063393/4997817 [00:20<00:12, 152242.46it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3144479/4997817 [00:20<00:11, 155436.41it/s]" + " 62%|██████▏ | 3078624/4997817 [00:20<00:12, 152259.82it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3160024/4997817 [00:20<00:11, 155424.44it/s]" + " 62%|██████▏ | 3093999/4997817 [00:20<00:12, 152703.83it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3175636/4997817 [00:20<00:11, 155631.16it/s]" + " 62%|██████▏ | 3109270/4997817 [00:20<00:12, 152597.70it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3191241/4997817 [00:20<00:11, 155756.16it/s]" + " 63%|██████▎ | 3124545/4997817 [00:20<00:12, 152640.02it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3206843/4997817 [00:20<00:11, 155833.52it/s]" + " 63%|██████▎ | 3139820/4997817 [00:20<00:12, 152672.28it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3222427/4997817 [00:20<00:11, 155273.07it/s]" + " 63%|██████▎ | 3155088/4997817 [00:20<00:12, 152185.95it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3237981/4997817 [00:20<00:11, 155351.19it/s]" + " 63%|██████▎ | 3170307/4997817 [00:20<00:12, 152112.32it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3253517/4997817 [00:20<00:11, 154931.20it/s]" + " 64%|██████▎ | 3185530/4997817 [00:20<00:11, 152144.01it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3269081/4997817 [00:21<00:11, 155140.63it/s]" + " 64%|██████▍ | 3200769/4997817 [00:21<00:11, 152215.78it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3284643/4997817 [00:21<00:11, 155282.26it/s]" + " 64%|██████▍ | 3215991/4997817 [00:21<00:11, 152101.57it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3300172/4997817 [00:21<00:10, 154899.59it/s]" + " 65%|██████▍ | 3231212/4997817 [00:21<00:11, 152132.03it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3315734/4997817 [00:21<00:10, 155110.38it/s]" + " 65%|██████▍ | 3246456/4997817 [00:21<00:11, 152222.64it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3331370/4997817 [00:21<00:10, 155482.10it/s]" + " 65%|██████▌ | 3261753/4997817 [00:21<00:11, 152443.70it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3346919/4997817 [00:21<00:10, 155478.18it/s]" + " 66%|██████▌ | 3277013/4997817 [00:21<00:11, 152488.65it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3362526/4997817 [00:21<00:10, 155654.59it/s]" + " 66%|██████▌ | 3292262/4997817 [00:21<00:11, 152111.15it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3378092/4997817 [00:21<00:10, 155458.59it/s]" + " 66%|██████▌ | 3307474/4997817 [00:21<00:11, 151890.48it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3393723/4997817 [00:21<00:10, 155711.81it/s]" + " 66%|██████▋ | 3322664/4997817 [00:21<00:11, 151792.11it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3409391/4997817 [00:21<00:10, 155999.46it/s]" + " 67%|██████▋ | 3338019/4997817 [00:21<00:10, 152314.90it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3425019/4997817 [00:22<00:10, 156082.27it/s]" + " 67%|██████▋ | 3353323/4997817 [00:22<00:10, 152529.53it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3440777/4997817 [00:22<00:09, 156528.39it/s]" + " 67%|██████▋ | 3368577/4997817 [00:22<00:10, 152460.16it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3456471/4997817 [00:22<00:09, 156650.75it/s]" + " 68%|██████▊ | 3383824/4997817 [00:22<00:10, 152309.28it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3472159/4997817 [00:22<00:09, 156718.43it/s]" + " 68%|██████▊ | 3399056/4997817 [00:22<00:10, 151943.79it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3487831/4997817 [00:22<00:09, 156663.27it/s]" + " 68%|██████▊ | 3414251/4997817 [00:22<00:10, 151765.12it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3503498/4997817 [00:22<00:09, 156604.19it/s]" + " 69%|██████▊ | 3429493/4997817 [00:22<00:10, 151958.92it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3519159/4997817 [00:22<00:09, 156242.75it/s]" + " 69%|██████▉ | 3444690/4997817 [00:22<00:10, 151836.87it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3534858/4997817 [00:22<00:09, 156463.62it/s]" + " 69%|██████▉ | 3459874/4997817 [00:22<00:10, 151774.03it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3550505/4997817 [00:22<00:09, 149036.13it/s]" + " 70%|██████▉ | 3475111/4997817 [00:22<00:10, 151949.21it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3566172/4997817 [00:22<00:09, 151244.49it/s]" + " 70%|██████▉ | 3490307/4997817 [00:22<00:09, 151945.21it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3581958/4997817 [00:23<00:09, 153178.22it/s]" + " 70%|███████ | 3505502/4997817 [00:23<00:09, 149425.36it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3597789/4997817 [00:23<00:09, 154690.37it/s]" + " 70%|███████ | 3520675/4997817 [00:23<00:09, 150104.81it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3613468/4997817 [00:23<00:08, 155310.76it/s]" + " 71%|███████ | 3536035/4997817 [00:23<00:09, 151141.36it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3629200/4997817 [00:23<00:08, 155906.08it/s]" + " 71%|███████ | 3551305/4997817 [00:23<00:09, 151603.89it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3644976/4997817 [00:23<00:08, 156457.28it/s]" + " 71%|███████▏ | 3566631/4997817 [00:23<00:09, 152096.15it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3660681/4997817 [00:23<00:08, 156631.04it/s]" + " 72%|███████▏ | 3582057/4997817 [00:23<00:09, 152739.92it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3676412/4997817 [00:23<00:08, 156830.70it/s]" + " 72%|███████▏ | 3597451/4997817 [00:23<00:09, 153097.47it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3692102/4997817 [00:23<00:08, 156763.32it/s]" + " 72%|███████▏ | 3612812/4997817 [00:23<00:09, 153248.53it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3707783/4997817 [00:23<00:08, 156228.59it/s]" + " 73%|███████▎ | 3628145/4997817 [00:23<00:08, 153269.81it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3723410/4997817 [00:23<00:08, 156001.90it/s]" + " 73%|███████▎ | 3643473/4997817 [00:23<00:08, 153075.54it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3739013/4997817 [00:24<00:08, 155896.92it/s]" + " 73%|███████▎ | 3658782/4997817 [00:24<00:08, 152987.26it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3754680/4997817 [00:24<00:07, 156126.72it/s]" + " 74%|███████▎ | 3674219/4997817 [00:24<00:08, 153400.11it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3770294/4997817 [00:24<00:07, 155956.77it/s]" + " 74%|███████▍ | 3689609/4997817 [00:24<00:08, 153548.76it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3785910/4997817 [00:24<00:07, 156016.86it/s]" + " 74%|███████▍ | 3704965/4997817 [00:24<00:08, 153215.87it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3801513/4997817 [00:24<00:07, 155964.71it/s]" + " 74%|███████▍ | 3720330/4997817 [00:24<00:08, 153308.02it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3817120/4997817 [00:24<00:07, 155992.84it/s]" + " 75%|███████▍ | 3735745/4997817 [00:24<00:08, 153557.19it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3832720/4997817 [00:24<00:07, 155983.55it/s]" + " 75%|███████▌ | 3751101/4997817 [00:24<00:08, 153486.47it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3848345/4997817 [00:24<00:07, 156059.90it/s]" + " 75%|███████▌ | 3766504/4997817 [00:24<00:08, 153647.63it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3863952/4997817 [00:24<00:07, 148367.40it/s]" + " 76%|███████▌ | 3781869/4997817 [00:24<00:07, 153439.48it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3879632/4997817 [00:24<00:07, 150805.37it/s]" + " 76%|███████▌ | 3797284/4997817 [00:24<00:07, 153648.41it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3895335/4997817 [00:25<00:07, 152623.35it/s]" + " 76%|███████▋ | 3812649/4997817 [00:25<00:07, 153206.91it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3911069/4997817 [00:25<00:07, 154010.55it/s]" + " 77%|███████▋ | 3828069/4997817 [00:25<00:07, 153502.20it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3926784/4997817 [00:25<00:06, 154938.94it/s]" + " 77%|███████▋ | 3843420/4997817 [00:25<00:07, 153333.71it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3942544/4997817 [00:25<00:06, 155727.99it/s]" + " 77%|███████▋ | 3858826/4997817 [00:25<00:07, 153549.42it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3958159/4997817 [00:25<00:06, 155850.31it/s]" + " 78%|███████▊ | 3874182/4997817 [00:25<00:07, 153524.89it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3973923/4997817 [00:25<00:06, 156382.04it/s]" + " 78%|███████▊ | 3889575/4997817 [00:25<00:07, 153644.24it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3989706/4997817 [00:25<00:06, 156813.02it/s]" + " 78%|███████▊ | 3904940/4997817 [00:25<00:07, 153484.99it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4005509/4997817 [00:25<00:06, 157173.90it/s]" + " 78%|███████▊ | 3920289/4997817 [00:25<00:07, 153285.72it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4021268/4997817 [00:25<00:06, 157297.01it/s]" + " 79%|███████▊ | 3935618/4997817 [00:25<00:06, 153225.79it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4037002/4997817 [00:25<00:06, 156864.65it/s]" + " 79%|███████▉ | 3951084/4997817 [00:25<00:06, 153653.44it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4052692/4997817 [00:26<00:06, 156360.66it/s]" + " 79%|███████▉ | 3966477/4997817 [00:26<00:06, 153733.07it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4068403/4997817 [00:26<00:05, 156583.00it/s]" + " 80%|███████▉ | 3981879/4997817 [00:26<00:06, 153815.61it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4084170/4997817 [00:26<00:05, 156906.95it/s]" + " 80%|███████▉ | 3997261/4997817 [00:26<00:06, 153450.15it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4099862/4997817 [00:26<00:05, 156560.68it/s]" + " 80%|████████ | 4012607/4997817 [00:26<00:06, 153340.19it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4115633/4997817 [00:26<00:05, 156901.80it/s]" + " 81%|████████ | 4027942/4997817 [00:26<00:06, 153204.17it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4131413/4997817 [00:26<00:05, 157169.61it/s]" + " 81%|████████ | 4043263/4997817 [00:26<00:06, 153101.59it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4147174/4997817 [00:26<00:05, 157300.90it/s]" + " 81%|████████ | 4058574/4997817 [00:26<00:06, 152649.60it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4162905/4997817 [00:26<00:05, 157101.40it/s]" + " 82%|████████▏ | 4073840/4997817 [00:26<00:06, 152492.42it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4178673/4997817 [00:26<00:05, 157271.82it/s]" + " 82%|████████▏ | 4089090/4997817 [00:26<00:05, 152227.07it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4194401/4997817 [00:26<00:05, 154293.22it/s]" + " 82%|████████▏ | 4104313/4997817 [00:26<00:05, 150900.00it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4210003/4997817 [00:27<00:05, 154802.00it/s]" + " 82%|████████▏ | 4119406/4997817 [00:27<00:05, 150874.09it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4225675/4997817 [00:27<00:04, 155369.63it/s]" + " 83%|████████▎ | 4134496/4997817 [00:27<00:05, 150440.82it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4241497/4997817 [00:27<00:04, 156216.58it/s]" + " 83%|████████▎ | 4149652/4997817 [00:27<00:05, 150772.45it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4257316/4997817 [00:27<00:04, 156802.39it/s]" + " 83%|████████▎ | 4164918/4997817 [00:27<00:05, 151334.08it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4273149/4997817 [00:27<00:04, 157256.33it/s]" + " 84%|████████▎ | 4180089/4997817 [00:27<00:05, 151445.14it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4288963/4997817 [00:27<00:04, 157517.68it/s]" + " 84%|████████▍ | 4195260/4997817 [00:27<00:05, 151520.79it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4304819/4997817 [00:27<00:04, 157827.29it/s]" + " 84%|████████▍ | 4210505/4997817 [00:27<00:05, 151795.15it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4320680/4997817 [00:27<00:04, 158060.62it/s]" + " 85%|████████▍ | 4225702/4997817 [00:27<00:05, 151845.96it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4336553/4997817 [00:27<00:04, 158259.05it/s]" + " 85%|████████▍ | 4240887/4997817 [00:27<00:04, 151794.49it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4352399/4997817 [00:27<00:04, 158317.30it/s]" + " 85%|████████▌ | 4256251/4997817 [00:27<00:04, 152343.50it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4368232/4997817 [00:28<00:03, 157914.38it/s]" + " 85%|████████▌ | 4271644/4997817 [00:28<00:04, 152816.49it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4384025/4997817 [00:28<00:03, 157847.90it/s]" + " 86%|████████▌ | 4286926/4997817 [00:28<00:04, 151759.69it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4399840/4997817 [00:28<00:03, 157937.40it/s]" + " 86%|████████▌ | 4302104/4997817 [00:28<00:04, 151725.74it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4415688/4997817 [00:28<00:03, 158096.40it/s]" + " 86%|████████▋ | 4317364/4997817 [00:28<00:04, 151983.82it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4431584/4997817 [00:28<00:03, 158353.82it/s]" + " 87%|████████▋ | 4332692/4997817 [00:28<00:04, 152369.94it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4447420/4997817 [00:28<00:03, 158329.46it/s]" + " 87%|████████▋ | 4347991/4997817 [00:28<00:04, 152552.06it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4463254/4997817 [00:28<00:03, 158306.64it/s]" + " 87%|████████▋ | 4363327/4997817 [00:28<00:04, 152790.89it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4479095/4997817 [00:28<00:03, 158337.00it/s]" + " 88%|████████▊ | 4378607/4997817 [00:28<00:04, 148458.18it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4494929/4997817 [00:28<00:03, 158263.94it/s]" + " 88%|████████▊ | 4393480/4997817 [00:28<00:04, 142262.87it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4510756/4997817 [00:28<00:03, 157835.36it/s]" + " 88%|████████▊ | 4408792/4997817 [00:28<00:04, 145373.58it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4526540/4997817 [00:29<00:02, 157699.84it/s]" + " 89%|████████▊ | 4424149/4997817 [00:29<00:03, 147753.67it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4542329/4997817 [00:29<00:02, 157754.78it/s]" + " 89%|████████▉ | 4439438/4997817 [00:29<00:03, 149259.24it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4558105/4997817 [00:29<00:02, 157720.35it/s]" + " 89%|████████▉ | 4454678/4997817 [00:29<00:03, 150183.80it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4573998/4997817 [00:29<00:02, 158079.44it/s]" + " 89%|████████▉ | 4469725/4997817 [00:29<00:03, 143754.53it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4589845/4997817 [00:29<00:02, 158195.87it/s]" + " 90%|████████▉ | 4484985/4997817 [00:29<00:03, 146305.35it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4605665/4997817 [00:29<00:02, 158104.94it/s]" + " 90%|█████████ | 4500321/4997817 [00:29<00:03, 148363.06it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4621476/4997817 [00:29<00:02, 157979.37it/s]" + " 90%|█████████ | 4515705/4997817 [00:29<00:03, 149972.16it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4637312/4997817 [00:29<00:02, 158092.68it/s]" + " 91%|█████████ | 4530858/4997817 [00:29<00:03, 150429.10it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4653156/4997817 [00:29<00:02, 158194.47it/s]" + " 91%|█████████ | 4546128/4997817 [00:29<00:02, 151102.00it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4668976/4997817 [00:29<00:02, 157925.00it/s]" + " 91%|█████████▏| 4561495/4997817 [00:29<00:02, 151865.67it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4684769/4997817 [00:30<00:01, 157455.42it/s]" + " 92%|█████████▏| 4576696/4997817 [00:30<00:02, 151896.16it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4700543/4997817 [00:30<00:01, 157536.86it/s]" + " 92%|█████████▏| 4591896/4997817 [00:30<00:02, 151748.87it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4716321/4997817 [00:30<00:01, 157608.67it/s]" + " 92%|█████████▏| 4607105/4997817 [00:30<00:02, 151849.63it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4732087/4997817 [00:30<00:01, 157621.05it/s]" + " 92%|█████████▏| 4622426/4997817 [00:30<00:02, 152253.40it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4747850/4997817 [00:30<00:01, 157549.04it/s]" + " 93%|█████████▎| 4637655/4997817 [00:30<00:02, 152253.97it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4763606/4997817 [00:30<00:01, 157330.93it/s]" + " 93%|█████████▎| 4652942/4997817 [00:30<00:02, 152435.88it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4779340/4997817 [00:30<00:01, 156851.46it/s]" + " 93%|█████████▎| 4668228/4997817 [00:30<00:02, 152559.13it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4795062/4997817 [00:30<00:01, 156958.89it/s]" + " 94%|█████████▎| 4683506/4997817 [00:30<00:02, 152624.09it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4810759/4997817 [00:30<00:01, 156924.75it/s]" + " 94%|█████████▍| 4698770/4997817 [00:30<00:01, 152408.14it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4826479/4997817 [00:30<00:01, 157004.31it/s]" + " 94%|█████████▍| 4714012/4997817 [00:30<00:01, 152314.36it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4842180/4997817 [00:31<00:01, 153018.17it/s]" + " 95%|█████████▍| 4729244/4997817 [00:31<00:01, 152253.45it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4857754/4997817 [00:31<00:00, 153817.46it/s]" + " 95%|█████████▍| 4744470/4997817 [00:31<00:01, 148906.69it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4873365/4997817 [00:31<00:00, 154494.84it/s]" + " 95%|█████████▌| 4759678/4997817 [00:31<00:01, 149840.73it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4888941/4997817 [00:31<00:00, 154867.71it/s]" + " 96%|█████████▌| 4774923/4997817 [00:31<00:01, 150611.02it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4904521/4997817 [00:31<00:00, 155143.07it/s]" + " 96%|█████████▌| 4790208/4997817 [00:31<00:01, 151275.27it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4920058/4997817 [00:31<00:00, 155210.22it/s]" + " 96%|█████████▌| 4805406/4997817 [00:31<00:01, 151482.40it/s]" ] }, { @@ -3051,7 +3051,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4935639/4997817 [00:31<00:00, 155386.51it/s]" + " 96%|█████████▋| 4820694/4997817 [00:31<00:01, 151896.91it/s]" ] }, { @@ -3059,7 +3059,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4951237/4997817 [00:31<00:00, 155562.98it/s]" + " 97%|█████████▋| 4836084/4997817 [00:31<00:01, 152492.81it/s]" ] }, { @@ -3067,7 +3067,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4966796/4997817 [00:31<00:00, 155195.74it/s]" + " 97%|█████████▋| 4851423/4997817 [00:31<00:00, 152757.88it/s]" ] }, { @@ -3075,7 +3075,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4982344/4997817 [00:32<00:00, 155277.39it/s]" + " 97%|█████████▋| 4866834/4997817 [00:31<00:00, 153161.56it/s]" ] }, { @@ -3083,7 +3083,71 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:32<00:00, 155619.15it/s]" + " 98%|█████████▊| 4882152/4997817 [00:32<00:00, 153112.21it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4897502/4997817 [00:32<00:00, 153224.32it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4912826/4997817 [00:32<00:00, 151174.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4928122/4997817 [00:32<00:00, 151703.79it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4943431/4997817 [00:32<00:00, 152115.73it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4958721/4997817 [00:32<00:00, 152348.60it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4973960/4997817 [00:32<00:00, 152357.87it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4989221/4997817 [00:32<00:00, 152431.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997817/4997817 [00:32<00:00, 152152.96it/s]" ] }, { @@ -3322,10 +3386,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:26.080952Z", - "iopub.status.busy": "2024-02-08T04:34:26.080738Z", - "iopub.status.idle": "2024-02-08T04:34:40.605218Z", - "shell.execute_reply": "2024-02-08T04:34:40.604703Z" + "iopub.execute_input": "2024-02-08T05:20:55.976566Z", + "iopub.status.busy": "2024-02-08T05:20:55.976226Z", + "iopub.status.idle": "2024-02-08T05:21:10.548967Z", + "shell.execute_reply": "2024-02-08T05:21:10.548301Z" } }, "outputs": [], @@ -3339,10 +3403,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:40.607807Z", - "iopub.status.busy": "2024-02-08T04:34:40.607375Z", - "iopub.status.idle": "2024-02-08T04:34:44.392874Z", - "shell.execute_reply": "2024-02-08T04:34:44.392299Z" + "iopub.execute_input": "2024-02-08T05:21:10.551900Z", + "iopub.status.busy": "2024-02-08T05:21:10.551425Z", + "iopub.status.idle": "2024-02-08T05:21:14.388658Z", + "shell.execute_reply": "2024-02-08T05:21:14.388077Z" } }, "outputs": [ @@ -3411,17 +3475,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:44.395119Z", - "iopub.status.busy": "2024-02-08T04:34:44.394713Z", - "iopub.status.idle": "2024-02-08T04:34:45.738548Z", - "shell.execute_reply": "2024-02-08T04:34:45.738044Z" + "iopub.execute_input": "2024-02-08T05:21:14.390938Z", + "iopub.status.busy": "2024-02-08T05:21:14.390532Z", + "iopub.status.idle": "2024-02-08T05:21:15.799224Z", + "shell.execute_reply": "2024-02-08T05:21:15.798611Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fc2a058975cf4670b5ea53ada4efa60e", + "model_id": "30b77994083048219d1b9180228c2b4b", "version_major": 2, "version_minor": 0 }, @@ -3451,10 +3515,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:45.740842Z", - "iopub.status.busy": "2024-02-08T04:34:45.740635Z", - "iopub.status.idle": "2024-02-08T04:34:46.298623Z", - "shell.execute_reply": "2024-02-08T04:34:46.297981Z" + "iopub.execute_input": "2024-02-08T05:21:15.801674Z", + "iopub.status.busy": "2024-02-08T05:21:15.801489Z", + "iopub.status.idle": "2024-02-08T05:21:16.360971Z", + "shell.execute_reply": "2024-02-08T05:21:16.360335Z" } }, "outputs": [], @@ -3468,10 +3532,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:46.301137Z", - "iopub.status.busy": "2024-02-08T04:34:46.300933Z", - "iopub.status.idle": "2024-02-08T04:34:52.298498Z", - "shell.execute_reply": "2024-02-08T04:34:52.297918Z" + "iopub.execute_input": "2024-02-08T05:21:16.363401Z", + "iopub.status.busy": "2024-02-08T05:21:16.363219Z", + "iopub.status.idle": "2024-02-08T05:21:22.539869Z", + "shell.execute_reply": "2024-02-08T05:21:22.539266Z" } }, "outputs": [ @@ -3544,10 +3608,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:52.300651Z", - "iopub.status.busy": "2024-02-08T04:34:52.300470Z", - "iopub.status.idle": "2024-02-08T04:34:52.355976Z", - "shell.execute_reply": "2024-02-08T04:34:52.355420Z" + "iopub.execute_input": "2024-02-08T05:21:22.542055Z", + "iopub.status.busy": "2024-02-08T05:21:22.541716Z", + "iopub.status.idle": "2024-02-08T05:21:22.598351Z", + "shell.execute_reply": "2024-02-08T05:21:22.597802Z" }, "nbsphinx": "hidden" }, @@ -3591,25 +3655,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1b82d325bec94a47b9760cfd2a39a0df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "21c9e447d7fc49baaa07a5dcce1a412b": { + "0d25ab13f4d04ef39fede621e03c9b68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3662,30 +3708,41 @@ "width": null } }, - "23e3234032514e6680b01e2f25da0326": { + "0df6444b371a41e586ef22dd0d96e299": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9244d510c1fe4a9f858e8d747a5fb295", - "placeholder": "​", - "style": "IPY_MODEL_66b9efd6c0844f4a916d16ba72b3d48e", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00, 1.39it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "29cb9371753c4992adc2f03e9fded233": { + "103b031096294a14966691d435d6a362": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "106210816124408ca0e833f78c8c2750": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3700,15 +3757,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2dc1e15160a4a7da0af031122d9a662", + "layout": "IPY_MODEL_b4cfe9721e084dcf8d5ed3d647c40487", "placeholder": "​", - "style": "IPY_MODEL_4b1015e6ccde4c4299ac75c1f98dcb22", + "style": "IPY_MODEL_d01add5fe210416992ea136cad4f9a50", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "30f03336498f4516a6d36df879f490a1": { + "1165496d989d4c618a382d0b049e90f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3761,7 +3818,7 @@ "width": null } }, - "31f64f3801d34603bcb678d8d88d83f6": { + "132a2934c1e94813804517068cca530c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3814,7 +3871,33 @@ "width": null } }, - "4017c8df71354bda92d5349ae9fef4f0": { + "256b1a27f64b492eb415fe31f617f17e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_38c1a2e3eb594faea8eb2159dc493400", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_26bfc64f16c340dfb305f1ed58a36893", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "26bfc64f16c340dfb305f1ed58a36893": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3830,74 +3913,80 @@ "description_width": "" } }, - "4b1015e6ccde4c4299ac75c1f98dcb22": { + "2dada95fdc0c47b88fb6c50ae7618090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aa8d1da8c49c4d2a884a06dab1f31831", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_605b331b013a4216a3a1d69843abfb9d", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "4cf90d57769c4f3aae212728b54aba6a": { + "30b77994083048219d1b9180228c2b4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31f64f3801d34603bcb678d8d88d83f6", - "placeholder": "​", - "style": "IPY_MODEL_c3029038eaec4733a5f0438439b843e5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cfc0a965d67648e0a57cd05e92e22c4b", + "IPY_MODEL_256b1a27f64b492eb415fe31f617f17e", + "IPY_MODEL_326727f0539e449b89ff29010c44925d" + ], + "layout": "IPY_MODEL_1165496d989d4c618a382d0b049e90f3", "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 437.20it/s]" + "tooltip": null } }, - "4e185115a3fe481bb647f7f4518b4dfc": { + "326727f0539e449b89ff29010c44925d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e24577d1ffb640629f4e974978dd12fe", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d8067231e5354369991d63ab259e569b", + "layout": "IPY_MODEL_0d25ab13f4d04ef39fede621e03c9b68", + "placeholder": "​", + "style": "IPY_MODEL_0df6444b371a41e586ef22dd0d96e299", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": " 30/30 [00:01<00:00, 22.03it/s]" } }, - "5003464293884ffa8065ab5b42f55410": { + "38c1a2e3eb594faea8eb2159dc493400": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3950,80 +4039,7 @@ "width": null } }, - "54e4956dd0ef45b88635518452443a61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc49518bd58b48719e6296222d8ba180", - "placeholder": "​", - "style": "IPY_MODEL_716682390a83470282205d2427adfa3c", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.39it/s]" - } - }, - "58627b4f134842dca11108614dae515e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21c9e447d7fc49baaa07a5dcce1a412b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_80f77a5f99b34520abdbf09b57cc9c05", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "633c79ed95ab41e0aabbd57dbd3ecb08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_db25e0c95dbd4fe58acc9c2e49009d2a", - "IPY_MODEL_58627b4f134842dca11108614dae515e", - "IPY_MODEL_4cf90d57769c4f3aae212728b54aba6a" - ], - "layout": "IPY_MODEL_924a2835da754654ae4815fa9f5ef2fb", - "tabbable": null, - "tooltip": null - } - }, - "66b9efd6c0844f4a916d16ba72b3d48e": { + "4e5ddda315dd424898bc3e19b40c8911": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4041,7 +4057,7 @@ "text_color": null } }, - "716682390a83470282205d2427adfa3c": { + "515057138d954b6ebf522b421c89d5f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4059,7 +4075,7 @@ "text_color": null } }, - "77a6a651adfb453fa5d94c5e24358725": { + "53b94fb45c8f40ac801a8583ce8a7a73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4074,39 +4090,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7dbf6f5ff049453eb1a13021b098acfa", + "layout": "IPY_MODEL_797d2e014b75484db3c4d231eb1ea0b4", "placeholder": "​", - "style": "IPY_MODEL_1b82d325bec94a47b9760cfd2a39a0df", + "style": "IPY_MODEL_85a1f5bf0cac46fa928b2505eed353ee", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:22<00:00, 1.36it/s]" } }, - "7cc6878891b34dc6b9eee074c27b9942": { + "605b331b013a4216a3a1d69843abfb9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_29cb9371753c4992adc2f03e9fded233", - "IPY_MODEL_4e185115a3fe481bb647f7f4518b4dfc", - "IPY_MODEL_23e3234032514e6680b01e2f25da0326" - ], - "layout": "IPY_MODEL_30f03336498f4516a6d36df879f490a1", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7dbf6f5ff049453eb1a13021b098acfa": { + "6d2092724d374342be5b8f9b4a89b9d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4159,23 +4167,7 @@ "width": null } }, - "80f77a5f99b34520abdbf09b57cc9c05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9244d510c1fe4a9f858e8d747a5fb295": { + "797d2e014b75484db3c4d231eb1ea0b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4228,7 +4220,43 @@ "width": null } }, - "924a2835da754654ae4815fa9f5ef2fb": { + "85a1f5bf0cac46fa928b2505eed353ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8b227e07b4534bf5bb14643f40e77d70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a1e0af03c0aa4af59354b9330442282e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4281,7 +4309,7 @@ "width": null } }, - "92739bcd527e4b43b2729ff01f60f8f6": { + "a38d8339b17a4450931b440a9b5583fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4297,35 +4325,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5003464293884ffa8065ab5b42f55410", + "layout": "IPY_MODEL_fde2f9b7dcca4cb7b2e34c2392682342", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4017c8df71354bda92d5349ae9fef4f0", + "style": "IPY_MODEL_103b031096294a14966691d435d6a362", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "aa70cd8ed63c447d882958ff5fbe6dd6": { - "model_module": "@jupyter-widgets/controls", + "aa8d1da8c49c4d2a884a06dab1f31831": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ad6f45a3725e4aafa3404454d480c462": { + "b476da5146714d8d93cca98c05787c7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4378,7 +4441,7 @@ "width": null } }, - "b02aada907ae490897286a7070c2059f": { + "b4cfe9721e084dcf8d5ed3d647c40487": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4431,7 +4494,54 @@ "width": null } }, - "c3029038eaec4733a5f0438439b843e5": { + "c8c2e28ad93b4bdd9fc175ec25c69050": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_106210816124408ca0e833f78c8c2750", + "IPY_MODEL_2dada95fdc0c47b88fb6c50ae7618090", + "IPY_MODEL_ecfa15309b0748c9a716660fa9b963b0" + ], + "layout": "IPY_MODEL_b476da5146714d8d93cca98c05787c7a", + "tabbable": null, + "tooltip": null + } + }, + "cfc0a965d67648e0a57cd05e92e22c4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a1e0af03c0aa4af59354b9330442282e", + "placeholder": "​", + "style": "IPY_MODEL_4e5ddda315dd424898bc3e19b40c8911", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "d01add5fe210416992ea136cad4f9a50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4449,23 +4559,31 @@ "text_color": null } }, - "d8067231e5354369991d63ab259e569b": { + "ea58fb54e03a45d5b2072a4db0195034": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f71171dbaac542ab888563268f45ef8c", + "IPY_MODEL_a38d8339b17a4450931b440a9b5583fd", + "IPY_MODEL_53b94fb45c8f40ac801a8583ce8a7a73" + ], + "layout": "IPY_MODEL_f5093f8381674d4c92872ec4fd9fa6e4", + "tabbable": null, + "tooltip": null } }, - "db25e0c95dbd4fe58acc9c2e49009d2a": { + "ecfa15309b0748c9a716660fa9b963b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4480,68 +4598,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b02aada907ae490897286a7070c2059f", + "layout": "IPY_MODEL_132a2934c1e94813804517068cca530c", "placeholder": "​", - "style": "IPY_MODEL_aa70cd8ed63c447d882958ff5fbe6dd6", + "style": "IPY_MODEL_515057138d954b6ebf522b421c89d5f2", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "e24577d1ffb640629f4e974978dd12fe": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 30/30 [00:00<00:00, 423.89it/s]" } }, - "f2dc1e15160a4a7da0af031122d9a662": { + "f5093f8381674d4c92872ec4fd9fa6e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4594,31 +4659,30 @@ "width": null } }, - "fc2a058975cf4670b5ea53ada4efa60e": { + "f71171dbaac542ab888563268f45ef8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_77a6a651adfb453fa5d94c5e24358725", - "IPY_MODEL_92739bcd527e4b43b2729ff01f60f8f6", - "IPY_MODEL_54e4956dd0ef45b88635518452443a61" - ], - "layout": "IPY_MODEL_ad6f45a3725e4aafa3404454d480c462", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d2092724d374342be5b8f9b4a89b9d9", + "placeholder": "​", + "style": "IPY_MODEL_8b227e07b4534bf5bb14643f40e77d70", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "fc49518bd58b48719e6296222d8ba180": { + "fde2f9b7dcca4cb7b2e34c2392682342": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 2936ca8bb..b9ef97a18 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:56.168205Z", - "iopub.status.busy": "2024-02-08T04:34:56.168034Z", - "iopub.status.idle": "2024-02-08T04:34:57.205458Z", - "shell.execute_reply": "2024-02-08T04:34:57.204912Z" + "iopub.execute_input": "2024-02-08T05:21:26.796223Z", + "iopub.status.busy": "2024-02-08T05:21:26.796052Z", + "iopub.status.idle": "2024-02-08T05:21:27.890548Z", + "shell.execute_reply": "2024-02-08T05:21:27.889969Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.208050Z", - "iopub.status.busy": "2024-02-08T04:34:57.207540Z", - "iopub.status.idle": "2024-02-08T04:34:57.225990Z", - "shell.execute_reply": "2024-02-08T04:34:57.225451Z" + "iopub.execute_input": "2024-02-08T05:21:27.893054Z", + "iopub.status.busy": "2024-02-08T05:21:27.892746Z", + "iopub.status.idle": "2024-02-08T05:21:27.911932Z", + "shell.execute_reply": "2024-02-08T05:21:27.911437Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.228346Z", - "iopub.status.busy": "2024-02-08T04:34:57.227916Z", - "iopub.status.idle": "2024-02-08T04:34:57.283231Z", - "shell.execute_reply": "2024-02-08T04:34:57.282803Z" + "iopub.execute_input": "2024-02-08T05:21:27.914373Z", + "iopub.status.busy": "2024-02-08T05:21:27.913935Z", + "iopub.status.idle": "2024-02-08T05:21:28.082310Z", + "shell.execute_reply": "2024-02-08T05:21:28.081788Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.285089Z", - "iopub.status.busy": "2024-02-08T04:34:57.284916Z", - "iopub.status.idle": "2024-02-08T04:34:57.288911Z", - "shell.execute_reply": "2024-02-08T04:34:57.288480Z" + "iopub.execute_input": "2024-02-08T05:21:28.084545Z", + "iopub.status.busy": "2024-02-08T05:21:28.084209Z", + "iopub.status.idle": "2024-02-08T05:21:28.088771Z", + "shell.execute_reply": "2024-02-08T05:21:28.088328Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.290970Z", - "iopub.status.busy": "2024-02-08T04:34:57.290645Z", - "iopub.status.idle": "2024-02-08T04:34:57.298491Z", - "shell.execute_reply": "2024-02-08T04:34:57.298062Z" + "iopub.execute_input": "2024-02-08T05:21:28.090816Z", + "iopub.status.busy": "2024-02-08T05:21:28.090483Z", + "iopub.status.idle": "2024-02-08T05:21:28.098465Z", + "shell.execute_reply": "2024-02-08T05:21:28.098061Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.300467Z", - "iopub.status.busy": "2024-02-08T04:34:57.300291Z", - "iopub.status.idle": "2024-02-08T04:34:57.302706Z", - "shell.execute_reply": "2024-02-08T04:34:57.302290Z" + "iopub.execute_input": "2024-02-08T05:21:28.100552Z", + "iopub.status.busy": "2024-02-08T05:21:28.100251Z", + "iopub.status.idle": "2024-02-08T05:21:28.102793Z", + "shell.execute_reply": "2024-02-08T05:21:28.102365Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.304634Z", - "iopub.status.busy": "2024-02-08T04:34:57.304375Z", - "iopub.status.idle": "2024-02-08T04:34:57.820042Z", - "shell.execute_reply": "2024-02-08T04:34:57.819446Z" + "iopub.execute_input": "2024-02-08T05:21:28.104759Z", + "iopub.status.busy": "2024-02-08T05:21:28.104437Z", + "iopub.status.idle": "2024-02-08T05:21:28.627194Z", + "shell.execute_reply": "2024-02-08T05:21:28.626590Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:57.822290Z", - "iopub.status.busy": "2024-02-08T04:34:57.822100Z", - "iopub.status.idle": "2024-02-08T04:34:59.439361Z", - "shell.execute_reply": "2024-02-08T04:34:59.438712Z" + "iopub.execute_input": "2024-02-08T05:21:28.629718Z", + "iopub.status.busy": "2024-02-08T05:21:28.629519Z", + "iopub.status.idle": "2024-02-08T05:21:30.345006Z", + "shell.execute_reply": "2024-02-08T05:21:30.344349Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.441941Z", - "iopub.status.busy": "2024-02-08T04:34:59.441397Z", - "iopub.status.idle": "2024-02-08T04:34:59.451265Z", - "shell.execute_reply": "2024-02-08T04:34:59.450745Z" + "iopub.execute_input": "2024-02-08T05:21:30.347698Z", + "iopub.status.busy": "2024-02-08T05:21:30.347087Z", + "iopub.status.idle": "2024-02-08T05:21:30.357476Z", + "shell.execute_reply": "2024-02-08T05:21:30.357044Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.453333Z", - "iopub.status.busy": "2024-02-08T04:34:59.453038Z", - "iopub.status.idle": "2024-02-08T04:34:59.456989Z", - "shell.execute_reply": "2024-02-08T04:34:59.456463Z" + "iopub.execute_input": "2024-02-08T05:21:30.359601Z", + "iopub.status.busy": "2024-02-08T05:21:30.359266Z", + "iopub.status.idle": "2024-02-08T05:21:30.363308Z", + "shell.execute_reply": "2024-02-08T05:21:30.362856Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.458991Z", - "iopub.status.busy": "2024-02-08T04:34:59.458687Z", - "iopub.status.idle": "2024-02-08T04:34:59.465944Z", - "shell.execute_reply": "2024-02-08T04:34:59.465410Z" + "iopub.execute_input": "2024-02-08T05:21:30.365471Z", + "iopub.status.busy": "2024-02-08T05:21:30.365138Z", + "iopub.status.idle": "2024-02-08T05:21:30.372669Z", + "shell.execute_reply": "2024-02-08T05:21:30.372107Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.468039Z", - "iopub.status.busy": "2024-02-08T04:34:59.467734Z", - "iopub.status.idle": "2024-02-08T04:34:59.578269Z", - "shell.execute_reply": "2024-02-08T04:34:59.577713Z" + "iopub.execute_input": "2024-02-08T05:21:30.374752Z", + "iopub.status.busy": "2024-02-08T05:21:30.374445Z", + "iopub.status.idle": "2024-02-08T05:21:30.486095Z", + "shell.execute_reply": "2024-02-08T05:21:30.485529Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.580205Z", - "iopub.status.busy": "2024-02-08T04:34:59.579900Z", - "iopub.status.idle": "2024-02-08T04:34:59.582454Z", - "shell.execute_reply": "2024-02-08T04:34:59.582023Z" + "iopub.execute_input": "2024-02-08T05:21:30.488417Z", + "iopub.status.busy": "2024-02-08T05:21:30.488030Z", + "iopub.status.idle": "2024-02-08T05:21:30.490919Z", + "shell.execute_reply": "2024-02-08T05:21:30.490384Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:34:59.584391Z", - "iopub.status.busy": "2024-02-08T04:34:59.584095Z", - "iopub.status.idle": "2024-02-08T04:35:01.501613Z", - "shell.execute_reply": "2024-02-08T04:35:01.500883Z" + "iopub.execute_input": "2024-02-08T05:21:30.493045Z", + "iopub.status.busy": "2024-02-08T05:21:30.492674Z", + "iopub.status.idle": "2024-02-08T05:21:32.504865Z", + "shell.execute_reply": "2024-02-08T05:21:32.504227Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:01.504393Z", - "iopub.status.busy": "2024-02-08T04:35:01.503839Z", - "iopub.status.idle": "2024-02-08T04:35:01.514594Z", - "shell.execute_reply": "2024-02-08T04:35:01.514050Z" + "iopub.execute_input": "2024-02-08T05:21:32.507962Z", + "iopub.status.busy": "2024-02-08T05:21:32.507270Z", + "iopub.status.idle": "2024-02-08T05:21:32.519238Z", + "shell.execute_reply": "2024-02-08T05:21:32.518685Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:01.516381Z", - "iopub.status.busy": "2024-02-08T04:35:01.516208Z", - "iopub.status.idle": "2024-02-08T04:35:01.562095Z", - "shell.execute_reply": "2024-02-08T04:35:01.561636Z" + "iopub.execute_input": "2024-02-08T05:21:32.521281Z", + "iopub.status.busy": "2024-02-08T05:21:32.521095Z", + "iopub.status.idle": "2024-02-08T05:21:32.670893Z", + "shell.execute_reply": "2024-02-08T05:21:32.670418Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 469861760..792189737 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -732,7 +732,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'change_pin', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'getting_spare_card', 'card_about_to_expire'}
+Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'change_pin', 'getting_spare_card'}
 

Let’s print the first example in the train set.

diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index d24d88255..e6bc10dc9 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:04.398007Z", - "iopub.status.busy": "2024-02-08T04:35:04.397665Z", - "iopub.status.idle": "2024-02-08T04:35:06.939373Z", - "shell.execute_reply": "2024-02-08T04:35:06.938787Z" + "iopub.execute_input": "2024-02-08T05:21:36.479014Z", + "iopub.status.busy": "2024-02-08T05:21:36.478839Z", + "iopub.status.idle": "2024-02-08T05:21:39.260693Z", + "shell.execute_reply": "2024-02-08T05:21:39.260048Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.942203Z", - "iopub.status.busy": "2024-02-08T04:35:06.941711Z", - "iopub.status.idle": "2024-02-08T04:35:06.945187Z", - "shell.execute_reply": "2024-02-08T04:35:06.944736Z" + "iopub.execute_input": "2024-02-08T05:21:39.263272Z", + "iopub.status.busy": "2024-02-08T05:21:39.262890Z", + "iopub.status.idle": "2024-02-08T05:21:39.266644Z", + "shell.execute_reply": "2024-02-08T05:21:39.266095Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.947082Z", - "iopub.status.busy": "2024-02-08T04:35:06.946758Z", - "iopub.status.idle": "2024-02-08T04:35:06.949800Z", - "shell.execute_reply": "2024-02-08T04:35:06.949361Z" + "iopub.execute_input": "2024-02-08T05:21:39.268836Z", + "iopub.status.busy": "2024-02-08T05:21:39.268440Z", + "iopub.status.idle": "2024-02-08T05:21:39.271716Z", + "shell.execute_reply": "2024-02-08T05:21:39.271145Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.951625Z", - "iopub.status.busy": "2024-02-08T04:35:06.951369Z", - "iopub.status.idle": "2024-02-08T04:35:06.997911Z", - "shell.execute_reply": "2024-02-08T04:35:06.997500Z" + "iopub.execute_input": "2024-02-08T05:21:39.273756Z", + "iopub.status.busy": "2024-02-08T05:21:39.273496Z", + "iopub.status.idle": "2024-02-08T05:21:39.431458Z", + "shell.execute_reply": "2024-02-08T05:21:39.430885Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:06.999896Z", - "iopub.status.busy": "2024-02-08T04:35:06.999613Z", - "iopub.status.idle": "2024-02-08T04:35:07.003072Z", - "shell.execute_reply": "2024-02-08T04:35:07.002534Z" + "iopub.execute_input": "2024-02-08T05:21:39.433686Z", + "iopub.status.busy": "2024-02-08T05:21:39.433349Z", + "iopub.status.idle": "2024-02-08T05:21:39.436960Z", + "shell.execute_reply": "2024-02-08T05:21:39.436501Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.004956Z", - "iopub.status.busy": "2024-02-08T04:35:07.004665Z", - "iopub.status.idle": "2024-02-08T04:35:07.007970Z", - "shell.execute_reply": "2024-02-08T04:35:07.007435Z" + "iopub.execute_input": "2024-02-08T05:21:39.438986Z", + "iopub.status.busy": "2024-02-08T05:21:39.438652Z", + "iopub.status.idle": "2024-02-08T05:21:39.442126Z", + "shell.execute_reply": "2024-02-08T05:21:39.441657Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'getting_spare_card', 'card_about_to_expire'}\n" + "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'change_pin', 'getting_spare_card'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.009913Z", - "iopub.status.busy": "2024-02-08T04:35:07.009601Z", - "iopub.status.idle": "2024-02-08T04:35:07.012666Z", - "shell.execute_reply": "2024-02-08T04:35:07.012208Z" + "iopub.execute_input": "2024-02-08T05:21:39.444139Z", + "iopub.status.busy": "2024-02-08T05:21:39.443815Z", + "iopub.status.idle": "2024-02-08T05:21:39.446990Z", + "shell.execute_reply": "2024-02-08T05:21:39.446538Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.014589Z", - "iopub.status.busy": "2024-02-08T04:35:07.014274Z", - "iopub.status.idle": "2024-02-08T04:35:07.017484Z", - "shell.execute_reply": "2024-02-08T04:35:07.017043Z" + "iopub.execute_input": "2024-02-08T05:21:39.449158Z", + "iopub.status.busy": "2024-02-08T05:21:39.448790Z", + "iopub.status.idle": "2024-02-08T05:21:39.452098Z", + "shell.execute_reply": "2024-02-08T05:21:39.451644Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:07.019577Z", - "iopub.status.busy": "2024-02-08T04:35:07.019165Z", - "iopub.status.idle": "2024-02-08T04:35:10.758978Z", - "shell.execute_reply": "2024-02-08T04:35:10.758450Z" + "iopub.execute_input": "2024-02-08T05:21:39.454177Z", + "iopub.status.busy": "2024-02-08T05:21:39.453859Z", + "iopub.status.idle": "2024-02-08T05:21:43.818413Z", + "shell.execute_reply": "2024-02-08T05:21:43.817812Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.761717Z", - "iopub.status.busy": "2024-02-08T04:35:10.761342Z", - "iopub.status.idle": "2024-02-08T04:35:10.764293Z", - "shell.execute_reply": "2024-02-08T04:35:10.763801Z" + "iopub.execute_input": "2024-02-08T05:21:43.821245Z", + "iopub.status.busy": "2024-02-08T05:21:43.820824Z", + "iopub.status.idle": "2024-02-08T05:21:43.824334Z", + "shell.execute_reply": "2024-02-08T05:21:43.823797Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.766209Z", - "iopub.status.busy": "2024-02-08T04:35:10.765897Z", - "iopub.status.idle": "2024-02-08T04:35:10.768449Z", - "shell.execute_reply": "2024-02-08T04:35:10.768026Z" + "iopub.execute_input": "2024-02-08T05:21:43.826165Z", + "iopub.status.busy": "2024-02-08T05:21:43.825990Z", + "iopub.status.idle": "2024-02-08T05:21:43.828635Z", + "shell.execute_reply": "2024-02-08T05:21:43.828168Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:10.770307Z", - "iopub.status.busy": "2024-02-08T04:35:10.769984Z", - "iopub.status.idle": "2024-02-08T04:35:13.014309Z", - "shell.execute_reply": "2024-02-08T04:35:13.013691Z" + "iopub.execute_input": "2024-02-08T05:21:43.830526Z", + "iopub.status.busy": "2024-02-08T05:21:43.830206Z", + "iopub.status.idle": "2024-02-08T05:21:46.180921Z", + "shell.execute_reply": "2024-02-08T05:21:46.180150Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.017176Z", - "iopub.status.busy": "2024-02-08T04:35:13.016589Z", - "iopub.status.idle": "2024-02-08T04:35:13.024329Z", - "shell.execute_reply": "2024-02-08T04:35:13.023868Z" + "iopub.execute_input": "2024-02-08T05:21:46.184093Z", + "iopub.status.busy": "2024-02-08T05:21:46.183446Z", + "iopub.status.idle": "2024-02-08T05:21:46.191352Z", + "shell.execute_reply": "2024-02-08T05:21:46.190879Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.026211Z", - "iopub.status.busy": "2024-02-08T04:35:13.026031Z", - "iopub.status.idle": "2024-02-08T04:35:13.030054Z", - "shell.execute_reply": "2024-02-08T04:35:13.029615Z" + "iopub.execute_input": "2024-02-08T05:21:46.193506Z", + "iopub.status.busy": "2024-02-08T05:21:46.193111Z", + "iopub.status.idle": "2024-02-08T05:21:46.197017Z", + "shell.execute_reply": "2024-02-08T05:21:46.196578Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.031935Z", - "iopub.status.busy": "2024-02-08T04:35:13.031746Z", - "iopub.status.idle": "2024-02-08T04:35:13.034748Z", - "shell.execute_reply": "2024-02-08T04:35:13.034239Z" + "iopub.execute_input": "2024-02-08T05:21:46.198840Z", + "iopub.status.busy": "2024-02-08T05:21:46.198669Z", + "iopub.status.idle": "2024-02-08T05:21:46.201986Z", + "shell.execute_reply": "2024-02-08T05:21:46.201534Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.036619Z", - "iopub.status.busy": "2024-02-08T04:35:13.036448Z", - "iopub.status.idle": "2024-02-08T04:35:13.039213Z", - "shell.execute_reply": "2024-02-08T04:35:13.038788Z" + "iopub.execute_input": "2024-02-08T05:21:46.203999Z", + "iopub.status.busy": "2024-02-08T05:21:46.203703Z", + "iopub.status.idle": "2024-02-08T05:21:46.206673Z", + "shell.execute_reply": "2024-02-08T05:21:46.206231Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.041004Z", - "iopub.status.busy": "2024-02-08T04:35:13.040835Z", - "iopub.status.idle": "2024-02-08T04:35:13.047467Z", - "shell.execute_reply": "2024-02-08T04:35:13.047008Z" + "iopub.execute_input": "2024-02-08T05:21:46.208666Z", + "iopub.status.busy": "2024-02-08T05:21:46.208364Z", + "iopub.status.idle": "2024-02-08T05:21:46.215877Z", + "shell.execute_reply": "2024-02-08T05:21:46.215417Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.049366Z", - "iopub.status.busy": "2024-02-08T04:35:13.049196Z", - "iopub.status.idle": "2024-02-08T04:35:13.273122Z", - "shell.execute_reply": "2024-02-08T04:35:13.272656Z" + "iopub.execute_input": "2024-02-08T05:21:46.217922Z", + "iopub.status.busy": "2024-02-08T05:21:46.217631Z", + "iopub.status.idle": "2024-02-08T05:21:46.445403Z", + "shell.execute_reply": "2024-02-08T05:21:46.444769Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.275446Z", - "iopub.status.busy": "2024-02-08T04:35:13.275087Z", - "iopub.status.idle": "2024-02-08T04:35:13.485654Z", - "shell.execute_reply": "2024-02-08T04:35:13.485184Z" + "iopub.execute_input": "2024-02-08T05:21:46.447993Z", + "iopub.status.busy": "2024-02-08T05:21:46.447582Z", + "iopub.status.idle": "2024-02-08T05:21:46.623478Z", + "shell.execute_reply": "2024-02-08T05:21:46.622935Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-08T04:35:13.488027Z", - "iopub.status.busy": "2024-02-08T04:35:13.487654Z", - "iopub.status.idle": "2024-02-08T04:35:13.491219Z", - "shell.execute_reply": "2024-02-08T04:35:13.490753Z" + "iopub.execute_input": "2024-02-08T05:21:46.626118Z", + "iopub.status.busy": "2024-02-08T05:21:46.625719Z", + "iopub.status.idle": "2024-02-08T05:21:46.629542Z", + "shell.execute_reply": "2024-02-08T05:21:46.629055Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 5d2359635..cbe77b31e 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -625,7 +625,7 @@

1. Install required dependencies and download data
---2024-02-08 04:35:16--  https://data.deepai.org/conll2003.zip
+--2024-02-08 05:21:50--  https://data.deepai.org/conll2003.zip
 Resolving data.deepai.org (data.deepai.org)...
 
@@ -634,9 +634,17 @@

1. Install required dependencies and download data
-185.93.1.250, 2400:52e0:1a00::718:1
-Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.
-HTTP request sent, awaiting response... 200 OK
+143.244.50.89, 2400:52e0:1a01::954:1
+Connecting to data.deepai.org (data.deepai.org)|143.244.50.89|:443... connected.
+HTTP request sent, awaiting response...
+
+ +
+
+
+
+
+200 OK
 Length: 982975 (960K) [application/zip]
 Saving to: ‘conll2003.zip’
@@ -657,25 +665,25 @@

1. Install required dependencies and download data
-

conll2003.zip 100%[===================&gt;] 959.94K –.-KB/s in 0.1s

+

conll2003.zip 100%[===================&gt;] 959.94K 4.92MB/s in 0.2s

-

2024-02-08 04:35:16 (6.64 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-08 05:21:51 (4.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists </pre>

-

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

+

conll2003.zip 100%[===================>] 959.94K 4.92MB/s in 0.2s

-

2024-02-08 04:35:16 (6.64 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-08 05:21:51 (4.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}

-

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

+

conll2003.zip 100%[===================>] 959.94K 4.92MB/s in 0.2s

-

2024-02-08 04:35:16 (6.64 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-08 05:21:51 (4.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists

+
+
+
+
+
+connected.
 
-
pred_probs.npz 63%[===========&gt; ] 10.25M 51.1MB/s
+
pred_probs.npz 1%[ ] 193.53K 925KB/s
+

</pre>

+
+
+
pred_probs.npz 1%[ ] 193.53K 925KB/s
+

end{sphinxVerbatim}

+
+
+
+

pred_probs.npz 1%[ ] 193.53K 925KB/s

+
+
+
+
+
+
+
+
pred_probs.npz 20%[===&gt; ] 3.38M 8.07MB/s

</pre>

-
pred_probs.npz 63%[===========> ] 10.25M 51.1MB/s
+
pred_probs.npz 20%[===> ] 3.38M 8.07MB/s

end{sphinxVerbatim}

-

pred_probs.npz 63%[===========> ] 10.25M 51.1MB/s

+

pred_probs.npz 20%[===> ] 3.38M 8.07MB/s

-

pred_probs.npz 100%[===================&gt;] 16.26M 48.1MB/s in 0.3s

+

pred_probs.npz 91%[=================&gt; ] 14.89M 23.7MB/s +pred_probs.npz 100%[===================&gt;] 16.26M 25.5MB/s in 0.6s

-

2024-02-08 04:35:17 (48.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-08 05:21:52 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

</pre>

-

pred_probs.npz 100%[===================>] 16.26M 48.1MB/s in 0.3s

+

pred_probs.npz 91%[=================> ] 14.89M 23.7MB/s +pred_probs.npz 100%[===================>] 16.26M 25.5MB/s in 0.6s

-

2024-02-08 04:35:17 (48.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-08 05:21:52 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

end{sphinxVerbatim}

-

pred_probs.npz 100%[===================>] 16.26M 48.1MB/s in 0.3s

+

pred_probs.npz 91%[=================> ] 14.89M 23.7MB/s +pred_probs.npz 100%[===================>] 16.26M 25.5MB/s in 0.6s

-

2024-02-08 04:35:17 (48.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-08 05:21:52 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

[3]:
diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb
index b9cc787dc..c62fcd633 100644
--- a/master/tutorials/token_classification.ipynb
+++ b/master/tutorials/token_classification.ipynb
@@ -75,10 +75,10 @@
    "id": "ae8a08e0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:16.410970Z",
-     "iopub.status.busy": "2024-02-08T04:35:16.410808Z",
-     "iopub.status.idle": "2024-02-08T04:35:17.885044Z",
-     "shell.execute_reply": "2024-02-08T04:35:17.884466Z"
+     "iopub.execute_input": "2024-02-08T05:21:50.726788Z",
+     "iopub.status.busy": "2024-02-08T05:21:50.726620Z",
+     "iopub.status.idle": "2024-02-08T05:21:52.600696Z",
+     "shell.execute_reply": "2024-02-08T05:21:52.600068Z"
     }
    },
    "outputs": [
@@ -86,7 +86,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-02-08 04:35:16--  https://data.deepai.org/conll2003.zip\r\n",
+      "--2024-02-08 05:21:50--  https://data.deepai.org/conll2003.zip\r\n",
       "Resolving data.deepai.org (data.deepai.org)... "
      ]
     },
@@ -94,9 +94,16 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "185.93.1.250, 2400:52e0:1a00::718:1\r\n",
-      "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n",
-      "HTTP request sent, awaiting response... 200 OK\r\n",
+      "143.244.50.89, 2400:52e0:1a01::954:1\r\n",
+      "Connecting to data.deepai.org (data.deepai.org)|143.244.50.89|:443... connected.\r\n",
+      "HTTP request sent, awaiting response... "
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "200 OK\r\n",
       "Length: 982975 (960K) [application/zip]\r\n",
       "Saving to: ‘conll2003.zip’\r\n",
       "\r\n",
@@ -109,9 +116,9 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "conll2003.zip       100%[===================>] 959.94K  --.-KB/s    in 0.1s    \r\n",
+      "conll2003.zip       100%[===================>] 959.94K  4.92MB/s    in 0.2s    \r\n",
       "\r\n",
-      "2024-02-08 04:35:16 (6.64 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
+      "2024-02-08 05:21:51 (4.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
       "\r\n",
       "mkdir: cannot create directory ‘data’: File exists\r\n"
      ]
@@ -131,9 +138,16 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-02-08 04:35:17--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
-      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.32.209, 52.216.241.92, 52.217.130.65, ...\r\n",
-      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.32.209|:443... connected.\r\n"
+      "--2024-02-08 05:21:51--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
+      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.109.243, 52.216.165.75, 52.216.36.145, ...\r\n",
+      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.109.243|:443... "
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "connected.\r\n"
      ]
     },
     {
@@ -160,7 +174,15 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "pred_probs.npz       63%[===========>        ]  10.25M  51.1MB/s               "
+      "pred_probs.npz        1%[                    ] 193.53K   925KB/s               "
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\r",
+      "pred_probs.npz       20%[===>                ]   3.38M  8.07MB/s               "
      ]
     },
     {
@@ -168,9 +190,10 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "pred_probs.npz      100%[===================>]  16.26M  48.1MB/s    in 0.3s    \r\n",
+      "pred_probs.npz       91%[=================>  ]  14.89M  23.7MB/s               \r",
+      "pred_probs.npz      100%[===================>]  16.26M  25.5MB/s    in 0.6s    \r\n",
       "\r\n",
-      "2024-02-08 04:35:17 (48.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
+      "2024-02-08 05:21:52 (25.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
       "\r\n"
      ]
     }
@@ -187,10 +210,10 @@
    "id": "439b0305",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:17.887413Z",
-     "iopub.status.busy": "2024-02-08T04:35:17.887079Z",
-     "iopub.status.idle": "2024-02-08T04:35:18.908219Z",
-     "shell.execute_reply": "2024-02-08T04:35:18.907684Z"
+     "iopub.execute_input": "2024-02-08T05:21:52.603109Z",
+     "iopub.status.busy": "2024-02-08T05:21:52.602917Z",
+     "iopub.status.idle": "2024-02-08T05:21:53.718005Z",
+     "shell.execute_reply": "2024-02-08T05:21:53.717446Z"
     },
     "nbsphinx": "hidden"
    },
@@ -201,7 +224,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@2b6ad95c32cfaf3029361941cca8c4eaf2ac541e\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@55409591737a9cc39ab0da67e9cf10ceac579900\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -227,10 +250,10 @@
    "id": "a1349304",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:18.910770Z",
-     "iopub.status.busy": "2024-02-08T04:35:18.910302Z",
-     "iopub.status.idle": "2024-02-08T04:35:18.913807Z",
-     "shell.execute_reply": "2024-02-08T04:35:18.913374Z"
+     "iopub.execute_input": "2024-02-08T05:21:53.720615Z",
+     "iopub.status.busy": "2024-02-08T05:21:53.720142Z",
+     "iopub.status.idle": "2024-02-08T05:21:53.723864Z",
+     "shell.execute_reply": "2024-02-08T05:21:53.723387Z"
     }
    },
    "outputs": [],
@@ -280,10 +303,10 @@
    "id": "ab9d59a0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:18.915726Z",
-     "iopub.status.busy": "2024-02-08T04:35:18.915411Z",
-     "iopub.status.idle": "2024-02-08T04:35:18.918230Z",
-     "shell.execute_reply": "2024-02-08T04:35:18.917797Z"
+     "iopub.execute_input": "2024-02-08T05:21:53.726015Z",
+     "iopub.status.busy": "2024-02-08T05:21:53.725691Z",
+     "iopub.status.idle": "2024-02-08T05:21:53.728578Z",
+     "shell.execute_reply": "2024-02-08T05:21:53.728151Z"
     },
     "nbsphinx": "hidden"
    },
@@ -301,10 +324,10 @@
    "id": "519cb80c",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:18.920142Z",
-     "iopub.status.busy": "2024-02-08T04:35:18.919798Z",
-     "iopub.status.idle": "2024-02-08T04:35:27.926989Z",
-     "shell.execute_reply": "2024-02-08T04:35:27.926383Z"
+     "iopub.execute_input": "2024-02-08T05:21:53.730588Z",
+     "iopub.status.busy": "2024-02-08T05:21:53.730254Z",
+     "iopub.status.idle": "2024-02-08T05:22:02.922587Z",
+     "shell.execute_reply": "2024-02-08T05:22:02.922022Z"
     }
    },
    "outputs": [],
@@ -378,10 +401,10 @@
    "id": "202f1526",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:27.929541Z",
-     "iopub.status.busy": "2024-02-08T04:35:27.929340Z",
-     "iopub.status.idle": "2024-02-08T04:35:27.934958Z",
-     "shell.execute_reply": "2024-02-08T04:35:27.934409Z"
+     "iopub.execute_input": "2024-02-08T05:22:02.925250Z",
+     "iopub.status.busy": "2024-02-08T05:22:02.924929Z",
+     "iopub.status.idle": "2024-02-08T05:22:02.930371Z",
+     "shell.execute_reply": "2024-02-08T05:22:02.929886Z"
     },
     "nbsphinx": "hidden"
    },
@@ -421,10 +444,10 @@
    "id": "a4381f03",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:27.936904Z",
-     "iopub.status.busy": "2024-02-08T04:35:27.936728Z",
-     "iopub.status.idle": "2024-02-08T04:35:28.262039Z",
-     "shell.execute_reply": "2024-02-08T04:35:28.261376Z"
+     "iopub.execute_input": "2024-02-08T05:22:02.932624Z",
+     "iopub.status.busy": "2024-02-08T05:22:02.932228Z",
+     "iopub.status.idle": "2024-02-08T05:22:03.297995Z",
+     "shell.execute_reply": "2024-02-08T05:22:03.297346Z"
     }
    },
    "outputs": [],
@@ -461,10 +484,10 @@
    "id": "7842e4a3",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:28.264636Z",
-     "iopub.status.busy": "2024-02-08T04:35:28.264297Z",
-     "iopub.status.idle": "2024-02-08T04:35:28.268345Z",
-     "shell.execute_reply": "2024-02-08T04:35:28.267788Z"
+     "iopub.execute_input": "2024-02-08T05:22:03.300463Z",
+     "iopub.status.busy": "2024-02-08T05:22:03.300279Z",
+     "iopub.status.idle": "2024-02-08T05:22:03.304705Z",
+     "shell.execute_reply": "2024-02-08T05:22:03.304158Z"
     }
    },
    "outputs": [
@@ -536,10 +559,10 @@
    "id": "2c2ad9ad",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:28.270309Z",
-     "iopub.status.busy": "2024-02-08T04:35:28.270030Z",
-     "iopub.status.idle": "2024-02-08T04:35:30.566284Z",
-     "shell.execute_reply": "2024-02-08T04:35:30.565622Z"
+     "iopub.execute_input": "2024-02-08T05:22:03.306754Z",
+     "iopub.status.busy": "2024-02-08T05:22:03.306423Z",
+     "iopub.status.idle": "2024-02-08T05:22:05.755355Z",
+     "shell.execute_reply": "2024-02-08T05:22:05.754674Z"
     }
    },
    "outputs": [],
@@ -561,10 +584,10 @@
    "id": "95dc7268",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:30.569402Z",
-     "iopub.status.busy": "2024-02-08T04:35:30.568623Z",
-     "iopub.status.idle": "2024-02-08T04:35:30.572686Z",
-     "shell.execute_reply": "2024-02-08T04:35:30.572133Z"
+     "iopub.execute_input": "2024-02-08T05:22:05.758476Z",
+     "iopub.status.busy": "2024-02-08T05:22:05.757736Z",
+     "iopub.status.idle": "2024-02-08T05:22:05.761956Z",
+     "shell.execute_reply": "2024-02-08T05:22:05.761494Z"
     }
    },
    "outputs": [
@@ -600,10 +623,10 @@
    "id": "e13de188",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:30.574726Z",
-     "iopub.status.busy": "2024-02-08T04:35:30.574428Z",
-     "iopub.status.idle": "2024-02-08T04:35:30.579908Z",
-     "shell.execute_reply": "2024-02-08T04:35:30.579362Z"
+     "iopub.execute_input": "2024-02-08T05:22:05.764107Z",
+     "iopub.status.busy": "2024-02-08T05:22:05.763785Z",
+     "iopub.status.idle": "2024-02-08T05:22:05.768721Z",
+     "shell.execute_reply": "2024-02-08T05:22:05.768190Z"
     }
    },
    "outputs": [
@@ -781,10 +804,10 @@
    "id": "e4a006bd",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:30.581974Z",
-     "iopub.status.busy": "2024-02-08T04:35:30.581604Z",
-     "iopub.status.idle": "2024-02-08T04:35:30.607040Z",
-     "shell.execute_reply": "2024-02-08T04:35:30.606608Z"
+     "iopub.execute_input": "2024-02-08T05:22:05.770716Z",
+     "iopub.status.busy": "2024-02-08T05:22:05.770545Z",
+     "iopub.status.idle": "2024-02-08T05:22:05.796512Z",
+     "shell.execute_reply": "2024-02-08T05:22:05.795932Z"
     }
    },
    "outputs": [
@@ -886,10 +909,10 @@
    "id": "c8f4e163",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:30.609082Z",
-     "iopub.status.busy": "2024-02-08T04:35:30.608778Z",
-     "iopub.status.idle": "2024-02-08T04:35:30.612868Z",
-     "shell.execute_reply": "2024-02-08T04:35:30.612332Z"
+     "iopub.execute_input": "2024-02-08T05:22:05.798717Z",
+     "iopub.status.busy": "2024-02-08T05:22:05.798431Z",
+     "iopub.status.idle": "2024-02-08T05:22:05.803963Z",
+     "shell.execute_reply": "2024-02-08T05:22:05.803248Z"
     }
    },
    "outputs": [
@@ -963,10 +986,10 @@
    "id": "db0b5179",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:30.614887Z",
-     "iopub.status.busy": "2024-02-08T04:35:30.614588Z",
-     "iopub.status.idle": "2024-02-08T04:35:32.021894Z",
-     "shell.execute_reply": "2024-02-08T04:35:32.021397Z"
+     "iopub.execute_input": "2024-02-08T05:22:05.805972Z",
+     "iopub.status.busy": "2024-02-08T05:22:05.805666Z",
+     "iopub.status.idle": "2024-02-08T05:22:07.269804Z",
+     "shell.execute_reply": "2024-02-08T05:22:07.269179Z"
     }
    },
    "outputs": [
@@ -1138,10 +1161,10 @@
    "id": "a18795eb",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-08T04:35:32.024066Z",
-     "iopub.status.busy": "2024-02-08T04:35:32.023695Z",
-     "iopub.status.idle": "2024-02-08T04:35:32.027757Z",
-     "shell.execute_reply": "2024-02-08T04:35:32.027319Z"
+     "iopub.execute_input": "2024-02-08T05:22:07.272129Z",
+     "iopub.status.busy": "2024-02-08T05:22:07.271782Z",
+     "iopub.status.idle": "2024-02-08T05:22:07.276036Z",
+     "shell.execute_reply": "2024-02-08T05:22:07.275437Z"
     },
     "nbsphinx": "hidden"
    },
diff --git a/versioning.js b/versioning.js
index 677111260..3968cf916 100644
--- a/versioning.js
+++ b/versioning.js
@@ -1,4 +1,4 @@
 var Version = {
   version_number: "v2.5.0",
-  commit_hash: "2b6ad95c32cfaf3029361941cca8c4eaf2ac541e",
+  commit_hash: "55409591737a9cc39ab0da67e9cf10ceac579900",
 };
\ No newline at end of file